
AGGLOMERATIVE CLUSTERING FOR COMMUNITY
DETECTION IN DYNAMIC GRAPHS

A Thesis
Presented to

The Academic Faculty

by

Pushkar J. Godbole

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Computational Science and Engineering

Georgia Institute of Technology
May 2016

Copyright © Pushkar Godbole 2016

AGGLOMERATIVE CLUSTERING FOR COMMUNITY
DETECTION IN DYNAMIC GRAPHS

Approved by:

Professor David Bader, Advisor
Committee Chair,
School of Computational Science and
Engineering
Georgia Institute of Technology

Dr. Jason Riedy
School of Computational Science and
Engineering
Georgia Institute of Technology

Professor Bistra Dilkina
School of Computational Science and
Engineering
Georgia Institute of Technology

Date Approved: 25 April 2016

To my grandfather, for showing me that the real-world is much more

amazing than fantasy.

ACKNOWLEDGEMENTS

Switching my major from Aerospace Engineering to CSE for my Masters at Georgia

Tech, made moving to a new country feel like a rather blanched change in compar-

ison. While the last two years have been anything but cozy, I believe my marginal

learning over this short span exceeds everything heretofore. It has truly given me an

opportunity to remold myself into someone I aspired to be, at the onset. That indeed

is the true purpose of education I believe.

A major part of this learning has come from this Masters Thesis, for which I am

indebted to my advisor, Prof. David Bader for giving me the opportunity, guidance

and assistance throughout my study and research. I would also like to express my

deepest gratitude to Dr. Jason Riedy without who’s encouragement, expert advice

and generous support, I couldn’t even have imagined working on a topic as formidable

as Graph Theory, given my distinct background. I always secretly believed Graph

Theory was a cool topic. I can now confirm that my belief was well-founded. Thank

you to Prof. Bistra Dilkina for being a part of my Thesis Committee and for the valu-

able insights. And thanks to James and Anita for all their spontaneous assistance in

my research.

Many thanks are also in order for my friends, for adding color to my time here at

Georgia Tech. And finally, the acknowledgements would not be complete without

thanking Reddit, Quora and the countless such time sinks, without which I would’ve

probably been more productive, but life would’ve been much more drab, had I not

known “The longterm effects of immortality on humans”.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

SUMMARY . xi

I INTRODUCTION . 1

II PREVIOUS WORK . 3

III PRELIMINARIES . 8

3.1 Modularity . 8

3.2 Size of Change . 10

3.3 Differential Modularity . 11

3.4 Insertions vs Deletions . 14

IV MEMORYLESS RE-AGGLOMERATION 15

4.1 Algorithm . 15

4.2 Performance . 16

V BACKTRACKING RE-AGGLOMERATION 24

5.1 Algorithm . 24

5.1.1 Backtracking . 25

5.1.2 Merging . 30

5.2 Implementation . 33

5.2.1 Attributes . 33

5.2.2 Methods . 34

5.3 Performance . 36

5.3.1 Modularity . 38

5.3.2 Size of Change . 42

5.3.3 Number of Communities . 46

v

5.3.4 Runtime . 50

5.3.5 Number of Splits/Merges . 55

VI CONCLUSIONS AND FUTURE WORK 56

vi

LIST OF TABLES

1 Parent stack of base-edge DE . 26

vii

LIST OF FIGURES

1 14-regular two-clique graph [3] . 12

2 Two connected star graphs . 13

3 RMAT → RMAT: Dynamic Modularity change 17

4 RMAT → RMAT: Dynamic Number of Communities change 18

5 PGPGiantCompo→ RMAT: Static vs Dynamic re-agglomeration per-
formance (batch size =100) . 19

6 PGPGiantCompo→ RMAT: Static vs Dynamic re-agglomeration per-
formance (batch size =300) . 20

7 PGPGiantCompo→ Flipped PGPGiantCompo: Static/Dynamic/Dynamic
(depth = 1) re-agglomeration performance (batch size =100) 22

8 PGPGiantCompo→ Flipped PGPGiantCompo: Static/Dynamic/Dynamic
(depth = 1) re-agglomeration performance (batch size =500) 22

9 Dendogram of Induced Adjacency by base-edge DE 26

10 Modularity evolution for PGP graph with Node Spanning and Local-
ized Batch Topology . 38

11 Modularity evolution for PGP graph with Node Spanning and Dis-
tributed Batch Topology . 39

12 Modularity evolution for PGP graph with Matching and and Localized
Batch Topology . 39

13 Modularity evolution for PGP graph with Matching and and Dis-
tributed Batch Topology . 39

14 Modularity evolution for Facebook graph with Node Spanning and
Localized Batch Topology . 40

15 Modularity evolution for Facebook graph with Node Spanning and
Distributed Batch Topology . 41

16 Modularity evolution for Facebook graph with Matching and and Lo-
calized Batch Topology . 41

17 Modularity evolution for Facebook graph with Matching and and Dis-
tributed Batch Topology . 41

18 Size of Change evolution for PGP graph with Node Spanning and Lo-
calized Batch Topology . 42

viii

19 Size of Change evolution for PGP graph with Node Spanning and Dis-
tributed Batch Topology . 42

20 Size of Change evolution for PGP graph with Matching and and Lo-
calized Batch Topology . 43

21 Size of Change evolution for PGP graph with Matching and and Dis-
tributed Batch Topology . 43

22 Size of Change evolution for Facebook graph with Node Spanning and
Localized Batch Topology . 44

23 Size of Change evolution for Facebook graph with Node Spanning and
Distributed Batch Topology . 44

24 Size of Change evolution for Facebook graph with Matching and and
Localized Batch Topology . 45

25 Size of Change evolution for Facebook graph with Matching and and
Distributed Batch Topology . 45

26 Number of Communities evolution for PGP graph with Node Spanning
and Localized Batch Topology . 46

27 Number of Communities evolution for PGP graph with Node Spanning
and Distributed Batch Topology . 46

28 Number of Communities evolution for PGP graph with Matching and
and Localized Batch Topology . 47

29 Number of Communities evolution for PGP graph with Matching and
and Distributed Batch Topology . 47

30 Number of Communities evolution for Facebook graph with Node Span-
ning and Localized Batch Topology 48

31 Number of Communities evolution for Facebook graph with Node Span-
ning and Distributed Batch Topology 48

32 Number of Communities evolution for Facebook graph with Matching
and and Localized Batch Topology 49

33 Number of Communities evolution for Facebook graph with Matching
and and Distributed Batch Topology 49

34 Runtime evolution for PGP graph with Node Spanning and Localized
Batch Topology . 50

35 Runtime evolution for PGP graph with Node Spanning and Distributed
Batch Topology . 51

ix

36 Runtime evolution for PGP graph with Matching and and Localized
Batch Topology . 51

37 Runtime evolution for PGP graph with Matching and and Distributed
Batch Topology . 51

38 Runtime evolution for Facebook graph with Node Spanning and Lo-
calized Batch Topology . 52

39 Runtime evolution for Facebook graph with Node Spanning and Dis-
tributed Batch Topology . 52

40 Runtime evolution for Facebook graph with Matching and and Local-
ized Batch Topology . 53

41 Runtime evolution for Facebook graph with Matching and and Dis-
tributed Batch Topology . 53

42 Max Community size evolution for Facebook graph with Node Span-
ning and Localized Batch Topology 53

43 Max Community size evolution for Facebook graph with Matching and
Localized Batch Topology . 54

44 Number of merge operations for Facebook graph with Matching and
Localized Batch Topology . 54

45 Number of split and merge operations for PGP graph with Matching
and Localized Batch Topology . 54

x

SUMMARY

Agglomerative Clustering techniques work by recursively merging graph ver-

tices into communities, to maximize a clustering quality metric. The metric of Mod-

ularity coined by Newman and Girvan, measures the cluster quality based on the

premise that, a cluster has collections of vertices more strongly connected internally

than would occur from random chance. Various fast and efficient algorithms for com-

munity detection based on modularity maximization have been developed for static

graphs. However, since many (contemporary) networks are not static but rather

evolve over time, the static approaches are rendered inappropriate for clustering of

dynamic graphs. Modularity optimization in changing graphs is a relatively new field

that entails the need to develop efficient algorithms for detection and maintenance

of a community structure while minimizing the “Size of change” and computational

effort. The objective of this work was to develop an efficient dynamic agglomerative

clustering algorithm that attempts to maximize modularity while minimizing the “size

of change” in the transitioning community structure.

