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[57] ABSTRACT 

A planar fully integrated variable reluctance micromotor 
(10) is microfabricated on a substrate base (18). The micro
motor includes a pin (19), rotor (12) with radially extending 
poles (16), and a stator (20) having a plurality of poles (21) 
configured in pairs (22) circumferentially spaced about the 
rotor. The rotor is microfabricated in place, or in situ, 
contiguous to the substrate base. The pairs of stator poles 
include a multilevel core (26) wrapped around a meander 
conductor (27) which is connected to bonding pads (32). The 
variable reluctance rnicromotor is particularly adapted to 
operating as a micropump (45) for conductive fluids. 

8 Claims, 6 Drawing Sheets 
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FULLY INTEGRATED MAGNETIC 
MICROMOTORS AND METHODS FOR 

THEIR FABRICATION 

The U.S. Government has a paid-up license in this 
invention and the right in limited circumstances to require 
the patent owner to license others on reasonable terms as 
provided for by the terms of Contract No. E-21-603 awarded 
by the National Science Foundation. 

FIELD OF THE INVENTION 

The present invention generally relates to magnetic 
motors fabricated on a micro-scale. and more particularly, to 
fully integrated variable reluctance magnetic micromotors 
and methods for their fabrication. 

BACKGROUND OF THE INVENTION 

2 
Though not presently developed to the extent of electro

static micromotors, magnetic micromotors have several 
advantages over electrostatic micromotors with regard to the 
environment in which the motors operate and the functions 

5 which they are capable of performing. For example, mag
netic micromotors may be used in conductive fluids for 
bio-medical or chemical applications. Additionally, since 
magnetic micromotors usually require low driving voltages, 
the operation of magnetic micromotors is not inhibited by 

10 environments where high driving voltages are unacceptable 
or unattainable. Lastly. magnetic micromotors are often 
preferred over electrostatic micromotors because of their 
ability to achieve relatively high torques. Consequently. 
because of these advantages. magnetic micromotors are 

15 more attractive than electrostatic micromotors for many 
applications. 

However. the development of a practical magnetic micro
motor has been frustrated because of various difficulties 

Microstructures are being used more and more in a variety encountered in their fabrication. Magnetic micromotors 
of applications such as chemical processes, medical 20 have previously been implemented by placing a permanent 
procedures, and space navigation systems. Several specific magnet rotor onto integrated planar coils and then introduc-
kinds of microstructures which are desirable in such appli- ing externally applied magnetic fields onto the assembled 
cations are microvalves, micropumps, microsensors. and high-permeability moving parts. or by assembling electro-
microfans. The development of these micromechanical plated rotors onto stators fabricated with wire-bonded coils. 
structures requires comparably sized micromotors to drive 25 A mason that these approaches have been taken is due to the 
these microstructures. However. the technology necessary to difficulty in fabricating three dimensional 'wrapped' coils 
fabricate micromotors is in a state of infancy. A great amount using an integrated and planar fabrication process. as well as 
of effort is presently being directed toward developing due to the lack of techniques to fabricate the rotor and the 
practical micromotors which can be fabricated using micro- stator in a fully integrated fashion using electroplating 
fabrication techniques similar to those used in manufactur- 30 techniques. However, recently a new three dimensional 
ing semiconductors so that they can be economically pro- planar integrated meander-type inductive component has 
duced on a mass scale in order to satisfy present demand. been proposed and demonstrated in Chong Ahn, Yong Kim 
Unfortunately. the microscopic nature of these structures and Mark Allen, "A Planar Variable Reluctance Magnetic 
and motors makes the implementation of the simplest idea Micromotor With Fully Integrated Stator and Wrapped 
complex, tedious and time consuming, often resulting in a 35 Coils," IEEE Micro Electro Mechanical Systems Workshop, 
non-intuitive solution. pp. 1-6, Fort Lauderdale, Fla .• 1993, the disclosure of which 

Various operating principles have been considered for is incorporated heroin by reference, in which multilevel 
micromotors such as electrostatic, ultrasonic. dielectric magnetic cores were 'wrapped' around planar meander 
induction. and magnetic. Of the several proposed operating conductors. This configuration can be thought of as the 
principles. electrostatic and magnetic drives have generally 40 result of interchanging the roles of the conductor wire and 
been favored. magnetic core in a conventional inductor. With this inte-

