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Abstract  

Recent years have seen an incredible rise in the availability of household motion and video capture 
technologies, ranging from the humble webcam to the relatively sophisticated Kinect sensor. Naturally, 
this precipitated a rise in both the quantity and quality of motion capture data available on the internet. 
The wealth of data on the internet has caused a new interest in the field of motion data classification, the 
specific task of having a model classify and sort different clips of human motion. However, there is 
comparatively little work in the field of motion data clustering, which is an unsupervised field that may be 
more useful in the future as it allows for agents to recognize “categories” of motions without the need for 
user input or classified data. Systems that can cluster motion data focus more on “what type of motion 
data is this, and what is it similar to” rather than which motion is this. The LuminAI project, as described 
in this paper, is an example of a practical use for motion data clustering that allows the system to respond 
to user dance moves with a similar but different gesture. To analyze the efficacy and properties of this 
motion data clustering pipeline, we also propose a novel data visualization tool and the design 
considerations involved in its development. 

1. Introduction 

Humans collaboratively improvise movement in situations ranging from dance performances to pretend 
play to sports games. Computers with the ability to participate in these collaborative movement 
improvisations could have an impact on a variety of application domains, including improving naturalistic 



procedural animation in game environments [3], fostering human creativity in gesture-based domains like 
dance or theater [8,9], and creating more engaging contexts for physical therapy and training [5].  

One particular domain that has made advances in understanding embodied human-computer 
improvisation is the study of co-creative AI agents. A variety of recent research investigates how humans 
and computers may be able to create together in gesture-based domains including co-creative dance [9] 
and collaborative movement improvisation [8]. However, an obstacle that is pervasive throughout these 
projects is that humans and their AI collaborators bring significantly different sets of experiences to the 
co-creative interaction. Humans possess a vast amount of real-world knowledge, in contrast to AI agents, 
which draw their knowledge from comparatively small datasets. This contrast creates an imbalance during 
a co-creative interaction, since the humans are required to give more than they receive.  

Unfortunately, many embodied creative domains like dance, pretend play, and theater are notable for their 
lack of large-scale, diverse, annotated datasets since motion-capture data can be time consuming and 
expensive to collect. Agents capable of lifelong learning [12] are particularly well-suited for embodied 
creative domains since they can learn interactively from human collaborators without supervision. 
However, the agent needs some way of reasoning about newly learned gestures in order to respond 
intelligently to its human partner. One intuitive way to reason about gestures is based on their perceptual 
or semantic similarity, an approach that is frequently used in improvisation in a variety of domains, such 
as theater and jazz [11]. Discerning gesture similarity in movement improvisation requires the ability to 
both cluster gestures based on different metrics on-the-fly and identification of which cluster a gesture 
belongs to in real-time.  

Most existing research on gesture understanding focuses on gesture Classification (i.e. identifying and 
categorizing different clips of human motion [6]). However, this is not particularly useful for lifelong 
learning in creative domains, since human collaborators can perform a seemingly infinite number of novel 
gestures while classification systems try to label these gestures according to only a finite number of 
known categories. As a result, new gestures will not be incorporated into the agent’s knowledge base, 
making it difficult for the agent to learn-through-interaction and thereby limiting its long-term ability to 
contribute to creative collaborations. In contrast, a system capable of unsupervised gesture clustering 
would be able to learn novel gesture types. Such a system could compare novel gestures to previously 
seen gestures and add new gestures to existing clusters, learning through interaction.  

An unsupervised gesture clustering system could also dynamically respond to novel gestures by drawing 
on past experiences and finding a similar gesture it has seen before without needing a pre-programmed 
label (in effect, creating its own knowledge of gesture categories rather than relying on pre-programmed 
knowledge). Systems capable of gesture clustering also have the potential to be domain-independent, 
whereas existing classification algorithms can often only classify gestures based on a very domain-
specific set of categories.  

There is some existing literature on unsupervised gesture clustering, though it is focused primarily on 
only hand gestures [2, 14, 15]. Work is still needed to understand how to approach unsupervised gesture 
clustering with a full-body skeleton, which differs significantly from hand motion both anatomically and 
in terms of gesture duration (i.e. hand gestures tend to be shorter in length with less freedom of movement 
than full-body gestures). In this paper, we investigate the following central research question: How can 
we implement a co-creative agent that can cluster arbitrary full-body motion data in real-time, thereby 
enabling the agent to draw on a breadth of learned experiences when responding to its human 
collaborator?  



A secondary research question we address in order to better answer the first is: how can we design a data 
visualization that best expresses the characteristic semantic properties of our pre-processing pipeline. The 
research process and design philosophy behind this visualization tool seeks to ask human-perception 
oriented questions such as “what makes us consider two gestures similar”, “how is similarity reflected in 
the lower-dimensional space”, “what do the dimensions correspond to anatomically” and “what does a 
low geometric distance between two points in this space really mean”. These questions are all exploratory 
and open-ended in nature; they are not suitable for a rigorous quantitative analysis due to the inherently 
humanist emphasis of trying to understand motion in an intuitive way.  

Consequently, we believe that the ideal way to pursue these questions and gain insight into this pre-
processing technique is by creating a program that empowers and encourages the users to explore and 
delve deeply into the pre-processing pipeline’s unique behaviors and the properties of the resultant low-
dimensional space. This is a task that is well suited for an interactive data visualization. The two 
foundational principles this visualization tool is built on are as follows. The first, that it must be robust 
and powerful, being able to provide knowledge at a variety of abstraction levels from the specific 
movement of an arm to the shape of a cluster of 100 gestures. The second, that it must be facilitate 
exploratory and investigative user behavior in an intuitive and rewarding manner. 

