
GVU Technical Report GIT-GVU-03-30 June 2003

Delphi Encoding: Improving Edgebreaker 3D Compression
by Geometry based Connectivity Prediction

Volker Coors
University of Applied Sciences

Geomatics, Computer Science and Mathematics
Schellingstr. 24, D-70174 Stuttgart

coors.fbv@fht-stuttgart.de

Jarek Rossignac
College of Computing and GVU Center

Georgia Institute of Technology
Atlanta, Georgia, USA
jarek@cc.gatech.edu

Abstract
Delphi is a new geometry-guided predictive compression scheme for squeezing the connectivity of a triangluar mesh. The
mesh is traversed using the Edgebreaker state machine. Instead of creating the Edgebreaker clers sequence both
compression and decompression perform the same geometric prediction of the location of the unknown vertex of the next
triangle during the mesh traversal. Based on this geometric prediction the connectivity is predicted , by snapping
thepredicted vertex to the nearest boundary vertex, if one lies sufficiently close. If the guess is correct, a single
confirmation bit is sufficient. Otherwise, an entropy-based code is received and used to encode the rectification of that
prediction. For a series of meshes that we have tested, up to 97% of Dephi's predictions are correct, and result in a
compressed connectivity format requiring between 0.19 and 1.5 bits per triangle.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems -
distributed/network graphics; E.4 [Coding and Information Theory]: Data compaction and compression

Keywords: lossless mesh compression, connectivity coding

1. Introduction

3D graphics plays an increasingly important role in
applications where 3D models are accessed through the
internet. Due to improved design and model acquisition
tools, to the wider acceptance of this technology, and to the
need for higher accuracy, the number and complexity of
these models are growing faster than network bandwidth.
Consequently, it is imperative to continue increasing the
terseness of 3D data transmission formats.

Although many representations have been proposed for 3D
models, polygon and triangle meshes remain the de facto
standard for exchanging and viewing 3D models. A triangle
mesh may be represented by its vertex data and by its
connectivity. It may be used directly as a polyhedral
surface or as a coarse mesh controlling a subdivision
surface.

Most compression techniques separate the encoding of the
connectivity information (triangle/vertex incidence) from
the geometry information (vertex coordinates, and possibly
their color or normal attributes). Already of theoretical
interest fourty years ago24, lossless connectivity encoding
has received over the last few years a significant amount of
attention1, 4, 16, 21 because of its practical importance for the
transmission of 3D models. Although several recent
schemes are focused on progressive transmission2,3,7,10,14,22

or on computational simplicity9, 17, the reduction of the
number of bits per triangle remains the primary objective.
Furthermore, single-resolution encoding retains its strategic
importance, because in most situations we know ahead of
time that either the full resolution model or the coarse

starting point of a progressive model must be transmitted
and because they can be more effectively encoded as
single-resolution models than as progressive ones.

In this paper, we propose a new encoding technique, called
Delphi1, for single-resolution lossless compression of
triangle mesh connectivity. Delphi is based on the
Edgebreaker compression16 described in details in the next
section. In Delphi, both compression and decompression
perform the same geometric prediction of the location of
the tip-vertex of the next triangle. They estimate the
triangle connectivity by snapping the tip-vertex to the
nearest boundary vertex, if one lies sufficiently close. If the
guess is correct, only the confirmation bit needs to be
transmitted. Because up to 97% of Dephi's guesses are
correct, connectivity information is often compressed to a
fraction of a bit per triangle, as reported below.

2. Previous work

We focus in this section on techniques for the loss-less
compression of the connectivity of triangle meshes. The
connectivity of a “simple” mesh (defined as a connected,
zero-genus, manifold triangle mesh) may be stored as a
sequence of t triangle descriptors, each triangle been

1 The name is inspired by the ancient greek Oracle at Delphi,
which worked similar to the proposed compression scheme.
Pythia, the medium of the Oracle, responded to the questions in
words unintelligible to all but a priest of Apollo, the god of truth,
who would interpret the oracle and then relay the answers to the
seeker.

Coors & Rossignac 2/9

represented by 3 integer labels. Each label identifies one
amongst the v vertices and requires È l o g2(v)˘ bits.
Organizing triangles into strips5, where each new triangle
shares an edge with the previous one, reduces the above
storage by half in practice. The use of a buffer to cache a
small number of labels4 may further reduce the expected
cost.