First we briefly discuss the previous memoryless dynamic reagglomeration approach

with localized vertex freeing and illustrate its performance and limitations. Then

we describe the new backtracking algorithm followed by its performance results and

observations. In experimental analysis of both typical and pathological cases, we

evaluate and justify various backtracking and agglomeration strategies in context of

the graph structure and incoming stream topologies. Evaluation of the algorithm

on social network datasets, including Facebook (SNAP) and PGP Giant Component

networks shows significantly improved performance over its conventional static coun-

terpart in terms of execution time, Modularity and Size of Change.

xi

CHAPTER I

INTRODUCTION

Community detection and partitioning is one of the most critical aspects of graph

analysis, having primal applications in a wide variety of fields ranging from molecu-

lar biology to social networks. However, due to the NP-hard nature of the problem

and arbitrary nature of the objective, deterministic identification of the optimal com-

munity decomposition is practically impossible, at least for large (real-world) data-

sets. Hence many approximation algorithms and approaches have been developed

to achieve near optimal clustering and partitioning. The non-deterministic nature of

these algorithms brings about the need of a standardized metric to assess the “good-

ness” of a decomposition, since the optimal is unknown. To that end, various metrics

such as mutuality, reachability, betweenness have been developed, modularity being

the most widely accepted one, to evaluate the quality of graph partitioning. These

metrics, although very efficient, greatly depend upon the structure and size of the

graph, thus making the clustering of dynamic graphs significantly challenging.

In this work, we build upon our previous work on dynamic community detection and

discuss the design and implementation of a new algorithm drawing from the limita-

tions of the previous approach. The objective of the re-agglomeration algorithm is

maximizing/maintaining the modularity and smoothness of transition from an old

community structure to the new, in progressively transforming graphs. We use the

metric of “Size of Change” (defined later) to quantify the smoothness of transition

and exhibit the strengths and weaknesses of the static and dynamic versions of the

algorithm for various graph transformations. The next chapter discusses the past

1

work related to dynamic community detection, specifically in context of Modular-

ity maximization. Chapter III introduces the metrics, modularity and size of change,

with their various properties critical for dynamic graph clustering. Chapter IV briefly

illustrates the previous algorithm and discusses its merits and pitfalls in context of

the observed results. Finally Chapter V describes the backtracking algorithm, im-

plementation and results. Chapter VI concludes with sound recommendations and

direction of future work.

2

CHAPTER II

PREVIOUS WORK

Traditionally, the problem of static graph clustering has been widely studied, in the

context of modularity optimization and beyond. The methods used for the same can

be broadly classified into four categories:

• Graph Partitioning : This method works by dividing the vertices of the graph

into a predefined number of groups of predefined sizes by placing cuts in the

graph that minimizes the cut-size (number of edges encountered by the cut).

Although still frequently used, the primary disadvantage of this method is the

necessity of pre-specifying the number of communities and the prescribed com-

munity size. These requirements greatly limit the application of this method to

various real graphs, particularly the evolving ones, rendering it highly unsuit-

able for dynamic clustering

• Partitional clustering : Similar to graph partitioning, this method requires pre-

specifying the number of communities for clustering and then partitions the

graph based on well-known techniques such as k-means clustering. This method

suffers from the same limitation as the graph clustering due to fixed number of

communities making it unsuitable for dynamic community detection

• Spectral clustering : This method builds on top of the partitional clustering

technique and applies similar partitioning methods to the eigen-transformations

of the graph. The eigen-vectors that better represent the community structure

of the graph are used to represent the graph in the eigen-space and partitioned

using standard techniques such as k-means clustering. This partitions when

3

translated back to the graph yield better clustering than the direct clustering,

in some cases.

• Divisive clustering : These methods are localized in nature and work by ei-

ther starting from individual vertices and merging them into communities that

improves the community structure of partitioning or by starting from a large

connected component and splitting it into components that yields a commu-

nity structure. The re-agglomeration technique comes under this paradigm and

proves suitable for dynamic graphs, due to the emergent nature of community

detection and localized nature.

Additionally, many other heuristic methods such as Simulated Annealing, Genetic

Algorithms have been designed and evaluated for graph partitioning. The reader is

advised to refer to the Community Detection review by Fortunato [4] for the details

on various paradigms of static graph partitioning.

On the other hand, community detection in dynamic graphs is a relatively untouched

field. The first work in this field by Hopcroft et al. [8] tracks the evolution of a

graph by running an agglomerative clustering on timely snapshots of the graph. This

agglomeration however is memoryless and hence does not come under the class of dy-

namic clustering techniques. Gorke et al. [5] introduce a partial ILP based technique

for dynamic graph clustering with low difference updates, however this method proves

unsuitable for large changes over time, due to its high computational requirement.

Another class of methods for clustering of evolving networks, such as label propaga-

tion [7], relies on local information and connectivity patterns instead of using global

metrics. Our focus however is on agglomerative methods that optimize a numerical

metric like modularity. The work closest to this study is a recent paper in the series

of papers on this topic by Gorke et al. [6] that evaluates various techniques, partic-

ularly a variant of the hierarchal agglomerative clustering, while keeping track of the

4

change in community structure in order to maintain smoothness of transition between

consecutive clusterings. This paper introduces five agglomeration based algorithms

with both static and dynamic versions as follows. Modularity is used as a metric to

measure the clustering quality while smoothness (Rg) is used to measure the degree

of dissimilarity between [0, 1] of clustering C ′ w.r.t. C, where:

Rg(C,C
′) = 1− (|E11|+ |E00|)/|E|

where, E is the set of all edges in C and

E11 = {(u, v) ∈ E : C(u) = C(v) ∧ C ′(u) = C ′(v)}

E00 = {(u, v) ∈ E : C(u) 6= C(v) ∧ C ′(u) 6= C ′(v)}

• Greedy static global agglomeration: Memorylessly performs greedy agglomera-

tion starting from singletons, at every step of the graph change, in order of

differential improvement in modularity, on merge of two vertices

• Greedy static local agglomeration: Similar to the previous method, but commu-

nity vertices only consider their neighbors while determining the best merge

• Greedy dynamic global re-agglomeration: Uses the the current and previous clus-

tering along with the history graphs (of communities) to re-agglomerate freed

vertices based on a predefined policy (P). Recursively attempts merging com-

munities starting from previous clustering in order of differential improvement

in modularity

• Greedy dynamic local re-agglomeration: Similar to the previous method, but

community vertices only consider their neighbors while determining the best

merge

• Hybrid greedy local agglomeration: This method is similar to the Greedy static

local agglomeration except that the objective function is a convex combination

5

of modularity and size of change. The algorithm fed with the previous cluster-

ing attempts maximizing this objective function by agglomerating neighboring

vertices to increase the objective function, starting from singletons at every

iteration of graph change.

Local Freeing Policies: The local dynamic re-agglomerative approaches employ

three policies for freeing vertices affected by update in edge (u, v), at every iteration,

based on the following criteria:

• u, v only

• u, v and their d-hop neighbors (where d is the depth of the hop)

• u, v and their first n neighbors using breadth-first

where u and v are the affected vertices in the graph change.

Global Back Tracking: The strategy used for the global re-agglomeration in the

dynamic methods follows the following backtracking rules to free affected vertices:

• If Intra-cluster edge addition: Backtrack to the point where the vertices were

separate

• If Inter-cluster edge addition: Backtrack to the point where the vertices become

singletons

• If Intra-cluster edge deletion: Backtrack to the point where the vertices are

singletons

• If Inter-cluster edge deletion: Do nothing

Amongst these methods, the paper reports that in the static case, the local search

performs consistently better than the global search. While in the dynamic case,

the global method with backtracking performs the best both in terms of speed and

6

modularity, although the smoothness decreases. The re-agglomeration method and

the size of change metrics used in our study are an extension of the global backtracking

approach used in this paper and have been described in section 5.

7

CHAPTER III

PRELIMINARIES

Graphs, particularly graphs representing real networks of objects, generally exhibit a

community structure. In other words, some regions of such graphs are more closely

connected than others. These closely knit groups in graph-analytical context are

called communities, wherein the the members (vertices) within a community are more

densely connected to other members within that community than they are to members

outside. The metric of Modularity coined by Newman and Girvan [10], is a widely

used measure of the strength of partitioning of a network into modules/communities.

