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This paper considers augmentation of an existing inertial dampingmechanism by neural network-based adaptive

control, for controlling a micromanipulator that is serially attached to a macromanipulator. The approach is

demonstrated using an experimental test bed in which the micromanipulator is mounted at the tip of a cantilevered

beam that resembles a macromanipulator with its joint locked. The inertial damping control combines acceleration

feedback with position control for the micromanipulator so as to simultaneously suppress vibrations caused by the

flexible beam while achieving precise tip positioning. Neural network-based adaptive elements are employed to

augment the inertial damping controller when the existing control system becomes deficient due to modeling errors

and uncertain operating conditions. There were several design challenges that had to be faced from an adaptive

control perspective. One challenge was the presence of a nonminimum phase zero in an output feedback adaptive

control design setting in which the regulated output variable has zero relative degree. Other challenges included

flexibility in the actuation devices, lack of control degrees of freedom, and high dimensionality of the system

dynamics. In this paperwedescribe howweovercame these difficulties bymodifying aprevious augmenting adaptive

approach to make it suitable for this application. Experimental results are provided to illustrate the effectiveness of

the augmenting approach to adaptive output feedback control design.

I. Introduction

F LEXIBLE-LINK manipulators are often used in industrial
robotics where a lightweight and long-reach capability is

needed, such as in space robotics [1,2], nuclear maintenance [3], and
waste storage tank remediation [4]. A typical problem in long-reach
manipulators is that flexible links are susceptible to low-frequency
vibrations induced by movement of the robot itself or by external
disturbances and are difficult to control due to low stiffness. For
example, it is reported that a large portion of the operation time of a
remote manipulator systemwas spent waiting for vibrations to decay
before a real task is initiated [5,6]. Therefore, a great deal of research
has been devoted to reducing settling time by suppressing vibrations
in the flexible links, and numerous control methods have been
developed during the past two decades [7,8].

Control strategies for flexible manipulator systems are typically
classified as feedforward (open loop) or feedback (closed loop)
control schemes [8]. The method of input shaping belongs to the
class of feedforward controllers that focuses on minimizing
vibrations induced by the robot itself and suppresses unwanted
vibration by determining trajectories that avoid or minimize
vibration [1,9–12]. However, it is not well suited for rejecting
external disturbances. On the other hand, feedback control
techniques use measurements and estimation of system states to
reduce vibrations [8] and offer the potential for attenuating the
influence of external disturbances. Various feedback methods have
been used and adapted to flexible manipulator systems [7].
References [7,8] provide a survey for both feedforward and feedback

controllers. Approaches that combine input shaping with feedback
controllers have also been proposed in [13–16], in which shaped
commands are tracked by feedback controllers.

A macro/micromanipulator is a specialized robotic system
comprising a large flexible arm with a short-reach rigid manipulator
attached to its end. This configuration was first introduced by Sharon
and Hogan [17] for applications that require long-reach capability,
together with fine dexterous manipulation [18]. Because its long-
reach capability is provided by a flexible arm, as is the case for
general flexible manipulators, achieving fine tip positioning within
acceptable time in general necessitates the design of a control system
that provides damping for vibrations in the macromanipulator. An
initial attempt in this direction was to design controllers separately
for the macro- and the microsubsystems [17]. However, undesirable
interactions were observed when the gains on themicrocontroller are
large [19]. When the reference input to the micromanipulator is
formed as a difference between the desired tip position and the
macromanipulator endpoint position so as to improve inertial tip
positioning, the analysis in [20] shows that the resulting control
architecture creates a feedback loop between the two subsystems,
and designing independent controllers for the macro- and
microsubsystems can result in system instability, therefore putting
a limitation on the decoupled controller designs for a macro/
micromanipulator.

Inertial damping control is an approach that uses a micro-
manipulator to produce inertial interactions that damp the vibrations
of the macromanipulator, with additional sensors engaged to
measure vibrations in themacromanipulator. To avoid the design of a
single concurrent controller, the rigid links and the flexible links are
regulated by independent controllers assuming that their dynamics
are separated in time scales. This method has been applied by many
researchers [14,21–29] and proven effective in experimental studies.
In particular, various tests were performed by Book and his
colleagues at Georgia Tech [26–29] using the test bed located in the
Intelligent Machine Dynamics Laboratory (IMDL), in which a
micromanipulator, SAMII (Small Articulated Manipulator II), is
mounted at the tip of a cantilevered beam fixed to the ceiling, the base
motion of which is similar to that at the tip of a flexible manipulator
with locked joints. In general, however, the design of an inertial
damping controller requires a relatively accurate model for the
interactions between the micromanipulator and the base, which is
essential to avoid particular locations where coupling effects
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between the micromanipulator and the base are not suitable for
vibration damping [30]. In the design, it is important to limit the
control gain to ensure that model uncertainties do not lead to
instabilities. Also, it is important to maintain a proper link
configuration so that inertial effects dominate the interaction forces
[18,30].

In this paper, we employ a neural network (NN)-based adaptive
control design to augment the existing inertial damping controller
that may be deficient due to either inherent uncertainties in the
interactions between the rigid links and the flexible link or uncertain
operating conditions. In [29], it is shown how modal uncertainty
associated with the macromanipulator dynamics can lead to
instabilities similar to those observed in [20]. For simplicity of
analysis, in [29] an inertial damping controller is applied to damp the
vibrations in the base using only a single link while the other joints
are only regulated in their position, and a root locus analysis is
performed with experimental transfer functions obtained in a single
configuration. To study the use of adaptive control for robustifying
an inertial damping controller, we incorporate NN-based adaptive
control to augment the controller given in [29].

It is well established that a NN can approximate any continuous
function to any desired accuracy on a compact domain [31]. This
universal approximation property has been used in adaptive control
[32–35], and its potential for controlling uncertain flexible systems
has been illustrated with simulation and experimental studies
[36–38]. Its applications for robot manipulators are addressed in a
state feedback setting in [32,33,39]. In [40–45], the NN-based
approach has been further extended to output feedback. Especially,
the approaches in [42–45] have been developed in a control
architecture in which adaptive control augments an existing linear
controller. This form is particularly advantageous for this application
due to the presence of the existing inertial damping controller. The
difference between the approach in [42] and that in [43–45] is the
methodology by which the adaptive elements are designed.
Although the adaptive elements are designed based on inversion in
[42], those in [43–45] do not rely on inversion and can be applied to
nonminimum phase systems. Even for minimum phase systems,
inversion based control is not recommended when the system
contains lightly damped modes.