The Topological Surgery method of Taubin and
Rossignac21 compresses both a triangle-spanning tree and
its dual vertex-spanning tree by encoding the lengths of
consecutive single-child nodes. Both trees suffice to decode
the connectivity of the simple mesh. For complex and
reasonably regular meshes, the expected cost of encoding
both trees may amount to about two bits per triangle.
However, the overhead of the run length encoding may
result in a significantly higher average cost for irregular or
small meshes.

Rossignac's Edgebreaker compression scheme16, proposes
both a rigorous theoretical analysis and an outstanding
worst-case bound of the connectivity compression bit rate.
The original method used at most 4 bit per vertex (denoted
b/v for simplicity) and was improved to 3.6 b/v11. This
upper-bound on storage does not rely on statistic-based
entropy or arithmetic coding schemes, which in general
perform poorly on small or irregular meshes. Consequently,
Edgebreaker is particularly attractive for compressing large
catalogs of small models. For large meshes, entropy codes
further reduce the storage to less than 2 b/v17.

Edgebreaker visits all the triangles of a mesh one at a time,
walking from a previously visited triangle to one of its not-
yet visited neighbors through their common edge, called the
“gate”. For manifold meshes, the tip of the new triangle is
either a “new” vertex (case C) that has not yet been
encountered or an “old” vertex of the boundary separating
the previously visited portion of the mesh from the rest.
Edgebreaker distinguishes four types of “old” vertices,
depending on whether they appear in that boundary before
the gate (case L) , after the gate (case R), both (case E), or
neither (case S).

The succession of case types produced by this traversal are
encoded as a succession of symbols from the set

{C,L,E,R,S}, called the clers sequence. For zero-genus
meshes, the clers sequence is sufficient to represent the
complete connectivity. These situations and the associated

clers symbols are shown in Figure 1a. The arrow indicates
the direction to the next triangle. Previously visited
triangles are not shown. Note that in the case S,
Edgebreaker moves to the right, using a recursive call, and
then to the left. Figure 1b gives an example of the clers
sequence of a small region of a simple mesh. A detailed
description of the Edgebreaker compression and
decompression and some extensions to non-manifold
meshes are given in16 and18.

Because half of the triangles correspond to case C in a
manifold mesh, one may chose to encode them using a
single bit (0), while the remaining four cases may be
unambiguously encoded using 3 bits each (110 for L, 101
for R, 111 for E, and 100 for S). This simple code
guarantees a 2 bits per triangle encoding. More complex
codes11,8 guarantee to compress the Edgebreaker-generated
clers sequence encoding of any zero-genus mesh to less
than 1.8 bits per triangle. The clers sequence of meshes
encountered in practice may be compressed even further,
sometimes to less than 0.9 bits per triangle, using variable-
length entropy codes17. When the mesh has a very large
number of vertices and most of them have exactly six
neighbors, the clers sequence can provably be compressed
down to 0.81 bits per triangle19.

A more efficient decompression algorithm, called
Wrap&Zip17, interprets the clers sequence to build a
simply connected triangulated polygon, which represents
the triangle-spanning tree. Then, it zips up the borders of
that polygon by matching pairs of its bounding edges in a
bottom-up order with respect to the vertex-spanning-tree
that is the dual of the triangle-spanning-tree. A previously
proposed alternative, called Spirale Reversi9, interprets the
reversed clers sequence and builds the triangle tree from
the end.

Touma and Gotsman23 also encode the vertices along a
vertex-spanning tree. They distinguish only two cases, split
and add, which correspond to the Edgebreaker's cases S
and C. Other cases are not encoded. Instead, Touma and
Gotsman also encode the degree of each vertex, i.e., the
number of incident edges and use it to automatically
identify the other cases. During decompression, they keep
track of the number of already decoded triangles that are

incident upon each vertex and are thus capable of
identifying the R, L, and E triangles automatically.
Experimental results show that this schema compresses

T

v

C

v

T

E

T

v

R

T

v

S

T

v

L

C
R

S R

L EC

R

L

E

R
R

Figure 1: (a) Edgebreaker clers symbols (b) example clers sequence: CRSRLECRRRLE

Coors & Rossignac 3/9

connectivity down to less than 0.2 b/v for very regular
meshes, and between 2 and 3.5 b/v otherwise, in practice.

