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SUMMARY

This thesis consists of two parts. In the first part, we give some results on

modulation spaces, which are function spaces based on time-frequency behaviors of

functions. First the relationship between the classical spaces and the modulation

spaces is established. It is proved that certain modulation spaces defined on R2 lie in

the BMO space. Another result is that the Zak transform, a discrete time-frequency

transform, maps a modulation space into a higher dimensional modulation space.

This result is important because it uses Gabor analysis methods instead of using

classical Fourier analysis. It generalizes Gautam’s result [25] and yields a Balian-Low

type theorem for modulation spaces.

In the second part, we deal with optimization of an increasing positively homoge-

neous functions on the unit simplex. The class of increasing positively homogeneous

functions is one of the function classes obtained via min-type functions in the context

of abstract convexity. The cutting angle method, which is similar to the cutting plane

method in classical convex optimization, was given by A. Rubinov et al. ([3],[4]) for

the minimization of this type functions. The most important step of this method is

the minimization of a function which is the maximum of a number of min-type func-

tions on the unit simplex. We propose a numerical algorithm for the minimization of

such functions on the unit simplex and we mathematically prove that this algorithm

finds the exact solution of the minimization problem. Some experiments have been

carried out and the results of the experiments have been presented.

x



CHAPTER I

INTRODUCTION

1.1 Part I Introdution

In engineering, signals are considered to be functions of time, and the Fourier trans-

form of a signal is the frequency representation of the signal. Time and frequency are

the main ingredients of signal processing in engineering.

Time-frequency analysis is a branch of modern harmonic analysis. It is comprised

of the divisions of mathematics that use the structure of translations and modulations

(or time-frequency shifts) for the analysis of functions and operators.

The main tool in time-frequency analysis is the short-time Fourier Transform

(also called the Windowed Fourier Transform). Time-frequency analysis interprets

the short-time Fourier transform as a measure of simultaneous time and frequency

information.

Let f and g 6= 0 be functions. The short-time Fourier transform of f with respect

to g (called the window function) is defined as

Vgf(x,w) =

∫
Rd

f(t)g(t− x)e−2πit·wdt

for x,w ∈ Rd. The short time Fourier transform of a function inherits both the time

and frequency properties of the function. In the first section of this chapter, a brief

background will be presented about the short time Fourier transform. One can find

detailed information about the short time Fourier transform in [27] with regards to

both its theoretical and applied aspects.

To achieve a quantitative time-frequency analysis, Feichtinger introduced a class

of Banach spaces, called modulation spaces, which measure concentration in terms of

a weighted mixed norm on the short-time Fourier transform [19, 27].
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Definition 1.1.1. Let g ∈ S(Rd)(Rd). The modulation space Mp,q
m (Rd) (1 ≤ p <∞)

consists of all tempered distributions f ∈ S ′(Rd) such that the norm

‖f‖Mp,q
m (Rd) =

(∫
Rd

(∫
Rd

|Vgf(x,w)|pm(x,w)pdx

) q
p

dw

) 1
q

is finite. If p = ∞ or q = ∞, then the corresponding p-norm is replaced by the

essential supremum.

Different windows g yield equivalent norms on Mp,q
m (Rd). If |m(z)| ≤ C(1 + |z|)N

for some N , then Mp,q
m (Rd) is a Banach space 1 ≤ p, q ≤ ∞ and the class of Schwartz

functions forms a dense subspace of Mp,q
m (Rd) for 1 ≤ p, q < ∞. The weights m(z)

are generally considered to be polynomial weights, but exponential weights and other

types of weights are also used in the literature. The modulation spaces with p < 1 or

q < 1 also arise naturally in many settings, for example in connection with sparsity

issues, but require a more technical viewpoint.

In the second chapter, some detailed information about modulation spaces and

related spaces is presented. The interplay between these spaces is summarized.

The modulation spaces are the ”right” spaces for time-frequency analysis and they

occur in many problems in the same way as Besov spaces are attached to wavelet the-

ory and issues of smoothness. Many classical spaces are well-described by wavelets,

but recently the modulation spaces have been successfully used to address problems

not suited to traditional techniques, e.g., the analysis of pseudodifferential operators

with nonsmooth symbols [29, 15], or the modeling of narrowband wireless communi-

cation channels [47, 48, 46].

For p, q 6= 2, the modulation spaces Mp,q
m (Rd) do not coincide with any of Besov

spaces Bp,q
s (Rd) or the Triebel-Lizorkin spaces F p,q

s (Rd). The question of which clas-

sical function spaces embed into the modulation spaces or vice versa is a natural one.

The Sobolev embedding theorem Hs(Rd) ⊆ Ck(Rd) for s > k + d
2

is an example of

such a result, as Hs(Rd) is a modulation space (with p = 2) and Ck(Rd) is a Besov
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space. The first systematic study of embeddings of Besov spaces into modulation

spaces was by Okoudjou [39], with further results by Toft [49], [50].

One of the classical spaces in harmonic analysis is the BMO space (the space of

functions of bounded mean oscillation). In the literature there is no result making

a connection between BMO and modulation spaces. Here we present the relation

between modulation spaces and BMO. The following theorem is the one of the main

results related to the modulation spaces in this thesis.

Theorem 1.1.2. Let 1 ≤ p ≤ 2 and m̃ be a v-moderate weight such that v(z) ≤

(1+ |z|)N0 for some N0 ∈ N and m̃ satisfies m̃(x,w) ≥ C ′
√

1 + |w|2 for some C ′ > 0.

Then Mpem(R2) ⊂ VMO(R2), with

‖f‖BMO ≤ C‖f‖Mpem(R2).

This embedding theorem is important not only because it is in essence a new

uncertainty principle for Gabor frames but also because it implies a relation between

modulation spaces and BMO. In harmonic analysis, BMO, which was introduced by

Nirenberg (1961), plays the same role in the theory of Hardy spaces that the space

L∞ of bounded functions plays in the theory of Lp-spaces.

The space VMO of functions of vanishing mean oscillation is the closure in BMO

of the continuous functions that vanish at infinity. It can also be defined as the space

of functions whose “mean oscillations” on balls Q are not only bounded, but also tend

to zero uniformly as the radius of the ball Q tends to 0 or infinity. The space VMO

is a sort of Hardy space analogue of the space of continuous functions vanishing at

infinity, and in particular the Hardy space H1 is the dual of VMO.

Another result in this chapter is about the Zak transform. One of the important

tools in time-frequency analysis is the Zak transform, also known as Weil-Brezin map

(first introduced by Gelfand [26]). The Zak transform of a function f is the function
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on R2d defined (almost everywhere) by

Zf(x,w) =
∑
k∈Zd

f(x− k)e2πik·w,

where the series converges unconditionally in L2(Rd). The Zak transform of a func-

tion is quasi-periodic, and the Zak transform is a unitary transform from L2(Rd) to

L2([0, 1)2d) where [0, 1)2d is the unit cube. The Zak transform of a function provides

a useful time-frequency presentation of a function.

The Zak transform plays an important role in uncertainty principles for Gabor

systems. Given f ∈ L2(R) and positive constants α, β, the associated Gabor system

is

G(f, α, β) = {e2πimβxf(x− nα)}m,n∈Z ⊂ L2(R).

These systems are useful, for instance, in analyzing audio signals with challenges such

as extracting different instruments from a recording of a symphony. It is possible to

analyze and synthesize a signal without much loss using a Gabor system with certain

extra properties, especially if it is a frame. A frame for a Hilbert spaceH is a collection

{fn} ⊂ H satisfying

A‖x‖2
H ≤

∑
n

|〈x, fn〉|2 ≤ B‖x‖2
H

for all x ∈ H and some A,B > 0. The necessary and sufficient conditions on f, α, and

β for G(f, α, β) to be a frame have been investigated extensively. A central question

is which function’s time-frequency shifts form a frame for α = β = 1. This particular

case is important because the redundancy of a Gabor system is eliminated when

α = β = 1. Some criteria have been given for this (see [17]). For a function to generate

a Gabor frame, |Zf | should be bounded below and above by nonzero constants. To

classify the functions which generate certain Gabor systems or do not generate certain

Gabor systems, the behaviour of Zak Transform on the function spaces should be

clarified. For example, the functions whose Zak Transform is continuous are important

because of the fact that if the Zak transform of a function is continuous, then the Zak
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transform of the function has a zero. One of the spaces which allows the continuity

of tha Zak transform is the amalgam spaces and another one is the modulation space

M1,1(Rd). Gautam [25] gave a result which tells us that the Zak transform of functions

having certain decay and smoothness properties lies in some inhomogeneous Sobolev

space which can be embedded into the space BMO(Rd). Surprisingly, however, not

much is known about the behavior of the other modulation spaces under the Zak

transform. One of the results presented in this thesis is the following theorem which

gives an idea how the Zak transform acts on a modulation space (Also see [30]).

Theorem 1.1.3. Let f ∈ L2(Rd) and let f ∈ Mp,p
m (Rd) be given where 1 ≤ p < ∞,

m is a v-moderate weight and |v(z)| ≤ (1 + |z|)N0 for some N0 ∈ N. Let ψ ∈ C∞
c (Rd)

have compact support. Then ψZf ∈Mp
m∗(R2d) where for each N there exists a CN > 0

such that m∗(N,M) ≤ CNm(M) for all M ∈ Z2d.

This result provides a new insight in the general theory of modulation spaces

in time-frequency analysis, and it is another result showing the relation between

modulation spaces.

The Balian-Low Theorem can be regarded as a cornerstone of time-frequency

analysis and is the first uncertainty principle for Gabor frames.

Theorem 1.1.4. [Balian-Low-Coifman-Semmes] Let f ∈ L2(R). If f ∈ H1(R) and

f̂ ∈ H1(R), then G(f, 1, 1) is not a frame for L2(R).

In the literature one can find different versions of uncertainty principles for certain

Gabor systems ([9, 37, 14, 12, 13, 25]). The underlying fact behind this theorem is that

the Zak transform of a function satisfying the assumption in the theorem lies in VMO

space and this forces the Zak transform have a zero. Our first result about modulation

spaces and the second result about the Zak transform imply an uncertainty principle

for Gabor frames via modulation spaces.
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Theorem 1.1.5. Let f ∈ L2(R) ∩Mp
m(R) where 1 ≤ p ≤ 2 and m is v-moderate

weight where |v(z)| ≤ (1 + |z|)N0 for some N0 ∈ N and m(x) ≥ C
√

1 + |x|2 for some

C. Then G(f, 1, 1) is not a frame for L2(R).

1.2 Outline of Part I

The first part is organized as follows.

Chapter 2 begins with a section about the short time Fourier transform, which

is the main tool used in the area of modulation spaces. In the second section, the

modulation spaces as well as some related spaces are defined. The first and second

sections are mostly expository. The embedding of modulation spaces into BMO,

which is the first main result of the thesis, is given in the third section.

In Chapter 3, the Zak transform and its properties are given as well as the char-

acterization of modulation spaces via the Zak transform and vice versa is obtained.

The first section of Chapter 3 has the second main result, which states that the Zak

transform maps modulation spaces into the modulation spaces of higher dimension.

In the second section, the main results given in the second chapter and in the previous

section are used to give an uncertainty result for Gabor frames via modulation spaces.

1.3 Part II Introduction

The simplest and most well-known area of optimization is convex optimization. The

fundamental tool in the study of convex optimization problems is the subgradient.

The subgradient permits the construction of an affine function, which does not exceed

f over the entire space and coincides with f at a point. This affine function is called

a support function and this support function is less than or equal to f at every point.

The existence of such a function follows from the well-known separation theorem

for convex sets: each point which does not belong to a convex closed set can be

separated from this set by a linear function. This theorem also leads to the following

fundamental result of convex analysis ([40]).
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Theorem 1.3.1. A lower semicontinuous convex function is the pointwise supremum

of the collection of all affine functions h such that h ≤ f.

This presentation of convexity has been extended to non-convex functions under-

lying the theory of convexity without linearity, known also as abstract convexity (see

[?], [44], [42]).

Definition 1.3.2. [42] Let H be a set of finite functions defined on a set X. A

function f : X → R̄ = R ∪ {∞,−∞} is called H-convex (abstract convex) with

respect to H if f can be written in the following form:

f(x) = sup{h(x)|h ∈ H, h ≤ f}, ∀x ∈ X.

According to this definition, a lower semicontinuous convex function is abstract

convex with respect to affine functions. Many results from convex analysis related to

subdifferentials can be transformed into abstract convex environments.

Abstract convexity has found many applications in the study of problems of op-

timization. For applications of abstract convexity to nonconvex optimization, the

objective function should be related to some class of elementary functions via ab-

stract convexity just as lower semicontinuous convex functions are related to affine

functions. This problem leads to the notion of a supremal generator [35].

Definition 1.3.3. A supremal generator of a set X of functions is a subset of H of

X such that each function from X is abstract convex with respect to H.

Although there are general results about supremal generators, we will mention

certain types of functions whose supremal generators are shifted min-type functions:

ICAR functions.

Definition 1.3.4. Let Q ⊂ Rd be a conic set of positive octant. A function f : Q→

Rd
+ is called increasing convex-along-rays (ICAR) if

i) f is increasing i.e. x ≥ y implies f(x) ≥ f(y) (x ≥ y iff xi ≥ yi for i = 1, · · · , n)

7



ii) for each x ∈ Q the function of one variable fx(t) = f(tx), t ∈ [0,∞), is convex.

ICAR functions are abstract convex with respect to shifted min-type functions.

Proposition 1.3.5. Let H = {h : h(x) = min
i=1,··· ,n

aixi − c, ai > 0, c ∈ R}. A finite

function f is abstract convex with respect to H if and only if f is ICAR.

The class of ICAR functions is very broad. In particular, each Lipschitz function

defined on the unit simplex S = {x ∈ Rd
+ :

n∑
i=1

xi = 1} can be extended to a finite

ICAR function defined on Rd
+ ([41] ) .

