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SUMMARY 

Gas-expanded liquids (GXLs) are a novel and environmentally benign class of 

solvent systems with applications in reactions, separations, nanotechnology, drug 

delivery, and microelectronics. GXLs are liquid mixtures consisting of an organic solvent 

combined with a benign gas, such as CO2, in the nearcritical regime. In general, liquid 

CO2 is a poor solvent whereas typical organics such as acetone and methanol are good 

solvents. The high compressibility of GXLs enables tunability of physicochemical 

properties of the liquid solvent, most notably gas solubility, polarity, and dielectric 

constant.  To summarize, GXLs combine the excellent transport properties of supercritical 

fluids with the high solvation power of organic liquids.   

Computer simulations are valuable tools for designing and optimizing 

environmentally-benign and cost-effective GXLs.  Computer simulations can be used in 

tandem with experimental techniques to elucidate the local chemistry in a system. 

Knowledge of the local chemistry can then be used to manipulate bulk attributes such as 

reaction rates.  In this work, simulations yielded relevant structural information in CO2-

expanded methanol and CO2-expanded acetone. The simulations demonstrated that 

addition of CO2 resulted in clustering of methanol molecules in CO2-expanded methanol. 

Furthermore, Chapter 4 of this work shows that methanol molecules form hydrogen 

bonds with nitrogen-containing compounds, and these hydrogen-bonding interactions 

increase with CO2 pressure. Thus, the local solvation around molecules in CO2-expanded 

methanol can be manipulated with CO2 pressure. Likewise, Chapter 3 presents local 

compositions of organic around pyrene in CO2-expanded organic, and these local 

compositions are compared to the bulk compositions. Computer simulations can predict 

 xv



local compositions around a solute molecule needed to achieve a certain bulk reaction 

rate. Finally, Chapter 4 presents diffusion coefficients of nitrogen-containing compounds 

in CO2-expanded methanol obtained by both experiments and simulations. The diffusion 

coefficients increase with CO2 addition, demonstrating the enhanced transport in CO2-

expanded media. 
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CHAPTER I 

INTRODUCTION 

 
 

The primary goal of green chemistry is to develop solvents and processing 

methods that are environmentally benign, cost-competitive, and easily adaptable by the 

chemical process industry. As stated in Chemical and Engineering News1, the goal of 

green chemistry is to “find ways to develop chemical products and processes that require 

fewer reagents, less solvent, and less energy while being safer, generating less waste, and 

being profitable.” The focus of this work is to combine computer simulations and 

experimental techniques for developing greener solvents. The most important challenge 

for scientists and engineers is to demonstrate to industry that greener solvents are just as 

effective in performing reactions and separations as existing, lucrative processes.  

The importance of green chemistry and its development has been recognized by 

the U. S. Environmental Protection Agency (EPA).  The EPA gave the Presidential Green 

Chemistry award to Eckert and Liotta2 at the Georgia Institute of Technology for two 

decades of research in environmentally benign solvents such as near-critical water, 

supercritical CO2, and gas-expanded liquids. Gas-expanded liquids are liquid mixtures 

consisting of an organic solvent such as acetone combined with nearcritical CO2, which is 

at significantly lower process pressures than supercritical CO2. The simplest form of a 

gas-expanded liquid is obtained by mixing one organic solvent with nearcritical CO2. 

However,  CO2 can also induce miscibility of two immiscible organic solvents. Thus, 

carbon dioxide can act as a reversible miscibility switch3, facilitating downstream 
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separation. The solvent’s physicochemical properties such as dielectric constant and 

viscosity can be adjusted by changes in CO2 pressure. Furthermore, CO2 increases 

diffusion, and thus reduces mass-transfer limitations.  

 Gas-expanded liquids are classified as greener solvents because of carbon 

dioxide’s role as a reversible miscibility switch, and because it is environmentally benign. 

As an example of carbon dioxide’s recent industrial use, perchloroethylene, the traditional 

dry-cleaning solvent, is now being replaced by supercritical CO2. The German chemical 

company, Linde, has already established a chain of dry cleaners in the environmentally-

conscious state of California using supercritical CO2.4  

The primary objective of this work is to use computer simulations to design and 

optimize gas-expanded liquids useful in reactions and separations. The development of 

these novel solvents requires an understanding of their physicochemical properties. The 

objective of this work is to develop computational tools for understanding 

physicochemical properties which would supplement experimental results. For example, 

one can estimate the local composition of the microenvironment from UV-vis 

spectroscopy. Yet the properties of this system can also be understood by computer 

simulations which can determine local compositions, structure, and transport. 

 Ganapathy, et. al.5 combined electron paramagnetic spectroscopy (EPR) 

experiments with computer simulations to study the Heisenburg spin exchange reaction 

between di-tert-butyl nitroxide free radicals in supercritical CO2.  The EPR experiments 

yielded local density augmentations, while the computer simulations calculated the 

reaction rates. The maximum in the rate constants corresponded to a maximum in the 

local density augmentation of CO2 around di-tert-butyl nitroxide. This suggests that the 
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local environment around di-tert-butyl nitroxide (caused by local density augmentation of 

CO2) effects the spin-exchange rate constants, a bulk observable.  

The primary objective of this work is achieved by conducting the following 

specific tasks: a) Chapter 2 simulates the local structure and transport in gas-expanded 

liquids. This structural information is not easily attainable by experiment b) Chapter 3 

simulates local structure and local compositions around a solute molecule in gas-

expanded liquids c) Chapter 4 demonstrates the predictive capability of molecular 

dynamics by simulating diffusion coefficients of solutes in gas-expanded liquids and 

comparing to experimental results.  The detailed background of gas-expanded liquids, the 

molecular dynamics computational tool, and technical terms used in this work are 

described next. 

 
1.1 Gas-Expanded Liquids 
 

Gas-expanded liquids are a novel and more environmentally benign class of 

solvent systems useful in reactions6,7 and separations8-10. As shown in Figure 1-1, GXLs 

are liquid mixtures consisting of an organic solvent combined with nearcritical CO2, the 

latter being at significantly lower process pressures than supercritical CO2. Furthermore, 

carbon dioxide can replace toxic organic solvents upto 80% by volume.  The high 

compressibility of GXLs enables tunability of physicochemical properties of the liquid 

solvent, most notably gas solubility, polarity, and dielectric constant.  To summarize, 

GXLs combine the excellent transport properties of supercritical fluids with the high 

solvation power of organic liquids. 
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Figure 1-1. Schematic representation of a gas-expanded liquid (GXL)
percritical CO2 has been widely researched as an alternative solvent, because of 

mmable and nontoxic nature as well as being inexpensive. Carbon dioxide is 

 and thus can be soluble in many organic solvents. However, its large  

le moment makes it soluble in more polar solvents as well. In addition to its 

ty, the low surface tension of CO2 can be used to induce miscibility of two 

upercritical CO2 has been shown to safely remove etch residues from silicon 

e to its low surface tension.11,12 Furthermore,  German chemical company, 

as just replaced perchloroethylene with supercritical CO2 as a more 

entally benign dry-cleaning agent in its new chain of dry cleaners.4  

e addition of a cosolvent to CO2, however, enhances solubility of catalysts, 

highly polar reactants, and charged species. The cosolvent increases the 

constant and thus polarity of the overall solvent. In light of reactions, the 

 of substrates and catalysts is imperative for increased reaction rates. Musie, et. 

rmed oxidations of 2,6-di-tert-butylphenol by cobalt Schiff base, or Co(salen*), 

 CO2-expanded  dichloromethane. The conversion was five times greater in the 

 in the neat dichloromethane and still 1.25 times greater than in supercritical 
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CO2. Furthermore, the turnover frequency (moles product * (catalytic site)-1 * time-1) was 

approximately forty times higher in the GXL than in supercritical CO2. The higher 

turnover numbers in the GXL suggest enhanced solubility and stabilization of the catalyst 

in this media, which occurs in the cybotactic region of the Co(salen*) catalyst. 

 Other reactions investigated in CO2-expanded media include acetal formation 

reactions of cyclohexanone in CO2-expanded methanol14, acid-catalyzed reactions of 

diazodiphenylmethane in CO2-expanded methanol15, and nitrile and imine 

hydrogenations in both CO2-expanded methanol and CO2-expanded THF.16 All of the 

above reactions make use of the fact that CO2 reacts with water, alcohols, and amines to 

produce carbonic acids, alkylcarbonic acids, and carbamic acids, uniformly. Actually, the 

former two reactions mentioned use carbonic and alkylcarbonic acids to catalyze the 

reaction. Upon depressurization, the acid is automatically converted back to CO2 + 

water/organic, minimizing corrosive acid waste-handling. 

 The present work is the first attempt at using molecular dynamics simulations to 

obtain local structural information and bulk transport properties in a lower-pressure GXL. 

These lower pressure GXLs are at temperatures ranging from 298 K-313K and pressures 

between 10-90 bars and are of interest to the pharmaceutical industry. Enzymes are 

generally very sensitive to environmental conditions, and can denature at excessive 

temperatures, pressures, and pH. One pharmaceutical application of GXLs is in gas-

antisolvent recrystallization (GAS), a method used to precipitate out substrates by using a 

gas anti-solvent.17,18 The GAS process has been used to precipitate pharmaceutical 

compounds and proteins. Trypsin, lysozyme, and insulin were dissolved in neat dimethyl 

sulfoxide at approximately 300 K and pressures starting at 90 bars.19 Supercritical CO2 
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was gradually injected until precipitation of protein powders (1-5 micrometers in 

diameter) occurred. The tunability of GXLs can be exploited to yield smaller particulates 

with narrow particle size distributions, suitable for drug delivery. A knowledge of the 

cybotactic region or local environment at various CO2 pressures could assist the 

prediction of particle sizes and the optimization of specific GXL conditions such as 

solvent choice, temperature, and pressure. 

 GXLs are highly attractive as solvent media for five main reasons:  1) the 

cosolvent enhances solubilities of catalysts and reactants  2) CO2 can enhance miscibility 

of two phases, which can be used to perform a reaction homogeneously. Catalyst and 

product recovery can then be facilitated by depressurization (to recover two immiscible 

phases again). This technique has been used in fluorous biphasic chemistry3,20 and 

organic-aqueous tunable solvents21 for enzyme reactions. 3) Carbon dioxide behaves as a 

high-fluidity gas and enhances transport properties  4) CO2 in a GXL is nearcritical, at 

significantly lower process pressures than supercritical CO2   5) CO2 is inexpensive and 

abundant.   
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1.2 The Cybotactic Region 

According to the IUPAC Compendium of Chemical Technology, the cybotactic 

region is defined as “that part of a solution in the vicinity of a solute molecule in which 

the ordering of the solvent molecules is modified by the presence of the solute 

molecule.”22 Figure 1-2 is a schematic representation of the cybotactic region in a fluid. 

The largest, center circle represents a solute molecule, and the first solvation shell around 

the solute molecule consists of solvent and cosolvent molecules. This area around the 

solute molecule is the cybotactic region. If one imagines the solute to be a reactant 

molecule, probing the cybotactic region around this reactant molecule could enable us to 

manipulate the local solubility or angle of approach of a catalyst, all critical in optimizing 

reaction rates. 

Elucidating the cybotactic region in GXLs is no trivial task. As synthetic chemists 

use a combination of NMR, mass spectrometry, and infrared spectrometry to determine 

the molecular structure of an unknown compound, similarly, several different approaches 

are necessary to probe the local environment. Section 1.4 details experimental techniques 

used in the literature for probing the cybotactic region in both supercritical fluids and gas-

expanded liquids. Section 1.5 introduces molecular dynamics simulations (MD) as 

another solvent probe to be used in conjunction with experiments.  
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      Figure 1-2. Cartoon representing the cybotactic region around a probe molecule 

(center circle). The solvent  and cosolvent  molecules comprise the first solvent 
shell (dotted line). 
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1.3 Phenanthrene solubility in GXLs “catalyzes” MD studies 

The solubility of phenanthrene, a pharmaceutical intermediate, was investigated 

in CO2-expanded toluene, acetone, and tetrahydrofuran at 298 K and pressures up to 60 

bars.23 The purpose of this study was two-fold: 1) to investigate the effects of cosolvent 

on the precipitation of phenanthrene 2) to shed light on phenanthrene solubility in CO2-

expanded organic versus the pure organic. Again, if CO2-expanded organics are to be 

applied for improved separation of catalysts and products, the solvation power should 

remain comparable to that of the pure organic.  

Figure 1-3 displays the ratio of mass-fraction of phenanthrene in CO2-expanded 

toluene, acetone, and tetrahydrofuran (THF) to phenanthrene in pure organic versus the 

mass fraction of CO2. In all three cases, the phenanthrene solubility slowly decreases 

with added CO2 pressure. However, the solubility in acetone decreases the fastest for 

mass fractions less than 0.6. This suggests that the cybotactic region around phenanthrene 

is comprised more of the organic solvent in CO2-expanded toluene and THF than in CO2-

expanded acetone for lower mass fraction CO2. Furthermore, at higher CO2 mass 

fractions, the cybotactic region may consist of mostly carbon dioxide for all three GXLs. 

Phenanthrene precipitates out of solution (as shown by a ratio that approaches zero), as 

CO2 begins to penetrate the cybotactic region even more, affecting the local solubility. 

  Figure 1-3 gave impetus to the MD studies. Though the phenanthrene solute was 

not simulated, the vapor-liquid equilibria corresponding to three solubility points from 

Figure 1-3 were chosen as inputs to the simulation. As detailed in Chapter 2, these three 

points were selected to represent the full metamorphosis of the cybotactic region – from 

low to high CO2 mole fraction.   
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(

 

Figure 1-3. The ratio of mass fraction of phenanthrene in CO2 + organic mixtures 
to phenanthrene in pure organic versus the mass fraction of CO2 taken from Ref.23.    
●) toluene,  (∆) acetone, and (■) tetrahydrofuran. 
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1.4  Experimental probes of the cybotactic region in supercritical fluids and GXLs. 

Experimental methods are invaluable tools for elucidating the cybotactic region in 

both supercritical fluids and GXLs. Local densities 2-5 times greater than the bulk 

density were observed in supercritical CO2 through solvatochromic shifts24,25, 

fluorescence spectroscopy26-28, electron paramagnetic resonance spectroscopy29,30 and 

UV-vis spectroscopy31. Evidence of local clustering was observed by Eckert and 

coworkers, who confirmed the existence of large, negative partial molar volumes at 

solute infinite dilution in attractive mixtures near the critical point.32 Solvatochromism, 

infrared spectroscopy, and reactions are just three of the many informative  experimental 

probes used in the cybotactic region of supercritical fluids and gas-expanded liquids. 

Solvatochromism is a pronounced change in the position and/or intensity of an 

electronic emission or absorption band due to properties of the solvent. These properties 

include the polarity of the solvent, hydrogen-bond donating ability, and hydrogen-bond 

accepting ability of the solvent. The cybotactic region around a solvatochromic dye 

consists of solvent molecules which stabilize the ground/excited state of the dye, 

accordingly. Kelley and Lambert33 used a solvatochromic dye, phenol blue, to probe the 

cybotactic region in various GXL systems, including CO2-expanded methanol, acetone, 

and cyclohexane at 308 K and 328 K and pressures up to 70 bar. The maximum 

wavelength in CO2-expanded acetone and CO2-expanded cyclohexane decreased with 

increasing CO2 pressure.   

Through the use of the data obtained by Wyatt et. al.24, the excess local mole 

fraction of methanol around several solvatochromic dyes in CO2- expanded MeOH at 313 
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K and various pressures were calculated. Figure 1-4 displays the bulk mole fraction of 

methanol versus the local mole fraction of methanol around five different solvatochromic 

probes. The local mole fractions were determined by calculating the deviation of the 

spectral shifts in the GXLs from a linear combination of the values in the pure solvents. 

The data illustrate the variation of the local mole fraction of methanol up to 60% over the 

bulk mole fraction, with the maximum typically occurring at about 75% CO2 in the 

mixture.  This evidence of local composition enhancement in GXLs is similar to that 

observed in supercritical CO2-cosolvent systems, but reduced in intensity. 

Lalanne, et. al.34 used infrared spectroscopy (IR) to investigate the stretching 

vibration between ethanol and CO2 in supercritical CO2 . A strong redshift of the band 

center, the intensity enhancement, and distortion in the band shape all revealed an 

attractive interaction between CO2 and ethanol. Furthermore, differences between the 

theoretical and experimental spectral shifts suggested the existence of local density 

enhancements. Sala et. al.35 used IR to study the cybotactic region about a solute, 

hexamethylenetetramine, in CO2-expanded ethanol at 313 K and 10 MPa. They observed 

an enhancement in solute solubility relative to that in either neat ethanol or pure CO2. 

Through IR techniques, the authors proposed a local structure of ethanol and CO2 

molecules about hexyamethylenetetramine.   

Reactions are also informative probes of the cybotactic region. The cis-trans 

isomerization of 4-4’-disubstituted azobenzenes was investigated in supercritical CO2 at 

308 K and 155 bar.36 The rate constant varied with CO2 density, demonstrating the 

control of reaction rates by small changes in pressure in supercritical fluids. With 0.5 

mol% cosolvent, however, the reaction rate was shown to vary more than 15-fold, 
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suggesting strong local composition enhancements about the azobenzenes. Thompson, et. 

al.37 performed a Diels-Alder reaction of anthracene and excess 4-phenyl-1,2,4-triazoline-

3,5-dione (PTAD) in supercritical CO2 at 313 K and pressures between 75 and 216 bar. 

By following the decrease in anthracene concentration, the authors determined that the 

reaction rate increases in the vicinity of the critical point. This increase suggests local 

composition enhancements of supercritical CO2 about the cybotactic region of the  

transition state. The author of this work hypothesizes that the local composition 

enhancement is due to a combination of interaction of CO2 with the transition state and 

the compressibility of the system.  
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Figure 1-4. Bulk mole fraction vs. local mole fraction of methanol
around five different solvatochromic dyes at 313 K: ( ) ET-33 (△)
4-Nitroanisole (□) N,N-dimethyl-4-nitroaniline ( ) 4-Nitroaniline
( ) Nitrophenol. Data extracted from ref. 24. 
14



1.5 Computer simulations as a Probe 

There exist two main types of computer simulations38: molecular dynamics (MD) 

and Monte Carlo simulations (MC). Molecular dynamics simulations yield structural 

information and time-dependent information. Monte Carlo yields structural information, 

and is most widely used to simulate vapor-liquid properties such as pressure and volume. 

While molecular dynamics is a deterministic approach in sampling the configurational 

space, Monte Carlo is a stochastic technique based on the use of random numbers and 

probability/statistics. MC simulations use random moves to explore the search space to 

determine a system property such as pressure. In a simple Monte Carlo simulation, 

random moves are accepted such that  different regions of the configurational space are 

sampled at each “Monte-Carlo” step. This work, however, focuses on MD simulations, 

and the technical details of MD are discussed in Section 1.4.1. 