In this paper the adaptive element is designed following the
methods described in [43–45], because regulating acceleration by
moving the micromanipulator renders the system nonminimum
phase. This is often the case when flexible-link robot arms are
controlled by noncollocated actuators and sensors ([46], pp. 20–26).
The main challenges (beyond the nonminimum phase aspect of the
problem) in applying the adaptive method in [43–45] for this
application include zero relative degree of the regulated output
variable, significant flexibility in the actuation devices [47,48], and a
lack of control degrees of freedom (the system treated combines both
position control and vibration control in a single input design
setting). Furthermore, the system dynamics used in the existing
design included the second mode of base vibration, which adds an
additional degree of complexity to the augmenting adaptive design.
Thus one significant contribution of this paper is to detail how these
nonstandard forms, arising due to dynamic features of the flexible
manipulator regulated by the existing inertial damping control, were
handled by modifying the method in [43–45].

The paper is organized as follows: In Sec. II we describe the
essential features of the IMDL test bed in a linear setting. The
existing inertial damping controller and the challenges induced by
the existing control system design when we attempt to augment with
the adaptive control are addressed in Sec. III. Emphasis is placed on
how the approach in [43] was modified and on how the resulting
adaptive design can be reformulated for as being performed for a
nonminimum phase system having relative degree equal to one.
Next, the theoretical aspect of designing an augmenting adaptive
controller for a system having relative degree one is presented in
Sec. IV. The specific details of the adaptive control augmentation in
this application are given in Sec. V. Experimental results are
described to support the validity of the overall approach in Sec. VI.

Conclusion are presented in Sec. VII, and a stability analysis is
provided in the Appendix.

Throughout themanuscript, k � k denotes the Euclidean norm for a
vector and the induced 2-norm for a matrix unless otherwise

mentioned. That is, kxk �
��������
xTx
p

for x 2 Rn, and kAk�����������������������
�max�ATA�

p
for A 2 Rm�n.

II. System Description

Figure 1 depicts SAMII mounted serially to a 5-m long
cantilevered beam suspended vertically from an I-beam in the ceiling
of the lab. The actuators of the system are hydraulic servomotors at
the joints of SAMII. These are rotary vane actuators with
electrohydraulic servovalves. Optical encoders located on the shaft
of each joint perform measurement of the rotational position of the
joints. For vibration control, base accelerations are measured by
accelerometers located at the beam tip. Figure 1b defines the
coordinates related to the control design. With the definitions given
in Fig. 1b, the configuration in Fig. 1a is described by �1 ��90 deg,
�2 � 90 deg, and �3 � 90 deg, and x� 0, which represents the
initial position where the control system starts. The existing control
system considers only vibration control in a single direction (x) by
implementing an inertial damping controller to a single link (link 2),
while the other links and the wrist are under decoupled position
control. Therefore, only the variable �2 among joint angles is used in
design of the control system, and the notation � is used in place of �2
throughout the paper.

The hydraulic actuatormodel [29], a linearmodel derived by curve
fitting experimental data obtained with the configuration as shown in
Fig. 1a, is as follows:

�

u
� P��s� �

K1��s=!2�2 � 2�2�s=!2� � 1	
s�s=� � 1���s=!p�2 � 2�p�s=!p� � 1	 (1)

where � is in degrees, and u is the input voltage to the hydraulic
servovalve for the joint angle �2. The parameters in thismodel are the
following: K1 � 20, !p � 8:2 Hz, �p � 0:11, !2 � 10 Hz, �2�
0:06, � � 30 Hz. Figure 2 compares the frequency response of the
model in Eq. (1) to that of experimental data. Note that the model in
(1) includes flexibility in the actuator model, in contrast to that in
[26,30].

In the same manner, the acceleration of the base is derived as a
transfer function by curve fitting. This linear model implies that the
Coriolis term and centrifugal forces are assumed negligible in the
interaction forces (a procedure for a detailed nonlinear analytical

a)

x

Cantilevered Beam

1

2

3Wrist

Accelerometer

Link 1

Link 2

Link 3

b)

Fig. 1 a) Test bed at the Intelligent Machine Dynamics Laboratory at

GeorgiaTech. b)Definitions of coordinates in the existing control system.

YANG, CALISE, AND CRAIG 1069



model is presented in [30]). The transfer function for the base
acceleration with the joint angle � as input is given in [29] as

�x

�
� Pf�s� �

s4B1

�s=!1�2 � 2�1�s=!1� � 1

� s4B2

�s=!2�2 � 2�2�s=!2� � 1
(2)

where x represents the displacement of the point on which the
accelerometer is mounted (see Fig. 1b), and B1 ��1=475; 000,
!1 � 1:75 Hz, �1 � 0:05, B2 � 1=�3 � 106�. The frequency
response of the model in (2) is compared with the experimental
data in Fig. 3. Note that the model in (2) is only valid up to a
frequency of 20 Hz. This means that the dynamics at high frequency
are essentially unknown. Furthermore, having 4 zeros at the origin,
the values of B1 and B2 in (2) of opposite signs lead to having two
zeros in the open right-half plane and renders the acceleration output
with the input u nonminimum phase. Physically, this is due to the
sensor location which is not collocated with the hydraulic actuator
(see also Fig. 1b). The uncertainty in high frequency dynamics
together with its nonminimum phase property and unmodeled
nonlinearities severely restricts the control gains, and thus renders
the design of a high-performance vibration controller a challenging
task.

Remark 1. A procedure for a general nonlinear model for this
application is detailed in [30]. In this paper, we describe the system

dynamics as the transfer functions in (1) and (2) so that it can be seen
howcontrolling themicromanipulator (�) influences vibrations in the
flexible base ( �x). The transfer function, when u and �x are viewed as
input and output, respectively, is obtained as � �x=u� � P��s�Pf�s�.
These models are derived by curve fitting to the experimental data in
which two flexible modes (!1 � 1:75 Hz, !2 � 10 Hz) are clearly
observed. The main feature of the system given in (1) and (2) is the
flexible mode (!p � 8:5 Hz) in the actuator model, which does not
appear when the joint between the link 1 and the link 2 are assumed

rigid and the actuator is a velocity source, that is, _�� Ku, as in
[26,30]. The interactions characterized by the poles and zeros in (1)
and (2) as regards to the closed-loop stability are analyzed using the
root locus method in [29]. The term � is a time constant for the
hydraulic valve.

