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CHAPTER I

INTRODUCTION

1.1 Introduction

A multi-modal system, as its name suggests, is a system that can switch between different

modes of operation. Since multi-modal systems combine time-driven dynamics (the differ-

ential equations describing each mode) and event-driven dynamics (the discrete switching

laws dictating the transitions between these modes), they belong to the wider class of hy-

brid systems. Examples of multi-modal systems, also referred as switched systems, include

electric circuits with transistors, car gearboxes, hybrid motors, and chemical processes.

Inspired from these systems, multi-modal control has emerged as a successful tool for deal-

ing with systems with high complexity (systems that we would not necessarily classify as

multi-modal at first sight, e.g., autonomous robots). The control consists of 1) defining

modes of operations for such systems and 2) providing a discrete switching policy between

these modes. In this context, a typical control program would consist of a sequence of tasks

or modes, e.g., we could ask a robot to reach an object, grab it, and bring it back. This

example resembles some sort of human to human (or rather human to dog) communica-

tion, i.e., a situation where only a few instructions are used, unlike classic control theory

where a control value is specified at each instant. Some recent efforts focused on formalizing

how multi-modal control can generate continuous motions from symbolic input strings have

resulted in the design of a powerful and promising general purpose language for hybrid

systems programming: the Motion Description Language (MDL).

The primary goal of this thesis is to develop methods for effectively defining, selecting,

and coding the elementary instructions of a multi-modal control program. The idea is

to provide a framework in which robots and other dynamical systems can be controlled

using automatically generated high-level, symbolic control programs. In particular, we will

develop methods for extracting high-level control programs from observed behaviors and
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then produce symbolic control strategies that can be executed on mobile robots to mimic

the observed behaviors. This empirical data can be generated from nature (as in a group

of ants or schooling fish) or from human-operated robots. From the standpoint of naturally

occurring data, the short term aim of such research would be to learn from nature, but a

more lofty, long term goal would be to understand naturally occurring control mechanisms

based on hybrid control theory. From the human-operator standpoint, the goal would be

to learn effective control strategies from example.

In this work, the efficiency of a method will be measured in terms of the complexity and

performance of specific control programs. Typically, we will look to minimize the number

of bits transmitted, while guaranteeing that the system meets its specifications (robustness,

stability, reachability, etc). The insistence on low-complexity programs is originally moti-

vated by communication constraints on the computer control of semi-autonomous systems,

but also by our belief that, as complex as they may look, natural systems indeed use short

motion schemes with few basic behaviors. The attention is first focused on the design of

such short-length, few-distinct-modes mode sequences within the MDL framework in Part

1. The multi-modal control problem is then addressed using an optimal control approach in

Part 2, where a variety of problems are solved in order to improve performance. In partic-

ular, given a mode sequence, the question of deciding when the system should switch from

one mode to another to achieve some stability and reachability requirements is studied.

1.2 Background

Here we give a brief literature review of work closely related to our research. We identify

three main topics: Motion Description Languages, System Identification and Multi-Modal

Estimation, and Optimal Control of Switched Autonomous Systems. It is assumed that the

notions of Hybrid Systems and Multi-Modal Control are already understood, but for more

information, the reader can refer to [18, 81].

1.2.1 Motion Description Languages

We first recall the definition of a formal language. Given a finite set, or alphabet, A, whose

elements are referred to as letters, by A⋆ we understand the set of all strings, or words, of
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finite length over A, with the binary operation of concatenation defined on A⋆. Relative

to this operation, A⋆ is a semigroup, and if we include the empty string in A⋆ it becomes

a monoid, i.e., a semigroup with an identity, and a formal language is a subset of the free

monoid over a finite alphabet. (See for example [48] for an introduction to this subject.)

The use of a language-based approach to motion control emerged about twenty years

ago. In a 1988 paper, R.W. Brockett first introduced “Motion Description Languages” as an

attempt to answer the need for a general purpose computer control of movement [17]. In this

framework, a computer controlled mechanism called an MDL device is sent a sequence of

triples (u1(.), k1(.), T1)...(ur(.), kr, (.), Tr) where ∀i ∈ {1, ..., r}, ui() is an open-loop control,

ki() is a closed-loop control, and Ti is the amount of time over which both ui() and ki()

should be used. To illustrate this, consider a mechanism whose dynamics is given by

ẋ(t) = f(x(t)) + G(x(t))v(t), (1)

y(t) = h(x(t)). (2)

The evolution of the corresponding MDL device is as follows: if at time T0, the input control

string (u1, k1, T1)(u2, k2, T2)(u3, k3, T3) is received, then the state x will evolve according to

ẋ(t) = f(x(t)) + G(x(t))(u1 + k1(y(t))) T0 ≤ t < T0 + T1,

ẋ(t) = f(x(t)) + G(x(t))(u2 + k2(y(t))) T0 + T1 ≤ t < T0 + T1 + T2,

ẋ(t) = f(x(t)) + G(x(t))(u3 + k3(y(t))) T0 + T1 + T2 ≤ t < T0 + T1 + T2 + T3.

The triples (ui(), ki(), Ti) are referred to as modal segments1 because they define modes

of control over a segment of time. The analogy with a language is that these modal seg-

ments can be interpreted as letters, drawn from of finite collection, or motion alphabet,

and concatenated to form control programs (words). Thus, a Motion Description Language

(MDL) is a formal language defined over a motion alphabet.

An important result in [17] is that the restriction to a finite family of affine modal

segments (particular modes such that v = ui+ki(y) = a+M(y−b) for some a, b, and M with

1Many different appellations have been used since, and for the rest of this proposal, the reader should
not get confused by the quantity of terms such as modes, atoms, behaviors, letters, primitives as they all
refer to this same notion.
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appropriate dimensions) does not limit the expressiveness of the interpreter/mechanism. In

other words, such segments can be used to follow arbitrarily closely any state trajectory the

original system can produce if controlled by a continuous v. Of course, in most cases, the

original curve can ideally be reproduced only when the cycle period of the discrete version

of Equation (1) goes to zero and the length of the mode sequence r goes to infinity. The

paper, although implicitly, already introduces the issue of a trade-off between complexity of

the mode string and expressiveness of the system.

This question of complexity of programs using MDLs was later studied by Egerstedt

et. al. in [30, 36]. The most important result for us is that the use of feedback mappings

within the framework of MDLs can significantly reduce the complexity of control programs.

In other words, it is shown how the availability of sensory information can reduce the length

of control procedures. This result is then applied to robot navigation in [33], where it is

deduced that landmark-based navigation through a series of intermediary goals is preferable

from a complexity point of view, and it is shown how the sensors’ resolution should be chosen

to minimize complexity.

Finally, the MDL model first introduced by Brockett has evolved over the last two

decades. Slightly different versions of MDLs have been proposed, but they all share the

common feature that the individual atoms, concatenated together to form the control pro-

gram, can be characterized by control-interrupt pairs. The work in papers [65, 66, 67]

completed the first version by adding interrupt mappings, leading to a version now known

as the “extended MDL” or MDLe. The syntax is the following: a kinetic state machine gov-

erned by a differential equation of the form ẋ = f(x)+G(x)u and y = h(x) (x ∈ Rn, y ∈ Rk,

u ∈ Rp) is controlled by a mode sequence whose atoms are now evanescent fields defined on

space-time. More specifically, an atom is a triple σ = (k(.), ξ(.), T ) where k maps R+ × Rn

to Rn, ξ is an interrupt function mapping Rk the output of k sensors to {0, 1}, and T ∈ R+

is the lifetime of the mode. The mode is active until the function ξ jumps from 0 to 1 or

until T seconds elapse, whichever happens first. Note that with the choice of u = k(x, t),

the new model allows for both open-loop and closed-loop control within a mode. With the

introduction of the interrupt functions, it now also allows for event-triggered interrupts. An
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interesting work based on this extended language conducted at the University of Maryland

can be found in [53] where the authors draw the outline of a workable, unified, and reusable

framework for the design of a control software that integrates MDLe.

1.2.2 System Identification and Multi-Modal Estimation

The problem of inferring the nature of a system from a mere observation is old, and finds

its roots in classic philosophy with Plato’s allegory of the cave. A more modern version in

system theory is the problem of System Identification, defined by Zadeh in 1962 as “the

determination on the basis of input and output, of a system within a specified class of

systems, to which the system under test is equivalent” [92]. Since then, the large interest

for such a problem and its countless applications has generated a multitude of methods and

algorithms, to the point that even MATLAB includes a “System Identification Toolbox”

where the user can build and evaluate linear models of dynamic systems from measured

input-output data. For a thorough explanation of the theory of System Identification and

a detailed review of available methods, see for example [63] and [57].

Also, a keen interest for the system identification of time-varying systems has given rise to

the so-called Adaptive System Identification. The basic idea consists of an on-line version

of the off-line classic methods (see e.g., [68]), where the data is first filtered by a moving

time window. This simple idea has given rise to efficient algorithms for slowly varying

systems. However, in hybrid systems, the change in system parameters is often so abrupt

that classical identification methods and their adaptive extensions are not well suited.

The problem of “Multi-Modal System Identification” started at least 35 years ago with [1].

In this paper, the authors consider the problem of state estimation of a linear discrete-time

system operating in Markov dependent switching environments. Hence, it is not quite the

system itself that was first considered to be “multi-modal,” but rather the external distur-

bances influencing the system equations and the measurement equations. More recently, it

is with the emergence of Hybrid Systems theory that such similar problems have found new

breath. Over the last decade, numerous methods have been proposed to solve the problem

of Hybrid System Identification, of which an exhaustive review can be found in [80] and
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[56]. To name a few, and give the reader a fine selection of corresponding references, we find

the clustering-based procedure [39, 40], the bounded-error procedure [9, 10], the Bayesian

procedure [55, 5], the algebraic procedure [86, 85], and the mixed integer programming

procedure [75]. All these methods propose to identify piecewise autoregressive exogenous

(PWARX) models of the form y(k) = f(x(k)) + e(k) where e(k) is the error term and the

PWA mapping f is defined as f(x) = [x′ 1] θi if x ∈ χi, (i = 1, ..., s). In this last equation,

x(k) is a vector of regressors defined as x(k) = [y(k − 1)...y(k − na)u
′(k − 1)...u′(k − nb)]

′

with y ∈ R, u ∈ Rm, θi ∈ Rn+1 is a parameter vector (or mode) with n = na + nb. Finally,

the bounded regressor space χ is partitioned into s convex polyhedral regions {χi}
s
i=1. The

identification problem consists of, given a data set {(x(k), y(k))}N
k=1, determining the pa-

rameter vectors {θi}
s
i=1 and the regions of the polyhedral space {χi}

s
i=1 that best fit the

data. All methods include the following three steps: 1) the estimation of the s parameter

vectors, 2) the classification of the data points, and 3) the estimation of regions. All methods

tackle the first two steps in a different way. The last step is performed using Multicategory

Robust Linear Programming [13] for estimating separating hyperplanes that minimize the

number of misclassified data points. Finally, each procedure presents different features and

drawbacks and, depending on the situations (noisy data, unknown model orders, no a priori

physical insight, etc.), one procedure may be preferred to the others.

What sets the work apart is that the switched system identification is done with information

theoretic concerns in mind. The assumption that unknown systems may be driven by low

complexity programs, an idea that can be supported by the simplicity of the mathematical

schemes nature presents us, has in fact not been used as an argument in hybrid system

identification. Also, we assume the dynamics is known and we identify control laws and

interrupts rather than the matrices of a linear model.

1.2.3 Optimal Control of Switched Autonomous Systems

As mentioned, the second part of this thesis addresses the multi-modal control problem in an

optimal control setting. A number of problems are considered, where a system’s dynamics

switch accordingly to a pre-specified mode sequence. Within each mode, the system under

6



consideration is autonomous and the task consists of finding an optimal switching policy,

i.e., conditions for when the system should switch from one mode to another, minimizing a

given performance criterion.

Switched Autonomous Systems arise in a variety of applications, including situations

where a control module has to switch its attention among a number of subsystems [50,

62, 72, 87] or collect data sequentially from a number of sensor sources [19, 37, 51]. They

also appear in landmark robot navigation, where a sensor-based navigation plan is specified

through a series of intermediary goals [32, 43, 60].

In general, there has been a mounting interest in optimal control of switched systems,

where the control variable consists of a proper switching law as well as an input function

(see [16, 20, 45, 76, 79, 88, 90]). Switched Autonomous Systems, which constitute a subclass

of systems where the input function is absent, have also received a lot of attention over the

last few years. Different approaches were considered, depending on whether the systems

were linear [62, 11, 42, 41] or non-linear [91, 89], discrete-time [62, 12] or continuous-time

[11, 91, 89], and whether the interrupts were time-triggered [91, 89] or event-triggered

[42, 41, 15]. For example, in [42, 41], the authors consider an event-driven continuous-time

linear system and present a numerical algorithm for computing the switching regions on

the state space. In the case of time-triggered continuous-time linear systems, Bemporad et

al. proposed a method for finding both the optimal switching instants and the sequence of

operating modes. Of particular interest is the work by Xu and Antsaklis in [91, 89] where

optimal time switches are derived for general non-linear systems. In that work, a formula

for the gradient of a performance criterion is derived and applied in various nonlinear

programming algorithms. A similar approach will be considered in Part 2, where we will

develop a formula, simpler than the one in [91, 89], for the gradient of the cost functional,

and use it in conjunction with a gradient-descent algorithm.
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PART I

Mode Recovery



Recovering hybrid representations from the observation of systems that, at a first glance,

do not present clearly distinguishable modes of operation is a challenge. The design of such

models could help understand the basic behaviors of these complex systems (e.g., insects)

and therefore predict them, but it could also inspire the design and control of robust semi-

autonomous systems (e.g., navigating robots).

This first part of the thesis tackles this problem of extracting high-level representations

of observed systems. The approach is the following. Chapters 2 and 3 focus on the recovery

of low-complexity control programs from data, within the MDL framework. The idea (de-

veloped in [25, 23, 24]) is to identify a succession of deterministic feedback mappings and

interrupts that can reproduce some observed data. Different methods are proposed, and

tested in an application involving ants [35]. Chapter 4 shows how such recovered control

programs can, in turn, be simulated to mimic observed behaviors and/or used for controlling

real systems. A study of the relationship between the complexity of the control programs

and the performance of the controlled system is also provided. In Chapter 5, the control

programs are used to provide hybrid (possibly stochastic) automata representations of the

observed systems. Finally, all these methods have been unified in MODEbox (in [28]), a

MATLAB software package presented in Chapter 6.
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CHAPTER II

MODE RECOVERY

This chapter serves as an introduction to the problem of mode recovery from observations.

First, we show how the problem can be addressed within a particular MDL framework where

modes consist of feedback control-interrupt pairs. Here, the observation data takes the form

of a quantized input/output string, and the mode recovery task consists of finding consistent

control programs, i.e., mode sequences that can generate this data string. Moreover, the

resulting control programs are viewed as having an information theoretic content, in the

sense that they can be coded quite effectively [21]. In this context, one can ask questions

concerning minimum complexity programs, given a particular control task. After carefully

defining consistency, as well as a suitable complexity measure, we will formulate the problem

of low-complexity mode recovery. The actual methods developed for recovering control

programs (mode sequences) will be presented in Chapter 3.

2.1 The Model

Particular choices of Motion Description Languages (MDL) become meaningful only when

the language is defined relative to the physical device that is to be controlled. One such

physical device is the so-called quantized input-output machine, given by M = (U, X, Y, f, h),

where U is a finite set of admissible inputs, Y is a finite set of outputs, X ⊂ Rn is the state

space of the system, f : X × U → X defines the system evolution, and h : X → Y is

a measurable output function, such that the evolution of the machine is given by ẋ =

f(x, u), y = h(x). The assumption that the input and output spaces U and Y are finite

is legitimate if we consider that the sensors and actuators have finite resolution and finite

range. Now, we are interested in providing a model for the symbolic control of this machine,

using an appropriate MDL. The particular structure of a mode should allow the design of

robust control programs, i.e., programs that do not alter performance, when they are applied
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to systems evolving in possibly unknown and changing environments, as is the case in robot

navigation. For this reason, the modes should consist of feedback mappings from the output

space to the input space. Finally, and for simplicity, we choose to use a sequential control:

at any time, the system should be using one and only one mode of operation. The control

should then consist of a mode sequence, where each mode is described by a feedback law

and an interrupt law that, when triggered, makes the system switch to the next mode. A

model meeting these specifications and found in [32] is the following:

Definition 2.1.1 (Motion Description Language) Given a quantized input-output ma-

chine M , relative to M , we let a motion description language be given by a subset of the

free monoid over the set Σ = UY × {0, 1}Y .

In other words, we let the letters in the motion alphabet be pairs of the form (k, ξ), where k :

Y → U , and ξ : Y → {0, 1}. If, at time t0, M receives the input string (k1, ξ1), . . . , (kp, ξq),

then x evolves according to

ẋ = f(x, k1(y)); t0 ≤ t < T1

...
...

ẋ = f(x, kq(y)); Tq−1 ≤ t < Tq,

where Ti denotes the time at which the interrupt ξi changes from 0 to 1.

Navigation Example

In order to make matters more concrete, we illustrate these ideas with a navigation example,

found in [31]. What makes the control of mobile robots particularly challenging is the fact

that the robots operate in unknown or partially unknown environments. Any attempt to

model such a system must take this fact into account. We achieve this by letting the robot

make certain observations about the environment, and we let the robot dynamics be given

by

ẋ = v, x, v ∈ R2

y1 = od(x), y2 = cf (x),

where od is a quantized, odometric position estimate of x, and cf is the quantized contact

force from the environment. The contact force could either be generated by tactile sensors

in contact with the obstacle or by range sensors such as sonars, lasers, or IR-sensors.
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Relative to this robot it is now possible to define a MDL for executing motions that

drive the robot toward the goal when the robot is not in contact with an obstacle. On the

other hand, when the robot is in contact with an obstacle, it seems reasonable to follow the

contour of that obstacle in a clock-wise or counter clock-wise fashion, as suggested in [49].

We let the MDL be given by the free monoid over the set

{

(k, ξ) |k(y1, y2) ∈ {κ(xF − y1), cR(−π/2)y2}, ξ ∈ {ξGA, ξOA}
}

.

The idea here is that the goal is located at xF , and when the robot is not in contact with

an obstacle, the closed-loop mapping k(y1, y2) = κ(xF −y1) provides a simple, proportional

feedback law. When the robot is in contact with an obstacle, k(y1, y2) = cR(−π/2)y2, where

c > 0, R(θ) is a rotation matrix, and the choice of θ = −π/2 corresponds to a clockwise

negotiation of the obstacle.

In other words, the multi-modal control sequence used for reaching xF while negotiating

obstacles is thus an element in the set σGA · (σOA ·σGA)⋆, where GA and OA denotes “goal-

attraction” and “obstacle-avoidance” respectively, and where a⋆ = {∅, a, aa, aaa, ...}, with ∅

denoting the empty word. The individual modes σGA = (kGA, ξGA) and σOA = (kOA, ξOA)

are furthermore given by























kGA(y1, y2) = κ(xF − y1)

ξGA(y1, y2) =











0 if 〈y2, xF − y1〉 ≥ 0

1 otherwise






















kOA(y1, y2) = cR(−π/2)y2

ξOA(y1, y2) =











0 if 〈y2, xF − y1〉 < 0 or ∠(xF − y1, y2) < 0

1 otherwise.

Here ∠(α, β) denotes the angle between the vectors α and β. An example of using this

multi-modal control sequence is shown in Figure 1.

Now, in [36], a finite automata version of the quantized input-output machine was

introduced, called a Free-Running, Feedback Automaton (FRFA), in order to arrive at an

abstract model of, for example, a landmark-based navigation system for mobile robots

[34, 52]. If we let X, U, Y be finite sets, and let δ ∈ XX×U , γ ∈ Y X , then we can identify
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Figure 1: Basic Robot Navigation Example Using MDL.

(X, Y, U, δ, γ) with an output automaton, whose operation is given by x(q+1) = δ(x(q), u(q))

and y(q) = γ(x(q)).

However, to let finite automata read strings of control modes, the model must be mod-

ified in such a way that instruction processing is akin to the way in which differential

equations “process” piecewise constant inputs. The idea is to let the automaton read an

input from a given alphabet, and then advance the state of the automaton repeatedly

(free-running property) without reading any new inputs until an interrupt is triggered. Ad-

ditional structure is furthermore imposed on the input set to allow for feedback signals to be

used. Hence a FRFA is a free-running automaton whose input alphabet has the structure

Σ = K × Ξ, where, as before, K = UY and Ξ = {0, 1}Y . Therefore, the input to a FRFA

is a pair (k, ξ), where k : Y → U and ξ : Y → {0, 1}.

Definition 2.1.2 (Free-Running, Feedback Automaton [36]) Let X, Y, U be finite sets

and let δ : X × U → X, γ : X → Y be given functions. Let Σ = K × Ξ, where K = UY

and Ξ = {0, 1}Y . We say that (X, Σ, Y, δ, γ) is a free-running, feedback automaton whose

evolution equation is

x(q + 1) = δ(x(q), kp(q)(y(q))) (3)

y(q) = γ(x(k)) (4)

p(q + 1) = p(q) + ξp(q)(y(q)), (5)

given the input string (k1, ξ1) · · · (kL, ξL) ∈ Σ⋆.
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In this definition, Equations (3) and (4) describe the state and output evolutions, while

Equation (5) tracks the position of the active mode within the mode sequence.

p(q + 1) =







p(q) if ξp(q)(y(q)) = 0
p(q) + 1 if ξp(q)(y(q)) = 1

Mode Evolution

x(q + 1) = δ(x(q), kp(q)(y(q)))

State Evolution Output

y(q) = γ(x(q))(k1, ξ1)...(kL, ξL)

Input

Figure 2: Free-Running Feedback Automaton.

Note that we do not consider any communication constraint regarding the size of the

communication bus. At every time increment, all data between sensors, sensor processors,

control processors, and actuators is assumed to be fully transmitted without errors. The

author refers to an interesting work in [19, 50] where limited communication constrains the

controller to choose which of the inputs to update at every cycle. We also assume no delays

caused by a slow data processing or slow communications.

