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SUMMARY

Studying biological behaviors is important in understanding complex process mecha-

nisms. To understand and describe the biological processes, system-level approaches has

been developed, known as Systems biology. Systems biology allows us to control and simu-

late the biological processes by formulating mathematical models representing the complex

mechanism of the process. Especially, the ordinary differential equations (ODEs) model

is usually used to model the biological processes because the ODE model can describe

changes of systems components status over time. For example, the change of concentra-

tion of an enzyme can be expressed using the first derivative with respect to time. Typically,

an ODE model contains many unknown model parameters, thus these parameters should

be estimated based on the experimentally observed data. However, the amount of experi-

mental data is almost always limited compared to the complexity of the model, and there

is always information gap between the complexity of the model and available data. To

overcome this gap, experimental design and model reduction methods have been devel-

oped. Experimental design methods increase the amount of data by suggesting the most

informative experiment, and the model reduction method reduces the complexity of the

model by finding the key controlling part of the model. In chapter 2, the possibility of uni-

fied framework of these two distinctive methods has been shown using a simple example

model. If this unified method is developed, we can expect to improve parameter estimation

by bridging the information gap between data and the model.

To improve parameter estimation without increasing data and reducing the complexity

of the model, a new approach which quantifies the relative importance of each data point

and gives a different weight to each data according to the quantified importance has been

introduced in chapter 3. Each weight is quantified based on the difficulty of predicting

this data point using the other data points. For instance, if one data point is located in a

dynamically changing region, this should receive higher weight, while if one data point is

xv



located in a steady state region, this data point will receive relatively lower weight. By

giving different weights according to their relative importance, we can estimate parameters

that generate more accurate simulation data in the dynamically changing regions.

From chapter 2 and 3, we can see the importance of mathematical modeling for study-

ing the biological systems. In chapter 3, the way of formulating the ODE model will be

discussed. Passive microfluidic cell sorting device is used as an application. This device

can sort the cells based on a cell’s biophysical properties, such as cell stiffness or size, for

purpose of quantification or experiment. For example, since the trajectories of stiff cells

and soft cells are different, we can sort the cells based on the stiffness of the cells. The data

for this model can be cell trajectories, and the model parameters can be device parameters

such as device length, width or height, and cell properties.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

System-level approach to describe and interpret interactions among parts of systems is

very useful for understanding the mechanism of the system. This system-level approach

provides benefits of controlling the behavior of the process of the system and simulating

the prediction of the process. In addition, system-level approach allows us to find the

emergent properties of the process, which are the results of interactions among the parts of

the process [1, 2, 3]. These emergent properties cannot be found from a single part of the

process, but rather from the entire process. These advantages have made the system-level

approach applied in the biology field, which is called systems biology.

Systems biology is the system-level approach for describing and understanding the

mechanisms of biological processes, such as interactions among proteins or genes [1, 2].

In systems biology, several mathematical forms have been used such as ODE-based model,

stochastic model, Boolean network, and Bayesian network [4, 5, 6, 7, 8, 9, 10]. Each

mathematical form can be selected according to the properties of the biological process.

Since most biological processes include dynamic behaviors and the ODE-based model can

describe the changes of system components over time, the ODE-based modeling is usu-

ally used. The ODE-based models are often constructed by including prior knowledge of

interactions among individual genes and proteins in the complex system. The ODE-based

model consists of several unknown model parameters such as reaction rates, binding affin-

ity, Hill coefficient, etc [11, 12, 13, 14, 15], thus parameter estimation is an important step

toward deeper understanding of the systems. In general, these unknown model parameters

can be estimated based on the experimentally observed data.

When the ODE-based model and the experimental data are given, parameter estimation

aims to find the optimal parameters which enable the model to reproduce the experimental
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data. Parameter estimation is often formulated as a least squares optimization problem

(Eq.1.1), where all experimental data points are typically considered as equally important.

In Eq. 1.1, n represents the total number of experimentally observed data points, obsi

represents the value of the ith observed data point, predi represents the model prediction of

the ith data point which is a function of the parameters, θ.

Cost =
1

2

n∑
i=1

(obsi − predi(θ))2 (1.1)

This cost function measures the differences between the experimental data and the sim-

ulated model prediction generated from the estimated parameters, and this difference is

called the cost value. By minimizing the cost function value, we can find model parame-

ters that enable the model to produce simulated data that are similar to the experimentally

observed data.

Compared to the model complexity, the amount of available experiment data is usually

insufficient to constrain several unknown model parameters. In this situation, it is possible

that very different parameter settings can fit the data equally well [16]. This is a manifes-

tation of an information gap between the model complexity and the data. This imbalance

between insufficient available data and highly complex model makes the parameter estima-

tion more challenging.