III. Existing Control System and Challenges in
Adaptive Augmentation Approach

A. Existing Control System

The existing control system in [29] consists of a position controller
combined with an inertial damping controller which is separately
designed to suppress vibration. In spirit, the control scheme is based
on separation of bandwidths, or two time scales, inwhich the fact that
the base vibration is relatively “fast” comparedwith the robotmotion
is exploited [28]. The rationale can be understood from the block
diagram depicted in Fig. 4. The position controller for the rigid link is
a proportional feedback

ur � Kr��d � �� (3)

where �d is the position command for the link, and Kr � 1.
It is desirable that the inertial damping controller provides a

damping force proportional to the velocity of the base _x. However,
this damping force should be generated as an interaction force
between link 2 and the base. Under the assumption that the inertial

term is dominant, link 2 should be moved so that �� is proportional

to _x. That is, if the hydraulic actuator is a velocity source _�� Ku (this
is approximately true up to 8 Hz as can be seen in Fig. 2), u should be
obtained in a way that _u is proportional to _x. This means that the
feedback is proportional feedback of the displacement x.

When acceleration is the output as in (2), the displacement cannot
be obtained by double integration due to the accelerometer bias. In
this case, the root locus analysis in [29] shows that the controller
excites the second mode and leads to instability before meaningful
damping is obtained for the first mode. Experiments have shown that
the second modal shape exhibits positive �x in response to torque that

leads to positive ��, whereas the first modal shape exhibits negative �x
in response to the same torque as reflected in the signs ofB1 andB2 in
(2). That is, proportional acceleration feedback adds damping to the
first mode, at the expense of reducing the damping in the second
mode. Therefore, to reduce the loop gain at the secondmode, in [29] a
low-pass filter, Gf�s�, is applied to the acceleration signal

Gf�s� �
1

�s=!c�2 � 2�c�s=!c� � 1
(4)

where !c � 2 Hz� 12:6 rad=s, �c � 0:707. This leads to the
control signal uf � KfGf�s� �x, where kf ��1:435. The overall
control signal uec becomes
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Fig. 2 Comparison of frequency response of the actuator model in (1)

to experimental data.
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uec � ur � uf � Kr��d � �� � KfGf�s� �x (5)

as shown in Fig. 4. Further details for the existing controller are given
in [29].

B. Challenges in Adaptive Control Augmentation

When attempting to apply the adaptive approach in [43–45] to this
system, one immediate difficulty is the lack of control degrees of
freedom, that is, a single control input must achieve combined
position and vibration control usingmeasurements of joint angle and
base vibration. To overcome this problem, a new regulated output
variable is defined by blending two outputs

yb �W1��W 02
�x

L!2
1

�W1��W2 �x

� K1��s=!2�2 � 2�2�s=!2� � 1	
s�s=� � 1���s=!p�2 � 2�p�s=!p� � 1	

�
�
W1 �W2

�
s4B1

�s=!1�2 � 2�1�s=!1� � 1

� s4B2

�s=!2�2 � 2�2�s=!2� � 1

��
u�

Pbn�s�
Pbd �s�

� Pb�s�u (6)

The weights W1 ��0:5 and W2 � 0:1 were intentionally selected
due to the fact that the control has an opposite effect on the base
acceleration (moving the link in the positive � direction leads to
negative �x),

Pbn�s� � ��0:3116s8 � 6:848s7 � 5038s6 � 5:716 � 104s5

� 2:015 � 107s4 � 8:885 � 107s3 � 2:016 � 1010s2

� 3:084 � 1010s� 2:388 � 1012

and

Pbd �s� � s8 � 208:5s7 � 1:059 � 104s6 � 1:362 � 106s5

� 2:538 � 107s4 � 2:161 � 109s3

� 4:915 �w09s2 � 2:388 � 1011s

It can be seen that when the transfer functions in (1) and (2) are
combined, the blended output yb has relative degree zero. On the
other hand, if we introduce the filter in (4) into the blending process
following the philosophy of suppressing the high frequency in the
measurement in the design of the existing inertial damping
controller, the new blended output has relative degree 2

yb�W1��W2Gf�s� �x

� K1��s=!2�2� 2�2�s=!2�� 1	
s�s=�� 1���s=!p�2� 2�p�s=!p�� 1	

�
�
W1�W2

1

�s=!c�2�2�c�s=!c�� 1

�
�

s4B1

�s=!1�2� 2�1�s=!1�� 1
� s4B2

�s=!2�2� 2�2�s=!2�� 1

��
u

�
Pbfn �s�
Pbfd �s�

u�Pbf�s�u (7)

where

Pbfn�s� � ��1317s8 � 4:411 � 104s7 � 1:141 � 107s6

� 2:801 � 108s5 � 2:582 � 1010s4 � 4:191 � 1011s3

� 6:261 � 1012s2 � 4:731 � 1013s� 3:771 � 1014�

and Pbfd �s� � �s2 � 17:769s� 157:914�Pbd �s�. Because the
approach in [43] assumes that the relative degree of the regulated
output is greater than zero, the variable yb in (7) is selected as
regulated output variable. In addition, because the electrohydraulic

servovalve dynamics lie outside bandwidth of our design (the time
constant � � 30 Hz), yb is treated as having a practical relative
degree of 1 within the bandwidth of our interest. Figure 5 confirms
this point by showing that the frequency response of the blended
output without the servovalve dynamics has less than 30 deg phase
lead and almost identical magnitude response up to 20 Hz compared
with the one in (7).

Another difficulty in augmenting adaptive elements is associated
with constructing a referencemodelwhen the existing control system
is based on two time scales. In [43–45], adaptive elements are
designed in amodel following control architecture, and the reference
model is defined as the closed-loop dynamics of the plant model
being regulated by the existing controller. However, the results in
[29] show that the overall performance of the system could be
significantly improved if a single coupled controller were designed
for the combined dynamics in (1) and (2). Thus the reference model
in this application is designed as was done in [49] instead of being
defined as in [43–45]. A benefit of using the approach in [49] is that it
leads to error dynamics that have a lower dimension.