 Alliez and Desbrun1 replace the deterministic traversal of
Touma and Gotsman’s schema by an adaptive one in order
to minimize the number of split operations. They adapt the
traversal to avoid the creation of cavities (which lead to
split operations) by attaching triangles to border edges that
are incident to vertices with the smallest number of free
edges. In Angle-Analzyer13 they use geometry to direct the
mesh traversal such that the connectivity becomes
predictable.

To compress the vertex location, the connectivity of each
case C triangle is used to access its neighbors and to predict
the location of the tip-vertex. Then a corrective vector is
transmitted to compensate for the error between the correct
location and its prediction. In general, the distribution of
corrective coordinates has lower entropy than the
distribution of the original coordinates (e.q. they spread
aroud zero). Therefore the corrective coordinates can be
compressed with fewer bits on average.

3. Delphi Encoding for Edgebreaker

In this section, we present a new geometry-guided
predictive compression scheme for squeezing the clers
sequence produced by the Edgebreaker mesh traversal,
called Delphi encoding. For simplicity of the exposition,
we focus on simply connected meshes that are
homeomorphic to a sphere. The proposed approach applies
to more complex meshes as well, but the cost analysis and
encoding are more complex. The Delphi compression does
not encode the clers sequence directly. Instead, it tries to
guess each clers symbol and encodes the confirmation and
the corrections to these guesses. The guess is based on the
geometry and connectivity of the previously visited
triangles. The Delphi decompression performs the same
guesses and decodes a confirmation bit that either confirms
that the guess is right or indicates that it is not, in which
case a corrective string of subsequent bits will indicate the
correct code. We call this sequence of confirmation bits and
of corrections the Apollo sequence of the edgebreaker
traversal.

In contrast to the clers sequence decompression, we have to
zip the mesh immediately while decoding the Apollo
sequence. Otherwise, it is not always possible to perform
the same guesses as during compression because the
neighborhod of a triangle is not completely built.
Consequently, when we encounter a S-case that is not
correctly identified, we need to encode the identity of the
old vertex that will serve as the tip-vertex of the S-triangle.
This corresponds exactly to the reason that an offset I is
necessary for the connect(i) operation of the cut-border-
machine6.

In the following, we will explain how to guess the clers
symbol of a triangle based on vertex geometry and how to
build the Apollo-sequence.

3.1. Definitions

A corner c is the association of a triangle c.t with one of its
bounding vertices c.v. The next corner around a triangle in
counterclockwise direction is denoted c.n, the previous
corner c.p, and the opposite corner c.o. The location or
geometry of the vertex v=c.v associated with the corner c is
denoted c.v.g.

As in the original Edgebreaker algorithm, we move from a
triangle F to an adjacent triangle T at each step of the mesh
traversal. F and T share a common edge G, called gate. Let
c be the corner of T that is not incident upon G as shown in
Figure 2. Let Length(G) denote the length of the gate. The
transmitted information must identify the vertex c.v. Let
g(c) be the estimate on the location of c.v.g. For instance,
we can compute g(c) using the parallelogram rule22: g(c) =
c.n.v.g+c.p.v.g–c.o.v.g.

Let B denote the set of all vertices in the decoded mesh
which are not interior to the mesh. As we have assumed
that the mesh is simply connected, the vertices of B form
one or several cyclic chains {c.p.v, Vr, V2, …Vl, c.n.v},
called hereafter “loops”, along the oriented border. One of
these loops contains the gate. We will call it the “active
loop”. For zero-genus meshes, we know that c.v is part of
the active loop. Let B’ be the set of vertices of the active

loop excluding the gate vertices c.n.v and c.p.v. Let X be
the vertex of B’ that is the closest to g(c). Let
d:=Dist(X,g(c)) denote the distance between them. X is a
prime candidate for c.v. We will use d to decide whether X
is our guess or whether we are guessing that c.v is a new
vertex.

3.2. Connectivity prediction

Specifically, when d exceeds a threshold, we assume a C
triangle. The difference gp=c.v.g-g(c) of the prediction g(c)
and the vertex location c.v.g will be encoded. When d is
smaller than the threshold, X will be our guess and if that
guess is correct, we will have one of the four cases L, E, R,

Already traversed area

Active loop

X
dg(c)

VrVl

v

G

c.v

c

c.n

c

c

c.p

c.o

Figure 2: Connectivity guessed by
parallelogram prediction

Coors & Rossignac 4/9

or S, depending on whether X is V1, or Vr, or both, or
neither. The threshold is based on the length of the gate G.