Theorem 1.3.6. Let f be a Lipschitz and strictly positive function defined on the

simplex S and K = sup
x6=y∈S

x,y∈S

|f(x)−f(y)|
‖x−y‖ where the norm is `1 norm. Let c = min

x∈S
f > 0. If

p ≥ max {1, 2K
c
} then the function

g(x) =


f( x

nP
i=1

xi

)(
n∑

i=1

xi)
p if x 6= 0

0 if x = 0

is an ICAR function.

This fact allows one to use ICAR functions in the minimization of Lipschitz func-

tions over the unit simplex. The methods and some examples of this is given in

[42].

One subclass of ICAR functions is the class of increasing positively homogeneous

(IPH) functions.

Definition 1.3.7. A function f defined on Rn
+ is called increasing positively homo-

geneous of degree one (for short IPH), if

a) for x, y ∈ Rn
+, x ≥ y implies f(x) ≥ f(y);

b) f(λx) = λf(x) for all x ∈ Rn
+ and λ > 0.

8



An IPH function is abstract convex with respect to min-type functions. Min-type

functions are the functions f(x1, · · · , xn) = min
i=1,··· ,n

aixi where ai > 0 are constants.

The class of the IPH functions is fairly large and has many different application areas

[42].

In minimizing IPH functions over the unit simplex, cutting angle ([3, 4]) method is

applied by taking advantage of abstract convexity. The cutting angle method reduces

an original global optimization problem to a sequence of subproblems. The main

subproblem is to minimize a function which is the maximum of a finite collection of

min-type functions, i.e.,

min max
1≤j≤k

{ min
1≤i≤n

{ xi

aij

}} subject to x ∈ S

where aij > 0.

The solution of this subproblem is central to the execution of the method. Since

the efficiency of the method strongly depends on the technique for the solution of

the auxiliary problem, some studies have been done on this subproblem [1, 5, 6,

38]. We present a new algorithm for the solution of this subproblem [2]. The new

approach is based on the geometric observation of the behavior of hj(x). The approach

is first described in R2 then is extended to higher dimensions. Then we develop

Algorithm 5.1.11, an algorithm for solving the subproblem. This algorithm is based

on Theorem 5.1.7. Theorem 5.1.7 is proved by establishing characterizations of local

minima of hj(x) over the unit simplex. Some experiments have been demonstrated

using test problems with IPH objective functions. These functions are also used in

[42, 6]. The following theorem is the main result of Part II. It is the theoretical basis

of the proposed algorithm

Theorem 1.3.8. [2] Let S ⊂ Rn
+ be the unit simplex and P (x) = max

1≤j≤m
{ min

1≤i≤n
{ xi

aij
}}

be defined on Rn
+ where m ≥ n. The point x∗ in the relative interior of S is a local

minimum of P (x) if and only if there exist n indices k1, · · · , kn ∈ {1, · · · ,m} such
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that

a) aiki
> max

1≥j≥n

j 6=i

aikj
for all i = 1, · · · , n,

and

b) for j 6= ki there exists 1 ≥ r ≥ n such that arj > asks for some 1 ≥ s ≥ n.

Moreover, the local minimum x∗ satisfies the following equality;

x∗1
a1k1

= · · · = x∗n
ankn

This theorem gives a criteria for finding all local minima. The algorithm based

on this theorem basically finds n min-type functions whose coefficients satisfy a) and

b) in the theorem, then finds a local minimum. The global minimum is decided after

finding all local minima.

The method suggested by this theorem in minimization of IPH functions over

the unit simplex can also be adapted to solve the problem of minimizing increasing

convex-along-rays (ICAR) functions over the unit simplex, which by the previous

theorem leads to a new algorithm for Lipschitz programming over the unit simplex.

However, since ICAR functions are abstract convex with respect to shifted min-type

functions, the adaptation is not easy.

1.4 Outline of Part II

In Chapter IV, min-type functions and IPH functions are defined and some of their

properties and some examples are given. The main relation between IPH functions

and min-type functions is that IPH is abstract convex with respect to min-type func-

tions. Then the main problem is stated and the cutting angle method is established.

The most important step in the implementation of this algorithm is the minimization

of a max-min function. The solution of this subproblem is given in Chapter V. In the

first section of Chapter V, the necessary and sufficient conditions for a local minimum

point is established in Theorem 5.1.7 which enables us to develop an algorithm for

finding the minimum of the subproblem. The proof of this theorem is given by a

10



sequence of propositions in the first section. In the second section the results of some

numerical experiments are established and the third section concludes the chapter.
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PART I

Modulation Spaces, BMO and the Zak

Transform



CHAPTER II

MODULATION SPACES AND BMO

2.1 Notation and Preliminary Concepts

Rd denotes the usual d dimensional Euclidean space, and Zd (Zd
+) denotes the set of

vectors in Rd whose components are integers (positive integers). Q denotes the unit

cube

[0, 1)d = [0, 1)× · · · × [0, 1)︸ ︷︷ ︸
d times

.

Depending on the context Q will also denote [0, 1)2d.

For x, y ∈ Rd, x · y denotes the usual inner product x · y = x(1)y(1) + · · ·+ x(d)y(d).

For any x ∈ Rd, x(r) denotes the rthcomponent of x.

The notation |·| will stand for different meanings depending on the context. For a

vector x ∈ Rd, |x| =
√
x · x. For a measurable set E ⊆ Rd, |E| denotes the Lebesgue

measure of E. For a complex number a, |a| denotes the magnitude of a complex

number. For a multi-index α = (α1, · · · , αd) we write |α| =
∑d

i=1 αi.

For 1 ≤ p <∞, p′ will denote the conjugate of p, i.e, 1
p

+ 1
p′

= 1. Lp(Rd) denotes

the Banach space of complex valued functions f on Rd with norm(
‖f‖p =

∫
Rd

|f(x)|p
) 1

p

for 1 ≤ p ≤ ∞. For p = ∞, the norm is given by

‖f‖∞ = ess sup
x∈Rd

|f(x)|.

For a set S, χS denotes the characteristic function of S.

If fχK ∈ Lp(Rd) for any compact set K ⊂ Rd, we write f ∈ Lp
loc(Rd).
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For the case p = 2, L2(Rd) turns into a Hilbert Space with the inner product

〈f, g〉 =

∫
Rd

f(x)g(x)dx.

For a positive function m(x), Lp
m(x) denotes the weighted Lp(Rd) space with the

norm

‖f‖Lp
m

=

(∫
Rd

|f(x)m(x)|p
) 1

p

.

We use the notation f ∗(t) = f(−t).

The convolution of f and g is denoted by

(f ∗ g)(x) =

∫
Rd

f(x− t)g(t)dt.

The Fourier transform of a function f ∈ L1(Rd) is defined as

f̂(w) =

∫
Rd

f(x)e−2πix·wdx

for w ∈ Rd. The Fourier transform is extended to L2(Rd) by the density of L1(Rd) ∩

L2(Rd) in L2(Rd). When we want to emphasize that the Fourier transform is a linear

operator acting on a function space, we write Ff instead of f̂ .

In signal processing, the variable x ∈ Rd often signifies “time”. f(x) is the ampli-

tude of the signal, and the variable w in f̂(w) is called “frequency”.

The Fourier coefficients of a function f ∈ L1(Q) are defined as

f̂(n) =
∫

Q
f(x)e−2πin·xdx, for n ∈ Zd.

For x,w ∈ Rd, we define Tx to be translation by x,

Txf(t) = f(t− x)

and Mw is modulation by w,

Mwf(t) = e2πiw·tf(t).
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MwTxf(t) or TxMwf(t) are called time-frequency shifts of f(t). The following equality

follows easily:

TxMwf(t) = e−2πix·wMwTxf(t).

Let X be a Banach space. Two norms ‖·‖1 and ‖·‖2 are equivalent on X, if there

exist constants C1, C2 > 0 such that

C1‖u‖1 ≤ ‖u‖2 ≤ C2‖u‖1

for any u ∈ X.

The dual of X (the set of continuous linear functionals on X) is denoted by X ′.

Given a linear map h ∈ X ′ (h : X → R) its action on g ∈ X is written 〈h, g〉 where

the symbol 〈h, g〉 stands for h(g) (and also the usual inner product whenever it makes

sense).

The support of a function f on Rd is defined as supp(f) = {x ∈ Rd : f(x) 6= 0}.

C∞
c (Rd) is the space of functions on Rd which are infinitely differentiable and have

compact support.

We say the derivative of a function f exists in the weak sense if there exists a

function g such that

〈f, ψ′〉 = −〈g, ψ〉 for all ψ ∈ C∞
c (Rd).

The differentiation operator Dα and the multiplication operator Xβ are defined

as

Dαf(x) =
∏d

i=1(∂xi
)αif(x) and Xβf(x) =

∑d
i=1 x

βi

i f(x)

where α and β are multi-indices.

S(Rd) is the Schwartz space of all infinitely differentiable functions f on Rd such

that supx∈Rd |DαXβf(x)| <∞ for all α, β ∈ Zd
+. The elements of its topological dual,

S ′(Rd) are called the tempered distributions. The Fourier transform F : S(Rd) →
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S(Rd) is a continuous bijection. By duality the Fourier transform can be extended to

S ′(Rd) by

〈f̂ , φ̂〉 = 〈f, φ〉 for φ ∈ S(Rd), f ∈ S ′(Rd).

Given an open set where U ⊆ Rd, is an open set. The Sobolev space W 1,p(U)

consists of all locally integrable functions f : U → R such that each partial derivative

of f exists in the weak sense and belongs to Lp(U)

The Bessel potential spaces are defined as

Hs(Rd) =

{
f ∈ S ′(Rd) : ‖f‖Hs =

(∫
Rd

|f̂(w)|2(1 + |w|2)sdw

) 1
2

<∞

}
.

If s ≥ 0, then Hs(Rd) is a subspace of L2(Rd) that consists of smooth functions in

L2(Rd). For s < 0, L2(Rd) ⊆ Hs(Rd), and in general Hs(Rd) also contains measures

and distributions when s is negative.

To avoid dealing with too many intermediate constants, sometimes we will write

A(x) . B(x) to mean that A(x) ≤ CB(x) for all x ∈ Rd where C is a constant

independent of x.

More details on the basic properties of the Fourier transform and more generally,

the parts of real analysis and functional analysis which is required to understand this

part of the thesis can be found in many standard texts, e.g., [23, 33].

2.2 Short Time Fourier Transform

In order to get information about local properties of a function f , in particular about

its local frequency spectrum, the short time Fourier transform (or windowed Fourier

transform) is defined. Taking a (usually compactly supported) function g and re-

stricting f with this function g allows this localization. Then the Fourier transform

is taken so that the frequency information for the localization of f is obtained.
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Definition 2.2.1. Let g 6= 0 (called the window function). Then the short time

Fourier transform of a function f with respect to g is defined as

Vgf(x,w) =

∫
Rd

f(t)g(t− x)e−2πit·wdt

for x,w ∈ Rd whenever this is wel-defined

When f, g ∈ L2(Rd), Vgf satisfies some properties.

Lemma 2.2.2. If f, g ∈ L2(Rd) then Vgf is uniformly continuous on R2d and

Vgf(x,w) = (̂fTxg)(w)

= 〈f,MwTxg〉

= 〈f̂ , TwM−xĝ〉

= e−2iπx·w( ̂̂fTwĝ)(−x)

= e−2iπx·wVĝf̂(w,−x)

= e−2iπx·w(f ∗Mwg
∗)(x)

= (f̂ ∗M−xĝ
∗)(w)

= e−iπx·w
∫

Rd

f(t+
x

2
)g(t− x

2
)e−2iπt·wdt.

The symmetric variation
∫

Rd f(t + x
2
)g(t− x

2
)e−2iπt·wdt is often called the cross-

ambiguity function. It plays an important role in radar and in optics ([16, 53]). Except

for the phase factor e−iπx·w, it coincides with the short time Fourier transform.

The formula

Vgf(x,w) = e−2iπx·wVĝf̂(w,−x)

is the fundamental identity of time-frequency analysis. It combines both f and f̂ into

a joint time-frequency representation. In this representation the Fourier transform

amounts to a rotation of the time-frequency plane by an angle of π
2
.

In the previous lemma, f, g are assumed to be in L2(Rd). However, the definition

of short time Fourier transform accepts more generality on f and g as long as the

definition makes sense. In this case the following property holds.
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Lemma 2.2.3. Whenever Vgf is defined, we have

Vg(TuMvf)(x,w) = e−2πiu·wVgf(x− u,w − v)

for x,w, u, v ∈ Rd.

In a more general setting, one can take f ∈ S ′ and g ∈ S.

The short time Fourier transform enjoys several properties similar to those satisfied

the ordinary Fourier Transform. The following theorem on inner products of the short

time Fourier transforms corresponds to Parseval’s formula.

Theorem 2.2.4. Let f1, f2, g1, g2 ∈ L2(Rd). Then Vg1f1, Vg2f2 ∈ L2(R2d) and

〈Vg1f1, Vg2f2〉L2(R2d) = 〈f1, f2〉〈g1, g2〉.

The following corollary is immediate.

Corollary 2.2.5. If f, g ∈ L2(Rd), then

‖Vgf‖2 = ‖f‖2‖g‖2.

In particular, if ‖g‖2 = 1 then

‖f‖2 = ‖Vgf‖2

for all f ∈ L2(Rd). Thus, in this case the short time Fourier transform f −→ Vgf is

an isometry from L2(Rd) into L2(R2d).

It is possible to reconstruct a function from its short time Fourier transform.

However, the following inversion formula holds in a weak sense, i.e., f = g means

〈f, h〉 = 〈g, h〉 for all h ∈ L2(Rd).