IV. Theoretical Approach

The approach in this paper deviates from those in [43–45] in that:
1) the regulated output is blended using two outputs and 2) a
reference model is designed instead of being given as a nominal
closed-loop system. As a result of this modification, the regulated
output, being still nonminimum phase, is treated as having relative
degree one (within the bandwidth of interest). In this section, we
address the theoretical aspects of such amodified control scheme and
show that a simpler adaptive law for the NN weights than that in
[43–45] can be derived. For this,we consider the systemdescribed by
the following normal form [50]

_�� a1�� hTmz1 � bu� �1��; z1; z2; u�
_z1 � Fmz1 � gm�� �2��; z1; z2�; _z2 � f2��; z1; z2�

y� � (8)

where z1 2 Dz1

 Rm�1 is the state of the modeled internal

dynamics, z2 2 Dz2

 Rn�m is the state of unmodeled dynamics,

u 2 Du and y 2 D� 
 R are the input and output, respectively,
�1��; z1; z2; u� is a smooth function and represents a matched
uncertainty, and�2��; z1; z2� is also assumed smooth and represents
an unmatched uncertainty. Notice that the output y has relative
degree 1.

Assumption 1. The equilibrium z2 � 0 of _z2 � f2�0; 0; z2� is
globally exponentially stable, the function f2��; z1; z2�: Rn !
Rn�m is globally Lipschitz in its arguments, and �2 satisfies the
following upper bound:
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k�2k � �0kxk � �1kz2k � �2; �0; �1; �2 > 0 (9)

where x� �� zT1 	T 2 Dx�:� D� �Dz1
�.

Remark 2. From the converse Lyapunov theorem one can deduce
that there exists a Lyapunov function Vz2 �z2� satisfying the
following conditions [51]:

c1kz2k2 � Vz2 �z2� � c2kz2k2;
@Vz2
@z2

f2�0; 0; z2� � �c3kz2k2����@Vz2@z2

����� c4kz2k (10)

Then, the following upper bound can be derived:

_Vz2�
@Vz2
@z2

f2��;z1;z2�

�
@Vz2
@z2

f2�0;0;z2��
@Vz2
@z2

f2��;z1;z2��
@Vz2
@z2

f2�0;0;z2�

��c3kz2k2�c4c5kz2kkxk��
3c3
4
kz2k2�

�c4c5�2
c3
kxk2 (11)

where c5 is the Lipschitz constant of f2��; z1; z2� with respect to x.
This shows that the _z2 � f2��; z1; z2� dynamics, with x as the input,
are input-to-state stable [51].

The control architecture in [43–45] is developed by employing a
reference model that is the plant model regulated by the existing
controller in the absence of uncertainty. With the system in (8),
setting�1 � 0,�2 � 0, andz2 � 0 leads to a linearmodel that is used
in the design of the existing control system. In practice some control
designs may not necessarily involve a linear model, or they may be
further tweaked in an operational setting. As a consequence, the
reference model derived as the plant model regulated by the
implemented existing control system may not necessarily describe
the desired closed-loop behavior. In this case, we can design a
reference model so that it exhibits the desired closed-loop
characteristic and apply themethod in [43–45]. For the system in (8),
we follow this path and design the following state feedback
controller,

urm ��k1�m � kT2zl � k3yd (12)

and derive a reference model having the form

_x m � �Axm � �bk3yd; xm�0� � 0; yl � �cTxm (13)

where xm � � �m zTm 	T 2 Rm, and

�A�
a1 � bk1 hTm � bkT2
gm Fm

" #
; �b�

b

0

" #
m�1

�c�
1

0

" #
m�1

(14)

The subscriptm is used for the states of the referencemodel, and yd is
a bounded reference command, that is, kyd�t�k � �c for t � 0.

Given �A Hurwitz and a bound for yd, it follows that there exists a
�3 > 0 such that

kxm�t�k � �3; 8 t � 0 (15)

Let

u� uec � uad (16)

where uec is the output of the existing controller, and uad is the
control signal used to compensate for uncertainty. Define the error
vector

E � �m � �
zm � z1

� �
� e

~z1

� �
; E 2 Rm (17)

Comparing (8) to (13) leads to the following expression for the error
dynamics:

_E� �AE� �b��uad ��1� � B2�2; _z2 � f2��; z1; z2�
e� �cTE (18)

where

B2 �
0

I�m�1���m�1�

� �
;

�1 � �1=b��1��; z1; z2; u� � k1�� kT2z1 � k3yd � uec
(19)

Let

uad ��unn � udc (20)

where unn is the output of the NN to approximately cancel �1, and
udc is the output of the following linear controller:

_x dc�Adcxdc�bdce; xdc 2Rndc udc�cTdcxdc�ddce (21)

This additional control signal is introduced to robustify the
adaptation process, and reduce the error bounds in the stability
analysis [43]. Applying the controller in (21) to the dynamics in (18)
leads to the following augmented error dynamics:

_Ea�FEa�
�b
0

� �
�unn��1��

B2

0

� �
�2 _z2�f2��;z1;z2� (22)

where

E a �
E
xdc

� �
2 Rm�ndc ; F�

�A� �bddc �c
T �bcTdc

bdc �c
T Adc

� �
(23)

Because F is Hurwitz by design, there exist a P� PT > 0 such that,
for any Q> 0,

FTP� PF�Q� 0 (24)

Notice from (16) and (20) that�1 in (19) depends on unn through
u, and that the role of unn is to cancel �1. This constitutes a fixed
point problem.

Assumption 2. The mapping unn 7!�1�x; z2; u� is a contraction
uniformly in �x; z2� 2 Dx �Dz2

on Du.
Following the analysis in [40],we can derive sufficient conditions for
Assumption 2. Using (19), Assumption 2 implies that there exists a
� > 0 such that:				@�1�x; z2; u�

@unn

				�
				1b
�
@ _�

@u
� b

�				�
				@ _�@u



b � 1

				� � < 1 (25)

which is guaranteed by the following conditions:

sgn �b� � sgn

�
@ _�

@u

� 				@ _�@u
				



2< jbj<1 (26)

These conditionsmean that control reversal is not permitted and there
is a lower bound on the estimate of the control effectiveness term b.

A single hidden layer, multiperceptron NN is used to approximate
�1 in (19). Because it is a function of states and control, we recall the
main result from [52] which establishes a universal approximation
for an unknown function of the states and control in an observable
system using sampled values of its input/output.