 

Section 1.4.1 Molecular Dynamics Simulations - Background 

In molecular dynamics simulations, Newtons’s equations of motion are integrated 

to obtain the position, velocity, and force at each time step for each particle. This 

integration is done through finite-differencing methods. The Verlet integration algorithms 

– developed by French physicist Loup Verlet in 1967  – are the most commonly used 

integrators for MD. Among the Verlet integrators, the Velocity-Verlet algorithm38 is most 

prevalent in the literature. During the course of an MD simulation, fixed properties such 

as energy (in the NVE) can drift, and this error is compounded with each time step. These 

property drifts are caused by large time steps and/or inaccuracies in the atomic positions 

at a time step, which ultimately result in inaccuracies of statistically-averaged values such 
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as temperature. The Velocity-Verlet algorithm addresses this problem by calculating 

velocities at both half-time steps and full-time steps. The general procedure of a Velocity-

Verlet algorithm can be described as follows: 

 

1) Calculate the force. The force in each direction is calculated through the following 

equations: 

( )

( )

( )

x

y

z

dUF t
dx
dUF t
dy
dUF t
dz

= −

= −

= −

                                                                                   Equation 1-1 

Here, U is the potential energy of the system. As detailed in Section 2.2 of 

Chapter 2, the potential energy of the system is represented by a combination of the 

Lennard-Jones and Coulomb terms. More specifically, molecules have been modeled as 

rigid collections of atomic sites with specified fixed charges interacting through pairwise-

additive, site-site Lennard Jones and Coulomb forces. Chapter 2 details the nontrivial 

search in finding a suitable force field for the system. The following equation is the 

potential employed in the MD simulations: 

12 6

4 ij ij i j
ij ij

ij ij ij

q q
U

r r
σ σ

ε
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= − +⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

r
                                                       Equation 1-2 

where ε and σ are the Lennard-Jones energy and distance parameters, respectively. The 

radial distances can be converted to rectangular coordinates.  
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2) Calculate the half-step velocity. The following set of equations represent the Velocity-

Verlet algorithm used to calculate the velocities of each particle in the system. The 

velocities are evaluated at half-integer time steps: 

         

        
( )1( )

2 2
f ttv t v t t
m

∆⎛ ⎞+ = + ∆⎜ ⎟
⎝ ⎠                                                                       Equation 1-3 

where r is the position and t∆  is the time step. The timestep generally used in MD 

simulations is of the order of femtoseconds. The temperature T can be calculated by 

equating the average kinetic energy of the particles to 3/2 kBT: 

         

2

1

N

i
i

B

mv
T

Nk
==
∑

                                                                                             Equation 1-4 

where N is the total number of particles, v is the velocity, and kB is the Boltzmann’s 

constant.  

 

3) Update positions. The positions of each particle in the system are then updated 

according to the following: 

 ( ) ( ) (
2
tr t t v t t r t∆

+∆ = + ∆ + )                                                         Equation 1-5 

4) Calculate force. The force on a particle is calculated by finite-differencing the most 

fundamental of Newton’s equations or F=ma: 
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( ) ( )

2( )

tv t v t
F t t m

t

∆⎡ ⎤+ −⎢ ⎥
+ ∆ = ⎢ ∆⎢ ⎥

⎣ ⎦

⎥                                                              Equation 1-6 

5) Calculate the full-step velocity. 

( )
( )1( )

2 2
f t ttv t t v t t

m
+ ∆∆

+ ∆ = + + ∆          Equation 1-7 

 

Steps 1-5 are then repeated for the next time step t.  

 

   It is important to understand that each step is performed for each particle in the system. 

Periodic boundary conditions replicate the simulated box several times to produce an 

infinite bulk surrounding. A given particle now interacts with all other particles in the 

same box and all other boxes as well. The periodic boundary conditions are necessary for 

obtaining the best statistics of a bulk fluid; they also precludes any wall effects. 

 Initial positions (at time = 0) are assigned to all particles in the simulation cell. 

Because the equilibrium properties of a system do not depend on the initial conditions, the 

choice of initial configuration should not matter. To reach a sufficient equilibrium system, 

the simulation is generally equilibrated for 50 to 100 femtoseconds to dissipate energy 

and preclude any steric effects which may abort the simulation. 

 

Section 1.4.2 Other simulation techniques 

 The parameters used in MD simulations are obtained from rough Hartree-Fock or 

Density Functional theory calculations followed by an optimization to fit experimental 

values. This semiempirical approach is sufficient for predicting local structure and bulk 
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diffusion coefficients, but it cannot treat the formation and breakage of chemical bonds 

necessary in simulating reactions. 

  Ab initio (first principles) molecular dynamics programs - such as Car-

Parrinello39 techniques– combine electronic structure theory with MD. The most widely 

used theory for studying the quantum mechanical electronic structure problem is Density 

Functional Theory (DFT). The electron dynamics are calculated together with the actual 

molecular dynamics and are fully equilibrated at each time step. The advantage of the 

Car-Parrinello technique is that no force-field parameters are needed.  

 

Section 1.4.3 Simulations of tunable solvents in the literature 

Petsche and coworkers40  in their landmark paper investigated the environment 

surrounding infinitely dilute xenon in supercritical neon and infinitely dilute neon  in 

supercritical xenon  using molecular dynamics simulation. They observed local clustering 

about the former mixture and local depletion about the latter mixture through analysis of 

solute-solvent radial distribution functions.  

Patel et al. 41 performed molecular dynamics simulation of the solutes 

diphenylbutadiene (DPB) and hydroxymethylstilbene (HMS) in supercritical carbon 

dioxide to obtain rotational correlation times. The theory behind calculating rotation 

times is that as the local density or local composition around the solute probe increases, 

the friction and thus the rotational correlation time should increase. The simulated results 

did not agree with experiment, with simulated rotation times of DPB being 30% larger 

than experiment. It was suggested that the discrepancy was due to the fact that the 
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simulation was performed on the ground-state, whereas rotation times measured in 

experiment applied to the excited-state solute. 

Randolph et al. 42,43 carried out molecular dynamics simulations of reactions and 

collisions for nearcritical, pure Lennard-Jones molecules and observed that solute-solute 

correlations contribute directly to reaction rates at low density. At high densities, the 

authors observed that the peaks in solute-solute interactions disappear. In a subsequent 

paper5, the same authors used a combination of spectroscopic and theoretical methods to 

probe the effect of local solvent structure on the reaction rate for Heisenberg spin 

exchange. They concluded that the locally high solvent densities around solutes do 

indeed enhance the reaction rate of the Heisenberg spin exchange.  

Tucker, et. al. 44,45 performed molecular dynamics simulations on a two-

dimensional supercritical Lennard-Jonesian fluid.  The distribution of local densities 

around an atom was investigated as the critical point was approached. The authors were 

the first to suggest a long-range correlational component to the local density 

inhomogeneities. 

Integral equation theories have also proved useful in probing the cybotactic region 

in supercritical fluids. For example, Debenedetti46 employed fluctuation theory to 

calculate carbon dioxide excesses of over 100 molecules around naphthalene, using 

partial molar volume data. Wu, et al.47 also calculated similar excesses from integral 

equations for dilute neon in xenon. Moreover, Chialvo and Cummings48 used integral 

equation theories in supercritical dilute pyrene-carbon dioxide and dilute neon-xenon 

systems. They confirmed the existence of large, negative partial molar volumes at infinite 
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dilution of solute in attractive mixtures near the critical point, as was first shown by 

Eckert, et al.32   

Chatzis and Samios49 carried out MD simulations on CO2-methanol supercritical 

mixtures with methanol mole fractions < 0.12 at 323 K and pressures between 9-12 MPa. 

The simulated pVT (constant pressure, constant volume, and constant temperature 

ensemble) phase diagram at these ranges was in good agreement with experiment. 

Methanol clusters were observed; the radial distribution function between oxygen in  

methanol and the non-bonded, protic hydrogen (gOm-Hm) reached a peak of 25 at around 2 

Angstroms. These radial distribution functions did not vary with pressure. Furthermore, 

the authors plot the self-diffusion coefficient of both methanol and CO2 in the mixture. 

They observe a decrease in the self-diffusion coefficient of both compounds with added 

CO2 pressure. 

Aida and Inomata50 also carried out MD simulations on CO2-methanol 

supercritical mixtures at 323 K, 11 MPa, and varying CO2 mole fractions. Once again, 

methanol clusters were observed, as the gOm-Hm reached a peak of 20 at around 2 

Angstroms and 0.8 CO2 mole fraction. The radial distribution functions varied with mole 

fraction. The authors also calculated the self-diffusion coefficient of methanol and carbon 

dioxide with varying methanol concentrations. The self-diffusion coefficient of methanol 

increased steadily upto 0.5 mole fraction CO2, after which the self-diffusion coefficient 

increased rapidly. 

Stubbs and Siepmann51 performed Monte Carlo simulations of aggregation studies 

in CO2-expanded methanol at temperature ranges between 303.15 K and 324.9 K and 40 

MPa,  and 6.4 mol % methanol. Binary phase diagrams at 333 K and 353 K and pressures 
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between 2-15 MPa showed good agreement with experiments. However, the structural 

results were obtained at 303K, 313K, and 324K and 20 MPa. Again, the authors observed 

methanol clustering at all three temperatures with a gOm-Hm peak of around 40 at 20 MPa. 

Furthermore, the authors calculated the enthalpy of hydrogen bonding to be 

approximately 15 kJ/mol.  

Figure 1-5 shows the simulation ranges of CO2-methanol MD and MC simulations 

in the literature plotted alongside the P-x diagram of CO2-methanol at 323 K and 298 K. 

The plot attempts to assist the reader in showing where the CO2-methanol simulations of 

this work exist in relation to CO2-methanol simulations from other work. The plot shows 

that the simulations from this work sit close to the bubble curve at 298 K. The other 

simulations are clearly above the critical loci of the mixture, and are hence in a single 

phase region.  

 
 
Conclusion 

Gas-Expanded Liquids (GXLs) are more environmentally benign and cost-effective 

solvent systems. Recent interest in GXLs as reaction media stems from enhanced 

solubilities and transport properties of reactants, catalysts, and ligands. By probing the 

cybotactic region or local environment, GXLs can be better designed and optimized for 

reactions and separations. Molecular dynamics (MD) simulations can yield valuable 

information about both the cybotactic region as well as bulk properties of a system not 

easily attainable by experiments. Furthermore, molecular dynamics simulations can be 

used in conjunction with experiments as powerful and insightful predictive tools.   
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CHAPTER 2 

MOLECULAR-DYNAMICS SIMULATIONS OF CO2-EXPANDED METHANOL 
AND CO2-EXPANDED ACETONE  
 
 
 
2.1 Introduction 

The cybotactic region is the cornerstone of most chemical engineering problems 

today. From the solubility and partitioning of solutes  to the turnover number (moles 

product * (catalytic site)-1 * time-1) of catalysts, the local chemistry affects bulk 

phenomena. Therefore, an understanding of the local chemistry is invaluable for 

designing and optimizing gas-expanded liquids (GXLs). Simulations are advantageous 

because an experiment can easily be replicated on a computer. Once a computer 

simulation is optimized to model a relevant (and lucrative) system, it can be used as a 

prediction tool, saving valuable company time and money. Finally, computer simulations 

are useful in probing the local environment in systems, assisting the experimentalists in 

answering questions such as “why?” and “how?” 

The work reported here investigates the synergy of molecular dynamics 

simulations with experiments to elucidate the cybotactic region in CO2-expanded 

methanol and CO2-expanded acetone. This synergy is optimal, as data from the 

experimental system is used as input into the computer simulation to create a GXL. This 

synergy serves two main functions: 1) The computer simulations become easier to do, 

because only the liquid phase is of interest with regards to reactions and simulations. 

Furthermore, the synergy actually becomes necessary for pure molecular dynamics 

simulations. The grand canonical ensemble (constant chemical potential, constant 
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volume, and constant temperature ensemble) necessary for phase equilibria simulations 

can only be done accurately using Monte-Carlo techniques.1 2) The simulation results can 

help design experiments. 

Methanol is a protic solvent, whereas acetone is an aprotic solvent. Thus, different 

local structures in the cybotactic region of CO2-methanol and CO2-acetone are expected. 

Table 2-1 experimentally confirms this hypothesis by presenting the Kamlet-Taft  

parameters2-4 of methanol, acetone, and carbon-dioxide. The Kamlet-Taft parameters are 

α, β,  and π*, and represent the hydrogen bond donating ability, hydrogen bond accepting 

ability, and polarizability parameters of the solvents, uniformly. The hydrogen bond 

donating parameter - or α - of acetone (0.08) is similar to that of carbon dioxide (0). Thus, 

self-assembly of the polar species in CO2-expanded acetone will result in limited free 

energy benefit.  However, the alpha and beta in methanol (0.98 and 0.62) are much 

greater than CO2. Based on the Kamlet-Taft values, it can be predicted that the methanol 

molecules – in order to minimize the system Gibbs free energy – will form clusters with 

eachother in CO2-expanded media.   
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Table 2-1. Kamlet-Taft parameters of methanol, acetone, and CO2.  The 
parameters for CO2 vary with temperature and pressure, so approximate 
values are given based on the available literature.2-4 

 
Solvent α β π* 

Methanol        0.98 0.62 0.59 

Acetone        0.08 0.51 0.68 

CO2 0 ~0 ~0 

 
 

 

2.2 Choosing a suitable force field 

The most important thing in a computer simulation is the accuracy of the force 

field describing the molecular interactions. In theory, if an accurate force field is 

available, the bulk properties such as heat of vaporization of the solvent can also be 

accurately calculated. Finding a suitable force field for a solvent system requires some 

thoughtful considerations. The most important consideration is how to represent the 

different forces of the system. The different forces found in the CO2-expanded methanol 

real system are the following: 

• Forces Between Permanent Dipoles (Keesom forces) 

• Forces Between a Permanent Dipole and an Induced Dipole (Debye forces) 

• Forces Between Two Induced Dipoles (London-dispersion forces) 

• Chemical forces (Hydrogen bonding) 

Although carbon dioxide has no dipole moment5, it does have two individual bond 

dipoles. These dipoles interact with the dipole of the hydroxyl bond in the methanol 
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molecule, and these are known as Keesom forces. Similarly, a bond dipole of carbon 

dioxide can induce a charge separation in a methanol molecule, and these are known as 

Debye forces. Furthermore, hydrogen bonding between methanol molecules is a special 

chemical force. 

  Previous simulation work for both CO2-expanded solvents6,7 and supercritical 

CO2
8-10 use the following intermolecular potential for simulations: 

uij = 4εij

σ ij
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                                                                      Equation 2-1 

which is a combination of a Lennard Jones (first term) and Coulombic or electrostatic 

(second term) component. More specifically, each molecule is modeled as a rigid 

collection of atomic sites with specified fixed charges interacting through pairwise-

additive, site-site Lennard Jones and Coulomb forces. Upon comparision with the list of 

forces discussed above, it is observed that the London dispersion force is properly 

represented. By treating the atoms as charged sites, the Coulombic force is also 

incorporated. In summary, the different forces found in the CO2-expanded methanol 

simulated system are the following: 

• Forces Between Two Induced Dipoles (London-dispersion forces) 

• Electrostatic Forces between atomic sites (Coulombic) 

Because Keesom and Debye forces are small compared to electrostatic and chemical 

forces, the question shifts to whether the hydrogen bonding force is correctly represented.   

 In conclusion, the simulated system includes the Van-der Waals or London 

dispersion term as well as the Coulombic or electrostatic term, both present in the real 

system. The Keesom and Debye forces are smaller compared to the Van-der Waals force, 
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and thus are not explicitly treated. The polarizability of the electrons are also not 

explicitly treated in the force field but are averaged into the Coulombic term. The next 

section gives more specific details about the force fields of CO2, methanol, and acetone. 
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Table 2-2. Carbon dioxide parameters from TrAPPE potential.11  
 σ in Å ε  kJ/mol q (Mulliken charge) 

Cg 2.8000 0.2244 0.7 
Og 3.0500 0.6565 -0.35 

 
 
 
 
Table 2-3. Methanol parameters from J2 potential.12 

 

 σ in Å ε  kJ/mol q (Mulliken charge) 
Om 3.0710 0.7110 -0.7 
Hm 3.7750 0.000 0.435 
CH3 3.4049 0.8660 0.265 

 
 
 
Table 2-4. Acetone parameters from OPLS-derived potential.13  

 σ in Å ε  kJ/mol q (Mulliken charge) 
Ca 3.7500 0.4393 0.3 
Oa 2.9600 0.8786 -0.424 

CH3 3.9100 0.6694 0.062 
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2.2.1 TrAPPE Potential for CO2 

 
The TrAPPE potential11 (Transferrable Potential for Phase Equilibria) is a three-

site, completely rigid model for carbon dioxide. The TrAPPE potential  has been tested 

relative to both the vapor-liquid coexistence curve of CO2 and vapor pressure, both with  

good accuracy. The parameters of the TrAPPE potential are shown in Table 2-2. In this 

table, the Lennard-Jones distance (σ) and energy (ε) parameter alongside the charge (q) of  

CO2 are presented.  The most interesting thing about this table is the charge of the carbon 

in carbon dioxide (0.7). This is of the same magnitude as the charge on the oxygen in 

methanol, except that it’s positive, and it shows just how formidable a Lewis-Acid carbon 

dioxide is. In fact, alkylcarbonic acids form in CO2-expanded alcohols because of this 

property.14 

 

2.2.2 J2 Potential for Methanol 

In this work, the methanol molecules are modeled using the J212 Potential. This 

potential falls under the set of OPLS (Optimized Potential for Liquid Simulations) 

developed by William Jorgensen in the early 1990s. The OPLS potentials were first 

developed through high quality ab initio techniques like density functional theory and 

then optimized to fit experimental properties. The J2 model is a completely rigid, united-

atom model with three “sites” : Om (the oxygen in the methanol), Hm (the protic 

hydrogen in the methanol), and CH3 (the methyl group). A united-atom model is a force 

field which treats a group (such as the methyl group) as one entity The potential was 

originally tested relative to the following experimental properties: 

1) Molecular volume (Å3) 
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2) Liquid density (g/cc) 

3) Heat of vaporization (kcal/mol) 

4) Heat capacity (cal/mol deg) 

The coexistence curve for methanol using the J2 model was later simulated using the 

Gibbs Ensemble Monte Carlo method15,16, and the simulated critical point corresponded 

to the experimental value with reasonable accuracy. 

Table 2-3 shows the Lennard Jones distance (σ) and energy (ε) parameter 

alongside the charge (q), all taken from the J2 potential. The protic hydrogen (Hm) has a 

considerable Mulliken charge (0.435) but no Lennard Jones energy parameter, and so the 

hydrogen bond chemical force is represented by this point charge.  Methanol molecules 

have been shown to exist as dimers and trimers in solution17,18. However, the J2 potential 

treats each methanol molecule individually.  

 

2.2.3 OPLS Potential for Acetone

The OPLS-derived potential for acetone13 is a completely rigid, united-atom  

model with 4 “sites”:  Ca (central carbon of the acetone), Oa (oxygen of the acetone, 

attached to central carbon), and two separate CH3 (methyl sites). Once again, the 

hydrogens in the methyl group are not treated explicitly.  This potential was tested 

relative to the following experimental properties: 

1)   Experimental dipole moment 

2)   Liquid density (g/cc) 

      3)   Differences in free energies of solvation (kcal/mol) in H2O and Chloroform 

      4)   Partition coefficients in H2O/Chloroform 
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Table 2.4 shows the Lennard-Jones distance (σ) and energy (ε) parameter alongside the 

charge (q) of acetone. From the acetone parameters displayed in Table 2.4, one can see 

that the carbon of the carbonyl bond is less of a Lewis acid than carbon dioxide.  