Electrostatic micromotors operate by selectively applying grated inductive component, it is possible to guide magnetic 
a potential difference between a rotor and selected poles of flux confined in an integrated magnetic core to the locations 
a stator surrounding the rotor. As a result. the rotor poles where magnetic actuation or sensing take place. 
closest to the charged stator poles of an opposite charge are 45 In further regard to the device disclosed in Ahn et al. are 
pulled toward the stator pole causing the rotor to rotate. A the structural configuration and fabrication technique uti-
limitation to the speed and rotational force of the electro- lized therein. Structurally, the rotor is spaced from the 
static micromotor is the threshold voltage at which the substrate base and positioned in the same plane as the top 
electric field breaks down in the air gaps between the stator layer of the core. The rotor rests upon a pin beating surface 
poles and rotor poles. This threshold voltage is controlled by 50 disposed on the pin support. In fabricating this micromotor, 
a number of factors such as temperature, pressure and the rotor is first formed on a substrate separate from the pin 
surface smoothness. Examples of electrostatic micromotors and stator. The rotor is then released from the substrate and 
can be found in U.S. Pat. No. 5.252,881 to Muller et al., U.S. microassembled onto the pin. With this hybrid-assembled 
Pat No. 4.943.750 to Howe et al .• and U.S. Pat No. rotor, the micromotor achieves almost the smallest contact 
5,013,954 to Shibaike et al. 55 gap possible between the pin and rotor. Even though such 

Magnetic micromotors generally fall into one of two optimal contact gap is achievable through the teachings of 
categories. salient, meaning with poles, or non-salient. Ahn et al., the difficulties associated with microassembling 
meaning without poles. The two types are most easily the rotor onto the pin were not resolved. Thus, it would not 
differentiated by the fact that variable reluctance magnetic be feasible to mass produce magnetic micromotors economi-
micromotors usually include poles. while variable induc- 60 cally because of high production cost and manufacturing 
tance micromotors usually do not include poles. Unlike difficulties encountered with hybrid-assembling techniques. 
electrostatic micromotors which are driven by voltage, mag- Thus, it can be seen that it would be desirable to fully 
netic micromotors are driven by magnetic flux typically integrate the rotor and pin in manufacturing. eliminating the 
generated by current flowing through an inductive compo- need to microassemble the rotor onto the pin. However, one 
nent in accordance with Ampere's law. An example of 65 of the difficulties in fabricating a fully integrated magnetic 
magnetic a micromotor can be found in U.S. Pat. No. micromotor is how to produce a rotor of precise dimensions 
5,113,100 to Taghezout. and having uniform gaps between the rotor poles and stator 
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poles. The photolithography techniques used in forming 
fully integrated electrostatic micromotors are not directly 
applicable to magnetic micromotors for two reasons. First, 
electrostatic micromotors are thin film structures and mag
netic micromotors are thick film structures. Secondly, elec- 5 
trostatic micromotors are planar structures with essentially 
all components in the same plane. In contrast, magnetic 
micromotors require multiple layers for construction of the 
multilevel wrapped coil. Therefore, to date, no known fully 
integrated magnetic micromotors have been developed. 

10 

SUMMARY OF THE INVENTION 

An object of the present invention is to overcome the 
deficiencies and inadequacies in the prior art as described 
above and as generally known in the industry. 

15 
Another object of the present invention is to provide a 

planar fully integrated variable reluctance magnetic micro
motor and method for fabricating the same. 

Another object of the present invention is to provide a 
planar fully integrated variable reluctance magnetic micro-

20 
motor which is inexpensive to manufacture, which is 
durable in structure, and which is efficient as well as reliable 
in operation. 

Another object of the present invention is to provide a 
variable reluctance magnetic micromotor fabricated on a 25 
substrate base with the rotor contiguous with the substrate 
base so as to be suitable for operation as a micropump. 

Broadly stated, the present invention is a fully integrated 
planar variable reluctance magnetic micromotor fabricated 

4 
amounts of fluids. Specifically, the positioning of the rotor of 
the micromotor contiguous the substrate base enables the 
micromotor to precisely control fluid flow. Moreover, the 
magnetic micromotor is driven by magnetic flux, thus allow
ing exposure of the rotor and stator to conductive fluids 
without consequence. Moreover, the speed and direction of 
the rotation of the rotor can be adjusted by changing the 
frequency and phase ruing order of the power supply respec
tively. 

In addition to accomplishing the aforementioned objects, 
the present invention also has numerous advantages, a few 
of which are enumerated hereafter. 