To overcome this information gap between the limited available data and the high model

complexity, two strategies have been developed: Experimental design method and model

reduction method. The goal of the experimental design method is to obtain more data

by performing extra experiments [17, 18, 19]. More specifically, the experimental design

method tries to identify the most informative experiment in improving parameter estima-

tion, given the ODE-based model and existing experimental data. To find the most infor-

mative experiment among several candidate experiments, information theory, sensitivity

analysis, and Bayesian posterior sampling have been used to define criteria for measuring

2



information contained in candidate experiments [17, 20, 21, 22, 23, 24]. The purpose of the

model reduction method is to simplify the complex mode while maintaining its ability to

fit the existing data. This method can be used when additional experiments cannot be per-

formed because of some practical reasons such as high costs of running more experiments.

Given the ODE-based model and experimental data, the model reduction method tries to

find the way to reduce the complexity of the model while retaining the ability to fit the data.

By exploiting special properties and sensitivities of the model, the part of the model, which

can be simplified, is identified [25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. Furthermore, by

reducing the model, the key controlling part of the system can be found.

To sum up, the experimental design method identifies the most informative experiment

among several candidate experiments. By conducting the most informative experiment, we

can effectively reduce the information gap. On the other hand, the model reduction method

simplifies the complex biological model by removing or combining the insensitive param-

eters without losing the ability to fit the given data. Moreover, by simplifying the model,

the key mechanisms behind the systems behavior also can be identified. Previously, these

approaches are considered very separately, however, these two methods share deep connec-

tions that can be unified into a common framework. Therefore, in Chapter 2, the possibility

of unified framework for these two distinct methods will be discussed by using geometric

concept. This unified framework has potential to reduce the information gap between lim-

ited data and complex mathematical model efficiently by identifying the most informative

experiment and finding the key controlling mechanism of the system at the same time. The

unified approach will lead to a new technique for bridging the information gap between

limited experimental data and complex mathematical model in systems biology. In addi-

tion, we expect that this unified approach can bring intuitive geometric interpretation in

systems biology.

In Chapter 3, a new approach to estimate more accurate model parameters will be intro-

duced, when the experimental data is not enough to constrain the model. Based on what we

3



learned in experimental design method, we know that there are some good experiments that

provide a lot of information, and there are less informative experiments that do not provide

additional information. In the same manner, if we look at the data points collected in one

single experiments, it is also possible that some data points are informative, and some data

points are less informative. This is the conceptual motivation that the relative importance

of each data point should be considered when estimating parameters.

The relative importance of each observed data point is quantified using the inverse fisher

information matrix. If one data point can be estimated based on the other data points, then

it means that this data point does not contain new information. Thus, this data point should

be received a low weight. On the other hand, if we can predict one data point using the

other data points, this data point contains new information that does not exist in other data

points, so it should be given a large weight. To embed this relative importance of each

data point, we re-formulate the least square cost function (Eq. 1.1). The benefit of this

new approach is that performing additional experiments or verifying the reduced model is

not required to improve parameter estimation. Previously, we needed to perform additional

experiments selected by experimental design method. Also, we needed to reduce model

complexity by combining or eliminating insensitive parameters to obtain more accurate

parameter estimation results. However, when additional experiments are not available or

the reduced model with retaining the ability to fit the observed data cannot be found, our

new approach can be used to improve parameter estimation results.

In previous chapters, we have discussed several benefits and limitations of mathemati-

cal modeling. Also, several approaches to address the limitations have been demonstrated.

In Chapter 4, we will demonstrate how to build a mathematical model to describe a cell

sorting procedure within the microfluidic device, as an application. The reason why we

select the microfluidic device as an application is that microfluidics is a promising tech-

nology for biological inquiries at the single-cell level, such as single-cell gene expression

for lineage analysis, microfluidic cell sorting, and signaling dynamics [35]. Also, the mi-
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crofluidic cell sorting device help us to distinguish the cells based on their stiffness. The

stiff cells move up and the soft cells move down along the path of the cells flow. This is a

very important property because it can be used to detect the cancer cells, such as breast can-

cer and leukemic cancer cells, which are typically softer than the normal cells [36]. Since

the microfluidic cell sorting device is an effective tool for studying a single cell analysis,

mathematical approach would greatly help in developing an accurate analytical tool and

also in understanding the mechanisms of the cell sorting result within the device. Since

the microfluidic cell sorting device is an effective tool for studying a single cell analysis,

mathematical approach would greatly help in developing an accurate analytical tool. In this

work, the ridge induced circulation microfluidic cell sorting device will be discussed. This

microfluidic device is decorated with periodic diagonal ridges and this microfluidic device

is usually used to sort or isolate the cells depending on cells biophysical properties, such

as cell stiffness or cell size [37, 38, 39, 40]. Developing mathematical model describing

cell trajectories within this microfluidic device will allow us to optimize the device pa-

rameters (e.g. angle of the ridges, width and height of the device) to achieve accurate cell

sorting results. Furthermore, before performing experiments, we can simulate different cell

trajectories according to different cell properties by using developed mathematical model.
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CHAPTER 2

UNIFIED FRAMEWORK: EXPERIMENTAL DESIGN AND MODEL

REDUCTION METHODS

2.1 Introduction

Mathematical modeling is an important tool for understanding complex biological systems.