Corollary 2.2.6. Suppose that g, γ ∈ L2(Rd) and 〈g, γ〉 6= 0. Then for all f ∈ L2(Rd),

f =
1

〈γ, g〉

∫ ∫
R2d

Vgf(x,w)MwTxγ dw dx.
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Another fact about the short-time Fourier transform is that a function cannot

be concentrated on small sets in the time frequency plane, no matter which time-

frequency representation is used.

Proposition 2.2.7. Suppose that ‖f‖2 = ‖g‖2 = 1 and that U ⊆ R2d and ε ≥ 0 are

such that ∫∫
U

|Vgf |2 dx dw ≥ 1− ε.

Then |U | ≥ 1− ε.

A much deeper and stronger inequality for the short time Fourier Transform was

proved by E. Lieb [36]:

Theorem 2.2.8. If f, g ∈ L2(Rd) and 2 ≤ p <∞, then∫ ∫
U

|Vgf |pdxdw ≤
(2

p

)d

(‖f‖2‖g‖2)
p.

A careful analysis of the minimizing functions in the sharp version of Young and

Hausdorff-Young shows that equality in Lieb’s uncertainty principle is obtained if and

only if f and g are time-frequency shifts of Gaussian functions [36].

Lieb’s inequality improves the Proposition 2.2.7 and yields a sharper estimate for

the essential support of Vgf.

Theorem 2.2.9. Suppose that ‖f‖2 = ‖g‖2 = 1. If U ⊆ Rdand ε ≥ 0 are such that∫ ∫
U

|Vgf(x,w)|2 dx dw ≥ 1− ε,

then

|U | ≥ (1− ε)
p

p−2

(p
2

) 2d
p−2

for all p > 2.

Conversely, it can be also shown that if |supp(Vgf)| < ∞, then either f = 0 or

g = 0 (See [31]).
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2.3 Modulation Spaces and related spaces

To get a quantitative analysis of the distribution of the short time Fourier transform,

the modulation spaces were defined. The modulation spaces were invented in 1983

by H. Feichtinger [19] and were subsequently investigated in [20, 22, 51].

To give a precise mathematical setting for the modulation spaces we begin with

the definitions of weights and mixed-norm spaces.

Definition 2.3.1. A weight function v on R2d is called submultiplicative if

v(z1 + z2) ≤ v(z1)v(z2)

for all z1, z2 ∈ R2d.

A weight function m on R2d is v-moderate if m(z1 + z2) ≤ Cv(z1)m(z2), for all

z1, z2 ∈ R2d.

Two weightsm1,m2 are equivalent if C−1m1(z) ≤ m2(z) ≤ Cm1(z) for all z ∈ R2d.

We will require weight functions to be symmetric, i.e,

m(x, y) = m(−x, y) = m(x,−y) = m(−x,−y)

for x, y ∈ Rd.

Example 2.3.2. The standard class of weights on R2d are weights of polynomial

type:

vs(z) = (1 + |z|)s

where z = (x,w) ∈ R2d and s ≥ 0. We note that vs(z) is equivalent to the weights

(1 + |x|+ |w|)s and (1 + |z|2) s
2 .

One can use the exponential weights vs(z) = eα|z|β for some α > 0 and 0 ≤ β < 1

to quantify a faster decay.

Next we give the definition and properties of Lp,q
m (R2d), which is a generalization

of Lp(R2d).
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Definition 2.3.3. Let m be a weight function on R2d and let 1 ≤ p, q <∞. Then the

weighted mixed-norm space Lp,q
m (R2d) consists of all (Lebesgue) measurable functions

on R2d such that the norm

‖F‖Lp,q
m (R2d) =

(∫
Rd

(∫
Rd

|F (x,w)|pm(x,w)pdx

) q
p

dw

) 1
q

is finite. If p = ∞ or q = ∞, then the corresponding p-norm is replaced by the

essential supremum.

In the above definition, one finds the classical Lp(R2d) when p = q. The mixed-

norm spaces have the same basic properties as the classical Lp spaces.

Lemma 2.3.4. Let m be v-moderate weight and let 1 ≤ p, q ≤ ∞.

(a) Lp,q
m (R2d) is a Banach space.

(b) Lp,q
m (R2d) is invariant under translations Tz, z ∈ R2d and

‖TzF‖Lp,q
m (R2d) ≤ v(z)‖F‖Lp,q

m (R2d).

(c) Hölder’s inequality: If F ∈ Lp,q
m (R2d) and H ∈ Lp′,q′

1/m, where 1
p

+ 1
p′

= 1 and

1
q

+ 1
q′

= 1, then F ·H ∈ L1(R2d) and∣∣∣∣∫
R2d

F (z)H(z)dz

∣∣∣∣ ≤ ‖F‖Lp,q
m (R2d)‖H‖Lp′,q′

1/m

.

(d) Duality: If 1 ≤ p, q <∞, then (Lp,q
m (R2d))′ = Lp′,q′

1/m. The duality is given by

〈F,H〉 =

∫
R2d

F (u)H(u)du

where F ∈ Lp,q
m (R2d) and H ∈ Lp′,q′

1/m.

The convolution properties in classical Lp spaces holds for Lp,q
m (R2d) spaces. The

convolution of an Lp,q
m (R2d) function with an L1

v(R2d) function results a function in

Lp,q
m (R2d) again.
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Proposition 2.3.5. (a) If m is v-moderate weight, F ∈ L1
v(R2d), and

G ∈ Lp,q
m (R2d), then

‖F ∗G‖Lp,q
m (R2d) ≤ C‖F‖L1

v
‖G‖Lp,q

m (R2d).

That is, L1
v ∗ Lp,q

m (R2d) ⊆ Lp,q
m (R2d).

(b) If s > 2d, then L∞vs
∗ L∞vs

⊆ L∞vs
and

‖F ∗G‖L∞vs
≤ Cs‖F‖L∞vs

‖G‖L∞vs
.

Another space which arises in the discussion of modulation spaces is the discrete

mixed-norm space.

Definition 2.3.6. `p,q
m (Z2d) consists of all complex valued sequences a = (ak,n)k,n∈Zd

for which the norm

‖a‖`p,q
m

=

∑
n∈Zd

(∑
k∈Zd

|akn|pm(k, n)p

)q/p
1/q

is finite, where m is a v-moderate weight.

We will need the following version of Young’s Inequality for convolution in weighted

sequence spaces (proved in [27]).

Proposition 2.3.7. Let m be v-moderate weight. Given a = (ak,n) ∈ `1v(Z2d) and

b = (bk,n) ∈ `p,q
m (Z2d), we have

‖a ∗ b‖`p,q
m

. ‖a‖`1v
‖b‖`p,q

m
.

Definition 2.3.8. A measurable function F on R2d belongs to the amalgam space

W (Lp,q
m (R2d)), if the sequence of local suprema

akn = ess sup
x,w∈[0,1]d

|F (x+ k, w + n)| = ‖F · T(k,n)χ‖∞

belongs to `p,q
m (Z2d). The norm on W (Lp,q

m (R2d)) is

‖F‖W (Lp,q
m (R2d)) = ‖a‖`p,q

m
.

The subspace of continuous functions is denoted by W0(Rd).
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The amalgam spaces amalgamate (mix) the local boundedness of functions with

a global property and they have convenient sampling properties, as expressed in the

following proposition.

Proposition 2.3.9. If F ∈ W (Lp,q
m (R2d)) is continuous, then for all α, β > 0 the

restriction F |αZd×βZd is in `p,q
m̃ , where m̃(k, n) = m(αk, βn), and

‖F |αZd×βZd‖`m̃p,q ≤ Cα,β‖F‖W (Lp,q
m (R2d)).

Now we give the definition of the modulation spaces.

Definition 2.3.10. Let g ∈ S(Rd), m be a v-moderate weight function on R2d and

1 ≤ p, q ≤ ∞. Then the modulation space Mp,q
m (Rd) consists of all tempered distri-

butions f ∈ S ′(Rd) such that Vg(f) ∈ Lp,q
m (R2d). The norm on Mp,q

m (Rd) is

‖f‖Mp,q
m (Rd) = ‖Vgf‖Lp,q

m (R2d).

If p = q then we write Mp
m instead of Mp,p

m , and if m(z) = 1 on R2d, then we write

Mp,q and Mp for Mp,q
m and Mp

m.

In this definition, we require 1 ≤ p, q ≤ ∞. However, the modulation spaces

with p or q < 1 are defined in the same way, but their treatment requires much

more technicality. We only note that they are quasi-Banach spaces and the window

function should be chosen carefully. See [34] for further information about them.

The modulation spaces coincides with some classical spaces for different choices

of weights.

Proposition 2.3.11. Let g ∈ S(Rd) \ {0}.

(a) If |f(x)| ≤ C(1+ |x|)−s and s > d, then |Vgf(x,w)| ≤ C ′(1+ |x|)−s. If |f̂(w)| ≤

C(1 + |w|)−s and s ≥ d, then |Vgf(x,w)| ≤ (1 + |w|)−s.

(b) If m(x,w) = m(x), then M2
m(Rd) = L2

m(Rd).
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(c) If m(x,w) = m(w), than M2
m(Rd) = FL2

m(Rd). In particular if ms(w) =

(1 + |w|) s
2 for some s ∈ R, then M2

ms
coincides with the Bessel potential space

Hs(Rd).

(d) Writing vs(z) = (1 + |z|)s, z ∈ R2d, we have S(Rd) =
⋂

s≥0M
∞
vs

and S ′(Rd) =⋃
s≥0M

∞
1

vs

.

For a choice of appropriate weights we can identify the space of functions with

certain smoothness and decay properties as a modulation space.

Proposition 2.3.12. Fix s1, s2 > 0.

(a) Assume 1 + ms1(ω)2 + ms2(x)
2 & m(x, ω)2. If f ∈ Hs1(Rd) and f̂ ∈ Hs2(Rd),

then f ∈M2
m(Rd).

(b) Assume m(x, ω) & max{ms1(ω), ms2(x)}. If f ∈ M2
m(Rd), then f ∈ Hs1(Rd)

and f̂ ∈ Hs2(Rd).

Proof. (a) The weight ms1(ξ) is a weight on Rd. If we think of it as a weight on

R2d that depends only on ω, then we have Hs1(Rd) = M2
ms1 (ω)(Rd), where we write

ms1(ω) to indicate that this weight depends on the frequency variable. Using a similar

notation for ms2 , if f ∈ Hs1(Rd) = M2
ms1 (ω)(Rd) and f̂ ∈ Hs2(Rd) = M2

ms2 (ω)(Rd),

then we have∫∫
|Vgf(x, ω)|2m(x, ω)2 dx dω

≤
∫∫

|Vgf(x, ω)|2ms1(ω)2 dx dω +

∫∫
|V bgf̂(ω,−x)|2ms2(−x)2 dx dω

=

∫∫
|Vgf(x, ω)|2ms1(ω)2 dx dω +

∫∫
|Vgf(x, ω)|2ms2(x)

2 dx dω

≤
∫∫

|Vgf(x, ω)|2 (1 +ms1(ω)2 +ms2(x)
2) dx dω.

(b) Given f ∈M2
m(Rd), we have∫∫

|Vgf(x, ω)|2ms1(ω)2 dx dω ≤
∫∫

|Vgf(x, ω)|2m(x, ω)2 dx dω,
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so f ∈M2
ms1 (ω)(Rd) = Hs1(Rd). Also,∫∫
|V bgf̂(ω,−x)|2ms2(−x)2 dx dω ≤

∫∫
|V bgf̂(ω,−x)|2m(x, ω)2 dx dω

=

∫∫
|Vgf(x, ω)|2m(x, ω)2 dx dω,

so f̂ ∈M2
ms2 (x)(Rd) = Hs2(Rd).

Corollary 2.3.13. Fix s1, s2 > 0, and set m(x, ω) =
(
1 + ms1(ω)2 + ms2(x)

2
)1/2

.

Then the following are equivalent:

i. f ∈ Hs1(Rd) ∩ L2
s2

(Rd)

ii. f ∈ Hs1(Rd), f̂ ∈ Hs2(Rd)

iii. f ∈M2
m(Rd).

Proposition 2.3.14. If |m(z)| ≤ C(1 + |z|)N for some N , then S(Rd) is a dense

subspace of Mp,q
m (Rd) for any 1 ≤ p, q <∞.

This proposition allows only polynomial weights in order to use Schwartz functions

in the theory of modulation spaces. One should consider more general spaces, if an

exponential weight is desired.

Theorem 2.3.15. Let m be a v-moderate weight.

(a) Mp,q
m (Rd) is a Banach space for 1 ≤ p, q ≤ ∞.

(b) Mp,q
m (Rd) is invariant under time-frequency shifts and

‖TxMwf‖Mp,q
m (Rd) ≤ Cv(x,w)‖f‖Mp,q

m (Rd).

(c) If p = q and m(w,−x) ≤ Cm(x,w), then Mp
m(Rd)) is invariant under the

Fourier transform.
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Theorem 2.3.16. If g ∈M1
v (Rd) and f ∈Mp,q

m (Rd), then Vgf ∈ W (Lp,q
m (R2d)) and

‖Vgf‖W (Lp,q
m (R2d)) ≤ ‖Vgg‖W (L1

v)‖f‖Mp,q
m (Rd).

The estimation of the W (Lp,q
m (R2d))-norm of the short time Fourier transform of

f by its Mp,q
m (Rd)-norm makes the embedding between modulation spaces look like

the embedding between `p,q(Z2d) spaces. Further information can be found in [21].

Theorem 2.3.17. If p1 ≤ p2, q1 ≤ q2, and m2 ≤ Cm1, then M
p1,q1
m1

(Rd) ⊆Mp2,q2
m2

(Rd).

2.4 Embedding of Modulation Spaces into BMO in R2

The space of bounded mean oscillations (BMO) plays an important role in harmonic

analysis.