 

2.2.4 Justification for Choice of Force Field for the mixture 

The above three force fields were chosen for simulating the GXL mixture because 

of logistics. Chatzis and Samios6 simulated methanol in supercritical CO2 with methanol 

mole fractions < 0.12 at 323 K and 10-17 MPa pressure. They employed the EPM2 

model19 for CO2 and the J2 potential for methanol. The EPM2 model is also a 3-site 

model for CO2, but with an added bending motion about the central carbon – an added 

intramolecular component. This potential was optimized for vapor-liquid equilibria 

calculations, and it was widely cited in the literature. When  simulating the EPM2 model 

with the J2 potential, however,  the simulations were not stable. One hypothesis could be 

the allotted spacing in the initial configuration. Thus, for simplicity, a rigid force field for 

CO2 was actively sought, and the TrAPPE potential11 was chosen . As shown in Section I 

of the Appendix A, Siepmann and coworkers7 modelled CO2-methanol mixtures with the 

EPM2 potential for CO2 alongside the TrAPPE potential. They obtained nearly exact 

vapor-liquid equilibria results.  Thus, the TrAPPE potential was employed under the 

assuption that it could be used interchangeably with the EPM2 potential.  

 

2.2.5 Cross-Interaction terms 

Cross term interactions between different types of atomic sites are necessary for 

determining effective collision diameters and energy parameters of an interaction. The 
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current work employs two standard mixing rules for Lennard-Jones cross-term 

interactions: the Lorentz-Berthelot mixing rule and the Lorentz rule. 

 
In the Lorentz-Berthelot mixing rule, the cross-term energy parameter is 

calculated by a geometric mean, and the cross-term distance parameter is calculated by an 

arithmetic mean: 
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                                                               Equation 2-2 

  

In the Lorentz mixing rule, both the cross-term energy and distance parameters 

are  calculated by a geometric mean: 
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The TrAPPE potential11 for CO2 stipulates that the CO2-CO2 cross terms (i.e. Cg-

Og) should be calculated using the Lorentz-Berthelot mixing rules. The J2 potential12 for 

methanol, however, stipulates that the methanol-methanol cross terms (i.e. Om-CH3) be 

calculated using the Lorentz rule.  The OPLS-derived force field for acetone13  also 

stipulates that the acetone-acetone cross terms interactions (i.e. Ca-Og) be calculated by 

the Lorentz rule.  For each of these cases, the mixing rule was used in this work to 

describe interactions between different atomic sites. 
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The MeOH-CO2 and acetone-CO2 cross terms, however, are not specified by the 

Trappe or J2 potentials.  A consistent and verified mixing rule must therefore be 

established for the heterogenous molecular-level interactions. Tables A1 and A2 of 

Appendix A list both the geometric (Lorentz) and arithmetic (Lorentz-Berthelot) means 

for the cross-term distance parameter. In almost every case, the values are the same 

within the error bars of these numbers, and consequently the choice of mixing rule should 

not affect the structural or time-dependent results significantly.  For example, the largest 

difference between the mixing rules is seen in the cross-term distance parameter for CO2-

CO2 cross terms (i.e. Cg-Og).  

                                

2.3 Simulation Details 

In what follows, representative conditions from each of these regimes have been 

selected and used to conduct detailed and extensive MD simulations. Table 2-5 presents 

the respective saturated liquid densities and compositions taken from Chiehming et. al35 

selected for the simulations.  The simulation system represents a single liquid phase with 

the density and composition determined by these experiments. 

 

The mole fractions, densities, and temperature for the acetone-CO2 and methanol-

CO2 GXL systems investigated here are reported in Table 2-5. Three types of low-

pressure GXLs were selected for simulation: At low CO2 mole fractions  (0.10-0.35) the 

properties of GXLs resemble that of the pure liquid. This region is consequently called 

the “normal” liquid region in this work. At medium (0.36-0.75) to high (0.8-0.95) CO2 

mole fractions, the properties of GXLs resemble those of an expanded liquid in which 
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compressibilities increase. These regions are called the “transition” and “dilated” liquid 

regions, respectively.  
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Table 2-5. Solvent conditions used for simulations20; T=298 K 
Solvent xCO2 P(bar) ρL(kg/m3) 

Methanol 
(Normal Liquid 

Region) 

0.130 16 810.3 

Methanol 
(Transient Liquid 

Region) 

0.418 45 846.4 

Methanol 
(Dilated Liquid   

Region) 

0.884 57 861.8 

Acetone (Normal 
Liquid Region) 

0.313 16 810.0 

Acetone 
(Transient Liquid 

Region) 

0.770 45 860.7 

Acetone (Dilated 
Liquid Region) 

0.920 57 868.5 

 39



 

Molecular dynamics (MD) simulations were carried out using the DL_POLY 

Software package21. Regardless of the relative composition, each simulated system box is 

populated by a total of 1000 molecules.  Cubic periodic boundary conditions (PBCs) are 

used throughout, but the length of the system box is scaled to preserve the specified 

density as per Table 2-5.  Typical box lengths are on the order of 20-50 Å, and more 

specifically 40-50 Å for the GXL systems simulated.  Because of the PBC, the potential 

interactions must necessarily be cut off to less than or equal to half the box length.  

Coulombic interactions are handled by the Ewald summation method with automatic 

parameter optimization (by DL_POLY). The equations of motion were integrated using 

the Velocity verlet algorithm as implemented by DL_POLY using a time step of 1.0 

femtosecond. Structural information (at equilibrium) has been obtained using the NVT 

(constant moles, constant volume, constant temperature) ensemble with a Nose-Hoover 

thermostat in which the relaxation constant is set to 0.3. Initial configurations of the 

system box are generated using a random packing of the molecules in the periodic box 

followed by a 50 picoseconds MD simulation at NVT conditions. 

When performing preliminary simulations, initial configurations in which CO2 

molecules were placed separately from methanol (or acetone) molecules are created, 

occupying different parts of the simulation box. This two-phase structure was stable 

during the simulation time and didn’t show mixing. The initial conditions for subsequent 

simulations, however, placed all the molecules in random positions, assuming that the 

CO2 and methanol (or acetone) molecules were in a mixed, near-equilibrium state. Again, 

the bulk structure did not change substantially during the simulation. Thus, within the 
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time and length scales of our simulations, the system remains at least in a metastable 

state. 

 Statistics are collected during a 200 picoseconds MD simulation at NVT 

thereafter. The final equilibrium statistics are averaged over ten trajectories derived from 

ten different initial configuration files. The final configurations of each of the NVT runs 

are subsequently used as initial configurations for 300 picoseconds MD simulation runs 

under NVE conditions for collecting time-dependent statistics. 

              

2.4 Testing the Force Fields and Stability of the System 

2.4.1 Testing for Convergence in NVT 

 When performing a simulation, one assumes that the system is ergodic. This 

means that if a molecule were to march ahead in time and visit all of the states accessible, 

this time average will equal the ensemble average of the system1. Convergence studies on 

the local structure are presented to indeed demonstrate the ergodicity of the system. 

Figures 2-1 and 2-2 present the radial distribution function or g(r) of Om-Hm interactions 

after 200ps, 400ps, and 800ps simulations at xCO2 = 0.13 and xCO2=0.884, respectively. 

The simulations are run in the canonical or NVT ensemble. The g(r) at all three times are 

nearly identical, which suggests that the system is at dynamic equilibrium. Therefore, 

further production runs to obtain local structure in the NVT ensemble are carried out for 

200 ps only.  
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igure 2-1. Radial distribution function or g(r) of Om-Hm interaction in CO2-expanded 
methanol. T=298 K, x(CO2) = 0.130 after 200, 400, and 800ps simulation. 
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Figure 2-2. Radial distribution function or g(r) of Om-Hm interaction in CO2-expanded

ethanol. T=298 K, x(CO2) = 0.884 after 200, 400, and 800ps simulation. 
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2.4.2 Pressure studies 

 Another method for checking system stability is to simulate the system pressure. 

At equilibrium, the liquid phase pressure is equal to the vapor phase pressure. Simulating 

the system pressure would further demonstrate the validity of our synergistic approach. In 

molecular dynamics, the most common method to calculate pressure is through the virial 

method: 

                            2( )
3

KE CP
V

−
=                                                                        Equation 2-4 

Where P = pressure 

 KE = kinetic energy 

 V = system volume 

  C = total configurational contribution to the virial = vdW virial  + electrostatic  virial + 

bond virial + constraint virial + …. 

The configurational virial1 can also be expressed as ( )ij ij
i j

f r r
<

•∑  where ( ijf r ) is the  

force between particles i and j at a distance rij. 

Tables 2-5 and 2-6 present the simulated pressures after 200, 400, and 800ps for 

CO2-methanol and CO2-acetone simulations, respectively. The pressure for the lowest 

mole fraction carbon dioxide is aberrantly high in both cases. The middle mole fractions 

show a drop in pressure, and in the CO2-acetone case, the pressure goes below the 

experimental value. Our hypothesis is that the rigidity of the system is producing high 

pressures. 
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Table 2-6. Convergence of simulated pressures for CO2-MeOH simulations; T = 298 K; 
NVT Ensemble 

Mole fraction 
CO2

Experimental 
Pressure (bar) 

Simulate 
pressure after 
200ps (bar) 

Simulated 
pressure after 
400ps (bar) 

Simulated 
pressure after 
800ps (bar) 

0.130 16 175 173 177 
0.418 45 46 45 44 
0.884 57 99 100 100 

 
 
 
 
Table 2-7. Convergence of simulated pressures for CO2-Acetone simulations; T = 298 K; 
NVT Ensemble 

Mole fraction 
CO2

Experimental 
Pressure 

Simulate 
pressure after 

200ps 

Simulated 
pressure after 

400ps 

Simulated 
pressure after 

800ps 
0.330 16 77 75 75 
0.770 45 26 24 25 
0.920 57 102 101 90 

 
 
 
 
Table 2-8. Simulated system pressures of pure methanol. T=298 K 

System Ensemble Simulation time Pressure (bar) 
Pure methanol NVT 400 ps 135 
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2.4.3 Flexible model simulations and its effects on pressure 

 Flexible CO2 is simulated to ascertain the effect of flexibility on pressure. The 

EPM2 model19 – a widely-used potential for CO2 – contains a bending mode about the 

central carbon. The Lennard Jones parameters were fit to obtain the correct internal 

energy and pressure at 293 K. Furthermore, the point charges were fit to reproduce the 

gas phase quadrupole moment; the model predicted the liquid-vapor coexistence densities 

including critical point very well.  

Pure CO2 at 313 K and 421 kg/m3 is simulated in the NVT ensemble with three 

different initial trajectories for 200 ps. The simulated average pressure is 232 bars, while 

the experimental value is 87 bars. The simulated pressures are highly inaccurate. This 

suggests that the virial equation and/or molecular dynamics techniques are insufficient to 

reproduce reasonable simulated pressures. 
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2.5  Structural Results 

Local structural results are shown through radial distribution functions or g(r) and 

orientational distribution functions or g(r,θ). The radial distribution function in plain 

words is the probability of finding one particle a distance r away from another particle.   

Mathematically, the radial distribution function is expressed as the following: 

                 ( )
*

local

bulk

g r
N V

β

α β β
α

ρ
ρ− =                                                                      Equation 2-5 

      where = the average local density of β around α within a given volume shell local
βρ

       = the bulk density of β bulk
βρ

       = the number of α particles N Vα

The orientational distribution function, on the other hand, is a more resolved 

structure than the g(r), because it gives the probability of finding a particular particle a 

distance r and an angle θ from another molecule or probe molecule. After a probe 

molecule is assigned its local coordinate system (say, r, θ and ϕ), a number ∆N(r,θ) of 

atoms of a particular type (say, A) is counted in the finite element with coordinates (r,θ) 

within the volume 
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∆N(r,θ) can be found from the equation 
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which is the definition of g(r,θ) (here [A] is the bulk number density of atoms A,  or 

equivalently the ratio of the number of those atoms in the entire simulation box to the 

volume of the box). 

Given ∆V(r,θ) small enough (∆r is equal to 0.05 Å, ∆θ  is 6°), Eq. (6) becomes 

),( ),( A][),( θθθ rVrgrN ∆≈∆ .                   Equation 2-8 

This formula is used for calculating the orientational distribution function g(r,θ). 

The radial distribution function g(r) is defined analogously, 

)( )( A][)( rVrgrN ∆≈∆ ,         Equation 2-9 

but the number ∆N(r) of atoms A is counted within a thin spherical layer 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆
+∆=′′=∆ ∫

∆+

∆− 12
44)(

3
2

2  

2  

2 rrrrdrrV
rr

rr

ππ .                Equation 2-10 

 

2.5.1. CO2-CO2 interactions 

Figure 2-3 shows the g(r) of  Cg-Cg interactions from both (a) CO2-expanded 

methanol and (b) CO2-expanded acetone at 16, 45, and 57 bars . The g(r) in both of the 

systems display two peaks , the first peak having a value of around 2. Again, this means 

that the probability of finding a Cg atom in contact with another Cg atom is 2 times 

greater than random. In the methanol solvent, the Cg-Cg  g(r) does not change 

significantly with addition of CO2 pressure. In the acetone solvent, however, the addition 

of CO2 decreases the first peak in g(r) from 2.1 to 1.75, disrupting the CO2-CO2 

interactions.  

Figure 2-4 displays the orientational distribution function —or g(r,θ)— for Cg-Cg 

interactions in CO2-expanded methanol (mole fraction CO2=0.88, P=57 bars).  (As 
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illustrated in Fig. 2-4b, θ is defined as the angle between the symmetry axis of the probe 

CO2 and the vector from the probe Cg atom to a given Cg in the cybotactic region.)  Three 

broad peaks in the g(r,θ) are immediately observed with θ values equal to 21, 90, and 165 

degrees at 4.23, 4.03 and 4.23 Å, respectively. The existence of three peaks in Cg-Cg 

g(r,θ) is consistent with the results obtained by Cipriani et.al.22 However, the latter 

obtained peaks at 30°, 90°, and 150° in pure, saturated liquid carbon dioxide at ρ=0.0149 

molec/Å3 and T=240 K. The similarity between their results and the results of the present 

work suggests that the local structure of CO2 in GXLs more closely resembles a 

condensed liquid than a dissolved gas.  

Furthermore, these g(r,θ) distributions suggest near T-shape like structures 

between CO2 molecules; a finding also consistent with other simulations in the 

literature.22-25 The cartoon in Figure 2-4b shows the most probable local structure between 

Cg-Cg atoms situated at 21, 90, and 165 degrees with respect to a central Cg atom on a 

carbon dioxide molecule. 

 

2.5.2. MeOH-MeOH interactions 

Figure 2-5a displays the Om-Hm g(r) at 16, 45, and 57 bars and 298K. With added 

CO2 pressure, the g(r) increases and reaches a value of 23 at an r/σ ratio of 1.25 or 

roughly 2 Å, the length of a hydrogen bond. This means that the probability of finding an 

Hm atom in contact with an Om atom is 23 times greater than random. This is a significant 

result. Figure 2-6 is a snapshot of the simulation at x(CO2)=0.884, P=57 bars. Methanol 

molecules are shown in blue and clearly seem to form clusters within the CO2-rich 
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environment. This result is corroborated by the comparision of Kamlet-Taft values in 

Section 2.1 and is consistent with other simulation work in the literature.6,7 

Figure 2-7a displays the g(r,θ) between oxygen in methanol and the nonbonded, 

protic hydrogen (Om-Hm interactions) obtained in CO2-expanded methanol simulations: 

mole fraction CO2=0.88, P=57 bar. (As illustrated in Fig. 2-7b, θ is defined as the angle 

between the vector formed by connecting Om on the probe methanol to its center of mass 

and the vector from the Om prove atom to any Hm in the cybotactic region.) Again a large 

peak at 150° and 2 Å is observable, suggesting that methanol molecules orient themselves 

in a very specific manner. The most probable local structure between Om-Hm atoms is 

shown by the cartoon in Figure 2-7b. 

 

2.5.3 Acetone-Acetone interactions 

Figure 2-5b shows the acetone-acetone g(r) in CO2-expanded acetone at 16, 45, 

and 57 bars. Immediately, one notices that the g(r) does not increase with CO2 addition, 

as it did with the Om-Hm g(r). This suggests that acetone molecules do not cluster with 

CO2 addition, a result also corroborated by the comparison of Kamlet-Taft values from 

Section 2.1. Furthermore, the peaks do not go above 1.4, which suggests weak 

interactions between acetone molecules. In fact, the interactions between CO2 molecules 

at an r/σ ratio of 1.5 in CO2-expanded acetone (as shown in Figure 2-3b) are greater than 

the interactions between acetone molecules at the same effective radius. Intuitively, this 

result may not make a great deal of sense, since one may think that the carbon in acetone 

is a better Lewis acid. However as noted in Tables 2-2 to 2-4, the charge on the carbon in 
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CO2 is 0.7, and the charge on the carbon in acetone is 0.3, while the respective oxygen 

charges are -0.35 and -0.424. So there is a weak interaction between acetone molecules. 

The other interesting feature about Figure 2-5b is that the Ca-Oa g(r) shows two 

peaks at an r/σ of 1.4 and 2.0. This corresponds to radii of 4.69 Å and 6.7 Å, respectively. 

The presence of the two simultaneous peaks in the Ca-Oa radial distribution function is 

consistent with simulations of pure acetone in the literature.26 The orientational 

distribution function shown in Figure 2-8 also displays the presence of two peaks at 0° 

and r=4.7 Å and r=6.7 Å. The peaks are only about 2 Å apart. The authors suspect that 

the two simultaneous peaks are really at different φ angles, but projected on a two-

dimensional surface. For this case, the g(r,θ,φ) with the additional φ angle may be helpful 

in better resolving the local structure derived from the two simultaneous peaks. Also, an 

additional peak is observed at approximately 100° and 5 Å.     
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Figure 2-3. Radial distribution functions for Cg-Cg interactions between carbon dioxide
es (a) obtained in methanol-carbon dioxide simulations at 16 (solid line), 45 (dashed
d 57 bars (dot-dashed line), and (b) in acetone-carbon dioxide simulations at 16 (solid 

5 (dashed line), and 57 bars (dot-dashed line).  The σ of a Cg atom is 2.8 Å, and 
e the effective σ or σeff is the vdW radius of the Cg-Cg bond, again  2.8 Å. Because the 
lecular potential consists of both Coulombic and LJ interactions, the term “σeff” is used 
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(a) (b) 

Figure 2-4. (a) Orientational distribution function of Cg-Cg interactions in CO2-
expanded methanol: mole fraction CO2 = 0.88, P=57 bars.  (b) Most probable orientation 
of Cg atoms based on Figure 2-4a. 
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Figure 2-5. (a) Radial distribution function between oxygen in methanol and the 
nonbonded, protic hydrogen (Om-Hm) from CO2-expanded methanol simulations at 16 
(solid line), 45 (dashed), and 57 (dot-dashed) bars. Because the Om-Hm interactions are 
being specified by LJ and Coulombic interactions, there’s no specified σ. In the model, 
the LJ  σ is 3.071 Å and 0  Å  for methanol and hydrogen, respectively. Therefore, the 
effective sigma is the average of the Om and Hm sigmas, or 3.071/2 =1. 535  Å  (b)  
Radial distribution function between the aprotic carbon in acetone and the aprotic oxygen 
in acetone (Ca-Oa) from CO2-expanded acetone simulations at 16 (solid), 45 (dashed), 
and 57 (dot-dashed) bars. The  σ for Ca and Oa are 3.75 and 2.96  Å, respectively. 
Therefore, the effective sigma or  σeff is 3.35  Å. 
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Figure 2-6 Diminishing perspective plot of a snapshot of a simulated trajectory in CO2-
expanded methanol at mole fraction CO2=0.88, and P=57 bar. Methanol molecules (in 
blue) represent the larger structures consisting of 3 effective atoms:  oxygen (Om), protic 
hydrogen (Hm), and the methyl group (CH3). Because of the diminishing perspective, 
some of the methanol molecules appear to have only 2 atoms; the third atom is in the 
linear plane of the molecule. The long, pink sticks represent carbon dioxide molecules. 
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(a) (b) 

Figure 2-7 (a) Orientational distribution function of oxygen in methanol and the 
nonbonded, protic hydrogen (Om-Hm interactions) from CO2-expanded methanol: 
mole fraction CO2=0.88, P=57 bars.  (b) Most probable orientation between Om-
Hm atoms based on Figure 6a. 
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Figure 2-8. Orientational Distribution Function of carbon in acetone and nonbonded 
oxygen in acetone (Ca-Oa) interactions from CO2-expanded acetone simulations: mole  
fraction CO2 = 0.313, ρ=810.0 kg/m3
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2.5.4. Carbon Dioxide Interactions with Solvent 

Radial distribution functions for interactions between carbon dioxide and 

methanol and carbon dioxide and acetone are presented in Figure 2-9. For CO2-expanded 

methanol simulations, CO2-methanol interactions are represented by the carbon in CO2 

and oxygen in methanol (Cg-Om) g(r). Likewise, the CO2-acetone structure is obtained by 

analyzing the carbon in CO2 and oxygen in acetone (Cg-Oa) g(r). 