It is very useful for making predictions about system behavior far away from its nominal op-

erating conditions [4, 5]. These models can take the forms of ordinary differential equations

[9], Boolean networks [41], stochastic differential equations [42], Petri net [10], Bayesian

networks [8], and other frameworks [43, 6, 7]. Each form can be selected according to

properties of the biological processes they intend to describe. In systems biology, a popu-

lar modeling tool for the dynamics of biological networks is ordinary differential equations

(ODEs). ODEs are describing changes of abundance or concentration of interacting com-

ponents over time. ODE-based systems biology models are often constructed by including

prior knowledge of interactions among individual genes and proteins in the complex sys-

tem, resulting in highly complex models with many unknown parameters, such as reaction

rates, Hill coefficient, etc [11, 12, 13, 14, 15]. In general, these unknown model parameters

can be estimated based on the experimentally observed data. However, compared to the

complexity of the models, the amount of experimentally available data is almost always

limited and not enough to constrain the parameters. As a result, it is possible that very

different sets of parameters can fit the data equally well. This is a manifestation of an in-

formation gap between the model complexity and the data [16]. In this situation, parameter

estimation is an ill-posed problem, and thus very challenging.

In order to bridge this gap between high model complexity and limited experimental

data, one strategy is to develop better optimization algorithms for parameter estimation,
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and investigate sensitivity and identifiability to evaluate which parameters are accurately

estimated and which ones have large uncertainty. Literature along this line is voluminous,

and most progress took place in the fields of statistics, systems and control theory, and

machine learning [44, 45, 46, 47, 48]. An alternative strategy is to make the problem

better conditioned by obtaining more data or simplifying the model. This can be done

with methods that are referred to as experimental design [17, 18, 19] and model reduction

methods [49, 50, 51, 25] in the literature. This thesis focuses on discussing the second

strategy, the experimental design and the model reduction perspectives.

Experimental design method is an intuitive approach to bridge the information gap be-

tween complex models and limited experimental data, and this can be done by performing

new experiments to obtain more data. To design a new experiment, one typically needs

to decide what perturbation, activation or inhibition, is to be applied to which components

such as genes and proteins in the system. Also, we need to decide which components

should be measured at which time points. These choices together constitute the design of

a new experiment. The experimental design question is that what additional experiment

is expected to be maximally informative in improving parameter estimation and reducing

uncertainty when we know the ODE model and data?

Model reduction method is another intuitive approach, which aims to simplify the com-

plex model to an extent that is compatible to the available experimental data. This approach

can be used when additional experimental data cannot be performed for some practical rea-

sons, for example, biological samples are unavailable or experiments are too costly. Model

reduction method can be applied to derive simpler models that can describe the data with

fewer parameters. Furthermore, model reduction can lead to a minimal model that can-

not be further reduced without losing its ability to explain the data. This minimal model

may indicate the key controlling mechanisms of the biological system. One challenge is to

identify the appropriate reduction among a huge number of possible ways to write down

reduced models, such as removing or combining parameters or variables. The model re-
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duction question is that when an ODE model and limited experimental data are given, how

to systematically derive a sequence of reduced models, each with one fewer degree of free-

dom, such that the reduced models retain the ability to fit the data?

Both questions have been studied in the literature. For instance, experimental design

methods have been developed based on information theory [21, 52], Bayesian posterior

sampling [53, 20, 22, 54], and sensitivity analysis [23, 17, 55]. Model reduction methods

have been applied to complex biological systems by exploiting system properties, such as

time scales [26, 27, 28, 25, 29, 51], modularity [56, 31, 30, 57] and sensitivity [58, 59,

60, 33, 34, 14]. Although experimental design and model reduction methods have been

considered as distinct methods, these two methods share deep connections. There exist

methods that can tackle both questions, such as the profile likelihood [61, 62] and the

model manifold analysis [24, 63, 64]. To illustrate in details the processes of experimental

design and model reduction, a simple dynamical system is used as an example using the

profile likelihood and model manifold methods [65].

2.2 Experimental design method

2.2.1 Existing experimental design methods

When an ODE-based model and limited experimental data are given, experimental design

aims to identify the experiment that is expected to be maximally informative in improv-

ing parameter estimation. Different existing experimental design methods differ by how

”maximally informative” is defined. For example, methods based on Bayesian posterior

sampling aim to identify experiments which optimizes the expected value of some objec-

tive functions associated to candidate experiments [53, 20, 61, 54]. Information theoretic

methods use entropy and mutual information to quantify the additional amount of infor-

mation contained in candidate experiments [21, 52]. Methods based on sensitivity analysis

aim to find experiments which can maximally reduce the variance and uncertainty of the

estimated parameters [23, 66, 17, 67, 24, 68].
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The Approximate Bayesian Computation method based on Sequential Monte Carlo

(ABC-SMC) is a powerful approach for parameter estimation and model selection [69].