2.2 String Consistency

In the introduction to this chapter, we described the mode recovery problem as the prob-

lem of finding consistent control programs, i.e., mode sequences that can generate a given

data string. Now that a particular and appropriate model has been chosen, this notion of

consistency can be defined more specifically:

Definition 2.2.1 Given an input-output string

S =







y

u






=







y(1) y(2) ... y(N)

u(1) u(2) ... u(N)






∈ (Y × U)N ,

we say that a mode sequence σ ∈ Σ∗ is consistent with S if there exists a FRFA controlled by

σ that produces S. In other words, σ = σm(1)σm(2) . . . σm(L), where ∀j ∈ {1, . . . , L}, σm(j) ,
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(km(j), ξm(j)) ∈ Σtotal, is consistent with S when:

km(p(i))(y(i)) = u(i) i = 1, . . . , N (6)

p(i + 1) = p(i) + ξm(p(i))(y(i)) i = 1, . . . , N − 1 (7)

In this definition,

• N is the length of the input-output string, i.e., the number of data points.

• L is the length of the mode sequence.

• p is a mapping from {1, ..., N} to {1, ..., L}, where p(i) is the position (within the

mode sequence) of the mode which is active when the ith data point is read. Hence,

p is a non-decreasing step function initiated at p(1) = 1.

• m is a mapping from {1, ..., L} to {1, ..., M}, where m(j) is the index of the mode in

jth position in the mode sequence. This notation assumes that all the distinct modes

within the mode sequence are labelled σ1, σ2,...,σM , where M is the total number of

distinct modes. E.For example, for a mode sequence σ = σ1σ2σ1σ1σ3, m is a mapping

from {1, ..., 5} to {1, 2, 3}, with m(1) = 1, m(2) = 2, m(3) = 1, m(4) = 1, m(5) = 3.

Note that when M < L, m is non-injective, meaning that at least one mode appears

more than once in the mode sequence.

With this notation, m(p(i)) corresponds to the active mode at time i. Equation (6) ensures

that the feedback mapping of the active mode at time i correctly maps the current output

y(i) to the current input u(i)1. Equation (7) ensures that if an interrupt is triggered at

time i, the next mode in the mode sequence becomes the new active mode at time i + 1. If

no interrupt is triggered, the active mode at i remains the same at i + 1.

The process of finding a mode sequence consistent with an output/input string is what

we call mode recovery or mode reconstruction. Given an output/input string S, we denote

by CS ⊂ Σ∗ the set of all mode sequences consistent with S. As the following theorem

1Note that we make the choice of deterministic mappings (i.e., an exact matching between outputs and
inputs). In Section 5.1, we will see how these mappings can be turned into more realistic stochastic mappings.
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states, CS is non-empty, which means it is always possible to find at least one mode se-

quence consistent with S.

Theorem 2.2.1 Given an input-output string S = ((y(1), u(1)), ..., (y(N), u(N))) ∈ (Y ×

U)N , the set CS of mode sequences consistent with S is non-empty.

Proof: Consider the mode sequence σ = σ1σ2...σN such that ∀i ∈ {1, ..., N}, σi = (ki, ξi) with ki(y(i)) =

u(i) and ξi(y(i)) = 1. It is easy to show, by induction, that for this particular mode sequence, p(i) = i

and m(p(i)) = m(i) = i, ∀i ∈ {1, ..., N}. Consequently, Equations (6)-(7) for consistency are verified, and

σ ∈ CS .

In general, the number of mode sequences consistent with a given input-output string

is quite large (it grows exponentially with the number N of data points) but finite. With

this in mind, our goal is to identify mode sequences minimizing some complexity measure

on the set CS of all consistent mode sequences.

2.3 Complexity Measures

Because of the finite resolution and range of sensors and actuators and/or the required

quantization of such signals before computer processing, it is not a restriction to assume

that the input and output sets U and Y are finite. Hence, it follows that the number of

possible modes is also finite. For example, in the case where modes are of the form (k, ξ)

where k is the feedback mapping from the output set Y to the input set U and ξ is the

interrupt mapping from Y to {0, 1}, the number of possible modes is 2|Y||U||Y|, where the

operator |.| gives the number of elements in a set. A naive approach for coding such modes

would be to assign the same number of bits to each mode. By doing this, each mode would

be represented using ⌈|Y|(1 + log2(|U|))⌉ bits. This coding scheme can only be optimal if

all the modes have the same probability. Such assumption would go against the motivation

and beliefs of the author that complex motions can be interpreted as the juxtaposition of

some particular behaviors and that systems only use a few modes of operation. In such

cases where the distribution of modes is all but uniform, Shannon’s celebrated theorem
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[77] can be invoked for the design of an optimal coding scheme. Indeed, modes that are

more frequent should be coded using fewer bits. Here, the minimal expected code length l

satisfies:

H(A) ≤ l ≤ H(A) + 1, (8)

where A is the alphabet, here a subset of UY × {0, 1}Y (the set of all possible mappings

k : Y → Y and ξ : {0, 1} → Y), and H(.) is the function entropy, defined by:

H(A) = −
∑

a∈A

p(a) log2(p(a)), (9)

where p(a) is the probability of the mode a in A.

Along these lines, a measure for the complexity2 of a given mode sequence σ ∈ Σ∗ is its

specification complexity, defined as the expected number of bits required for encoding σ

when an optimal coding scheme is used:

Definition 2.3.1 (Specification Complexity) Given a finite alphabet Σ and a probabil-

ity distribution p over Σ, we say that a mode sequence σ ∈ Σ∗ has specification complexity

S(σ, Σ) , |σ|H(Σ).

To implement this complexity measure, we need a probability distribution over the al-

phabet Σ. In our case, where a mode sequence σ is recovered from an original output/input

string, a probability distribution can be established by identifying the modes that compose

σ, e.g if σ = σ1σ1σ2σ1σ3 is recovered, then we can let Σ = {σ1, σ2, σ3} and the correspond-

ing probabilities are p(σ1) = 3/5, p(σ2) = 1/5, p(σ3) = 1/5. In such a case where Σ and

a probability distribution p are entirely built after a mode recovery, the specification com-

plexity has the particularity that it only depends on σ. We give it the name of empirical

specification complexity :

2We acknowledge the existence of alternative paradigms, such as the Kolmogorov complexity [61] and
Rissanen’s minimum description length [74].
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Definition 2.3.2 (Empirical Specification Complexity) Given a mode sequence σ ∈

Σ∗, we say that σ has empirical specification complexity

Se(σ) , |σ|H(σ) = −

M(σ)
∑

i=1

λi(σ) log2

λi(σ)

|σ|
(10)

In this definition, M(σ) is the number of distinct modes in σ and λi(σ) is the number of

occurrences of mode σi in σ. For the example where σ = σ1σ1σ2σ1σ3 is recovered, the

empirical specification complexity is Se(σ) = −3
5 log2

3
5 − 1

5 log2
1
5 − 1

5 log2
1
5 ≈ 1.37 bits.

Instead of the base-2 logarithm, we may prefer using the natural logarithm loge (or

simply log). The reason is that its derivative d
dx

log x = 1
x

does not carry extra terms as

is the case with log2 where d
dx

log2 x = 1
x log 2 . When log is preferred, the specification

complexity is measured in nats. The conversion nats/bits is performed using the formula

log2 x = log x
log 2 . In our example σ = σ1σ1σ2σ1σ3, the empirical specification complexity

measured in nats would be 1.32 log 2 ≈ 0.95 nats. From this point forward, unless otherwise

specified, empirical specification complexities will be measured in nats. Also, for simplicity,

we may refer to “empirical specification complexity” as simply “specification complexity.”

In both cases, we will just use the simpler notation S, whether or not the probability

distribution is established empirically.
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2.4 Problem Formulation

Now that we have defined a suitable measure of complexity, we are able to formulate the

optimal mode recovery problem as:

Problem 2.4.1 (Minimum Specification Complexity PS(CS)): Given an input-

output string S = (y,u) ∈ (Y × U)N , find the simplest mode sequence consistent with

S. In other words, find σS∗ that solves:

min
σ∈CS

S(σ) ⇔























minσ∈Σ∗ S(σ) subject to










p(i + 1) = p(i) + ξm(p(i))(y(i)) i = 1, . . . , N − 1

km(p(i))(y(i)) = u(i) i = 1, . . . , N.

(PS(CS))

We say that σS∗ ∈ sol(PS(CS)) if σS∗ solves PS(CS). The fact that CS is non-empty

(Theorem 2.2.1) and finite, and that S(.) is, as we will see later, bounded above on PS(CS),

ensures that the specification complexity can be minimized, and attains its minimum. In

other words, PS(CS) is solvable, or sol(PS(CS)) is non-empty. However, the uniqueness of

a solution cannot be guaranteed. We will let S∗ denote the unique specification complexity

of the solutions to PS(CS).

The problem of minimizing the specification complexity is not easy to address. Well

known properties in information theory can be derived from definition 2.3.1. Roughly, they

state that low complexity data strings are achieved when:

• the length of the data string is small.

• the size of the alphabet (i.e. the number of distinct symbols within the data string)

is small.

• the probability distribution over the alphabet is as unequally distributed as possible.

The minimum specification complexity is reached when a certain equilibrium between these

three conditions is achieved. Finding such an equilibrium for a mode sequence that also

satisfies Equations (6)-(7) for consistency is baffling. However, if we consider the length
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L(σ) of a mode sequence σ, and its number of distinct modes M(σ), the easily established

property

S(σ) ≤ L(σ) log M(σ) (11)

allows us to focus our efforts on two more tractable problems3: 1) minimizing L(σ) and 2)

minimizing M(σ). If finding S∗ is too hard, we can at least try to approach it. By finding

mode sequences with either minimum length or minimum number of distinct modes, we

should generate mode sequences with low specification complexity. These two problems,

referred to as ‘MinL’ and ‘MinM ’ are solved in the next chapter.

3As we will see in the next chapter, these two problems are not independent.
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CHAPTER III

LOW-COMPLEXITY MODE RECOVERY

In this chapter, algorithms are derived for solving the minimum-length (MinL) and minimum-

alphabet (MinM) mode recovery problems. However, in both of these algorithms, the min-

imization of one variable is achieved at the expense of the other. More precisely, σL∗ ,

which minimizes L, also maximizes M . Similarly, σM∗ , which minimizes M , also maximizes

L. This issue is resolved by creating two complementary algorithms for the reduction of

M(σL∗) and L(σM∗). In other words, for every solution σL∗ , we can find another solution

σ′
L∗ with same length but fewer distinct modes (M(σ′

L∗) ≤ M(σL∗)). Similarly, for ev-

ery solution σM∗ , we can find a shorter solution σ′
M∗ with same number of distinct modes

(L(σ′
M∗) ≤ L(σM∗)). The chapter ends with a comparative study of the different recovery

methods in an application where mode sequences are recovered from the observation of 10

ants in a tank.

3.1 MinL Mode Recovery

Here we present the solution to the minimum-length recovery problem, as first discussed in

[7]. The problem formulation is as follows:

Problem 3.1.1 (MinL-min Mode Recovery PL(CS)): Given an input-output string

S = (y,u) ∈ (Y×U)N , find the shortest mode sequence consistent with S. In other words,

find σL∗ that solves:

min
σ∈CS

L(σ) ⇔























minσ∈Σ∗ L(σ) subject to










p(i + 1) = p(i) + ξm(p(i))(y(i)) i = 1, . . . , N − 1

km(p(i))(y(i)) = u(i) i = 1, . . . , N.

(PL(CS))

We say that σL∗ ∈ sol(PL(CS)) if σL∗ solves PL(S). The fact that CS is non-empty (Theorem
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2.2.1) and finite, and that L(.) is bounded (since ∀σ ∈ CS , L(σ) ≤ N) ensures that L(.)

can can be minimized and attains its minimum. In other words, PL(CS) is solvable, or

sol(PL(CS)) is non-empty. However, the uniqueness of a solution cannot be guaranteed.

We will let L∗ denote the unique length of the solutions to PL(CS).

In [7], the authors first show that the search can be restricted to a subset Σ̂∗ of Σ∗

where the interrupt mappings trigger for only one value of the output y. In other words,

for every solution σL∗ with alphabet Σ = UY × {0, 1}Y, there exists a solution σ̂L∗ ∈ Σ̂∗

with alphabet Σ̂ = UY × Ξ̂, where

Ξ̂ = {ξ : Y → {0, 1} | ξ(y) = 1 for exactly one y ∈ Y} ⊂ {0, 1}Y.

The problem is then solved on Σ̂∗ using dynamic programming, where a cost-to-go is prop-

agated backward along the input-output string using Bellman’s equation:

Vi(ξ) = min
ξ′∈Ξ̂

{Ci(ξ, ξ
′) + Vi+1(ξ

′)}.

Here, Vi(ξ) is the minimum number of modes required for producing a mode sequence con-

sistent with ((y(i), u(i)), ..., (y(N), u(N))) and such that the active mode at i uses interrupt

ξ. Also, Ci(ξ, ξ
′) is the transition cost associated with using ξ at time i, and ξ′ at time i+1.

This transition cost is computed as follows:

• when ξ is the interrupt triggering on y(i), Ci(ξ, ξ
′) = 1, since a mode switch increases

the number of modes by one.

• when ξ does not trigger on y(i) but ξ 6= ξ′, Ci(ξ, ξ
′) = ∞ , since it is inconsistent to

switch mode when no interrupt is triggered.

• when ξ does not trigger on y(i) and ξ = ξ′, we need to check if the absence of a mode

switch produces an inconsistency with respect to the data. To do so, we need to check

if setting kξ(y(i)) to u(i) contradicts a previous use of the active mode. If so, we have

an inconsistency, which can be reflected by setting Ci(ξ, ξ) = ∞. Otherwise, we can

stay in the same mode and set Ci(ξ, ξ
′) = 0.
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With this setting, solving PL(CS) is equivalent to solving























min
ξ∈Ξ̂ V1(ξ) subject to











VN (ξ) = 1, ∀ξ ∈ Ξ̂,

Vi(ξ) = min
ξ′∈Ξ̂{Ci(ξ, ξ

′) + Vi+1(ξ
′)} i = 1, ..., N − 1.

An example found in [7] is reproduced in Figure 3, where mode sequences of minimum

length are recovered from the input-output string

S =







y

u






=







0 0 1 2 0 1

2 0 0 2 1 0






.

ξ0

(ξ0(0) = 1)

ξ1

(ξ1(1) = 1)

ξ2

(ξ2(2) = 1)

1

1

1

2

1

1

2

1

2

2

2

2

3

2

2

3

∞

∞

i1 2 3 4 5 6

(y(i), u(i))(0, 2) (0, 0) (1, 0) (2, 2) (0, 1) (1, 0)

Figure 3: MinL Mode Recovery using Dynamic Programming (example).

The graph is constructed from right to left to reflect the propagation of the costs-to-go

backward in time. The numbers in the circles represent the costs-to-go. Dotted arrows

represent inconsistent transitions (infinite transition cost). These are black when a mode

switch occurs in spite of an interrupt function being triggered or blue when the absence of a

mode switch leads to a feedback mapping inconsistency. All other arrows represent possible

transitions. These are red when a mode switch occurs (transition cost equal to one) or

blue otherwise (no transition cost). Finally, the arrows are solid on an optimal path and
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dashed on a suboptimal one. The graph shows three possible optimal paths with minimum

cost-to-go V1 = 3. They correspond to three mode sequences with minimum length L∗ = 3.

3.2 MinM Mode Recovery

We now present an algorithm for solving the minimum-alphabet recovery problem. The

problem formulation is as follows:

Problem 3.2.1 (MinM Mode Recovery PM (CS)): Given an input-output string S =

(y,u) ∈ (Y × U)N , find the mode sequence with smallest alphabet (i.e. minimum number

of distinct modes) consistent with S. In other words, find σM∗ that solves:

min
σ∈CS

M(σ) ⇔























minσ∈Σ∗ M(σ) subject to










p(i + 1) = p(i) + ξm(p(i))(y(i)) i = 1, . . . , N − 1

km(p(i))(y(i)) = u(i) i = 1, . . . , N.

(PM (CS))

We say that σM∗ ∈ sol(PM (CS)) if σM∗ solves PM (CS). The fact that CS is non-empty

(Theorem 2.2.1) and finite, and that M(.) is bounded above (since ∀σ ∈ CS , M(σ) ≤

L(σ) ≤ N), ensures that M(.) can be minimized and attains its minimum. In other words,

PM (CS) is solvable, or sol(PM (CS)) is non-empty. However, the uniqueness of a solution

cannot be guaranteed. We will let M∗ denote the unique length of the solutions to PM (CS).

Again, we solve this problem by restricting the search to a subset of CS , in particular,

the set of Always Interrupt Sequences (AIS) consistent with S. As their name suggests, AIS

are mode sequences that trigger an interrupt at every time increment. In other words, we

say that σ = σm(1)σm(2)...σm(L) ∈ Σ∗ is an AIS when ∀j ∈ {1, ..., L}, σm(j) = (km(j), ξm(j))

with ∀y ∈ Y, ξm(j)(y) = 1. The AIS form a subset of Σ∗ with alphabet ΣAIS = UY × {1}Y.

Instead of CS , the search for a mode sequence with minimum alphabet is limited to the

subset of consistent Always Interrupt Sequences: Σ∗
AIS ∩ CS ⊂ CS . The problem becomes:

23



Problem 3.2.2 (MinM AIS Mode Recovery PM (Σ∗
AIS∩CS)): Given an input-output

string S = (y,u) ∈ (Y × U)N , find the AIS with smallest alphabet (i.e. minimum number

of distinct modes) consistent with S. In other words, find σM∗ that solves:

min
σ∈Σ∗

AIS
∩CS

M(σ) ⇔



































minσ∈Σ∗ M(σ) subject to






















σm(j) = (km(j), ξm(j)) with ∀y ∈ Y, ξm(j)(y) = 1 j = 1, ..., L

p(i + 1) = p(i) + ξm(p(i))(y(i)) i = 1, . . . , N−1

km(p(i))(y(i)) = u(i) i = 1, . . . , N.

(PM (Σ∗
AIS ∩ CS))

The following result simplifies the formulation:

Theorem 3.2.1 (Length of an AIS) The length L of an AIS consistent with a given

input-output string of length N is equal to N .

Proof: We recall the consistency condition p(i + 1) = p(i) + ξm(p(i))(y(i)), which describes the evolution

of the position of the active mode within the mode sequence. In the context of AIS, this equation becomes

p(i + 1) = p(i) + 1, (i = 1, ..., N − 1). Together with p(1) = 1, this gives p(i) = i, (i = 1, ..., N). Since an

AIS triggers an interrupt at every time increment, the length L of the AIS is equal to the length N of the

input-output string.

The problem now reduces to finding a minimal mapping m from {1, ..., N} to {1, ..., M}

and feedback mappings k1, ..., kM such that ∀i ∈ {1, ..., N}, km(i)(y(i)) = u(i). By “minimal

mapping,” we mean that the size M of the image of m should be minimized. We propose

the following algorithm:
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Algorithm 3.2.1 Given a mode string S = ((y(1), u(1)), ..., (y(N), u(N))), this algorithm

generates a consistent AIS σ = σm(1)σm(2)...σm(N) using a minimum number M of distinct

modes. The distinct modes (defined by their feedback mappings) and the active-mode map-

ping m are progressively constructed by reading the input-output string S from left to right.

At iteration i ∈ {1, ..., N}, ρ(i) represents the minimum number of modes used to gener-

ate a mode sequence σ = σm(1)...σm(i) consistent with ((y(1), u(1)), ..., (y(i), u(i))). With

this notation, the algorithm is initiated with ρ(0) = 0, i.e., no available mode. Then, for

i = 1, ..., N , the algorithm does one of the following:

• [case 1] If there already exists a mode j ∈ {1, ..., ρ(i− 1)} such that kj(y(i)) = u(i),

then m(i) = j. This means that mode j is used without modification. As no new

mode is created, ρ(i) = ρ(i − 1).

• [case 2] If there is no mode j ∈ {1, ..., ρ(i− 1)} such that kj(y(i)) = u(i), but there

exists one such that kj(y(i)) is undefined, then kj(y(i)) = u(i) and m(i) = j. This

means that mode j is used, but its definition is modified. As no new mode is created,

ρ(i) = ρ(i − 1).

• [case 3] If for all modes j ∈ {1, ..., ρ(i−1)}, kj(y(i)) is defined and kj(y(i)) 6= u(i), a

new mode σρi−1+1 such that kρ(i−1)+1(y(i)) = u(i) is created, and m(i) = ρ(i−1)+1.

As a new mode is created, ρ(i) = ρ(i − 1) + 1.

An example is given in Figure 4, where a mode sequence consistent with a given input-

output string S is recovered using Algorithm 3.2.1. At every step, the feedback mapping

used to map y(i) to u(i) is shown within a box. The box is green in case 1, blue in case 2,

and red in case 3.

25



y

u

0

2

1

1

10

0

0

00

2

2

k1(0) = 2

k1(1) = ?

k1(2) = ?

mode σ1

k1(0) = 2

k1(1) = ?

k1(2) = ?

mode σ1

k2(0) = 0

k2(1) = ?

k2(2) = ?

mode σ2

k1(0) = 2

k1(1) = 0

k1(2) = ?

mode σ1

k2(0) = 0

k2(1) = ?

k2(2) = ?

mode σ2

k2(0) = 0

k2(1) = ?

k2(2) = ?

mode σ2

k1(0) = 2

k1(1) = 0

k1(2) = 2

mode σ1

k2(0) = 0

k2(1) = ?

k2(2) = ?

mode σ2

k1(0) = 2

k1(1) = 0

k1(2) = 2

mode σ1

k2(0) = 1

k2(1) = ?

k2(2) = ?

mode σ3

k2(0) = 0

k2(1) = ?

k2(2) = ?

mode σ2

k1(0) = 2

k1(1) = 0

k1(2) = 2

mode σ1

k2(0) = 1

k2(1) = ?

k2(2) = ?

mode σ3

σ = σ1 σ2 σ1 σ1 σ3 σ1

Figure 4: MinM Mode Recovery using Algorithm 3.2.1 (example).