More precisely, if d>t*Length(G), with a constant t=0.6
for example, we guess T is of type C. Otherwise, we guess
that c.v is X and distinguish four situations as shown in
Figure 3:

• If X is both V1 and Vr, then we guess that T is of
type E.

• If X is Vr, then we guess that T is of type R.

• If X is Vl, then we guess that T is of type L.

• Otherwise, we guess that T is of type S.

A single bit in the transmission stream suffices to indicate
whether our guess is correct. If so, we not only know the
code of T (i.e., we have decoded its Edgebreaker symbol
using one bit), but we also know which vertex it is and can
thus zip the border immediately during decompression,
avoiding the zip delays introduced in17 and not requiring
the transmission of offsets that are associated with S
triangles6, 23 to identify the tip-vertices of S triangle.

Of course, our guess can be wrong. In this case we need
some information in order to rectify the guess. Note that a
false guess does not necessarely indicate a wrong symbol.
We might wrongly guess c.v as X and concluded a S
situation. In fact, it might be an S situation, but with
another tip in B’.

In the following, we discuss that rectification depending on
the guessed symbol and the length of the active border. We
discuss below how we encode the rectification of the wrong
guesses. We start with the case where we guessed a C and
made a mistake as shown in figure 4. Then we discuss the
cases where we wrongly guessed L, R, S, or E (see figure
5).

• If we guessed a C, and in fact c.v is a vertex in B’, one
bit in the transmission stream indicates that our guess

was wrong.The subsequent bits would clarify its type.
If the length of the active loop |B’| is equal 1, the
triangle has to be of type E. No further information is
necessary. If |B’|=2, only two possible symbols {L, R}
have to be distinguished. Otherwise, it is necessary to
distinguish between the three remaining cases in {L,
R, S}, because an E situation is impossible. In case of
a mis-classified type S triangle at the most Èlog2(|B’|)˘
bits are needed to encode the identity of c.v in order to
enable immediately zipping during decoding.
However, experimental results have shown that in
most cases the offset is 2 or 3. Only 2 bit are sufficient
to decode these offsets. Without these bits, it would
not be possible to perform the same guesses during
decompression as during compression.

• If we wrongly guess case E (X=V1 and X=Vr), it must
be a C situation. (An E is guessed only with |B’|=1.
With only one border vertex, situations L, R, and S are
not possible.) The confirmation bit is sufficient. No
additional bits are necessary to rectify the guess.

• If we wrongly guess case R (X=Vr), the subsequent
bits are used to distinguish between the three
remaining symbols {L, C, S}. An E symbol is not
possible here.

• If we wrongly guess case L (X=V1), we have to
distinguish between the remaining symbols {R, C, S}.
Again, an E symbol is not possible in this situation.

Guess C Guess L

X

g(c)

Guess R

X

g(c)

Guess S Guess E

X
g(c)

X
g(c)

X
g(c)

Figure 3: Guess clers Symbol based on geometry prediction.

Guess C in

X
g(c)

Situation S

Situation R

X
g(c)

Situation L

X
g(c)

g(c)

X

Situation E

Figure 4: Wrongly guesses C triangles

Coors & Rossignac 5/9

• If we wrongly guess case S, the four remaining
symbols {C, L, R, S} are possible. (An E symbol is
not possible here, because an E situation occures only
with | B’|=1, which implies V1=Vr. In this case, we
would have never guessed S, only a C or E.) Even if S
is the the correct guess, the tip-vertex might not be X.
So, when the correction states that the guess of S is
correct but the tip is wrong, additional bits must be
transmitted to identify the correct tip-vertex in the
active loop. These situations are rare because the
number of S cases is relatively small and many of
them are correctly identified.

Taking into account the current length of the active border
|B’|, some cases are not possible and the bit code for the
correction can be shortened.

If |B’|=1, only cases C and E are possible. |B’|=1 implies
V1=Vr. L, R and S situations are not possible. In this case,
the validation bit suffices to distinguish between the two
possible cases: C or E.

An active loop length |B’|=2, implies that B’ only contains
the vertices V1 and Vr. Neither an E nor a S situation are
possible in this case. If the guess is wrong, one additional
bit is sufficient to rectify the situation. For example, in case
of a wrongly guessed R, one bit indicates that the guess is

wrong, and an additional bit distinguishes between a C and
L situation.