There are two salient points that can be derived from this figure: 1) the first peak 

in the Cg-Oa g(r) is greater than the first peak in the Cg-Om g(r), with an additional second 

peak. This figure is included to show that formation of clusters between methanol 

molecules in CO2 –expanded methanol produces decreased CO2-MeOH correlations. The 

absence of significant clustering of acetone molecules in CO2-expanded acetone, 

however, leaves acetone molecules relatively more available to interact with CO2.This 

suggests that CO2-acetone molecules are more structured in the GXL than CO2-MeOH 

molecules. 2) At first glance, one would expect more interaction between Cg-Om, because 

the magnitude of both of their charges is equal and negative to eachother. However, the 

Om chooses to interact with the protic hydrogen instead.  
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 Figure 2-9 a) Radial distribution function between carbon in carbon dioxide 
and the oxygen in methanol (Cg-Om) from CO2-expanded methanol simulations at 
16 (solid line), 45 (dashed), and 57 (dot-dashed) bars. Because the Cg-Om 
interactions are being specified by LJ and Coulombic interactions, there’s no 
specified σ. In the model, the LJ σ is 2.8 Å and 3.071 Å  for carbon and oxygen, 
respectively. Therefore, the effective sigma is the average of the Om and Hm sigmas, 
or (2.8+3.071)/2 =2.932  Å  (b)  Radial distribution function between the carbon in 
carbon dioxide and the aprotic oxygen in acetone (Cg-Oa) from CO2-expanded 
acetone simulations at 16 (solid), 45 (dashed), and 57 (dot-dashed) bars. The  σ for 
Cg and Oa are 2.8 and 2.96  Å, respectively. Therefore, the effective sigma or  σeff is 
2.88  Å. 
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2.5.5. Local Number Density Calculations 
  

 The local number density is an informative way of converting the radial 

distribution function into a more physically intuitive form. The local number density is 

defined by the following: 

cut

3 3

( )
4 ( )
3

local

cut exc

N R

R
ρ π σ

=
−

                                                              Equation 2-11 

where )( cutRN  is the average number of particles of a particular atom type within the 

solvent sphere of radius Rcut about the probe and given by the following: 

      ∫=
cut

exc

2bulk
cut )(4)(

R

drrrg
V

NRN
σ

π                                                          Equation 2-12 

Here Nbulk is the total number of bulk particles and V is the volume of the simulation box, 

and σexc is the excluded radius as defined by the impenetrable volume of the probe 

molecule. The local number density enhancement is the ratio of the local number density 

to the bulk number density where bulkbulk N Vρ = .   

Tables 2-9 and 2-10 present local number density enhancements for four targeted 

interactions from CO2-expanded methanol and acetone simulations, respectively. (Here 

Cg-Cg interactions characterize the local density of Cg atoms around a probe Cg.) While 

negligible enhancements exist for Cg-Cg interactions, the number density enhancement 

between Om-Hm interactions increases six-fold in the dilated liquid region. However, no 

significant local number density enhancement for Ca-Oa interactions from CO2-expanded 

acetone simulations is observed. 

The presence of carbon dioxide is far more effective in inducing clustering of 

methanol molecules than acetone molecules. This conclusion can be deduced by 
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analyzing local number density values with CO2 addition. The absolute values of the local 

number densities of Hm around Om are 0.0141 and 0.0094 molecules/Å3 in the normal and 

dilated liquid regions, respectively. With a nine-fold decrease in the bulk number density 

of methanol, relatively little change (~30%) in the local number density (of Hm around 

Om) is observed. Because these values do not change significantly (despite significant 

dilution), it is confirmed that methanol forms clusters and remains in clusters in a CO2 

environment. However, the absolute values of the local number densities of Oa around Ca 

are 0.0069 and 0.00104 molecules/Å3 in the normal and dilated liquid regions, 

respectively.  With a 6.7-fold decrease in the bulk number density of acetone, a 

comparable 6.6-fold decrease in the local number density of (Oa around Ca) is observed. 

In other words, the number of acetone molecules in the first shell is diluted by CO2 

molecules in proportion to the mole fraction of CO2. Thus, there is practically no 

influence due to specific nonideal interactions between the molecules (in contrast to the 

methanol mixture in which hydrogen bonding strongly distorts the structure). 
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Table 2-9. Local Number Density Enhancements (LNDE) for Cg-Cg interactions and Om-
Hm interactions from CO2-expanded methanol simulations. 
 
Interaction 

 
x (CO2) 

Rcut(Å) ρlocal
(Molecules/Å3) 

ρbulk
(Molecules/Å3) 

LNDE 
(ρlocal/ρbulk) 

Cg-Cg 
(Normal liquid 
region) 

0.130 5.975  
0.0020 

 
0.0019 

 
1.08 

Cg-Cg 
(Dilated liquid 
region) 

0.884 5.975  
0.0113 

 
0.0107 

 
1.05 

Om-Hm 
(Normal liquid 
region) 

0.130 2.675  
0.0141 

 
0.0126 

 
1.11 

Om-Hm 
(Dilated liquid 
region) 

 
0.884 

 
2.675 

 
0.0094 

 
0.0014 

 
6.81 

 

 
 
Table 2-10. Local Number Density Enhancements (LNDE) for Cg-Cg interactions and Ca-

Oa interactions from CO2-expanded acetone simulations. 
 
   Interaction 

 
x(CO2) 

 
 Rcut(Å) 

          ρlocal
(Molecules/Å3) 

         ρbulk 
(Molecules/Å3) 

     LNDE 
(ρlocal/ρbulk) 

Cg-Cg 
(Normal liquid 
region) 

      0.313  
5.975 

 
0.0029 

        
       0.0028 

 
     1.03 

Cg-Cg 
(Dilated liquid 
region) 

     0.920  
5.975 

 
0.0118 

 
       0.0106 

 
     1.05 

Ca-Oa 
(Normal liquid 
region) 

      0.313  
5.425 

 
0.0025 

 
       0.0062 

      
     0.89 

 
Ca-Oa 

(Dilated liquid 
region) 

 
0.920 

 
5.425 

 
0.00947 
 

 
       0.0106 

      
     0.89 
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2.6 Time-Dependent Results 
 
2.6.1. Diffusion Coefficients 

 

Diffusion coefficients of both methanol in CO2-expanded methanol and acetone in 

CO2-expanded acetone are simulated with added CO2. Self diffusion coefficients are 

calculated using the Einstein relation1: 

21lim [ ( ) (0)]
6t

D r t r
t→∞

= −                                                                     Equation 2-13 

The simulated self-diffusion coefficients of methanol in CO2-expanded methanol 

at 323 K are displayed in Figure 2-9a alongside those obtained by Aida and Inomata.27 

Aida and Inomata employ a three-site, flexible model for both methanol and carbon 

dioxide and incorporate ionization potentials in the mixing rules. Both the J2 potential for 

methanol used in this work and the flexible potential used in Aida and Inomata’s work 

were fit to the experimental, saturated liquid density of methanol at ambient temperature 

and pressure. The subsequent optimized potential was used to simulate the methanol 

coexistence curve. Coexistence curves obtained using the methanol potential of Aida and 

Inomata’s are better correlated to those obtained by experiment28 than the J2 potential. 

The purpose of Figure 2-10a was to determine how accurate the J2 model of 

methanol is in relation to other literature potentials. As shown in Figure 2-10a the 

simulated self-diffusion coefficients of methanol in CO2-expanded methanol obtained in 

this work are in reasonable agreement to those obtained by Aida and Inomata at very low 

and high mole fraction CO2. At less than 50 mole% carbon dioxide, however, the self-

diffusion coefficients of Aida and Inomata remain constant with mole% CO2, whereas in 

the present work the values steadily increase. For reference, Figure 2-10a also includes an 
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experimental data point for benzene diffusion in GX-methanol at 313 K that has been 

adjusted to an approximate value for methanol using the Wilke-Chang equation.29 An 

explanation of the Wilke-Chang ratio is included in section IV of Appendix A.  

The self-diffusion coefficient of pure methanol at 323 K determined in this work 

(2.85*10-9 m2/s) is about 40% of that obtained by Taylor-Aris dispersion techniques30 

(6.9*10-9 m2/s), which is approximately the uncertainty in Aida and Inomata’s results. 

This suggests that methanol force fields optimized to fit the saturated liquid density may 

not be optimal for transport values. However, the significance of our models is that they 

reproduce accurately the trends experimentally observed: that CO2 enhances transport 

properties (namely diffusion) in the GXL systems investigated. 

Figure 2-10b displays the simulated self-diffusion coefficients of i) methanol in 

CO2-expanded methanol and ii) acetone in CO2-expanded acetone. Once again, the results 

correctly predict an increase in diffusion upon addition of CO2. Peculiarly, the acetone 

diffusion in the GXL is greater than methanol diffusion at all CO2 concentrations. One 

expects the converse, as the methanol molecules are smaller both in size and weight 

compared to the acetone molecules. Again, experimental NMR points obtained by McCall 

et. al.31 are included for reference. While the simulated self-diffusion coefficient for pure 

methanol at 298 K remains smaller than its experimental point, the simulated pure acetone 

diffusion is greater.  Although our values for diffusion coefficients are not in exact 

agreement with experimental values, the models reproduce the general trend of enhanced 

solvent diffusivity with CO2 addition.  

Further, one may expect that the acetone diffusion rate (MW 58) is less than that 

of methanol (MW 32) because of the lower molecular weight of acetone.  However, 
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because of the extent of hydrogen bonding of alcohols in solution,17,18  the “effective” 

molecular weight of the methanol moieties diffusing may be substantially greater than 58. 

An alternate explanation, though not explored here, is that the strong hydrogen bonding 

forces may reduce the effective diffusivity of one methanol molecule. 
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Figure 2-10. (a) Simulated self-diffusion coefficients of methanol in CO2-expanded 
methanol vs. mole fraction carbon dioxide at 323 K: (♦) this work, (●) simulated values 
from Aida and Inomata45 obtained through visual interpolation, and ( ) values at 313 K 
approximated using Wilke-Chang equation with parameters fit from experimental values 
of Sassiat et.al.47 (b) Simulated self-diffusion coefficients of  (▲) methanol in CO2-
expanded methanol and (■) Acetone in CO2-expanded acetone  at 298 K. Self-diffusion 
coefficients determined experimentally by NMR48 for (□) pure acetone and (△) pure 
methanol  are included. Error bars in the diffusion coefficients were determined by root-
mean-square deviations from the average value. 
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2.6.2. Local Density Autocorrelation Functions 
 

The local density autocorrelation function (LDAC) is a collective diffusion event 

which gives an indication of persistence of cluster times. Two time constants are 

determined from the local density autocorrelation function: the instantaneous (τi) and 

steady state (τs). These are necessary to distinguish between the ballistic regime or 

transient regime and the steady state regime. The former possesses nonlinear behavior in 

the mean-squared displacement with respect to time, whereas the latter regime displays 

linear behavior. The analysis of the time constants will be done for the steady state 

regime regime only, because the latter is for much longer time scales and is most 

indicative of the persisting molecular phenomena. The local number density 

autocorrelation function is given by the following: 

2

(0) ( )
( )

(0)
t

C t
δρ δρ

δρ
=              ρρδρ −= )()( tt ,    Equation 2-14 

where ( )tρ  is the local number density at time t and ρ  is the ensemble average local 

number density. The cutoff radius for density determination was taken to be the minimum 

in the first peak of the radial distribution function, as was employed by Tucker and 

coworkers8,32. Equation 2-14 can then be discretized to a numerically tractable expression, 

( )( )

( )( )
1

1

( , ) ( ) ( ,0) ( )
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i cut cut i cut cut
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i cut cut i cut cut
i

N R t N R N R N R
C t

N R N R N R N R

=

=

− −
=

− −

∑

∑
,   Equation 2-15 

where Ni(Rcut,t) is the local number of neighbor atoms within the cutoff radius at time t, 

)( cutRN  is defined in Equation 2-12.  
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Figure 2-11. Local number density autocorrelation functions of: (a) Om-Hm interactions 
from CO2-expanded methanol simulations at the dilated liquid region: xCO2=0.884; 
ρ=864.8 kg/m3 (b) Om-Hm interactions from CO2-expanded methanol simulations at the 
normal liquid region: xCO2=0.130; ρ=810.3 kg/m3;; (c) Cg-Cg interactions from CO2-
expanded methanol simulations at the dilated liquid region; and (d) Cg-Cg interactions 
from CO2-expanded methanol simulations at the normal liquid region.   
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Figure 2-11 displays the local number density autocorrelation functions of both 

Cg-Cg interactions for a cutoff radius of 5.975 Å in CO2-expanded methanol and Om-Hm 

interactions for a cutoff radius of 2.675 Å. The time constants can be determined from the 

slope of a semilog plot of the local density autocorrelation function vs. time. Section VI 

of Appendix A presents the semilog plots of both the instantaneous regime and steady 

state regime from the corresponding  LDACs shown in Figure 2-11.  

Both time constants are catalogued in Table 2-11, and three salient conclusions 

can be drawn: 1) the Om-Hm correlations in both the instantaneous and steady state 

regimes persist longer than the Cg-Cg correlations 2) the Cg-Cg correlations in the dilated 

liquid region are around 25% less than those in the normal liquid region  3) most 

importantly, the steady state time constants are 54.2 ps and 79.3 ps for Om-Hm interactions 

in the normal and diluted liquid regions, respectively. Steady state time constants 

obtained from local number density autocorrelation functions show that Om-Hm 

interactions between methanol molecules persist about 50% longer in the dilated liquid 

region than in the normal liquid region. Thus CO2 increases the persistence time of 

methanol interactions, a result which can be explained by the higher α and β  Kamlet-Taft 

parameters of methanol when compared to acetone or CO2. The methanol molecules 

decrease their Gibbs excess energy in a CO2 environment by interacting with like-like 

hydrogen bonding forces.   
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Interaction       τ i (ps) τs (ps) 
Cg-Cg Correlations 

(Normal liquid region) 
11.5 20.4 

Cg-Cg Correlations 
(Dilated liquid region) 

         7.2 14.9 

Om-Hm Correlations 
(Normal liquid region) 

        23.5 54.2 

Om-Hm Correlations 
(Dilated liquid region) 

        22.2 79.3 

     Table 2-11. Instantaneous (τ i) and steady state (τs) time constants 
in ps from correlation functions plotted in Table 2-10. 
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Conclusions 
 
 

The cybotactic region of CO2-expanded methanol and CO2-expanded acetone is 

probed using molecular dynamics simulations. The systems are simulated at 298 K and 

several representative densities corresponding to available experimental data. This 

corresponds to pressures between 16-57 MPa. Comparison between simulated diffusion 

coefficients from this work and experimental values suggests that GXL models work 

reasonably well in predicting general trends such as local structure and diffusion 

coefficients. The results are qualitatively consistent at the macroscopic level with those 

found using solvatochromic  Kamlet-Taft parameters. 
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CHAPTER 3 

MOLECULAR DYNAMICS SIMULATIONS OF PYRENE IN CO2-EXPANDED 
METHANOL AND CO2-EXPANDED ACETONE 
 
 
 
3.1 Introduction 

Addition of a solvatochromic  probe is one method of determining the local 

molecular environment in gas-expanded liquids (GXLs).1,2 Solvatochromism is a 

pronounced change in the position and/or intensity of an electronic emission or 

absorption band due to properties of the solvent.   Some of the properties determined 

from solvatochromic shifts of dyes are hydrogen-bonding donating ability, hydrogen 

bonding accepting ability, polarizability, and local polarity.   

Pyrene is a well-known solvatochromic indicator for probing local polarity in the 

cybotactic region or local environment in solvent systems. Figure 3-1 presents the 

structure of a pyrene molecule. It is strongly fluorescent, and its emission spectra is 

sensitive to the local environment. Pyrene emissions have previously been used to study 

local heterogeneities in near-critical water3, room-temperature ionic liquids4, ethylene-co-

(Vinyl Acetate) films5, micellular environments6,7, and supercritical fluids.8-11   Pyrene 

has even been tagged onto the ends of  peptide molecules12,13 to study end-folding 

behaviors as well as local environments in aqueous solution and microfibriles. 

In this work, UV-vis spectroscopy experiments are combined with molecular 

dynamics simulations to elucidate the cybotactic region about ground state pyrene in gas-

expanded liquids. This is the first attempt at simulating pyrene in gas-expanded liquids, 

and this is also the first instance of using pyrene as an experimental probe in GXLs. 
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Pyrene experiments in supercritical fluids have demonstrated heterogeneities in 

the cybotactic region. Brennecke and Eckert10 performed fluorescence spectroscopy 

measurements of dilute pyrene in supercritical CO2, ethylene, and fluoroform. Local 

solvent densities around pyrene showed enhancement with respect to the bulk as the 

critical point was approached. More specifically, Rice, et. al.9 have observed local density 

enhancements 2 to 3 times the bulk density in supercritical CO2. As the bulk density 

increased towards liquid-like values, the local density enhancement in the cybotactic 

region about pyrene decreased. 

  

 

 

 

                                

 

                                                Figure 3-1.  Pyrene. 

  

3.2 Pyrene simulations in the literature 

 Knutson, et. al.14 were the first to propose a synergy of fluorescence experiments 

and molecular dynamics simulations to study local density augmentations in supercritical 

CO2.  Fluorescence experiments at 310.4 K and pyrene concentrations of xp=3.2x10-8 in 

supercritical CO2 showed  local density enhancements of upto 2.05, and these 

enhancements are augmented as the bulk density decreases. For the MD simulations, both 
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pyrene and CO2 were treated as spherical Lennard-Jonesian particles. The results indeed 

exhibited  density enhancements at 310.4 K of upto 1.8 as the bulk density decreased. 

 Chialvo and Debenedetti15 performed molecular dynamics simulations of pyrene-

CO2 and neon-xenon mixtures at approximately 323 K and ρr=0.8. All molecules were 

again treated as spherical Lennard-Jonesian particles. The radial distribution function or 

g(r) (defined in Section 2.5 of Chapter 2) of pyrene-CO2 interactions showed a broad 

peak at approximately 6.5 Angstroms. The g(r) peak reached a value of about 2.8, 

indicating significant pyrene-CO2 interactions. In order to simulate the cybotactic region 

around pyrene, however, adequate force fields of pyrene are needed. The development of 

an all-atom force field for pyrene is described in the next section. 