The recovered mode sequence uses three distinct modes. The reason is that the particular

output value y = 0, must be mapped to three distinct values of the input (u = 0, 1, and 2).

We generalize this with the following property:

Property 3.2.1 For a given input-output string S = ((y(1), u(1)), ..., (y(N), u(N))), Al-

gorithm 3.2.1 generates a consistent AIS using exactly

MAIS(S) = max{card({u | (y, u) ∈ S}} | y ∈ Y)

number of modes.

We now prove that Algorithm 3.2.1 indeed solves the problem at hand.

Theorem 3.2.2 Any mode sequence σ ∈ Σ∗ consistent with a given input-output string

S = ((y(1), u(1)), ..., (y(N), u(N))) uses at least MAIS(S) distinct modes. In other words,

σ ∈ CS ⇒ M(σ) ≥ MAIS(S).
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Proof: Suppose that σ ∈ CS uses M(σ) < MAIS(S) distinct modes. Denote ymax a value of y ∈ Y for

which MAIS(S) is achieved. In other words, there are MAIS(S) distinct values of u ∈ U such that (ymax, u)

appears in S. As M(σ) < MAIS(S), there must be two distinct couples (ymax, u(i)) and (ymax, u(j)) in S

(u(i) 6= u(j)) assigned the same mode, i.e., m(p(i)) = m(p(j)). For these two couples, consistency requires

that km(p(i))(ymax) = u(i) and km(p(j))(ymax) = u(j). However, because km(p(i))(ymax) = km(p(j))(ymax) and

u(i) 6= u(j), we have a contradiction. Consequently, any mode sequence consistent with S must use at least

MAIS(σ) distinct modes.

Corollary 3.2.1 Given an input-output string S = ((y(1), u(1)), ..., (y(N), u(N))), Algo-

rithm 3.2.1 generates a consistent AIS σ with minimum number M of distinct modes. In

other words,

σ ∈ sol(PM (Σ∗
AIS ∩ CS)).

Proof: From Property 3.2.1, M(σ) = MAIS . From Theorem 3.2.2, for all σ ∈ Σ∗, M(σ) ≥ MAIS . Note

that, since Σ∗
AIS ∩ CS ⊂ Σ∗, it is also true on Σ∗

AIS ∩ CS . Hence we have reached the minimum number of

distinct modes.

Corollary 3.2.2 Given an input-output string S = ((y(1), u(1)), ..., (y(N), u(N))), Algo-

rithm 3.2.1 generates a consistent mode sequence σ with minimum number M of distinct

modes. In other words,

σ ∈ sol(PM (CS)).

Proof: From Property 3.2.1, M(σ) = MAIS . From Theorem 3.2.2, for all σ ∈ Σ∗, M(σ) ≥ MAIS . Hence

we have reached the minimum number of distinct modes.

Algorithm 3.2.1 provides one element in sol(PM (Σ∗
AIS ∩ CS)). However, there may be

many more consistent AIS using the same (minimum) number of distinct modes M∗. These

differ by how the distinct input-output data pairs are assigned to the M∗ available modes.

An interesting problem would be to find, among all possibilities, one minimizing the entropy,

i.e., solve PH(sol(PM (Σ∗
AIS ∩ CS))). Note that, since all elements in sol(PM (Σ∗

AIS ∩ CS))

have the same length L = N (Property 3.2.1), the specification complexity would also be

minimized, i.e., PH(sol(PM (Σ∗
AIS∩CS)))=PS(sol(PM (Σ∗

AIS∩CS))). The following algorithm
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is presented to solve this problem. It uses the fact that for a word of given length and given

alphabet, the entropy is minimized when the distribution of the alphabet is as unequally

distributed as possible.

Algorithm 3.2.2 Given an input-output string S = ((y(1), u(1)), ..., (y(N), u(N))), this al-

gorithm generates, among all consistent Always Interrupt Sequences with minimum alphabet

(M), one with minimum entropy H and specification complexity S. This mode sequence is

constructed as follows:

For each y ∈ Y,

• find all distinct u ∈ U such that the pair (y, u) appears in S, and sort them by

decreasing r(y, u), where r(y, u) is the number of times the pair (y, u) appears in S.

We get a set {u1, u2, ...un} with n ≤ MAIS, and such that r(y, u1) ≥ r(y, u2) ≥ ... ≥

r(y, un).

• for j = 1, ...n, set kj(y) = uj and use mode σj = (kj , ξj) whenever (y, uj) appears,

i.e., m(i) = j, ∀i such that (y(i), u(i)) = (y, uj).

3.3 Further Reductions

3.3.1 The M ∼ S Duality, or Why a Further Reduction is Necessary

As we already stated in Section 2.4, the problem of finding a consistent mode sequence

with minimum specification complexity S∗ is not easy. Instead, we designed two algorithms

for producing consistent mode sequences with minimum length L∗ or minimum number

of distinct modes M∗. The motivation behind this alternative was that minimizing either

term of the specification complexity upper bound L log M would generate mode sequences

with significantly low specification complexity. However, in general, M and L are inversely

related. This duality is an inherent property of formal languages: when the size of the

alphabet increases, the average word length decreases (and vice versa). For example, num-

bers written in the decimal system are shorter than their binary representations. In solving

the MinL and MinM problems, the minimization of L or M was made possible after tricks
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were introduced to release some of the consistency constraints. But the use of such tricks

comes at a high price. Indeed,

• when minimizing M , the use of modes that always interrupt results in a mode sequence

with length equal to the length N of the I/O string. Hence, L is maximized.

• when minimizing L, the dynamic programming approach puts a cost on the action

of switching from one mode to another. This cost is the same whether or not the

next mode is a new mode or one that has already been used. With no examination of

whether similar modes were used or not, the method in [7] generates mode sequences

with, a priori, all modes being distinct. Hence, M is maximized and equals L∗.

One should now understand how, among all mode sequences consistent with a given I/O

string, the solutions to the MinL and MinM problems are two extreme opposites. Solutions

to the MinS problem, i.e., mode sequences with minimum specification complexity S∗, lie

somewhere in between, where a better balance between L and log M is achieved.

All the relations just mentioned are summarized in Table 1, where σL∗ is a sequence with

minimum length L∗ generated by the algorithm in [7], σM∗ is a sequence with minimum

number of distinct modes M∗ generated by algorithm 3.2.2, and σS∗ is a sequence with

minimum specification complexity S∗.

To achieve our goal of producing low-complexity mode sequences (and ideally, approach

S∗), the mode sequences σL∗ and σM∗ need to be transformed so that their weak points,

respectively, M(σL∗) and L(σM∗), are reduced.

3.3.2 Some Transformations and Their Effect on H and S

Here, we consider how basic transformations of a mode sequence, such as adding, removing,

or replacing modes, affect its entropy H and its specification complexity S. In this subsec-

tion, mode sequences are only described by their modal distribution, i.e., a mode sequence

is a collection {λi}
M
i=1, where λi > 0 is the number of occurrences of mode i, and M is

the number of distinct modes within the mode sequence. The ordering of the modes, as
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Table 1: Relations Between L, M , and S.

mode sequence σL∗ σS∗ σM∗

length L L(σL∗) = L∗ ≤ L(σS∗) ≤ L(σM∗) = N

distinct modes M M(σL∗) = L∗ ≥ M(σS∗) ≥ M(σM∗) = M∗

upper bound L log M L∗ log L∗ L log M N log M∗

specification complexity S S(σL∗) ≥ S(σS∗) = S∗ ≤ S(σM∗)

well as the consistency to a given I/O string, are intentionally neglected. Our goal is to

identify what kind of transformations could be used to reduce the complexity of a given

mode sequence. How such methods should be designed to preserve consistency to an I/O

string will be addressed later.

Theorem 3.3.1 Switching p occurrences of a mode j (p ∈ [1, λj ]) to another mode k

reduces both the entropy and the specification complexity if and only if λk + p > λj.

Proof: Only modes j and k contribute to a change in entropy:

∆H = H(..., λj − p, λk + p, ...) −H(..., λj , λk, ...)

= −
λj − p

n
log

λj − p

n
−

λk + p

n
log

λk + p

n
+

λj

n
log

λj

n
+

λk

n
log

λk

n

=
1

n

[

(λj − p) log(λj − p) − (λk + p) log(λk + p) + λj log λj + λk log λk

]

=
1

n

[

[x log x]
λj

λj−p − [x log x]
λk+p

λk

]

.

The derivative of x log x being monotonically increasing, we conclude that ∆H < 0 ⇔ [x log x]
λj

λj−p <

[x log x]λk+p

λk
⇔ λk + p > λj . Since ∆S = n∆H, the same result holds for the specification complexity.

Corollary 3.3.1 Merging two modes j and k reduces both the entropy and the specification

complexity of a mode sequence.
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Proof: When merging two modes, all λj occurrences of a mode j are switched to another mode k. The

condition λk + p = λk + λj > λj being satisfied, we conclude, from the previous theorem, that the entropy

and specification complexity are both reduced.

Also, when merging two modes, the memory space used to store one of these modes is

saved. To stress the fact that the size of the motion alphabet is reduced, we will call this

operation of merging modes “alphabet reduction.”

Corollary 3.3.2 Creating a new mode, and shifting p occurrences of a mode j to it,

increases both the entropy and the specification complexity of a mode sequence.

Proof: The role of a new mode can be played by a M+1th silent mode with λM+1 = 0. Its presence does

not modify the length of the original mode sequence (as n =
∑M

i=1 λi =
∑M+1

i=1 λi), nor its entropy (as

λM+1

n
log

λM+1

n
→ 0). When creating a new mode, p occurrences of a mode j are switched to mode M+1,

where p is any integer between 1 and λj − 1 (the case p = λj would just result in switching the labels of

the two modes). The condition in Theorem 3.3.1, λM+1 + p = p > λj , is not satisfied. We conclude that

entropy and specification complexity are both increased.

Theorem 3.3.2 Removing occurrences of a mode j from a mode sequence

i) reduces its entropy if
∑

i6=j λi log λi ≥
∑

i6=j λi log λj,

ii) always reduces its specification complexity.

Proof: i) We compute the partial derivative of H(λ1, λ2, ..., λM ) with respect to λj . The effect of a variation

in λj on the mode sequence length is reflected through n =
∑M

i=1 λi = a + λj where a =
∑M

i6=j λi > 0 is

constant.

∂H

∂λj

(λ1, ..., λj , ..., λM ) =
∂

∂λj

[

−
M
∑

i6=j

λi

a + λj

log
λi

a + λj

+
λj

a + λj

log
λj

a + λj

]

=

M
∑

i6=j

[

λi

(a + λj)2
log

λi

a + λj

+
λi

(a + λj)2

]

−
a

(a + λj)2
log

λj

a + λj

−
a

(a + λj)2

=
1

(a + λj)2

[

M
∑

i6=j

λi log λi −

M
∑

i6=j

λi log(a + λj) +

M
∑

i6=j

λi − a log λj + a log(a + λj) − a
]

=
1

(a + λj)2

[

M
∑

i6=j

λi log λi − a log λj

]

.
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Suppose that p occurrences of mode j are removed from a mode sequence (p = 1, ..., λj). A sufficient

condition for ∆H = H(λ1, ..., λj − p, ..., λM ) − H(λ1, ..., λj , ..., λM ) = −
∫ λj

λj−p

∂H
∂λj

(λ1, ..., s, ..., λM )ds to be

negative is that ∂H
∂λj

(λ1, ..., s, ..., λM ) > 0 for all s in [λj − p, λj ]. Noting that 1
(a+s)2

is always positive, and

that −a log s is decreasing with s, a weaker sufficient condition is that ∂H
∂λj

(λ1, ..., s, ..., λM ) > 0 at s = λj ,

i.e
∑M

i6=j λi log λi > a log λj .

ii) Similarly,

∂S

∂λj

(λ1, ..., λj , ..., λM ) =
∂

∂λj

[

−
M
∑

i6=j

λi log
λi

a + λj

− λj log
λj

a + λj

]

= −
M
∑

i6=j

λi

a + λj

− log
λj

a + λj

−
a

a + λj

= log
a + λj

λj

.

This derivative being positive for any λj , we conclude that ∆S = S(λ1, ..., λj−p, ..., λM )−S(λ1, ..., λj , ..., λM ) =

−
∫ λj

λj−p

∂S
∂λj

(λ1, ..., s, ..., λM )ds < 0. In other words, removing any p occurrences of a mode j will always

decrease the specification complexity of the mode sequence.

3.3.3 Efficient Methods for the Specification Complexity Reduction

In the previous subsection, we considered three elementary transformations: adding, remov-

ing, or switching occurrences of a mode. These transformations were carefully defined so

that they could deal with the destruction of a mode or the creation of a new one. Although

more complex methods can be introduced, they would be redundant, as they can always be

written as a concatenation of these three methods. One can also consider the case where

only one occurrence of a mode is added, removed, or switched, and we will refer to these

situations as local transformations. In most situations, when the inequalities in Table 1 are

strict, i.e., L∗ < L(σS∗) < L(σM∗) and M(σL∗) < M(σS∗) < M∗, the use of these local

transformations in a descent-like manner cannot be used to converge from σL∗ or σM∗ to

σS∗ . The reason is that

• since L∗ < L(σS∗), reaching σS∗ from σL∗ would require, at least once, the addi-

tion of an occurrence, which, according to Theorem 3.3.2, would locally increase the

specification complexity.

• since M∗ < M(σS∗), reaching σS∗ from σM∗ would require, at least once, the creation

of a mode, which, according to Corollary 3.3.2, would locally increase the specification
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complexity.

Although the minimum complexity σS∗ cannot be reached by the local transformations, a

significant reduction in specification complexity could be achieved by reducing

- the alphabet size M(σL∗) of the minimum-length mode sequence generated by the

algorithm in [7]. By merging modes while keeping the length of the mode sequence

constant, Theorem 3.3.1 confirms a decrease in specification complexity.

- the length L(σM∗) of the minimum-alphabet mode sequence generated by Algorithm

3.2.2. By removing occurrences of certain modes (i.e. reducing the global length of the

mode sequence), Theorem 3.3.2 also confirms a decrease in specification complexity.

In the following, we consider these two problems of minimizing (or at least reducing) M(σL∗)

and L(σM∗). Difficulties lie in using transformations that do not affect the consistency of

the mode sequences. Depending on the complexity of these two problems, optimal or

suboptimal algorithms will be provided.

3.3.3.1 Minimizing M(σL∗)

The problem of finding a minimum-length mode sequence consistent with a given input-

output string was solved in Section 3.1. The Dynamic Programming algorithm in [7] pro-

vides a solution σL∗ , where all the modes are a priori distinct. By “a priori,” we stress the

fact that every mode in the mode sequence was assumed to be a new mode, since no partic-

ular interest was paid to the size of the alphabet. Here, we remedy this issue by identifying

similar modes and merging them, hence reducing the alphabet size M(σL∗), while keeping

the length L∗ constant.

First, we must define when two (or more) modes can be merged. With abuse of language,

we will say that two or more modes are mergeable when they can be merged. We will also

call mergeability the established relation between mergeable modes.
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Definition 3.3.1 Two modes σi = (ki, ξi) and σj = (kj , ξj) are said mergeable when their

feedback mappings and interrupt functions are equal wherever their domains intersect, i.e.,

when ∀y ∈ Y, if ki(y) and kj(y) are defined (which implies that ξi(y) and ξj(y) are also

defined), then ki(y) = kj(y) and ξi(y) = ξj(y).

Note that mergeability is not a transitive relation: if three modes i, j, and k are such that

i and j are mergeable, and j and k are mergeable, we cannot conclude that i and k are

mergeable. For this reason, we add the following definition:

Definition 3.3.2 We say that n modes (n ≥ 3) are mergeable when they are pairwise

mergeable.

With these definitions, it should be obvious that the action of merging two or more modes

will preserve the consistency of a mode sequence if and only if the modes are mergeable.

Now, given a mode sequence σL∗ = σ1σ2...σL, our goal is to find a mapping ID such

that the resulting sequence σID(1)σID(2)...σID(L) uses a minimum of distinct modes. If ID

maps {1, ..., L} to {1, ..., k}, then the goal is to minimize k. An important requirement

for consistency is that any two modes assigned the same ID (hence merged) must be

mergeable, i.e., ∀(σi, σj), ID(i) = ID(j) ⇒ (σi, σj) mergeable. Equivalently, all modes

assigned a same ID must form a group of mergeable modes.

This problem can be nicely translated into a similar problem in graph theory. Using a

non-directed graph G = (V, E), we represent each mode σi within σL∗ by a vertex vi ∈ V ,

and we let an edge eij ∈ E connecting two vertices vi and vj represent the fact that the two

modes σi and σj are mergeable. With this representation, a group of mergeable modes is a

set S ⊂ V of vertices such that for any two vertices vi and vj in S, there is an edge eij ∈ E

connecting the two vertices. Hence, a group of mergeable modes is what we refer to as a

clique, a set of vertices that induces a complete subgraph of G. The problem of finding a

minimum mapping ID such that all modes assigned a same ID are mergeable translates
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here to what is known as the Minimum Clique Partition problem:

Problem 3.3.1 (Minimum Clique Partition): Given a non-oriented graph G =

(V, E), find a minimum collection of disjoint cliques K1, K2, ...Kn that form a partition of

V (i.e. K1 ∪ K2 ∪ ... ∪ Kn = V ).

This is a well-known problem in computational complexity theory. Also referred to as

the Clique Cover, this problem appears in the famous list of 21 NP-complete problems

presented by Richard Karp in his 1972 paper [59]. NP-complete problems form a particularly

difficult class of problems. As of today, and despite a $1 million dollar reward by the Clay

Mathematics Institute in Cambridge1, nobody has yet been able to prove if NP-complete

problems can or cannot be solved by polynomial-bounded algorithms. For this reason, there

exists no algorithm to date that can guarantee to terminate in polynomial time. Faster

algorithms can only provide suboptimal solutions.

We provide here a suboptimal algorithm for the Minimum Clique Partition problem.

Algorithm 3.3.1 (Suboptimal Clique Partition): Given a non-oriented graph

G = (V, E), this algorithm builds a suboptimal clique partition of V . At each iteration

step i, a new clique Ki is added to the partition. The algorithm goes as follows:

while V is not totally covered, i.e., while K1 ∪ K2 ∪ ... ∪ Ki−1 6= V , do the follow-

ing:

• randomly pick an element vi in the set of uncovered vertices Wi = V Â(K1 ∪ K2 ∪

... ∪ Ki−1).

• randomly find a maximal clique Ki ∈ Wi containing vi.

• add Ki to the partition.

1Visit http://www.claymath.org/millennium/ for a listing of the seven “Millennium Problems.”
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In this algorithm, a maximal clique is defined as a clique that is not a subset of a larger

clique. At each iteration, a maximal clique containing a vertex vi is found by selecting

elements in Wi in random order and adding them to the clique if they are mergeable with

every element in the clique. When all elements in Wi have been considered, the clique is

maximal. But since the elements of wi were selected randomly, we cannot guarantee that

the resulting clique is the largest maximal clique containing vi. An example in Figure 5

shows two situations where the algorithm, at a step i, picks the largest or a smaller maximal

clique. In both pictures, the algorithm tries to find a maximal clique Ki ∈ Wi containing σ2

(blue vertex). Depending on whether or not the algorithm checks if σ1 or σ3 can be added

to Ki before σ4, the largest maximal clique Ki = {σ1, σ2, σ3} is selected (left picture), or

the suboptimal one Ki = {σ2, σ4} (right picture).

σ1

σ2

σ4

σ5

σ6
σ3

WiWi

σ7 σ8

σ1

σ2

σ4

σ5

σ6

σ3

σ7 σ8

Figure 5: Maximal Cliques Picking in Algorithm 3.3.1 (example).

By always adding a maximal clique to the partition, the total number of cliques covering

V remains small. However, because of the heuristic nature of this algorithm, we cannot

guarantee that an optimal solution to the Clique Partition problem is reached. Depending

on which vertices are chosen, and in which order, the algorithm can provide a significant

number of suboptimal clique partitions, including the optimal ones. Figure 6 shows all

possible outcomes (after symmetry considerations) of the algorithm on a simple example.

Each of the six possible outcomes {ci}
6
i=1 is represented, along with its probability p(ci)

and the number of cliques M(ci). For this particular example, we see that the algorithm
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would return an optimal solution (M = 3) with probability p(c2) + p(c3) + p(c4) = 1
2 .

case c1:

p(c1) = 1

8

M(c1) = 4

case c2:

p(c2) = 1

8

M(c2) = 3

case c3:

p(c3) = 1

4

M(c3) = 3

case c4:

p(c4) = 1

8

M(c4) = 3

case c5:

p(c5) = 1

8

M(c5) = 4

case c6:

p(c6) = 1

4

M(c6) = 4

K1 K1 K1

K1 K1

K1

K2
K2 K2

K2

K2

K3

K3 K3

K3

K3 K3

K4

K4 K4

Figure 6: Possible Outcomes of the Suboptimal Clique Partition Algorithm 3.3.1 (example).

The example in Figure 6 is also interesting, as it shows that picking the largest clique

(case c6) would not guarantee an optimal solution. The problem of finding the largest

clique in a graph is another NP-complete problem in Richard Karp’s list [59]. Modifying

our algorithm by making it search for the largest clique at every iteration would thus result

in a much slower algorithm, with no guarantee of better results.