Definition 2.4.1. BMO(Rd) is the space of functions that have bounded mean os-

cillation on Rd :

BMO(Rd) =

{
f ∈ L1

loc(Rd) : ‖f‖BMO = sup
Q

(
−
∫

Q

∣∣∣∣f(x)−−
∫

Q

f

∣∣∣∣ dx) <∞
}
,

where the supremum is taken over all cubes Q in Rd, and

−
∫

E

g =
1

|E|

∫
E

g

denotes the average of a function over a Lebesgue measurable set E.

Note that in the definition above, the functions which differ by a constant are

represented by only one function in BMO(Rd).

BMO(Rd) is a Banach space. The functions in BMO(Rd) belong to Lp
loc if 0 <

p <∞, but need not be locally bounded. We have L∞(Rd) ⊂ BMO(Rd).

The space VMO(Rd) of functions having vanishing mean oscillation on Rd consists

of those functions f ∈ BMO(Rd) such that

lim
a→0

sup
|Q|≤a

(
−
∫

Q

∣∣∣∣f(x)−−
∫

Q

f

∣∣∣∣ dx) = 0. (1)
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Equivalently, VMO(Rd) is the closure of the uniformly continuous functions in BMO-

norm. We will work mostly with a local version of VMO; given a compact set K we

define VMO(K) to be the set of functions satisfying the limit condition in equation

(1) for cubes Q ⊂ K. For details on VMO, we refer to [43].

The importance of BMO in classical harmonic analysis comes from the fact that

the dual of the Hardy space with p = 1 is BMO. In the same way, the Hardy space

with p = 1 is the dual of VMO. See [18], [45] for a detailed information.

We will need an embedding of a certain class of functions defined on R2 into

BMO(R2). This embedding is a consequence of Poincare’s inequality for functions

defined on R2. The Sobolev space W 1,p(U) consists of all locally integrable functions

f : U → R such that each partial derivative of f exists in the weak sense and belongs

to Lp(U).

Theorem 2.4.2 (Poincare’s Inequality). If 1 ≤ p ≤ ∞ then∥∥∥u−−∫
B(x,r)

u
∥∥∥

Lp(B(x,r))
. r ‖Du‖Lp(B(x,r))

for each ball B(x, r) ⊆ Rd and each function u ∈ W 1,p(B(x, r)), where W 1,p(B(x, r))

is the usual Lp Sobolev space defined on B(x, r).

Corollary 2.4.3. For all u ∈ W 1,2(R2) ∩ L1(R2) we have

‖u‖BMO(R2) . ‖Du‖L2(R2).

Proof. If we take p = 1 and d = 2 in Poincare’s Theorem and apply Hölder’s Inequal-

ity, we obtain

−
∫

B(x,r)

∣∣∣∣u(y)−−∫
B(y,r)

u

∣∣∣∣ dy . r −
∫

B(x,r)

|Du|

=
r

|B(x, r)|

∫
B(x,r)

|Du|

≤ r

|B(x, r)|
|B(x, r)|1/2

(∫
B(x,r)

|Du|
)1/2

.

(∫
R2

|Du|2
)1/2

.
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Now we can prove our first main theorem, on the embedding of weighted modu-

lation spaces into VMO(R2).

Theorem 2.4.4. Fix 1 ≤ p ≤ 2. Assume that:

(a) v is a submultiplicative weight on R4 with v(z) . (1 + |z|)N0 for some N0 ∈ N,

(b) m̃ is a v-moderate weight on R4 such that m̃(x, ξ) & (1 + |ξ|2)1/2.

Then Mpem(R2) ⊆ VMO(R2) with

‖f‖BMO . ‖f‖Mpem(R2).

Proof. The Schwartz class S(R2) is dense in Mpem(R2), so consider a fixed f ∈ S(R2).

Setting m(x) = (1+ |x|2)1/2 and applying Corollary 2.4.3 and the Plancherel Equality,

we compute that

‖f‖BMO(R2) . ‖Df‖L2(R2)

. ‖ |ξ| f̂(ξ) ‖2

.
∥∥(1 + ‖ξ|2)1/2 f̂(ξ)

∥∥
2

= ‖f̂ ‖L2
m
.

If we write m(x, ξ) = m(x) then by Proposition 2.3.11(b) we have

‖f̂ ‖L2
m

. ‖f̂ ‖M2
m
.

Now let m′(x,w) = m̃(−w, x). By assumption we have m . m′, which by Theo-

rem 2.3.17 implies that

‖f̂ ‖M2
m

. ‖f̂ ‖Mp

m′
= ‖f‖Mpem .

An extension by density argument establishes that ‖f‖BMO(R2) . ‖f‖Mpem for all f ∈

Mpem(R2). Moreover, since VMO is the closure of the uniformly continuous functions

in BMO-norm, this also implies that Mpem(R2) ⊆ VMO(R2).
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CHAPTER III

ZAK TRANSFORM AND MODULATION SPACES

3.1 Zak Transform on Modulation Spaces

In signal processing, there are practical situations where time-continuous signals are

sampled at a certain uniform rate and at an unknown or uncontrolled sampling fre-

quency. The fact that this sampling frequency is unspecified usually presents no

problems when the sampling frequency is well above the Nyquist rate. However, for

undersampled signals, the particular sampling frequency might play a significant role.

To get detailed information about the sampling of time frequency, the Zak transform

of a function f ∈ L2(Rd) is defined.

Definition 3.1.1. For a given parameter α > 0 the Zak transform Zαf of f is the

function defined on R2d by

Zαf(x, ω) =
∑
k∈Zd

f(x− αk) e2πiαk·ω.

In the sequel we will take α = 1.

The Zak transform of a signal can be considered a mixed time-frequency repre-

sentation of f . It is seen that for a fixed x ∈ Rd, the Zak transform is a Fourier series

where the coefficients are the samples of f , and for a fixed w ∈ Rd it behaves as a

discrete Fourier transform of f(x− t). On the other hand, the Zak Transform can be

regarded as a version of the Poisson summation formula.

The Zak transform has many properties. Before giving the main properties, it

is important to choose a suitable class of functions for which the Zak transform is

well-defined.

Lemma 3.1.2. (a) If f ∈ L1(Rd), then Zf ∈ L1(Q×Q).
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(b) If f ∈ W (Rd) then Zf ∈ L∞(R2d).

(c) If f ∈ W0(Rd) then Zf is continuous on R2d.

(d) If f ∈ L2(Rd),then Zf is defined almost everywhere and Zf(x,w) ∈ L2(Q, dw)

for almost x ∈ Rd.

The following properties of Zf follows from its definition.

i. (Quasiperiodicity of the Zak transform) For any n ∈ Zd,

Zf(x+ n, ω) = e2πiω·n Zf(x, ω),

Zf(x, ω + n) = Zf(x, ω).

Hence, Zf is completely determined by its values on the cube Q×Q ⊆ R2d.

ii. (Time-frequency shifts) For (u, ν) ∈ R2d,

Z(TuMνf)(x,w) = e2πiν·(x−u)Zf(x− u,w − ν).

iii. (Inversion formulas)

∫
Q

Zf(x,w)dw = f(x),∫
Q

Zf(x,w)e−2πix·wdx = f̂(w).

Theorem 3.1.3. If f ∈ W (Rd), then
∫

Q

∫
Q
|Zf(x,w)|2dxdw = ‖f‖2

2. Consequently,

Zf extends to a unitary operator from L2(Rd) onto L2(Q×Q).

Schwartz functions can also be characterized by the Zak transform. The Zak

transform maps a function in S(Rd) to an infinitely differentiable function on R2d.

Theorem 3.1.4. If f ∈ S(Rd), then Zf ∈ C∞(R2d). Conversely, if F ∈ C∞(R2d) is

quasiperiodic, then F = Zf for a (unique) f ∈ S(Rd).
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The Zak transform has the following important and interesting property due to

quasiperiodicity.

Lemma 3.1.5. If Zf is continuous on R2d, then Zf has a zero in every unit square

in R2d.

Theorem 3.1.6. If f ∈ M1(Rd), then f ∈ W0(Rd). Consequently, by Lemma 3.1.5,

if f ∈M1(Rd) then Zf has a zero in every unit square in R2d.

A useful property of Zak Transform is the following equality which describes the

Fourier coefficients of Zf · Zg as samples of the STFT of f with respect to the

window g: Given f , g ∈ L2(Rd),∫
[0,1)d

∫
[0,1)d

Zf(x, ω)Zg(x, ω) e−2πin·x e−2πim·ω dx dω = Vgf(−m,n). (2)

This fact allows a characterization of the modulation spaces via the Zak transform.

The following result is due to Janssen [32], and we also mention that a different

characterization of the modulation spaces was obtained earlier by Walnut [52].

Theorem 3.1.7. Fix 1 ≤ p, q ≤ ∞ and let g(r) ∈ M1
v (Rd) for r = 1, . . . , N be such

that the functions Zg(r) have no common zeros. If f ∈ L2(Rd), then f ∈ Mp,q
m (Rd) if

and only if each Zf · Zg(r) has a Fourier series

∑
k,`

c
(r)
k,` e

2πik·x+2πi`·ω

such that (c`,−k)k,`∈Zd ∈ `p,q
m (Z2d).

It is necessary to take N ≥ 2 in Theorem 3.1.7 because the functions Zg(r) will

be continuous and therefore have zeros.

Our second main theorem describes the mapping properties of the Zak transform

acting on the modulation spaces.

Theorem 3.1.8. Fix 1 ≤ p <∞. Assume that:
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(a) v is a submultiplicative weight on R2d such that |v(z)| . (1 + |z|)N0 for some

N0 ∈ N,

(b) m is a v-moderate weight on R2d,

(c) ψ ∈ C∞
c (R2d).

Let m∗ be any weight function satisfying m∗(N,M) ≤ CN m(M) for all M , N ∈ Z2d.

Then for every f ∈ L2(Rd) ∩Mp
m(Rd) we have ψZf ∈Mp

m∗(R2d).

Proof. First we note that ψZf ∈ L2(R2d).

Let g ∈ C∞
c (Rd) be supported on [0, 1]d and nonzero on the interior of this cube.

Define

ξ = (1, · · · , 1)︸ ︷︷ ︸
d times

∈ Rd

and

gj(x) = g
(
x+

j − 1

2d+ 1
ξ
)
, j = 1, . . . , 2d+ 1.

We have gj ∈M1
v (Rd) for each j. Taking the support of gj into consideration, if k ∈ Zd

then

Zgj(x, ω) = e2πik·ωgj(x− k), x ∈ [0, 1)d + k − j − 1

2d+ 1
ξ.

The zero set of Zgj is

{
(x, ω) ∈ R2d : x ∈ k −

( j − 1

2d+ 1

)
ξ + ∂[0, 1)d ∩ [0, 1)d, k ∈ Zd, ω ∈ Rd

}
,

where ∂A denotes the boundary of a set A.

Claim 1. The functions Zgj have no common zeros.

To see this, assume that Zgj(x0, ω0) = 0 for each j = 1, . . . , 2d+1. Then for each j

there exists a kj ∈ Zd such that

x0 ∈ kj −
( j − 1

2d+ 1

)
ξ + ∂[0, 1)d ∩ [0, 1)d.
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Let θj ∈ ∂[0, 1)d ∩ [0, 1)d be such that x0 = kj − ( j−1
2d+1

)ξ + θj. For j 6= j′ we have

x0 = kj −
( j − 1

2d+ 1

)
ξ + θj = kj′ −

( j′ − 1

2d+ 1

)
ξ + θj′ ,

so kj − kj′ = ( j−j′

2d+1
)ξ + θj′ − θj. Each of θj and θj′ must have a zero component. If

they both have a zero in the mth coordinate, then k
(m)
j − k

(m)
j′ = ( j−j′

2d+1
)ξ(m). This is

a contradiction since k
(m)
j − k

(m)
j′ is integer. Hence no θj and θj′ can have a zero in

the same component. However, this is impossible as there are 2d+ 1 vectors θj each

with d components. This proves the claim.

Consequently, Theorem 3.1.7 implies that the Fourier coefficients of Zf Zgj belong

to `pm(Z2d) for each j = 1, . . . , 2d+ 1.

Now let φ ∈ C∞
c (R2d) be supported in the unit square [0, 1]2d and strictly positive

on its interior. For j = 1, . . . , 2d+ 1 define

φj(x, ω) = φ
(
(x, ω) +

( j − 1

2d+ 1

)
(ξ, ξ)

)
and Gj = φjZgj.

Since each gj is Schwartz-class, we have Zgj ∈ C∞(R2d). Therefore, for any N1 ∈ N

and any weight v2 satisfying v2(z) . (1 + |z|)N1 we have

Gj = φjZgj ∈ C∞
c (R2d) ⊆M1

v2
(R2d).

For the remainder of this proof, let v2 be any such weight.

Claim 2. The zero set of Zgj is contained in the zero set of φj.

This follows from the fact that the zero set of Zgj is

⋃
k∈Zd

((
− j − 1

2d+ 1

)
ξ + k + ∂[0, 1)d ∩ [0, 1)d

)
× Rd

while the zero set of φj is

R2d \
(
− j − 1

2d+ 1
(ξ, ξ) + (0, 1)2d

)
.

Now,

ZGj(x, ω, p, s) =
∑

(m,n)∈Z2d

e2πi(p,s)·(m,n) φj(x−m,ω − n)Zgj(x−m,ω − n).
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Since φj is compactly supported, for (x, ω) ∈ (m,n)−
(

j−1
2d+1

)
(ξ, ξ) + [0, 1)2d we have

that

ZGj(x, ω) = e2πi(p,s)·(m,n) φj(x−m,ω − n)Zgj(x−m,ω − n).

The zero set of ZGj is

⋃
(m,n)∈Z2d

((
− j − 1

2d+ 1

)
(ξ, ξ) + (m,n) + ∂[0, 1)2d ∩ [0, 1)2d

)
× R2d.