The ABC-SMC algorithm can be applied to sample the parameter space from a posterior

distribution defined based on the fit between parameter values and experimental data. As

an output of this sampling process, an empirical distribution of the parameters is obtained,

which describes how well the parameters are constrained by the experimental data. Com-

pared to many parameter optimization algorithms that provide a point estimate, the empiri-

cal distribution contains richer information, which can be used for experimental design. In

a Bayesian active learning method [54], this empirical distribution was used to compute,

for each candidate experiment, the expected value of a loss function defined by the error

of the model predictions, and the expected loss was the criterion for selecting the optimal

experiment to perform next. In another Bayesian method [20], the empirical distribution

of parameters was used to compute the expected variance of estimated parameters if the

data is augmented by each candidate experiment, and the expected variance served as the

criterion for experimental design. In the profile likelihood method [61], a variation of this

empirical distribution was used to calculate the range of model predictions for each can-

didate experiment, and suggested that the optimal experiment should be the one with the

widest spread of predictions.

Information theoretic experimental design approaches incorporate entropy and mutual

information measures into the Bayesian methods. The typical criterion for optimal ex-

periment is to maximize the mutual information between parameters and candidate experi-

ments. More precisely, the KullbackLeibler divergence between the prior distribution of the

parameters and the posterior distribution of parameters given data from candidate experi-

ments [21, 52]. The prior distribution of the parameters encodes either the prior knowledge

of the parameters if no experimental data is available, or the posterior distribution of pa-

rameters given available data from previously performed experiments, allowing iterative

procedures between the computational analysis of experimental design and the biological
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efforts of carrying out the experiments.

Sensitivity analysis examines the derivatives of model predictions with respect to the

parameters, which form the Jacobian and the Fisher Information Matrix (FIM) [70]. For

each candidate experiment, a separate FIM can be constructed by considering the deriva-

tives of model predictions associated to the available experiments and the candidate exper-

iment. When the FIM is evaluated at a point estimate of the parameters given the currently

available data, the resulting matrix represents a linear approximation of the model, and

the properties of the FIM provide quantification of parameter uncertainty if the candidate

experiment is performed, which can be used as criteria for experimental design [71]. One

of these criteria is A-optimality, which minimizes the trace of the inverse of the FIM, and

hence minimizes the variance of the estimated parameters [67, 24]. Another popular cri-

terion is the D-optimality, which maximizes the determinant of the FIM [23, 66, 17, 68].

Although the linear approximation seems insufficient in handling complex nonlinear dy-

namical models, it has been shown to be an effective method for experimental design in

many systems biology studies, and is computationally much more efficient compared to

Bayesian approaches.

2.2.2 An example model: sum of two exponentials

A simple toy exmample model is introduced in this section to discuss experimental design

in details [65]. We assume that we have a dynamical system that contains two exponen-

tially decaying variables with unknown decay rates. Assume the two variables cannot be

measured separately, and we can measure the sum of them at time points of our choosing.

For simplicity, we further assume that at t = 0, the initial values of both variables are 1.
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This system can be modeled by the following ODEs in equation (2.1).



dx1
dt

= −θ1x1
dx2
dt

= −θ2x2

x3(t) = x1(t) + x2(t)

x1(t = 0) = 1

x2(t = 0) = 1

(2.1)

where x1 and x2 represent the two dynamical variables, which exponentially decay at rates

θ1 and θ2, respectively. x3 represents the sum of two variables and we can measure its

value. Since this ODE model is simple and linear, its analytical solution in equation (2.2)

can be calculated. However, for more complex systems biology models, such an explicit

analytical solution is typically unavailable.


x1(t) = e−θ1t

x2(t) = e−θ2t

x3(t) = e−θ1t + e−θ2t

(2.2)

We design an initial experiment, where we measure the sum x3 at time points t=1 and

t=3, to estimate the decay rates. Eq. 2.3 represents the mathematical description of the

experiment.  obs1 = x3(t = 1)

obs2 = x3(t = 3)
(2.3)

After we carry out this experiment, the observed measurements are 1.10 ∗ 10−5 and 1.04 ∗

10−15. The corresponding to noise-free simulation using true parameter values are θ1 = 14,

θ2 = 11.5.

Using this simple example model, we introduce a few terminologies: parameter space,

and data space. Since the system has two unknown model parameters θ1 and θ2, the ”pa-

rameter space” is 2-dimensional. A 45 degree line is drawn in the parameter space because
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Figure 2.1: The parameter space and the model manifold in the data space for the
sum-of-two-exponentials example

of the symmetry in the model. The experiment makes two measurements obs1 and obs2,

and therefore the experimental data is a point living the a 2-dimensional ”data space”. The

mathematical descriptions of both the system (2.1) and the data (2.3) together constitute

the model, which defines a mapping from the parameter space to the data space. If we

consider all parameter settings in the parameter space and map them to the data space, we

will obtain a collection of points in the data space that are achievable by the model which

is represented in Fig, 2.1 as a shaded area. We call these collected data points as a ”model

manifold”. Typically, the model manifold does not occupy the entire data space, because

of the constraints imposed by the mathematical structure of the model.