Networks with high modularity have dense connections between the vertices within

modules but sparse connections between vertices in different modules. In case of dy-

namic graphs, as the graph changes (due to addition and removal of vertices and/or

edges) the community structure and hence the modularity evidently changes apro-

pos. Modifying the partitioning to maximize/maintain modularity entails creation

and deletion of communities along with transitions of vertices between communi-

ties. Minimizing these transitions in an attempt to maximize modularity ensures a

smooth transition from an old partitioning to new. The Size of Change metric as

the name suggests, has been defined to quantify this change in partitioning w.r.t.

the vertex transfers. To that end, this study aims to analyze the performance of the

re-agglomeration algorithm w.r.t. the modularity and size of change.

3.1 Modularity

Mathematically, modularity is defined as the fraction of the edges that fall within

the given modules minus the expected value of such fraction if edges of the graph

were distributed at random. Amongst the most commonly used methods to calculate

8

modularity and the one used here, the randomization of edges is based on the criterion

that the degree of each vertex is preserved in the canonical random graph. For a graph

G(V, E), with n vertices and m edges, we define Aij as the adjacency of vertices i

and j, i.e. Aij = 1 if an edge exists between vertices i and j in G and 0 otherwise.

Similarly, Pij is defined as the expected number of edges between vertices i and j in

the canonical random graph RG. We define δij as the community equivalence which

is 1 if vertices i and j belong to the same community and 0 otherwise. Then, based

on this definition, the modularity(Q) can be expressed as:

Q =
1

2m

∑
ij

(Aij − Pij)δij

The value of Pij can be computed using our randomization model in which the degree

of all vertices is kept intact and the connections changed. Graph G with m edges

will have in all 2m stubs (half edges). For vertices i and j, their stubs can be

connected to any of the remaining 2m− 2 stubs. For large value of m, 2m− 2 ≈ 2m.

Therefore, the probability of having an edge between i and j in RG would be given

by ki/2m × kj/2m = kikj/4m
2 making the expected number of edges, Pij = 2m ×

kikj/4m
2 = kikj/2m (where ki and kj are the degrees of vertices i and j in G and

hence in RG). Thus the above equation for modularity can be simplified to:

Q =
1

2m

∑
ij

(Aij −
kikj
2m

)δij

Modularity has certain properties that make it suitable for graph clustering [4, 3]:

• For an undirected and unweighted graph G, the modularity Q lies between the

range −1/2 6 Q 6 1. A positive Q implies that, the number of edges within

communities exceeds the number expected on the basis of RG. The modularity

of the entire graph as a single community is zero while that of all singletons

(each vertex, its own community) is negative

• Isolated (degree 0) vertices have no impact on the modularity of a community

structure

9

• In the clustering with maximum modularity, each cluster is a connected sub-

graph. i.e. placing disconnected subgraphs of G, if they exist, in different

clusters yields maximum modularity

• Clustering is a non-local property: Changes to one region of the graph may

propagate to the other regions of the community structure, yielding a completely

different optimal clustering

• Modularity is non-scalable: The optimal clustering of a graph need not be

retained if the graph is replicated (a copy of G added to G)

We direct the discerning reader to the paper by Brandes et al. [3] for proofs of these

properties and additional corollaries.

3.2 Size of Change

The Size of Change metric needs to reflect the difference between two community

structures based on the community associations of all vertices. However, since the

communities do not have explicit tags, the measure for each vertex must be relative

to the local change in terms of its neighborhood. This is done based on the following

three measures of change for each vertex:

• Neighbors that were not in its community, but now are (Join)

• Neighbors that were in its community, but now are not (Leave)

• Neighbors that were in its community and still are (Stay)

Based on these three changes, we define two parameters to quantify change in the

neighborhood of each vertex (v):

cJ(v) =
J(v)

S(v) + J(v)

cL(v) =
L(v)

S(v) + L(v)

10

Where cJ(v) and cL(v) are the joining and leaving parameters for v’s neighborhood.

J(v) is the number of neighbors that newly joined v’s community, L(v) the number

of neighbors that left v’s community and S(v) is the number of neighbors in v’s

community that stayed unchanged. Based on cJ(v) > mean(cJ(v)) + 2stddev(cJ(v))

or cL(v) > mean(cL(v)) + 2stddev(cL(v)), we mark vertex v as changed. The total

number of vertices that are marked as changed based on this criterion is finally defined

as the Size of Change (SoC).

3.3 Differential Modularity

One of the primary advantages of using Modularity as a metric for agglomeration is

that, its computation is localized, in that it is possible to compute the contribution

to the overall modularity by each individual community. The expression for the same

is given by:

∆MC =
EC

m
− V ol2C

4m2

Where ∆MC is the contribution to modularity by community C, EC is the number of

internal edges in community C and V olC is the volume or the sum of the degrees of

all vertices internal to community C. m is the total number of edges in the original

graph.

Having said that, the effect of merging two community vertices on the optimality of

the subsequent community structure (w.r.t. modularity) is not localized. The reader

is advised to refer the the paper on properties of modularity by Brandes et al. [3] for

further details.

Most modularity based agglomeration schemes including this one, prioritize merges

based on their differential contribution to overall modularity. However, the highest

contribution to modularity does not in many cases imply an optimal community

structure. Although modularity serves as a good metric to evaluate pre-existing

community structure, its not always very well suited to evaluate the best possible

11

Figure 1: 14-regular two-clique graph [3]

merges. To illustrate this, we consider the following two examples:

• Regular two-clique: This is an example instance described by Brandes et

al. [3] to illustrate the potential worst case instance of a modularity based

agglomeration. A n-regular two-clique is a graph instance comprised of two

n/2-cliques with each vertex vi of clique 1 uniquely connected by an edge to

a vertex ui of clique 2 as shown in the figure below. As is quite obvious, the

optimal community structure for such a graph is as shown in figure 1, giving the

highest modularity of 1/2 − 2/n. However, if merged based on the differential

modularity, every merge of singletons along any edge gives an improvement in

modularity of 2/n2. Consider a case of merge along all the bridge edges. This

gives an overall increment in modularity from the base −2/n to −2/n + n ×

2/n2 = 0. Any further merge leads to an increment in modularity of 0 and

hence would not be executed. Thus choosing the merges that yield the highest

differential modularity does not always give the best community structure in

this case.

• Star Lattice: This example illustrates the failure of modularity as a metric

12

A B

Figure 2: Two connected star graphs

to detect star structures in graphs. Detection of star like structures is of par-

ticular importance in community detection since many real-world community

graphs such as social networks are majorly comprised of the same. A star

graph is essentially a hub-spoke structure with many non-interconnected ver-

tices connected by edges to a single central vertex. The following figure shows

two such stars connected by an edge. For such a graph, merging a star center

vertex and the corresponding bridge vertex gives an increment in modularity of

1/(2n+1)−4n/4(2n+1)2 while merging along the bridge gives an improvement

of 1/(2n+1)−8/4(2n+1)2. Thus for all values of n > 2, the bridge merge gives

the largest improvement. If we consider a lattice of such stars where multiple

leaf vertices of stars are uniquely connected by an edge to the leaf vertices of

other stars, or even a case of one-to-one edges between the two star leaves, the

locally optimal merge always merges the bridge yielding a suboptimal overall

community structure. This particularly happens due to the second term in

the modularity expression, that favors merge of community vertices with the

minimum degree as opposed to this case. This becomes particularly relevant,

considering that many real-world graphs such as social networks follow a scale-

free (power law) pattern of connectivity, making the appearance of sparsely

connected star like structures common.

Thus, although approximately following the order of differential modularity leads to

reasonable community structures with high overall modularity, as will be seen in the

13

performance of the algorithms described below; various merge ordering criteria need

to be evaluated for their effectiveness and relevance in different scenarios.

3.4 Insertions vs Deletions

Aggomerative algorithms work by identifying affected vertices (based on a chosen pol-

icy) and freeing them for subsequent reagglomeration. However, there lies a funda-

mental difference between vertices affected by edge addition and deletion operations.

In particular, edge additions are forward looking changes that affect the subsequent

community structure. But edge deletions on the other hand are backward looking,

in the sense that they preclude the existing community structure. Consider for ex-

ample the case of a batch that deletes edges from a community splitting it into two

disconnected subgraphs. A strict vertex freeing policy may free only vertices local

to the affected edges, while other vertices (which must now belong to two separate

communities) are still tagged to the same community. Therefore, this difference must

be considered while defining the vertex freeing policies for the reagglomerative algo-

rithms.