Theorem 1. For arbitrary 	 > 0, there exist bounded constant
weightsM, N such that:

�1�x; z2; u� �MT��NT�� � "���; k"���k � 	

�x; z2; u� 2 Dx �Dz2
�Du (27)

where "��� is the NN reconstruction error and � is the network input
vector
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��t� � 1 yd�t� uec�t� �uTd�t� �yTd �t�
� �

T 2 Rn
 ; k�k � 


�uTd�t� � u�t� u�t� d� � � � u�t � �n1 � r � 1�d�� 	T

�yTd �t� � y�t� y�t� d� � � � y�t � �n1 � 1�d�� 	T (28)

in which n1 is the length of the window and generally required to be
greater or equal to the system dimension n, d > 0 is a time delay, r is
the relative degree of the output, � 2 Rn��1 is a vector of squashing
functions ([34], p. 55), in which �1 � 1, and its ith element is defined
as ���NT��	i � ���NT��i	 for 2 � i � n� � 1.

The adaptive signal unn is expressed in the form

unn � M̂T��N̂T�� (29)

where M̂ and N̂ are weights that are adapted by the following update
law:

_̂
M���M���̂ � �̂0N̂T��ep11b� kM̂	;
_̂
N ���N �ep11b�M̂

T�̂0 � kN̂	
(30)

in which �M, �N > 0 are positive definite adaptation gain matrices,

k > 0 is a �-modification constant, �̂ ≜ ��N̂��, �̂0 is the Jacobian
computed at the estimates, and p11 is obtained from the
decomposition of P in (24) as follows:

P� p11 pT21
p21 P22

� �
p11 2 R; p21 2 Rndc�m�1 (31)

Notice that unlike [43], the adaptive law in (30) does not require an
error observer for the teaching signal for the NN. This is due to the
fact that the system output has relative degree 1 and only the portion
of the positive matrix P is used in the adaptive law.

Define

~M≜ M̂ �M; ~N ≜ N̂ � N; ~Z≜
~M 0

0 ~N

� �
(32)

whereM,N are ideal weights defined in (27). The stability proof will
establish ultimate boundedness ([51], p. 211) of all the closed-loop
signals by showing that the signals z2 and Ea in (22) and the NN

weight errors ~Z in (32) are bounded. With this objective in mind, we

define the vector �≜ �ETa zT2 vec� ~Z�T 	T , where the operator vec is
stacking a matrix into a vector, and a hypersphere in the error space:

BR ≜ f�jk�k � Rg; R > 0 (33)

such that for every � 2 BR, we have �x; z2; u� 2 Dx �Dz2
�Du.

Consider the following Lyapunov candidate function:

V�Ea; z2; ~M; ~N� �ETaPEa � 1
2
~MT��1M ~M

� 1
2
tr� ~NT��1N ~N� � Vz2 (34)

With the following gain matrices

T1 �
1

2

2P 0 0 0

0 ��1M 0 0

0 0 ��1N 0

0 0 0 2c1I

2
664

3
775;

T2 �
1

2

2P 0 0 0

0 ��1M 0 0

0 0 ��1N 0

0 0 0 2c2I

2
664

3
775

(35)

where I is the identity matrix of dimension �n �m� � �n �m�, and

�N �

�N 0 . . . 0

0 �N . . . 0

..

. ..
. . .

. ..
.

0 0 . . . �N

2
6664

3
7775
n�n
�n�n


(36)

the following inequality is immediate from (10)

� >T1� � V��� � �>T2� (37)

Let

�M ≜ min
k�k�R

�>T1�� R2T1m

where T1m is the minimum eigenvalue of T1. Introduce the following
set:

��M
� f� 2 BRj�>T1� � �Mg (38)

Assumption 3. Assume

R > 

��������
T2M
T1m

s
�  (39)

where T2M is the maximum eigenvalue of thematrix T2 in (35), and 
is defined in (A20).

Theorem 2. Let Assumptions 1–3 hold. Then, if the initial error
��0� belongs to the compact set��M

in (38), the feedback control law
given by (16) and (20), along with (21) and (30), guarantees that the

signalsEa, z2, ~Z in the closed-loop system are uniformly ultimately
bounded provided that the conditions in (A6) and (A8) are satisfied.

Proof. See the Appendix.
Remark 3. Assumption 3 may be interpreted as implying both an

upper and lower bound for the adaptation gains. Define

� ≜max ��max��M�; �max��N��,  ≜min ��min��M�; �min��N��
and ��≜max ��max�P�; c2� and �≜min ��min�P�; c1�, where ����
denotes the eigenvalue. Then an upper bound for the adaptation gains

results when 2 ��  >1 and 2� � >1, for which the relation in (39)

reduces to � < R2=�22 ���. A lower bound for the adaptation gains

results when 2 ��  <1 and 2� � <1, for which (39) reduces to

 > 2=�2R2��.
Remark 4. In contrast to the approaches in [43–45], the approach

adopted here permits us to treat the design as having relative degree
one (within the bandwidth of interest). Consequently, we do not
require an estimate of the derivative of the tracking error. Otherwise,
the approach shares the same assumptions as in [43–45] and has the
same restrictions on the unmodeled dynamics. In addition, although
the approach in this section is formulated in a single-input single-
output setting, the approach can also be extended to a multi-input
multi-output systems following the formulation given in [44].

V. Adaptive Control Implementation

A. Reference Model Design

In the design of a reference model, we consider only the first
flexible mode in the base from the system in (2)

�xm
�m
� s4B1

�s=!1�2 � 2�1�s=!1� � 1
(40)

and a simplified hydraulic actuator model

�m
u
� K1

s��s=!p�2 � 2�p�s=!p� � 1	 (41)

This model ignores the electrohydraulic servovalve dynamics and its
high frequency zero. Although the blended output in (7) involves the
low-pass filter in (4) due to the second mode, the system in (40) and
(41) does not consider the second mode. Therefore, the output of the
reference model is defined without the low-pass filter
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ymb �W1�m �W2 �xm

� K1

s��s=!p�2 � 2�p�s=!p� � 1	
s4B1

�s=!1�2 � 2�1�s=!1� � 1
u

� Pmb�s�u (42)

which has relative degree 1 that is the same as that in (7) without the
servovalve dynamics, as shown in Fig. 6. In this figure, the frequency
response of the blended output in (42) is compared with that in (7)
assuming the effect of electrohydraulic servovalve dynamics are not
present. The blended output in (42) is described in the following state
space form:

_�� Am�� bmu; ymb � cTm� (43)

where

Am �

�10:3044 �41:4770 0 0 0

64 0 0 0 0

0 8:0 0 0 0

12:9616 0 0 �1:0996 �7:5564
0 0 0 16:0 0

2
66666664

3
77777775

bm �

16

0

0

0

0

2
66666664

3
77777775
; cm �

�0:8446
0

�3:2404
0:0716

0:4924

2
66666664

3
77777775

(44)

As a next step, we design a linear quadratic regulator (LQR)
controller for the design model in (43) which minimizes the cost
integral

J�
Z 1
0

��TQ��� Ru2� dx (45)

where Q� � diagf0:5; 0:5; 0:5; 1:5; 2:5g and R� 0:01. The result-
ing controller is as follows:

ulqr ��Klqr�� � �d� (46)

where �d � � �d 0 0 0 0 	T represents the steady state vector
which generates the desired position angle �d for the link, and
Klqr � � 9:7192 8:1810 7:0711 �5:2252 13:5296 	.