Albeit the simplicity of this example model, the fact of the experimental measurements

being 1.10 ∗ 10−5 and 1.04 ∗ 10−15 represents a situation where the data does not contain

enough information compared to the complexity of the model. There are two ways to

explain this result. First of all, the measured variable x3 is the sum of two exponential

decays that will eventually go down to 0. By the time the two measurements are taken, x3

is already extremely close to 0. Since the measurements are taken too late, there is little

information in the observed data to infer the decay rates. Another one is that the observed

data corresponds to one point in the data space, which sits in the bottom left corner of the
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Figure 2.2: Small region of the manifold can map to large region in the parameter
space

model manifold, as shown in Fig. 2.2b. If we formulate a least squares problem to estimate

the parameters by an optimization algorithm such as gradient descent, interior point [44],

and set a small error tolerance threshold of 10−5, then the optimization algorithm will stop

when it reaches a solution in the red region of the model manifold in Fig. 2.2b. In Fig. 2.2c,

we can see that this region is tiny and only visible in the zoomed-in view. However, this

tiny red region of the manifold corresponds to a large region in the parameter space shown

in Fig. 2.2a. Therefore, the estimated parameter can land anywhere in the red region of the

parameter space, far away from the true parameters indicated by the star, which means large

uncertainty in the estimated parameters. In this example, parameter estimation is difficult

because the available experiment is performed at an incorrect time scale. Intuitively, we

should measure earlier time points. In the following, we use two experimental design

methods to identify the appropriate time points we should measure.
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2.2.3 Experimental design algorithm based on uncertainty reduction

An experimental algorithm based on sensitivity analysis and uncertainty quantification has

been developed previously [24]. The main idea behind this algorithm is to identify the ex-

periment that maximally reduces the uncertainty of the estimated parameter. The algorithm

is as follows:

1. Set up a least squares cost function for parameter estimation cost = 1
2
∗
∑

i(obsi −

predi(θ))
2. Perform parameter estimation and obtain the best estimate based on cur-

rently available data.

2. Compute the Jacobian matrix Ji,j = ∂predi(θ)/∂θj at the best estimate. Compute

the Fisher Information Matrix I = JTJ , which is an approximation of the Hessian

of the cost function at the current best estimate. Compute the parameter uncertainty:

D = trace(I−1).

3. For each candidate experiment, compute the extended Jacobian, which is the Ja-

cobian in step 2 appended by the partial derivatives of the model predictions of the

candidate experiment with respect to the parameters. Compute parameter uncertainty

based on the extended Jacobian. Suggest the experiment with smallest uncertainty as

the next new experiment.

4. Carry out the suggested experiment to obtain new data.

5. Iterate through steps 1-4 to suggest new experiments until uncertainty cannot be re-

duced.

The data from the initial experiment are x3(t = 1) = 1.10∗10−5 and x3(t = 3) = 1.04∗

10−15. The least squares cost function is formulated in step 1, and we optimize it using the

Levenberg-Marquardt algorithm implemented in Matlab. The estimated model parameter

values are [10.70, 10.70]. Although the initial experimental data corresponds to noise-free
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simulation of the true parameter, the optimization algorithm stops early before reaching

the true parameter due to numerical imprecision. However, the optimization achieves a

very small value of 1.16 ∗ 10−9 for the least squares cost. This disconnection between

low cost value and incorrect model parameters is a manifestation of the fact that the data

is limited compared to the complexity of the model. In step 2, the Jacobian matrix is

computed which is composed of derivatives of experimental observations with respect to

the parameters, evaluated at the estimated parameter. In this example, these derivatives can

be written analytically in equation (2.4).

J =

 ∂x3(t=1)
∂θ1

∂x3(t=1)
∂θ2

∂x3(t=3)
∂θ1

∂x3(t=3)
∂θ2

 =

 −e−θ1 −e−θ2

−3e−3θ1 −3e−3θ2

 (2.4)

After evaluating the Jacobian at the current estimated parameter [10.70, 10.70] and com-

puting the Fisher Information Matrix and its trace, we can see that the uncertainty of the

estimated parameter is very large, 4.93 ∗ 1044. In complex mode where the analytical solu-

tion of the Jacobian is not available, the derivatives in the Jacobian can be approximated by

finite differences or the sensitivity equations [72]. Although we notice the huge uncertainty

associated with the estimated parameter, we do not have evidence against the estimated pa-

rameter because of the low cost value. We do not have reasons to suggest the estimated

parameter is incorrect because we just do not have much confidence in it. Therefore, we

assume the estimated parameter is correct, and design a new experiment that maximally

increases our confidence by reducing the uncertainty. When the new experiment is carried

out, we may realize that our assumption is wrong, and we can perform parameter estima-

tion again based on the current and additional data to update the estimated parameter. In

this example, the collection of all possible new experiments is defined as measuring x3 at

another time point. For each possible new experiment, at each time point, we compute the

Jacobian associated to the existing experiments and the new experiment. Then we evaluate

it at the current estimated parameter and compute the trace of the Fisher Information Matrix

15



10-5 10-4 10-3 10-2 10-1 100

Candidate time points

1025

1030

1035

1040

1045

pa
ra

m
et

er
 u

nc
er

ta
in

ty

Iteration 1

Uncertainty
Best new time point

Figure 2.3: Uncertainty at each candidate time point In the first experimental design
iteration, parameter uncertainty at each candidate time point. The time point t = 0.0008 is
chosen for the next experiment because it leads to lowest uncertainty.

to quantify the parameter uncertainty if the new experiment is performed.