Claim 3. The functions ZGj have no common zeros.

To see this, suppose (x, ω, p, s) ∈ R2d × R2d is a common zero point for the

functions ZGj. Then for each j = 1, . . . , 2d + 1 there exists (mj, nj) ∈ Z2d and θj ∈

(− j−1
2d+1

)(ξ, ξ)+(m,n)+∂[0, 1)2d∩[0, 1)2d such that (x, ω) = (mj, nj)−( j−1
2d+1

)(ξ, ξ)+θj.

Each θj must have a component that is zero.

If j 6= j′ and the sth component of θj and θj′ is both zero then, as in the proof

of Claim 1, we obtain that (mj, nj)
(s)− ( j−1

2d+1
)(ξ, ξ)(s) = (mj′ , nj′)

(s)− ( j′−1
2d+1

)(ξ, ξ)(s).

This implies j−j′

2d+1
is an integer, which is a contradiction. Hence no θj and θj′ can

have a zero in the same component, which is impossible since the number of j’s is

2d+ 1 while the dimension of θj is 2d.

Claim 4. There exists a v2-moderate weight m∗ : R2d × R2d → (0,∞) such that

the sequence cN,−M belongs to `pm(Z2d), where cM,N are the Fourier coefficients of

Z(ψZf) · ZGj

To see this, fix j and let K ∈ Z2d and α ∈ N be such that supp(ψ) ⊆ K + [0, α)2d.

Write M = (m1,m2), N = (n1, n2) ∈ Z2d and X = (x1, x2), Y = (y1, y2) ∈ R2d,

etc. Recalling that Gj = φj Zgj, we use equation (2) to compute that the Fourier

coefficient cN,−M of Z(ψZf) · ZGj is

cN,−M = VGj
(ψ Zf)(M,N)

=

∫
R2d

ψ(X)Zf(X)Gj(X −M) e−2πiN ·X dX

=

∫
K+[0,α)2d

ψ(X)Zf(X)φj(X −M)Zgj(X −M) e−2πiN ·X dX
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= α2d

∫
[0,1)2d

ψ(αY +K)Zf(αY +K)φj(αY +K −M)

× Zgj(αY +K −M) e−2πiN ·(αY +K) dY

= α2d

∫
[0,1)2d

ψ(αY +K)φj(αY +K −M)Zf(αy1 + k1, αy2 + k2)

× Zgj(αy1 + k1 −m1, αy2 + k2 −m2) e
−2πiN ·(αY +K) dY

= α2d

∫
[0,1)2d

ψ(αY +K)φj(αY +K −M)Zf(αy1 + k1, αy2)

× Zgj(αy1 + k1 −m1, αy2) e
−2πiN ·(αY +K) dY

= α2d

∫
[0,1)2d

ψ(αY +K)φj(αY +K −M) e2πiαy2·k1 Zf(αy1, αy2)

× e−2πiαy2·(k1−m1) Zgj(αy1, αy2) e
−2πi(n1,n2)·(αy1+k1,αy2+k2) dY

= α2d

∫
[0,1)2d

ψ(αY +K)φj(αY +K −M)Zf(αY )Zgj(αY )

× e2πi(αy2·k1−αy2·k1+αy2·m1−n1·αy1−n2·αy2) dY

= α2d

∫
[0,1)2d

ψ(αX +K)φj(αX +K −M)Zf(αX)Zgj(αX)

× e−2πi(n1,n2−m1)·(αx1+k1,αx2+k2) dX,

where we have applied the quasiperiodicity of the Zak transform and the fact that

M , N , K belong to Z2d.

Note that there are only a finite number of M such that φj(αX − M + K) is

not identically zero on [0, 1)2d, and hence a finite number of M such that cN,−M is

nonzero. Let B be the set of those M ∈ Z2d such that cN,−M 6= 0. Let us fix an

M ∈ B and define the following functions:

Φ(M)(X) = ψ(αX +K)φj(αX +K −M)Zf(αX)Zgj(αX) e−2πim1·x2 ,

U (M)(X) = ψ(αX +K)φj(αX +K −M) e−2πim1·x2 ,

W (X) = Zf(αX)Zgj(αX).

We note some facts about these functions.

i. Φ(M) = U (M)W.
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ii. We have

cN,−M = α2d

∫
[0,1)2d

Φ(M)(X) e−2πiαN ·X dX

= α2d Φ̂(M)(αN) = α2d (Û (M) ∗ Ŵ )(αN).

iii. Ŵ (αN) =
∫

[0,1)2d Zf(αX)Zgj(αX) e−2πiαN ·X dX = (Zf Zgj)
∧
(N).

iv. U (M) is a compactly supported infinitely differentiable function whose support

lies inside the unit cube [0, 1]2d. Consequently,
∥∥{ÛM(αN)

}∥∥
`1v(Z2d)

<∞ for any

polynomial weight function v defined on R2d.

v. By Theorem 3.1.7, the hypothesis f ∈Mp
m(R2d) implies that the Fourier coeffi-

cients of Zf Zgj belong to `pm(Z2d), and therefore
{
Ŵ (αN)

}
∈ `pm(Z2d).

Fix now any weight function m∗ : R2d × R2d → R such that:

• there exists a C > 0 such that m∗(M,N) ≤ Cm(N) for all N ∈ Z2d and M ∈ B,

and

• m∗ is v2-moderate with respect to some submultiplicative function v2.

For example, we can simply take m∗(M,N) = m(N). Define mM(N) = m∗(M,N).

Using Proposition 2.3.7, we compute that

∥∥{cN,−M

}
N∈Z2d

∥∥
`p
mM

(Z2d)
=

( ∑
N∈Z2d

|cN,−M |pm∗(M,N)p

)1/p

≤ C

( ∑
N∈Z2d

|cN,−M |pm(N)p

)1/p

= Cα2d
∥∥{(Û (M) ∗ Ŵ )(αN)

}∥∥
`p
m(Z2d)

≤ CC ′α2d
∥∥Û(αN)

∥∥
`1v(Z2d)

∥∥Ŵ (αN)
∥∥

lpm(Z2d)

<∞.
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From above, we obtain∥∥{cN,−M

}
M,N∈Z2d

∥∥
`p
m∗ (Z2d×Z2d)

=

( ∑
N∈Z2d

∑
M∈B

|cN,−M |pm∗(M,N)p

)1/p

=

(∑
M∈B

∑
N∈Z2d

|cN,−M |pm∗(M,N)p

)1/p

≤
(∑

M∈B

∥∥{cN,−M

}
N∈Z2d

∥∥p

lpmM
(Z2d)

)1/p

< ∞,

since B is a finite set.

As an application of this theorem, we recover the following result, which is [25,

Lemma 2.3].

Corollary 3.1.9. Assume f ∈ Hs1(Rd) and f̂ ∈ Hs2(Rd) where s1, s2 > 0. Then for

any smooth, compactly supported function ψ ∈ C∞
c (R2d) we have ψZf ∈ FL2

m(R2d)

where m(x, y) = (1 + |x|2s1 + |y|2s2)1/2.

Proof. Note that m(x, y) satisfies

m(x, y) ≤
(
1 +ms1(x)

2 +ms2(y)
2
)1/2

.

Hence f ∈M2
m(Rd) by Proposition 2.3.12. Now let

v(x, y) =
(
1 + (|x|2 + |y|2)1/2

)max{s1,s2}.

Then m is a v-moderate weight. By Theorem 3.1.8, ψZf ∈M2
m∗(R2d). Taking

m∗(x, y, u, v) = m(u, v),

by Proposition 2.3.11(b) we obtain ψZf ∈ FL2
m(R2d).

Another implication of Theorem 3.1.8 is that the Zak transform embeds certain

modulation spaces into a local VMO space.

Corollary 3.1.10. Let v be a submultiplicative weight satisfying |v(z)| ≤ (1 + |z|)N0

for some N0 ∈ N, and let m be a v-moderate weight such that m(x) .
(
1 + |x|2

)1/2
.

If f ∈ L2(R) ∩Mp
m(R) where 1 ≤ p ≤ 2, then Zf ∈ VMO(K) for any compact set

K ⊂ R2.
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3.2 Application: A Balian-Low Type Theorem for Gabor
Frames via Modulation Spaces

In applications, rather than the continuous representation of signals, sampling of

signals is used. One of the tools related to sampling of signals in signal processing is

frames.

Definition 3.2.1. A sequence {fj : j ∈ J} in a (separable) Hilbert space H is called

a frame if there exist positive constants A,B > 0 such that for all g ∈ H,

A‖g‖2 ≤
∑
j∈J

|〈g, fj〉|2 ≤ B‖g‖2.

Any two constants satisfying the inequality above are called frame bounds and

〈g, fj〉 are called frame coefficients. If we can take A = B, then {fj : j ∈ J} is called

a tight frame.

Frames can be regarded as a generalization of orthonormal bases, obviously an or-

thonormal basis is a frame with A = B = 1. The main difference between orthonormal

bases and frames is that frames can have redundancy whereas orthonormal bases are

not redundant. One can easily form a frame by taking the union of two orthonormal

bases.

It is possible to recover a signal from the frame coefficients of a function.

Proposition 3.2.2. If {fj} is a frame with the frame bounds A and B, then there

exists a frame f̃j with frame bounds A−1, B−1 such that for any g ∈ H,

g =
∑

j

〈g, fj〉f̃j =
∑

j

〈g, f̃j〉fj.

In particular, if {fj} is a tight frame then f̃j = 1
A
fj.

In time-frequency analysis of a function, the samples of the short time Fourier

transform of a function are collected. The samples of the short time Fourier transform

of a function f for a given window g satisfy
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Vgf(αk, βn) = 〈f,MβnTαkg〉 = e−2πiαk·n〈f, TαkMβng〉.

It is reasonable to form a frame by using the functions TαkMβng. Indeed, the

time frequency shifts of a window g is called a Gabor system. Given g ∈ L2(R) and

constants α, β > 0, the associated Gabor system is

G(g, α, β) =
{
e2πimβx g(x− nα)

}
m,n∈Z.

It is natural to consider under what conditions G(g, α, β) will generates a frame.

The conditions on α and β determine the density of sampling of the short time Fourier

transform of f under the window g. The following theorem gives an idea about the

density of sampling.

Theorem 3.2.3. Let g ∈ L2(Rd). If G(g, α, β) is a frame for L2(Rd), then αβ ≤ 1.

In signal analysis it has become customary to call αβ < 1 oversampling, αβ = 1

critical sampling, and αβ > 1 undersampling.

The classical Balian–Low Theorem addresses the question of what conditions are

required for g in order G(g, α, β) to be a frame for the case αβ = 1 (the “critical

density”), which by a change of variables can be further reduced to the case α = β = 1.

Other Balian–Low-type theorems can be found in [28], [11], [24], [12], [13], [25].

Theorem 3.2.4. [Classical BLT] Given g ∈ L2(R), if g ∈ H1(R) and ĝ ∈ H1(R)

then G(g, 1, 1) is not a frame for L2(R).

The approach to the proof is based on the Zak transform, which completely de-

termines whether the Gabor system associated with a function g is a frame at the

critical density.

Proposition 3.2.5. Fix g ∈ L2(R). Then G(g, 1, 1) is a frame for L2(R) if and only

if 0 < A1/2 ≤ |Zf | ≤ B1/2 <∞ a.e.
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If a function belongs to the modulation space M1(R), which is a subspace of

L2(R), then the associated Gabor system cannot be a frame for L2(R). The reason

for this is given in the following proposition, whose proof can be found in [27].

Proposition 3.2.6. (a) If f ∈M1(R) then Zf is continuous.

(b) If f ∈ L2(R) and Zf is continuous then Zf must have a zero.

The following result is due to Gautam [25]. The original proof of the classical

Balian-Low Theorem did not mention VMO(R) space. To show how VMO(R) forces

a quasiperiodic function to have a zero, we will give the proof of the following theorem.

Without assuming the continuity of Zf, when applied to F = Zf it gives a sufficient

condition for Zf to have a zero inside the unit square.

Theorem 3.2.7. Suppose F ∈ VMO(K)∩L∞(R2) for a compact set K that contains

the unit square in R2. If

F (x+ 1, y) = e2πiy F (x, y) a.e.,

F (x, y + 1) = F (x, y) a.e.,

then ess inf |F | = 0.

Proof. Let K contain the unit square. Since |F | is periodic, it is enough to analyze

F on the unit square. Assume that ess inf |F | 6= 0. By scaling, we may assume also

|F | ≤ 1. Now there exists a d > 0 such that

d ≤ |F | ≤ 1

almost everywhere. Let Qε(x, y) denote the cube of side length ε centered at (x, y) ∈

K, and define

Fε(x, y) = −
∫

Qε(x,y)

F (t, v)dtdv,

the average of F over Qε(x, y). Fε is continuous and satisfies the modified quasi-

periodicity relations
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Fε(x+ 1, y) = e2πiy Fε(x, y) + Φε(x, y) a.e.,

Fε(x, y + 1) = Fε(x, y) a.e.,

where the error term Φε(x, y) satisfies

|Φε(x, y)| . ε.

Moreover, for ε sufficiently small, Fε is also bounded from below, as we now

show. Since F ∈ VMO(K), we may choose ε0so that −
∫

Qε(x,y)
|F − Fε(x, y)| ≤ d

2
for all

(x, y) ∈ K and ε < ε0. Now by triangle inequality, we have

|Fε(x, y)| = −
∫

Qε(x,y)

|F (x, y)|

≥ −
∫

Qε(x,y)

|F | − −
∫

Qε(x,y)

|F − Fε(x, y)|

≥ d

2
,

since we assume |F | ≥ d almost everywhere. Thus d
2
≤ |Fε| ≤ 1 almost everywhere

for ε < ε0.