Following the procedure in ([51], pp. 531–545) that leads to the
following transformation matrix:

Tm �

�0:8446 0 �3:2404 0:0716 0:4924
0 0 0 �1:0426 0

0 0 0 0 �2:0851
0 �0:4471 0 2:2075 0:1517
0 0:0651 �0:8942 �0:3212 2:1855

2
66664

3
77775
(47)

the system in (43) can be transformed into the following normal
form:

_� m � A0m�m � b0mu; ymb � c0Tm�m (48)

where �m � Tm�, A0m � TmAmT�1m , b0m � Tmbm, c0Tm � cTmT�1m .
Letting �m � ��m; zTm	T leads for the system in (48) to be written in
the decomposed form in (8)

_� m � a1�m ��hTmzm � bu _zm � Fmzm � gm�m
ymb � �m

(49)

where �m 2 R, zm 2 R4, a1 ��11:404, b��13:5132, and

h m �

�51:3982
39:8383
�14:3573
41:3276

2
664

3
775;

Fm �

0 �61:3872 �8:4373 �57:9834
32 0 0 0

0 8 0 0

0 0 16 0

2
664

3
775;

gm �

16

0

0

0

2
664

3
775

(50)

Using the transformation in (47), the LQR controller in (46) can be
expressed as

ulqr ��KlqrT
�1
m ��m � �md � � �k1�m � kT2zm � k1�d (51)

where �md � Tm�d, k1 ��11:5078, kT2 � ��34:5251; 25:2423;
�13:3812; 33:7958	. The design model in (49) regulated by the
controller in (51) leads to the reference model in (13).

The performance of the reference model is compared with that of
the combinedmodel of (1) and (2) regulated by the existing controller
of (3) and (4) in Fig. 7 for a reference command corresponding to the
step response of the following command filter

Pd�s� �
1

�s=!d�2 � 2�d�s=!d� � 1
(52)

where wd � 10 rad=s, �d � 0:8.
The reference model achieves less oscillatory tracking response in

the position control of the link with much less vibration in the base
compared with the closed loop of the combined model of (1) and (2)
under the regulation of the existing controller. Thus use of this
reference model in the adaptive design implies that the adaptive
controller aims to achieve a higher level of performance in the
presence of modeling error than that of the existing controller in the
absence of modeling error. The performance of the adaptive
controller depends on how close the adaptive signal unn
approximates the matched uncertainty �1�x; z2; u� and the size of
the unmatched uncertainty �2�x; z2� characterized by (9).

B. Augmenting Adaptive Elements

The controller in (21) is designed as a lead compensator,

udc � 0:2
s=3� 1

s=20� 1
e (53)
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For Assumption 2, the conditions in (26) are easily checked using (7)

and (49) which directly provides the gains �@ _�=@u� � �1378=� �
�7:31 and b��13:5132 if we treat the hydraulic servovalve
dynamics outside the bandwidths of interest. This is valid up to 20Hz
as shown in Fig. 5. This can also be deduced by investigating the
frequency responses in Fig. 6. According to ([51], p. 538), in the case
of a transfer function for a single-input/single-output linear time-
invariant system, the control effectiveness term is derived as the first
coefficient of the nominator polynomial when the denominator is a
monic polynomial. Therefore, �ymb=u��s� � �b=s� when s� j1.
Figure 6 shows that yb=u and ymb=u have the same roll-off slope
(�1), the same phase, and jPbf�j!�j< jPmb�j!�j when !�1.
This ensures that the conditions in (26) are met. To circumvent a
fixed point iteration in the real-time environment, the control signal is
delayed by the single sampling time before it is used as a network
input. In a preliminary simulation, this was compared with obtaining
a fixed point solution, and the results were indistinguishable.

The NN consists of seven neurons in the hidden layer (n� � 6).
Because the system dimension is not exactly known, nine delayed
values of yb in (7) and eight delayed values of the input u, with delay
d� 0:02 s, are combined to construct the NN input signal. The
squashing functions are chosen as sigmoidal functions

���NT��	i �
1

1� e�a�NT��i
; i� 2; . . . ; 7 (54)

where a� 1 represents the activation potential. The Lyapunov
equation in (24) is solved by setting Q� 1:1I6�6. The following
parameters are used for the adaptive law in (30):

�M � 0:05I7�7; �N � 0:06I20�20; k� 0:1 (55)

The overall NN-based adaptive control architecture is depicted in
Fig. 8, where the elements used to augment the existing control
system are shaded.

VI. Experimental Results

To analyze the effectiveness of the existing control scheme and the
NN-based augmenting scheme during two-dimensional robot
motion, a square wave of magnitude 15 deg and frequency of
0.025 Hz is applied through the command filter in (52) with all other
degrees of freedom locked. The control objective is to achieve
inertial tip positioning of the end effector attached to the
micromanipulator. Relative rotation of the joint angle with respect to
the base � is measured by an encoder, and the base acceleration �x is
measured by an accelerometer (see Fig. 1b).

The joint angle � and the base acceleration �x responses are shown
in Fig. 9. Dashed lines represent the responses without the inertial
damping controller [“without uf,” that is, u� ur in (3)], dotted lines
represent the responses with the inertial damping controller [“uf
without uad,” that is, u� uec in (5)], and the solid lines represent the
responses with adaptive augmentation [“uf with uad,” that is, u�
uec � uad in (16)]. Because of the scale used in these figures, the
differences in responses are hard to distinguish, but selected regions
are zoomed in successive figures below.