An advantage of the present invention is the fabrication of 
precise uniform gap separation between the rotor poles the 
stator poles as well as between the rotor and the pin. The 
precise gap control capability provides better operation 
stability as well as efficiency of the micromotor. 

Another advantage of the present invention is the levita
tion of the rotor during operation thereby minimizing fric
tion and allowing very high rotational speed. 

Another advantage of the present invention is the capa
bility to economically produce magnetic micromotors and 
micropumps on a mass scale using known microfabrication 
techniques. 

Other objects, features, and advantages of the present 
invention will become apparent from the following descrip
tion when considered in conjunction with the accompanying 
drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

This invention, as defined in the claims, can be better 
understood with reference to the following drawings. The 
drawings are not necessarily to scale, emphases instead 
being placed upon clearly illustrating principles of the 
present invention. 

FIG. 1 is a top plane view of a planar fully integrated 
magnetic micromotor in accordance with the present inven
tion; 

FIG. 2 is a schematic diagram of an integrated torodial
meander type inductor utilized in the magnetic micromotor 
of FIG. 1; 

on a silicon wafer using surface micromachining techniques. 30 
The present invention discloses the use of polyamide as an 
integral structural material in the stator and as an electro
plating form during the fabrication of the magnetic compo
nents. The micromotor comprises a silicon wafer as a 
substrate base upon which a pin, rotor, and stator are 35 
fabricated. The pin is centrally located and extends out
wardly from the substrate base in a direction substantially 
normal thereto. The rotor includes a plurality of rotor poles 
extending radially from the rotor. Additionally, the rotor is 
fabricated in place, contiguous to the substrate base. The 40 
stator includes a plurality of stator poles arranged in pairs 
circumferentially about the rotor. Each pair of stator poles 
comprises a multilevel torodial core wrapped around a 
planar meander conductor, either end of the conductor being 
connected to bonding pads. 

FIG. 3 is a cross-sectional view of the present invention 
45 taken along line 3'-3' of FIG. 1; 

The present invention can also be viewed as a novel 
method for fabricating fully integrated variable reluctance 
micromotors. In this regard, the present invention involves 
the following method steps which are implemented with 
lithography and electroplating techniques though other suit- 50 

able microfabrication techniques may be utilized. One step 
is providing a suitable substrate base upon which the micro
motor is to be fabricated. Another step is to form a rotor 
supporter and a sacrificial layer thereover. Another step is 
etching the sacrificial layer to form electroplating forms for 55 
various structural components. Another step is to form a pin, 
a rotor, and a bottom core layer of the inductor. Another step 
is to form the meander conductor of the stator. Another step 
is to for the core via connections. Yet another step is to form 
the top core layer to complete the magnetic circuits. Finally, 60 

another step is the removal of the sacrificial layers, thereby 
freeing the rotor. Thus, by using lithography and electro
plating techniques, the present invention can be fabricated 
using conventional photolithograph at a very low production 
cost. 65 

In operation, the present invention is uniquely adapted to 
operating as a planar rotary micropump for pumping small 

FIGS. 4A-4M are cross-sectional views illustrating the 
steps employed in fabricating the preferred embodiment of 
the present invention; and 

FIG. S is a top plane view of an alternative embodiment 
of the present invention adapted for use as a pump for 
conductive fluids. 

DEfAil.ED DESCRIPTION OF THE 
PREFERRED EMBODJMENT 

With reference to the drawings wherein like reference 
numerals represent corresponding parts throughout the sev
eral views, FIG. 1 illustrates a top plan view of the planar 
fully integrated variable reluctance magnetic micromotor 10 
in accordance with the present invention. Because micro
motor 10 is fully integrated and fabricated using conven
tional photolithography techniques, it is capable of being 
mass produced economically and is particularly suited for 
application as a micropump. 

Incorporated in micromotor 10 are several features pro
posed and demonstrated in the article by Ahn et al. such as 
a torodial-meander type inductor and a novel stator configu-
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ration. In regard to the torodial-meander type inductor Ahn 
et al. teaches a multilevel magnetic core 6 wrapped around 
a planar meander conductor 8, as shown in FIG. 2. This 
configuration makes it possible to guide the magnetic flux 
confined in an integrated magnetic core to the location 
where the magnetic actuation or sensing takes place (i.e., the 
end portions of the core adjacent the rotor). Several advan
tages inherent with such a design are that the length of the 
conductor necessary to achieve the same number of turns is 
shorter than that of conventional spiral conductors which 
results in a smaller conductor series resistance, the linkage 
flux is relatively low since the magnetic cores are tightly 
linked with the conductor coils which results in relatively 
high inductance, and the magnetic core is produced on two 
levels making it relatively available for surface microma
chining of movable core actuators (i.e. the rotors). 