In the rest of the paper, we look at other related work in the areas of pipeline design and visualization, 
discuss a particular use case for which we designed our clustering pipeline, detail the implementation of 
the pipeline, discuss a preliminary evaluation of our pipeline using both traditional methods and our novel 
visualization tool, and end with conclusions and plans for future work. 

2. Pre-Processing Pipeline Literature Review 

The focus of our work is the development of a pre-processing pipeline, or novel representation, of human 
motion capture data that we will attempt to cluster, a form of unsupervised learning. Motion capture data 
represents the human body in a way completely unlike traditional 2d video. In a video, a still frame is 
composed of a 2d array with a color or intensity value for each element. In motion capture data, a still 
frame is composed of an array, with each index representing some part of the human body, and each 
element being some multi-dimensional geometric information about the related body part. Motion capture 
data is also non-trivial to capture, requiring the usage of motion capture sensors such as the Kinect or a 
motion capture suit. Furthermore, this motion data cannot be easily obtained from conventional video 
files due to the difficulties of identifying the precise positions of joints in 3d space given only image data. 

 As a result of this barrier to entry, most work on human motion has been done in video data of human 
action instead. The reasoning behind our focus on motion capture data is that our pre-processing pipeline, 
along with the clustering algorithm, will eventually be incorporated into a co-creative art installation 
referred to as the LuminAI project, in which users dance in front of a Kinect sensor, which prompts the 
on-screen agent to select and respond with a dance considered similar by the clustering produced. This 
necessitates a computationally efficient implementation of pre-processing for the whole human skeleton 
that also results in clustered items being visually similar. 

One example of work done on video data is Unsupervised Learning of Human Expressions, Gestures, and 
Actions by O’Hara [10]. This paper presents two different approaches for processing video data into a 
more compact representation, which are referred to as Bag of Features [10] and Product Manifold [10]. 
The way that the authors evaluate the efficacy of these approaches is by processing a video data library, 
then clustering the output data. Once the clustering is obtained, the authors evaluate the pre-processing 
approaches based on the quality of this clustering [10]. The intention behind this work is very similar to 
ours in that both works emphasize the evaluation of a pre-processing pipeline for human gesture data. 



However, their work does not naturally extend to ours as the Bag of Features and Product Manifold 
algorithms were designed to work with video data, rather than motion capture data, and do not translate 
across data representations in an intuitive way. In addition, this paper’s main contribution is the 
evaluation of pre-existing algorithms, whereas ours is both the proposal and evaluation of a novel 
approach to pre-processing. As a result, their work does not directly address our research question. 

Though there does exist work done for motion capture data, many of these works do not emphasize 
unsupervised learning. For instance, Classification of K-Pop Dance Movements Based on Skeleton 
Information Obtained by a Kinect Sensor by Kim, Kim and Kwak [6] focuses on the classification aspect 
of motion capture data rather than unsupervised learning. Generally speaking, any given representation 
can be used for classification or clustering depending on user intention. However, the representation 
proposed in Kim’s paper uses supervised learning techniques in their pre-processing of the motion capture 
data. Their proposed pipeline utilizes Linear Discriminant Analysis, a supervised learning dimensionality 
reduction technique, as part of their FISHERDANCE algorithm [6]. Consequently, we are unable to 
borrow from this technique in their pipeline, as our work is with unsupervised learning and necessitates 
unlabeled data. Our main takeaway from this work was our adoption of their angle extraction step [6] in 
our pre-processing framework, which is a salient component of their framework that does not require 
implementation in a supervised learning context. We find that this work is unable to directly answer our 
research question due to its pipeline being restricted to the realm of supervised learning.  

An interesting characteristic of this research field is the unexpected amount of work done on the analysis 
of human hands rather than the human body. In Feasibility of Principal Component Analysis in hand 
gesture recognition system [14], Srivastava evaluates the effectiveness of Principal Component Analysis 
in pre-processing motion capture data of human hands [14]. Though this paper focuses in classification as 
well, PCA is not a supervised learning technique and thus can be incorporated into our work. The issue 
encountered with this work is that despite the author’s claim that he uses motion capture data, the paper 
itself suggests that video data was used instead [14]. In addition, the scope of their motion data library is 
comparatively narrow. Whereas our work emphasizes the evaluating the similarity of a dance gesture to 
up to hundreds of completely different gestures, their motion data library only contains 10 different 
categories of hand motion [14]. Furthermore, the duration of a hand gesture is much shorter than a full-
body dance move. As a result, this work does not address our research question due to its focus on the 
human hand, rather than the whole body. 

The work that is perhaps most like ours in purpose is Clustering poses of motion capture data using limb 
centroids. In this paper, Balci proposes a novel representation of a pose, a pose being the configuration of 
the body parts in a human skeleton at one atomic slice in time, called a limb centroid [1]. A limb centroid 
is effectively the center of mass of several given body parts [1]. The author specifies 6 different limb 
centroids each skeleton, resulting in from over 15 different body parts to track down to 6. This is a 
remarkable reduction in dimensionality, while seemingly minimizing the amount of discretization error 
introduced [1]. However, we are unable to reduce the dimensionality of the body any further from these 6 
components. This issue becomes apparent in the context of their input data, which clusters individual 
poses within a gesture rather than the entire gesture itself [1]. The 6 features per frame is therefore still 
scaled linearly by the number of frames in the gesture, which causes the data to still be high dimensional 
when considering that the number of frames in a gesture can be up to 900. We find that this work, while 
being highly relevant to ours, does not immediately address the performance concerns we encounter with 
our emphasis on processing entire gestures. Limb centroids will likely be investigated further in future 
work. 