Regarding complexity, the number of operations needed for Algorithm 3.3.1 to terminate

is bounded above by O(|Y|L∗2). Indeed, in the worst-case scenario, where all L∗ modes

cannot be merged to any other, the first vertex is compared to the L∗−1 other vertices, the

second vertex is compared to the L∗ − 2 remaining vertices, etc. This leads to a maximum

number of
∑L∗

i=1(i − 1) = L∗(L∗−1)
2 = O(L∗2) comparisons. Each of these compares the

mappings k and ξ of two modes, which may require up to 2|Y| operations. Consequently,

the total number of operations required is O(|Y|L∗2). Algorithm 3.3.1 provides a suboptimal

solution to the problem of minimizing M(L∗) with satisfying results and execution time.
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3.3.3.2 Minimizing L(σM∗)

The problem of finding a minimum-alphabet mode sequence consistent with a given input-

output string was solved in Section 3.2. Algorithms 3.2.1 and 3.2.2 provide solutions σM∗

to the problem. However, whereas M is indeed minimized, the length L of the resulting

mode sequences is maximum, equal to the length N of the input-output string. Here, we

address this issue by removing as many mode occurrences as possible, hence reducing the

length L(σM∗) while keeping the alphabet size M∗ constant.

First, we recall that the two algorithms presented earlier generate Always Interrupt

Sequences. Hence, by definition, the interrupt function of each mode triggers whatever

the value of the output y ∈ Y, i.e., ξm(y) = 1 (m = 1, ...M∗). The idea is to modify the

interrupt function ξ of each distinct mode and make it equal to zero (i.e. no mode change)

whenever possible. Ideally, a mode sequence like σ = σ1σ1σ2σ2σ2σ1σ1σ1σ2σ2 could then be

reduced to σ = σ1σ2σ1σ2. To conserve consistency with the input-output string, we need

to carefully identify when interrupt functions can or cannot be modified. We suggest the

following algorithm:

Algorithm 3.3.2 (L(σM∗)-Reduction) Given an Always Interrupt Sequence (AIS)

σM∗ = σm(1), σm(2), ...σm(N) consistent with an input-output sequence S =

(y(1), u(1)), ..., (y(N), u(N)), we reduce the length of σM∗ as follows:

For all modes m = 1, ..., M∗,

• For all y ∈ Y, if there exist a time i ∈ 1, ...N such that y(i) = y, m(i) = m and

m(i + 1) 6= m, keep ξm(y) = 1.

• Change all the other values of ξm(y) to zero.

This algorithm looks for mode switches from one mode to another distinct mode. These

interrupts are the only ones that need to be kept to preserve consistency. By turning off

all other interrupts to zero, the length of the mode sequence can be significantly reduced.

Obviously, the resulting mode sequence is not an AIS anymore. But since no new mode
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is added, it also uses the minimum number M∗ of distinct modes, i.e., it also belongs to

sol(PM (C(S))).

Example. Consider the following input-output string and a consistent Always Interrupt

Sequence σM∗ using M∗ = 2 distinct modes:

y 1 0 2 0 2 2 1 2 2 0 1 2

u 0 1 1 0 0 0 1 1 0 1 1 1

σM∗ σ1 σ2 σ2 σ1 σ1 σ1 σ2 σ2 σ1 σ2 σ2 σ2

↑ ↑ ↑ ↑ ↑

The arrows under the table show switches from one mode to a distinct one. The corre-

sponding interrupts ξ1(1) = 1, ξ2(2) = 1 and ξ1(2) = 1 must be kept. All other interrupts

ξ1(0), ξ2(0) and ξ2(1) can be changed to zero. By doing so, the mode switches occurring

at instants i = 2, 4, 7, 10, and 11 are suppressed, resulting in a shorter mode sequence

σM∗ = σ1σ2σ1σ1σ2σ1σ2. From a mode sequence with length 12 and specification complex-

ity 8.15 nats, we get a simpler one (yet still consistent) with shorter length 7 and smaller

specification complexity 4.78 nats.
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3.4 Application: What Are the Ants Doing?

In this example, we observe 10 roaming ants (Aphaenogaster cockerelli) in a tank, and we

intend to extract motion behaviors from some collected data. Different mode sequences are

generated using the methods presented in this chapter, and the performance of each algo-

rithm is compared to the others. The recovered mode sequences are then used to control

a collection of Free-Running Feedback Automata. In addition to being a fun subject of

study, ants are a rich source of inspiration in many robotic applications because of their

fascinating skills in navigation, exploration, and organization.

3.4.1 Experimental Setting

The experimental setting is as follows: 10 ants are placed in a tank with a camera mounted

on top, as seen in Figure 7. A 48-second movie is recorded and a vision-based tracking

software computes the position (x, y) and orientation θ of each ant every 33 ms.

Figure 7: Ants Application: Experimental Setting.

This experimental data is kindly provided by Tucker Balch and Frank Dellaert at the Geor-

gia Institute of Technology BORG Lab2.

2http://borg.cc.gatech.edu.
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3.4.2 Data Processing

A first task consists of processing the available data (position and orientation of each ant)

and turning it into a quantized input-output string. Here, the choice of relevant input

and output variables is crucial if we want to capture true ant-like behaviors. For example,

the proximity of an obstacle or another ant probably plays an important role in an ant’s

decision process. The room temperature is most likely irrelevant within some bounds. To

be successful, our mode recovery approach hence requires some physical insight into the

underlying data-generating process. Assuming relevant input and output variables have

been selected, their quantization can also play an important role in the recovery of true

ant-like behaviors. This aspect of the problem will be studied in Chapter 4. For now,

a quantized I/O string is computed for each ant by considering the following inputs and

outputs:

• the input at time k is a two-dimensional point u(k) = (u1(k), u2(k)), where

– u1(k) is the quantized angular velocity of the ant,

– u2(k) is the quantized translational velocity of the ant,

• the output at time k is a three-dimensional point y(k) = (y1(k), y2(k), y3(k)), where

– y1(k) is the quantized angle to the closest obstacle in an egocentric referential,

– y2(k) is the quantized distance to the closest obstacle,

– y3(k) is the quantized angle to the closest goal in an egocentric referential.

In these definitions, an obstacle is either a point on the tank wall or an already visited ant

within the visual scope of the ant, and a goal is an ant that has not been visited recently.

Ant behaviorists usually describe encounters as the occurrence of two ants approaching each

other and experiencing a brief antennal contact. Since our data does not provide enough

information for identifying when such events occur, we say that two ants have visited each

other once they have been within a small distance ǫ of each other. Figure 8 depicts the
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visual scope (blue), obstacles (red), and goals (green) seen by each ant at the same instant

shown in Figure 7.

Figure 8: Ants Application: I/O String Generation.

In this example, each signal, u1(k), u2(k), y1(k), y2(k), and y3(k), is quantized using five

possible values. This gives 25 possible inputs and 125 possible outputs.

3.4.3 Comparison of Mode Recovery Methods

For each ant, three mode sequences, consistent with the input-output string, are first re-

covered:

- σ1 is a mode sequence with minimum length. It is recovered using the algorithm

developed in [7] and reproduced in section 3.1.

- σ2 is a mode sequence with minimum alphabet. It is an Always Interrupt Sequence

recovered using Algorithm 3.2.1.

- σ3 is another Always Interrupt Sequence with minimum alphabet, but also has mini-

mum entropy (on the set of AIS only). It is recovered using Algorithm 3.2.2.
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Each of these mode sequences is then transformed, bringing the total number of mode

sequences to six (per ant):

- σ′
1 is obtained from σ1 by reducing the number of distinct modes (alphabet size), using

Algorithm 3.3.1.

- σ′
2 is obtained from σ2 by reducing the length of the mode sequence, using Algorithm

3.3.2.

- σ′
3 is obtained from σ3 by reducing the length of the mode sequence, using Algorithm

3.3.2.

Results, including string length L, number of distinct modes M , entropy H, and specifica-

tion complexity S for each of the six recovered mode sequences and for each of the 10 ants

are given in Table 2.

In this table, results within a starred box stress the fact that the enclosed variable is

optimal:

- the length L is minimum for σ1 and σ′
1,

- the alphabet size M is minimum for σ2, σ′
2, σ3, and σ′

3.

- the entropy H is minimum for σ3 (but here, only on the set of MinM consistent Always

Interrupt Sequences).

The relation signs ‘>’, ‘=’ and ‘<’ show how the variables L, M , H, and S are affected by

the L-reduction and M -reduction transformations:

- in the case of σ1, the M -reduction reduces M while keeping L constant. This alphabet

reduction is followed by a reduction both in H, and S, as proven in Theorem 3.3.1.

- in the case of σ2 and σ3, the L-reduction reduces L while keeping M constant. This

length reduction is followed by an increase in H but a decrease in S. Whereas the

complexity reduction is proven in theorem 3.3.2, the same theorem shows that the

increase in entropy cannot be generalized.
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Table 2: Ants Application: Comparison of Low-Complexity Mode Recovery Procedures.

66 66 145 138 145 137

103 103 145 138 145 140

120 120 145 142 145 141

60 60 145 119 145 120

110 110 145 142 145 141

90 90 145 140 145 141

113 113 145 142 145 143

110 110 145 140 145 141

118 118 145 140 145 142

100 100 145 139 145 144

66 16 11 11 11 11

103 26 16 16 16 16

120 26 21 21 21 21

60 19 14 14 14 14

110 30 20 20 20 20

90 26 17 17 17 17

113 25 19 19 19 19

110 32 22 22 22 22

118 25 20 20 20 20

100 28 17 17 17 17

6.04 3.19 2.38 2.41 2.01 2.08

6.69 3.37 3.31 3.32 2.82 2.86

6.91 3.99 3.86 3.88 3.63 3.67

5.91 4.09 2.93 3.18 2.59 2.87

6.78 4.40 3.85 3.85 3.72 3.72

6.49 4.19 3.55 3.54 3.34 3.35

6.82 4.15 3.79 3.80 3.54 3.56

6.78 4.50 4.00 4.01 3.86 3.86

6.88 4.09 3.87 3.89 3.64 3.67

6.64 4.15 3.49 3.51 3.45 3.45

398.9 210.4 344.5 332.1 291.1 285.2

688.7 347.6 480.3 457.6 409.4 400.2

828.8 479.0 560.0 550.3 526.3 516.8

354.4 245.4 424.7 378.4 376.2 344.7

745.9 483.7 557.6 547.1 539.0 525.1

584.3 377.4 515.0 495.2 483.8 472.0

770.7 469.0 549.2 540.2 512.6 508.7

745.9 495.4 580.4 561.8 559.9 544.5

812.2 482.2 561.5 544.1 527.5 520.6

664.4 414.8 506.2 488.1 499.5 496.4
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*
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=

= =

< <

*

The most important results concern the specification complexity S. Before reduction, the

Always Interrupt Sequences σ2 and σ3 have a lower complexity than the minimum-length

mode sequence σ1. On average, the 10 mode sequences σ1 are respectively 28% and 39%

more complex than their σ2 and σ3 equivalents. Also, the fact that σ3 sequences are on

average 7% less complex than σ2 sequences justifies the extra effort spent in minimizing the

entropy over the set of MinM AIS. After reduction, the tendency is reversed as σ′
1 performs
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on average 20% and 14% better than σ′
2 and σ′

3. Whereas the M -reduction of σ1 reduces

the number of modes by 74% and the complexity by 39% on average, the L-reduction of σ2

and σ3, although optimal, does not reduce the length by more than 5% and the complexity

by more than 4% on average.

The choice of a particular recovery method depends on the targeted application. One

might prefer producing short control programs from data or longer programs using fewer

modes. In both cases, the algorithms developed in this chapter result in low-complexity

control programs. If the specification complexity is the only performance index considered,

then finding the shortest consistent mode sequence using the Dynamic Programming Al-

gorithm in [7] and then reducing its alphabet using Algorithm 3.3.1 seems to be a better

choice. In other applications, the size of the alphabet may play a greater role. Note how,

in Definition 2.3.1, the complexity measure assumes that the alphabet is already embedded

in the system receiving the control program. We can easily imagine applications where, in

addition to the control program, the mode definitions would also have to be sent to a robot

through a communication channel. In such applications, a more appropriate complexity

measure would favor control programs with small alphabet size, and mode sequences such

as σ′
2 and σ′

3 would be preferred.
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CHAPTER IV

EXECUTION AND EXPRESSIVENESS

In this chapter, we show how control programs such as the ones recovered in Chapter 3 can

be effectively executed on real systems or in a computer simulation. We also investigate how

the behaviors of the original system and the simulated one can be compared and speculate

on the reasons behind any dissimilarity. In particular, we analyze the effect of different

quantization methods.

4.1 From Mode Sequences to Fully Executable Control Pro-
grams

In Figure 9, we recall how, within the Motion Description Languages framework, a Free-

Running Feedback Automaton is controlled by a mode sequence.

p(q + 1) =







p(q) if ξp(q)(y(q)) = 0
p(q) + 1 if ξp(q)(y(q)) = 1

Mode Evolution

x(q + 1) = δ(x(q), kp(q)(y(q)))

State Evolution Output

y(q) = γ(x(q))(k1, ξ1)...(kL, ξL)

Input

Figure 9: Free-Running Feedback Automaton.

At every time-step q, the control input applied to the system is kp(q)(y(q)), the value of the

feedback for the current mode p(q) and current value of the output y(q). In our approach,

where modes are built by mapping finite portions of I/O strings, it is conceivable that

behaviors may not be defined on the whole output space. In other words, without some

type of persistency of excitation (i.e. if the training data set is too small), we may run

into situations where the control input value kp(q)(y(q)) is undefined. As such, the mode

sequences recovered in Chapter 3 cannot be directly executed on MDL-devices without a
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few modifications. For example, consider the case where we recovered the mode (k, ξ) and

where the available empirical data only allows us to define the domain of k and ξ as a

proper subset of the total output space Y, denoted here by Yk or Yξ. From the construction

of the modes, these two subsets are always identical, i.e., Yk = Yξ. There are many ways in

which one can ensure that whenever this mode is active and an output value y ∈ YÂYk is

encountered, i.e., whenever kp(q)(y(q)) is undefined, a control input value is still computed.

We list here a few of them:

• If y(q − 1) ∈ Yk but y(q) 6∈ Yk, we can replace k(y(q)) with k(y(q − 1)) as well as

let ξ(y(q)) = 0. As one might expect, this easy approach can sometimes produce

undesirable behaviors, such as robots moving around indefinitely in a circular motion.

• If y(q) 6∈ Yk, but y(q) ∈ Yk̃ for some other mode pair (k̃, ξ̃) in the recovered mode

sequence, we can let k(y(p)) be given by the most recurrent input symbol ũ ∈ U such

that k̃(y(q)) = ũ. This method works as long as y(q) belongs to the domain of at least

one mode in the sequence. If this is not the case, additional choices must be made.

• If y(q) does not belong to the domain of any of the modes in the sequence, we can

introduce a norm on Y , and pick ỹ instead of y(q), where ỹ minimizes ‖y(q) − ỹ‖Y

subject to the constraint that ỹ belongs to the domain for at least one mode in the

sequence.

Note that all of these choices are heuristic in the sense that there is no fundamental reason

for choosing one over the other. Rather, they should be thought of as tools for going from

recovered mode strings to executable control programs.

An example of a computer simulation is given in Figure 10. Here, 10 mode sequences

recovered from the observation of ants in Section 3.4 are executed on 10 Free-Running Feed-

back Automata. The underlying system modeling ant locomotion is a unicycle, controlled

by translational and angular velocities. The figure shows a snapshot from a 30-second movie

where, for more realism, each agent is drawn as an ant with appropriate position and ori-

entation.
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Figure 10: Ants Application: Simulating Ten Virtual Ants.

4.2 Performance

Now, assuming that recovered mode sequences can be efficiently used as control programs,

we are interested in comparing the simulated system with the original system. By perfor-

mance, we very informally understand the ability of the former to reproduce the behaviors

of the latter. To make this observation more precise, one needs to provide a measure of how

well the simulated system can reproduce the behavior of the original system. Of course,

the choice of a particular measure should be motivated by the targeted application. For

example, in the case of the ants, if we were to produce a simulation with thousands of ants

for a scene in an animation movie, the simulated ants would have to pass a very subjective

(qualitative) “eye”-test, meaning we would just be concerned by how “real” the virtual ants

look, e.g., in the way they approach, avoid, follow each other, etc. In a robot application,

we could use more objective arguments such as “did the robot bump into an obstacle or

not?” and more quantitative measures, e.g., the time required to reach a target location.

In most applications, the reason why it is not possible to compare two trajectories using

common measures such as the mean squared error (or any norm on the space where the two
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trajectories belong) is that the systems under consideration are highly reactive. Whereas

this is just an assumption concerning the original (unknown) system, the statement makes

no doubt for the simulated system which, by construction, exhibits feedback control. Con-

sequently, in an unknown and/or changing environment, no two trajectories will look the

same and a mean squared error measurement will have little relevance.

More insight can be brought to the problem if we consider the following three systems:

• system (a): the original system with unknown dynamics, e.g., an ant. From this

system, a finite input/output string is extracted using both time sampling and sig-

nal quantization. The choice of the inputs and outputs is driven by the available

controllers and sensors on the computer-controlled machine M that will be used to

reproduce the original system’s behavior. Of course, when the execution is restricted

to a computer simulation, there is much more flexibility in the choice of the input and

output features.

• system (b): the machine M , with known dynamics, controlled by the zero-order

hold quantized input string measured on (a), as an open loop control. In our ant

application, this could correspond to a unicycle described by ẋ(t) = v(t) cos θ(t),

ẏ(t) = v(t) sin θ(t) and θ̇(t) = ω(t), controlled by v(t) = u1(k) and ω(t) = u2(k) for

kT ≤ t < kT +T where T is the sampling period. Here, u1(k) and u2(k) represent the

quantized velocity and angular velocity (inputs) measured from the ant trajectory.

• system (c): the same machine M , but this time, controlled by a MDL sequence

consistent with the input-output string measured on (a). This system has the same

dynamic equations as (b) but the control here is a feedback control. For the unicycle,

this means that the controls u1(k) and u2(k) are given by the output-input map of

the active mode at time k.

As defined, the performance is a measure of how well the trajectory of system (c) ap-

proximates the one of (a). To achieve a perfect reproduction, we would need for (c) to

perfectly reproduce (b) and for (b) to perfectly reproduce (a). For this reason, the overall

performance can be thought of as the combination of two subsystems’ performance.
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First, for (c) to exactly track (b), it would require that the Free-Running Feedback

Automaton controlling (c) produces the exact same input string as the one used to control

(b). This condition is tied down by the use of feedback control in (c) and is obviously

hard to achieve in a changing environment. When (c) encounters a different output value

than the one computed from (a), the feedback mapping in (c) may provide a different input

control value than the one used in (b), resulting in a local variation in state trajectories

between (b) and (c). Because of this divergence, the output values read at the next time

increment will most likely be different and probably produce distinct input values again.

In different situations, system (c) may rectify its trajectory or use a completely different

one. In this context, measuring performance on the quality of the tracking may not be very

relevant. Obviously, different mode sequences recovered from the same input-output string

should produce distinct state trajectories. The performance we consider here is really the

performance of a given mode string. However, how different mode recovery methods affect

performance is difficult to capture, even qualitatively.

On the other hand, the performance of system (b) at tracking (a) is easier to deal with.

Since the control input to (b) is a zero-order hold quantized input string measured on (a),

the quality of the fit is directly related to the quality of the sampling/quantization process

applied to the input. By decreasing the sampling period T and increasing the number

of quantization levels qU , we can generate an arbitrarily good approximation of the input

function, and consequently, of the state trajectory. However, the length of the input(-

output) string is inversely proportional to the sampling period, and the number of bits

necessary for encoding one input value increases with qU . Hence, performance is achieved

at the expense of complexity. Figure 11 illustrates this performance/complexity duality

statement. For both pictures, points in the performance-complexity plane were computed

from real biological data. The recorded velocity of an ant was sampled using various sample

periods T and quantization levels qU . In the left picture, the data points were computed

for various qU but for a constant sample period (T = 33ms). In the right picture, the

data points were computed for various T but for a constant number of quantization levels

(qU = 8). Here, the performance was measured as the inverse of the input signal distortion
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(mean squared error between the original input and the zero-order hold input string), and

the complexity was measured as the number of bits required to encode the input string (i.e.

proportional to 1/T log2(qU )). The units and order of the curves depend greatly on the

measure choices, but what most concerns us here is their tendency.
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Figure 11: Complexity vs. Performance.

4.3 Quantization Methods

In this section, we present four different scalar quantization strategies and compare them

in terms of their performance and complexity. First, we introduce some notations:

Definition 4.3.1 A scalar quantizer is a staircase function that maps input values in R

into a finite set Q = {q1, q2, ..., qN} of real numbers called quantization levels. The range

of the input values is divided into N adjacent intervals, with boundaries at the threshold

levels t0, t1, ..., tN . When the input value belongs to the ith interval (ti−1, ti), it is mapped

(quantized) to the ith quantization level qi.

Now, assuming a given string of input values X = {x(1), ..., x(z)}, the four quantizers

under consideration are defined as follows:

[Q1 ] uniform quantizer: the range [xmin, xmax] of the input values is divided into N

equal intervals. The length ∆ = (xmax − xmin)/N of each of these intervals is called
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quantization step size. The threshold levels are ti = xmin + i∆, i = 0, ..., N . For each

interval (ti−1, ti), the corresponding quantization level qi is the mean value of all the

data points from X falling within this interval.

[Q2 ] equally-distributed quantizer: the threshold levels are chosen so that each of the N

intervals contains the same number of elements from X (plus or minus one for when

z is not a multiple of N). To do so, the elements in X (all assumed distinct) are first

sorted. Assuming k and r are, respectively, the quotient and the remainder of the

division of z by N , the sorted input values are split into r groups of k + 1, and N − r

groups of k. Each ti (i = 1, ..., N − 1) is set at the mean value between the last value

of the ith group and the first value of the (i + 1)th group. Also, t0 is the value of the

first element in the first group, i.e., xmin, and tN is the value of the last element in

the last group, i.e., xmax. Finally, the quantization level qi (i = 1, ..., N) is the mean

of the values in the ith group.

[Q3 ] optimal-PCM quantizer: this quantizer uses quantization thresholds and quantiza-

tion levels minimizing the mean squared error MSE =
∑r

j=1(x(j) − q(x(j)))2. Nec-

essary conditions for optimality were formulated by Lloyd in 1957 [64], along with an

effective algorithm for computing the optimal solution.