Now since Fε is continuous and d
2
≤ |Fε| ≤ 1, we can define a continuous branch

γε of logFε. From the modified quasi-periodicity conditions we have

γε(x+ 1, y) = γε(x, y) + 2πij + 2πiy + Ψε(x, y),

γε(x, y + 1) = γε(x, y) + 2πik

for all x, y in some simply connected neighborhood U of Q0. Here j, k ∈ Z are constant

on U by continuity of γε, and

|Ψε| ≤ − log

(
1− |Φε|

|Fε|

)
.
|Φε|
|Fε|

provided that |Φε|
|Fε| is sufficiently small. This can be arranged by taking ε sufficiently

small, since |Φε| . ε and |Fε| ≥ d
2
; thus for ε small we have |Ψε| < 1 on U. To obtain
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a contradiction, we simply compute

0 = γε(1, 0)− γε(0, 0) + γε(1, 1)− γε(1, 0)

+ γε(0, 1)− γε(1, 1) + γε(0, 0)− γε(0, 1)

= Ψε(0, 0)−Ψε(0, 1)− 2πi

6= 0,

since |Ψε| < 1. Thus |F | ≥ d a.e. is impossible and hence ess inf |F | = 0 as

desired.

Now we give a Balian–Low-type theorem in terms of modulation spaces.

Theorem 3.2.8. Let v be a submultiplicative weight with |v(z)| . (1 + |z|)N0 for

some N0 ∈ N, and let m be a v-moderate weight such that m(x) & (1 + |x|2)1/2. If

f ∈ L2(R) ∩Mp
m(R) where 1 ≤ p ≤ 2, then G(f, 1, 1) is not a frame for L2(R).

Proof. If G(f, 1, 1) is a frame then Zf ∈ L∞(R2). Combining this with Corollary 3.1.10

and Theorem 3.2.7 implies that ess inf |Zf | = 0, which is a contradiction.

Letting p = 2 and m(x, ω) = (1 + |x|2s1 + |ω|2s2)1/2 where s1, s2 ≥ 1 recovers the

usual Balian–Low Theorem.

Corollary 3.2.9. If f ∈ L2(R) satisfies f ∈ Hs1(R) and f̂ ∈ Hs2(R) where s1,

s2 ≥ 1, then G(f, 1, 1) is not a frame for L2(R).
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PART II

Minimizing IPH Functions over the Unit

Simplex



CHAPTER IV

MINIMIZATION OF IPH FUNCTIONS VIA MIN-TYPE

FUNCTIONS: CUTTING ANGLE METHOD

4.1 Preliminaries and Notation

Consider an n−dimensional linear space Rn. We shall use the following notations:

I = {1, .., n} ;

xi is the ith coordinate of a vector x ∈ Rn;

[l, x] =
∑
i∈I

lixi is the inner product of vectors l ∈ Rn and x ∈ Rn;

em ∈ Rn is the unit vector whose mth coordinate is 1;

For x, y ∈ Rn, x ≥ y ⇔ xi ≥ yi for all i ∈ I ;

For x, y ∈ Rn, x� y ⇔ xi > yi for all i ∈ I ;

x and y are said to be comparable if x ≥ y or x ≤ y for x, y ∈ Rn, otherwise they

are called incomparable;

Rn
+ = {x = (x1, ..., xn) ∈ Rn : xi ≥ 0 for all i ∈ I} (nonnegative orthant);

S =

{
x ∈ Rn

+ :
∑
i∈I

xi = 1

}
( unit simplex );

riS =

{
x ∈ Rn

+ :
∑
i∈I

xi = 1, xi 6= 0 for all i ∈ I
}

( relative interior of S );

C
(

w
k

)
denotes the number of k-combinations from w elements.

A feasible direction h ∈ Rn for a point x ∈ S is the nonzero vector such that

x + h ∈ S. Note that a feasible direction h = (h1, · · · , hn) for a point in S satisfies
n∑
i

hi = 0.

4.2 Min-type functions and IPH functions

Definition 4.2.1. A function f defined on Rn
+ is called increasing positively homo-

geneous of degree one (for short IPH), if
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a) for x, y ∈ Rn
+, x ≥ y implies f(x) ≥ f(y);

b) f(λx) = λf(x) for all x ∈ Rn
+ and λ > 0.

Example 4.2.2. Let D be either Rd
+. The following functions defined on D are IPH:

1. a(x) =
∑

i∈I aixi with ai ≥ 0;

2. pk(x) =
(∑

i∈I x
k
i

) 1
k with k > 0;

3. f(x) =
√
〈Ax, x〉, where A is a matrix with nonnegative entries;

4. f(x) =
∏

j∈J x
tj
j , where J ⊂ I, tj > 0,

∑
j∈J tj = 1.

Proposition 4.2.3. The following statements hold for IPH functions.

i. The sum of two IPH functions is also an IPH function.

ii. If f is IPH, then the function γf is IPH for all γ > 0.

iii. T is an arbitrary index set and {ft}t∈T is a family of IPH functions, then the

functions h(x) = inft∈T ft(x) and g(x) = supt∈T ft(x) are IPH.

iv. The pointwise limit of a sequence (and more general, of a directed set) of IPH

functions is IPH.

Example 4.2.4. The following functions are IPH by the previous proposition:

1. f(x) = maxk∈K minj∈J

∑
i∈I a

jk
i xi where ajk

i ≥ 0, k ∈ K, j ∈ J, i ∈ I where J,K

are finite sets of indices,

2. f(x) = maxk∈K minj∈Jk

∑
i∈I a

j
ixi, where aj

i ≥ 0, j ∈ Jk, k ∈ K, K and Jk are

finite sets of finite sets of indices.

We note (see [10]) that an arbitrary piecewise linear function f generated by a col-

lection of linear functions a1, · · · , am can be represented as in statement 2; hence an

arbitrary piecewise linear function defined on D and generated by nonnegative vectors

is IPH.
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Example 4.2.5. Let f be a Lipschitz function defined on the unit simplex S. Let

minx∈S f(x) ≥ c for some c > 0, and let L be a Lipschitz constant of the function f

in `1 norm, i.e.,

|f(x)− f(y)| ≤ L
∑

i∈I |xi − yi| for all x, y ∈ S.

Assume that 2L
c
≤ 1. Then the function g defined on Rn

+ by

g(x) =

(∑
i∈I

xi

)
f

(
x∑

i∈I xi

)
(3)

is IPH. This follows from the Theorem 1.3.6 with p = 1. Note that g(x) = f(x) for

x ∈ S.

Remark 4.2.6. In applications, one should find or estimate L and c in order to deter-

mine whether a function is IPH or not on S. This problem can be solved practically

in minimization problems in the following way. Consider an arbitrary Lipschitz func-

tion φ defined on S. Consider the function f(x) = φ(x) +M where M is a very large

number. Since the Lipschitz constant of the function f coincides with the Lipschitz

constant of φ, we can obtain the inequality 2L
c
≤ 1 by choosing a very large M. Using

(3) we can construct the IPH function g(x) which coincides with φ(x)+M for x ∈ S.

Note that the functions φ, f and g have the same global minimizers on S. Hence

global minimization of a Lipschitz function over S can be accomplished by global

minimization of IPH functions.

Definition 4.2.7. Consider the function l : Rn
+ → R+ ∪ {+∞} as follows:

l(x) = min
i∈I

xi

li
, l ∈ Rn

+.

We call this function a min-type function generated by the vector l. We shall denote

the function by the same symbol l.

Let us give some examples of min-type functions.
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Example 4.2.8. l(1) = (1, 2, 3) then l(1)(x, y, z) = min{x
1
, y

2
, z

3
}.

l(2) = (0, 2, 1) then l(2)(x, y, z) = min{∞, y
2
, z} = min{y

2
, z}.

l(3) = (0, 1, 0) then l(3)(x, y, z) = min{∞, y,∞} = y.

A min-type function is clearly IPH.

The following theorem establishes the relation between IPH functions and min-

type functions.

Theorem 4.2.9. [42]

1. A finite function f defined on Rn
+ is IPH if and only if f is abstract convex with

respect to min-type functions, i.e.,

f(x) = sup{l(x) : l ∈ Rn
+, l(x) ≤ f(x)}.

2. Let x0 ∈ Rn
+ be a vector such that f(x0) > 0 and l = x0

f(x0)
. Then l(x) ≤ f(x)

for all x ∈ Rn
+ and l(x0) = f(x0).

4.3 Statement of the Main Problem and the Cutting Angle
Method

We consider the following problem:

Let f be an IPH function and f(x) > 0 over S.

min f(x)

x ∈ S
(4)

For this problem, by using the condition that f is abstract convex with respect

to the set of min-type functions, cutting angle method has been introduced in [4].

The cutting angle method is a generalization of cutting plane method from convex

programming.

This method is as follows.
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Algorithm 4.3.1. Step 0: Take points xm = em, m = 1, · · · , n and j = n + q.

Choose arbitrary points xn+i ∈ S such that xn+i
r � (0, · · · , 0), i = 1, · · · , q. Let

lki = xk
i /f(xk), k = 1, · · · , j. Define the function hj by

hj(x) = max
k=1,··· ,j

min
i∈I

xk
i

lki
.

Step 1: Solve the problem min
x∈S

hj(x).

Step 2: Let y∗ be a solution of the problem in Step 1. Set j = j + 1, xj = y∗.

Find lji = xj
i/f(xj) and set

hj(x) = max(hj−1(x),min
i

xj
i

lji
) = max

k=1,··· ,j
min

i

xk
i

lki
.

Then go to Step 1.

The algorithm provides lower and upper estimates of the global minimum f∗ for

Problem (4).

Let λj = minx∈S hj(x). It follows from Theorem 4.2.9 that

mini∈I l
k
i xi ≤ f(x) for all x ∈ S, k = 1, · · · , j.

Hence hj(x) ≤ f(x) for all x ∈ S and λj ≤ minx∈S f(x). Thus λj is a lower estimate

of the global minimum f∗. Consider the number f(xj) = µj. Clearly µj ≥ f∗. It can

be shown [3] that λj is an increasing sequence and µj−λj → 0 as j →∞. This allows

us to obtain an approximate solution with an arbitrary given tolerance.

Remark 4.3.2. Let f∗ be the value of the global minimum of a function f over the

simplex S. The precision δr of the current point of xj is defined as follows:

δr(x
j) = min

(
f(xj)− f∗,

f(xj)− f∗
f∗

)
.

Generally, f∗ is unknown, so we shall consider the following number:

δ(xj) = min

(
f(xj)− λj,

f(xj)− λj

λj

)
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as an estimate of the precision. Note that δ(xj) > δr(x
j). Numerical experiments show

that δr(x
j) is substantially less than δ(xj) in many instances. Thus very often we have

a substantially more precise solution indicated by the estimate δ of the precision.

The algorithm is stopped at the desired precision.

Step 1, to find a global minimizer of the function hj, is the most difficult and

important step of the cutting angle method. Different algorithms have been developed

to solve this problem (see, for example, [1], [5],[6],[38]). The next chapter is mostly

devoted to the solution of this subproblem. We give necessary and sufficient conditions

on the solution of this problem.
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CHAPTER V

AN ALGORITHM FOR THE SUBPROBLEM IN

CUTTING ANGLE METHOD

5.1 The Subproblem and an algorithm for solving it

As was mentioned in the previous section, the subproblem in the cutting angle method

is expressed as follows:

P (x) → min

x ∈ S
(5)

where

P (x) = max
1≤j≤k

{l(j)(x)} and l(j)(x) = min
i∈I
{ xi

l
(j)
i

}j = 1, · · · , k.

Before giving the algorithm for this subproblem, we make some observations. The

following proposition tells us where to look for minimum points of P (x) over the unit

simplex. We refer [6] for the proof.

Proposition 5.1.1. Let m > n and lk = ckek where ck are positive numbers for k ∈ I

and lk � (0, · · · , 0) for n + 1 ≤ k ≤ m. Then the function P (x) = max
1≤i≤m

li(x) has a

local minimizer over S and each local minimizer of P (x) lies in riS.

This proposition tells us to look for the global minimizer in the interior of the

unit simplex if P (x) has at least n min-type functions whose vectors are multiples of

unit vectors. Since Algorithm 4.3.1 begins with unit vectors and f(x) > 0 over the

unit simplex, we have this type of function at step 2 in every iteration of Algorithm

4.3.1. Knowing this, we will focus on finding the local minimizers of this function in

riS, because once the local minimizers are located, then the global minimum is one

of them.
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For the sake of simplicity we start with the problem in R2
+. We give the following

easy and important result about min-type functions.

Lemma 5.1.2. Let l(1) and l(2) be comparable vectors in Rn
+ and let

P (x) = max
{
l(1)(x), l(2)(x)

}
.

Then

P (x) =


l(1)(x), if l(1) ≤ l(2),

l(2)(x), if l(1) ≥ l(2).

Lemma 5.1.2 gives a very important property about min-type functions. It tells us

that if the vectors of two min-type functions are comparable then their maximum will

be automatically the one which has smaller vector. This helps writing P (x) as the

maximum of incomparable min-type functions. To do so, one can find all comparable

pairs of min-type functions in the expression of P (x) and delete the bigger ones in

light of Lemma 5.1.2.

Now we give the following definition, which will be quite useful in stating our

theorems and reducing the work in the proofs.

Definition 5.1.3. If no pair of l(i) ∈ Rn
+ in the function P (x) = max

1≤i≤k

{
l(i)(x)

}
are

comparable, then P (x) is called a uniformly stated function.

The following proposition gives the local minimum of a uniformly stated function

which consists of two min-type functions defined on R2
+.