Indeed, a survey of this field reveals that our work occupies an interesting intersection between the 
comparatively niche field of clustering, with the other comparatively niche field of whole-body motion 
capture data. As a result, there does not seem to be any work we encountered that directly answers our 
research question of how to best take advantage of motion capture data’s salient qualities in an interactive 
installation, showing a clear research gap in existing literature. What work we can say is related to ours is 
usually only tangentially or indirectly so, which we drew our initial pipeline design inspiration from. As a 
result, we believe that our work fulfills an important niche presented by the lack of interdisciplinary work 
between performative and improvisational art, and machine learning. 

2.1 Previous Work on Info. Visualization 

The currently data visualization tool was developed as a response to several limitations we experienced 
with a prototype design that was hastily constructed for the express purposes of debugging and making 
sure the pipeline had no glaring issues. Though this design was, for the most part, functional, it was 
lacking in several quality of life features, like simultaneous viewing of different gestures on the same 
screen. This prototype tool was constructed using D3, 3JS and HTML.  

Before we tried programming a unique visualization tool for this project, we briefly considered using 
commercially available tools instead. Tableau is one such example of a widely used visualization tool that 
requires minimal to no programming on behalf of the end user and functions mostly like excel. We found 
Tableau unsatisfactory for several reasons. The first and foremost issue is that Tableau’s scripting features 
were too limited for us to achieve several of our implementation goals. The vision that we had in mind 
was a main overview screen displaying several gesture points plotted in some 2d or 3d space and a 
separate detail screen that would show the animation of whatever gesture point the user selected. Tableau 
did not support these features and has no support for 3d animation, in addition to not supporting the 
parsing of the data files which our pipeline generated. 

The next approach we tried was D3, which is an open source Javascript library explicitly designed for 
creating web-based interactive data visualizations. Our decision to try D3 was motivated by several 
factors, the most convincing being that it was lightweight and could be run in a browser. Tools developed 
using D3 could be hosted on server and be accessed by anyone with an internet connection without the 
need for any downloading. Because the tool was designed as a companion program to the main pipeline, 
we believed it would be beneficial to have it be performance friendly as well. D3 has a low resource 
requirement and can easily be run on phones or other mobile computing devices. However, these benefits 
came at a cost that we ultimately found to be too steep.  

The performance friendly and networkable features of D3 meant that it would not support any kind of 3D 
rendering technology such as WebGL. Being constrained to two dimensions, we had to configure the 
pipeline to produce only two resulting dimensions for each gesture, causing a substantial amount of 
information loss. We were, however, able to construct the main overview screen that rendered several 
points corresponding to gestures, with their positions being determined by the value of the gesture being 
processed into our novel representation. Clicking on these gestures would launch another window that 
contained a 3D animation corresponding to that gesture.  

The rendering of these animations was done using the 3JS library. 3JS was designed to produce 
performance friendly web-enabled 3d apps such as games and simple 3d visualizations. Its advantages are 
that it integrated well with D3 due to them both being library extensions for Javascript and is fairly simple 
to use. The difficulty we experienced with D3 and 3JS was that their scripting features were not 
sophisticated enough for us to dynamically load data from D3 to 3JS due to issues with HTML security. 
Our final 3JS solution involved programmatically generating a new 3js animation for each gesture and 



calling it from D3 due to our inability to resolve the aforementioned issue. The consequence of this design 
decision was that the tool had to be re-built every time we wanted to load a new animation set, and that 
the transition between the overview screen and the detail animation viewer was not seamless. 
Furthermore, the 3js’ userbase was comparatively small, causing several features and core technologies to 
be too difficult to implement due to lack of documentation and poor learner’s resources. The development 
of new features for this hybrid system was prohibitively difficult, motivating us to investigate 
alternatives.   

We eventually decided that performance-friendliness and web-compatibility were not as important to us 
as feature-richness and moved to using the more powerful and resource intensive Unity3d platform, 
which our current implementation is built upon. Unity3d is considered the most popular game engine for 
new developers due to its scripting being abstracted away from low level considerations like collision 
detection. As a result, it has a variety of different learners’ resources available for free on tutorial websites 
and in-depth documentation on the main website. Because Unity3d was developed to be a game engine, 
these scripting features are very sophisticated and allow us to implement several features that we had 
previously thought were unachievable. Unlike 3JS, Unity has a “What You See is What you Get” editor 
that allows for real-time rendering of the game, which greatly expedited development speed. In addition, 
Unity also provides several standard assets which are freely available that would have otherwise cost 
development time such as camera control and user interface systems, all of which had to be manually 
coded in 3JS. These advantages, in our evaluation, made it the ideal platform for developing a more 
sophisticated and VR enabled version of the visualization tool.  

3. Pipeline Design 

Fig. 1: Real-Time Operation 

 

Fig. 2: Training 



 

Our proposed pipeline consists of two similar implementations, one for real-time (Fig. 1) operation with 
users and one for training (Fig. 2) the model and updating it with newly witnessed gestures. The training 
component consists of three main parts: the pre-processing dimensionality reduction steps, the clustering 
and model fitting steps, and the export of a trained k-means model [16] with a fitted PCA transform model 

[13]. The pre-processing step reduces the dimensionality of motion data considerably using temporal 
clustering [17], then reduces dimensionality even further using a joint angle extraction technique [6]. Once 
this is applied to every item in the motion library, the data is then used in the model-fitting and clustering 
step, in which a PCA model is first fitted on the reduced motion library.  