Finally, when |B’|=3, there is only one vertex in the active
border besides V1 and Vr and thus that vertex is the only
acceptable tip-vertex for an S case. There is no need to send
corrective bits to dentify the tip in a wrongly guessed S
triangle. Furthermore, a wrongly guessed S case cannot be
an S with a different tip-vertex.

Using a careful analysis of these situations and exploiting
the restrictions described above, we hade devised and
evaluated several variable length schemes for encoding the
corrective string of bits.

Using the proposed connectivity prediction, an Edgebreaker
mesh traversal can be expressed by a sequence of 3-tupel
A=(G, RS, SO), where G is the confirmation bit indicating
whether the guess is correct or not, R is the correction
string in case of a false guess, and SO is the offset in a
wrongly guessed S situation. This sequence is called the
Apollo sequence, because it is used to interpret the
connectivity guess. The Apollo sequence is equivalent to
the Edgebreaker clers sequence. Figure 6 shows the Apollo
sequence of the above introduced example (see figure 1).

To analyse the behavior of Delphi and to report the
associated statistics, we store an augmented Appollo
sequence in which we also include the guessed symbol GS

and the length of the active loop |B’| leading to tuples

Guess wrong R

Situation L

X

g(c)

Situation C

X

g(c)

Situation S

X

g(c)

Guess wrong L

Situation R

X

g(c)

Situation C

X

g(c)

Situation S

X

g(c)

Guess wrong S

X
g(c)

Situation R

X
g(c)

Situation L

X
g(c)

Situation C

X
g(c)

Situation S

Guess wrong E

Situation C

g(c)
X

Figure 5 Wrongly guessed non-C triangles. They grey triangle shows the actual situation. The yellow triangle visualizes the
parallelogram prediction.

Coors & Rossignac 6/9

A’=(G, RS, SO, GS, |B’|). Note that GS and |B’| are known
by the decoder during decompression. There is no need to
transmit this information. It is included only for analysis
purposes.

3.3. Encoding the Apollo sequence

A simply connected regular mesh with t triangles can be
expressed by an Apollo sequence of length t-1. Each
Apollo tuple corresponds to a symbol of the equivalent
clers sequence of that mesh. In order to achive a compact
mesh representation, the Apollo sequence has to be
encoded efficiently. The layers of this compression will be
discussed separately:

• The guess layer,

• The rectified symbol layers

• The tip offset layer

These layers can be compressed using an adaptive entropy
encoder like the range encoder as in1 for example.

However, compression results vary using different
encoders. The entropy of the Apollo sequence as a lower
bound for the compression ratio gives more insight about
the encoded information. A good entropy encoder will
come close to that bound.

We can treat each layer M of the Apollo sequence as a
markov source of order n20. The conditional entropy
H(M|sj) of such a markov source is given by

H(M|sk) = -Â p(mi|sk)* log2(p(mi|sk)),

where sk= sk1…skn is the sequence of the n previous
symbols. The entropy of an ergodic markov source of order
n is then given by

H(M)= Â p(sk)* H(M|sk).

Note that H(M) is always less than or equals the entropy
H(M)= -Â p(mi)* log2(p(mi)) where M denotes the same
source without memory.

We will treat the layers as sequences of first order markov
sources (n=1). The first order entropy of these layers is a

Figure 6: Example Apollo encoding: Let us assume that we guessed the first triangle of the example correctly as
type C. We than predict the tip of the right triangle at g(c) using the parallelogram rule. Since the distance of
g(c) and the active border is too large, we guess again a type C triangle. Unfortunately, that guess was wrong. In
fact, the right triangle, shown in gray color in the first picture, is of type R. In the Apollo sequence we encode
this situation as (f,R) and continue the traversal with the left triangle of R. The prediction scheme is performed
for all triangle in Edgebreaker sequence and leads to the following Apollo sequence: ((t), (f, R), (t), (t), (t), (t),
(t), (t), (t), (f,R), (t), (t), (t)). With a trivial encoding scheme we can compress this sequence with 16 bits instead of
32 bits for the corresponding clers sequence.

Coors & Rossignac 7/9

lower bound for the compression ratio of the Apollo
sequence.

In addition to that lower bound and a practical compression
rate, a guaranteed upper bound is fundamental for a
number of applications where compression will be
performed at runtime. The upper bound on the number of
bits per vertex is needed here to estimate the maximum
expected time for transmission.