Fig. 2.3 shows the resulting uncertainty at each candidate time point. The peak at t = 1

shows that repeating a previous measurement does not efficiently reduce the uncertainty.

The flat region after t = 3 indicates that measuring any time points after t = 3 does not

reduce the uncertainty at all. Because t = 3 is already too late with observed x3(t = 3) ex-

tremely close to 0, which does not provide any additional information about the underlying

parameter. The lowest uncertainty is achieved at t = 0.0008, which is the new experiment

that our algorithm suggests. After the suggested experiment is performed, the mathemat-

ical description of the experiment becomes obs1 = x3(t = 1), obs2 = x3(t = 3), and

obs3 = x3(t = 0.0008). The experimental data becomes [1.10∗10−5, 1.04∗10−15, 1.9797].

Parameter estimation and uncertainty quantification in steps 1 and 2 are repeated. After

that estimated parameter becomes [3.85, 11.65], which is closer to the true parameter and

has smaller uncertainty 3.30 ∗ 1010.

Repeating step 3 leads to the design of the next experiment. In Fig. 2.4a, we can see

that the uncertainty landscape changes, very early time points are no longer very useful

because we already have a measurement taken at t = 0.0008. The uncertainty after t=1 is
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Figure 2.4: Parameter uncertainty at each candidate time point in iterations 2∼5 The
selected time points are 0.4589, 0.011309, 0.2576 and 0.0277, respectively.

flat and it is indicating that a new time point between 1 and 3 is not useful any more. The

maximal uncertainty reduction occurs at t = 0.46, which is in a gap between the available

time points. After the suggested experiment is performed, the entire experimental design

process can iterate to suggest new time points as shown in Fig. 2.4b-d.

Fig. 2.5 shows five iterations of the experimental design algorithm based on uncertainty

reduction. Fig. 2.5a shows the suggested time point at each iteration. Fig.2.5b shows that

the estimated parameter is almost identical to the true parameter after the second experi-

mental design iteration. In Fig. 2.5c, after the second iteration is completed, subsequent

iterations only lead to moderate amounts of reduction in parameter uncertainty. This re-

sult is suggesting that the experimental data after the second iteration becomes sufficient

compared to the complexity of the model, and the subsequent iterations are unnecessary.
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Figure 2.5: Summary of five iterations of experimental design based on uncertainty
reduction

2.2.4 Experimental design algorithm based on profile likelihood

Experimental design of the previous example model can be performed using another al-

gorithm based on the profile likelihood. In [61], the likelihood is defined with a Gaussian

assumption,

Likelihood(obs|θ) =
∏
i

1√
2πσi

e
− (obsi−predi(θ))

2

2σ2
i (2.5)

where σi represents measurement noise. If we assume all measurements are equally accu-

rate, the negative loglikelihood can be simplified as the following:

NegativeLogLikelihood(obs|θ) =
1

2

∑
i

(obsi − predi(θ))2 (2.6)

which is the same as the cost function used in the previous experimental design method.

The likelihood function in Eq. 2.5 or the negative loglikelihood cost function in Eq. 2.6

can be used to define the profile likelihood. The profile likelihood for each parameter is a

function of the model parameter, defined by solving many optimization problems. We fix

θ1 to be a certain value, then we optimize the negative log-likelihood cost function with

respect to the remaining model parameters, θ2, ..., θd, where the d represents the number of

unknown parameters. This optimized cost function identifies the best cost function value
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and the estimated values for the remaining parameters. If we vary the value of θ1 across its

feasible range and perform the optimization for each possible value of θ1, two curves are

obtained. First one is the optimal cost as a scalar function of θ1, and the other is the optimal

values for the remaining parameters as a vector function of θ1. The frist curve is the profile

likelihood of θ1 and it characterizes the optimal cost function values when θ1 is fixed. The

same analysis can be performed for each model parameter. As a result, we obtain d profile

likelihoods, where d is the number of parameters.

For each profile likelihood, we can find the minimum value. Also, we can define a

confidence interval around the best value of θ1. For example, a generous definition would

be a threshold at the 90 percentile of the optimized cost function values, which exclude 10

percent of possible θ1 values with optimized cost function larger than the threshold. The

accepted θ1 values and the corresponding estimated values for the remaining parameters

form a collection of acceptable parameter settings derived from the profile likelihood of θ1.

If we perform the same analysis for the profile likelihood of all the model parameters, we

will obtain a larger collection of acceptable parameter settings. These acceptable parameter

settings can then be used for experimental design. For one candidate experiment, we can

use these acceptable parameter settings to simulate the experiment, and examine the range

of the simulated data. If the range is small, all these acceptable parameters lead to similar

predictions of the data that will be generated by the candidate experiment, which means this

candidate experiment does not have the ability to differentiate the acceptable parameters.