 

 

3.3 Force Fields  

Carbon dioxide, methanol, and acetone molecules have been modeled as rigid 

collections of atomic sites with specified fixed charges interacting through pairwise-

additive, site-site Lennard Jones and Coulomb forces. Pyrene solute, however, contains an 

additional intramolecular component, namely valence angle constraints. Equation 3-1 

represents the force field in CO2-methanol-pyrene and CO2-acetone-pyrene.  The first two 

terms represent the Van der Waals and electrostatic interactions, respectively, while the 

last term represents the intramolecular valence angle component. The bond angle force 

constant is noted  as  Kθ, and θo is the equilibrium angle. The values of these constants 

were taken from Reference 19. 
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Carbon dioxide pair interactions have been modeled using the Transferrable Potential for 

Phase Equilibria or TrAPPE potential.16 The J217 and OPLS-derived potentials18 have 

been used for methanol and acetone pair interactions, respectively. Section 2.2 of Chapter 

2 presents detailed information about these three potentials. Each of the pairwise 

potentials specifies a representation for the fixed point charges and these are assumed to 

remain fixed in the heterogeneous pairwise Coulomb interactions.   

 An all-atom force field is one where each atom in the molecule is treated 

explicitly. A united-atom force field is one where certain groups (such as a methyl group) 

are treated as one entity. Both the J2 and OPLS-derived potentials are united-atom 

potentials, and the methyl groups as regarded as one entity.   United-atom, and especially 

all-atom, force fields of ground-state pyrene in the literature are very sparse. To the best 

of the author’s knowledge, no united-atom or all-atom excited state force field for pyrene 

has been published. Sun19 performed ab initio calculations on alkane and aromatic 

compounds and optimized the potentials for condensed-phase applications. Explicit 

pyrene site-charges were not provided. Furthermore, the van-der Waals interactions were 

treated with a 9-6 rather than a 12-6 potential. A 9-6 potential is one where the repulsion 

and attraction terms of the Van der  Waal equation are raised to the power of 9 and 6, 

respectively. Even if a 12-6 potential were fitted to the 9-6 potential to obtain Lennard – 

Jones parameters, the absence of site charges on pyrene would not yield optimal results in 

a solvent consisting of both Coulombic and Lennard-Jonesian components. Also, Hoff, et. 
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al.20 simulated pyrene in a lipid membrane using GROMACS software. Their pyrene 

force field, however, has not yet been published.  

 Duffy, et. al.21 published an OPLS force field for benzene and naphthalene, which 

specified two different types of carbon atoms: the sp2 and sp carbons. All of the 

hydrogens were treated the same, giving this force-field three different types of atoms for 

benzene and napthalene. Cinacchi, et. al.22 then performed simulations of 

hexakis(pentyloxy)triphenylene or HAT5, a four-ring structure like pyrene with attached 

R-groups. Figure 3-2 shows the HAT5 molecule. The OPLS potential was applied for the 

aromatic carbons not bonded to the R-groups in the HAT5 molecule. Once again, all of 

the aromatic hydrogens were treated the same.  

 

R

R

R

R

RR  

Figure 3-2. HAT5 molecule 
 
  

In this work, the Optimized Potential for Liquid Simulations or OPLS force field21 

was employed for the partial charges and Lennard-Jones parameters in pyrene. However, 

unlike the OPLS force field for aromatics, the potential used in this work specifies five 

different types of carbons. As shown in Figure 3-3 and Table 3-1, all of the sp2 carbons 
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have a charge of  -0.115, while the sp carbons have a charge of zero. The Lennard Jones 

parameters for all the carbons are the same. Furthermore, there are three types of 

hydrogens in this pyrene force field, one for each sp2 carbon specified. All the hydrogens 

have a charge of 0.115. 

Ab initio calculations using the SPARTAN software package23 on ground-state 

pyrene were conducted. The purpose of the ab initio calculations was two-fold: a) to 

determine the number  of  different carbons in pyrene b) to compare the resulting atomic 

site charges from the ab initio calculations to the charges from the OPLS potential of 

aromatics.19 Density functional theory with B3LYP functional and 6.31 G* basis set was 

employed for the ab initio calculations; the calculations were performed in a vacuum. 

Table 3-1 presents both the number of carbons and charges obtained by the ab initio 

calculations of ground state pyrene. The charges from the OPLS potential are also 

tabulated. Figure 3-3 is a cartoon of the different types of carbons, corresponding to the 

symbols in Table 3-1. 

The ab initio calculations produced five different types of carbons: three sp2 

carbons and two sp carbons. The hydrogens bonded to the sp2 carbons are also different 

from each other, corresponding to the carbon name. For example, the H1s hydrogens are 

bonded to the C1s carbons. However, all of the hydrogens possessed a partial charge of 

0.130, regardless of the carbon it was binded to. In other words, the H1s hydrogen and the 

H2s hydrogens all have a charge of 0.130.  

The carbon partial charges obtained by density functional theory calculations are 

relatively close to the -0.115 charge from OPLS potentials. The advantage of using the 

OPLS potential, however, is that it was optimized to reproduce experimental 
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thermodynamic properties such as heats of vaporizations and densities. The number of 

charges ultimately used in the calculations was 4. For simplicity, the C5s carbon obtained 

through the ab initio calculations was treated as a C3s carbon in the MD simulations. 

The Lennard-Jones cross-term parameters for MeOH-MeOH and acetone-acetone 

interactions are handled by the mixing rule specified by the respective potentials. The 

Lennard-Jones cross-term parameters for MeOH-CO2, acetone-CO2, and CO2-CO2, 

pyrene-CO2, pyrene-acetone, and pyrene-methanol interactions, however, are handled by 

the Lorentz-Berthelot mixing rule, uniformly. Tables B1 and B4 of Appendix B provide 

tables of force field parameters for both pyrene-CO2-methanol and pyrene-CO2-acetone 

simulations. Furthermore, Section II of Appendix B provides partial charges of the 

excited-state of pyrene from preliminary Q-Chem calculations.24 
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Figure 3-3. Pyrene partial charges and number of carbon types from ab initio   
calculations. 
Figure 3-3. Pyrene partial charges and number of carbon types from ab initio   
calculations. 

  
  

Table 3-1. Results of the ab initio calculations performed on pyrene. The first column 
displays the symbol of the specific  carbon atom. The symbols in this table 
correspond to the symbols in Figure 3-3. The second column presents the name of the 
specific carbon atom. The third column displays the charges produced by the ab initio 
calculations, while the fourth column displays the charges taken from the Optimized 
Potential for Liquid Simulations or OPLS potential.21 

Table 3-1. Results of the ab initio calculations performed on pyrene. The first column 
displays the symbol of the specific  carbon atom. The symbols in this table 
correspond to the symbols in Figure 3-3. The second column presents the name of the 
specific carbon atom. The third column displays the charges produced by the ab initio 
calculations, while the fourth column displays the charges taken from the Optimized 
Potential for Liquid Simulations or OPLS potential.21 

  
Symbol Symbol Carbon name Carbon name q (e) from ab initio 

calculations 
q (e) from ab initio 
calculations 

q (e) from OPLS 
Potential 
q (e) from OPLS 
Potential 

 

C1s -0.122 -0.115 

 

C2s -0.226 -0.115 

 

C3s 0.164 0 

C4s -0.195 -0.115 

 
 

C5s -0.012 Is a C3s Carbon 
q=0 
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3.4 Simulation Details 

The mole fractions, densities, and temperature for the pyrene-acetone-CO2 and 

pyrene-methanol-CO2 GXL systems investigated here are reported in Table 3-2. 

Molecular dynamics (MD) simulations were carried out using the DL_POLY Software 

package.25 Regardless of the relative composition, each simulated system box is 

populated by a total of 1001 molecules (i.e. one pyrene solute molecule is simulated in 

1000 solvent/cosolvent molecules).  Cubic periodic boundary conditions are used 

throughout, but the length of the system box is scaled to preserve the specified density as 

per Table 3-2.  Typical box lengths are on the order of 20-50 Å, and more specifically 40-

50 Å for the GXL systems simulated.  Because of the cubic boundary conditions, the 

potential interactions must necessarily be cut off to less than or equal to half the box 

length.  Coulombic interactions are handled by the Ewald summation method with 

automatic parameter optimization (by DL_POLY). The equations of motion were 

integrated using the velocity verlet algorithm as implemented by DL_POLY using time 

steps of 1.0 femtosecond. Structural information (at equilibrium) has been obtained using 

the NVT (constant moles, constant volume, and constant temperature) ensemble with a 

Nose-Hoover thermostat in which the relaxation constant is set to 0.3.  

Equilibrium averages have been obtained as follows: Initial configurations are 

equilibrated for 50 picoseconds of NVT simulation during which statistics are not 

collected. This is immediately followed by a 300 picoseconds NVT  simulation during 

which statistics are obtained to determine equilibrium structural information.  
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Table 3-2. GXL conditions used for simulations at T=313 K. CO2-Methanol liquid 
densities are predicted from the Peng-Robinson equation of state. CO2-Acetone values are 
measured from experiment.26 

GXL xCO2 P(bar) ρL(kg/m3) 
CO2-Methanol 0.2 36 851.4 

CO2-Methanol 0.5 66 920 

CO2- Methanol 0.8 72 857 

CO2-Methanol 0.9 75 739.1 

CO2-Acetone 0.2 15 789.5 

CO2-Acetone 0.5 35 812.4 

CO2-Acetone 0.8 63 830.0 

CO2-Acetone 0.9 73 828.7 
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3.5 Results 

3.5.1. Experimental background :  CO2-Methanol-Pyrene  

 UV-vis spectroscopy was performed with a Hewlett-Packard 8453 

spectrophotometer. The measurements were performed using a high-pressure 10 mL 

cylindrical cell with quartz windows set to a pathlength of  1 cm. The cell was jacketed 

with a heating block and equipped with a pressure gauge, thermocouple, and magnetic stir 

bar.  Pyrene (Aldrich) was first dissolved in methanol (Aldrich) to get the desired 

concentration of 10-5 mol/L. Carbon dioxide was introduced into the temperature-

controlled cell (set at 313 K) to a desired pressure via an Isco 260 Syringe Pump. 

By noting the difference in volume of the pump combined with determining the 

density of CO2 from the Span-Wagner equation of state27, the amount of CO2 added is 

calculated. Both vapor and liquid phases were present and the meniscus was above the 

cell window. It was assumed that the dilute concentration of pyrene solute had no effect 

on the CO2-methanol phase behavior.  Liquid phase concentrations were fit to published 

literature data. 

 The absorbance spectra of pyrene shows two peaks: one peak at around  311 nm 

and another peak at around 325 nm. The shift in peak position is a solvatochromic 

phenomenon dependent on solvent. Figure 3-4 displays the maximum wavelength or 

lamda of pyrene absorption in CO2-expanded methanol versus mole fraction CO2. Lamda 

decreases slowly until 0.4 CO2 mole fraction, after which it decreases rapidly. The figure 

suggests that CO2 penetrates the cybotactic region of pyrene with CO2 addition. In other 

words, the local environment around the pyrene molecule looks more and more like CO2 

as CO2 is added. 
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Figure 3-4. Lamda (peak position) of pyrene absorbance versus mole fraction CO2 in 
CO2-expanded methanol; T=313 K. 
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For comparison, Figure 3-5 shows excited state fluorescence data of pyrene in 

CO2-expanded methanol, acetone, and acetonitrile. Pyrene has a total of 5 characteristic 

vibronic bands in its emission spectrum.  The intensity of the first band is strongly 

dependent on solvent polarity, while that of the third band is insensitive to the local 

solvent polarity.28  The ratio of the first to the third band (Py = I1/I3) or the Py scale ratio 

thus changes with solvent polarity, becoming a tool to probe the polarity of the 

immediate environment around a pyrene molecule. 

As shown in Figure 3-5, the Py scale value decreases steadily in CO2-methanol 

upto 0.6 CO2 mole fraction , after which it decreases rapidly. The Py scale value in CO2-

expanded methanol starts at around 1.05 in pure methanol and steadily decreases to 

around 0.7 in pure CO2.  This indicates that the local polarity around pyrene decreases 

about 30%  from pure methanol to pure CO2.  The result of this decrease in local polarity 

is most likely due to CO2 molecules penetrating the cybotactic region of pyrene. If 

methanol molecules clustered around pyrene with added CO2 pressure, this would result 

in an increase in the Py scale ratio. Methanol molecules contain a dipole moment, while 

CO2 molecules do not contain an overall dipole moment. Hence, an increase in the local 

polarity can only be due to the local presence of methanol molecules. Furthermore, 

Figure 3-5 indicates that the local polarity around excited state pyrene decreases with 

added CO2 for all three gas-expanded liquids – CO2 methanol, CO2 – acetonitrile, and 

CO2-acetone.. 

To summarize, Figure 3-4 shows UV-vis absorbance data of ground state pyrene, 

while Figure 3-5 shows fluorescence spectroscopy data of excited state pyrene. Both 
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Figure 3-4 and Figure 3-5 indicate that the cybotactic region around pyrene in CO2-

expanded methanol looks more and more like CO2 as CO2 is added.  

 

 

 

 

Figure 3-5. Py scale ratio vs. mole fraction CO2 for CO2-methanol, CO2-acetone, and 
CO2-acetonitrile; T=313 K. 
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3.5.2. Simulation results in supercritical CO2  

 Pyrene is simulated in pure CO2 at 313 K to assess the accuracy of the force field.  

Figure 3-6 displays the ratio of the local density to bulk density (or local density 

enhancement) around pyrene versus the reduced density of supercritical CO2. Above a 

reduced density of 0.7, the simulations agree well with experiments. However, the 

simulations display a maximum at a reduced density of 0.5, a result consistent with UV-

vis spectroscopy data obtained by Bright and coworkers.9 At high reduced densities, 

carbon dioxide is liquid-like, so the local density looks like the bulk density. As the 

reduced density decreases beyond the critical density, the density fluctuations persist for 

longer and longer time. At one point the persistence time of the density fluctuations reach 

a maximum, and this is where one sees the greatest local density enhancement. Reducing 

the density even further basically creates an ideal CO2 gas. The density is very low, 

persistence times of the density fluctuations decrease rapidly, and thus the local density 

enhancement also decreases. 

 Because the simulations show good agreement with experiments, the  pyrene force 

field was applied in simulations of  pyrene in CO2-expanded methanol and pyrene inCO2-

expanded acetone systems. 
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Figure 3-6. Ratio of local density to bulk density of supercritical CO2
around pyrene versus reduced density. T=313 K 
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3.5.3 Simulation results in pyrene-CO2-MeOH 

 3.5.3.1. Carbon dioxide-pyrene interactions 

Carbon dioxide structure in the vicinity of pyrene is characterized in this work by 

the C4s-Cg
 radial distribution function. As shown in Figure 3-7, the C4s carbons of pyrene 

are the four sp2 carbons on the side of the molecule. The C4s-Cg radial distribution 

function was chosen because of better statistics due to averaging over four carbons. 

 

 

 
 
 
 
 
 
 
 
 
 

 

  

Figure 3-7. C4s carbons on simulated pyrene molecule. 
 

Figure 3-8 presents the C4s-Cg radial distribution function or g(r) in CO2-expanded 

methanol at 15, 35, 63, and 73 bars. The g(r) shows two broad peaks at 4.5 Ǻ and 8 Ǻ 

with peak heights of approximately 1.2 and 1.1, respectively. The first peak means that 

the probability of finding a Cg atom 4.5 Ǻ from the C4s atom-probe is 1.2 times greater 

than random. The peak heights do not change significantly with added CO2 pressure. 

Figure 3-9 is a contour plot of the C4s-Cg two-dimensional radial distribution function or 

g(r,θ) at x(CO2)=0.8 and P=63 bar. Section 2.5 of Chapter 2 rigorously defines g(r,θ). 
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Here, the angle θ  is defined as the angle between the C4s atom to the center of mass  and 

the vector from the probe C4s atom to a given Cg in the cybotactic region. Regions of 

highest probability are at around 4.5 Ǻ and 70° as well as 4.5 Ǻ and 150°.  

                  Figure 3-10 is a schematic of the most probable orientation of Cg atoms 

around the C4s carbons of pyrene based on the C4s-Cg orientational distribution function 

shown in Figure 3-9. This cartoon is very approximate, and shows the structure around 

only one of the C4s atoms. First, the coordinate axis is redefined. The y-axis is the vector 

from the chosen C4s atom to the center of mass of pyrene, and the x-axis is perpendicular 

to the y-axis. The angle θ is the angle beginning from the y-axis, and this angle can attain 

a maximum of 180°.  As detailed in Section 2.5, the positions are averaged over the  φ 

angle around the  y-axis. As shown in Figure 3-10,  Cg atoms are placed at θ = 70o and θ 

= 150o
 with respect to the coordinate system in the cybotactic region defined by a radius 

of 4.5 Ǻ. It is important to mention here that the figure is plotted on a two-dimensional 

surface; the actual positions of the Cg atoms are not necessarily in the same plane of the 

pyrene molecule. 
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Figure 3-8. Radial distribution functions for C4s-Cg in CO2-expanded methanol; 
 T=313 K. 
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Figure 3-9. Contour plot of C4s-Cg two-dimensional radial distribution function 
or g(r,θ) in CO2-expanded methanol at x(CO2)=0.8 and P=63 bar. The legend 
shows gradations of g(r,θ). T=313 K. 

 

 
 

 93



 

 

 

 

Θ=150°Cg 

b  
 

Cg Θ=70°

 

 

 

 

 

 

 94
Figure 3-13.  Most probable orientation of Cg  atoms around the C4s atoms of 
pyrene in the cybotactic region defined by a radius of  4.5 Angstroms. Positions 
ased on Figure 3-12 and averaged over the φ angle around the y-axis; T=313 K.



3.5.3.2 Methanol-pyrene interactions 

Methanol structure in the vicinity of pyrene is characterized in this work by the 

C4s-Hm
 radial distribution function. Figure 3-11 displays the radial distribution function 

or g(r) of C4s-Hm interactions in CO2-expanded methanol. The g(r) shows a peak of 1.1 at 

close to 10 Ǻ. A much smaller peak can be observed at 4.5 Ǻ with a peak height of 0.7. 

Again, the C4s-Hm interactions do not change significantly with CO2 addition. Figure 3-

12 is a contour plot of the C4s-Om two-dimensional radial distribution function. The angle 

θ  is defined as the angle between the C4s atom to the center of mass  and the vector from 

the probe C4s atom to a given Om atom in the cybotactic region. High probability density 

regions are at around 5 Ǻ and θ < 70o.  

           Figure 3-13 is a schematic of the most probable orientation of Om atoms around 

the C4s carbons of pyrene based on the C4s-Om orientational distribution function shown 

in Figure 3-12. This cartoon is very approximate, and shows the structure around only 

one of the C4s atoms. First, the coordinate axis is redefined. The y-axis is the vector from 

the chosen C4s atom to the center of mass of pyrene, and the x-axis is perpendicular to 

the y-axis. The angle θ is the angle beginning from the y-axis, and this angle can attain a 

maximum of 180°.  As detailed in Section 2.5, the positions are averaged over the φ angle 

around the y-axis. It is important to mention here that the figure is plotted on a two-

dimensional surface; the actual positions of the Cg atoms are not necessarily in the same 

plane of the pyrene molecule. For simplicity, θ = 20o and θ = 50o
 are displayed as 

representatives of the locus of angles less than 70o. It is important to mention here that 

the figure is plotted on a two-dimensional surface; the actual positions of the Cg atoms 
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are not necessarily in the same plane of the pyrene molecule. As shown in Figure 3-13,  

Om atoms are placed at θ = 20o and θ = 50o
 with respect to the coordinate system. 