The upper bound of the Apollo sequence mainly depends
on the quality of the prediction. If the prediction is often
wrong, a lot of rectification information is necessary and
the code will become inefficient. In that case, the original
clers sequence should be used instead. Because both
encode the same mesh traversal, the clers sequence can be
directly derived from the Apollo sequence. For that reason,
the worst case upper bound of 3.6 bits per triangle from
Edgebreaker is also valid for Delphi compression.

However, if the prediction is often correct, the upper bound
will be much less than in Edgebreaker. The Apollo
sequence contains t-1 symbols mi Œ{t, f} in the guess layer
MG. A trivial code will use 1 bit for each symbol in that
layer. Let p(t) be the probability of a correct guess. The
propability p(f) of a wrong guess is given by p(f)=1-p(t).

In case of a wrong guess 2 bits are sufficient to encode the
rectified symbol in any case. However, this is a rough
estimate. If the guessed symbol GS is a E it must be a C
situation. No further information is needed to rectify the
guess. If GS is a L or R a simple Huffman code will need
less than 1.7 bits per symbol to distinguish the three
possible retified symbols. In case of a wrongly guessed C
symbol also 1.7 bits are sufficient to distinguish the three
rectified symbols L, R, and S. The E symbols which might
occur as rectification do not have to be encoded. Only in
case of |B’|=1 an E symbol is possible and in that case, no
other symbol besides C is valid. If the guess says that C
was wrong, it must be an E. Only in case of a wrongly
guessed S, four different recified symbols C, L, R, ,and S
have to be distinguished.

If the of a rectified symbol RS is a S, the tip of that type S
triangle has to be encoded in order to zip it immediately. In
case of a manifold mesh with genus 0, that tip is a vertex on
the active loop and can be encoded by the topological
distance s to Vr on the active loop. Experimental results
have shown that s is 2 or 3 in most cases. However, this
offset is a serious obstacle to guarantee a linear worst case
bit-rate. Theoretically, log2(|B’|) are needed to encode the
tip of that S triangle.

Nevertheless, we can estimate an upper bound, if the
number of S triangles is supposed negligible. The guess
layer needs less than one bit per triangle. In addition, for
each wrong guess, less than 2 bit are needed to rectify the
guess. If the number of S triangles is small, 1.7 bit is
sufficient because a rectified S does not often occur.
Summing up, an estimated upper bound bit rate b is given
by b=1+1.7*p(f) bits per triangle. In other words, Delphi
compression is more efficient than Edgebreaker, if more
than 65% of the predictions are true.

Experimental results lead to 80% to 95% of correct guesses
for regular meshes. The estimated upper bound is between
1.34 to 1.1 bits per triangle for these meshes. In practice,
the compression bit rate was between 0.8 and 0.2 bits per
triangle or 1.6 and 0.4 bits per vertex in these cases.

3.4. Decoding

While decoding the Apollo sequence, the decompression
algorithm (Pythia) predicts the clers symbol of the new
triangle using the same prediction scheme as during
compression. This guess is interpreted using the
corresponding Apollo tupel. If the guess is correct, we can
restore that triangle and because we guessed not only the
correct symbol but also the correct tip of the triangle in the
active loop in case of a non-C triangle, we can zip
immediately and restore the mesh connectivity.

If the Apollo tupel indicates that the guess was wrong, we
will get the rectified symbol RS and the offset SO in
addition. This information suffices again to restore the new
triangle and immediately zip it.

4. Experimental results

In this chapter a detailed analysis of the Apollo sequence of
one example mesh is given. Additonally, the bit rate of a
series of test meshes is compared with other connectivity
compression schemes.

4.1. The Horse Model

In the following the Apollo sequence of a mesh that
represents a horse model with 96966 triangles and 48485
vertices as shown in figure 7 will be analysed in detail.

Figure 7: Delphi compression of the horse model (96966
triangles). Correctly predicted triangles are colored green,
wrong ones red. About 83% of the connectivity is correctly
guessed leading to a bit rate of 1.47 b/v. The accompanying
video shows the mesh traversal in detail.