Once the PCA transform model is obtained, the dimensionality of the data is further reduced using the 
PCA model. Finally, the newly transformed data is clustered using a k-means model. The products of the 
model-fitting and clustering step are a PCA transform model, which can be used to apply PCA to novel 
data items, and a k-means model, which contains the clustering of the pre-processed motion library and 
can be used to place novel gestures in their appropriate clusters. In the final stage of the pipeline, these 
two models are exported for future use. 

The pipeline running in real-time uses the pre-trained PCA transform model and k-means model and 
consists of three steps: motion recording, motion pre-processing, and motion clustering. In the first step, a 
participant is prompted to record themselves performing a gesture using the Microsoft Kinect 2.0 depth 
sensor. In the motion pre-processing step, the dimensionality of the novel gesture is reduced using 
temporal clustering, angle extraction, and the fitted PCA transform model. In the final step, the 
transformed gesture is placed into an appropriate cluster by the fitted k-means model. A gesture randomly 
selected from the target cluster of the novel gesture will be played back to the user (this step is specific to 
the LuminAI use case, in which we want the agent to respond with a gesture that is similar to the 
participant's gesture).  

We decided to focus heavily on the principle of maximizing variance between different gestures when 
designing our pipeline. Temporal clustering, PCA, and k-means were chosen as a starting point from pre-
existing papers [1, 6, 14, 17] specifically due to the way that all three incorporate elements of variance 
maximization in their design. In the remainder of this section, we will describe the implementation of 
each stage of the pipeline in more detail. 

3.1 Input Data 

The input data for the pipeline can consist of any feature vector where the geometric distance between 
any two feature vectors is a quantitative measure of the dissimilarity between them. This means that the 
pipeline can cluster gestures based on a feature vector consisting of joints-based skeletal data or a feature 



vector of other movement qualities such as Time, Weight, Space, or Flow [7]. We focus on joints-based 
skeletal data in this paper, but plan to incorporate Laban feature vectors in future work as an alternative 
way of understanding meaningful similarity between gestures. The joints-based input data for the pipeline 
consists of gestures gathered using the Microsoft Kinect depth sensor--although this pipeline could be 
adapted to accommodate other motion capture devices such as a motion capture suit.  

3.2 Temporal Clustering 

The number of frames can easily grow into the hundreds with longer gestures, making a reduction in the 
number of frames necessary in order to facilitate real-time data processing. The objective of temporal 
clustering [17] is to find a user-specified number of ``keyframes'' that best approximate the input motion. 
Temporal clustering achieves this by expressing the problem of finding representative ``keyframes'' as 
optimizing the placements of consecutive contiguous partitions. Each partition is evaluated using a 
measure described in Yang et al. as the ``within-segment sum of squared error'' which quantifies how 
``different'' the frames in each partition are from the partition's mean frame [17]. This creates partitions 
consisting of frames that are as similar to one another as possible, thus indirectly maximizing the 
difference or variance between one partition and all other partitions. In order to make this approach 
computationally tractable, Fisher's optimal partition algorithm [6], a dynamic programming approach, is 
used to identify these partitions, and an average of all the frames in one partition is used to produce a 
``keyframe''. In Yang et al.'s original paper on temporal clustering, there appears to be an error in the 
pseudocode in which the diameter calculation is calculated over all n rather than all j, j being the iterator 
for a for loop. Our implementation uses our modified pseudocode instead of the original. 

3.3 Feature Extraction 

Certain joints do not contribute as much to the overall representation of a gesture or dance as much as 
others do--for example, shaking your leg will have a larger effect on a gesture than shaking your foot. The 
significance of certain joints and their associated angles in different kinds of dance was noticed by Kim et 
al [6]. Kim et al. achieved remarkable accuracy in their classification model by extracting the scalar 
angles created from the positions of important joints and the positions of their neighboring joints, then 
discarding joints that were deemed insignificant [6]. 

Our implementation borrows from Kim et al.'s technique and extracts angles in the same way, but because 
our representation uses a reduced set of frames and therefore has lower dimensionality, we are able to 
keep more joint angles without reducing performance. The joints that are deemed significant are selected 
by the programmer before the system begins training (this also allows the joints under consideration to be 
modified according to a particular dance style or culture). In our current implementation, the joints that 
we have kept are the middle spine, left shoulder, left elbow, right shoulder, right elbow, left hip, left knee, 
right hip, right knee. Once the joints have been decided, our pipeline then extracts the angles of important 
joints, further reducing dimensionality. We use Kim et al.'s technique of computing the angle of rotation 
between the parent joint and the child joint of any ``important joint'', thus producing the vectors from the 
``important joint'' to ``parent joint'' and ``important joint'' to ``child joint'' [6]. This process is much like 
placing any point A in 3D space, placing two other points B and C in arbitrary locations, and measuring 
the angle BAC created, oriented in the plane created by the vectors AB and AC.  

3.4 PCA 

PCA is one of the most widely known approaches to dimensionality reduction available. It is considered a 
``standard technique for finding the single best (in the sense of least-square error) subspace of a given 
dimension '' [13]. The mathematical principle behind PCA is the creation of a set of principal components 



that best express or explain the linear variance present in the data. A principal component is found by 
creating linear combinations of existing axes, with the first principal component exhibiting the most 
variance among data points, and the second principal component less so, and so on.  