[Q4 ] optimal-DPCM quantizer: this quantizer falls in the category of predictive quan-

tizers, where an educated guess is made about the present value x(i) of the signal,

based on past signal transmissions x(i − 1), x(i − 2), ..., x(i − m), for some positive

integer m. Given a linear predictor [p(1), p(2), ..., p(m)] ∈ Rm, the predicted value for

x(i) is y(i) = p(1)x(i − 1) + p(2)x(i − 2) + ... + p(i)x(i − m). Instead of quantizing

x(i), the predictive quantizer quantizes the error between the predicted value y(i)

and the actual value x(i). The integer m above is called the predictive order. In an

optimal-DPCM, the data string X is used as a training data for computing an optimal

predictor, i.e., one that will minimize the signal distortion.

The performance of these quantizers is analyzed in Figure 12 where the mean squared

error, or signal distortion, is computed for the quantization of five distinct signals: a simple
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sinusoid, a random signal with uniform probability distribution over [−1, 1], two gaussian

noises with zero-mean and standard deviations 1/3 and 1/5, and the recorded angular

velocity of an ant (biological data). The time evolution and distribution of these signals

(before quantization) are represented along with the measured distortion for each of the

four quantizers. In order to compare the methods, a same number of quantization levels

(eight) was used in every case.
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Figure 12: Performance of Four Quantization Methods on Various Signals.

In view of these results, we can conclude that, regarding distortion, the optimal PCM

and optimal DPCM quantizers generally perform better. Of these two, the optimal DPCM

quantizer seems to be the best suited when the data does not come from the execution of a

53



random variable. Also, the relative performance of the quantizers seems to be correlated to

the signal distribution. In fact, as the distribution becomes more unevenly distributed, the

difference in distortion between the optimal quantizers and the equi-distributed quantizer

on one side, and between the equi-distributed quantizer and the uniform quantizer on the

other side, increases.

Next, the four quantizers are compared in terms of complexity. The objective is to get a

feeling for how different quantization methods can affect the outcome of the mode recovery

process studied so far. To this end, we run the same experiment as in Section 3.4. The

available ant data is quantized using each of the four quantizers. For each of these, 10

mode sequences are recovered from 10 quantized I/O strings (one for each of the 10 ants)

using the “MinL-LowM” recovery method. The specification complexity (Definition 2.3.2)

of each mode sequence is represented in Figure 13 against the distortion in the quantized

input string (’+’ signs). For each quantization method, the average specification complexity

vs. average distortion is also represented (big dot).

A first remark is that the choice of a particular quantization method can significantly

affect the complexity and performance of the recovered control programs. Also, Figure 13

illustrates again what was pointed out earlier: the impossibility of minimizing both quan-

tities at the same time. The optimal PCM and DPCM, which provide the best distortion,

perform badly in terms of complexity. On the other hand, the equi-distributed quantiza-

tion method gives the best specification complexity, but at the expense of a poor signal

distortion. To understand the differences in terms of complexity, one should interpret the

quantizers as filters bringing more or less redundancy to the data. Since the underlying

reason for a mode switching is the existence of two distinct input values for the same out-

put value, a better repartition of these input and output values can reduce the probability

of such situations.

To conclude, we underlined the existence of a tradeoff between the complexity of the re-

covered control programs of Chapter 3 and their performance when applied to real systems.

We also showed how the quantization process can play an important role in this tradeoff.

In particular, the choice of a quantization method, the sampling period, and the number of
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Figure 13: Performance vs Complexity Plot for Four Quantization Methods.

quantization levels can be used as tuning parameters for achieving a desired level (ratio) of

complexity/performance.
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CHAPTER V

FROM MODE STRINGS TO EXECUTABLE AUTOMATA

In Chapter 3, we developed methods for obtaining mode sequences from empirical data in

an automated way. However, once such a mode sequence has been obtained, one would like

to produce a compact representation of the underlying switching logic that describes the

high-level operation of the system. In fact, mode sequences (or strings) can be thought of as

sample paths generated by an underlying system, and in this chapter we set out to recover

this system in a computationally tractable manner. More specifically, we assume that a

mode sequence ki1 , ξj1 , ki2 , ξj2 , . . . is the input-output path resulting from the execution of

a finite automaton, where kiq is the “output” from the underlying finite automaton in state

sq, and ξjq is the corresponding “event” that triggers a transition from state sq to sq+1.

In this chapter, we are interested in recovering this underlying automaton. Moreover, as

there are possibly many such automata, we will focus our attention on trying to recover

minimal automata, i.e, automata with minimum state space cardinality. Figure 14 shows

an example of a mode sequence and the corresponding minimal automaton.

k1 k2

k2

ξ1
ξ2

ξ1

ξ1 ξ2

k1ξ2k1ξ1k2ξ1k2ξ2k2ξ1k1

Figure 14: Example of a Mode Sequence and Corresponding Minimal Input-Output Au-
tomaton.

Note that even though the mode strings describe an execution of a hybrid, multi-modal

system, the problem of capturing the lowest complexity system for describing the switching

logic is in fact a problem purely in the area of finite automata theory.

The chapter’s organization is as follows. In Section 5.1, a preprocessing step is applied
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to the mode sequence, in which the association k ∼ ξ of each mode is broken. The motion

alphabet is thus split into two alphabets, one for the feedback mappings and one for the

interrupt functions. A new alphabet reduction algorithm is then applied to both alphabets

in order to reduce the number of distinct symbols. The problem of recovering an automaton

is defined in Section 5.2, together with a definition of system complexity (cardinality of the

state space), which is the performance criterion that our recovered system should minimize.

An explicit algorithm for finding the lowest complexity automaton that can generate the

sample path is given in Section 5.3 together with a study of its computational complexity.

In fact, the proposed algorithm is found to be superexponential in the worst case, and as

such, it is of dubious computational relevance. Instead, lower complexity (in some cases

suboptimal) algorithms are presented, and their performance is evaluated against a large-

scale example.

5.1 Merging Feedback Mappings and Interrupt Functions

The conversion from mode sequences to executable I/O automata requires splitting the

motion alphabet Σ into two alphabets: the input alphabet Ξ of interrupt functions and the

output alphabet K of feedback mappings. In order to produce low complexity automata,

a preliminary task consists of reducing the size of Ξ and K by merging combinations of

elements that look “similar.” In order to do so, we first need to define a measure of

“similarity.” Consider merging n distinct feedback mappings1 ki1 , ki2 , ..., kin , resulting in

the creation of a “macro-feedback mapping” KI , where we let I = {i1, ..., in}. Note that

for a given y ∈ Y, two distinct feedback mappings may map y to two different inputs, i.e.,

∃(α, β) ∈ I2 such that kα(y) = ui and kβ(y) = uj with ui 6= uj . For this reason, we choose

to represent KI(y) as a random variable. In this respect, the resulting “macro-feedback

mapping” KI is a random process defined on Y.

Now, for a given y ∈ Y, the probability mass function of KI(y) can be recovered by

1Here we choose to merge feedback mappings but the same ideas, definitions and algorithm apply for
interrupt functions.
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pKI(y)(u) = Pr{KI(y) = u} =
card{q|yq = y, uq = u and m(q) ∈ I}

card{q|yq = y and m(q) ∈ I}
,

where m(q) refers to the mode active at time q and card denotes cardinality. Next, we

define the entropy of the random variable KI(y):

H(KI(y)) = −
∑

u∈U

pKI(y)(u) log(pKI(y)(u)).

It is easily established that this entropy is bounded by

0 ≤ H(KI(y)) ≤ log(n).

Finally, we define an entropy measure for the random process KI . It is the normalized and

weighted average of the entropies of all random variables KI(y), when y describes Y:

H(KI) =
1

log(n)

∑

y∈Y

pY (y)H(KI(y)).

Note that in this definition, the output is also considered a random variable Y . Similarly,

its probability mass function pY : y → pY (y) = Pr{Y = y} can be estimated from the

available data:

pY (y) =
card{q|yq = y, and m(q) ∈ I}

card{q|m(q) ∈ I}
.

The total entropy H(KI) is a measure of the average uncertainty in the random process

KI . It varies from zero to one, where

• H(KI) = 0 means that there is no uncertainty in KI , i.e., for all y ∈ Y, all modes in

I map y to the same input value.

• H(KI) = 1 means that the uncertainty in KI is maximal, i.e., for all y ∈ Y, all modes

are equally active and they all map y to a distinct input value.

In other words, the two extreme values are reached when the n feedback mappings are

either equal (H(KI) = 0) or completely different (H(KI) = 1). We propose to define a

threshold value γk ∈ [0, 1] so that if H(KI) ≤ γk, the feedback mappings are considered

similar enough to be merged.
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Now that a criterion for mergeability has been defined, the alphabet reduction problem

is the same as the one defined in section 3.2. It consists of finding a minimum collection of

disjoints sets KI1 , KI1 , ..., KIM
that form a partition of K, i.e., K = KI1 ∪ KI2∪...∪KIM∗

.

Also, each set of the partition should only contain mergeable elements, i.e., H(KIi
) ≤ γk

for i = 1, ..., M∗. Recall that the problem is NP-complete but that heuristic suboptimal

algorithms such as Algorithm 3.3.1 can provide a pretty good approximation in polynomial

time. This algorithm is rewritten here using the new notation:

Alphabet Reduction Algorithm:

Given an alphabet K = {ki1 , ki2 , ..., kin} and a reduction threshold γk, we reduce K in the

following manner:

while K is not totally covered, i.e., while KI1 ∪ KI2 ∪ ... ∪ KIi−1 6= K, do the following:

• randomly pick an element ki in the set of uncovered vertices Wi = KÂ(KI1 ∪ KI2 ∪

... ∪ KIi−1).

• randomly find a maximal set KIi
∈ Wi containing ki and such that H(KIi

) ≤ γk.

• add KIi
to the partition.

Application:

Given an I/O string S and a consistent mode sequence σ = σm(1)σm(2)...σm(n) where for

q = 1, ..., n, σm(q) = (km(q), ξm(q)) and m(q) ∈ {1, ...M(σ)} (M(σ) being the number

of distinct modes in σ). We define two thresholds γξ and γk and apply the Alphabet

Reduction Algorithm to the input alphabet E = {ξ1, ξ2, ..., ξM(σ)} and output alphabet

K = {k1, k2, ..., kM(σ)}.

This alphabet reduction algorithm serves many purposes. First, as mentioned earlier,

this algorithm splits the motion alphabet (Σ) obtained from the earlier step into two alpha-

bets (Ξ and K) so that the recovered hybrid strings can be viewed as input/output strings of

a hybrid automaton. Second, this process facilitates noise reduction, which occurs naturally

when dealing with empirical data. Additionally, the reduction in the size of the alphabets

makes the construction of automata more tractable. Finally, this process also leads to a
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stochastic interpretation of the feedback and interrupt functions, which is sometimes more

natural than a deterministic interpretation.

5.2 The Automata State Reduction Problem

After applying the alphabet reduction algorithm presented above, our recovered string is of

the form ki1ξj1ki2ξj2 · · · . As mentioned in the introduction to this chapter, we can think of

kiq as the “output” of a finite automaton in state sq, and ξjq as the corresponding “event”

that triggers a transition from state sq to sq+1. The question then becomes, can we recover

this underlying automaton? As we will see, we can always find at least one such automaton.

However, this automaton is in general not unique. We will then focus our attention on trying

to recover minimal automata, but first we need to establish some notation (found in [48]).

Definition 5.2.1 An output automaton is a 6-tuple < S, Σ, Y, s0, T, h >, where S is the

finite set of states, Σ is the input alphabet, Y is the output alphabet, s0 ∈ S is the initial

state, T ⊆ S × Σ × S is the set of allowable transitions, and h : S → Y is the output

function.

(For our purposes, the input and output alphabets will be the finite set of interrupts (Ξ) and

feedback laws (K) respectively). We will write s σ
// s′ as a shorthand for (s, σ, s′) ∈ T .

Definition 5.2.2 A Deterministic Finite Automaton (DFA) is an automaton where each

state has a unique transition for a given symbol (if the transition is defined), i.e., if s σ
// p

and s σ
// q , then p = q.

A DFA is said to be complete if a transition is defined for every symbol in any given state

(i.e. for any s ∈ S, (s, σ, s′) ∈ T for all σ ∈ Σ and some s′ ∈ S). Otherwise it is said to be

incomplete.

Definition 5.2.3 A path π as a finite alternating sequence, si1σj1si2σj2si2 · · ·σjn−1sin, of

states and inputs, starting and ending with a state. We say that a path is executable on

A if si1 = s0 and each input transitions the state preceding it to the one following it, i.e.,

(siq , σjq , siq+1) ∈ T for all q.
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Definition 5.2.4 An I/O path πy is an alternating sequence, yℓ1σj1yℓ2σj2 · · ·σjn−1yℓn
, of

outputs and inputs, starting and ending with an output. We say that an I/O path is

executable on A if there exists an executable path si1σj1si2σj2 · · · sjn such that for all q,

h(siq) = yℓq
.

With these definitions, the problem under consideration formulates as follows:

Problem 5.2.1 (Minimal Automaton Recovery): Given an I/O path πy =

yℓ1σj1 · · · yℓn
, find the minimal deterministic output automaton A =< S, Σ, Y, s0, T, h >

on which πy is executable. Here, by “minimal,” we understand the non-necessarily unique

automaton with the minimum number of states.

Note that for a given I/O path πy = yℓ1σj1 · · · yℓn
, there always exists at least one output

automaton A on which πy is executable. It is the automaton that, at each transition, jumps

to a new state. This sequential output automaton has exactly n states. The set of automata

that can execute πy is thus non-empty, and there always exists a solution to the problem

defined above.

In fact, this problem is related to the problem of producing minimal equivalent automata,

since one could consider applying a state reduction algorithm to the sequential output-

automaton derived above. Deterministic state reduction techniques with polynomial time

exist in the case of completely specified DFA (see for example [14]). However, when the

original DFA is not complete, which is our case with the sequential automaton, the problem

is much harder, and proved to be NP-complete in [71]. Here, we show how our less general

problem, the state reduction of a sequential incomplete DFA, is NP-complete.

A first task consists of finding when two states are mergeable, or here instead, when

they are not mergeable. First, an obvious sufficient condition for non-mergeability of two

states si and sj is when their output values h(si) and h(sj) are non-equal. A less trivial

sufficient condition for the existence of non-mergeable states is the presence of what we call

inconsistent subpaths in the I/O path.

Definition 5.2.5 Given an I/O path, two subpaths ya1σa1ya2σa2 ...σan−1yan and
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yb1σb1yb2σb2 ...σbn−1ybn
are called inconsistent when ya1 = yb1, σa1 = σb1, ..., σan−1 = σbn−1

but yan 6= ybn
.

We now state that when two subpaths are inconsistent, their two initial states with

outputs ya1 and yb1 are non-mergeable. The reason is that, starting from these two states,

the input string σa1σa2 ...σan−1 (=σb1σb2 ...σbn−1) triggers two distinct output strings (which

differ by the last output value only).

Assuming all non-mergeable states have been identified, a second task consists of finding

how the states can be optimally merged into a minimum representation. Again, this problem

can be nicely translated into a graph theory setting. We first build a graph where each

state of the original sequential automaton is represented by a vertex. Then, edges are

drawn between vertices whenever the corresponding states are non-mergeable. With this

representation, the problem at hand is a graph coloring problem: “find a minimum color

assignment such that every two adjacent (connected) vertices are painted with distinct

colors.” The idea is that vertices assigned a same color correspond to merged modes.

By minimizing the number of colors used to fill the whole graph, we minimize the resulting

number of distinct modes. Figure 15 shows how the same example as in Figure 14 translates

into a graph coloring problem.
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Figure 15: Minimal Input-Output Automaton Problem via Graph Coloring Problem.
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In this figure, the original sequential automaton (top) is turned into a graph representa-

tion (bottom left) where the vertices correspond to the six states of the sequential automa-

ton, and the edges represent non-mergeability between states. These are black when the

states have distinct outputs (k1 and k2) or blue when the non-mergeability derives from the

existence of inconsistent subpaths. An optimal coloring of the graph using three distinct

colors is shown and the corresponding minimal automaton (bottom right) is depicted.

As seen, the state reduction of a sequential DFA can be split into two tasks: 1) the

construction of a graph which requires the search for all non-mergeable states and 2) the

search of an optimal coloring of the graph. While the first task can be accomplished in

a number of operations that is a polynomial in the length of the original automaton, the

second one is a known NP-complete problem, listed in [59]. For this reason, the whole

problem is NP-complete and we cannot hope to solve it in polynomial time. There is,

however, an abundance of literature pertaining to the reduction of incompletely specified

automata. The various approaches for solving this problem can be categorized as either

exact or heuristic based. As illustrated, the standard approach for this problem is based

on an enumeration of the set of compatible states and the solution of a binate covering

problem [69, 44]. A different approach for exact minimization not based on enumeration is

presented in [70], while [73, 47] present heuristic based algorithms that significantly reduce

run-time while obtaining correct results in most cases.

In the next section, we present different algorithms for the state reduction of an incom-

pletely specified DFA, then compare their performance in terms of optimality and complex-

ity (i.e. execution time).

5.3 Algorithms

5.3.1 Exhaustive Search Algorithm

In this section we describe an iterative algorithm that solves the problem of finding the

smallest automaton consistent with a given I/O path πy = yℓ1σj1 · · ·σjn−1yℓn
. The set of all

consistent automata is progressively constructed by reading the I/O path from the left to the

right. At the end of this exhaustive search, the automaton with the fewest number of states
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is the optimal solution. Each candidate automata is represented by < S, Σ, Y, s0, T, h >

and the algorithm keeps track of this tuple as well as its current state scurr at each step.

When the kth iteration starts, the set of candidate automata Ak−1 has been constructed

from the reading of yℓ1σj1 · · ·σjk−1
yℓk

. (The algorithm is initialized at the 0th step with

A0 = {A0}, where A0 is the single candidate automaton with S = {s0}, Σ = ∅, Y = {yℓ1},

s0 = s0, T = ∅, h such that h(s0) = yℓ1 , and scurr = s0). The next input, σjk
, and output

,yℓk+1
, of the I/O path are read, and we do the following for each candidate automaton in

Ak−1:

Exhaustive Search Algorithm:

(a) if ∃s′ such that (scurr, σjk
, s′) ∈ T , then:

(a1) if h(s′) = yℓk+1
, then the current state is set to s′.

(a2) if h(s′) 6= yℓk+1
, then the candidate automaton is inconsistent and so, it is

discarded.

(b) if ∄s′ such that (scurr, σjk
, s′) ∈ T , we do two things:

(b1) we make the candidate automaton jump to a new state snew: we add snew to

S, possibly add σjk
to Σ (if not already in that set), add (scurr, σjk

, snew) to T ,

set h(snew) = yℓk+1
, and set the new current state to snew.

(b2) we create a new candidate automaton for every pre-existing state spre such that

h(spre) = yℓk+1
. For each of these new automata, we add (scurr, σjk

, spre) to T ,

possibly add σjk
to Σ, and set the current state to spre.

All the modified or created candidate automata now constitute Ak. After the last iteration,

we are left with all possible consistent automata. The last task consists of choosing the one in

An with lowest complexity, i.e., with the smallest number of states. Since, by construction,

the algorithm produces every possible automaton that is consistent with the I/O path, it

will return the optimal solution.

An example is shown in Figure 16, where all the automata consistent with the I/O path
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Figure 16: DFA State Reduction: Example of an Exhaustive Search (the “iteration 4”
column shows all automata consistent with the I/O path k1ξ1k1ξ1k2ξ2k1ξ1k2).

k1ξ1k1ξ1k2ξ2k1ξ1k2 are constructed. In this diagram, a state is represented by a circle, with

its output value inscribed. As the I/O path is read, the current state of each automaton is

a bold circle. After the last iteration, we are left with three automata consistent with the

I/O path. The optimal one is one with a minimum number of distinct states, i.e., the last

one, with three states.

We now follow with a complexity analysis for this algorithm. Generally, as the length of

the I/O path increases, the number of possible candidates quickly increases as well. Among

all I/O paths of a given length, one of the form y1σ1y1σ2y1σ3 · · ·σn−1y1, where each input

is a new input and all the outputs remain the same, constitutes a worst-case scenario, in

the sense that it will generate a maximum number of candidate automata. Indeed, the

use of a new input ensures that at every iteration of the algorithm, we are in case (b),

the only one that creates new candidates. Also, the use of the same output maximizes

the number of candidates created in (b2). Now, given such a path of length n, how many

consistent candidates z(n) = card(An) are there? After iteration k, suppose that we have

z(k) =
∑k

i=1 zi(k) candidates, where zi(k) is the number of candidates in Ak with exactly

i states. Then, at k + 1, we have zi(k + 1) = zi−1(k) + i× zi(k), where zi−1(k) accounts for

the candidates in Ak with i− 1 states incremented to i, via (b1), and i× zi(k) accounts for

the new candidates created from the candidates in Ak with i states, via (b2). This relation

now allows us to calculate, by iteration, the total number z(n) of consistent automata. This

number is depicted in Figure 5.3.1, as a function of the length n of the worst-case I/O path.

65



0 50 100 150 200 250
10

0

10
50

10
100

10
150

10
200

10
250

10
300

length N of the I/O path

nu
m

be
r 

of
 c

an
di

da
te

s 
z(

N
)

Figure 17: Exponential Complexity in the Worst-Case Scenario (semilog).

Note that on this semilog plot, the curve is superlinear, meaning that the number of

automata created by the exhaustive search algorithm is a superexponential function of the

length n of the I/O path. Because of this exploding complexity, the computation time of

the proposed exhaustive search often becomes prohibitive. There should be no surprise

that an algorithm that explicitly generates all possible candidate automata suffers from a

hefty computational burden. As such, the next section presents a Pseudo-Exhaustive Search

Algorithm that explicitly bounds this computational complexity.

5.3.2 Pseudo-Exhaustive Search Algorithm

In order to contain the complexity explosion of the previous algorithm, we apply two heuris-

tic modifications to it:

- We limit the memory resources so that only a fixed number of automata M can be

stored. When this number has been reached, new candidate automata created via

(b2) are automatically discarded.

- We set a maximum complexity cmax. In (b1), if an automaton has more than cmax

states, it is discarded.