In regard to the novel stator geometry taught in Ahn et al., 
the conventional yoke configuration is removed In order to 
reduce core reluctance, the length of the magnetic cores is 
reduced by arranging the stator poles in pairs to achieve 
adjacent pole paths of shorter lengths. This greatly shortens 
the magnetic flux paths and provides an isolated magnetic 
core for the flux path of each phase. As a result, the isolated 
magnetic circuit reduces the core reluctance by 50 percent 
This is an important factor in the fabrication of microme
chanical magnetic circuits in that the reluctance of the core 
in many magnetic micromotors is comparable to the reluc
tance of the air gap. 

Referring to FIG. 1, micromotor 10 has a rotor 12 with a 
hole 13 longitudinally through its center. Rotor 12 has a 
circular body 14 with substantially rectangular elements 
radially extending therefrom forming rotor poles 16. It is 
well known by those in the art that the rotor 12 may take on 
a geometry other than that used for the purposes of illus
trating the present invention, and likewise, the rotor 12 may 
have a dilferent number of poles 16 than that illustrated with 
the present invention. It is relevant to note that several 
aspects of the micromotors performance are depended upon 
the number of rotor poles. For instance, the fundamental 
switching frequency necessary to rotate a rotor at a speed n 
(rev./sec.) is given by equation (1) as: 

f=nN, (1) 

where Nr is the number of rotor poles. If a micromotor has 
q phases, then qNr steps are required for a single revolution 
and the stroke, also referred to as the step angle, is given by 
equation (2) as: 

5 

10 

1'5 

6 
POSSIBLE ROTOR/STXI'OR POLE 

COMBINATIONS FOR THE PRESENT 
INVENTION 

TABLE I 

Number Strokes Rotation 
of Stator/rotor per Rotor angle Stator angles per stroke 

phases poles rotation ex (degree) ex/~ (degree) (degrees) 

2 413 6 120 120/00 30 
3 61'5 1'5 72 72148 24 
3 12/10 30 36 36/24 12 
4 16/14 48 25.7 2'5.7/38.6 19.3 
5 1CY9 45 40 40/32 16 

Referring to FIGS. 1 and 3, rotor 12 rotates about pin 17. 
Pin 17 extends outward from substrate surface 18 and is 
cylindrical in shape. Pin 17 is mated with rotor 12 through 
rotor hole 13 so that rotor 12 is movable and can freely rotate 

20 about pin 17 in a circular fashion. Disposed at the distal end 
of pin 17 is rotor cap 19. Rotor cap 19 prevents rotor 12 from 
becoming dislodged from rnicromotor 10. Furthermore, 
rotor cap 19 allows micromotor 10 to operate in either an 
upright or inverted attitude. 

25 As best shown in FIG. 1. circumferentially spaced around 
rotor 12 are stator coils comprising stator poles 21 config
ured in stator pole pairs 22. Adjacent stator pole pairs 22 are 
circumferentially spaced at an angle ~. ~ being approxi
mately 24 ° in the preferred embodiment chosen for the 

30 pwpose of illustrating the present invention. Alternatively, 
stator poles 21 comprising stator pole pair 22 are spaced 
apart at an angle a, a being approximately 36° in the 
embodiment chosen for the pwpose of illustrating the 
present invention. Note that angles 13 and a are depended 

35 upon the number of stator and rotor poles, as indicated in 
Table I hereinbefore. Additionally, opposing stator pole pairs 
22 comprise a single phase, denoted in FIG. 1 as A, B, and 
C. Thus, as the phases are sequentially energized. each 
change in phase results in rotor 12 moving one stroke. 

40 As shown in FIGS. 1 and 3, each stator pole 21 comprises 
a core 26 and conductor 27. The core 26 is a multilevel 
structure including a first layer 28 adjacent to substrate base 
18 and a second layer 29 spaced from substrate 18 and 
connected to first layer 28 by via cores 31. The meander type 

45 conductor 27 is planar and is wrapped around core 26. Such 
a design allows the fabrication of the integrated stator poles 
21. Thus, the fully integrated stator poles 21 eliminates the 
need for permanent magnetic components or the introduc-
tion of external magnetic fields on the moving parts. 