In the next two sections, we detail the working and performance of the two algorithms,

the previous localized scheme and the new global backtracking scheme.

14

CHAPTER IV

MEMORYLESS RE-AGGLOMERATION

Here we briefly describe the previous reagglomeration approach with a localized ver-

tex freeing policy, that is independent of the history of merges leading up the the

current community structure (memoryless). Then we discuss its performance and

shortcomings in context of the observed results.

4.1 Algorithm

The algorithm [11] starts by placing every input graph vertex within its own unique

community. The algorithm maintains a community graph where every vertex repre-

sents a community, edges connect communities when they contain adjacent vertices

from the input graph. The edge weights are equal to the total number of adjacent

vertices between the two communities in the input graph. Nodes are weighed based

on the total number of edges contained in the communities represented by those ver-

tices.

In every iteration of graph change, the affected vertices are freed into singleton com-

munities followed by the following three steps:

• For every edge, compute the differential change in modularity due to a merge

along that edge

• The vertex pairs with the best differential improvement are chosen with a greedy

maximal matching and merged in case of an improvement in modularity. The

local maximization ensures that the algorithm doesn’t compare every vertex

pair. The maximal matching ensures that the merges happen along disconnected

edges making them independent of each other

15

• Finally the community graph is contracted based on the choices of merges in

the previous step and the connectivity updated accordingly

The algorithm exits when no further improvement is observed from any merge. The

freed vertices are defined as the end vertices of all affected edges (additions/deletions).

Presently, the algorithm is limited to edge additions and deletions only.

4.2 Performance

To evaluate the performance of the dynamic re-agglomeration algorithm, majorly

three experiments were conducted with static agglomeration used as a baseline to

compare the performance of the dynamic case. Unlike dynamic agglomeration, the

static version was rerun for every incoming batch of changes.

Broadly, the following three experiments were run on these algorithms:

1. RMAT → RMAT: The graph was initialized to a RMAT graph with 220

vertices with an average degree of 10. RMAT edge batches (of increasing sizes)

were then added without deletions

2. PGPGiantCompo → RMAT: The initial graph was the PGPGiantCompo

undirected graph [2] with 10680 vertices and 24316 edges. This graph was fed

with edges generated using RMAT without deletions, in batches of increasing

sizes

3. PGPGiantCompo → Flipped PGPGiantCompo: The initial graph was

the PGPGiantCompo graph [2]. A flipped PGPGiantCompo graph was con-

structed by flipping the graph along its indices. i.e. vertex 1 was swapped

with vertex n, vertex 2 with vertex n-1 and so on. This ensured that the com-

munity structure of the flipped graph would be exactly same as the original.

This flipped graph was fed with edge replacement (deletions), in batches of

increasing. Thus the initial PGPGiantCompo graph was transformed into the

16

0 20 40 60 80 100
Batch

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
od

ul
ai

rt
y

Dynamic Modularity
Batch size = 1
Batch size = 10
Batch size = 100
Batch size = 1000

Figure 3: RMAT → RMAT: Dynamic Modularity change

flipped PGPGiantCompo graph with displaced communities but exactly same

community structure.

Figures 3 and 4 illustrate the performance of the dynamic algorithm in case of RMAT

→ RMAT stream for increasing batch sizes: 1 - 10 - 100 - 1000. It can be observed

from Figure 3 that the for higher batch sizes (> 1), the modularity of dynamic re-

agglomeration keeps dropping as newer batches are added. This drop correlates very

well with the drop in the number of communities in Figure 4 and a rise in the max

community size, implying that the larger communities suck up the smaller communi-

ties and, constantly growing in size leading to the constant drop in the modularity.

Figures 5 and 6 exhibit the performance of the algorithms as RMAT edges are added

to the PGPGiantCompo graph for batch sizes of 100 and 300 illustrating the peculiar

inflection in behavior as the batch size increases.

We observe in Figure 5 that like in the RMAT → RMAT case, the modularity of

dynamic re-agglomeration keeps dropping with addition of new batches in case of a

batch size of 100. On the other hand, Figure 6 shows that for the batch size of 300, the

17

0 20 40 60 80 100
Batch

240000

260000

280000

300000

320000

340000

360000

380000

Nu
m

be
r o

f c
om

m
un

iti
es

Dynamic Number of Communities
Batch size = 1
Batch size = 10
Batch size = 100
Batch size = 1000

Figure 4: RMAT → RMAT: Dynamic Number of Communities change

modularity of the dynamic version drops until a point after which it increases. The

point at which this inflection occurs is observed to shifts leftward (happens earlier)

as the batch-size increases. The rate of increase also corresponds to the batch-size.

Max community size overall increases for dynamic case while that for static remains

almost constant at a low value. This inflection in the trend of modularity has a cor-

responding steep drop in the max community size.

As large batches of RMAT edges are added, the graph after a point transforms into

majorly an RMAT graph. This is owing to the fact that the original PGP graph

only has 10680 vertices and 48632 edges. Therefore, in case of a batch size of say

300, the graph has as many RMAT edges as PGPGiantCompo edges by the 150th

batch. Thus the graph progressively turns into an RMAT graph. As new batches

are added, the static agglomeration bursts the vertices into singletons merging them

together only if an improvement in the current modularity is entailed. Thus every

decision in the static agglomeration is optimal (although the converse is not true).

In the dynamic case, addition of new batches renders some previous agglomerations

18

Sheet1

Page 37

0 50 100 150 200 250 300 350 400 450 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Modularity

Mod(s)
Mod(d)

Batch id

M
o
du

la
rit

y

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000
No. of communities

NComms(s)
NComms(d)

Batch id

N
-c

o
m

un
iti

e
s

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

3000
Max community size

MaxSize(s)
MaxSize(d)

Batch id

M
ax

co
m

m
si

z e

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600
Community distribution

Mean(s)
Mean(d)
Spread(s)
Spread(d)

Batch id

N
o
d
es

Batch size = 100

Figure 5: PGPGiantCompo → RMAT: Static vs Dynamic re-agglomeration
performance (batch size =100)

19

Sheet1

0 50 100 150 200 250 300 350 400 450 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Modularity

Mod(s)
Mod(d)

Batch id

M
od
ul
ar
ity

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000
No. of communities

NComms(s)
NComms(d)

Batch id

N
-c
o
m
un
iti
e
s

0 50 100 150 200 250 300 350 400 450 500
0

1000
2000
3000
4000
5000
6000
7000

Max community size

MaxSize(s)
MaxSize(d)

Batch id

M
ax

co
m
m
si
z e

0 50 100 150 200 250 300 350 400 450 500
0

200
400
600
800
1000
1200
1400

Community distribution

Mean(s)
Mean(d)
Spread(s)
Spread(d)

Batch id

N
od
e
s

Batch size = 300

Figure 6: PGPGiantCompo → RMAT: Static vs Dynamic re-agglomeration
performance (batch size =300)

20

sub-optimal (negatively affecting the modularity) however, since not all vertices are

freed to singletons in this case, the suboptimal decisions stay leading to a drop in the

overall modularity.

The inflective rise in modularity for the dynamic case beyond a point may be at-

tributed to the fact that, addition of larger batch sizes frees up more vertices from

the small set of 10680 vertices of the PGP graph, thus making room for a restruc-

turing of the community distribution. This inference can also be verified from the

observation that, the rise in modularity is observed to always have a drop in the max-

batch size preceding it, thus implying that majority of vertices in the incoming batch

belonged to the max-size community. Since smaller batch sizes do not free enough

vertices, they fail to achieve this improvement.