With these modifications, the algorithm tries to answer the following question:

Q(cmax,M): ”Given an upper bound M on the number of candidates we can store, can we

find an automaton with at most cmax states, that is consistent with the given I/O path πy?”.
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Depending on how the algorithm terminates, the answer to Q(cmax, M) is:

- ’YES’: when at the last iteration, we have at least one automaton.

- ’NO’: when all automata are discarded because they had more than cmax states.

- ’I-can’t-say’: when all automata have been discarded, with some of them due to the

fact that the maximum number of candidate automata M has been reached.

The results obtained when solving Q(cmax, M) are then used in a high-level iterative

algorithm that increases the bounds until a solution is found. We call this algorithm the

Pseudo-Exhaustive Search Algorithm:

Pseudo-Exhaustive Search Algorithm:

cmax = 1;

while Q(cmax, M) is not ’YES’

if Q(cmax, M) = ’NO’,

increment cmax;

if Q(cmax, M) = ’I-can’t-say’,

double M (memory size);

end of while

At this point, we have found an automata with optimal complexity cmax.

This algorithm performs well for automata with low complexity (typically ≤ 10) . However,

as cmax increases, the amount of memory resources and the time to answer each Q(cmax,

M) quickly become significantly large, often prohibitive. As a consequence, this algorithm

is not best suited for cases with a high complexity optimal solution. For such cases, we

could benefit from a time-limited version of the algorithm. The idea is to specify a time

limit after which, if no solution has been found, the algorithm returns the actual value of

cmax. This value is a lower bound on the complexity of the optimal solution and, as such,

can be used to evaluate the quality of a suboptimal solution.
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5.3.3 Suboptimal Algorithm

Since the exhaustive search solution to the problem can quickly become numerically in-

tractable, we will present a suboptimal algorithm that produces a low-complexity output

automaton A but not always a minimum complexity one. Similarly to the optimal algorithm,

the suboptimal algorithm constructs a consistent automaton sequentially by progressively

reading a given I/O path πy = yℓ1σj1 · · ·σjn−1yℓn
. However, instead of keeping up with

all possible consistent automata at each step, this algorithm greedily selects one of them

randomly. So at each step, we do the following:

(a) If there exists a s′ such that (scurr, σjq , s
′) ∈ T with h(s′) = yℓq+1 , then update the

current state as scurr = s′.

(b) If no s′ exists such that (scurr, σjq , s
′) ∈ T , then let Spossible := {s ∈ S | h(s) =

yℓq+1}. Now for each s ∈ Spossible, suppose the transition (scurr, σjq , s) is added to T

and check whether this causes the automation A to be inconsistent with the given

I/O path πy. To do this, we go through the I/O path and check if (sik , σjk
, sik+1

) ∈ T

then h(sik+1
) = yℓk+1

for k = q, . . . , n − 1. If we find that h(sik+1
) 6= yℓk+1

for any

k then adding the transition causes A to be inconsistent, and thus this transition

should not be added. Of course if we find that (sik , σjk
, sik+1

) /∈ T for some k, then

A is consistent and we do not need to go through the remaining I/O path. If no

inconsistency is found, then add s to the set of candidate states Scandidate.

(b1) If the set Scandidate is empty, then add a new state snew to automaton A, with

h(snew) = yℓq+1 . We also add the transition (scurr, σjq , snew) to the set of

allowable transitions T and let scurr = snew.

(b2) If Scandidate is not empty, then let s be a random state selected from Scandidate

and add the transition (scurr, σjq , s) to T . Set scurr = s.

In step (b), we ensure that a transition to an existing state is added only if this does

not cause an inconsistency with πy, thus guaranteeing that the algorithm terminates with

68



an automaton A consistent with πy at the end of iteration q = n. Since we only add a new

state when absolutely necessary, i.e., when we have no suitable candidates, we do in fact

reduce the number of states. Note that in step (b2), we select the next state randomly from

the set of all possible candidates. This random selection is where a possible suboptimal

candidate may be chosen. We can only make the optimal choice by generating a different

possible automaton for each possible candidate and continuing in this manner. However, as

we saw in previous section this could quickly become numerically intractable as the number

of possible automatons can explode, thus we incorporate this greedy approach to quickly

find a suboptimal solution. In contrast to the high complexity of the previous algorithm,

we prove that this algorithm has cubic complexity. To see this, note that at each iteration

q of the algorithm, we can possibly connect to all of the previous q states and have to go

through n− q steps of the output path πy to check for consistency. Hence at each iteration

q, we have to perform q(n − q) possible operations. Now let f(n) denote the maximum

number of operations necessary for this algorithm to finish given an I/O path of length n,

then

f(n) =
n

∑

q=1

q(n − q), while

f(n + 1) =
n+1
∑

q=1

q(n + 1 − q)

=
n+1
∑

q=1

q(n − q) +
n+1
∑

q=1

q

=

n
∑

q=1

q(n − q) +

n
∑

q=1

q

= f(n) +
n(n + 1)

2
.

Thus we conclude that this algorithm has cubic complexity, i.e. O(n3). Of course, this

reduction in complexity comes at the expense of optimality.

We illustrate a situation where the algorithm may produce a suboptimal solution with a

specific example. Suppose we are given πy = y1σ1y1σ2y2σ1y1σ2y1σ3y2σ1y1σ2y1σ1y2, then a

possible automaton A at iteration i is shown in Figure 18 (a). Note here at iteration i = 4,

we could have added transition (s3, σ2, s1) instead of the transition (s3, σ2, s3) since both
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Figure 18: Different Outcomes of the Suboptimal DFA State Reduction Algorithm.

states s1 and s3 are possible candidates. The resulting automaton with s1 as the next state

is shown in Figure 18 (b), while Figure 18 (a) shows the optimal automaton with |SA| = 3.

This example illustrates how this random choice of next state from all possible candidates

can possibly lead to a suboptimal solution.

5.3.4 Performance Comparison

In order to compare the performance of the three different algorithms, the following table

gathers some experimental results that allow this comparison. The setup when creating this

table is as follows: for each example, a random underlying automaton was created, over

which a random walk was executed in order to produce an I/O path. The manner in which

the entries in the table should be read is as follows:

• The “Experimental setting” reads (α, β, γ, δ) where α is the number of states in the

underlying automaton used for generating the string, β is the size of its input alphabet,

γ the size of its output alphabet, and δ the number of jumps in the random walk (i.e

the length n of the I/O path)
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• The results show the computation time on a standard desktop computer (Pentium 4,

CPU 2.4Ghz, 1.25GB of RAM) together with the complexity (the size of the automa-

ton that was recovered) of the solution in parenthesis.

When no entry is given, the computation could not be performed in a reasonable amount

of time. In this particular case, we terminated the algorithm after 10 minutes had elapsed.

Table 3: Performance Comparison of Three DFA State Reduction Algorithms.

Experimental setting Algorithm 1 Algorithm 2 Algorithm 3
(Exhaustive) (Pseudo-Exhaustive) (Greedy)

(4,2,2,15) 0.031s (4) 0.032s (4) 0.015s (5)
(5,3,3,15) 128.4s (5) 0.032s (5) 0.015s (5)
(6,3,3,100) 5.391s (6) 0.016s (12)
(6,3,3,500) 5.769s (6) 0.078s (61)
(6,3,3,2000) 66.95s (6) 2.360s (170)
(8,3,3,2000) 4.672s (201)
(100,20,20,5000) 13.65s (299)

As can be seen from the table, Algorithms 1 and 2 give the same (optimal) complexity,

which is to be expected. Moreover, Algorithm 2 outperforms Algorithm 1 in terms of com-

putational efficiency. The third algorithm, does not return an optimal solution (expect for

the second example) but, because of its cubic complexity, always terminates in predictable

(polynomial) time.
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CHAPTER VI

A UNIFIED SOFTWARE PACKAGE FOR MODELING

AND SIMULATION

In this chapter, we present a software automated tool for extracting and simulating high-

level (multi-modal) control programs from observed empirical data. The tool is MODEbox

(Mode Optimization and Data Extraction = MODE), available as a MATLAB toolbox at

http://gritslab.ece.gatech.edu/MODEbox.html. It was created to address the challenging

problem of combining all the methods developed in the previous chapters into a single

automated process that can be used for numerous applications.

In the next sections, we describe the modules of MODEbox, we then show how a very

intuitive graphical user interface guides the user through every step of the process, and we

conclude by running the program on an example.

6.1 Modules

Figure 19 shows how the global task of MODEbox, extracting and simulating hybrid system

models from empirical data, is divided into four subtasks corresponding to the four major

modules “Preprocessing”, “MDL-capturing”, “Automaton”, “Simulation”.

Overall, MODEbox takes in a string of input-output measurements, turns it into a

string of symbolic input-output pairs, and produces consistent MDL strings. MODEbox

then constructs a finite automaton capable of producing these MDL strings as a sample

path, which can then be used as a control law to simulate similar trajectories or to control

real systems. We now give a more detailed description of each of the four basic modules.

Module 1: Preprocessing

In the first block in Figure 19, a data string consisting of input-output pairs is being

read by MODEbox. The assumption is that the data is generated by a dynamical system
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Figure 19: Overview of the MODEbox Operational Units.

xk+1 = f(xk,uk), yk = h(xk), and the data string is given by (y1,u1), . . . , (yq,uq), where

the outputs yi ∈ Rp and the inputs ui ∈ Rk. Here, we use boldface to denote variables before

they have been operated on by the Preprocessing module. In fact, this string is operated

on by the Preprocessing module using three different, sequential components, namely

Quantize, Encode and Lebesque. Quantize produces a finite precision representation of

the data string, Encode maps the quantized data strings to symbols, and Lebesgue reduces

the length of the data string by making sure that no consecutive, symbolic input-output pairs

are the same [6]. As a result, the output of this block is a new string (y1, u1), . . . , (yN , uN ),

where N ≤ q and yi ∈ Y, ui ∈ U. The user can specify how many regions (quant.

numbers) the quantization should produce and what quantization method to use (quant.

method). The user can select between four quantization methods: uniform, equi-distributed,

optimal PCM, and optimal DPCM. The choice of a quantization method and a number of

quantization levels is motivated by whether the user is more interested in the final model’s
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complexity or the model’s performance at approximating the original system. The user can

also choose whether or not Lebesgue sampling should be employed (Lebesgue ON/OFF).

Module 2: MDL Capturing

The output from the Preprocessing module is now fed into the MDL Capturing module.

The problem of recovering MDL strings from input-output data was introduced in chapter

2, and different strategies for minimizing certain objectives were developed in chapter 3.

Although minimizing the so-called empirical specification complexity is the preferred objec-

tive, this is not easily achievable. Instead, in the IO2MDL block, the user can choose between

one of four methods that manage this complexity: “MinL-MaxM”, “MaxL-MinM”, “MinL-

LowM”, or “LowL-MinM”. Once a MDL string is produced, the result is fed to Compression,

where “similar” feedback laws and interrupt functions are identified and combined, based

on a user-specified compression parameter that sets the threshold (between 0 and 1) for

how similar they need to be in order to be considered the same. The similarity measure is

the normalized average entropy introduced in 5.1, quantifying the uncertainty in the ran-

dom variable ki(y) (and respectively ξi(y)), where i can be any of the modes that under

consideration. The resulting output from this module is a string (ki1 , ξj1), . . . , (kis , ξjs),

where s ≤ N .

Module 3: MDL to Automata

The resulting MDL string can be thought of as a sample path generated on a finite au-

tomaton, where the output function h(s) = k returns the feedback law the system should

use in state s. Transitions in the automaton are triggered by the corresponding interrupts.

If we let K and Ξ denote the set of feedback laws and interrupt functions respectively, this

module produces a finite automaton A = 〈S, s0, Ξ,K, T, h〉, where S is the state space, s0

the initial state, T : S ×Ξ → S is the transition relation, and h,K, and Ξ are as previously

defined. Moreover, A should not only be such that the MDL string is a sample path of A,

but A should also be of low complexity, in the sense of state-space cardinality. There is an

abundance of literature pertaining to this topic in terms of reducing incompletely specified

finite state machines. This subject was considered in detail in Sections 5.2 and 5.3, where
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algorithms for finding such automata were presented. In fact, methods for obtaining opti-

mal automata are available, but due to the computational complexity associated with this

problem (which is known to be NP-complete), the user can choose not to insist on optimal-

ity through the reduction method input. The two methods implemented in MODEbox

include an exhaustive search algorithm that creates all automata consistent with the MDL

string and a suboptimal algorithm that returns a low complexity solution. Here, the price

for optimality is to be paid in terms of computation time.

Module 4: Simulation/Execution

Once an automaton A has been produced, the obtained hybrid control law can be simulated

to mimic observed behavior and/or used for controlling real systems in the Simulation

module. This last step in the MODEbox flow diagram represents this situation, where

externally obtained measurements y ∈ Rp (either through simulation or from a real exper-

iment) are quantized and encoded (with the same quantization levels (quant. levels)

used in the Preprocessing module) to produce symbolic measurements y ∈ Y. These

measurements are then used for driving the finite automaton through ExecuteAutomata,

and the corresponding control symbols are computed and decoded to produce executable

control signals u ∈ Rk. This is the only block in the toolbox that requires any significant

user input since each simulation is application specific.

6.2 User Interface

The use of MODEbox is made easy by a very intuitive graphical user interface (GUI). This

GUI, accessed by typing MODEboxgui in the MATLAB command window, is represented in

Figure 20. As one can see, the organization of the interface explicitly uses the same modules

described in the previous section. For this reason, a proper use of the GUI should not be

difficult, once one understands how each module works. The two windows at the bottom

display helpful information to guide the user through the different steps. While the right

window plays the role of a workspace window, i.e., displays all the created variables and

their format, the left window prints out report information at each module completion.
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Figure 20: MODEbox Graphical User Interface.

We now describe a succession of operations for using the MODEbox GUI.

0. Save results box:

First, the user enters the path of a *.mat file where results will be saved. At any time, the

“Stored variables” window at the bottom right shows which variables have been saved in

this *.mat file.

1. Data box:

Next, the user loads the input-output data: u and y should be two matrices where the

number of rows corresponds to the dimensions of u and y and the number of columns

corresponds to the number of samples. The user can load u and y by doing one of the

following:
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- specifying the path of a *.mat file where the input (u) and output (y) matrices are

stored.

- loading global variables u and y form the current Matlab workspace in the main

window.

2. Preprocessing box:

The data is then turned into a string of symbolic input-output pairs. The user must specify:

1) the number of quantization levels used for each dimension of y and u.

2) a quantization method from the pop-up menu.

3) whether or not Lebesgue sampling should be used (check box).

3. MDL-capturing box:

Then the I/O string is turned into an alternating sequence of feedback mappings (K) and

interrupt functions (I). The user must choose a recovery method from the pop-up menu.

The user must choose whether compression should be done (check button) and if so, must

set thresholds Kthresh and Ithresh between 0 and 1, 0 meaning that feedback mappings

(respectively interrupt functions) will be merged only if they are absolutely identical, and

1 meaning that all feedback mappings (respectively interrupt functions) will be merged to

the same one.

4. MDL string to Automaton box:

When the previous part is run, the alternating sequence of Ks and Is is automatically turned

into a sequential output automaton. To improve the complexity (number of states) of this

automaton, the user can choose to run an optimal algorithm or a suboptimal algorithm for

a specific time. The algorithms can be run several times and in any order. The program

always keeps the simplest automaton encountered. This automaton can be plotted by

clicking the Draw Automaton button. This option requires that Simulink is installed.

5. Simulation box:

Finally, a simulation can be run by executing the recovered automaton. Here, the user

needs to specify the names of two implemented functions that govern the system evolution:
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(1) xk+1 = f(xk, uk) and (2) yk = h(xk, uk). For example, in the case of the ants, these two

functions could be funicycle and hunicycle. The user would then have to write two files

funicycle.m and hunicycle.m for the implementation of these two functions. Finally, the

simulation requires initial state and control conditions, and a number of iterations before

termination.

Once the simulation is run, the input, output, and state trajectories are stored under

the variable names UU , Y Y , and XX.

Since the MODEbox is designed to be a general tool for use with a variety of different

applications, it is the responsibility of the user to implement the state evolution and output

functions. For the same reason, MODEbox cannot provide a general tool for representing the

simulated trajectories. For example, in the case of the ants, we wrote a function generating

a movie (see Figure 7) from the state trajectories XX = [x; y; θ].

6.3 Example

To better illustrate the MODEbox operation, we consider a simple maze example. Note

that this example is overly simplistic but it is merely to be thought of as a vehicle for making

certain operational aspects explicit. In fact, we will carefully describe how each operational

unit works concretely on the example. The files and instructions for running this example

are available on the MODEbox webpage (http://gritslab.ece.gatech.edu/MODEbox.html).

Suppose data is collected from the observations of a robot going through a maze as

depicted in Figure 21. This data will be given by an input/output string, where the inputs

are variables relevant to the system’s control decisions, and the outputs are signals possibly

used to control the observed system. For this particular maze example, we choose the

outputs to be the color (i.e. 0=black, 1=white) of the cell in front of the robot (y1), on its

left (y2), behind it (y3), and on its right (y4). The input is the corresponding action ( 1-“go

straight”, 2-“turn left”, 3-“U-turn”, 4-“turn right”) taken by the robot in response to the

outputs.
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Figure 21: Observed Trajectory of a Robot Going Through a Maze (used as input data for
MODEbox).

Preprocessing module:

Each data point comes from the set Y × U , where Y = {0, 1}4 and U = {1, 2, 3, 4}. Since

this is already a small discrete set, we do not need to quantize the data any further. The

recommended choice for the quantization levels are thus [2, 2, 2, 2] for the output and [4]

for the input. If so, the data is encoded into a discrete set of symbols Y × U, where

Y = {1, 2, . . . , 16} and U = {1, 2, 3, 4}, resulting in an I/O string.

MDL Capturing module:

A close look at the trajectory in Figure 21 shows that the robot’s behavior is almost always

predictable. Indeed, the robot goes straight whenever possible, and turns left or right when

it is the only possible choice. The only ambiguous situation is when the robot encounters a

wall, with two openings on the left and right (situation that we will note y⊤ = (0, 1, 1, 1)′).

In this case, we see that the robot sometimes chooses to turn left (u = 2) and sometimes

right (u = 4). The above remarks help understand the outcome of each mode recovery

methods, represented in Figure 22. We now analyze these results:

a) The MinL method returns a mode sequence with a minimum length of 4 modes. Were

it not for the existence of distinct inputs when y⊤ is encountered, the system’s trajec-

tory could be represented with one single mode. Here, the first three modes interrupt

when y⊤ is encountered, and their respective actions at this particular situation are
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“turn left”, “turn left”, and “turn right”. The interpretation of the last mode’s in-

terrupt is more subtle. In fact, this last mode interrupts when y = (1, 0, 0, 0)′, i.e., a

situation similar to the starting position, which is not encountered on the trajectory

of the system in this last mode. This means that mode 4 does not interrupt until the

end of the I/O string.

b) The MinM method returns an Always Interrupt Sequence using a minimum number

of 2 distinct modes. The first one turns left when y⊤ is encountered, while the second

one turns right. We also see that this second mode is used only once in the whole

mode sequence. This results from the minimization of the entropy over the set of

consistent AIS.

c) The MinL-LowM method returns a slightly better mode sequence than the MinL

method, after noticing that the second and third mode are identical.

d) The MinM-LowL method returns an improved version of the mode sequence recovered

with the MinM method. The interrupt of the first mode is modified so that now, it

only triggers when y = [1, 0, 1, 0]′ (i.e. when the robot can go straight or back only).

This interrupt, which corresponds to the interrupt triggered between mode 1 and

mode 2 in b), is the only one that needs to be preserved for mode 1.

At this point, we assume that the user selected the mode sequence recovered from

the MinL-LowM recovery method, which is the one with lowest specification complex-

ity. In this case, the mode sequence is of the form k1ξ1k1ξ1k2ξ2k3. Now, if the “com-

pression” box is checked, the alphabet reduction algorithms will simplify this sequence to

k13ξ12k13ξ12k2ξ12k13, after noticing that the feedback mappings k1 and k3 are identical, as

well as the interrupt functions ξ1 and ξ2. Moreover, the feedback mappings k13 and k2 are

very similar, in the sense that they only differ by the action taken when y⊤ is encountered

(namely turn left or right). Consequently, if a big enough similarity threshold γk is selected,

the two modes will be considered similar enough to be merged, resulting in the mode se-

quence k123ξ12k123ξ12k123ξ12k123. Note that the mode k123 is a random process: now, when
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y⊤ is encountered, the probability of turning right is 1
4 and the probability of turning left

is 3
4 .

a) MinL b) MinM

c) MinL-LowM d) MinM-LowL

Figure 22: Maze Example: Outcome for Each Mode Recovery Method.

MDL to Automata module:

Next, the mode sequence is turned into a minimal automaton. Figure 23 shows the optimal

automaton, depending on whether the mode sequence k13ξ12k13ξ12k2ξ12k13 (case a)) or

k123ξ12k123ξ12k123ξ12k123 (case b)) was recovered.
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Figure 23: Maze Example: From Sequential Automata to Minimal Automata.

Simulation module:

Finally, the recovered control procedures are now applied to a robot in order to navigate

through a new maze. To this end, we define two functions f(x, u) and h(x) reflecting the

state evolution and observation of the robot to be controlled. At each time increment, the

control uq = kmq(yq) is applied, where kmq is the feedback mapping of the active mode,

and yq is the quantized version of the output h(xq). The state then evolves according to

xq+1 = f(xq, uq). Figure 24 shows two trajectories corresponding to the simulation of the

two automata represented in Figure 23. Note how the deterministic automaton gets caught

inside a loop, while the stochastic one is eventually able to find its way out.

a) b)

Figure 24: Maze Example: Two Simulated Trajectories.
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PART II

Optimal Multi-Modal Control



The main objective of this second part is to develop rational methods for controlling

complex systems by switching between different modes of operation, resulting in hybrid,

multi-modal control strategies. This work ties the design of feedback controllers (Part I)

with a supervisory control law that dictates the transitions between the system’s operational

modes. The problem is cast in an optimal control setting: given a sequence of behaviors (or

modes of operation), we consider the problem of finding a switching policy that minimizes

a cost functional of the system’s trajectory.