S=2!!.._ (rad). 
qN, 

(2) 50 Furthermore, the magnetic flux confined at the core can be 
guided to the exact points which require the magnetic flux or 
forces for causing movement in rotor 12. The ends of 
conductor 27 are attached to bonding pads 32 adapted for 
connection to a power source, not shown. As illustrated in 

Shown in Table I below are possible combinations of the 
number of rotors and stators and the corresponding amount 
of rotation per stroke for a magnetic micromotor in accor
dance with the present invention. For example, a micromo
tor such as the one illustrated in the preferred embodiment 
of the present invention has 12 stator poles and 10 rotor 
poles (12/10) in 3 phases (as opposed to a conventional 12 
stator pole /8 rotor pole design), and has 12° of rotation per 
stroke. As shown in FIG. 1, two stator pole pairs in the same 
phase are located in the opposite direction through rotor 
poles, where each stator pole pair contains 7 turns of 
torodial-meander coil. The angle between rotor poles is 36°, 
the angles between stator poles are 36° for those located in 
the same phase and 24° for those located in the adjacent 
phase respectively. The required strokes per revolution with 
this configuration is 30. 

55 FIG. 3, a polyamide layer 33 is integrated about core 26, 
insulating conductor 27. 

In operation, a power source connected to all the bonding 
pads 32 selectively induces a current simultaneously through 
conductor 27 of a first stator pole pair 22 and a second stator 

60 pole pair 22 which is of the same phase and disposed 
opposite the first stator pole pair. Note, however, a single 
phase can comprise a single stator pole pair 22 or multiple 
stator pole pairs 22, depending upon various design consid
erations and the particular application. The magnetic flux in 

65 cores 26 created by the current through conductors 27 
attracts the nearest rotor poles 16 into alignment with the 
stator poles 21 of the excited stator pole pairs 22, thereby 
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causing rotor 12 to rotate one stroke, approximately 12° of 
rotation in the embodiment illustrated. The excited phase of 
pole pairs 22 is switched off and the next two adjacent stator 
pole pairs 22 in phase with one another are induced with 
current in a similar manner, thus causing rotor 12 to rotate 5 
so as to align the closest rotor poles 16 with the stator poles 
21 of the subsequent two stator pole pairs being excited. In 
a sequential fashion, opposing stator pole pairs 22 in the 
same phase are excited so as to cause rotor 12 to rotate about 
pin 17 in either a synchronous or asynchronous (stepping) 

10 
fashion. By changing the frequency and phase ruing order of 
the power source, the speed and direction of rotation of rotor 
12 can be altered. 

8 
in FIG. 4A. The electroplating form 37, which will form 
rotor pin support 39, is then fried with nickel (81%) - iron 
( 19%) permalloy using standard electroplating techniques 
and a nickel-iron electroplating bath as described in Table II 
below. Refer to FIG. 4B. When electroplating the rotor pin 
support 39, an electrical contact 

NICKEL-IRON AND COPPER 
ELECfROPLATING BPJH COMPOSillONS 

TABLE II 

Nickel-iron Copoer 

Rotation of rotor 12 can be initiated by applying 3 phase Component Quantity (gll) Component Quantity 

current pulses as little as 200 mA with less than a 1 volt 15 ---------------------
driving voltage. The maximum current the stator poles 21 Niso •. 6H,o 200 CuS04.5H20 1200 (gll) 

can withstand is approximately 2.5 A to 3 A. If continuous ~:~:~::g ~ H,so. loo (ml/I) 

current exceeding 4 amperes is induced, failure of stator H,BO, 25 
poles 21 is probable. It is predicted that the torque of saccharin 3 

micromotor 10 with a 500 mAdriving current is 3.3. nN-m. 20 --------------------

Equation (3) below is an equation that can be used to 
predict the maximum torque attained by micromotor 10: 

N,f9s(A. - 1)9~g 
T =(rotor rolume) 2n:µ.,

11 
Nm 

(3) 

is made with the seed layer 44 as the substrate base 18 is 
immersed in the plating solution, not shown. During the 
electroplating step, the solution is maintained at room tem
perature with a pH of approximately 2. 7, and is stirred very 

25 slowly with a Tefion propeller blade. An applied current 
where N r is the number of rotor poles, ~,is the magnetic fiux density of approximately 2 mA/cm2 results in an electro-
density in the stator poles at the maximum fiux linkage in the plating rate of 0.1-0.15 82 m/minute. The polyamide layer 
aligned position, A. is the aligned/unaligned unsaturated 38 is then removed producing a rotor pin support 39, as 
inductance ratio, ~ is the pole arc, and g is the air gap illustrated in FIG. 4B. 
distance. 30 Using the techniques described above, a sacrificial layer 