Figure 3-14 attempts to combine the schematic plots of Figure 3-10 and 3-13 to 

show half of the cybotactic region around pyrene. Figure 3-14 does not represent the local 

composition, but the relative placement of Cg and Om atoms with respect to a specified 

coordinate system. It is important to note that the C4s atoms on the other side of the fixed 

pyrene molecules also form a coordinate sytem that shares the same y-axis and is parallel 

to the plotted x-axis. The orientational distribution functions shown in Figure 3-9 and 3-

12 are averaged over all four C4s carbons, so in fact, all of these four carbons are 

identical. This new coordinate system will fill in the second half of the cybotactic region 

around pyrene. Again, it is important to mention here that the figure is plotted on a two-

dimensional surface; the actual positions of the Cg atoms are not necessarily in the same 

plane of the pyrene molecule. 
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Figure 3-11. Radial distribution functions for C4s-Hm interactions in CO2-expanded  
methanol; T=313 K. 
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Figure 3-12. Contour plot of C4s-Om two-dimensional radial distribution function or 
g(r,θ) in CO2-expanded methanol at x(CO2)=0.8 and P=63 bar. The legend shows 
gradations of g(r,θ). T=313 K. 
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 Figure 3-13.  Most probable orientation of Om atoms around the C4s atoms of 
pyrene in the cybotactic region defined by a radius of  5 Angstroms. Positions based 
on Figure 3-12 and averaged over the φ angle around the y-axis; T=313 K. 
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Figure 3-14. Most probable orientation of Om and Cg atoms around the C4s carbons of 
pyrene based on a combination of Figures 3-10 and 3-13; T=313 K. 
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3.5.4. Simulation results in pyrene-CO2-Acetone 

The acetone structure in the vicinity of pyrene is characterized in this work by the 

C4s-Ca
 radial distribution function. Figure 3-15 displays the C4s-Ca radial distribution 

function or g(r) in CO2-expanded actetone at 15, 35, 63, and 75 bar. Two broad peaks are 

observed at 5Ǻ and 9 Ǻ. The first peak at 5 Ǻ increases from around 1.1 at 15 bars to 

around 1.8 at 73 bars. This suggests significant increase in local structure of acetone 

around pyrene. Unlike the pyrene-methanol radial distribution function from CO2-

expanded methanol simulations shown in Figure 3-11, the g(r)s in Figure 3-15 increase 

with added CO2 pressure. Because acetone molecules do not cluster significantly in CO2-

expanded acetone (as presented in Chapter 2), the acetone molecules are more “free” to 

interact with CO2 and pyrene. UV-vis data of pyrene in CO2-expanded acetone are not 

available, because it is very difficult to solubilize pyrene in CO2-expanded acetone. 

Figure 3-15, however, shows the change in the cybotactic region around pyrene in an 

aprotic solvent. 
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Figure 3-15. Radial distribution functions for C4s-Ca interactions in CO2-expanded 
acetone; T=313 K. 

 102



3.5.5. Local Compositions in CO2-expanded methanol and CO2-expanded acetone 

The local composition, or xloc, of the organic component (methanol or acetone) around 

pyrene may be defined as the following29: 

          
cut( )( )

( )
methanol methanol
loc cut

TOT cut

N Rx R
N R

=                                         Equation 3-2 

where cut(methanolN R )  is the average number of particles of methanol within pyrene’s 

solvent sphere of radius Rcut. Rcut is chosen as the minimum after the first peak in the 

radial distribution function, as suggested by Tucker and coworkers.30 cut(TOTN R )  is the 

total number of carbon dioxide and methanol molecules within cutR . cut( )methanolN R is 

defined by the following equation: 

cut

exc

2bulk
cut( ) 4 ( )

R

methanol
NN R g r r dr
V σ

π= ∫ .       Equation 3-3 

Here Nbulk is the total number of bulk particles and V is the volume of the simulation box. 

The excluded radius, denoted by σexc, is that radius where g(r) first acquires a non-zero 

value in the simulation output.   

 Figure 3-16 displays the local composition of methanol around pyrene in CO2-

expanded methanol, and Figure 3-17 displays the local composition of acetone around 

pyrene in CO2-expanded acetone at 313 K. The local composition of the organic 

decreases with added CO2 pressure for both systems, which suggests that CO2 is 

penetrating the cybotactic region of pyrene with added CO2 pressure. In other words, the 

cybotactic region looks more and more like CO2 as CO2 is added, a result  consistent with  

UV-vis absorption experiments shown in Figure 3-4. 
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Figure 3-16. Simulated local composition of methanol around 
pyrene vs. bulk CO2 mole fraction in CO2-expanded methanol. 
T=313 K 

 
   

            

Figure 3-17. Simulated local composition of acetone around   
pyrene vs. bulk CO2 mole   fraction in CO2-expanded acetone. 
T=313 K 
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Figure 3-18 displays the simulated local composition of methanol around pyrene 

versus the bulk composition of methanol in CO2-expanded methanol, whereas Figure 3-

19 displays the simulated local composition of acetone around pyrene versus the bulk 

composition of acetone in CO2-expanded acetone. The y=x line is plotted as a baseline. 

As shown in Figure 3-18, the simulated local composition of methanol around pyrene 

falls below the bulk value. The local composition of acetone around pyrene, however, is 

greater than the bulk composition as shown in Figure 3-19. Thus, the simulation results 

show local density enhancements around pyrene in CO2-expanded acetone, but not in 

CO2-expanded methanol.  

 Figures 3-18 and 3-19 show the significance of solute-solvent interactions in local 

composition enhancements. Because the acetone molecules do not cluster in CO2-

expanded acetone, they are more available to interact with pyrene. Methanol molecules, 

however, prefer to cluster in CO2-expanded methanol. The potential used in this work 

consists of Lennard-Jones and Coulombic terms. The data suggests that the current force 

field for ground-state pyrene may not be enough to attract methanol molecules in CO2-

expanded methanol. As discussed in the next section, a polarization component is needed 

to better represent the interactions between methanol and pyrene.  
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Figure 3-18. Simulated local composition of methanol around pyrene vs. bulk
composition of  methanol in CO -expanded methanol. T=313 K 
2
 

 
Figure 3-19. Simulated local composition of acetone around pyrene vs. bulk
composition of acetone in CO -expanded acetone. T=313 K 
2
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3.6 Discussion 

Figure 3-11 shows very little structure of methanol molecules around pyrene in 

CO2-expanded methanol. In the real system, the pi electrons of pyrene may attract a lone, 

protic hydrogen in a methanol cluster. However, the simulations in this work do not treat 

the pi electrons explicitly. In other words, there is no polarizability component to the 

force field. As methanol approaches pyrene, the simulations in this work provide no 

treatment of  reorganization of the pi electrons in pyrene. This induced dipole (and not 

the electrostatic interactions between methanol and pyrene) will be the salient force of 

interaction between methanol and pyrene.  This is because the partial charge of a carbon 

atom in pyrene is -0.115, while the partial charge of the protic hydrogen in methanol is 

0.435. This is a relatively strong electrostatic interaction. However, the partial charge of 

the oxygen in methanol is -0.7,  about seven times more basic than the carbon in pyrene. 

Thus, the electrostatic interaction between the protic hydrogen of methanol and the 

oxygen in methanol is stronger, and the methanol molecules will cluster. In conclusion, a 

polarizability component to the pyrene simulations in gas-expanded methanol may be 

necessary to fully capture the interactions in the cybotactic region.  Section 5.3 in Chapter 

5 proposes a method to incorporate the polarizability term into the force field. 

Figure 3-16 displays the simulated local composition of methanol in CO2-

expanded methanol, and Figure 3-17 displays the simulated local composition of acetone 

in CO2-expanded acetone.  The local compositions of both organics decrease with added 

CO2 mole fraction. In other words the local mole fraction of CO2 increases as CO2 

increases. This finding is consistent with UV-vis absorption results of ground state 
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pyrene in CO2-expanded methanol shown in Figure 3-4. However, the local composition 

of methanol decreases linearly, while the local composition of methanol decreases more 

parabolically. The reason for this can also be due to an inaccurate force. Lack of a 

polarizability term cannot keep the methanol molecules in the cybotactic region of pyrene 

due to weak pyrene-methanol interactions. 

Figure 3-15 shows an increase in the C4s-Ca radial distribution function with 

added CO2 pressure, but the local composition of acetone in CO2-expanded acetone 

decreases with added CO2 pressure. Table 3-3 attempts to explain the increase in the 

radial distribution function and the reason for this trend. As detailed in section 2.5.5 of 

Chapter 2, the radial distribution function can be integrated to obtain a local number 

density or ρlocal. The local number density in this case is the number of Ca atoms in a 

given sphere around pyrene ( or the C4s atoms). The sphere is defined by Rcut. The bulk 

density or ρbulk is obtained by the ratio of the total number of Ca atoms in the simulation 

to the volume of the simulation box. The Local Number Density Enhancement or LNDE 

is the ratio of the local density to the bulk density. As seen in Table 3-3, ρlocal of acetone 

decreases with CO2 mole fraction. But the ratio of the local density with respect to the 

bulk density increases, and this is what causes the increase in the radial distribution 

function. This suggests that acetone does form significant structure around pyrene with 

added CO2 pressure. However, addition of CO2 dilutes the structure of acetone around 

pyrene. This dilution causes a local composition decrease. 

To summarize, the radial distribution function is normalized with respect to the 

bulk density (of the species in question). The g(r) gives some measure of the significance 

of a certain interaction, which creates a local structure.  On the other hand, the local 
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composition is with respect to the solvation sphere defined by a critical radius or Rcut. 

This is why the trends in g(r) and local composition can be different. 
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Table 3-3. Local Number Density Enhancements (LNDE) for C4s-Ca interactions from 
pyrene-CO2-acetone simulations. 

 
Interaction 

 
x (CO2) 

 
Rcut(Å) 

ρlocal

(Molecules/Å3)
ρbulk

(Molecules/Å3) 
LNDE 

(ρlocal/ρbulk) 

C4s-Ca 0.242 6.775 0.01615 0.00621 2.6 

C4s-Ca 0.5 7.025 0.0133 0.00422 3.1 

C4s-Ca 0.8 7.075 0.0069 0.00172 4.0 

C4s-Ca 0.9 6.775 0.0031 0.0007 4.4 
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Conclusions 

 Pyrene is a widely used chromophore for probing the cybotactic region. In this 

work, molecular dynamics simulations of pyrene in CO2-expanded methanol and CO2-

expanded acetone were performed at 313 K and pressures between 15-75 bars. Carbon 

dioxide shows structure around pyrene in CO2-expanded methanol, and this structure 

does not change with added CO2. Methanol molecules show much less structure around 

pyrene than carbon dioxide molecules in CO2-expanded methanol, and this structure does 

not change with CO2 addition. Acetone molecules in CO2-expanded acetone, however, 

showed significant structure around pyrene and the radial distribution function increased 

with added CO2. 

 By combining the pyrene-carbon dioxide and pyrene-methanol g(r) and g(r,θ) 

results from CO2-expanded methanol, a proposed structure of half of the cybotactic 

region about pyrene is drawn. Furthermore, local compositions of methanol around 

pyrene in CO2-expanded methanol and acetone around pyrene in CO2-expanded acetone 

decrease with CO2 mole fraction. This suggests that the cybotactic region looks more and 

more like CO2 as CO2 is added, consistent with UV-vis absorption results.  

The author expected to see much more actual structure of methanol around pyrene 

in CO2-expanded methanol, shown by more than one prominent peak in the radial 

distribution function. Also, the local compositions of methanol around pyrene in CO2-

expanded methanol were less than the bulk mole fractions of methanol, also an 

unexpected result. As recommended in Section 5.2 of Chapter 5, a polarizability 

component should be added to pyrene’s force field in order to better represent the bulky 
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cloud of pi electrons. In other words, with additive site-site point-charges and Lennard-

Jones terms, the forces are not strong enough to attract methanol molecules to pyrene. 

Methanol molecules in the simulated system would rather cluster amongst themselves.  
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CHAPTER 4 

DIFFUSION COEFFICIENTS IN CO2-EXPANDED METHANOL: SYNERGY OF 
SIMULATIONS  AND EXPERIMENTS 
 
 
 
4.1 Introduction 

 Investigation of diffusion coefficients is important for the design and 

optimization of gas-expanded liquids. The transport properties of a system govern, 

among other factors, the rate of a reaction. In a heterogeneous reaction system, 

knowledge of the transport in the media is critical for reducing mass-transfer limitations.  

The goal of this chapter is two-fold: 1) to assess whether the local structure in the 

cybotactic region of a solute affects its diffusivity. This chapter, in a sense, touches on the 

topic of structure/property relationships. In other words, properties in the 

microenvironment can be manipulated to control bulk attributes. 2) to establish the 

predictive capability of computer simulations for GXL systems.  

In this work, molecular dynamics simulations are combined with experimental 

techniques to determine the diffusion coefficients of heterocyclic solutes in CO2-

expanded methanol. Figure 4-1 shows the molecular structures of the five solutes: 

benzene, pyridine, pyrimidine, pyrazine, and 1,3,5-triazine. These solutes were chosen 

for their potential to interact with GXL components as well as their range of dipole 

moments. Furthermore, the binary diffusion coefficient of benzene had been previously 

studied in CO2-expanded methanol for the entire composition range2, thus providing one 

data point for comparison. 
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 The next section describes the Taylor-Aris dispersion experiment used to 

determine the diffusion coefficients.  
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       Figure 4-1. Solutes under investigation. From left to right: benzene, pyridine 
       pyrimidine, pyrazine, 1,3,5-triazine. 
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4.2 Description of the Taylor-Aris Dispersion Technique 

hod of measuring diffusion 

coeffic

 

The Taylor-Aris Dispersion3-5 technique is one met

ients.  Figure 4-2 is a schematic of the Taylor-Aris technique. A sharp pulse is 

injected into a long, thin tube filled with a mobile gas-expanded liquid. The gas-expanded 

liquid is in laminar flow. As the mobile phase is carried through the tube, the solute pulse 

disperses, forming a concentration profile. This resulting concentration profile is then 

used to determine the diffusion coefficient of the solute in the solvent.  The initial solute 

pulse results in both axial and radial dispersion. If the diffusion is fast, then the velocity 

current of the mobile phase will carry the pulse axially, minimizing the radial dispersion 

to a minimum.  Thus, fast diffusion produces less radial dispersion as shown in Figure 5-

1, while slow diffusion produces a broader radial dispersion .  

 

 
Figure 4-2. Schematic of the Taylor-Aris dipersion technique. 
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he diffusion coefficient  D12 is then determined by the following equation6:  T

 

1
2⎧ ⎫

 20 0
12 4 3

u rD H H
⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞⎢ ⎥= − −⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
                                                                    Equation 4-1 

where 

 

0u is the average velocity of the mobile phase, is the inner radius of the tube, and  

 is given by the following: 

0r

H

 

2 2
1

2

1
2.354H W L=                                                                                              Equation 4-2 

 
where L is the length of th 1/2

ctor does not exactly calculate a dispersion 

e tube, and W  is the width of the peak at half the peak height. 

The software package connected to the dete

term, but rather the W1/2. For this system, 0u  was set to 0.2 mL/min. The tube is coiled, 

and its length is 100 feet. The next section details the simulation details used to model 

these solutes in CO -expanded methanol. 
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4.3 Simulation Details 

In what follows, representative conditions from each of these regimes have been 

selected from experiments and used to conduct detailed and extensive MD simulations of 

the heterocyclic solutes in CO2-expanded methanol. The mole fractions, densities, and 

temperature for the methanol-CO2 GXL systems investigated here are reported in Table 

4-1.   The simulation system represents a single liquid phase with the compositions and 

pressure determined by these experiments and the density determined by the Peng-

Robinson equation of state7. 

Carbon dioxide and methanol have been modeled as rigid collections of atomic 

sites with specified fixed charges interacting through pairwise-additive, site-site Lennard 

Jones and Coulomb forces. Equation 4-3 presents the force field in the CO2-methanol and 

CO2-acetone systems.  The first term represents the van der Waals potential, while the 

second term represents the electrostatic or Coulombic potential.  

      
12 6

4 ij ij i j
ij ij

i j i ij ij ij

q q
u

r r r
σ σ

ε
>

⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎢= −⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦
∑∑ ⎥+

⎥
                                        Equation 4-3 

   

Carbon dioxide pair interactions have been modeled using the Transferrable Potential for 

Phase Equilibria or TrAPPE potential.8  The J29 potential, a subset of the Optimized 

Potentials for Liquid Simulations (OPLS), has been used for methanol pair interactions. 

Section 2.2 of Chapter 2 presents detailed information about these two potentials. The 

potentials for pyridine, pyrimidine, pyrazine, and benzene are all-atom potentials and also 

OPLS-derived.10,11   To the best of the author’s knowledge, there exists no force field for 

1,3,5-triazine, so this molecule could not be simulated. Each of the pairwise potentials 
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specifies a representation for the fixed point charges and these are assumed to remain 

fixed in the heterogeneous pairwise Coulomb interactions.   

Molecular dynamics (MD) simulations were carried out using the DL_POLY 

Software package12. Regardless of the relative composition, each simulated system box is 

populated by a total of 1001 molecules: one solute molecule and 1000 solvent/cosolvent 

molecules. Cubic periodic boundary conditions (PBCs) are used throughout, but the 

length of the system box is scaled to preserve the specified density as per Table 4-1.  

Typical box lengths are on the order of 20-50 Å, and more specifically 40-50 Å for the 

GXL systems simulated.  Because of the PBC, the potential interactions must necessarily 

be cut off to less than or equal to half the box length.  Coulombic interactions are handled 

by the Ewald summation method with automatic parameter optimization (by DL_POLY). 

The equations of motion were integrated using the Velocity verlet algorithm as 

implemented by DL_POLY using a time step of 1.0 femtosecond. Structural information 

(at equilibrium) has been obtained using the NVT (constant moles, constant volume, 

constant temperature) ensemble with a Nose-Hoover thermostat in which the relaxation 

constant is set to 0.3. Initial configurations of the system box are generated using a 

random packing of the molecules in the periodic box followed by a 50 picoseconds MD 

simulation at NVT conditions. 

When performing preliminary simulations, initial configurations in which CO2 

molecules were placed separately from methanol molecules are created, occupying 

different parts of the simulation box. This two-phase structure was stable during the 

simulation time and didn’t show mixing. The initial conditions for subsequent 

simulations, however, placed all the molecules in random positions, assuming that the 
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CO2 and methanol molecules were in a mixed, near-equilibrium state. Again, the bulk 

structure did not change substantially during the simulation. Thus, within the time and 

length scales of the simulations, the system remains at least in a metastable state. 

 Statistics are collected during a 300 picoseconds MD simulation at NVT 

conditions. The final equilibrium statistics are averaged over seven trajectories derived 

from seven different initial configuration files. The final configurations of each of the 

NVT runs are subsequently used as initial configurations for 1 nanosecond MD 

simulation runs under NVE conditions for collecting time-dependent statistics. These 

time-dependent statistics are used to calculate the diffusion coefficients of the solutes in 

CO2-expanded methanol. The binary  diffusion coefficients are calculated using the 

Einstein relation13: 

21lim [ ( ) (0)]
6t

D r t r
t→∞

= −                                                                       Equation 4-4   

In the experiments, a solute in CO2-expanded methanol was infinitely dilute. Thus, only 

one solute was  placed in a simulation box, amongst 1000 CO2/methanol molecules. 