Coors & Rossignac 8/9

Table 1 shows the distribution of correctly and wrongly
guessed triangles.
P(t) 0.8290
P(f) 0.1710
P(|B’|=1|f) 0.0162
P(|B’|=2|f) 0.0025
P(|B’|>=3|f) 0.9813
Table 1: Probability of wrong guesses

About 83% of the connectivity is correctly guessed using
the parallelogram prediction. In case of a wrong guess, the
conditional probability of the length of the active border is
reported. In case of an active loop length |B’|=1 no
additional information is necessary to rectify the guess. If
the active loop length is 2, one bit is sufficient to rectify the
guess as shown in 3.2. However, most of the wrong guesses
occur in an active loop with length greater than 2 as
expected.

The next table shows the probability PXY of a wrongly
guessed symbol GS=X and its rectification RS=Y in case of
an active border length greater than or equals 3:

PXY=P(RS=Y Ÿ GS=X |ÿG Ÿ |B’|>=3).

PXY RS=C RS=L RS=R RS=S Sum
GS=C -- 0.0033 0.5209 0.0143 0.5385
GS=L 0.0082 -- 0.0067 0.0004 0.0153
GS=R 0.2751 0.0013 -- 0.0163 0.2927
GS=S 0.0580 0.0003 0.0932 0.0020 0.1535
Sum 0.3413 0.0049 0.6208 0.0330 1.0000

Table 2 Probability of rectified symbols

When a guessed C (GS=C) proves to be wrong the correct
symbol is usually R, and vice versa, in case of a wrong
guess GS=R, most rectified symbols are C. An entropy
encoder will take advantage out of that distribution.
Another interesting fact is that a rectified symbol S occurs
in 3% of wrong guesses. In that case, an offset is needed to
encode the tip of that S triangle. This offset is given as the
topological distance of the tip of Vr on the active loop.
Table 3 shows the distribution of that offset. The offset is 2
in 90% and 3 in 6% of all rectified S triangles, and is
encoded with less than 1.1 bit in these cases. The expensive
part is the encoding of the remaining 4% where the offset is
greater than 3. However, this occurs only in 0.02% of all
triangles (in this example 20 triangles) and, for the models
we have tested, the offset did not excede 560.

Offset
2 0.9
3 0.06
>3 (max 560) 0.04

Table 3 Offset distribution in case of RS=S

The above introduced first order entropy compression leads
to 1.47 bits per vertex connectivity encoding using a
parallel prediction scheme in order to guess the mesh
connctivity. The corresponding edgebreaker traversal of
that model has a first order entropy of 1.75 which leads to
an improvement of 15%.

4.2. Experimental Comparison

A series of meshes was tested with the new Delphi
compression using paralleogram prediction. The
connectivity compression results are given in bits per
vertex of the calculated first order entropy encoding. The
results are compared with the first order entropy of the
corresponding Edgebreaker clers sequence (EB). Actual
bis-rates are slightly higher because they carry an overhead
depending on the used arithmetic/huffmann/range encoder.

The results show that a good connectivity guess improves
Edgebreaker clers sequence compression. For very good
connectivity guesses like the Mannequin model, the
Apollo encoding improves Edgebreaker by a factor 3.
When the probability of a wrong guess exede 40% the
Delphi encoding stops being advantageous.

Model #V #T
Delphi bpv
(p(t)) EB

Horse 48485 96966 1,47 (83%) 1,75

Cow 2904 5804 1,6 (83%) 2,26

Body 711 1396 2,25 (65%) 2,59

Mannequin 11704 23402 0,41 (97%) 1,2

Venus 8268 16532 2,84 (59%) 2,86

Neferiti 299 562 2,17 (69%) 2,58

David 24085 47753 2,9 (58%) 2,79
Table 4 Compression results (in bits per vertex).The
percentage of correct guesses is given for the Delphi
compression.

Figure 8: 3D meshes used for bit-rate measurements.

5. Conclusion and future work

In this paper, we described a lossless, single-resolution
connectivity encoding technique called Delphi. In contrast

Coors & Rossignac 9/9

to previously published connectivity compression schemes
Delphi uses the previously decoded geometric and
connectivity to predic the location of the tip-vertex of the
next triangle. We discuss here how this prediction is used to
compress connectivity. The geometry prediciton, which is
based on the parallelogram rule, is not affected by the
Delphi encoding and thus has identical characteristics to
previously reported schemes23 for geometry compression.

Delphi uses the same mesh traversal and the same mapping
of the connectivity of the mesh into a clers sequence as
Edgebreaker. Because of the accuracy of its connectivity
prediction scheme, Delphi’s encoding of the clers sequence
results in significant compression gains.