Referring to FIG. 3, the end portions 30 of core 26 all are 41 of copper is formed over rotor pin support 39 and a 
spaced from substrate base 18 a predetermined distance 62 portion of substrate base 18, as illustrated in FIG. 4C. A layer 
so that when stator pole pairs 22 are energized, the resulting 42 of photosensitive polyamide is then cast on the substrate 
inductance causes rotor poles 16 to horizontally align with in multiple coats so as to build up the layer 42 to a 
stator poles 21, levitating rotor 12 so as to substantially 35 predetermined thickness. Electroplating molds for the first 
eliminate contact with rotor supporter 34, thereby reducing core layer 28, rotor 12, and pin 17 are then etched into the 
the frictional contact of rotor 12 with substrate 18 and rotor polyamide layer, as shown in FIG. 4E. The electroplating 
support 34. and thereby enabling rotor 12 to rotate at a speed molds are then fried with nickel/iron permalloy, as shown in 
of approximately 50,000 rotations per minute (rpm). Further, FIG. 4F. After removing photosensitive polyamide layer 42 
the air gaps 61 between the distal ends of rotor poles 16 and 40 residing in gaps 61 between rotor 12 and pin 17 and between 
the end portions 30 of stator poles 21 are also critical to the rotor 12 and end portion 30 of core 26, a sacrificial copper 
performance of micromotor 10. This is important because layer is electroplated to fill gaps 61, not shown. 
narrow air gaps 61 usually provide higher torques with a A rotor cap 40 is then electroplated onto pin 17 after 
lower current. and uniform air gaps 61 give a smooth and etching the copper layer to make a through hole for contact 
stable operation of micromotor 10. Consequently, it is 45 between rotor cap 40 and pin 17, as shown in FIG. 4G. A 
essential that rotor 12 be fabricated in a manner so that air second copper layer 54 is deposited so as to only cover rotor 
gaps 61 are as small as possible and uniform in order to cap 40, rotor 12, and core end portions 30, as shown in HG. 
achieve acceptable performance. 4H. The remaining portion of polyamide layer 42 is removed 

A method of fabricating the planar fully integrated vari- at the same time. 
able reluctance magnetic micromotor 10 in accordance with 50 In order to insulate magnetic core 26 from conductor 27, 
the present invention is described by reference to FIGS. polyamide is spin coated with two step speeds and hard 
4A-4M. The fabrication process begins with a silicon wafer cured at 350° C. for one hour to form polyamide layer 43, 
for the substrate base 18, on which is deposited a 0.6 µm as shown in FIG. 4H. 
layer 36 of PECVD silicon nitride. Onto the silicon nitride To construct the planar meander conductor 27, a seed 
layer 36, an electroplating seed layer 44 comprising 55 layer of chromium/copper/chromium is deposited in the 
chromium/copper/chromium layers are deposited using conductor forms, not shown, etched in polyamide layer 43. 
electron-beam evaporation. Thereafter, multiple coats of Conductor 1:1 is then plated using the electroplating tech-
polyamide are spun onto the substrate 18 to an approximate niques disclosed hereinbefore in conjunction with a copper 
thickness of 40 µm.. Each coat of polyamide is cast by plating solution such as that described in Table II. Please 
continuous two-step spin seeds; 700rpmfor 10 seconds then 60 refer to FIG. 41. Forms for via cores 31 are then formed in 
3,000 rpm for 4 seconds, then soft baked for 10 minutes at polyamide layer 43 and electroplated in the manner set forth 
120° C. prior to the application of the next coat The above and illustrated in FIG. 4J. The second layer 29 of core 
polyamide layer 38 is then cured at 350° C. for one hour in 26 is subsequently electroplated so as to make core 26 
nitrogen,yieldinganafter-curedthicknessof40µm.Aform continuous, as shown in FIG. 4K.. Sacrificial layer 43 of 
37 is then etched in the polyamide layer 38 using a 5% 65 polyamide and copper layers 41 and 54 are subsequently 
CF 4'02 plasma etch and an aluminum hard mask until the removed by dry etching, releasing rotor 12 so as to be freely 
chrome/copper/chrome seed layer 44 is exposed, as shown moveable about pin 17. 
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Worth noting at this point is that because rotor 12 is 
fabricated adjacent silicon wafer 18, a very smooth surlace, 
the geometry of rotor 12 can be precisely controlled in 
fabrication so that the gaps 61 between the rotor 12 and pin 
17 as well as between the rotor poles 16 (FIG. 1) and the end 5 