In addition to the motivation provided by the experimental success of PCA used in gesture-related 
domains, we were also inspired to use PCA in our pipeline because its mathematical principle is similar to 
that of temporal clustering, which also focuses on maximizing variance. The number of principal 
components is programmer-specified. Suppose that it is set to P, then the dimensionality of a single 
gesture from an arbitrary dimensionality to simply P. In addition to producing a transformed lower-
dimension data set, the PCA model will also be fitted to the data set and will be able to transform novel 
data points into the same subspace as the data that was used to train it. This step exports the transformed 
data and the fitted model for future use in the clustering pipeline.  

3.5 K-Means 

K-means belongs to the family of partition based clustering algorithms, whose key principle is the 
definition and characterization of a cluster by its ``center point'', where the center point of a cluster is the 
``average'' or the point that minimizes distance between it and all other points in the cluster [16]. K-means 
updates the centers of clusters iteratively until the clusters eventually converge and each data point is 
placed into its appropriate cluster [16]. K-means' biggest advantage is that it is relatively computationally 
efficient, but it suffers from several other issues such as requiring a pre-set number of clusters and being 
sensitive to outliers [16].  

K-means' usage is nonetheless widespread, and the algorithm has been shown to work well in gesture-
based domains [1, 10]. Balci et al.'s use of k-means alongside PCA also indicates that the two work well 
together [1]. Due to k-means' heavy reliance on a distance metric when comparing data-points, we find it 
intuitive to use for a pipeline that maximizes variance. Given N data items of dimensionality P, the 
dimensionality of the input is P x N. After k-means is fitted to this data set, it produces a clustering that 
assigns an index to each data point corresponding to the cluster it belongs to, and a trained k-means model 
that is able to predict what cluster novel data items belong to, provided that the novel data item goes 
through the appropriate pre-processing. 

3.6 Pipeline Evaluation Overview 

We conducted a preliminary evaluation of the three-stage pipeline for unsupervised gesture clustering of 
arbitrary full-body motion data that we developed in order to better understand its ability to cluster 
skeletally similar gestures and identify limitations. We initially set the number of principal components 
for the PCA model to two and the number of k-means clusters to three for our evaluation. We initially 
chose two as the number of dimensions because it allows for easy visualization and inspection of the data, 
but with a downside of a decrease in accuracy. We later changed the number of k-means clusters from 
three to four after observing four clear clusters in the visualization. This section details the findings from 
our evaluation which, while preliminary, offer insights that can inform future research. 

3.7 Dataset 

We gathered a dataset of 104 unique gestures in order to develop an initial understanding of how well our 
pipeline clustered gestures based on skeletal similarity. Four different members of our lab danced in front 
of a Microsoft Kinect sensor placed at waist level in order to record the gestures. The participants were 
prompted to cover a wide variety of motions that each differed greatly from one another. Participants 
alternated between isolated motions that engaged only one body part and whole body dances or motions 



that engaged all four limbs. The participants were told not to perform certain gesture types due to the 
difficulties the Kinect sensor has with tracking them, such as motions that involve rotating the body along 
the upwards Y axis at rapid speeds (e.g. spinning) or gestures in which body parts were occluded (e.g. 
laying on the ground). 

We attempted to label each gesture in the dataset according to a particular body part category (``hands'', 
``hips'', or ``legs'') in order to determine whether the clusters the pipeline created would match up with the 
labels we gave them as a way to measure the ``intuitiveness'' of the clusters generated by our pipeline. 
Labels were assigned based on which body parts were primarily being used in the gesture--for instance, a 
one handed wave and two handed wave would both be put under the label of ``hands'', whereas a gesture 
depicting a walking motion would be put under the label of ``legs''. Unfortunately, it proved difficult to 
intuitively label some of the more complex movements involving multiple body parts, so we ended up 
only labeling 44 of the 104 gestures (we refer to this as the reduced dataset in the remainder of the paper, 
see for future plans to improve this evaluation metric). 

3.8 Cluster Clarity 

We visually evaluated our pipeline's ability to cluster items using the reduced dataset. Our hypothesis was 
that the clustering visualization would produce clearly identifiable clusters of the gestures that correspond 
to the ``hands'', ``hips'', and ``legs'' labels applied to the reduced dataset. As the figure below shows, the 
red clustering on the left is the most obvious due to its density. Three more distinct clusters can be 
observed towards the top, bottom and right-hand side of the visualization. The clusters in the full dataset 
are less visually apparent, but this is to be expected as participants were instructed to perform varied 
gestures, meaning that not many gestures in the full dataset were similar to one another. As a point of 
comparison, all of the gestures except for one outlier  appear to be clustered in a small and very dense 
clump in the center of the visualization generated from the results from running only PCA and k-means 
on the data without our pipeline pre-processing (not pictured due to space constraints), indicating that our 
pipeline did a better job of separating the gestures into distinct clusters. 

Fig.3: Output Visualization of Clustered Gestures 

 

Fig.4: Gesture Homogeneity Table 

 



We initially hypothesized that we would see three distinct clusters of gestures in the reduced labeled 
dataset after pre-processing - one for ``hips'', one for ``legs'', and one for ``hands''. We actually found four 
distinct clusters. We evaluated the quality of these clusters based on how homogeneous each cluster was 
in terms of the labeled gestures it contained (i.e. a cluster consisting exclusively of ``hands'' gestures was 
considered a better clustering than a cluster consisting of an equal mix of ``hands'', ``hips'' and ``legs''). 
We found that the clusters on the top (blue) and bottom (yellow) of the visualization consisted exclusively 
of ``hands'' gestures (Fig. 3). The two clusters correspond to left and right arm motion, suggesting that our 
pipeline discretized the two body parts into their own individual clusters. The cluster on the far right 
(pink) also consists of 88% gestures labeled as ``hands''. This cluster appears to be formed from ``hands'' 
gestures that involve both left and right arm motion, explaining its positioning between the left and right 
arm clusters. The final cluster is shown on the far left (red) in the figure above and is the most mixed of 
all the clusters present, composed of all of the ``legs'' and ``hips'' motions together. The likely reason 
behind this is that at the time of recording, we did not realize that moving ones' hips almost certainly 
involves the reorientation of the legs. In addition, in all the ``hips'' and ``legs'' motions, the performers' 
arms were static by their sides, causing the upper bodies in these gestures to be identical to one another, 
likely explaining the density of this cluster. In spite of the unexpected results, we found that according to 
our evaluation metric, the clusters created for the reduced dataset were agreeable. 