The community size mean and spread increase for dynamic re-agglomeration with

addition of new batches. The rate of rise is proportional to the batch size. On the

other hand, both mean and spread for the static case remain almost constant at a

low value all throughout. This implies that, since the static agglomeration begins

from scratch at every step, it gets trapped in local optima early on and does not

execute further merges due to absence of downhill moves in the vicinity. Based on

the previous observation that, freeing more vertices in the later parts of the dynamic

re-agglomeration can lead to restructuring the community distribution into a better

modular one, the depth = 1 (affected vertex + neighbors) based dynamic case has

been evaluated for the PGP to Flipped PGP transition. The fact that flipped PGP

is only a translation of the original graph with the exact same community structure

helps in evaluating the algorithms for responsiveness to the transition in community

structure. Figures 7 and 8 illustrate the performance of the algorithm on batch sizes

of 100 and 500, up till complete transformation. It can be observed from figures 7

and 8, that in case of the dynamic re-agglomeration with depth = 1, the modular-

ity is able to catch up with the static case by the end. The size of change for this

21

Batch size = 100, No. Batches = 487

1 51 101 151 201 251 301 351 401 451
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Modularity

Mod(s)

Mod(d)

Mod(d) (depth1)

Batch id

M
od

ul
ar

ity

1 51 101 151 201 251 301 351 401 451
0

1000

2000

3000

4000

5000

6000

7000

8000
Size of Change

SOC(s)

SOC(d)

SOC(d) (depth1)

Batch id

S
iz

e
of

 C
ha

ng
e

Figure 7: PGPGiantCompo → Flipped PGPGiantCompo:
Static/Dynamic/Dynamic (depth = 1) re-agglomeration performance

(batch size =100)

Batch size = 500, No. batches = 97

1 11 21 31 41 51 61 71 81 91
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Modularity

Mod(s)

Mod(d)

Mod(d) (depth1)

Batch id

M
od

ul
ar

ity

1 11 21 31 41 51 61 71 81 91
0

1000

2000

3000

4000

5000

6000

7000

8000
Size of Change

SOC(s)

SOC(d)

SOC(d) (depth1)

Batch id

S
iz

e
of

 C
ha

ng
e

Figure 8: PGPGiantCompo → Flipped PGPGiantCompo:
Static/Dynamic/Dynamic (depth = 1) re-agglomeration performance

(batch size =500)

22

approach is seen to lie between the purely static and dynamic versions as expected.

This experiment illustrates how slight modifications to the design of the algorithm

can lead to significant improvements in the performance over time. Particularly, both

the static and dynamic with depth = 1 methods exhibit a convex behavior achieving

almost equal modularity at the end of the transition. The size of change in case of

the dynamic depth = 1 approach lies between the purely static and dynamic cases

exhibiting a sweet-spot in the trade-off between the two cases.

23

CHAPTER V

BACKTRACKING RE-AGGLOMERATION

Broadly, the algorithm follows an agglomerative clustering approach to identify com-

munities that maximize modularity, using backtracking to handle the stream of edge

changes (insertions/removals). It extends the backtracking approach followed by

Gorke et al.[6] in their dGlobal approach to incorporate localized modifications to

the community graph without splitting the parent communities.

Since single vertices are also treated as singleton communities in the agglomerative

clustering approach, the terms vertex and community vertex are interchangeably used

in the subsequent description.

5.1 Algorithm

Similar to static agglomeration, the algorithm starts off by agglomerating vertices

along edges that improve modularity. But in addition to the present community

structure, it also maintains a dendogram of the historical merges of all community

vertices in time. For every incoming batch of edge changes, the algorithm splits the

relevant communities either partially or completely based on the chosen backtracking

strategy described later, thus pruning/modifying the dendogram in the process. This

is followed by the merge of vertices along community edges improving modularity.

The order in which the community edges are considered for merge is based on the

merge strategy, discussed in the subsequent section.

More specifically, the algorithm can be broadly divided in three steps:

1. Add Batch: For every incoming batch of changes, separate edge additions and

deletions into two groups

24

2. Backtrack: For every edge deletion (u, v), backtrack based on the chosen strat-

egy. After all deletions are handled, similarly apply the backtracking strategy

for each newly added edge. The partial community graph rendered after this

step serves as a baseline for the subsequent merge step, thus eliminating the

need to start the agglomeration from scratch, effectively maintaining the clus-

tering information in the partial community structure, whilst simultaneously

reducing the computation cost per iteration compared to static agglomeration.

3. Merge: Finally, merge the community vertices along edges that yield a posi-

tive increment in modularity, ordering the merges based on the chosen merge

strategy.

5.1.1 Backtracking

The backtracking strategy defines how a batch of incoming changes is handled in

the community dendogram of the graph. Broadly, any backtracking strategy is a

combination of two methods: split and edit_edge.

5.1.1.1 Backtracking Methods

• Split: Splits a community into its two components by reversing the latest

merge.

• Edit Edge: Keeps the community structure intact but recursively edits the

underlying adjacency of the community vertices to change the weights of the

community edges. Editing the underlying adjacency requires the knowledge of

the chronological order in which the corresponding merges occurred. Figure

9 illustrates an example of the adjacency induced by the existence of an edge

DE in the base graph, on the subsequent community graph with the parent

stacks for vertices D and E as shown in Table 1. The solid lines in the abovedendogram represent the merges of community vertices as time progresses along

the y-axis and the dashed lines represent the edges induced by the base edge

25

Table 1: Parent stack of base-edge DE

D E
C
B

G
B

A A

6

A B C D E F G
time

0

1

2

3

4

Communities

5

Figure 9: Dendogram of Induced Adjacency by base-edge DE

on the community graph. The merge of vertices D and C induces an edge

between vertices E and C of the community graph at t = 1 and so on. Thus

the timestamps associated with these merges help in determining the order of

recursively editing the induced edges. In the above figure, deleting the edge DE

in the base graph implies decrementing the weights of the induced edges AA,

BB, GB, GC, GD, BE, CE, DE by the weight of the deleted base-edge DE in

that order. The above list of affected induced edges can be generated from the

parent stack of the base-vertices using the following three rules. In order to find

the induced edges due to base edge ab. Assume the parent stacks of a and b

are of size N and M respectively. Thus n = N and m = M become the initial

current vertex indices for stacks a and b. With pi(x) denoting the ith vertex

26

from the top, in the parent stack of vertex x and t(pi(x)) the corresponding

time stamp:

1. Assume without loss of generality, t(pn(a)) > t(pm(b)), making pn(a) the

source vertex s, for the current iteration

2. Mark edges between pn(a) and every vertex below pm(b) in the parent stack

of b, including pm(b). Stop when for some i ∈ [m, 1], pn(a) = pi(b) or i = 1

3. Update the current vertices for both stacks and chose the one with higher

time stamp as the source vertex for the next iteration. Since s = pn(a)

here, m = m− 1 if t(pn(a)) = t(pm(b)) and m = m otherwise; n = n− 1.

Then, s = argmax(t(pn(a)), t(pm(b)))

Repeat these steps for every new source vertex, until the bottom of both stacks

is reached.

5.1.1.2 Backtracking Strategies

The handling of edge additions and deletions depends on the strategy chosen for the

agglomeration. There are three strategies that may be chosen from, based on four

type of the edge change described below. Irrespective of the chosen strategy, the

edit_edge method needs to be applied to every edge change either by recursively

inducing edges in the community graphs or by only adding an edge between two sin-

gleton communities, as a special case. Therefore the choice and extent of application

of the split method distinguishes the strategies.

1. Split to Singletons: Recursively split the parent communities of both the

involved vertices until they are singleton communities. Then add the edge to the

new community graph between the newly formed singletons using edit_edge.

This however is a conservative approach and could prove useful in pathological

27

cases where the added bridge edges largely exceed the edges in the existing

communities, making the group of bridge vertices communities in themselves.

2. Split to Separation: Recursively split the parent communities until the

corresponding vertices lie in separate communities. Then call edit_edge to

recursively modify the induced edge weights of the updated community graph.

3. Edit Edge: Keep the existing community structure intact and call edit_edge

to modify the induced edge weights corresponding to the incoming edge update.

5.1.1.3 Backtracking Policies

The four edge change types and the relevant backtrack strategies to be considered to

handle them are described below.

1. Inter-community edge addition: An Inter-community edge addition strength-

ens the bridge edges or in other words obsoletes the present clustering. A large

addition of edges between two communities can lead a maximum modularity

community structure where:

• The two communities merge into a single entity

• The bridge vertices form a strongly connected community and the internal

vertices of the component communities drift out into neighboring commu-

nities or form smaller independent communities

The first case can be tackled by simply using the Edit Edge strategy where the

edge addition acts as a forward looking change towards a community merge,

without obviating the present clustering. The second case would need the use

of the Split to Singletons strategy, giving the algorithm an opportunity to re-

consider the present clustering. The cues for choosing one strategy over another

and/or transitioning between the two need to be investigated further.