portions 30 (FIG. 3) of core 26 are uniform and of optimal 
size. This is critical in the operation of micromotor 10 
because if the gap between rotor 12 and pin 17 does not have 
adequate separation, rotor 12 will be tilted and touched to 
substrate 18, preventing its rotation due to high friction. In 10 

the similar way, if the gap between the rotor poles 16 and the 
end portions 30 of core 26 are not adequate, micromotor 10 
performance's will be seriously affected and distorted. Thus. 
by controlling with exactitude the dimensions of the elec
troplating molds for rotor 12 and pin 17 etched into polya- 15 
mide layer 42 (FIG. 4E), micromotor 10 is provided with 
more flexible design, fabrication and operation. 

Another embodiment of the present invention is a micro
pump 45 as shown in HG. 5. In biomedical, biological, or 
chemical fluid system applications. there has been a large 20 

demand for a micro-fluid control system with fluid driving 
as well as flow sensing functions, allowing control of small 
amounts of fluid. Micropumps are an essential component in 
constructing the total fluid control system. Specific 
applications, such as drug delivery systems, require sophis- 25 

ticated fluid control, i.e., a smooth fluid flow as well as a fast 
response time. The planar rotary fluid micropump 45 has a 
similar operation mechanism to the conventional rotary 
pump though is implemented with a micromotor of the 
present invention. Planar magnetic micromotor 45 allows 30 

the concept of the microturbine to be reversed that is, to 
realize a rotary fluid micropump by driving a rotor in a fluid. 
As shown in HG. 5, a rotary micropump traps the liquid in 
the spaces between the rotor poles 46, pushing it around the 
closed housing 48. It is then carded around by the rotation 35 

of the rotor 52 and squeezed out through an outlet 54. This 
operation mechanism has the potential for very smooth fluid 
delivery in either direction. Since this micropump is driven 
by a magnetic micromotor, the rotor speed of this pump can 
be widely and continuously controlled by adjusting the 40 

excitation frequency of the stator coils 58. Since the mag
netic micromotor can provide functional actions such as 
stepping, continuous. forward, and backward operations, a 
fluid jet-injection by forward driving as well as an abrupt 
stopping of jet-injection by backward driving can be easily 45 

achieved. Thus, these functional jet actions will provide a 
favorable dynamic fluid control for a ink jet printer as well. 
Of course, fluid flow can be produced in either forward or 
backward direction depending on the rotation direction of 
rotor 52, which also allows a micropump 4S to produce so 
hi-directional fluid flows. 

Many biomedical, biological, and chemical fluids are 
conductive, which limits the driving principles available to 
drive the fluids. A magnetic drive allows the pumping of 
conductive fluids without inducing any electrical 55 
breakdown, if the conductor used to generate the magnetic 
flux are properly insulated from the exposed fluid. One 
advantage of magnetic micromotor 4S is that due to the 
nature of the fabrication process, the conductor lines 62 are 
buried in insulating polymer layer, thus realizing the 60 
required insulation. 

In micropump 45, rotor 52 plays two roles: a magnetic 
component for the micromotor as well as a mechanical 
component for the pump. Similarly, the salient poles of the 
rotor not only provide the required variable reluctance, but 65 
also generate fluid flow as a mechanical 'bucket' for the 
rotary micropump. In micropump 45, rectangular-type 
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salient poles 46 of rotor 52 are adopted for the hi-directional 
flow driving. but an arcuate or shape salient pole can also be 
used for a better performance as a pump, depending on the 
application. Further, rotor 51 is especially adapted to oper
ating in a micropump in that rotor 51 is contiguous substrate 
surface 57 so that there is essentially no fluid fl.ow beneath 
rotor 51. This enables micropump 4S to operate at a level of 
extreme efficiency and accuracy. 