3.9 Visual Inspection & Exemplars 

We conducted a qualitative visual inspection of both the reduced and the full dataset to supplement our 
quantitative evaluation of the reduced dataset clusters. We present several exemplar gesture comparisons 
from the reduced dataset here to highlight areas where the pipeline succeeded and failed. In Figures, 
gestures are depicted as a series of keyframes and should be read left to right. Gestures are presented in 
pairs for comparison, with one gesture on the top row and one gesture on the bottom row. Fig.  shows the 
location of the exemplars we selected within the clustering plot for the reduced dataset (the exemplars are 
boxed and labeled in green). 

Fig. 5: Gesture Pair: HANDS 13 HANDS 18 

 

The two gestures pictured in Fig.5 were placed in the ``both hands'' cluster. In the first gesture, the 
skeleton moves both of its hands in a circular fashion, engaging its elbows in the motion. This is visually 
similar to the second gesture, in which the skeleton performs a simple wave with both hands. The 
keyframes shown also suggest that the system has some understanding of ``rhythm'' as the reduced 
keyframe set clearly depicts the ``left arm then right arm'' rhythm of the gestures. 

Fig. 6: Gesture Pair: HANDS 16 HANDS 8 



 

The gestures pictured in Fig.6 both depict the raising and lowering of the knee--however, the gesture 
shown at the top adds more lateral motion to the knee joint. In spite of the difference between the two, we 
found their close clustering agreeable due to their intuitive visual similarity. 

Fig. 7: Failure Case Example: HIPS 5 HIPS 9 

 

The two sets of gesture keyframes pictured in Fig. 7 are an example of what we consider a failure case. 
The emphasis in the gesture shown at the top is clearly the lateral swaying and leaning of the upper body 
whereas the gesture on the bottom depicts only the lateral swinging of hips. This difference is lost because 
our angle extraction works only on specific body parts and does not take into account the rotation of the 
whole body. As a result, these two gestures are considered similar due to their close joint orientations. 
This effect was observed in several other gesture pairs. 

3.10 Emergent Properties 

We also noticed that the clustering visualization of the reduced dataset took on an unexpected emergent 
property--the placement of data points in this space allows one to immediately determine which body part 
was most active simply by looking at which quartile it lies in. This is an intriguing property because it 
suggests that the system, with no input from the user, has identified the body parts of the human skeleton 
that exhibit the most motion variance. It has learned on its own that limbs are an important part of motion 
and clustered data points using them. 

3.11 Limitations 

We extract angles from important joints using their Cartesian coordinates as part of the pre-processing 
step. This step introduces an invariance to the actual position of the user relative to the Kinect camera, as 
applying a transformation to all joints will have no effect on the angle extracted. A person performing a 
wave to the left of the camera will have the same joint angles as a person on the right. Angle extraction 
also makes the system blind to the direction a rotating joint is currently facing. These consequences of 



angle extraction could interfere with dance styles or gestures that emphasize translational movement or 
the direction of angular movement. 

Each of the body parts is given a unique position in the feature vector used to describe a Kinect skeleton. 
This means that the system has difficulty equating similar motions mirrored across the Y axis of the 
human body. For human users, it is apparent that a hand waving motion is a ``wave'' regardless of which 
arm it is performed with. However, our system does not view these two to be similar as it has no 
preconception of the symmetrical human body, nor the relationship between the left and right arms. 

Our pipeline gives equal weight to body parts that remain static and body parts that are moving from 
frame-to-frame, but we noticed during our evaluation that we intuitively placed a greater weight on 
moving body parts when comparing similar gestures. We hypothesize this to be the cause of some of the 
failure cases observed in the reduced dataset ``legs and hips'' cluster. Due to the similar positions of the 
upper bodies in the gestures from that cluster, gestures that are sometimes visually dissimilar to humans 
due to movement of an angle, like the hip, are placed together due to their upper body 

4. Info. Visualization Interface and Operation Summary 

This section will begin with giving a summary of the characteristics, behaviors and user interface of the 
visualization tool followed by an analysis of how well the visualization conforms to pre-existing data 
visualization design principles. The main screen that the user will spend most of their time interacting 
with is what we refer to as the “overview screen” (Fig. 8). It takes the shape of a black void which is 
populated with several multi-colored spheres. Each of these spheres represents a gesture, with its position 
determined by the resultant value of the gesture going through dimensionality reduction with an output 
dimensionality of three. Each sphere will also have one of several different colors. The color of a sphere, 
which will henceforth be referred to as a gesture point, encodes the cluster assignment of this gesture 
point. Consequently, it is expected that within this black space there will be several clusters of similarly 
colored spheres in a roughly spheroid shape, as per the nature of K-means [16].  