Figure 10 shows the differences in transient response for each of
the different control strategies. Without damping control, the joint
angle tracks the reference command very closely, but the base
acceleration is completely uncontrolled. This results in a long settling
time because of the long vibration decay time. In contrast, with the
inertial damping control added (“uf without uad”), the responses in
Figs. 10a and 10b show that the micromanipulator is moved by the
controller in amanner to damp the base vibration. At the expense of a
slight overshoot with oscillations in the joint angle, the acceleration
in the flexible base is greatly diminished. The frequency content
observed in the joint angle shows that the first mode vibration is
damped. When adaptive augmentation is applied (“uf with uad”),
similar transient responses with the inertial damping controller are
observed. However, the joint angle response exhibits the movement
of the micromanipulator before it is moved into place in contrast to
the inertial damping controller that moves the joint and then damps
the vibration. As a result, settling time has increased slightly.

Inspection of the steady state responses from Fig. 9 as shown in
Fig. 11 reveals interesting features of the different controllers. With
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the existing control system, the joint angle oscillates around a value
that is offset from the desired angle due to actuator nonlinearities
such as dead zone and stiction. The nonlinearities in the actuation are
configuration dependent and time varying, depending on operating

conditions. This implies that the fixed gain control deviates when it
encounters an uncertain operating condition. This behavior is
problematic if the manipulator is to be employed for tasks requiring
high precision. In contrast, the augmented control regulates the joint
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Fig. 9 Comparison of output responses a) of the joint angle and b) of the base acceleration, with a square wave reference command.

23 23.5 24 24.5 25 25.5 26 26.5 27
70

75

80

85

90

95

time(sec)

θ 2(d
eg

) θ
d

without u
f

u
f
 without u

ad
u

f
 with u

ad

a)

23 23.5 24 24.5 25 25.5 26 26.5 27
−1.5

−1

−0.5

0

0.5

1

1.5

2

time(sec)

A
cc

el
er

at
io

n(
N

o 
U

ni
t)

without u
f

u
f
 without u

ad
u

f
 with u

ad

b)

Fig. 10 Comparison of transient responses a) of the joint angle and b) of the base acceleration.

25 30 35 40
89.8

89.85

89.9

89.95

90

90.05

90.1

90.15

time(sec)

θ 2(d
eg

)

θ
d

without u
f

u
f
 without u

ad
u

f
 with u

ad

a)

25 30 35 40

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

time(sec)

A
cc

el
er

at
io

n(
N

o 
U

ni
t)

without u
f

u
f
 without u

ad
u

f
 with u

ad

b)

Fig. 11 Comparison of steady state responses a) of the joint angle and b) of the base acceleration.
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angle close to the accuracy of the encoder resolution (0.044 deg), and
it suppresses the vibration to that level without damping control
(without damping control, the vibration decays completely to zero in
its steady state response, thus oscillations in the acceleration
measurement are due to sensor noise). The action of the adaptive
elements in augmenting the existing control can be explained by
investigating the tracking error e in (17). This error is the deviation of
the regulated output from that of the reference model, and Fig. 12
shows this error. With the adaptive control, the error is regulated
close to zero. This is only possible when the regulation of the joint
angle and the suppression of the base vibration are achieved
simultaneously, because the regulated output combines the joint
angle and the base vibration.

To illustrate the potential benefits of the augmenting adaptive
controller in improving robustness, additional lead weights are
mounted on the wrist in Fig. 1 to test the performance of the different
controllers when the inertia property changes. This mass change
simulates the situation when the manipulator picks up a massive
object and alters the frequencies of the flexible modes. For example,
adding approximately 6.35 kg leads to the frequency change of the
first mode from 1.75 Hz to 1.55 Hz. In this case, the existing
controller in (5) suppresses the first mode vibration, but excites the
second mode and results in an instability. The augmented controller
effectively damps out the vibration and achieves fine tip positioning
in the joint angle.A further increase in the inertia by addingmore lead
weights (approximately 10.56 kg) leads to the time responses shown
in Fig. 13. Without the augmenting elements, the existing system
immediately goes unstable whereas the augmented control system

quickly stabilizes the unstable system and maintains good
performance. This demonstrates robustness of the adaptive approach
to mass variations at the tip of the manipulator.

Finally, to further illustrate the augmented controller, the test is
also performed with the configuration in Fig. 14, which is described
by �1 ��90 deg, �2 � 10 deg, �3 � 0 deg, and x� 0 according to
the definitions given in Fig. 1b. Because the linear models in (1) and
(2) are derived based on the experimental data with the configuration
in Fig. 1a, it is not valid with the configuration in Fig. 14. The
experiment is carried out by pushing the base which mimics an
impulsive type of external disturbance and switching the adaptive
control on and off to observe how the control systems behave in
Fig. 15. Because the configuration belongs to a region in which the
linearmodel is not valid, the existing inertial damping control system
leads to instability when the base is pushed by hand. However,
enabling the adaptive control signal quickly stabilizes the overall
system. When two additional pushes are applied, the control system
with the adaptive control augmented shows that it well maintains
stability and remains effective in damping vibrations in the base.
Commanding a step change from 10 to 20 deg also leads to good
performance in both tracking the step change in the joint angle and
damping the vibrations in the base with this configuration. The
existing inertial damping controller goes unstable with the same
reference command.
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VII. Conclusions

The paper addresses neural network-based adaptive output
feedback augmentation of an existing combined position and
vibration control system for a flexible base manipulator. The
approach modifies a previous method so that it is suitable for
augmenting a previously designed two-time-scale controller in the
application. Both the nonadaptive and the adaptive controllers with
damping control are effective in reducing the transient time of the
vibration. However, in steady state, only with adaptation can the
micromanipulator achieve a level of accuracy on the order of the
encoder resolution. In this case, adaptation overcomes the effects of
actuation nonlinearities due to dead zone and stiction and provides
highly accurate tip positioning.Whenmass variations aremade at the
tip of the manipulator or when the manipulator is operated outside of
its nominal configuration, the closed-loop system using the exiting
control exhibits instability, whereas the adaptively augmented
system maintains nominal performance.