28

2. Intra-community edge addition: An Intra-community edge addition strength-

ens the existing community. A large addition of edges to a community can yield

a maximum modularity community structure where:

• The community becomes more closely connected thus increasing the overall

modularity, if the edge additions are approximately uniform throughout

the community

• A region of the community becomes more closely connected than the rest

forming a strong community in itself while the remainder of the vertices

drift away into neighboring or self contained communities like in the pre-

vious case.

Similar to the Inter-community edge addition, the first case can be tackled by

the Edit Edge strategy while the second case would need the use of Split to

Singletons to enable restructuring of the entire community.

3. Inter-community edge deletion: An Inter-community edge deletion strength-

ens the presently defined community structure irrespective of the number and

topology of such deletions. Thus this case can be easily handled by only using

the Edit Edge strategy.

4. Intra-community edge deletion: An Intra-community edge deletion weak-

ens the community. Since the presence of the now deleted edge led to the merge

of the corresponding vertices into a single community at some point in the past,

it necessitates the re-computation of the clustering without the influence of

this edge. The Split to Separation strategy would take the dendogram back to

the point in history when the two vertices were in separate communities and

merging them into a single community prior to this point was sub-optimal.

29

The backtracking approach facilitates the maintenance of clustering information from

the previous agglomeration, leading to consistent growth of communities thus prevent-

ing the trapping in local optima, as has been observed in case of static agglomeration.

5.1.2 Merging

The order in which the edges are considered for merge plays a crucial role in the final

outcome of the algorithm. Conventionally in agglomerative clustering approaches,

the merges are made in a descending order of differential modularity improvement.

However, a merge along an edge affects the neighborhood structure of the involved

vertices, thus changing the magnitude of differential modularity and hence the order-

ing of edges left in the wake of the merge. Secondly, as seen in section 3.4, ordering

edge merges based on their differential contribution to modularity also does not guar-

antee the best (maximum modularity) community structure. To that end, three

approaches have been attempted here to balance performance and efficiency of the

agglomeration. It must be noted here that all edges considered in context of merging

are inter-community edges between presently active communities. Edges with one or

both of the end vertices inside currently active communities are not visible to the

merge operation.

5.1.2.1 Best Merge First

This is a brute-force approach in which the merges occur in descending order of the

current best differential modularity. However, since a merge modifies the neighbor-

hood of the involved vertices, the edge ordering needs to be updated after every

merge. This can be naively done by scanning all edges of the graph to choose the

next best merge at every iteration. Alternatively, since every merge only locally af-

fects the neighborhood of the involved vertices, merges can be done by maintaining

an updatable priority queue of edges, which updates the priorities of affected edges

30

after each merge. This queue however would have to be reconstructed after every in-

coming batch of graph changes and the computational overhead of maintaining such

a priority queue needs to be investigated.

5.1.2.2 Node Spanning

This is the easiest approach to implement, in which merges are ordered based on

vertices. Since the graph changes considered here are limited to edge additions and

deletions, the vertices in the graph remain invariant throughout the process.

1. Starting from a vertex i, the algorithm merges the vertex with a neighbor j,

that yields a positive change in modularity.

2. In order to maintain consistent community tagging, the merged community

vertex is either tagged i or j based on the sizes of i and j, in terms of the

number of internal vertices.

3. This continues until i becomes a sub-community of a neighboring vertex i′. The

process is then repeated for vertex i′ until it becomes a sub-community of one

of its neighbors, and so on.

4. The agglomeration stops when there are no more edges, merges along which

would yield a positive increment in modularity.

This algorithm is termed Node Spanning since it spans the entire graph starting

from a vertex, agglomerating and expanding along the frontier of the neighboring

vertices. This approach discards the magnitude information regarding the differential

modularity and treats all positive differential modularity merges equally, ensuring

localized merges and eliminating the need to recompute differential modularities over

all affected edges after a merge.

Multi-vertex spanning: An extension of this approach would be to span the graph,

31

starting simultaneously from multiple vertices. A special case of this extension would

be the all-vertex spanning approach, wherein all vertices seek out a neighbor to merge

with. For a valid merge of two vertices to occur, they would need to seek out each

other. The differential modularity information may be used in this case to allow each

vertex to choose the mutually best merge in its neighborhood, thus maximizing the

overall improvement in modularity in each step.

5.1.2.3 Matching

Similar to all-vertex spanning, the matching approach finds a set of disconnected

edges, merging along which leads to an overall improvement in modularity, contracting

the graph at each agglomerative step. For each agglomerative step:

1. Starting from the existing community graph, the algorithm identifies a maxi-

mum weight matching of the edges based on differential modularity.

2. The vertices are then merged along the set of matching edges, yielding an up-

dated community graph.

These two steps are repeated until no more edges with a positive differential contri-

bution to modularity remain.

This algorithm can be considered a static version of the best merge first approach in

which, the change in values of differential modularities after each merge is not consid-

ered for other merges within an agglomerative step. Note however that, choosing a

disconnected set of edges ensures that any merge does not invalidate the subsequent

merges chosen from that matching set.

Cyclically repeating the Add batch, Backtrack and Merge steps for every incoming

batch of edge additions and deletions ensures the maintenance of a good quality (high

modularity) dynamic community structure, as the graph evolves.

32

5.2 Implementation

The algorithm is implemented in C++, on top of the Stinger Graph framework [1].

It however uses native data members and methods to store and update the clustering

information.

5.2.1 Attributes

The historical information of the community structure is stored using five attributes

described below:

1. parents: The parenthood history of all vertices is stored as a vector of stacks

of merges, where each merge contains the id of the parent and timestamp of

the merge. The vector contains one stack corresponding to each vertex and

each stack represents the merge history of that vertex in chronological order.

Initially, each vertex is its own parent. The parent stack of a vertex grows when

it merges into another vertex.

2. children: The internal vertex information of the community structure is stored

as a tree, using a vector of stacks of vertex ids. Each stack in the vector corre-

sponds to a community vertex. Each vertex points to its immediate children in

the dendogram, stored in the stack in order of the merges, which in turn point

to their own children, thus forming a forest of trees, where each tree represents

an active community. Recursing over the subtree of a vertex yields all vertices

internal to that community. The use of stacks in this case is justified, since the

potential splitting of a community vertex must follow the reverse order of the

corresponding merges into the community.

3. size: Size is a vector that holds the counters for current number of internal

vertices in each community. It starts off with each element corresponding to

each vertex having a value of 1. When a vertex merges with another, the size

33

of the parent vertex is incremented by the size of the child vertex.

4. active: This is a boolean vector that stores the current active status of each

community vertex. It starts off with each vertex marked active and marks a

vertex inactive if/when it merges into another vertex.

The combination of Parents and Children stores the complete information of the

hierarchical dendogram. Additional information however is needed to store the con-

nections between these vertices as induced by the underlying graph.

5. neighbors: The neighborhood information of the community structure is stored

as a vector of maps of community edges. Each map represents the neighborhood

of a vertex with a mapping from the neighbor’s id to the edge weight. Use of

maps to store the neighborhood information ensures that, inserting, updating

and deleting edges can occur in constant time. The neighborhood map of a

vertex also includes self-edges, representing the total internal edges in the com-

munity. Decrementing an edge weight to 0 automatically deletes the edge from

the neighborhood map. Also, it may be noted that the neighborhood map is

symmetric i.e. neighbors[u][v] = neighbors[v][u].

5.2.2 Methods

The methods used to execute the clustering algorithm are described below in a top-

down order.

1. add_batch(batch): This function separates the incoming batch into lists of

edge deletions and additions. Starting with deletions, for each edge change,

it iteratively calls the split method until the chosen backtracking policy cri-

teria are satisfied. Then it calls the edit_edge method to insert this edge

into the community dendogram. At the end of this function call, all incoming

edge changes have been incorporated into the community graph. The partially

34

merged community structure serve as the starting point for the subsequent

merge operations.

2. split(u): The split method is an undo operation on community vertex u,

that reverts the latest merge v → u. It removes the latest child vertex v from

the stack children[u], detaching v’s subtree from u and calls revert_parent(v)

to recursively revert the parent stacks of all vertices in the children[v] subtree

by 1. Then it subtracts neighbors[v] from neighbors[u], separately handling

the two special cases:

• Internal edge:

neighbors[u][u] -= neighbors[v][v]

• Connecting edge:

neighbors[u][u] -= neighbors[u][v]

Finally, the community v is again marked as active and size[v] is subtracted

from size[u], to correct the community size of u, post the split. Maintaining

neighbors[v] unmodified even after merging with u enables this consistent

backtracking of neighborhood.