Fig. 8: Screenshot from the Tool Demonstrating the User Interface 

 

The camera position in this tool is not fixed and controlled by the user using 6 degrees of motion input 
using keyboard keys and the mouse. By using the two together, the user can easily traverse this 3d space 
and decide whether they want to focus on one smaller region of the clustering or zoom outwards and get a 
broad overview.  While navigating the pre-processing subspace, the user will come into situations in 
which they come close to gesture points. If the distance between the user and the gesture point is lower 
than some certain threshold, then the gesture point is disabled and a small animated avatar is displayed in 



its place (Fig.9). Displaying this avatar instead also prevents the gesture point from obscuring points 
behind it, as the avatar has a much lower surface area. This animated avatar is of the same color as the 
gesture point and will play the corresponding motion capture animation on loop until the user leaves the 
threshold distance. This threshold behavior can be considered as having a spherical collider centered on 
the camera’s position, where gesture points that are within the collider are activated to play the animation. 
The size of this spherical collider, or the threshold distance, can be controlled by the user.  

Fig. 9: Screenshot from the Tool Showcasing Avatar Animation 

 

The size of the gesture points can also be scaled by the user. Making these gesture points very large 
allows them to better convey the general shape of a cluster, whereas making them smaller allows for 
easier in-cluster exploration and comparison (Fig. 10).  

Fig. 10: Comparison Screenshots Showing Gesture Points of Varying size 

 

The behaviors described above we consider part of the “overview” screen. The following behaviors 
described below constitute the “detail” overlay. By pressing the “alt” key, the user unlocks the mouse 
from controlling the camera and is free to move the cursor around. By clicking on different gesture points, 
the user is able to control the two small sub-views and their associated avatars located on the bottom left 
and right; clicking on a gesture point assigns the avatar on the left or right, determined by mouse click 
type, the motion capture data corresponding to the clicked gesture point. The “selected” gesture points are 
also identified with a white aura around them (Fig. 11). 

  



Fig.11: Screenshot from the Tool showing Detail Overlay and Selection Highlighting 

 

4.1 Design Guidelines: Schneiderman’s Mantra 

Schneiderman famous mantra for information visualization design “overview first, zoom and filter, then 
details on demand” [19]. The phrase overview first [19] is a guideline which suggests that all info 
visualizations should begin with presenting the user an abstract and high-level representation of some 
more-than-substantial part of the dataset. This overview is necessary because it provides a frame of 
reference and context to the dataset. Zoom and Filter [19] recommends data visualizations provide the 
user with a way to discard or unselect data points that aren’t relevant or of interest to the user’s 
exploratory goal. One example would be to zoom in closely on the city the user wants to explore in 
Google Maps, as opposed to viewing the entire globe. Finally, details on demand [19] advocates for a 
feedback loop consisting of the user actively seeking out additional relevant information as they see fit, 
rather than having this information force-fed to them. The purpose of this step is to ensure that once the 
user can locate a subset of data cases they’re interested in, they are not constricted by it and able to 
iteratively refine their exploration criteria and the specifications of their desired knowledge. 

We believe that our data visualization satisfies the criteria put forth by Schneiderman. The overview 
screen provides a high-level overview of the data that summarizes the shape of clusters and the associated 
distribution of gesture points. By controlling the positioning of the camera, the user can interactively and 
iteratively display a subset of gesture points that they’re interested in.  The mouse clicking and detail 
overly both provide details on demand and assist in the zoom and filter step by making it easier to 
investigate the individual gestures of a cluster without changing the current subset of points on display. 
Furthermore, changing the activation threshold determines which of these subset gesture points shown 
should perform their associated animations. Making all the points display their avatars will allow the user 
to compare individual animations in this subset and gain insight to what kind of gestures characterize it. 
Showing only the spherical gesture points gives the user knowledge about the shape of this subset of 
gesture points. This feature is assisted by scaling the gesture points or avatars up or down as per user 
control. 

4.2 Design Guidelines: Tufte’s Other Principles 

In addition to adhering to Tufte’s mantra, the design of the visualization tool also obeys several other 
established principles such as Graphical Integrity, the Data-Ink Ratio and avoiding Chartjunk  [18]. Tufte’s 
conception of graphical integrity emphasizes “telling the truth”. Visual representations of data should 
neither over or under-represent its effects and phenomena visually [18]. As such, the graphical 



representation of numbers and objects must be directly proportional and commensurate with the data’s 
quantitative elements. Our tool achieves this by having the position of the gesture points be linearly 
proportional to their respective output value after pre-processing. Tufte’s data-ink ratio is a principle that 
suggests an information visualization that minimizes the amount of ‘ink’ used while maximizing the 
amount of meaningful data conveyed is a good one [18]. Our implementation accomplishes this by having 
only the gesture points and animated avatars be colored amidst black space. We chose to omit any axes or 
axes markings due to our gesture point positions being determined by PCA, which produces output values 
with no consistent meaning to them in most situations. Any relevant information regarding a point’s 
position is to be inferred by the user by examining neighboring points. The emergent behavior described 
earlier regarding the semantic meaning of axes values is thus preserved by this approach while avoiding 
visual noise. This design choice also avoids “chartjunk”, which is described by Tufte as illustrations and 
graphical effects that are unnecessary and serve as visual candy [18].  