On the other hand, if the range is large, this candidate experiment is able to differenti-

ate acceptable parameters and further constrain the parameters. Here is an algorithm for

performing experimental design based on the profile likelihood:

1. Compute profile likelihood for each parameter. Basically, pick one parameter and

vary its value in the feasible region. For each feasible value of the picked parameter,

perform optimization to estimate the other parameters. The optimization objective is

a least squares cost function c = 0.5 ∗
∑

i(obsi − predi(θ))2.
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2. Define thresholds to obtain the collection of acceptable parameter settings from the

profile likelihood of each parameter.

3. For each candidate experiment, simulate the model prediction using all the acceptable

parameter settings, and compute the range of the simulated predictions. Suggest the

experiment with the largest range as the next new experiment.

4. Carry out the suggested experiment to obtain new data.

5. Iterate through steps 1-4 to suggest new experiments until some stopping criterion

(the profiles become very sharp, or the range of simulated predictions becomes very

tiny).

In this example model, we formulate the negative loglikelihood cost function in step

1 and compute the profile likelihood for each parameter using the Levenberg-Marquardt

optimization algorithm implemented in Matlab. First, we fix θ1 at different values, optimize

the cost function with respect to θ2, and generate the profile likelihood for θ1 shown in Fig.

2.6a. In Fig. 2.6a, when θ1 is fixed at small values, the optimized cost function is large

because it is impossible to tune θ2 alone to achieve small cost function value. Similarly, in

Fig. 2.6c, the optimized θ2 exhibits a strange oscillating pattern when θ1 is fixed at small

values, which is likely caused by numerical issues of the optimization algorithm. Since the

two parameters are symmetric, the profile likelihood of the two parameters are identical,

and therefore Fig. 2.6b and Fig. 2.6d are identical to Fig. 2.6a and Fig.2.6c.

To define acceptable parameter settings in step 2, a threshold should be selected. In

this example model, the threshold is defined as 90% of the best likelihood in Eq. 2.5. The

corresponding threshold on the profile likelihood is shown by the horizontal line in Fig.

2.6a and Fig.2.6b. This is a generous threshold because it is accepting many parameter

settings along the profile likelihood. The acceptable parameter settings are shown in black

in Fig. 2.6c and Fig. 2.6d, whereas gray indicates the parameter settings that are not

accepted according to the threshold. In step 3, the model is simulated using the acceptable
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Figure 2.6: The first iteration of profile likelihood based experimental design

parameter settings to obtain the range of predicted data for all candidate experiments. The

Fig. 2.6e shows the range of x3’s behaviors across the acceptable parameter settings. The

time point t = 0.0135 is suggested as the new experiment, because it corresponds to the

largest range, and hence has the most discriminating power among the acceptable parameter

settings.

After performing the suggested experiment, the experimental data becomes [obs1, obs2, obs3] =

[x3(t = 1), x3(t = 3), x3(t = 0.0135)] = [1.10 ∗ 10−5, 1.04 ∗ 10−15, 1.6851]. If we perform

parameter estimation again with the new experimental data, the estimated parameter be-
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Figure 2.7: The second iteration of profile likelihood based experimental design

comes [14.3431, 11.1697], closer to the ground truth parameters. We can perform a second

iteration of the experimental design algorithm to suggest the next time point. In the second

iteration, the updated profile likelihood is shown in Fig. 2.7a and Fig.2.7c. In these figures,

the sharp peaks indicate that the current data is already able to constrain the parameters

close to the true parameter values. In Fig. 2.7e, we can see that the simulated behaviors of

x3 still exhibit large range at late time points, and the algorithm suggests t = 0.2899 as the

next time point to measure. A summary of the first five iterations of the profile likelihood

based experimental design is shown in Fig. 2.8. The Fig. 2.8a shows the suggested time
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Figure 2.8: Summary of five iterations of experimental design based on profile likeli-
hood

points in each iteration. After the second iteration, the algorithm stops exploring the new

time points. This coincides with Fig. 2.8b, showing that the error in the estimated parame-

ters approaches 0 after the second iteration. Although profile likelihood does not consider

parameter uncertainty, the suggested time points do lead to great reduction of parameter

uncertainty along the process, as shown in Fig. 2.8c.

2.2.5 Geometric interpretation of experimental design

In each iteration of the experimental design process, a new experiment is suggested and per-

formed. More available data means that the dimension of the data space is increased. Since

the number of parameters stays the same, the intrinsic dimension of the model manifold

does not change. Therefore, increasing the data by new experiments will expand the data

space by adding new dimensions, and deform the model manifold into the new dimensions,

but will not change the dimension of the model manifold itself.