3. edit_edge(u, v, w): After the community structure around the involved ver-

tices u and v has been modified, by splitting the community graph based on the

chosen backtracking policy, the edit_edge method executes the edit edge algo-

rithm, described in Section 5.1.1.1 to update edge weights between the affected

vertices in parent stacks of u and v by w.

4. agglomerate(): At the end of add_batch, the community graph stands in an

intermediate state of partially merged communities. Then the agglomerate

method merges the community vertices along edges that yield an increment in

35

modularity by iteratively calling merge. The ordering of the merges is defined

by the chosen merge strategy.

5. merge(u, v): The merge method is the antipode of the split method. Call-

ing merge(u, v) merges v → u if size[u] > size[v] and u → v otherwise.

If v → u, it inserts vertex v into children[u], attaching v’s subtree to u,

through v. Then it calls change_parent(v, u) to recursively insert u into the

parent stacks of all vertices in v’s subtree. Then it adds neighbors[v] to

neighbors[u], separately handling the two special cases:

• Internal edge:

neighbors[u][u] += neighbors[v][v]

• Connecting edge:

neighbors[u][u] += neighbors[u][v]

Finally, the community v is marked as inactive and size[u] is incremented

by size[v].

The static agglomeration can be realized as a special case of the dynamic agglomera-

tion where the entire community structure is re-initialized with singleton communities

after every new batch insertion.

5.3 Performance

There are multiple variables at multiple levels of the algorithm that can be adjusted

to vary the performance of the backtracking agglomeration. These can mainly be

divided into three categories top-down:

1. Incoming Batch Topology:

Localized/Distributed

2. Backtrack Strategy: Choice and extent of backtracking for each type of

change

36

3. Merge Strategy: Ordering of merges for a given incoming batch

In order to simulate different types of incoming batch topologies, two approaches have

been employed. The localized batches (in which the edge changes are concentrated

in a particular region of the graph are simulated by inserting/deleting edges in sorted

order of vertex ids thus ensuring that for a reasonable batch size (> average vertex de-

gree), the entire neighborhood of one or more vertices will be altered. The distributed

batches are inserted by simply randomizing the incoming edge order thus ensuring

that a batch topology will generally be spread out across the graph. Although control-

ling the topology of incoming changes is beyond the scope of the algorithm, as such

the distributed change topologies may be considered to be closer to the pathological

cases commonly expected to be observed in realistic scenarios. The localized changes

would be rare if not absent in a realistic setting. As will be observed in the following

results, the distributed cases yield more predictable outcomes, generally leading to

better performance of the algorithm.

In the present study, the backtracking strategy has been kept fixed. Following the ele-

mentary logic that in absence of drastic hyper-local changes, in general, edge deletions

can be considered backward-looking changes while edge additions can be assumed to

be forward looking, the backtracking strategy for all edge deletions is set to Split to

Separation while all edge additions follow Edit Edge.

For the merge strategy, all three approaches - Best merge first, Node spanning, Match-

ing have been evaluated. The Best merge first strategy took excessive runtime due to

its exhaustive nature, while not yielding significant improvement over the Matching

approach in case of the PGP graph. Hence, the Node Spanning and Matching strate-

gies have been extensively evaluated.

Broadly, four experiments have been performed to evaluate the performance of the

backtracking algorithm based on the above variations:

37

Figure 10: Modularity evolution for PGP graph with Node Spanning and Localized
Batch Topology

1. Node Spanning with (vertex) sorted batches

2. Node Spanning with randomized batches

3. Matching with sorted batches

4. Matching with randomized batches

These experiments have been conducted on two undirected graphs:

1. PGPGiantCompo graph [2] with 10680 vertices and 24316 edges

2. SNAP Facebook graph [9] with 4039 vertices and 88234 edges

flipping them inside-out across vertices to simulate graph transition.

5.3.1 Modularity

Investigating figures 10, 11, 12, 13 for the evolution of modularity in case of the PGP

→ Flipped-PGP transition, we observe that the performance of the four approaches

improves in that order. The Node Spanning on localized batches is unable to detect

and track the transition in community structure both in the static and dynamic cases.

However, the dynamic variant shows marginally better performance than the static

version. This points at a failure of the Merge strategy, since a Backtracking Strategy

38

Figure 11: Modularity evolution for PGP graph with Node Spanning and
Distributed Batch Topology

Figure 12: Modularity evolution for PGP graph with Matching and and Localized
Batch Topology

Figure 13: Modularity evolution for PGP graph with Matching and and Distributed
Batch Topology

39

Figure 14: Modularity evolution for Facebook graph with Node Spanning and
Localized Batch Topology

does not exist for static agglomeration With more uniformly distributed changes, the

performance improves in case of the Distributed Batch Topology and both static and

dynamic agglomerations are able to overcome the shortcomings of the Node Spanning

strategy and track the community transition. The dynamic version performs better

in this case too. In case of the Matching based merging, the performance of static

agglomeration drastically improves in both localized and distributed batch topology.

It can be seen that in case of localized batches, the dynamic approach lags behind the

static one although buy the end it catches up. This lagging may be attributed to the

inertia that the dynamic approach gains owing to the additional information stored in

its dendogram. This inertia only slightly affects the distributed case due to its uniform

nature of transition. Also it should be noted that the Matching approach also leads

to higher values of modularity over Node Spanning for either batch topologies. In

the Facebook→ Flipped-Facebook graph transition, the modularity evolution for the

four cases as shown in figures 14, 15, 16, 17, appears more non-uniform. Although

all four cases loosely track the graph flip, the distributed batch cases exhibit smooth

transition with the Matching approach again performing better. The discontinuous

arcs in the localized cases can be attributed to the nature of the incoming batch as

can also be seen in the drastic jumps in the number of communities in figures 30, 32.

40

Figure 15: Modularity evolution for Facebook graph with Node Spanning and
Distributed Batch Topology

Figure 16: Modularity evolution for Facebook graph with Matching and and
Localized Batch Topology

Figure 17: Modularity evolution for Facebook graph with Matching and and
Distributed Batch Topology

41

Figure 18: Size of Change evolution for PGP graph with Node Spanning and
Localized Batch Topology

Figure 19: Size of Change evolution for PGP graph with Node Spanning and
Distributed Batch Topology

The lag in the dynamic approach can be prominently seen in the Distributed Batch

Matching case for the Facebook graph. Similar to the PGP results, Matching yields

community structures with higher modularity than Node Spanning.

5.3.2 Size of Change

From figures 20, 21, 24 and 25, we observe that the size of change of dynamic reag-

glomeration for both PGP and Facebook graph tests with Matching is lower than that

of static. This can be expected since the dynamic reagglomeration starts from a par-

tial community structure borrowed from the preceding clustering. Thus it maintains

information in the dendogram and passes it from an agglomerative step to another

42

Figure 20: Size of Change evolution for PGP graph with Matching and and
Localized Batch Topology

Figure 21: Size of Change evolution for PGP graph with Matching and and
Distributed Batch Topology

43

Figure 22: Size of Change evolution for Facebook graph with Node Spanning and
Localized Batch Topology

Figure 23: Size of Change evolution for Facebook graph with Node Spanning and
Distributed Batch Topology

ensuring smoothness of transition between successive agglomerations. This advan-

tage however appears to have been lost in the Node Spanning case shown in figures

18, 19, 22 and 23, where both static and dynamic show similar size of change val-

ues. This however is due to the nature of implementation of Node Spanning. Since

Node Spanning followed a fixed order of vertices starting from 1 to n to check for

local merges in the neighborhood irrespective of the magnitude of differential mod-

ularity, both the static and dynamic approaches follow roughly the same ordering

of vertices which leads to broadly a similar ordering of merges with local variations.

A significant change in this behavior can be observed only if the incoming batch of

edge-updates drastically modifies the graph, thus creating new neighborhoods as can

44

Figure 24: Size of Change evolution for Facebook graph with Matching and and
Localized Batch Topology

Figure 25: Size of Change evolution for Facebook graph with Matching and and
Distributed Batch Topology

45

Figure 26: Number of Communities evolution for PGP graph with Node Spanning
and Localized Batch Topology

Figure 27: Number of Communities evolution for PGP graph with Node Spanning
and Distributed Batch Topology

be seen by comparing the size of change plots for Node Spanning on the Facebook

graph in figures 22, 23.