This approach constitutes a compromise between two distinct approaches in robot nav-

igation: the deliberative approach and the reactive approach [3]. As in the deliberative

approach, the trajectory of the system is carefully planned out in advance, in order to min-

imize a performance index. As in the reactive approach, the system’s motion results from

a sequence of autonomous behaviors. However, our approach is neither purely deliberative

nor purely reactive for two reasons: 1) the offline trajectory computation requires that all

changes in the environment in which the system evolves, if any, are known in advance.

This contrasts with the reactive approach which deals with robust systems in unknown and

changing environment 2) except for the switching policy, the system under consideration

is completely autonomous. This contrasts with the deliberative approach where systems,

mostly completely controllable, are controlled using an open loop. Our goal is to apply the

analytic tools of one approach (deliberative) to the control of the switched autonomous sys-

tems of the other approach (reactive). However, we must keep in mind that such methods

can only be efficient in a structured environment.

The cadre of this second part also differs from the previous one in the sense that the

hybrid systems that we consider are now time-triggered. In the MDL framework, these

correspond to devices controlled by mode sequences (k1, T1)(k2, T2)...(kN , TN ) instead of

(k1, ξ1)(k2, ξ2)...(kN , ξN ). Here, T1, T2, ..., TN are ordered elements in R corresponding to

the switching times from one mode to the next one. The problem consists then in choosing

such moments (sometimes along with other switching variables) in order to minimize a cost

functional of the system’s state trajectory.

The organization of this second part is as follows. Chapter 7 shows on a simple example
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how the multi-modal control problem can be cast and solved in an optimal control setting.

In particular, necessary conditions for optimality are derived using calculus of variation

and a numerical algorithm for the design of an optimal switching policy is presented. In

Chapter 8, the methods are progressively modified to comply with more complex systems

and performance indices. These modifications allow us to consider a variety of applications

in robot navigation, curve fitting, data compression, control of epidemics, etc [83, 84, 82,

26, 27, 29]. Finally, this part ends with the discussion of possible extensions to this work

in Chapter 9.
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CHAPTER VII

OPTIMAL CONTROL OF SWITCHED AUTONOMOUS

SYSTEMS

This chapter serves as an introduction to the methodology used for solving a class of optimal

control of switched autonomous problems. The methods are shown on a simple system

(found in [38]) and more complex systems will be considered in the next chapter. The

approach consists of deriving expressions for the partial derivatives of a cost function using

calculus of variations. These expressions are then used with an iterative gradient descent

numerical algorithm to find a set of control variables locally minimizing the cost function.

The effectiveness of the approach is shown through a simple simulation example where a

supervisory controller switches its attention between two subsystems.

7.1 Problem Formulation

The state evolution x(t) ∈ Rn of a switched autonomous system is given by










x(T0) = x0,

ẋ(t) = fi(x(t)), t ∈ (Ti−1, Ti), i = 1, ..., N,
(12)

where {fi}
N
i=1 is a given finite sequence of continuously differentiable functions from Rn to

Rn. The initial state x0 and initial and final times T0 and TN are also given. The control

variables are the instants T1, ...TN−1 when the system switches from one mode to another.

These switching times are to be chosen in order to minimize a given cost function

J =

∫ TN

T0

L(x(t))dt, (13)

where L is a continuously differentiable function from Rn to R.

Example:

A good illustration is in multi-process control, where a collection of p unstable dynamical

systems are to be controlled. At every instant, the controller can only control a subset
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m < p of dynamical systems. To avoid optimal solutions exhibiting a Zeno phenomenon,

the controller can only switch attention a finite (given) number of times. Figure 25 shows

an example of such a process, where two unstable scalar systems x1(t) and x2(t) are to be

controlled. We assume that the controller can only control one of the two systems at a

time, so it switches attention from one to another. Using the notation x(t) =







x1(t)

x2(t)






,

the global dynamics are:

ẋ(t) =







−1 0

1 2






x(t) = A1x(t), t ∈ [0, T1)

ẋ(t) =







1 1

0 −2






x(t) = A2x(t), t ∈ [T1, T2)

ẋ(t) = A1x(t), t ∈ [T2, T3)

ẋ(t) = A2x(t), t ∈ [T3, 1],

with initial conditions x(0) = [1, 0]′. Figure 25 shows the state evolution when the switching

times (the control variables) are T1 = 0.3, T2 = 0.5, T3 = 0.7.

0 0.2 0.4 0.6 0.8 1
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Figure 25: State Trajectory of a Switched Autonomous System (example).

7.2 Necessary Optimality Conditions

As stated, the problem is a parameter optimization problem. Solving it, as such, requires

the explicit solution of the state equations, and their dependency on T1, T2, ..., TN−1. In
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the previous example, an explicit solution can be found, but we are interested in the more

general case where such solutions are not available. We, therefore, solve the problem using

classical variational methods. The idea is that analytic expressions for the partial derivatives

of the cost function with respect to the control variables can be obtained by looking at

the cost variation induced by an infinitely small perturbation in the control variables. A

necessary condition for optimality is the cancellation of all these partial derivatives. We

show here a detailed derivation.

Consider the two following systems:

• an “unperturbed system” with control variables T = (T1, ...TN−1), state trajectory

x(t), and performance index J(T ) =
∫ TN

T0
L(x(t))dt.

• a “perturbed system” obtained from the previous one when the control variables are

slightly modified. The control variables are now T + ǫθ = (T1 + ǫθ1, ..., TN−1 + ǫθN−1)

with ǫ << 1, the new state trajectory is x(t) + ǫη(t), and the new performance index

is J(T + ǫθ) =
∫ TN

T0
L(x(t) + ǫη(t))dt.

We first adjoin the dynamical equations of the system within each mode via a Lagrange

multiplier λ defined on each [Ti−1, Ti). The cost equations now write

J(T ) =
N

∑

i=1

∫ Ti

Ti−1

[L(x(t)) + λ(fi(x(t)) − ẋ(t))]dt

J(T + ǫθ) =

N
∑

i=1

∫ Ti+ǫθi

Ti−1+ǫθi−1

[L(x(t) + ǫη(t)) + λ(fi(x(t) + ǫη(t)) − (ẋ(t) + ǫη̇(t)))]dt,

where θ0 = θN = 0. If we let A =
∑N

i=1

∫ τi+ǫθi

τi−1+ǫθi−1
[Li(x) + λ(fi(x) − ẋ)]dt, then

J(T ) =

N
∑

i=1

∫ Ti−1+ǫθi−1

Ti−1

[L(x) + λ(fi(x) − ẋ)]dt + A −
N

∑

i=1

∫ Ti+ǫθi

Ti

[L(x) + λ(fi(x) − ẋ)]dt

=
N−1
∑

i=0

∫ Ti+ǫθi

Ti

[L(x) + λ(fi+1(x) − ẋ)]dt + A −
N

∑

i=1

∫ Ti+ǫθi

Ti

[L(x) + λ(fi(x) − ẋ)]dt

= A +
N−1
∑

i=1

ǫθi[L(x) − L(x) + λ(fi+1(x) − fi(x))]|t=T+
i

+ o(ǫ)

= A −
N−1
∑

i=1

ǫθiλ(T+
i )[fi+1(x(Ti)) − fi(x(Ti))] + o(ǫ)
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and

J(T + ǫθ) = A + ǫ
N

∑

i=1

∫ Ti

Ti−1

[
∂Li

∂x
η + λ(

∂fi

∂x
η − η̇)]dt + o(ǫ)

= A + ǫ
N

∑

i=1

∫ Ti

Ti−1

[
∂Li

∂x
+ λ

∂fi

∂x
+ λ̇]η dt − ǫ

N
∑

i=1

[λη]Ti
τi−1

+ o(ǫ)

By substraction and keeping only the first-order elements, we get the directional derivative

(in the θ-direction)

∇Jθ = lim
ǫ→0

J(T + ǫθ) − J(T )

ǫ

=
N

∑

i=1

∫ Ti

Ti−1

[
∂L

∂x
+ λ

∂fi

∂x
+ λ̇]η dt −

N
∑

i=1

[λη]Ti

Ti−1
+

N−1
∑

i=1

θiλ(T+
i )

[

fi+1(x(Ti)) − fi(x(Ti))
]

.

At this point, we can choose λ so that all η-terms disappear. In other words, for a particular

choice of the Lagrange multipliers, no variation in the state trajectory need to be computed

(this is the purpose of the Calculus of Variation method, which avoids the explicit com-

putation of the induced state variation). If we choose λ continuous on (T0, TN ) and such

that










λ̇(t) = −∂L
∂x

(x(t)) − λ(t)∂fi

∂x
(x(t)) t ∈ [Ti−1, Ti], i = 1, . . . , N

λ(TN ) = 0

We are then left with

∇Jθ =
N−1
∑

i=1

θiλ(Ti)
[

fi+1(x(Ti)) − fi(x(Ti))
]

.

By identification with ∇JT =
∑N−1

i=1
∂J
∂Ti

θi, we get an expression for the partial derivatives

of J with respect to the control variables. A necessary condition for optimality is that the

directional derivative is zero in every possible direction θ = (θ1, ...θN−1), where the θi are

independent. This is equivalent to having all the partial derivatives ∂J
∂Ti

, i = 1, ..., N − 1

equal to zero. We summarize these results in the theorem below:

Theorem 7.2.1 The system with equations











x(T0) = x0,

ẋ(t) = fi(x(t)), t ∈ (Ti−1, Ti), i = 1, ..., N,
(14)
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makes the performance index

J =

∫ TN

T0

L(x(t))dt (15)

stationary if the switching times T1, ..., TN−1 are chosen as follows:

Euler Lagrange Equations










λ̇(t) = −∂L
∂x

(x(t)) − λ(t)∂fi

∂x
(x(t)) t ∈ [Ti−1, Ti), i = 1, . . . , N

λ(TN ) = 0
(16)

Optimality conditions:

∂J

∂Ti
= λ(Ti)

[

fi+1(x(Ti)) − fi(x(Ti))
]

= 0, i = 1, ...N − 1. (17)

7.3 Numerical Algorithm

The reason why the formula derived above are particularly easy to work with is that they

give us access to a very straight-forward numerical algorithm.

Algorithm 7.3.1 Steepest Descent Algorithm

1) Start with an initial guess for the control vector T = (T1, ...TN − 1).

2) Numerically compute the state x(t) forward in time from T0 to TN using Equation

(14).

3) Numerically compute the co-state λ(t) backward in time from TN to T0 using Equa-

tion (16).

4) Compute the gradient ∇J(T ) = ( ∂J
∂T1

, ..., ∂J
∂TN−1

) using Equation (17)

5) Update the control vector in the direction of negative gradient, i.e replace T by T −

γ∇J(T ), where γ > 0 is the stepsize.

6) Repeat steps 2 to 5 until a convergence criterion is met, e.g., ||∇J(T )|| < ǫ for some

small ǫ > 0.

The fact that the same state x(t) and costate λ(t) are used to compute all the partial

derivatives ∂J
∂Ti

results in a fast gradient computation. Given a reasonable convergence
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criterion and a judicious stepsize, the algorithm converges to a local minimum within a few

iterations. For different initial guesses of the control variables, the algorithm may converge

to different local minima. Often, an a priori understanding of the optimization problem

will help determine a “clever” guess, which is likely to converge to the global minimum. In

the absence of such knowledge, the common strategy is to try different executions of the

algorithm for different initial guesses. The fast convergence of the algorithm particularly

allows such heuristic methods.

Example:

We now show how Algorithm 7.3.1 is successfully applied to the example introduced earlier.

The objective is to find switching times minimizing the performance index J =
∫ 1
0 ||x(t)||2dt.

Starting with T1 = 0.3, T2 = 0.50, T3 = 0.8, the algorithm quickly converges to the solution

T ∗
1 ≈ 0.38, T ∗

2 ≈ 0.51, T ∗
3 ≈ 0.72. Figures 26(a)(b)(c) show the value of the cost function J ,

the control variables T1, T2 and T3, and the L2-norm of J at each iteration. Figure 26(d)

compares the state trajectories at the beginning (dotted) and end (solid) of the execution.

At every iteration, the new control vector was computed using the Armijo stepsize. By

providing a suboptimal solution to the problem of minimizing J in the direction of −∇J ,

the Armijo stepsize, introduced in [4], ensures a fast convergence both in the number of

iterations and the overall computation time.
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Figure 26: Optimal Switching Times Using Gradient Descent Algorithm (example).
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CHAPTER VIII

APPLICATIONS AND GENERALIZATIONS

In this chapter, the method presented in Chapter 7 is used in a variety of applications.

Although the approach remains the same, we progressively bring more complexity in the

systems dynamics (jumps at the switching times, delays, etc) and performance indices (final

cost, switching costs, distance to a given curve, etc). Accordingly, the numerous publications

[26, 27, 29, 82, 83, 84] based on this work span a quite diverse number of applications

including robot navigation, curve fitting, data compression, control of epidemics, etc.

8.1 Optimal Sample Time Selections for Interpolation and

Smoothing

Here we are interested in the ability of the switched autonomous system to follow a given

curve. This can be interpreted as maximizing the performance as defined in Chapter 4.

To this end, a new cost function J =
∫ TN

T0
L(x(t), h(t))dt is chosen, where h(t) is the pa-

rameterized curve to approximate. For example, by setting L(x(t), h(t)) = (x(t) − h(t))2,

we intend to minimize the mean squared error between the original curve and its hybrid

approximation. Also, to comply with the dynamics of many curve fitting models, we now

let ẋ(t) = fi(x, t, T ), where T = [T0, T1, ..., TN ]. Note how the trajectory of the generated

system now explicitly depends on the switching times. By following the same development

as above, we establish the theorem below

Theorem 8.1.1 The system with equations











x(T0) = x0,

ẋ(t) = fi(x(t), t, T ), t ∈ (Ti−1, Ti), i = 1, ..., N,
(18)

makes the performance index

J =

∫ TN

T0

L(x(t), h(t))dt (19)
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stationary if the switching times T1, ..., TN−1 are chosen as follows:

Euler Lagrange Equations










λ̇(t) = −∂L
∂x

(x(t), h(t)) − λ(t)∂fi

∂x
(x(t), t, T ) t ∈ [Ti−1, Ti), i = 1, . . . , N

λ(TN ) = 0
(20)

Optimality conditions:

∂J

∂Ti
=

∫ TN

T0

λ(t)
∂fξ(t)

∂x
(x(t), t, T )dt+λ(Ti)

[

fi+1(x(Ti))−fi(x(Ti))
]

=0, i = 1, ..., N−1. (21)

We now apply the previous theorem together with Algorithm 7.3.1 for the optimal

sample selection in two curve fitting applications.

8.1.1 Linear Approximation

In this simple application, a curve is approximated by drawing straight lines between points

on the curve. Assuming the function to approximate is h : [t0, tf ] → R, the approximating

function x is such that for i = 1, ..., N + 1 and ∀t ∈ [τi−1, τi)

x(t) = h(Ti−1) + (t − Ti−1)
h(Ti) − h(Ti−1)

Ti − Ti−1
.

The state derivative on each segment [Ti−1, Ti) only depends on the switching times Ti−1

and Ti

ẋ(t)=fi(Ti−1, Ti)=
h(Ti)−h(Ti−1)

Ti−Ti−1
on [Ti−1, Ti).

We now apply the developed algorithm to the problem of determining T1, ..., TN−1 in order

to minimize the cost function

J =

∫ TN

T0

(h(t) − x(t))2dt.

Figure 27 shows how the algorithm converges. The following parameters were used:






















h(t) = 5 sin( 2πt
300) + 3 sin( 2πt

100) + t2

20000 − t
50

[t0, tf ] = [0, 200] , N = 5 and γ = 1.

The lowest picture in Figure 27 shows how fast the algorithm converges. The optimal

solution is reached after very few iterations, in spite of a “bad” initial guess and a constant

step size l.
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Figure 27: Optimal Linear Approximation.

8.1.2 Generalized Smoothing Splines

Generalized smoothing splines bring an optimal control flavor to data interpolation . In a

recent paper [78], Sun shows how the input of a single-input single-output linear system

ẋ = Ax + Bu, x ∈ Rn, u ∈ R

y = Cx, y ∈ R.
(22)

should be chosen in order to drive the output of the system close to a given sequence of

data points. These data points are given by (T1, ξ1), ..., (TN−1, ξN−1) where the ξi ∈ R are

measurements obtained from ξi = h(Ti) + ǫi, given some underlying curve h(t), corrupted

by measurement noise ǫi, i = 1, ...N−1. The control u is chosen to minimize a cost function

∫ TN

T0

u2(t)dt + ρ
N−1
∑

i=1

ωi(y(Ti) − ξi)
2. (23)

Here, the parameters ωi > 0 allow us to choose the relative importance of interpolating

each data point. The smoothing parameter ρ is a more interesting tuning parameter. When

ρ is high, more importance is paid in closely approximating (interpolating) the ξi. On the

contrary, when ρ is low, more importance is paid in generating a slowly varying (smooth)

approximation. The effect of ρ on the interpolation/smoothing is shown in Figure 28 (bor-

rowed from [78]), where two generalized smoothing splines are constructed for the same set
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of data points, but for different values of ρ.

Figure 28: Generalized Smoothing Splines with Different ρ Parameter.

This method of using smoothing generalized splines has for instance been applied by [58]

to the production of calligraphic Japanese characters. Three decoupled systems with scalar

inputs and outputs are used. The output of the first system corresponds to the x-position of

the brush, the second to its y-position, and the third to the thickness of the stroke. The idea

is to let the data points encode these variables at strategically selected points, with quite

remarkable results. However, it is not clear how exactly these points should be selected.

Here, we can apply the results of theorem 8.1.1 for the optimal sample selection.

Given the dynamics in Equation (22), the (unique) optimal solution to the problem in

Equation (23) was in [78] found to be

u(t) = γ(t)T (I + WΓ)−1Wξ,
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where

W=



















ω1 0 · · · 0

0 ω2 · · · 0

...
...

. . .
...

0 0 · · · ωN



















, ξ=



















ξ1

ξ2

...

ξN



















=



















h(τ1)

h(τ2)

...

h(τN )



















,

γ(t)=



















γ1(t)

γ2(t)

...

γN (t)



















, γi(t)=











CeA(τi−t)B if t ≤ τi

0 otherwise,

and where the Grammian Γ is given by

Γ =

∫ tf

t0

γ(s)γ(s)T ds ∈ RN×N .

Note that the definition of the basis functions γi(t) implies that u may be discontinuous

at τi. In fact, we could define a new set of basis functions

ζi(t)=









































0

...

0

CeA(τi−t)B

CeA(τi+1−t)B

...

CeA(τN−t)B









































, t∈ [τi−1, τi), i=1, . . . , N,

with ζN+1 = 0. Hence we have the new system

ẋ = Ax + Bu

= Ax + BζT
i (t, τ)(I + WΓ(τ))−1Wξ(τ)

, fi(x, t, τ), t ∈ [τi−1, τi)

that is of the prescribed form. With regards to this system, we choose the following perfor-

mance index:

J =

∫ TN

T0

(Cx(t) − h(t))2dt
(

i.e., L(x(t), h(t)) = (Cx(t) − h(t))2
)

.
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Figure 29: Evolution of the Sample Times when Creating Smoothing Splines for the Un-
derlying Curve h(t) = sin(5t).

Numerical Simulation

We apply this method to the system

A =













0 1 0

0 0 1

0 0 0













, B =













0

0

1













, C = (1, 0, 0),

which gives the standard cubic smoothing spline.

Results from applying the gradient descent method using the Armijo step-size over 40

iterations are shown in Figures 29-31. In that example, the underlying curve was given by

h(t) = sin(5t), and four sample times where selected with ωi = 1, i = 1, . . . , 4.
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8.2 Optimal Control of Switched Delay Systems

In this section, we extend the results of Theorem 7.2.1 to systems with delays. Without

loss of generality, we consider systems having a single crisp delay (point delay) τ and with

separable continuous modes defined by the functional differential equations:

ẋ(t) = fi(x(t)) + gi(x(t − τ)) (24)

We first study the effect of a perturbation in the switching time (Ti → Ti + ǫθi). It should

be noted that the following analysis (in particular, Theorem 8.2.1, Tables 4 and 5, and their

interpretation) is the work of Professor Erik Verriest [82].

Definition 8.2.1 A function y is said to be Ck at t0 if the kth derivative of y is continuous

at t0, but the k + 1st is not.

Assume that a single controlled switch occurs at time Ti, switching from mode i to

i + 1. Also, assume that the state variable x is continuous at every mode switch. This

makes ẋ(t) discontinuous at Ti. Consequently, x(t) and f(x(t)) have a ‘kink’ (i.e. are non-

differentiable). From the continuity assumption, x(t) and f(x(t)) are C0 at Ti. But then

x(t − τ) and g(x(t − τ)) are C0 at Ti + τ . In turn, this implies that ẋ(t) is C0 at Ti + τ ,

inducing again C1 behavior in x(t) and f(x(t)) at Ti + τ and C1 behavior in x(t − τ) and

g(x(t − τ)) at time Ti + 2τ , and so on. We summarize the chain of events in the following

table:

Table 4: Delay System Behavior Induced by a Continuous Mode Switch at Ti.

Ti Ti + τ Ti + 2τ ... Ti + kτ

ẋ(t) jump C0 C1 ... Ck−1

x(t) C0 C1 C2 ... Ck

f(x(t)) C0 C1 C2 ... Ck

x(t − τ) C0 C1 ... Ck−1

g(x(t − τ)) C0 C1 ... Ck−1

We now establish a simple result:

Theorem 8.2.1 If y is Ck at t0, then the variation of y induced by the perturbation t0 →

t0 + ǫθ is of order k + 1 in ǫθ.
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Proof: We note that the variation involves only the effect due to the shift of the switch of behavior from t0

to t0 + θ. Since this is only visible in the (k + 1)-st derivative,

∆t0y , y+(t+0 ) − y−(t−0 ) ≅ [y
(k+1)
+ − y

(k+1)
− ]

(ǫθ)k+1

(k + 1)!
.