Appendix: Stability Analysis

The term unn ��1 in (22) allows for the following upper bound
[41]:

junn ��1j � �1k ~ZkF � �2; c1; c2 > 0 (A1)

where the subscript F denotes the Frobenius norm. Using Taylor
series expansion, the NN approximation error unn ��1 can be
represented as [33]

unn ��1 � ~M��̂ � �̂0N̂T�� � M̂T �̂0 ~NT�� ! � " (A2)

where!� ~MT �̂0NT� �MTO� ~NT��2. Using the bound for� in (28),
the term ! � " can be bounded [41]

k! � "k � 1k ~ZkF � 2; 1; 2 > 0 (A3)

Using the bound in (15), the bound in (9) can be written

k�2k � �0fkEk � �3g � �1kz2k � �2

� �0jej � �0k�k � �1kz2k � �1 (A4)

where �1 � �0�3 � �2, and �� � ~zT1 xTdc 	T . Note that the
conservative bound k ~z1k � k�k is used for simplicity of analysis.
Similarly, the relation in (11) can also be upper bounded

_V z2
� � 3c3

4
kz2k2 �

�c4c5�2
c3
kxk2

� � 3c3
4
kz2k2 �

�c4c5�2
c3
kEk2 � �c4c5�

2

c3
�2
3

� � 3c3
4
kz2k2 �

�c4c5�2
c3
�jej2 � k�k2	 � �c4c5�

2

c3
�2
3 (A5)

Suppose that �is and cis in (A4) and (A5), respectively, are such
that Q in (24) can be chosen to satisfy

Qm > 2maxfC1; C2g (A6)

where Qm � �min�Q�, and C1 and C2 are defined as

C1 � �0�3kp21k � kP22B�k	

� 1jp11bj �
�2�1kp21k�2 � �c4c5�2

c3
;

C2 � �0�kp21k � 3kP22B�k	 � �1kp21bk

� �2�1kp21k�2 � �c4c5�2
c3

(A7)

in which B� � � I�m�1���m�1� 0Tndc��m�1� 	T . Finally, let the �-
modification gain satisfy the following lower bound:

k > 2�1jp11bj � �1kp21bk	 (A8)

Proof of Theorem 2. Consider the Lyapunov function candidate in

(34). With (24), the time derivative _V along with (22) will be

_V ��ETaQaEa � 2ETaP
�b

0

" #
�unn ��1�

� 2ETaP
B2

0

" #
�2 � ~MT��1M

_̂
M� tr� ~NTV�1 _̂N� � _Vz2 (A9)

Using (A2), _V can be written as

_V��ETaQaEa� 2ep11b� ~M��̂� �̂0N̂T��� M̂T �̂0 ~NT��!� "	
� 2�Tp21b�unn ��1	 � 2epT21�2 � 2�TP22B��2

� ~MT��1M
_̂
M� tr� ~NTV�1 _̂N�� _Vz2 (A10)

After substituting the adaptive law in (30), we have

_V��ETaQaEa� 2ep11b�!� "	� 2�Tp21b�unn��1	

� 2epT21�2� 2�TP22B��2� k ~MTM̂� ktr� ~NTN̂�� _Vz2 (A11)

Using upper bounds from (A1) and (A3–A5), _V can be upper
bounded as

_V � �QmkEak2 � 2jejjp11bj�1k ~ZkF � 2	
� 2k�kkp21bk��1k ~ZkF � �2	
� 2fjejkp21k � k�k kP22B�kg��0jej � �0k�k
� �1kz2k � �1	 � �k=2�k ~Zk2F � �3c3=4�kz2k2

� ��c4c5�2=c3	�jej2 � k�k2	 � �Z� ��c4c5�2=c3	�2
3 (A12)

where �Z� �k=2��kM �M0k2F � kN � N0k2F	, and the following
property for matrices has been used:

tr � ~NT�N̂ � N0�	 � 1
2
k ~Nk2F � 1

2
kN̂ � N0k2F � 1

2
kN � N0k2F

Grouping terms leads to
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Fig. 15 The performance of adaptive control subjective impulsive

disturbance and the tracking with the configuration in Fig. 14.
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_V � �
�
Qm � 2�0kp21k �

�c4c5�2
c3

�
jej2 � 2�1jej k�k

� 2�2jej kz2k � 2s1jej k ~ZkF � 2s2jej

�
�
Qm � 2�0kP22B�k �

�c4c5�2
c3

�
k�k2 � 2�3k�k kz2k

� 2�1k�k k ~ZkF � 2�2k�k �
3c3
4
kz2k2

� k
2
k ~Zk2F � �Z� �c4c5�

2

c3
�2
3 (A13)

where

�1 � �0�kp21k � kP22B�k	; �2 � �1kp21k
�3 � �1kP22B�k; s1 � 1jp11bj

s2 � 2jp11bj � �1kp21k; �1 � �1kp21bk
�2 � �2kp21bk � �1kP22B�k (A14)

The following upper bounds for product terms and linear terms

2�1jej k�k � �1�jej2 � k�k2	;
2s2jej � �Qm=2�jej2 � �2=Qm�s22

(A15)

together with the following upper bound

� �c3=4�kz2k2 � 2�2jejkz2k � ��2�2�2=c3	jej2 (A16)

leads to

_V � ��EakEak2 � �c3=4�kz2k2 � � ~Zk ~Zk2F �� (A17)

where �Ea �min��e; ���, and

�e�
Qm

2
�f�1�s1�2�0kp21kg�

�2�2�2��c4c5�2
c3

;

���
Qm

2
�f�1��1�2�0kP22B�kg�

�2�2�2��c4c5�2
c3

;

� ~Z�
k

2
�fs1��1g; �� �Z��c4c5�

2

c3
�2
3�

2

Qm

�s22��2
2	

(A18)

One of the following conditions

kEak�
��������������
�=�Ea

q
; kz2k� 2

�����������
�=c3

p
; k ~ZkF �

������������
�=� ~Z

p
(A19)

will render _V � 0 outside a compact set. To complete the proof,
define

 ≜max

� ��������������
�=�Ea

q
; 2

�����������
�=c3

p
;
������������
�=� ~Z

p �
(A20)

and consider the hypersphere

B � f� 2 BRjk�k � g

in the space of the error vector � outside of which _V���< 0. Notice
from (39), that B 
 BR. Let

�m ≜ max
k�k�

�TT2�
T � 2T2M

and introduce the set:

��m
� f�j�TT2� � �mg

The condition in (39) ensures that ��m

 ��M

. Thus, if the initial
error �0 � ��0� belongs to ��M

, then there exists a time instant
t���0�, such that ��t�will enter the set� at t� and remain thereafter.
This implies uniform ultimate boundedness of � and completes the
proof. □
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