5.3.3 Number of Communities

In case of the PGP graph as seen in figures 26, 27, 28 and 29, the number of com-

munities for the dynamic approach is always lower than those in the static case with.

The difference between the two is only marginal in the Matching cases. This implies

that the communities formed by dynamic reagglomeration tend to be lower in number

and larger in size (higher average community size). This can again be attributed to

the transitional property of the dynamic approach, since community vertices tend to

46

Figure 28: Number of Communities evolution for PGP graph with Matching and
and Localized Batch Topology

Figure 29: Number of Communities evolution for PGP graph with Matching and
and Distributed Batch Topology

47

Figure 30: Number of Communities evolution for Facebook graph with Node
Spanning and Localized Batch Topology

Figure 31: Number of Communities evolution for Facebook graph with Node
Spanning and Distributed Batch Topology

merge with pre-existing larger community vertices instead of starting from singletons

as in case of static agglomeration. Similar behavior is also seen in case of the the

number of communities in the Facebook graph test. An interesting observation

with respect to figures 26, 28 for the PGP graph test with localized batch topologies is

that the plots for the number of communities in the dynamic case are almost identical

irrespective of the merge strategy chosen. This similarity is even more pronounced in

case of the Facebook graph as shown in figures 30 and 32. This similarity in case of

the distributed batch topologies exists in the shapes of the plots for the dynamic case

with an offset as seen in figures 27, 29, 31 and 33. Although further investigation may

be necessary to understand this similarity, it appears that the dynamic agglomeration

48

Figure 32: Number of Communities evolution for Facebook graph with Matching
and and Localized Batch Topology

Figure 33: Number of Communities evolution for Facebook graph with Matching
and and Distributed Batch Topology

49

Figure 34: Runtime evolution for PGP graph with Node Spanning and Localized
Batch Topology

approach ends up with similar overall number of communities in the final community

structure, irrespective of the chosen merge order.

Finally, in order to justify the two sudden drops in the number of communities in the

dynamic case for Facebook graph with localized batch additions, in figures 30 and

32, we may expect it to be due to multiple smaller community vertices being sucked

into a large community vertex in a short duration. This hypothesis indeed turns out

to be correct as seen in the plots of the maximum community size in figures 42, 43.

The max community size rises nearly when the number of communities sharply drops.

This observation is particularly precise for the Matching case in fig. 43.

5.3.4 Runtime

The runtime of dynamic reagglomeration in the Node Spanning approaches for both

PGP and Facebook graph is significantly lower than the runtime for the static ag-

glomeration as may be expected, since the static approach always starts agglomera-

tion from scratch, at every iteration. This can be seen in figures 34, 35, 38 and 39.

This however is not observed to be true in case of the Matching approaches for the

PGP graph in figures 36, 37. In particular, it was observed that in the Matching

approach, the runtime was directly related to the total number of active communities

50

Figure 35: Runtime evolution for PGP graph with Node Spanning and Distributed
Batch Topology

Figure 36: Runtime evolution for PGP graph with Matching and and Localized
Batch Topology

Figure 37: Runtime evolution for PGP graph with Matching and and Distributed
Batch Topology

51

Figure 38: Runtime evolution for Facebook graph with Node Spanning and
Localized Batch Topology

Figure 39: Runtime evolution for Facebook graph with Node Spanning and
Distributed Batch Topology

and hence active neighbors to iterate over. Hence in the case of Matching approach

for the Facebook graph with distributed batch addition in figure 41, the runtime

for dynamic reagglomeration was lower than static. A peculiar behavior is ob-

served in the runtime of the dynamic reagglomeration for Facebook in figure 40 with

spikes at the center. This appears to be linked to the sudden surge in the number of

merges that occur during these iterations as seen in figure 44. Clearly, the runtime

of the algorithm is dependent on multiple drivers and detailed profiling is necessary

to evaluate the exact cause of the runtime behavior.

52

Figure 40: Runtime evolution for Facebook graph with Matching and and Localized
Batch Topology

Figure 41: Runtime evolution for Facebook graph with Matching and and
Distributed Batch Topology

Figure 42: Max Community size evolution for Facebook graph with Node Spanning
and Localized Batch Topology

53

Figure 43: Max Community size evolution for Facebook graph with Matching and
Localized Batch Topology

Figure 44: Number of merge operations for Facebook graph with Matching and
Localized Batch Topology

Figure 45: Number of split and merge operations for PGP graph with Matching and
Localized Batch Topology

54

5.3.5 Number of Splits/Merges

The number of Split and Merge operations describe the extent of agglomeration per-

formed at every iteration. From surveying the split and merge trends in the dynamic

reagglomeration of the PGP and Facebook graphs, it was observed that in all the

cases, the number of splits and merges at every iterations are almost equal. An il-

lustration of the same can be seen in the overlapping plots of the number of merges

and number of splits for the PGP graph in figure 45. This shows that although com-

munities change vertex ownerships within an iteration, creation or deletions of new

communities tends to have higher odds.

55

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

• Here we have presented in detail the working and implementation of a Modular-

ity based Backtracking Agglomerative scheme for dynamic community detection

for efficient and smooth tracking of the community structure as the underlying

graph changes.

• The results on the PGP and Facebook graphs show promise regarding the per-

formance improvement of the algorithm over the previous memoryless approach.

• The current understanding of the performance of the algorithm in handling

different graph structures is limited. Time profiling of the code to evaluate the

behavior of the algorithm for various topologies of base and change graphs is

necessary.

• Evaluating all the Backtracking strategies and mapping them to specific use

cases is necessary.

• The trade-off between maintenance of agglomerative history in the form of an

every growing dendogram and efficiency must be evaluated and quantified.

• While static agglomeration is agile and responsive to graph changes, it also

tends to be trapped into local optima due to the non-linear nature of modular-

ity. Dynamic agglomeration on the other hand may fail to respond to certain

critical changes in the graph, diverging into a suboptimal solution. Objective

criteria to distinguish between information and noise in the dendogram need

to be identified as a means to actively transition between static and dynamic

behaviors.

56

REFERENCES

[1] Bader, D. A., Berry, J., Amos-Binks, A., Chavarría-Miranda, D.,
Hastings, C., Madduri, K., and Poulos, S. C., “Stinger: Spatio-temporal
interaction networks and graphs (sting) extensible representation,” Georgia In-
stitute of Technology, Tech. Rep, 2009.

[2] Boguña, M., Pastor-Satorras, R., Diaz-Guilera, A., and Arenas, A.,
“PGP giant component user network graph Physical Review E, vol. 70, 056122
(http://www.cc.gatech.edu/dimacs10/archive/clustering.shtml),” 2004.

[3] Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M.,
Nikoloski, Z., and Wagner, D., “On Modularity – NP-Completeness and
Beyond,” 2006.

[4] Fortunato, S., “Community detection in graphs,” CoRR, vol. abs/0906.0612,
2009.

[5] Gorke, R., Gaertler, M., Hübner, F., and Wagner, D., “Computational
aspects of Lucidity-driven graph clustering,” 2010.

[6] Görke, R., Maillard, P., Schumm, A., Staudt, C., and Wagner, D.,
“Dynamic graph clustering combining Modularity and Smoothness,” J. Exp. Al-
gorithmics, vol. 18, pp. 1.5:1.1–1.5:1.29, Apr. 2013.

[7] Hartmann, T., Kappes, A., and Wagner, D., “Clustering evolving net-
works,” ArXiv e-prints, Jan. 2014.

[8] Hopcroft, J., Khan, O., Kulis, B., and Selman, B., “Tracking evolving
communities in large linked networks,” Proceedings of the National Academy of
Sciences, vol. 101, no. suppl 1, pp. 5249–5253, 2004.

[9] McAuley, J. and Leskovec, J., “Learning to discover social circles in ego
networks, NIPS,” 2012.

[10] Newman, M. E. J. and Girvan, M., “Finding and evaluating community struc-
ture in networks,” Physical Review, vol. E 69, no. 026113, 2004.

[11] Riedy, E. J., Meyerhenke, H., Ediger, D., and Bader, D. A., “Parallel
community detection for massive graphs,” in Proceedings of the 9th International
Conference on Parallel Processing and Applied Mathematics - Volume Part I,
PPAM’11, (Berlin, Heidelberg), pp. 286–296, Springer-Verlag, 2012.

57