As described earlier, the rotary micropump combines the 
constant discharge characteristic of the centrifugal-type with 
the positive discharge feature of the reciprocating-type 
pump. As rotor 52 turns in a clockwise direction, fluid 
trapped between the rotor poles 46 and the housing 48 is 
carded from the inlet 64 to the outlet 54, in the direction 
indicated by arrows 56. Hence, a variable-delivery pump is 
considered, since the fluid volume displacement depends on 
the revolution of rotor 52. Pumping operating speeds are 
increasing as the pressure ratings go up and the volumetric 
capacities decrease. When the rotor rotates with N (rpm), 
then the fluid displacement is expressed by equation (4) 
below as: 

Vd=qV1N (4) 

where q is total trap number exist at the rotor and V 1 is the 
fluid volume trapped between a rotor pole 46 pair and 
housing 48. When micropump 4S is driven at 5,000 rpm, the 
attainable fl.ow rate is approximately 24 µJ/min. H the torque 
generated from micropump 4S is kept at a constant value 
during pumping, the developed pressure at the outlet is 
defined by equation (5) below as: 

T,,N 
P.,.=C-y;-

(5) 

where C is a constant, T q is the micromotor torque, and the 
pump overall efficiency is assumed 100%. The achievable 
differential pressure between inlet 64 and outlet S4 is 
approximately 100 hPa. An inlet flow channel 52 and an 
outlet flow channel 53 provide means for introducing fluid 
into the pump and removing the fluid after being acted upon 
by rotor 51. Attached to inlet fl.ow channel 52 and outlet flow 
channel 53 are pipes 54. 

It would be obvious to those skilled in the art that 
modifications or variations may be made to the preferred 
embodiment described herein without departing from the 
novel teachings of the present invention. All such modifi
cations and variations are intended to be incorporated herein 
and within the scope of the following claims. 

Wherefore, the following is claimed: 
1. A fully integrated variable reluctance magnetic 

micromotor, comprising: 
a substrate base; 
a pin fixed to said base and extending in a direction 

substantially normal thereto; 
a rotor having a plurality of rotor poles radially extending 

therefrom, said rotor formed in place about said pin, 
said rotor rotatable about said pin, said rotor sur
rounded by a gap; 

a rotor cap coupled to the distal end of said pin for 
securing said rotor; 

a stator including a plurality of stator poles formed on said 
base and circumferentially arranged about said rotor; 

said poles of said stator configured in pairs electrically 
connected, each pair of said poles comprising a mul
tilevel core interleaved with a planar meander conduc
tor; 
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a plurality of bonding pads formed on said base and 
connected to said planar meander conductors, said pads 
adapted for connection to a power source, and 

wherein said rotor is on a first level of said multilevel 
core, said first level adjacent to said substrate base. 5 

2. The micromotor of claim L wherein said conductor and 
said rotor are disposed in separate levels of said multilevel 
core. 

3. The micromotor of claim l, wherein said rotor is on 
said first level with an end portion of said core. 10 

4. The micromotor of claim 1, wherein said rotor has 
fewer poles than said stator. 

5. The micromotor of claim 1, wherein each said rotor 
pole is spaced from adjacent rotor poles by a first angle, said 
stator poles of each respective said pair of stator poles are 15 
spaced apart by said first angle. and wherein each said pair 
of stator poles is spaced from adjacent pairs of stator poles 
by a second angle. 

6. A fully integrated variable reluctance magnetic 
micromotor. comprising: 20 

a substrate base; 

a pin fixed to said base and having a central axis; 

a rotor having a plurality of rotor poles and rotatably 
mated to said pin for rotating about said axis of said pin, 25 
said rotor being fabricated in place, contiguous to said 
substrate base, said rotor surrounded by a gap; 

a stator having a plurality of stator poles circumferentially 
arranged about said rotor in pairs, each pair of said 

12 
stator poles including a multilevel core wrapped around 
a planar conductor; and 

wherein said rotor is on a first level of said multilevel 
core, said first level adjacent to said substrate base. 

7. A variable reluctance magnetic micropump. compris-
ing: 

a substrate base; 

a pin fixed to said base and having a central axis; 

a rotor having a plurality of rotor poles and rotatably 
mated to said pin for rotating about said axis of said pin. 
said rotor being fabricated in place, contiguous to said 
substrate base, said rotor surrounded by a gap; 

a stator having a plurality of stator poles circumferentially 
arranged about said rotor in pairs, each pair of said 
stator poles including a multilevel core wrapped around 
a planar conductor; 

means for encasing said rotor; 

an inlet flow channel coupled to said encasing means; 

an outlet flow channel coupled to said encasing means; 
and 

wherein said rotor is on a first level of said multilevel 
core, said first level adjacent to said substrate base. 

8. The magnetic micromotor of claim 7, wherein said 
rotor poles include an arcuate portion adapted for facilitating 
the flow of fluids. 

* * * * * 
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