 

 

Table 4-1. Solvent conditions used for simulations; T=313 K. 

 

x (CO2) P 14 ρL (kg/m3) 
0 150 820 

0.195 150 860 
0.686 150 940 
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4.4 Results 

4.4.1. Diffusion Coefficients 
 
 Figure 4-3 displays the diffusion coeffiecients at 313 K of all five heterocyclic 

solutes for 0%, 25%, 50%, 75%, and 100% CO2 volume fraction. The diffusion 

coefficients of all solutes increase with added CO2. This finding is consistent with both  

previous work on benzene diffusion in CO2-methanol2 as well as Figure 2-10 in Chapter 

2. Figure 2-10 of this thesis shows an increase in the simulated self-diffusion coefficients 

of methanol in CO2-expanded methanol with added CO2 pressure. Furthermore, it 

appears that the value of the diffusion coefficient for each solute in Figure 4-3 is the same 

for a given volume fraction. For example, the diffusion coefficient at 50% volume 

fraction is 5x10-9 m2/s for benzene, pyrimidine, pyrazine, and 1,3,5-triazine. The 

diffusion coefficient of pyridine is 4x10-9 m2/s, a value very close to the other four 

solutes. This general trend (for all of the volume fractions) suggests that inhomogeneities 

in the cybotactic region due to the differences in polarity of the solutes do not influence 

the diffusivity. In other words, the local environment does not impact the bulk diffusivity 

of these solutes in CO2-expanded methanol. 

 Tables 4-2 through 4-5 tabulate the experimental15 and simulated diffusion 

coefficients of pyridine, pyrimidine, pyrazine, and benzene, uniformly. The first column 

in each table is the CO2 volume fraction, and the last column presents the error in the 

simulated diffusion coefficient.  
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Figure 4-3. Experimental diffusion coefficients of benzene, pyridine, pyrimidine, 
pyrazine and 1,3,5-triazine in CO2-expanded methanol as a function of volume 
fraction of methanol, 313 K, 150 bar. Data taken from Ref. 15. 

 

 123



 
 
 
 
 
 
 
 
 

Table 4-2. Experimental and simulated diffusion coefficients of  
pyridine  in CO2-expanded methanol; T=313 K.  

Volume fraction 
CO2

D x 109 m2/s 
(experiment) 

D x 109 m2/s 
(simulation) 

0 2.2 0.913± 0.5 
0.25 2.3 2.2 1 ±
0.75 6 6.2 2 ±

 
 
 
 
 
 

Table 4-3. Experimental and simulated diffusion coefficients of    
pyrimidine in CO2-expanded methanol; T=313 K. 

Volume fraction 
CO2

D x 109 m2/s 
(experiment) 

D x 109 m2/s 
(simulation) 

0 2.2 2.83± 1.5 
0.25 2.7 2.9± 1.5 
0.75 7 6 2.4 ±
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Table 4-4. Experimental and simulated diffusion coefficients of pyrazine 
             in CO2-expanded methanol; T=313 K. 

Volume fraction 
CO2

D x 109 m2/s 
(experiment) 

D x 109 m2/s 
(simulation) 

0 2.8 1.54± 1.5 
0.25 3.1 2.5± 1.5 
0.75 7.2 5.8± 2.4 

 
 
 
 
 
 
 

          Table 4-5. Experimental and simulated diffusion coefficients of benzene  
           in CO2-expanded methanol; T=313 K. 

Volume fraction CO2 D x 109 m2/s 
(experiment) 

D x 109 m2/s 
(simulation) 

0 2.9 2.1±  0.5 
0.25 3.4 3.2± 0.3 
0.75 9.2 6± 1.7 

 125



 The simulated diffusion coefficients of all four solutes increase with added CO2 

pressure, a finding consistent with the experimental results. The average simulated 

diffusion coefficients shown in these tables agree reasonably well with the experimental 

value. However, the error bars increase as CO2 is added. The scatter in the simulation 

could be a result of several causes. Only one solute molecule is simulated in each GXL 

system. In section 2-6 of chapter 2, the root-mean squared deviation of each methanol 

molecule was averaged over at least 100 methanol molecules in the system. This, too, 

was averaged over 10 different initial trajectories. A sufficient amount of statistics was 

collected, and thus led to small error bars in Chapter 2. Thus, to obtain the level of 

accuracy as in Chapter 2, at least 100 trajectories need to be carried out for the solute 

molecule in CO2-expanded methanol. This may not be very profitable in an industrial 

setting.  

 The simulation results cannot categorically conclude whether local 

heterogeneities in the cybotactic region of the solutes effect the diffusivity or not. 

However, the simulations are successful once again in reproducing the general trend that 

addition of CO2 enhances the transport in the media. In the next section, structural results 

in the cybotactic region of the four solutes are presented.  
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4.4.2. Local Structure results 

Molecular dynamics simulations can yield structural results not attainable by the 

Taylor-Aris technique. Figures 4-4 to 4-6 are plotted to ascertain the degree of hydrogen 

bonding between the nitrogen of each solute (Ns) and the protic hydrogen of methanol 1.  

Figure 4-4 shows the Ns-Hm radial distribution function of pyridine in CO2-methanol. A 

sharp peak is immediately noticed at 2 Angstroms, the length of a hydrogen bond. 

Furthermore, with added CO2 pressure, the g(r) increases and obtains a maximum value 

of around 2.8 at 0.686 mole fraction CO2. This means that the probability of finding an 

Hm atom a distance 2 Angstroms from the Ns atom is 2.8 times greater than random. 

Figure 4-4 shows that methanol interactions with pyridine increase with added CO2 

pressure.  

Figure 4-5 shows the Ns-Hm radial distribution function of pyrimidine in CO2-

methanol. Again, a sharp peak is immediately noticed at 2 Angstroms, the length of a 

hydrogen bond. Furthermore, with added CO2 pressure, the g(r) increases and obtains a 

maximum value of around 2.9 at 0.686 mole fraction CO2. Figure 4-4 shows that 

methanol interactions with pyrimidine increase with added CO2 pressure. The similar 

local structures around pyridine and pyrimidine can be explained by similar dipole 

moments. The dipole moments of pyridine and pyrimidine are 2.190 and 2.335, 

respectively. Although the dipole moment is not treated explicitly in these simulations, 

they are included in an averaged way in the Coulombic charges. 

Figure 4-6 presents the radial distribution function of the Ns-Hm interactions of 

pyrazine in CO2-expanded methanol. At 2 Angstroms, the length of a hydrogen bond, a 

peak is observed with g(r) around 0.4. This suggests that very minimal hydrogen bonding 
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occurs between pyrazine and methanol. A more prominent interaction between Ns and Hm 

occurs at around 5 Angstroms, with a g(r) peaking at 1.2. However, with added CO2, this 

peak decreases. The CO2 disrupts the structure at 5 Angstroms. 

Finally, Figure 4-7 presents the radial distribution function between the carbon in 

benzene or C3s and the protic hydrogen of methanol or Hm. As expected, very little 

structure of Hm exists around C3s. A very broad peak at 6 Angstroms reaches a maximum 

g(r) of around 1.2. This structure is probably due to the protic hydrogen interacting with 

the carbon atoms in benzene. The C3s atoms have a charge of -0.115, so there exists 

some electrostatic interaction between methanol and pyrene. However, addition of CO2 

breaks this structure also. 
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Figure 4-4. Radial distribution function between nitrogen of pyridine (Ns) and the
protic hydrogen of methanol 1 versus radius in Angstroms at 0, 0.195, and 0.686 

ole fraction CO .  T=313 K, P=150 bar. 
2
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Figure 4-5. Radial distribution function between nitrogen of pyrimidine (Ns) and the 
protic hydrogen of methanol 1 versus radius in Angstroms at 0, 0.195, and 0.686 mole 
fraction CO .  T=313 K, P=150 bar. 
2
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Figure 4-6. Radial distribution function between nitrogen of pyrazine (Ns) 
and the protic hydrogen of methanol 1 versus radius in Angstroms at 0,  
0.195, and 0.686 mole fraction CO2.  T=313 K, P=150 bar. 
 

 131



 

 

Figure 4-7. Radial distribution function between carbon in benzene (C3s) 
and the protic hydrogen of methanol 1 versus radius in Angstroms at 0, 
0.195, and 0.686 mole fraction CO2.  T=313 K, P=150 bar. 
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Conclusions 

Molecular dynamics simulations of benzene, pyridine, pyrimidine, and pyrazine in CO2-

expanded methanol were performed at 313 K and 150 bars. Binary diffusion coefficients 

of the solutes in CO2-expanded methanol increased with added CO2 pressure. This is 

consistent with experimental results obtained by the Taylor-Aris dispersion technique. 

While the experimental results suggest that the solute diffusivity is not dependent on the 

local polarity or local structure in the cybotactic region, the simulation results are 

inconclusive. The error in the diffusivity values are great enough to suggest either one of 

two things: 1) more trajectories are needed  2) local heterogeneities do affect the bulk 

transport. Hydrogen-bonding radial distribution functions show significant interaction 

between the nitrogen of the pyridine and pyrimidine and the protic hydrogen of methanol, 

and these interactions increase with added CO2. Pyrazine and benzene, however, show 

very little interaction with the protic hydrogen of methanol, and any existing interaction 

decreases with added CO2. The structural results conclude that the local environments 

about these probes are indeed different from eachother. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 
 
 
 

5.1  Conclusions 

Computer simulations are valuable in designing and optimizing more 

environmentally-benign and cost-effective solvent systems useful in reactions and 

separations.  Knowledge of the local chemistry can be effective in manipulating bulk 

reaction rates. For example, local chemistry in the cybotactic region affects the solubility 

of reactants and catalysts, the angle of approach of reactant to the catalystic site, and the 

local transport, all of which influence a reaction rate. Computer simulations can provide 

local structural information not easily attainable by experiments. Furthermore computer 

simulations can offer explanations of experimental results and assist in experimental 

design.  

In this work, molecular dynamics (MD) simulations are used as a novel probe to 

elucidate the local environment in gas-expanded liquids. Chapter 2 commences the 

investigation by simulating CO2-organic (the liquid phase) without solute at 298 K and 

pressures between 10-70 bar. The significant results are that methanol molecules cluster 

in CO2-expanded methanol with added CO2 pressure while acetone molecules in CO2-

expanded acetone do not. Furthermore, carbon dioxide addition increases the self-

diffusion coefficient of methanol in CO2-expanded methanol, thereby improving 

transport ability.  
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Chapter 3 adds a well-known chromophore, pyrene, into the GXL simulations to 

elucidate the local environment in conjunction with experiments at 313 K and 10-80 bars. 

The significant results are that the local composition of methanol around pyrene in CO2-

expanded methanol decreases with CO2 addition. Likewise, the local composition of 

acetone in CO2-expanded acetone decreases with CO2 addition. These results are 

consistent with UV-vis spectroscopy data, which indicate that the cybotactic region of 

pyrene looks more and more like CO2 with CO2 addition. However, the local 

compositions of methanol around pyrene versus the bulk composition of methanol in 

CO2-expanded methanol are less than the bulk values. The local compositions of acetone, 

however, are greater than the bulk values in CO2-expanded acetone. This illustrates the 

role of solute-solvent interactions in local composition enhancements.  Furthermore, 

acetone in CO2-expanded acetone exhibited more structure around pyrene than methanol 

in CO2-expanded methanol as revealed by radial distribution functions. Based on 

information extracted from radial distribution functions and orientational distribution 

functions, the author has attempted to map the cybotatic region around pyrene in CO2-

expanded methanol, a cartoon not easily obtainable by NMR results. 

Chapter 4 concludes the investigation by demonstrating the capability of MD 

simulations in predicting diffusion coefficients of azocompound-solutes at 313 K and 150 

bars. Simulated solute diffusion coefficients increase with added CO2 pressure, and the 

values correspond reasonably well with results obtained by Taylor-Aris dispersion 

techniques. Furthermore, the simulations elucidate the local structure around the solutes, 

a result not obtainable by the Taylor-Aris dispersion technique.  
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 The author proposes the following tasks for future work: 1) simulating excited 

state pyrene 2) addition of a polarizability term to the force field 3) a synergy of 

computation and experiment for elucidating the cybotactic region around three more 

solvatochromic dyes in CO2-expanded methanol and 4) a hybrid method for simulating 

the cis-trans isomerization of azobenzenes. These propositions will be discussed in detail 

next. 
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5.2 Force field for Excited State Pyrene 

 A force field for excited state pyrene is unavailable in the literature. In this work, 

the charge distribution of excited state pyrene was attempted by density functional theory 

calculations with B3LYP functional and 6.31 G* basis set. These calculations were 

performed by the SPARTAN software package1. SPARTAN successfully produced the 

charge distribution for the ground state as shown in Table 3-2 of Chapter 3. However, 

SPARTAN does not provide the charge distributions of excited state calculations. 

Density functional theory with B3LYP functional and cc-pVDZ was again attempted by 

Q-Chem2 software package. Q-Chem was able to produce both the ground state and 

excited state charge distribution of pyrene as shown in Figure A1 and A2 in Appendix A. 

However, both the ground state and excited state charges are close to zero for all atomic 

sites. This finding cannot be accurate, because pyrene contains a bulky cloud of pi 

electrons. Therefore, the excited state yielded by the Q-Chem calculation was not used. 

 The author proposes a semi-empirical quantum chemistry method for the quantum 

calculation of pyrene’s electronic structure. These semi-empirical methods are derived 

from the basic Hartree-Folk framework, but make several approximations and acquire 

some parameters from empirical data. The first semi-empirical methods was MNDO or 

Modified Neglect of Differential Overlap3, which was later replaced by PM3 or 

Parametrized Model number 34 and AM1 or Austin Model 15.  Kumar and Maroncelli6 

performed   MNDO calculations to obtain the geometries and charges of excited state 

Coumarin 153, a molecule with four rings and pi electrons. The Lennard Jones 

parameters of the ground state were used in the excited state as well.  
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 After obtaining the partial charges of the pyrene excited state through semi-

empirical methods, molecular dynamics simulations of excited-state pyrene can be 

performed in CO2-expanded methanol and CO2-expanded acetone. It is proposed that the 

simulated local structure and local compositions be compared to results obtained by 

fluorescence experiments. 
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5.3  Adding Polarizability 

 Polarizability is the induced dipole moment in an atom or molecule caused by an 

electric field. This electric field can be externally applied , or it could be caused by the 

charged dipoles of the surrounding molecules. In this work, the polarizability is included 

within the point-charge parameterization in an averaged way. This assumption is 

reasonable for lower-polarizable molecules like methanol and carbon dioxide, whose 

polarizabilities are 3.29x10-24cm3 and 2.11x10-24cm3, respectively.7 However, with its 

bulky cloud of pi-electrons, pyrene’s polarizability is 28.2x10-24 cm3, about 8.5 times 

greater than that of methanol Therefore, a polarizability term in the force field becomes 

essential for a more accurate simulation of pyrene in GXLs. 

  The author expected to see much more structure of methanol around pyrene in 

CO2-expanded methanol indicated by more than one prominent peak in the radial 

distribution function. This suggests that a simple pairwise-additive point-charge plus 

Coulombic term may not be sufficient, because the low point charges in pyrene would 

not be enough to attract the methanol molecules. In the proposed system the total energy 

would be the following:  

 

                  TOT pair polE E E= +                                                                                     Equation 5-1  

where Epair is the pairwise-additive Coulombic plus Lennard-Jones terms used in this 

work: 

 

12 6
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ij ij i j
pair ij

i j ij ij ij

q q
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r r
σ σ

ε
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= −⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

∑∑∑ r
+                                                         Equation 5-2 
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where N is the total number of pair interactions. Epol - the polarization energy - is given 

by the following8: 

 

(1 1
2 2

N N
o o

pol i i i i ij j i
i i

) oE E E Tµ α µ⎡= − • = − − • •⎣∑ ∑ ∑ E⎤⎦                                   Equation 5-3 

 

where µi is the induced dipole of atom i obtained through a matrix inversion method9 ; Ei
o 

is the electrostactic field at the position of atom i due to the permanent charges of all 

other atoms belonging to different molecules and is given by the following: 

2
ˆjo

i
j

q
E r

r
=∑                                                                                                    Equation 5-4 

 αi is the polarizability of atom i, and Tij is the dipole tensor.8  

 Polarizability may be necessary to fully capture the solvent interactions with 

aromatic dyes. It is proposed to calculate the local composition and local structure of 

methanol around pyrene in CO2-expanded methanol as well as acetone around pyrene in 

CO2-expanded acetone. 
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5.4  MD of solvatochromic probes 

Figure 5-1 displays the bulk mole fraction vs. local mole fraction of methanol 

around five solvatochromic dyes in CO2-expanded methanol at 40°C. Figure 5-1 was 

determined from UV-vis spectroscopy data performed by Wyatt, et. al.10 and shows the 

dependence of solute-solvent interactions on local composition enhancements. For 

example, the local composition of methanol around 4-nitroaniline is greater than that 

around N-N dimethyl 4-nitroaniline and 4-nitroanisole for any given bulk composition. 

This is probably due to the stronger hydrogen bonding between methanol and the amine 

group of 4-nitroaniline. 

Simulations of N-N dimethyl 4-nitroaniline11,12, 4-nitroanisole13, and 4-

nitroaniline14,15 in CO2-expanded methanol are proposed to elucidate the local structure 

about these dyes. Figure 5-2 presents the molecular structure of the solvatochromic 

probes.  These three probes are chosen because the force fields are available in the 

literature. Unlike pyrene, these probes contain functional groups, and it would be relevant 

to see the effect of solute functional group-solvent interactions on the local structure and 

local composition around pyrene.  Because the hydrogen-bonding is strongest in 

nitroaniline, one would expect to see different local structures around the functional 

group in nitroaniline than in the other probes. Furthermore, local compositions can be 

simulated and compared to those in Figure 5-1. 
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  Figure 5-1. Bulk mole fraction vs. local mole fraction of methanol
around five different solvatochromic dyes at 40°C: ( ) ET-33 (△) 
4-Nitroanisole (□) N,N-dimethyl-4-nitroaniline ( ) 4-Nitroaniline 
( ) Nitrophenol. Data extracted from ref. 13. 
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 (a)        (c)  (b) 

Figure 5-2. Solvatochromic indicators for Kamlet-Taft 
solvent parameters: (a) N,N-dimethyl p-nitroaniline (b) p-
nitroanisole (c) p-nitroaniline 
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5. 5  Hybrid QM/MM simulations of the Cis-trans Isomerization of Azobenzenes 

 

 The cis-trans isomerization of azobenzenes shown in Figure 5-3 is strongly 

dependent on the local environment around the transition state. Thus, the reaction can 

actually be used as a probe of local solvent polarity.16 However, molecular dynamics 

alone cannot treat the formation and breaking of bonds or  electronic structure.  Thus, a 

hybrid Quantum Mechanical/Molecular Mechanics (QM/MM) molecular orbital 

calculation is a proposed method of simulating the isomerization in gas-expanded liquids. 

This approach divides the system into two regions: Region I and Region II. Region I is 

the inner region and contains the reacting molecules which are represented quantum 

mechanically. Examples of quantum mechanical treatments include MNDO3, PM34, 

AM15, Hartree-Folk, and Density Functional Theory.  Region II is the surrounding region 

and is represented by the molecular mechanics force fields such as Monte Carlo or MD. 