Proposition 5.1.4. Let P (x) = max{l(1)(x), l(2)(x)} where l(1) = (l
(1)
1 , l

(1)
2 ) and l(2) =

(l
(2)
1 , l

(2)
2 ). Then x∗ = (x∗1, x

∗
2) ∈ riS is the local minimum of P (x) if and only if the

equality
x∗1
l1

=
x∗2
l2

is satisfied where l1 = max{l(1)1 , l
(2)
1 } and l2 = max{l(1)2 , l

(2)
2 }.

Let us give the theorem which is the basis for the algorithm for n = 2, and state

the generalized case of Proposition 5.1.4. One can easily see this result geometrically.
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Theorem 5.1.5. Let S ⊂ R2
+ be the unit simplex and let

P (x) = max
1≤j≤k

{
l(j)(x)

}
be a uniformly stated function. A point x∗ ∈ riS is a local minimum if and only if

there exist two vectors l(k1) and l(k2) such that l
(k1)
1 > l

(k2)
1 and l

(k2)
2 > l

(k1)
2 and the

vector l = (l
(k1)
1 , l

(k2)
2 ) is incomparable to all l(j) except l(k1) and l(k2). Moreover, the

local minimum x∗ ∈ riS satisfies the equality
x∗1

l
(k1)
1

=
x∗2

l
(k2)
2

.

Using the theorem above, we give the algorithm for the solution of the problem

(5) on R2
+ as follows.

Algorithm 5.1.6. Step 0. State P (x) uniformly. Let L be the set of vectors com-

posing the uniformly stated function P (x). Find the number of the elements of the set

L, call w to this number, and compute h = C
(

w
2

)
, then set g = 1 and z = 1.

Step 1. If g 6= h + 1, take any two vectors l(i), l(j) of L which were not taken

before and go to step 2, otherwise y(z−1) is the global minimum, stop the algorithm.

Step 2. Set the vector l = (l1, l2) where l1 = max
{
l
(i)
1 , l

(j)
1

}
, l2 = max

{
l
(i)
2 , l

(j)
2

}
and g = g + 1. Compare this vector with the other vectors of L (except l(i), l(j)). If

there exists a vector smaller than this vector, go to Step 1, otherwise go to Step 3.

Step 3. Find the solution x∗ =(x1, x2) of
x1

l1
=

x2

l2
on the unit simplex and

set y(z) = x∗. If z = 1, then z = z + 1, otherwise, if P (y(z−1)) < P (y(z)) then set

y(z) = y(z−1), z = z + 1. Go to Step 1.

Now we can state the following theorem, which is a generalized version of Theorem

5.1.5. The algorithm for the general case completely depends on this theorem. The

proof of the theorem will be given after a sequence of useful propositions.

Theorem 5.1.7. Let S ⊂ Rn
+ be the unit simplex and

P (x) = max
1≤j≤m

{
l(j)(x)

}
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be a uniformly stated function defined on Rn
+ where m ≥ n. The point x∗ ∈ riS is

local minimum of P (x) if and only if there exist n vectors l(k1), · · · , l(kn) among the

vectors l(1), · · · , l(m) such that

a)

l
(ki)
i > max

j∈I

j 6=i

l
(kj)
i i = 1, · · · , n.

and

b) for j 6= ki no l(j) satisfies l� l(j) where l = (l
(k1)
1 , · · · , l(kn)

n ).

Moreover, the local minimum x∗ ∈ riS satisfies the following equality;

x∗1

l
(k1)
1

= · · · = x∗n

l
(kn)
n

. (6)

This theorem gives necessary and sufficient conditions for a point to be a local

minimum of the given function. By using this theorem all local minima can be

obtained. To do so, first take n vectors from l(1), · · · , l(m). Then check if they satisfy

properties a) and b). Checking condition a) can be implemented by forming an n×n

matrix whose rows are the selected n vectors. Condition a) turns out to be that

the biggest entry of each column of the matrix will be strictly larger than the other

entries of the column and the maximum entries of the columns will lie on the diagonal.

However, to check this condition, one should consider all the matrices made up by

different permutations of these vectors. To avoid this difficulty, this condition can

be changed to the the following condition: there will be no two biggest elements in

one column and the biggest entries of any two different columns will not lie on the

same row. Forming the matrices by using the vectors as rows can be used in checking

condition b), too.

If these n vectors satisfy the conditions a) and b) then we can find x∗ by using the

equality given in the theorem and the fact that x∗ ∈ riS. Also, to get all local points

in riS, one has to make sure that all n combinations of the vectors l(1), · · · , l(m) are

checked by this procedure.
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When any of these conditions is not satisfied, the function constructed by the

considered combination with n vectors does not have a local minimum on riS. These

cases can be seen in some examples in R3 geometrically. Since the feasible is the unit

simplex, we take z = 1−x− y, henceforth P (x, y, z) = f(x, y) i.e., we can reduce the

function on riS in R3 to a function on R2.

Example 5.1.8. Consider the function

ϕ(x, y) = max {min {0.1x, 0.3y, 0.4(1− x− y)} ,min {0.1x, 0.6y, 0.2(1− x− y)} ,

min {0.5x, 0.1y, 0.7(1− x− y)}}

The corresponding vectors for min-type functions are l(1) = (10, 10
3
, 5

2
), l(2) = (10, 5

3
, 5)

and l(3) = (2, 10, 10
7
). Now we check the condition a). Pick three vectors (there are al-

ready three vectors). Now form l = (max {10, 10, 2} ,max
{

10
3
, 5

3
, 10
}
,max

{
5
2
, 5, 10

7

}
),

( ith component of l is the maximum of the ith components of l(1), l(1) and l(3). so

l = (10, 10, 5). Since l1 = 10 exists in the first component of both the vectors l(1) and

l(2), i.e., l1 = 10 is not only maximum with respect to the first component, therefore

condition a) is not satisfied. Then as is seen from Figure 1, the function ϕ(x, y)

cannot have local minimum on riS.

Figure 1: ϕ(x, y) does not have a local minimum in riS.
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Example 5.1.9. Consider the function

ϕ(x, y) = max {min {6x, 4y, 1− x− y} ,min {2x, 10y, 5(1− x− y)} ,

min {10x, 2y, 3(1− x− y)} ,min {3x, y, 10(1− x− y)}}

The corresponding vectors for min-type functions are l(1) = (1
6
, 0.25, 1), l(2) =

(0.5, 0.1, 0.2), l(3) = (0.1, 0.5, 1
3
) and l(4) = (1

3
, 1, 0.1). We can choose four 3-combinations

of these vectors. Let us analyze all 3-combinations.

Pick l(1), l(2), l(3). Form the vector l = (0.5, 0.5, 1) as in previous example. l

satisfies condition a). Compare it to the vector l(4) = (1
3
, 1, 0.1). Since l � l(4) does

not hold, it satisfies condition b). So this combinations yields a local minimum. The

minimum point can be found by Equation (6). The local minimum is (1
4
, 1

4
, 1

2
).

Pick l(1), l(2), l(4). Form the vector l = (0.5, 1, 1). l satisfies condition a). Compare

it to the vector l(3) = (1
3
, 1, 0.1). Since l � l(3), it does not satisfy condition b). So

this combinations does not yields a local minimum.

Pick l(2), l(3), l(4). Form the vector l = (0.5, 1, 1
3
) as in previous example. l satisfies

condition a). Compare it to the vector l(1) = (0.25, 0.4, 1). Since l � l(1) does not

hold, it satisfies condition b). So this combinations yields a local minimum. The

minimum point can be found by Equation (6). The local minimum is ( 3
11
, 0.5, 1

6
).

Pick l(1), l(3), l(4). Form the vector l = (1
3
, 1, 1). l does not satisfy condition a)

because the first and second components of l is taken from l(4). So this combinations

does not yields a local minimum.

Thus, as is seen from Figure 2, the function ϕ(x, y) have two local minima on riS,

the mimimum points are shown on the graph as A and B.

Example 5.1.10. Consider the function

ϕ(x, y) = max {min {x, 3y, 9(1− x− y)} ,min {9x, y, 3(1− x− y)} ,

min {3x, 9y, 1− x− y}} .
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Figure 2: ϕ(x, y) have the local minima A and B in riS.

The corresponding vectors for min-type functions are l(1) = (1, 1
3
, 1

9
), l(2) = (1

9
, 1, 1

3
)

and l(3) = (1
3
, 1

9
, 1). l = (1, 1, 1) is derived and conditions a) and b) are satisfied. As

is seen from Figure 3, ϕ(x, y) has a local minimum (the point A) on riS.

Figure 3: A is the local minimum of ϕ(x, y) in riS.

Now we describe the algorithm. Note that in the cutting angle method, the

number of initial points k is bigger than n.

Algorithm 5.1.11. Step 0 State P (x) uniformly. Let L be the set of vectors com-

posing the uniformly stated function P (x). Find the number of the elements of the set

L, call w this number and compute h = C
(

w
n

)
, then set g = 1 and z = 1.
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Step 1 If g 6= h + 1, take one of the vector combinations of the set L with n

elements which is not taken before, let us denote this combination as l(j1), · · · , l(jn)

and go to step 2, otherwise y(z−1) is the global minimum, and the algorithm terminates.

Step 2 Set g = g + 1. Set a matrix whose rows are the vectors l(j1), · · · , l(jn). If

there are no two biggest elements in any column and the biggest entries of any two

different columns do not lie on the same row in this matrix, go to Step 3, otherwise

go to Step 1.

Step 3 Set the vector l = (l1, · · · , ln) where

l1 = max
i∈I

{
l
(ji)
1

}
, · · · , ln = max

i∈I

{
l(ji)
n

}
.

Compare l with the other vectors of L except l(j1), · · · , l(jn) If there is a vector strictly

smaller than this vector, go to Step 1, otherwise go to Step 4.

Step 4 Find the point x∗ = (x1, · · · , xn) satisfying the equalities x1

l1
= · · · = xn

ln

and
n∑

i=1

xi = 1. Set y(z) = x∗. If z = 1, then z = z+1, otherwise, if P (y(z−1)) < P (y(z))

then set y(z) = y(z−1) and z = z + 1. Go to Step 1.

The following proposition allows us to simplify the objective function to easier

find its local minima. It will allow us more easily find local minima of P (x) using the

fact that P (x) is the maximum of exactly n min-type functions in a neighborhood of

a local minimum.

Proposition 5.1.12. Let x∗ ∈ riS ⊂ Rn
+ be a local minimum of a uniformly stated

function P (x) = max
1≤j≤m

l(j)(x) where m ≥ n. Then there exists a set {k1, · · · , kn} ⊂

{1, · · · ,m} and a neighborhood of x∗ such that P (x) = max
j∈I

l(kj)(x) on this neighbor-

hood of x∗.

Proof. Let x∗ ∈ riS be a local minimum of a uniformly stated function P (x) =

max
1≤j≤m

l(j)(x). Let

M = {1 ≤ i ≤ m : P (x∗) = l(i)(x∗)}.
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Let K = {1, · · · ,m} \M . Now since P (x∗) > l(j)(x∗) for j ∈ K and all functions

in P (x) are continuous, in some neighborhood of x∗, P (x) = max
j∈M

l(j)(x). Let the

cardinality of M be bigger than n. Now define

Mk = {i ∈M :
x∗k
l
(i)
k

= P (x∗)} for k ∈ I.

First we noticeMk 6= ∅. This follows from the fact that x∗ is a local minimum. Indeed,

if Mk = ∅, one can find a feasible direction h sufficiently small in norm whose kth

component hk is negative so that P (x∗+h)−P (x∗) < 0, this contradicts with the fact

that x∗ is a local minimum. Now since P (x∗) = max
j∈M

l(j)(x∗) and the cardinality of M

is bigger than n, we can take such a k that the cardinality ofMk is bigger than 2. Since

min-type functions are piecewise linear and continuous then in some neighborhood

of x∗, the functions l(i)(x) for i ∈ Mk are same. So in this neighborhood of x∗ all

min-type functions l(i)(x), i ∈Mk in the expression of P (x) can be represented by one

function for each k. Repeating this for each Mk, the number of min-type functions

in the expression of P (x) can be reduced to some number less than or equal to n.

Since x∗ is a local minimum of P (x) the number of min-type functions can not be

less than n. In fact, it is easy to see this because in this case one can easily find a

feasible direction h such that P (x∗ + h)− P (x∗) < 0. So P (x) can be written as the

maximum of n min-type functions, say l(k1), · · · , l(kn) among l(1), · · · , l(m).

Proposition 5.1.13. Let S ⊂ Rn
+ be the unit simplex and

P (x) = max
j∈I

{
l(j)(x)

}
be a uniformly stated function defined on Rn

+. If the point x∗ = (x∗1, · · · , x∗n) ∈ riS is

a local minimum of P (x), then

P (x∗) = l(1)(x∗) = · · · = l(n)(x∗).

Moreover, there exists a permutation σ such that

x∗1

l
(σ(1))
1

= · · · = x∗n

l
(σ(n))
n

= P (x∗).
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Proof. Let the point x∗ = (x∗1, · · · , x∗n) ∈ riS be a local minimum of P (x). Assume

l(1)(x∗) = · · · = l(n)(x∗) is not true. So max
i∈I

li(x∗) > min
i∈I

li(x∗). Let

R = {1 ≤ s ≤ n : ls(x∗) = max
i∈I

li(x∗) = P (x∗)}.

By assumption the number of elements in R is less than n. Let T = {1, · · · , n} \ R.

Now

P (x∗) = max{max
i∈R

l(i)(x∗),max
i∈T

l(i)(x∗)} ≥ 0.

Since P (x∗) = l(i)(x∗) > l(j)(x∗) for i ∈ R and j ∈ T and min-type functions are

continuous, for a feasible direction h whose norm is sufficiently small l(i)(x∗ + h) −

P (x∗) < 0 for i ∈ T . So

P (x∗ + h)− P (x∗) = max
i∈R

l(i)(x∗ + h)− l(i).