6. References

1. Alliez, P. and Desbrun, M. Valence-Driven
Connectivity Encoding for 3D Meshes. Eurographics
2001 Conference Proceedings, 2001

2. Alliez, P. and Desbrun, M. Progressive Encoding for
Lossless Transmission of 3D Meshes. Siggraph 2001
Conference Proceedings, 2001

3. Cohen-Or, D., Levin, D., and Remez, O., Progressive
Compression of Arbitrary Triangular Meshes.
Visualization 99 Conference Proceedings, pp 67-72,
1999

4. M. Deering, M. Geometry Compression, Computer
Graphics, Proceedings Siggraph'95, 13-20, August
1995.

5. F. Evans, S. Skiena, and A. Varshney, Optimizing
Triangle Strips for Fast Rendering, Proceedings,
IEEE Vizualization'96, pp. 319--326, 1996.

6. S. Gumhold and W. Strasser, “Real Time
Compression of Triangle Mesh Connectivity”, Proc.
ACM Siggraph, pp. 133-140, July 1998.

7. Hoppe, H., Progressive Meshes. Siggraph 96
Conference Proceedings, pp 99-108, 1996

8. Gumhold, S., Towards optimal coding and ongoing
research, 3D Geometry Compression Course Notes,
SIGgraph 2000

9. Isenburg, M. and Snoeyink, J., “Spirale Reversi:
Reverse decoding of the Edgebreaker encoding”,
Tech. Report TR-99-08, Computer Science, UBC,
1999.

10. Khoddakovsky, A., Schroeder, P. and Sweldens, W.
Progressive Geometry Compression. Siggraph 2000
Conference Proceedings, pp 271-278, 2000.

11. King, D. and Rossignac, J. “Guaranteed 3.67V bit
encoding of planar triangle graphs”, 11th Canadian
Conference on Computational Geometry
(CCCG'’99), pp. 146-149, Vancouver, CA, August
15-18, 1999.

12. D. King, D. and J. Rossignac, J., "Connectivity
Compression for Irregular Quadrilateral Meshes"
Research Report GIT-GVU- 99 -29, Dec 1999.

13. Lee, H., Alliez, P., and Desbrun, M. Angle-Analyzer:
A Triangle-Quad Mesh Codec, Eurographics 2002
Conference Proceedings, 2002

14. Pajarola, R. and Rossignac, J. “Compressed
Progressive Meshes.” IEEE Transactions on
Visualization and Computer Graphics, pp 47-61,
1999

15. J. Rossignac and D. Cardoze, “Matchmaker:
Manifold Breps for non-manifold r-sets”, Proceedings
of the ACM Symposium on Solid Modeling, pp. 31-
41, June 1999.

16. J. Rossignac, "Edgebreaker: Connectivity
compression for triangle meshes", IEEE Transactions
on Visualization and Computer Graphics, 5(1), 47-61,
Jan-Mar 1999.

17. J. Rossignac and A. Szymczak, "Wrap&Zip
decompression of the connectivity of triangle meshes
compressed with Edgebreaker", Computational
Geometry, Theory and Applications, 14(1/3), 119-
135, November 1999.

18. J. Rossignac, A. Safonova, and A. Syzmczak, "3D
Compression Made Simple: Edgebreaker on a
Corner-Table", Invited lecture at the Shape Modeling
International Conference, Gemoa, Italy, May 2001.

19. A. Szymczak, D. King, J. Rossignac, “An
Edgebreaker-based Efficient Compression Scheme
for Connectivity of Regular Meshes”, Special issue of
Journal of Computational Geometry: Theory and
Applications, Vol 20, No 2, Oct 2001.

20. H. Tzschach, and G. Haßlinger, “Codes für den
störungsfreien Datentransfer”, Oldenburg 1993 (in
german)

21. G. Taubin and J. Rossignac, "Geometric Compression
through Topological Surgery", ACM Transactions on
Graphics, 17(2), 84-115, April 1998.

22. Taubin, G, Gueziec, A. Horn, W. and Lazarus, F.
Progressive Forest Split Compression. Siggraph 98
Conference Proceedings, pp 123-132, 1998

23. C. Touma and C. Gotsman, “Triangle Mesh
Compression”, Proceedings Graphics Interface 98,
pp. 26-34, 1998.

24. Tutte, W. A Census of Planar Triangulations.
Canadian Journal of Mathematics, 14:21-38, 1962