In particular, if y is a continuous integrand, the first order variation of its integral

(as in the performance index) will not involve ‘future’ additional contributions due to the

propagation effect of the delay. Such additional contributions do occur however, if the

integrand has jumps, as with impulsive control. Table 5 shows indeed that, in the case of

impulsive control, x is C0 at Ti + τ . The first order variation of its integral will thus involve

additional contributions at all instants Ti + τ .

Table 5: Delay System Behavior Induced by an Impulsive Mode Switch at Ti.

Ti Ti + τ Ti + 2τ ... Ti + kτ

ẋ(t) jump jump C0 ... Ck−2

x(t) jump C0 C1 ... Ck−1

f(x(t)) jump C0 C1 ... Ck−1

x(t − τ) jump C1 ... Ck−2

g(x(t − τ)) jump C1 ... Ck−2

In the case of an impulsive control (studied in the next section), if a consecutive switch

Ti+1 happens before Ti + τ , another ǫθ perturbation will be induced before all ǫθ pertur-

bations induced by the previous switch at Ti are generated. Therefore, the bookkeeping of

all perturbation terms may get quite complicated, in this more general case, especially in

view of the fact that all possibilities (of relative positions of switching instants) need to be

taken into account. To avoid such bookkeeping, we will require that ∀i, Ti+1 > Ti + τ . In

other words, we will assume that the systems considered all have a refractory period, in

the sense that once an action is taken, it takes a non-infinitesimal amount of time (here

equal to the delay τ) before a subsequent action can be taken. Refractory periods are

ubiquitous in physiological systems (e.g., neural spike propagation), electrical systems (e.g.,

time to recharge a capacitor), and manufacturing systems (e.g., refurbishing, restocking) to

name a few. Refractory periods also provide a safeguard towards unwanted high frequency

switching.
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In the case of a continuous switch (studied in this section), the immediate effect of a

variation in a single switch Ti is represented in Figure 32. Here, the induced perturbation

Tj Tj + ǫθj t

MODE j MODE j + 1

∆Tj
X

x(Tj) + ẋ(Tj)ǫθj

Figure 32: Optimal Control of Continuous Switched Systems: Induced Perturbation at a
Switch.

∆Ti
x is propagated to consecutive modes. As each subsequent switch will add a similar

term, it is clear that the effects of such perturbations will accumulate in subsequent modes,

and keeping track of all these effects will complicate a derivation requiring the explicit

computation of perturbations. In keeping with the philosophy of calculus of variations, we

shall avoid having to keep track of these by introducing independent Lagrange multipliers

for each subinterval. As we showed in the derivation of necessary conditions for the non-

delay case in the previous section, these can be chosen in a very convenient way in order

to avoid computation of the induced variations. A similar method results in the theorem

below. For a detailed derivation, please refer to [82].

Theorem 8.2.2 The separable mode switched system

ẋ(t) = fi(x(t)) + gi(x(t − τ)) (25)

makes the performance index

J =
N

∑

i=1

∫ Ti

Ti−1

Li(x(t))dt + Φ(x(T )) (26)

stationary with fixed initial time T0 and terminal time TN if the switching times Ti, i =

1, . . . , N−1 are chosen to satisfy:
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Euler-Lagrange Equations: Ti−1 < t < Ti; i = 1, . . . , N − 1,

λ̇i = −

(

∂Li

∂x

)T

−

(

∂fi

∂x

)T

λi − χ+
i

(

∂gi

∂x

)T

λτ
i − χ−

i+1

(

∂gi+1

∂x

)T

λτ
i+1, (27)

λ̇N = −

(

∂LN

∂x

)T

−

(

∂fN

∂x

)T

λN − χ+
N

(

∂gN

∂x

)T

λτ
N .

(28)

where λτ
i = λi(t + τ) and the χ are indicator functions:

χ+
i (t) = 1 if t ∈ [Ti−1, Ti − τ ], and 0 otherwise,

χ−
i+1(t) = 1 if t ∈ [Ti − τ, Ti] , and 0 otherwise,

χ+
N = 0 is understood if TN−1 > T − τ .

Boundary Conditions:

λN (TN ) =

(

∂Φ

∂x

)T

(29)

λi(T
−
i ) = λi+1(T

+
i ) (30)

Optimality Conditions:

∂J

∂Ti
= Hi(T

−
i ) − Hi+1(T

+
i ) (31)

where Hi = Li(x) + λi(f(x) + g(xτ )) and xτ (t) = x(t − τ) (Hamiltonians).

Note how, in Equation (26), we added to the generality of the original cost function in

Equation (15) by 1) considering a running cost L depending on the number of past impulses

(i.e. Li instead of L) 2) adding a final cost Φ(x(T )).

Example:

For the simple delay system (τ = 1) with modes

ẋ(t) = 1 − x(t−1)

ẋ(t) = −1 + x(t−1)

and initial condition x(t) = 0 for t < 0, the performance index

J =
1

2

∫ 5

0
[x(t) − 1.5]2 dt
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is evaluated explicitly for two switches. The gradient algorithm converges in a few steps.

The state trajectory of the solution is shown in Figure 33 for the optimal mode sequence

1 → 2 → 1. Figure 34 shows the cost descent (in green) in the T1− T2 plane, where closed

curves represent iso-J and the red line delimits the area of the graph where the refractory

period assumption is respected.
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state evolution of the optimal solution

Figure 33: State Trajectory of the Optimal Solution.
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Figure 34: Gradient Descent.
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8.3 Optimal Impulsive Control of Switched Autonomous
Systems

In this section, we push the generalization a little further by now considering systems with

discontinuities at the switching times. We assume these discontinuities are given by a set

of jump amplitude functions {Gi}
N−1
i=1 such that

x(T+
i ) = x(T−

i ) + Gi(x(T−
i ), ui, Ti), i = 1, ..., N − 1. (32)

In this equation, the jump variables u1, ..., uN−1 constitute a new set of control variables,

in addition to the switching times T1, ..., TN−1. Equation (32) allows for a diversity of

discontinuities including resets (Gi = −x(T−
i )) and free jumps (Gi = ui). This problem is

also more general in the sense that setting Gi = 0 should produce the same results as in

the previous sections.

As before, we assume that the switched autonomous systems under consideration present

delayed dynamics:

ẋ(t) = fi(x(t)) + gi(x(t − τ)), t ∈ (Ti−1, Ti), i = 1, ..., N. (33)

Finally, the cost function

J =
N

∑

i=1

∫ Ti

Ti−1

Li(x(t))dt +
N−1
∑

i=1

Ki(x(T−
i ), ui, Ti) + Φ(x(TN )) (34)

presents additional terms Ki (i = 1, ..., N − 1) accounting for punctual costs associated

with the jumps (Note that the notations can be eased by adjoining the final cost to these

punctual costs, i.e., set KN (x(T−
N ), uN , TN ) = Φ(x(TN ))).

Figure 35 shows the induced state variation at Ti and Ti + τ when a slight variation

Ti → Ti + ǫθi is applied.

Figure 35 illustrates what was mentioned in the previous section: the jump at Ti results

in a ‘kink’ (C0-behavior) at Ti + τ . The first order of the cost variation will thus involve

contributions at Ti and Ti + τ . Both contributions are propagated through the next modes.

Also, each variation in the control variable ui → ui + ǫνi contributes to two cost variations:

an immediate one through K, and an indirect one through the integration (via L) of an
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Ti Ti + ǫθi t

ξ(t) = i

x̃(t)x(t)

ξ(t) = i + 1

ξ̃(t) = i ξ̃(t) = i + 1

x̃(t)x(t)

Ti+τ Ti+τ +ǫθi

ξ(t) ξ(t)

ξ̃(t) ξ̃(t)

Figure 35: Optimal Impulsive Control of Switched Systems: Induced Perturbation at Ti

and Ti + τ .

induced state variation. Again, to avoid an explicit computation of such variations, we

adjoin the dynamic equations in (33) and discontinuity equations (32) to the cost equation

(34) via two sets of Lagrange multipliers λi and µi, i = 1, ..., N . Within the Calculus

of Variations framework, a convenient choice of these Lagrange multipliers leads to an

amenable necessary condition for optimality. Again, we choose to present just the final

theorem. A full derivation can be found in [83].

Theorem 8.3.1 The impulsive system in Equations (32)-(33) attains a stationary point of

the performance index J in Equation (34) if the jump variables ui, and switching times Ti

are chosen as follows:

Define:

Hi = Li + λi[f(x) + g(xτ )] (35)

Mi = Ki + µiGi (36)

Euler-Lagrange Equations

λ̇i = −
(

∂Li

∂x

)′
−

(

∂fi

∂x

)′
λi − χ+

i

(

∂gi

∂x

)′
λτ

i

−χ−
i+1

(

∂gi+1

∂x

)′
λτ

i+1

with Ti−1 < t < Ti, i = 1, . . . , N − 1

λ̇N =−
(

∂L
∂x

)′
−

(

∂fN

∂x

)′
λN−χ+

N (t)
(

∂gN

∂x

)′
λτ

N

(37)
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Boundary Conditions

λN (TN ) = 0, (38)

λi(T
−
i ) = λi+1(T

+
i ) +

(

∂Mi

∂x

)′

, i = 1 . . . N (39)

Multipliers

µi = λi+1(T
+
i ), i = 1 . . . N (40)

Optimality Conditions

∂J

∂ui
=

∂Mi

∂u
= 0 (41)

∂J

∂Ti
=

∂Mi

∂Ti
+ Hi(T

−
i ) − Hi+1(T

+
i ) + λi+1(Ti + τ)[g(X(T+

i ) − g(X(T−
i )] (42)

To optimally solve for both the switching times Ti and the jump parameters ui, the

partial derivatives in the theorem above are then used in a modified version of the gradient-

descent algorithm 7.3.1, now accounting for the two sets of control variables.

The system in Equations (32) and (33) can fit many applications. We choose to present

two of them.

Application 1 - Control of Epidemics:

In epidemiology, a common and successful approach for modeling and simulating epi-

demic outbreaks is to divide an entire population into a finite number of relevant classes or

compartments [22, 46]. Perhaps the most famous example, the SIR model, used to model

infectious diseases such as measles, mumps and rubella, is represented in Figure 36. The

dynamic equations modeling the flux of populations from one class to another are usually

nonlinear.

Some diseases require more complex models, i.e., more compartments to account for

their specific transmission (genetically, sexually, vector transmitted diseases, etc). In most

models, the characteristic times of a disease, e.g., incubation period, recovery period, or

immunization period, are represented via transition rates. More realistic models integrate
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Figure 36: SIR Model.

delays, but they bring a lot more complexity to their analysis. Figure 37 shows a model

for malaria found in [2], where two populations 1 and 2 (respectively humans and female

mosquitoes, the “vectors”) are each divided into three compartments S for susceptible, E

for exposed, and I for infected. The dynamic equations of all compartments are coupled,

nonlinear, and involve two delays representing the incubation period for each population.

abmS1I2

S1 E1 I1

S2 E2 I2

abmS1

τ1
I2

τ1

acS2I1 acS2

τ2
I1

τ2

µ1E
1 µ1I

1

µ2E
2 µ2I

2

Figure 37: Two-Population Two-Delay Malaria Model.

For such models, many prevention or cure techniques (quarantine, vaccination, vector

eradication, etc.) can be modeled as a forced transfer of a part of a population from one

class to another. Moreover, this transfer can be assumed instantaneous, when compared

to the time scale of an epidemic. Hence, our results on optimal impulsive control of delay

systems can be used to determine strategies for controlling the epidemic spread of a disease.

An example is shown in Figure 38, where an optimal pulse vaccination strategy is found for

the malaria model in Figure 37. Here, we assume that the control consists of a preventive

vaccine applied to a portion of the susceptible class of humans. The cost function to
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minimize is

J(u, T ) =
cu2

T
+

∫ tf

t0

I1(t)dt.

The integral term measures the burden of disease (total time spent sick in the population)

during the epidemic, and the quadratic control cost reflects the added logistical burden for

mass production of vaccines under time pressure. The plots on Figure 38 show the state

and costate trajectories of the optimal solution, for one impulse. The costates become of

interest when we relate them to “sensitivities” [8].

Figure 38 shows a graphical user interface where the user first selects the parameter

values and a initial guess for the control vectors T and U (their length, i.e., the total

number of impulses, is free). By clicking the “run” button, the performance index J , its

partial derivatives, the state trajectory, and the costate trajectory for this particular control

vector are computed (and plotted). Then, the user can improve the performance index by

selecting a new control vector in the direction of negative gradient. To do so, the user

must specify two stepsizes γT and γU , then click the “update control” button. The new

performance index, partial derivatives, and trajectories are computed and plotted after the

“run” button is pressed again. By repeating the process (“update control”/“run”), the user

can eventually make the performance index converge to a local minimum.
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Figure 38: Optimal Impulsive Strategies for the Control of Malaria.
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Application 2 - Hybrid Function Approximation:

Here, the impulsive control of switched autonomous systems is used to optimally approx-

imate a given continuous curve. The main application for this method is data compression,

where the original trajectory is represented through a mode sequence, switching times, and

jump heights.

In a similar way to what was done in Section 8.1, the problem formulation of Equations

(32),(33), and (34) is adjusted to accommodate a tracking application [27]. First, the

integrand L(x(t), x̃(t)) in the performance index is now a function of both the state x of the

approximating system and the state x̃ of the system to approximate. This change allows

for a cost criterion of the form
∫ tf
t0

||x(t) − x̃(t)||2dt. Also, the jumps are now modeled by

x(T+
i ) = x(Ti−) + Gi(x(T−

i ), x̃(Ti), ui, Ti). Of particular interest, here, is the dependency

on the value x̃(Ti) of the original trajectory at the moment of the switch. For example, by

setting Gi = x̃(Ti) − x(T−
i ), we can consider problems where the tracking error is reset to

zero at every mode switch.

Figure 39 illustrates an example where a continuous function is optimally approximated

by piecewise constant curves using nine segments. The top picture shows the optimal

solution when the value of the switched system is reset to the value of the continuous curve

at each mode switch (i.e. Gi = x̃(Ti) − x(T−
i )). The bottom picture shows the optimal

solution when the switched system is free to jump to any value at each mode switch (i.e.

Gi = ui).

Figure 40 shows a more complex setting where a continuous curve is approximated by

a piecewise linear system with resets. On each segment, the dynamics of the autonomous

hybrid system are computed using a Taylor expansion of the target function at the switching

time. This result in ẋ(t) = A(Ti)x(t) + B(Ti), t ∈ (τi, τi+1), where A(Ti) and B(Ti) involve

the zero, first, and second derivatives of x̃ at the reset time Ti. Note here that it is assumed

that the original and the approximating curve both start from the same value after resets.

This, however, can easily be remedied by incorporating the rest values as free parameters

in the optimization problem.
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Figure 39: Optimal Piecewise Constant Approximation with Resets or Free Jumps.
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Figure 40: Optimal Approximation Using Piecewise Linear Systems.
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CHAPTER IX

EXTENSIONS AND CONCLUSIONS

9.1 Optimal Number of Switches

All the optimal control problems solved in Chapters 7 and 8 were done for a fixed number

of modes N . However, since the partial derivatives of J are all computed from the same

state and costate trajectories, the computation of the gradient does not suffer much from

the number of time switches. In fact, most of the computation time is spent computing

the state and costate trajectories only. Consequently, the fast convergence of the method,

regardless of N , allows us to solve each problem for an increasing number of switches.

Hence, the problem of minimizing J with respect to the time switches can be extended to

the number of switches as well. In this perspective, an extra term penalizing the number of

switches should be added to J if one wants to avoid cases where the optimal solution would

involve an infinite number of switches (the so-called Zeno-phenomenon, see [54]).

As an illustration, we solved a similar problem to the one in Chapter 7 for an increasing

number of mode switches. To reflect the extra burden of making the controller switch

attention from one system to the other, we added a linear cost term to the original cost

expression J =
∫ 1
0 ||x(t)||2dt. Figure 41 shows the evolution of the optimal cost as N

increases, with and without the penalizing term. The decrease of the original cost (blue

curve) suggests that without a penalizing cost on the number of modes, the optimal number

of modes is infinite. With the extra-term (red curve), the optimal cost reaches a minimum

for an optimal number of four mode switches.

9.2 Optimal Sequencing

In this chapter, optimal switching times were solved for a given mode sequence. More

generally, the optimal sequencing problem consists of finding an optimal sequence of modes,

all drawn from a finite set of modes, minimizing a given performance index. Assuming a
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Figure 41: Optimal Cost as a Function of the Number of Switches.

mode alphabet of size M , the number of possible mode sequences with a given length N is

MN . When N is not restricted, the number of possibilities quickly becomes astronomic, and

prevents the use of a naive approach computing all possibilities. Also, the discrete nature

of the problem does not allow for continuous-parameter optimization techniques. However,

the gradient formula derived in Theorem 7.2.1 presents a special structure that enables

the application of gradient-descent algorithms to the problem of optimal sequencing. In

fact, once the costate trajectory has been computed, it can be used for all of the partial

derivatives of J . This observation leads us in [38] to a formula for the directional derivative

of J , in the direction defined by inserting new modes into the schedule. Specifically, let

ẋ(t) = fi(x(t)) in an open interval containing a point τ , and consider inserting a modal

function fj (j 6= i) in an interval of length δ centered at τ . Viewing the cost functional J

as a function of δ, the directional derivative is given by the following expression

dJ(0)

dδ+
= λ(τ)T

(

fj(x(τ)) − fi(x(τ))
)

.

Note that a gradient-descent algorithm can exploit the above formula by finding a point τ

such that λ(τ)T
(

fj(x(τ)) − fi(x(τ))
)

< 0, and then pursuing a descent in the direction of

injecting the switching function fj in the interval [τ −δ/2, τ +δ/2]. The same costate λ(t) is
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used for every possible mode insertion at any time t ∈ [0, T ], and hence the costate trajectory

needs to be computed only once for the purpose of determining an adequate insertion

schedule. By alternating between mode insertions and optimal switching algorithms, we

can then converge to a local solution of the optimal sequencing problem.

Another approach to the optimal sequencing problem is suggested in [82]. Instead of

slowly increasing the number of modes by insertions, the idea is to start with an over-

estimated number of modes. Suppose the available modes are labelled 1 through M , a

mode sequence is constructed by cycling them many (k) times: 1 → 2 → ... → M → 1 →

2 → ... → M → ... → M . When optimizing the switching times between these modes,

Algorithm 7.3.1 will locally filter out unnecessary modes by making consecutive switching

times converge. In other words, when the optimal switching time sequence has Ti = Ti+i,

then the ith mode of the mode sequence can be excised. Performing all such excisions should

lead to a local solution of the optimal sequencing problem for modes sequences of length at

most kM .

The implementation of these two methods, as well as their comparative analysis, is an

open problem.

9.3 Expressiveness

Given that the underlying objective of the multi-modal control design is to generate as

rich a set of trajectories as possible, one could tie the issue of expressiveness directly to

the optimal timing control problem. Suppose that the behavior one wants the system to

exhibit can be characterized by x̃(t), t ∈ [0, T ], where

˙̃x = f(x̃, ũ),

for a given control signal ũ ∈ Rm. Then, given a multi-modal control string

σ = (k1, ∆t1), . . . , (kN , ∆tN ) with ki : Rp → Rm and ∆ti ≥ 0, ∆t1 + · · · + ∆tN ≤ T , one

can define the tracking error as

Jtrack(σ, ũ) =

∫ T

0
‖x̃(t) − x(t)‖2dt,
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where

ẋ = f(x, ki(h(x))) = fi(x), t ∈ [∆t1 + . . . + ∆ti−1, ∆t1 + . . . + ∆ti).

Now, the problem of minimizing Jtrack with respect to σ can be (locally) solved through a

combination of the previously discussed scheduling and optimal timing control algorithms.

Note that for this to be a well-posed problem, upper bounds on the length of the mode

strings must be imposed in order to avoid infinitely long strings. In this setting, we could

investigate the expressiveness (E) of the mode set by solving the differential game, max-min

problem

E = max
ũ∈U

{ min
σ∈(K×T )r

{Jtrack(σ, ũ)}},

where U is the set of admissible inputs and (K×T )r is the set of all mode strings of length

≤ r.

With this definition, E represents the ability of the multi-modal control to track the

most aggressive trajectories the system can produce. Two parameters play an important

role here: the number of available modes (i.e. the motion alphabet size) and the maximum

length r of the available mode strings. It is easy to show that the expressiveness E defined

above is a decreasing function for both parameters. This again, translates to the existence

of a tradeoff between complexity and expressiveness.
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CHAPTER X

CONCLUSIONS

To summarize, the contributions in this thesis fall under the general banner of multi-modal

control systems and they basically fall into two different categories, namely mode recovery

and optimal control. And, although these two topics may seem disparate, they are in fact

connected. In order to figure out the optimal sequencing and timing of different modes (op-

timal control) one first needs to establish a suitable mode set to which the modes belong.

One way in which such a set can be constructed is by looking at examples of multi-agent

control. From such examples (e.g., human operators controlling a mobile robot), an appro-

priate mode set can thus be constructed (mode recovery), and in the following paragraphs,

the individual contributions made in this thesis in the areas of optimal control and mode

recovery are briefly discussed.

For the mode recovery problem, a novel set of algorithms and tools are designed that,

given a string of input and output data, reconstructs control programs (strings of feedback-

interrupt pairs) that are consistent with the example data. And, since the number of such

consistent control programs is potentially quite large, we focused our efforts on the problem

of producing low-complexity programs. These programs were moreover transformed into a

hybrid automata setting, from which executable, hybrid control laws were the outcome. In

fact, these developments culminated in MODEbox: a toolbox for automatically going from

example data to executable hybrid automata.

The work concerning optimal control of multi-modal systems mainly focused on the

problem of optimal timing control of switched systems. A number of generalizations to

the original switched-system formulation were also given. These generalizations included

impulse control, control of delayed systems, and hybrid function approximation.
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