For i ∈ R, there exists a j (say j(i)) such that l(i)(x∗) =
x∗

j(i)

l
(i)
j(i)

. So for i ∈ R,

l(i)(x∗ + h)− l(i)(x∗) = min{· · · , hj(i)

x∗j(i)

l
(i)
j(i)

, · · · }.

By choosing a feasible direction h whose j(i)th component hj(i) is less than zero for

all i ∈ R, (which is possible because the number of elements in R is less than n), we

have

P (x∗ + h)− P (x∗) = max
i∈R

l(i)(x∗) < 0.

This is a contradiction. So the number of the elements in R is equal to n which proves

the first part. So R = {1, · · · , n} = I

For the second part, let us define Rk = {i ∈ R :
x∗k
lik

= P (x∗)} for k ∈ I. Assume

Rk′ = ∅ for some 1 ≤ k′ ≤ n. So
x∗

k′
li
(k′)

> P (x∗) for all i ∈ R. Now we choose a feasible

direction h whose norm is sufficiently small and hk′ > 0 and all the other components

are negative. In this case
x∗

k′+hk′

l
(k′)
i

− P (x∗) > 0 for any i ∈ I. Now for this h, we get

P (x∗ + h)− P (x∗) = max
i∈I

li(x∗ + h)− l(i)(x∗) < 0.
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This shows Rk 6= ∅ for any k and since the number of the elements in R is n, for

every k ∈ I the number of the elements in Rk is 1. Thus, we define σ(i) as the

corresponding element in Ri.

The following theorem plays a very important role in developing the algorithm.

It helps to prove the necessity part of Theorem 5.1.7.

Theorem 5.1.14. Let the vectors l(1), · · · , l(n) ∈ Rn
+ satisfy the following condition

l
(i)
i > max

j∈I

j 6=i

l
(j)
i i = 1, · · · , n. (7)

In this case, x∗ = (x∗1, · · · , x∗n) ∈ Rn
+ is the local minimum of the function

P (x) = max
k∈I

{
l(k)(x)

}
in the unit simplex if and only if the equality

x∗1

l
(1)
1

= · · · = x∗n

l
(n)
n

(8)

holds.

Proof. (⇐) Let us prove the sufficiency first. Suppose that x∗ = (x∗1, · · · , x∗n) satisfies

the equality (8). Then it can be easily shown by the hypothesis of the theorem that

following equality holds:

P (x∗1, · · · , x∗n) =
x∗1

l
(1)
1

= · · · = x∗n

l
(n)
n

.

Now, let us find such an ε > 0 that for each feasible direction h = (h1, · · · , hn)

which satisfies ‖h‖ < ε, the inequality

P (x∗1 + h1, · · · , x∗n + hn)− P (x∗1, · · · , x∗n) ≥ 0

holds. Notice that by the equality above we have
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P (x∗1 + h1, · · · , x∗n + hn)− P (x∗1, · · · , x∗n) = max
1≤k≤n

{
min

1≤i≤n

{
x∗i + hi

l
(k)
i

− x∗i

l
(i)
i

}}
.

From the hypothesis (7) of the theorem
x∗i

l
(k)
i

− x∗i

l
(i)
i

> 0 for all k 6= i. In this case

we can choose sufficiently small hi’s (i 6= k) such that

x∗i + hi

l
(k)
i

− x∗i

l
(i)
i

> 0

holds.

Since h is a feasible direction (
n∑

i=1

hi = 0), at least one of the hi (i = 1, · · · , n)

must be positive. Without loss of generality, let us suppose h1 > 0 and it is small

enough to choose hi’s (i 6= 1) sufficiently small such that

x∗i + hi

l
(1)
i

− x∗i

l
(i)
i

> 0.

In this case we have

l(1)(x∗ + h)− l(1)(x∗) = min{ h1

l
(1)
1

, {min
i6=1

x∗i + hi

l
(1)
i

− x∗i

l
(i)
i

}} > 0.

Since the function P (x) is the maximum of min-type functions, for any feasible di-

rection h, P (x∗ + h)− P (x∗) > 0. So x∗ is a local minimum of P (x) over riS.

(⇒) Now, let us prove the necessity part. Let x∗ be a local minimum point of

P over riS. There exist such positive numbers d1, · · · , dn that the following equality

holds:

P (x∗1, · · · , x∗n) =
x∗1
d1

= · · · = x∗n
dn

.

Since x∗ is the local minimum point, by Proposition 5.1.13 there exists a permu-

tation σ such that
x∗i

l
(σ(i))
i

= P (x∗). So l
(σ(i))
i = di for i ∈ I. Now assume that σ(j) 6= j

for some j ∈ I. Then because of the assumption
x∗j

l
(j)
j

<
x∗j

l
(σ(j))
j

for a feasible direction h

whose jth component is positive i.e., hj > 0 we have

x∗j + hj

l
(j)
j

−
x∗j

l
(σ(j))
j

< 0
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, hence l(σ(j))(x∗ + h)− l(σ(j))(x∗) < 0 . Now choose a feasible direction hj such that

hj > 0 and hi < 0 for i 6= j. In this case for i 6= j, l(σ(i))(x∗ + h) − l(σ(i))(x∗) < 0

because

l(σ(i))(x∗ + h)− l(σ(i))(x∗) = min{· · · , hi

l
(σ(i))
i

, · · · }

where hi < 0. So for this feasible direction, we have P (x∗ + h) − P (x∗) < 0 which

contradicts with the fact that x∗ is a local minimum. So σ(i) = i for all i ∈ I. Since

l
(σ(i))
i = di for i ∈ I, we get l

(i)
i = di for i ∈ I. Thus the proof is completed.

Proposition 5.1.15. Let x∗ ∈ riS be a local minimum of a uniformly stated func-

tion P (x) = max
j∈I

l(j)(x). Then there exists a permutation θ such that the following

condition is satisfied;

l
(θ(i))
i > max

j∈I

j 6=θ(i)

l
(j)
i i = 1, · · · , n.

Proof. It is proved by contradiction. Let x∗ ∈ riS be a local minimum of a uniformly

stated function P (x) = max
j∈I

l(j)(x). Assume such a permutation does not exist. In

this case either (1) there exist at least two k and m such that max
j∈I

l
(j)
k = l

(r)
k and

max
j∈I

l
(j)
m = l

(r)
m for some r or (2) there exist at least two indices j1 and j2 such that

max
j∈I

l
(j)
i = l

(j1)
i = l

(j2)
i for some i. We give the proof of the first case, the other case

can be proved in a similar way.

Assume there exist at least two k and m such that max
j∈I

l
(j)
k = l

(r)
k and max

j∈I
ljm = lrm

for some r. By Proposition 5.1.13 there exists a permutation σ such that

l
(σ(1))
1 x∗1 = · · · = l(σ(n))

n x∗n = P (x∗).

Let r = σ(s) for some s. Now we get

x∗m

l
(r)
m

≤ x∗m

l
(σ(m))
m

=
x∗s

l
(r)
s

≤ x∗m

l
(r)
m

from the assumption and Proposition 5.1.13. This means x∗s
l
(r)
s

= x∗m
l
(r)
m

. Now let us

consider

l(r)(x∗ + h)− l(r)(x∗) = min{· · · , hm

lrm
, · · · , hs

lrs
, · · · }
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for a feasible direction h = (h1, · · · , hn). In this case if we let hs > 0 and all the

others negative, then P (x∗ + h) − P (x∗) < 0. So this means r = σ(m). Rewriting

the inequalities above we get r = σ(k), too. This is a contradiction because σ is a

permutation.

Now we can give the proof of Theorem 5.1.7.

Proof. Let us prove the necessity first. Let S ⊂ Rn
+ be the unit simplex and

P (x) = max
1≤j≤m

{
l(j)(x)

}
be a uniformly stated function defined on Rn

+ where m ≥ n and let the point x∗ ∈ riS

be a local minimum of P (x). By Proposition 5.1.12, in a neighborhood of x∗, P (x)

can be written as

P (x) = max
j∈I

l(kj)(x)

where 1 ≤ kj ≤ m. By Proposition 5.1.15 we get the condition a). Now let l be defined

as in part b). Let us consider the negation of part b). This means l is strictly greater

than l(j) for j 6= ki where 1 ≤ i ≤ n. So l(x) < l(i)(x) hence P (x∗) = l(x∗) < l(i)(x∗).

But by the definition of P (x), P (x∗) ≥ l(i)(x∗), so we get a contradiction. So part b)

holds. The equality given at the end of Theorem 5.1.7 follows from Theorem 5.1.14.

Let us prove the sufficiency now. There exists n vectors l(k1), · · · , l(kn) among

l(1), · · · , l(m) such that a), b) are satisfied. In this case the existence of a local min-

imum of the function max
i∈I

l(ki)(x) follows from Theorem 5.1.14. Let this point be

x∗. We need to prove that a local minimum of max
i∈I

l(ki)(x) is also a minimum of the

function P (x). For this, first we notice that the min-type function which is generated

by the vector l = (l
(k1)
1 , · · · , l(kn)

n ) has its maximum value at x∗. For this reason if

a vector l′ is incomparable with l then l(x∗) > l′(x∗). From part b) we know l is

incomparable to some of the vectors in {l(1), · · · , l(n)} and for the rest of the vectors

at least one of its components is equal to one component of the vector. Let

T = {i ∈ I : l(i) is incomparable with l}
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and

R = {i ∈ I : at least one component of l(i) is equal to one component of l}.

Now for i ∈ T l(x∗) > l(i)(x∗). So in some neighborhood of x∗ we can write

max
i∈I

l(ki)(x) = max{max
i∈I

l(ki)(x),max
i∈T

l(i)(x)}.

Now let us show x∗ is also a local minimum of max
i∈{k1,··· ,kn}∪R

l(i)(x∗). For any feasible

direction h, we have

max
i∈{k1,··· ,kn}∪R

l(i)(x∗ + h)− l(i)(x∗)

= max{max
i∈I

{l(ki)(x∗ + h)− l(ki)(x∗)},max
i∈R

{l(i)(x∗ + h)− l(i)(x∗)}}

≥ 0

because max
i∈I

{l(ki)(x∗+h)− l(ki)(x∗)} ≥ 0. This proves that x∗ is also a local minimum

of P (x).

5.2 The results of numerical experiments

To show the efficiency of Algorithm 4.3.1 supported with Algorithm 5.1.11, some

numerical experiments have been carried out. We applied this algorithm to three

global minimization problems with different increasing positively homogeneous ob-

jective functions. These problems are described in [6].

The code for Algorithm is written in Matlab. Numerical experiments are carried

on Intel(R) Quad 2 Core CPU Q6600 2.40 GHz computer.

The following notations are used in all examples:

• f = f(x) is objective function;

• n is the number of variables;
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Table 1: Results for f1(x)

n k t
2 9 0.59
3 40 5.55
4 55 49.26
5 60 776

• k is the number of iterations;

• t is the computational time.

The stopping criteria is expressed as in the Algorithm 4.3.1. Since the required

accuracy in [6] is 10−2, the examples are solved in this accuracy.

Example 5.2.1. Let

ai
k = 20i

k(1+|i−k|) , k = 1, 2, · · · , n; i = 1, 2, · · · , 40

and

bjk = 5 |sin(j) sin(k)| , k = 1, 2, · · · , n; j = 1, 2, · · · , 20.

f1(x) = max
{
[ai, x] : i = 1, 2, · · · , 40

}
+ min

{
[bj, x] : j = 1, 2, · · · , 20

}
,

Example 5.2.2. Let

aij
k = 10j

k(1+|k−j|) |cos(i− 1)| , i = 1, 2, · · · , 20, j = 1, 2, · · · , n, k = 1, · · · , n.

f2(x) = max
1≤i≤20

min
j∈I

[aij, x],
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Table 2: Results for f2(x)

n k t
2 6 0.5
3 12 2.06
4 16 6.43
5 22 19.61

Table 3: Results for f3(x)

n k t
2 6 1.16
3 10 4.03
4 16 10.45
5 20 33.44

Example 5.2.3. Let

aij =



12 + n
i

if i = j

0 if i = j + 1

0 if j = i+ 2

15
i+0.1j

Otherwise.

f3(x) =

(
n∑

i=1

n∑
j=1

aijxixj

)1
2

,

Comments on experiments

In the experiments, we observed the combinatorial nature of the subproblem.

When compared to the algorithms proposed in [6, 42] in terms of the number of

iterations, the algorithm proposed in this thesis uses less iterations. This is because

the subproblem is solved exactly. The exact solution of the subproblem makes it
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necessary to check all combinations of the vectors. This requirement causes the

algorithm slow down as the number of variable increases.

5.3 Conclusion

The most important step of the Cutting Angle Method ([3, 4]) suggested for global

optimization problems with IPH functions is that in each iteration, an optimization

problem with minimum type functions should be solved. A new algorithm for this

problem is presented ( Algorithm 3 ). The algorithm is mainly based on Theorem

5.1.7. The presented algorithm can be commented different from others in that the al-

gorithm can be expressed geometrically and it is proved that it solves the subproblem

exactly.
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Basel (2004), pp. 165–186.

[51] H. Triebel, Modulation spaces on the Euclidean n-space, Z. Anal. Anwen-
dungen, 2(5) (1983), pp. 443–457.

[52] D. F. Walnut, Lattice size estimates for Gabor decompositions, Monatsh.
Math. 115 (1993), pp. 245–256.

[53] P.M. Woodward, Probability and Information Theory, with applications to
radar, Pergamon Press, Oxford, Second Edition, 1964.

69



VITA

Ramazan Tinaztepe was born in Antalya in 1978. He got his B.S. in Math Education

from Middle East Technical University in 1999. He got M.S. in Mathematics from

Akdeniz University in 2001. He worked as a research assistant in Akdeniz University.

Then he began Ph.D. in mathematics at Georgia Institute of Technology in 2004. He

is married and has two children.

70