 

NR

R

N N

NO2

hv

NR

R

N N

NO2

 

 

  

 

Ace

benzisoxazo

 

Figure 5-3. Cis-trans isomerization of azobenzenes.

 

vedo and Jorgensen17 simulated the Kemp decarboxylation reaction of 

le-3-carboxylic in water, acetonitrile, methanol, and THF using the hybrid 
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QM/MM approach. After computing the minimum-energy geometry, the simulation was 

run and a snapshot of the cybotactic region around the transition state was illustrated. 

Activation energies of the reaction were calculated and demonstrated excellent agreement 

with experimental values. Furthermore, local structure around the transition state was 

also shown through radial distribution functions. 

The powerful hybrid QM/MM simulation approach can be used to elucidate the 

cybotactic region around the transition state of a reaction, such as the cis-trans 

isomerization of azobenzenes. The cybotactic region can then be altered computationally 

with CO2 pressure to manipulate or predict different reaction pathways. Ab initio 

methods as detailed in Section 5.1 can be used to obtain a force field for the reactant and 

product. 
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APPENDIX A 

 

Section I. EPM2 vs. TrAPPE Potential of CO2 

The TrAPPE potential1 has been tested relative to both vapor-liquid coexistence curve 
and vapor pressure. 

 
 
 
 
 

 
Figure A1. Vapor-liquid coexistence curve for carbon dioxide. 
Experimental data represented by solid line. Circles ( ) are from 
TrAPPE potential, and squares (□) are from the EPM2 potential for 
CO2. The Asterisk is the critical point. From Ref. 11 of Chapter 2. 
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Figure A2. Vapor-liquid coexistence curve for carbon dioxide. Experimental data 
represented by solid line. Circles ( ) are from TrAPPE potential, and squares (□) are 
from the EPM2 potential for CO2. Asterick is the critical point. From Ref. 11 of Chapter 
2. 
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Section II. Lennard-Jones parameters  
 

 

 

Table A1. Lennard-Jones interaction parameters for CO2-MeOH simulations. Both the 
geometric mean (Lorentz) and the arithmetic mean (Lorentz-Berthelot) for the cross-term 
distance parameter are shown. Values actually used in the simulations are shown in bold 
font. 

 

 

σ  in Å 
(directly from 
references) 

 σ  in Å 
(geometric mean) 

σ  in Å 
(arithmetic 
mean) e12   kJ/mol 

Cg-Cg 2.8000  0.2244
Og-Og 3.0500  0.6565
Cg-Og  2.9223 2.9250 0.3838
Om-Om 3.0710  0.7110
CH3-CH3 3.7750  0.8660
Om-CH3  3.4049 3.423 0.7847
Cg-Om  2.9324 2.9355 0.3994
Cg-CH3  3.2511 3.2875 0.4408
Og-Om  3.0605 3.0605 0.6832
Og-CH3  3.3932 3.4125 0.7540
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σ  in Å (directly 
from references) 

 
σ in Å (geometric 
mean) 

 σ in Å (arithmetic 
mean) e12  kJ/mol 

Cg-Cg 2.8000  0.2244 

Og-Og 3.0500  0.6565 

Cg-Og 2.9223 2.9250 0.3838 

Ca-Ca 3.7500  0.4393 

Oa-Oa 2.9600  0.8786 

CH3-CH3 3.9100                 0.6694 

Ca-Oa 3.3316 3.3550 0.6213 

Ca-CH3 3.8292 3.8300 0.5423 

Oa-CH3 3.4020 3.4350 0.7669 

Cg-Oa 2.8789 2.8800 0.4441 

Cg-Ca 3.2404 3.2750 0.3139 

Cg-CH3 3.3088 3.3550 0.3876 

Og-Oa 3.0047 3.0050 0.7595 

Og-CH3 3.4533 3.4800 0.6629 

Ca-Og 3.3819 3.4000 0.5370 

 
Table A2. Lennard-Jones interaction parameters for CO2-acetone simulations. Both the 
geometric mean (Lorentz) and the arithmetic mean (Lorentz-Bethelot) for the cross-term 
distance parameter are shown. Values actually used in the simulations are shown in bold font. 
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Section III. Convergence of volume from NPT studies 

 

 

 

 

 

Table A3.  Outputted lengths of simulation box from NPT simulations for both CO2-
expanded methanol and pure methanol ; T=298 K ; Total # of molecules = 1000; Total 
simulation time = 400 ps 

System Ensemble Mole fraction 
CO2

Inputted 
length of box 

(Å) 

Inputted 
pressure 

from NVT 
studies in 

atm 

Outputted 
length of 
box in Å 

from NPT 
studies 

174 41.024 
170 41.005 

CO2-
methanol 

NPT 0.13 41.00 

174 41.002 
122 41.025 
136 40.99 

Pure 
methanol 

NPT N/A 41 

149 40.975 
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Section IV.  Wilke-Chang ratio 
 

This section explains how the Wilke-Chang ratio was used to approximate 
diffusion coefficients of methanol in CO2-expanded methanol from available 
experimental data. The diffusion coefficient of benzene in CO2-expanded methanol was 
measured at 313 K by a chromatographic broadening technique.  These benzene diffusion 
coefficients were then used to obtain approximate diffusion coefficients of methanol in 
CO2-expanded methanol at 313 K through the Wilke-Chang ratio. 
 

The Wilke-Chang equation calculates the solute diffusion coefficient in a given 
solvent: 
 

15 1/ 2

0.6

(7.4 10 ) sTMD
Vη

−×
=  

T = temperature in K 
Ms = molecular weight of the solvent in g 
η = solvent viscosity in (Pa · s) 
V = molar volume of solute at ambient temperature in cc/mol 
 

The following ratio can be derived from the Wilke-Chang equation, and the 
authors call this ratio the Wilke-Chang ratio: 
 

0.6

0.6
meth benz

benz meth

D V
D V

=  

 
where a methanol molecule is treated as a solute molecule. By using the measured 
diffusion coefficient of benzene in CO2-expanded methanol, one can obtain a reasonable 
estimate of the diffusion coefficient of methanol in CO2-expanded methanol through this 
ratio. These values are plotted in Figure 2-9a of the main paper. The molar volume of 
methanol and benzene are 40 cc/mol and 88.6 cc/mol, respectively.  
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Section V. Calculation of diffusion coefficients in CO2-expanded methanol 

 

 

 

Mean squared displacement vs. time of methanol in CO2-
expanded methanol

T=298 K and x(CO2) = 0.13

y = 5.440E-04x
R2 = 9.994E-01
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5.44E-04 2.72E-04 2.72E-09  
 
Figure A3.  Sample mean squared displacements vs. time of methanol in CO2-expanded 
methanol; T=298 K, x(CO2)=0.13 
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Mean-squared displacement vs. time of methanol in CO2-expanded 
methanol

T=298 K and x(CO2) = 0.884
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Figure A4.  Sample mean squared displacements vs. time of methanol in CO2-expanded 
methanol; T=298 K, x(CO2)=0.884 
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Section 5. Semilog plots of local density autocorrelation functions (LDAC) 
 

This section presents the semilog plots vs. time of the local density 
autocorrelation (LDAC) function shown in Figure 2-10 of Chapter 2. Assuming that the 
correlation functions decay exponentially: 
 

t

y e τ
−

=    
 
where y is the LDAC, t is time in picoseconds, and τ is the decay constant or time 
constant in picoseconds. Time constants give information on the persistence of 
correlations over time in the simulations. 
 
We have reported two time constants in our paper: the instantaneous time (τi) and the 
steady state time (τs). The instantaneous time is within the ballistic regime and is 
nonlinear. The steady state time is the time constant of the intermediate regime and 
displays linear behavior. 
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Figure A5. Semilog plot of the instantaneous regime of Om-Hm 
local density autocorrelation function (LDAC) from CO2-expanded 
methanol simulations: x(CO2) = 0.884, ρ=861.8 kg/m3 (dilated 
liquid region). Equation of fitted line: y=0.04511x+0.02247 

 
 
 
 
 
 
 

Figure A6. Semilog plot of the steady state regime of Om-Hm 
local density autocorrelation function from CO2-expanded 
methanol simulations:
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Figure A7. Semilog plot of the instantaneous regime of Om-Hm 
local density  autocorrelation function (LDAC) from CO2-
expanded methanol simulations: x(CO2) = 0.130, ρ=810.3 
kg/m3 (normal liquid region). Equation of fitted line:

Figure A8. Semilog plot of the steady state regime of Om-Hm LDAC 
from CO2-expanded methanol simulations: x(CO2) = 0.130, ρ=810.3 
kg/m3 (normal liquid region) Equation of fitted line:
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Figure A9. Semilog plot of the instantaneous regime of Cg-Cg 
local density autocorrelation function (LDAC)  from CO2-
expanded methanol simulations: x(CO2) = 0.884, ρ=861.8 kg/m3 
(dilated liquid region). Equation of fitted line y= 0.1381x+0.1037

Figure A10. Semilog plot of the steady state regime of 
Cg-Cg local density autocorrelation function (LDAC)  
from CO2-expanded methanol simulations: x(CO2) = 
0.884, ρ=861.8 kg/m3 (dilated liquid region). Equation of 
fitted line y= 0.1381x+0.1037
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Figure A11. Semilog plot of the instantaneous regime of Cg-Cg 
local density autocorrelation function (LDAC)  from CO2-
expanded methanol simulations: x(CO2) = 0.130, ρ=810.3 kg/m3 
(normal liquid region).  

Figure A12. Semilog plot of the steady state regime of Cg-Cg local 
density autocorrelation function (LDAC)  from CO2-expanded 
methanol simulations: x(CO2) = 0.130, ρ=810.3 kg/m3 (normal liquid 
region). Equation of fitted line y= 0.04890x+0.3053 
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Figure A13. Gas-expanded liquids have intermediate properties between 
supercritical fluids and liquids. 
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APPENDIX B 
 
 
Section I. This section presents a table of the CO2-methanol-pyrene interactions with a 
subsequent explanation of the mixing rules. 
 
Table B1. Lennard-Jones parameters of pyrene in CO2-expanded methanol. 

 

 

σ  in Å 
(directly from 
references) 

 σ  in Å 
(geometric mean) 

σ  in Å 
(arithmetic 
mean) ε12   kJ/mol 

Cg-Cg 2.8000  0.2244
Og-Og 3.0500  0.6565
Cg-Og  2.9223 2.9250 0.3838

Om-Om 3.0710  0.7110
CH3-CH3 3.7750  0.8660
Om-CH3  3.4049 3.423 0.7847

Cg-Om  2.9324 2.9355 0.3994
Cg-CH3  3.2511 3.2875 0.4408
Og-Om  3.0605 3.0605 0.6832

Og-CH3  3.3932 3.4125 0.7540
C2s-Cg  3.1528 3.175 0.2565
C2s-Og  3.2905 3.3000 0.4386

C2s-Om  3.3018 3.3105 0.4564
C2s-CH3  3.6607 3.6625 0.5037
C3s-Cg  3.1528 3.1750 0.2565
C3s-Og  3.2905 3.3000 0.4386

C3s-Om  3.3018 3.3105 0.4564
C3s-CH3  3.6607 3.6625 0.5037
C1s-Cg  3.1528 3.1750 0.2565
C1s-Og  3.2905 3.3000 0.4386

C1s-Om  3.3018 3.3105 0.4564
C1s-CH3  3.6607 3.6625 0.5037
C4s-Cg  3.1528 3.1750 0.2565
C4s-Og  3.2905 3.3000 0.4386

C4s-Om  3.3018 3.3105 0.4564
C4s-CH3  3.6607 3.6625 0.5037
H2s-Cg  2.6031 2.6100 0.1675
H2s-Og  2.7168 2.7350 0.2864

H2s-Om  2.7261 2.7455 0.2981
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H3s-Cg  2.6031 2.6100 0.1675
H3s-Og  2.7168 2.7350 0.2864

H3s-Om  2.7261 2.7455 0.2981
H3s-CH3  3.0225 3.0975 0.3290
H1s-Cg  2.6031 2.6100 0.1675
H1s-Og  2.7168 2.7350 0.2864

H1s-Om  2.7261 2.7455 0.2981
H1s-CH3  3.02249 3.0975 0.3290

• The Lorentz-Berthelot mixing rule: the cross-term energy parameter is calculated by a 
geometric mean, and the cross-term distance parameter is calculated by an arithmetic 
mean, 
 

                                   
12 1 2

1 2
12

(

2

ε ε ε
σ σσ

=

+
=

  

 
•  The Lorentz mixing rule: both the cross-term energy and distance parameters are  

calculated by a geometric mean, 
 

                                         
12 1 2

12 1 2

(

(

ε ε ε

σ σ σ

=

=
 

 
o The TrAPPE potential for CO2 stipulates that the CO2-CO2 cross terms (i.e. Cg-Og) 

should be calculated using the Lorentz-Berthelot mixing rules.  
o The J2 potential for methanol states that the methanol-methanol cross terms (i.e. Om-

CH3) be calculated using the Lorentz rule. 
o The OPLS potential for aromatics states that cross-term interactions be calculated 

using the Lorentz rule. Because only one solute exists, however, no pyrene-pyrene 
cross terms were inputted. Both pyrene-CO2 and pyrene-methanol cross terms were 
calculated using the Lorentz mixing rule. 
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Table B2. Lennard-Jones parameters of aromatics from OPLS potential. 
 σ(Angstroms) ε(kJ/mol) 
Cs-Cs 3.55 0.293 
Hs-Hs 2.42 0.125 
 
 
 
 
 
 
 
Table B3. Charges from OPLS potential. 
 q(in e) 
Cs  -0.115 
Hs 0.115 
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Table B4. Lennard-Jones parameters of pyrene in CO2-expanded acetone. 

 

σ  in Å (directly 
from references) 

 
σ in Å (geometric 
mean) 

 σ in Å (arithmetic 
mean) e12  kJ/mol 

Cg-Cg 2.8000a  0.2244 

Og-Og 3.0500a  0.6565 

Cg-Og 2.9223 2.9250 0.3838 

Ca-Ca 3.7500b  0.4393 

Oa-Oa 2.9600b  0.8786 

CH3-CH3 3.9100b                 0.6694 

Ca-Oa 3.3316 3.3550 0.6213 

Ca-CH3 3.8292 3.8300 0.5423 

Oa-CH3 3.4020 3.4350 0.7669 

Cg-Oa 2.8789 2.8800 0.4441 

Cg-Ca 3.2404 3.2750 0.3139 

Cg-CH3 3.3088 3.3550 0.3876 

Og-Ca 3.3819 3.4000 0.5370
Og-Oa 3.0047 3.0050 0.7595 

Og-CH3 3.4533 3.4800 0.6629 

C3s-Cg 3.1527 3.1750 0.2564
C3s-Og 3.2905 3.3000 0.4386
C3s-Ca 3.6486 3.6500 0.3588
C3s-Oa 3.2416 3.2550 0.5074
C3s-CH3 3.7256 3.7300 0.4429
C4s-Cg 3.1527 3.1750 0.2564
C4s-Og 3.2905 3.3000 0.4386
C4s-Ca 3.6486 3.6500 0.3588
C4s-Oa 3.2416 3.2550 0.5074
C4s-CH3 3.7256 3.7300 0.4429
C2s-Cg 3.1527 3.1750 0.2564
C2s-Og 3.2905 3.3000 0.4386
C2s-Ca 3.6486 3.6500 0.3588
C2s-Oa 3.2416 3.2550 0.5074
C2s-CH3 3.7256 3.7300 0.4429
C1s-Cg 3.1527 3.1750 0.2564
C1s-Og 3.2905 3.3000 0.4386
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C1s-Ca 3.6486 3.6500 0.3588
C1s-Oa 3.2416 3.2550 0.5074
C1s-CH3 3.7256 3.7300 0.4429
H4s-Cg 2.6031 2.6100 0.1675
H4s-Og 2.7168 2.735 0.2865
H4s-Ca 3.0125 3.085 0.2343
H4s-Oa 2.6764 2.690 0.3314
H4s-CH3 3.0761 3.165 0.2829
H2s-Cg 2.6031 2.6100 0.1675
H2s-Og 2.7168 2.735 0.2865
H2s-Ca 3.0125 3.085 0.2343
H2s-Oa 2.6764 2.690 0.3314
H2s-CH3 3.0761 3.165 0.2829
H1s-Cg 2.6031 2.6100 0.1675
H1s-Og 2.7168 2.735 0.2865
H1s-Ca 3.0125 3.085 0.2343
H1s-Oa 2.6764 2.690 0.3314
H1s-CH3 3.0761 3.165 0.2829

 166



 

Section II. Excited state calculations of pyrene 

The partial charges of excited-state pyrene were calculated by density functional 

theory with B3LYP functional and cc-pVDZ basis set using the Q-Chem software 

package. Table B5 presents the partial charges of ground-state pyrene calculated by Q-

Chem. Figure B1 is a cartoon of the different types of carbons, corresponding to the 

symbols in Table B5. Subsequently, Table B6 presents the partial charges of excited-state 

pyrene calculated by Q-Chem. Figure B2 is a cartoon of the different types of carbons, 

corresponding to the symbols in Table B6. Q-Chem yielded dipole moments of zero for 

both ground-state and excited-state pyrene.  
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Figure B1. Ground-state pyrene partial charges and number of carbon types from Q-
Chem calculations. 
 
Table B5. Results of Q-Chem calculations performed on ground-state pyrene. The first 
column displays the symbol of the specific  carbon atom. The symbols in this table 
correspond to the symbols in Figure 3-3. The second column presents the name of the 
specific carbon atom. The third column displays the charges produced by the Q-Chem 
calculations, while the fourth column presents the charges of the corresponding hydrogen 
bonded to the specific carbon type. 

Symbol Carbon name q (e) from Q-Chem q (e) of the 
corresponding 
hydrogen bonded to 
carbon 

 

C1s 0.05277 -0.3030 

 

C2s -0.000286 -0.04685 

 

C3s 0.0284  

C4s 0.0020 -0.04512 

 
 

C5s 0.1010  
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Figure B2. Excited-state pyrene partial charges and number of carbon types from Q-
Chem calculations. 
 
 
Table B6. Results of Q-Chem calculations performed on excited-state pyrene. The first 
column displays the symbol of the specific  carbon atom. The symbols in this table 
correspond to the symbols in Figure 3-3. The second column presents the name of the 
specific carbon atom. The third column displays the charges produced by the Q-Chem 
calculations, while the fourth column presents the charges of the corresponding hydrogen 
bonded to the specific carbon type. 

Symbol Carbon name q (e) from Q-Chem q (e) of the 
corresponding 
hydrogen bonded to 
carbon 

 

C1s 0.05235 -0.3059 

 

C2s 0.00566 -0.0469 

 

C3s 0.0247  

C4s 0.000657 -0.04614 

 
 

C5s 0.1021  
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 Table B7. Partial charges of the carbons in pyrene from Q-Chem calculations, 
 SPARTAN calculations, and OPLS potential. 

Symbol Carbon 
name 

q (e) from 
Q-Chem 

q (e) from 
SPARTAN 

q (e) from OPLS 
Potential 

 

C1s 0.05277 -0.122 -0.115 

 

C2s -0.000286 -0.226 -0.115 

 

C3s 0.0284 0.164 0 

C4s 0.0020 -0.195 -0.115 

 
 

C5s 0.1010 -0.012 0 
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