4.3 Results and Comparative Analysis 

The original visualization tool’s operation consisted of two different modes. The first we refer to as the 
overview screen (fig. 12). This screen’s main function is to provide a frame of reference and summary of 
the gesture-point distribution’s characteristics. Each gesture is represented as a colored circle, where the 
position of the circle is determined by the product of our pre-processing pipeline, with a dimensionality 
output set to two, for that respective gesture. The color of each gesture point encodes the cluster 
assignment of that gesture. In this mode, the user may not move the camera nor zoom in on any specific 
point. By clicking on each gesture, the user is presented with a new browser window displaying the 
second operation mode we refer to as the visualizer screen (Fig. 13). The visualizer, being coded in 3js, 
enjoys several benefits such as being WEBGL enabled, easily hostable on a server and having a low 
system overhead. Its layout is a wireframe avatar, with large spheres representing human joints in a fixed 
pose at any given time. The pose of the avatar is determined by the current frame from its respective 
motion capture data. The user is able to cycle the frame displayed by the avatar by pressing the A or D 
keys, which increment or decrement the current frame counter by one. This avatar’s motion is not 
continuous and non-interpolating.  

Fig. 12: Screenshot from Original Visualization Tool Overview Screen 

  

  



Fig. 13: Screenshot from Original Visualization Tool Animation VIewer 

 

One of the biggest problems we experience with this current arrangement is that the user has no 
understanding of what the gesture could look like before clicking on it. Having the user divert their 
attention from the overview screen to another breaks the flow of user interaction and is intensely 
distracting if not frustrating. Furthermore, the user will likely click on several different gesture points 
hoping to understand the specifics of each cluster resulting in numerous open windows whose 
management and placement is needless tedium. Finally, the technical limitations of using D3 and 3JS 
together prevent 3js from communicating to D3 which visualizers/windows are currently open. 
Consequently, the overview screen is unable to give the user any indication that a specific gesture’s 
visualizer is currently open or what gestures the user has clicked on. 

Our second iteration of the visualization tool provides several enhancements over the original. The 
overview mode now displays individual gesture information by replacing gesture points with animated 
avatars in the same position should the camera get close enough. This completely alleviates any 
difficulties born from having two discrete screens and the associated window management problem. 
Because all of the code for the second iteration runs within the Unity engine, we can easily highlight user 
selected gesture points with a white border. Though the current implementation only has two separate 
detailed gesture viewers, the code foundation allows easy expansion to four or even six. 

 Unity also allows dynamic rescaling of the avatar to be bigger or smaller as the user sees fit, in addition 
to the possibility of a VR-enabled implementation. We believe that virtual reality can greatly enhance the 
user experience due to the visceral sensation of moving the camera close enough to a gesture point that 
the avatar appears roughly the size of a human being. All of this is accomplished while maintaining a 
simple and intuitive user interface. Though Unity is more performance intensive, it still is lightweight 
enough that the tool can be built to function on a WEBGL rendering backend should this option be 
selected. This extra performance overhead is effectively negligible relative to the computational load 
handled by the tool in rendering several dozen animated avatars performing different looping gestures at a 
high framerate. 

 

 

 

  



Fig. 14: Screenshot of from Normal Tool Usage 

  

Finally, having the gestures be output in three dimensions results in much less information loss regarding 
gesture similarity. On a qualitative level, several gesture pairings that appeared close together on the 
original two-dimensional visualization were shown to be quite distant and unviable in three dimensions. 
The natural consequence of this is that the second design is much more precise in presenting the 
similarities and differences between gestures, a core objective that spurned its creation. As such, we 
believe that this second iteration visualization tool is the superior way to experience LuminAI’s pre-
processing pipeline in a human-intuitive manner. 

5. Future work 

We plan investigate how to mitigate some of the limitations of the pipeline highlighted in the evaluation 
section. This will include technical pipeline efficiency and accuracy improvements as well as collecting a 
larger dataset and exploring more rigorous methods of assessing clustering quality. Further work is 
necessary to fully understand the ability of the pipeline to find meaningful clusters for larger datasets that 
contain varied gestures that involve the motion of many body parts at one time. This was challenging to 
assess using our preliminary approach to evaluation, both because we could not visualize clustering 
visualizations with more than two dimensions, and because it was difficult for us to come up with 
meaningful labels for full-body gestures. In the future, we might explore how the algorithm performs in 
relationship to labeled datasets generated by expert dancers/choreographers who are able to more 
accurately label complex movements and/or investigate whether or not users of the system can discern a 
difference in gesture responses generated using our pipeline vs. random responses. In addition, the gesture 
clustering pipeline we have built can support reasoning/clustering along non-skeletal metrics of similarity, 
such as Laban movement analysis. We plan to further explore how different ways of reasoning about 
movement can affect co-creative movement improvisation within the context of LuminAI. We also plan 
to further improve upon the design of the visualization tool by expanding on its current functionality. The 
highest priority would be adding support for VR controls in navigating the camera and selecting gestures 
for detailed view. Additional work would include adding user interface elements that would enable rapid 
switching between different datasets, motion capture dataset editing and the adjustment of other display 
elements like gesture sphere color palette or animation speed.  

6. Conclusion 

In this paper, we have combined multiple strategies used for gesture dimensionality reduction with a k-
means clustering technique to develop a pipeline for unsupervised clustering of arbitrary full-body motion 
data. We conducted a preliminary evaluation of our pipeline and found that it is able to efficiently and 



intuitively cluster gestures involving the movement of isolated body parts. The pipeline is resilient to 
noisy data and produces clear clusters in response to gestures that are intuitively similar in terms of 
skeletal positioning. Our main contribution is the novel combination of existing strategies for clustering 
and dimensionality reduction into a pipeline that can be used in a variety of movement improvisation 
domains. Our secondary contribution is the design and evaluation of an effective and novel information 
visualization tool that aids in understanding the behaviors of the aforementioned pipeline.  
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