Fig. 2.9,2.10, and 2.11 illustrates how experimental design changes the geometry of the

model manifold using the sum-of-two-exponentials example. With the initial experimental

design obs = [x3(t = 1), x3(t = 3)], the model manifold is a 2D object that lives in the

2D data space, shown in Fig. 2.9. The model manifold is colored by the sum of the two

parameters. The upper right corner which is represented by blue color corresponds to both
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parameters being small. The bottom left corner which is indicated by red color corresponds

to both parameters being large. The data of the initial experiment sits in the bottom left

corner of the manifold. After the first iteration of experimental design based on uncertainty

reduction, a third observation x3(t = 0.0008) is made, and the model manifold becomes a

2D object in the 3D data space shown in Fig. 2.10, colored in the same way. If we look at

the model manifold in Fig. 2.10 from top to down, we will see the exact same figure as the

2D version in Fig. 2.9. From the color, we can see that the new experiment expanded the

bottom left corner (red region) of the model manifold and stretched that region downwards,

while the rest of the model manifold (blue region) is less affected. This is because the new

experiment is designed to improve parameter estimation of the data that sits at the bottom

left corner. Fig. 2.11 shows the geometry of the model manifold after the first iteration

of the experimental design algorithm based on profile likelihood, which is qualitatively the

same as Fig. 2.10. As the experimental design algorithm iterates, the model manifold is

expanded to higher dimension. The manifold region around where the experimental data

sits is expanded more than the rest of the manifold.

When applied to the example model, the above experimental design algorithms show

similar performance. In both cases, the first two suggested time points are sufficient in con-

straining the parameters, and therefore, the subsequent iterations are actually unnecessary.

The two algorithms are comparable in terms of the error and the uncertainty in the estimated

parameters. In this example, we assume the collection of all possible new experiments is

defined by measuring x3 at any time point. This is certainly unrealistic, because getting

data very frequently at highly precise time points is very difficult experimentally. In reality,

the collection of all possible and realistic new experiments is typically a smaller set due to

experimental and technical constraints, and the uncertainty quantification for experimental

design should only consider the realistic experiments.
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Figure 2.9: Geometry of model manifold is changed by the experimental design process
Initial experimental design

Figure 2.10: Geometry of model manifold is changed by the experimental design pro-
cess Third time point at 0.0008

2.3 Model reduction method

2.3.1 Existing model reduction methods

Model reduction method aims to derive reduced models that can fit the data with fewer

parameters. Furthermore, it also aims to identify the minimum model to elucidate the key

mechanisms that give rise to the experimental observations. One challenge is to identify

the appropriate reduction among a huge number of possible ways to write down reduced

models such as removing or combining parameters or variables. Most existing model re-
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Figure 2.11: Geometry of model manifold is changed by the experimental design pro-
cess Third time point at 0.0135

duction methods follow a two-step process. First, they identify which part of the model

should be simplified by exploiting special properties and sensitivities of the model, and

then we can write down the mathematical form of the simplified model using biological

insights. Useful properties for model reduction include separation of time scales [73, 28,

26, 27, 25, 29, 51], clustering and lumping of variables into modules [56, 31, 30, 57], and

insensitive parameters or variables [58, 59, 60, 33, 34, 14, 74].

Biological systems often contain processes that occur in different time scales [75].

For example, processes that occur much faster than the experimentally observed behav-

ior can be assumed to be in the steady state. On the other hand, processes that occur much

slower than observed behavior can be approximated as constants [76]. In an analysis of the

Wnt/β-Catenin signaling pathway [26], the experimental observations are made on a time

scale of hours. Since separate experiments observed no detectable degradation of several

proteins in the pathway in several hours, the concentration of these proteins are assumed

to be constants, so that the corresponding differential equations are converted into alge-

braic equations, reducing the number of dynamical variables. In addition, a few reversible

binding reactions are known to occur much faster, which lead to quasi-equilibrium approx-

imations that turn reaction rates into ratios, reducing the number of parameters [26]. For

complex models, computational singular perturbation analysis can be applied to systemat-
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ically identify processes or transformations associated to fast and slow time scales, which

lead to model reduction [73, 28, 27, 29, 51].

Lumping methods for model reduction aims to remove dynamical variables from the

system and replace them by new lumped dynamical variables that represent affine com-

binations of the removed variables [56, 31]. Variables to be lumped can be identified by

either biological intuition of the structural properties of the model [77, 78, 79, 30, 50],

or systematic algorithms based on principle component analysis [80, 81], greedy iterative

forward selection [57] and decomposition algorithms [13]. One special case of lumping

methods is called proper lumping, where each variable in the system contributes to only

one of the new lumped variables. This constraint allows the interpretation of the reduced

model to be clearly connected to the interpretation of the original variables [30, 57, 13].

Sensitivity analysis is another popular approach for model reduction. In complex mod-

els with limited experimentally observed data, there are typically parameters or parameter

combinations that are not important for the observed data. In sensitivity analysis, the insen-

sitive model parameters that affect the dynamics the least are eliminated [58, 59, 60]. The

insensitive parameters can be identified by principal component analysis of the Jacobian

[34, 14] and flux analysis of the stoichiometry [33].

2.3.2 The sum-of-two-exponentials example for model reduction

Similar to the discussion of experimental design method, we use the sum-of-two-exponentials

model to illustrate model reduction methods. The model reduction problem starts with

the mathematical model in Eq. 2.1) and Eq. 2.3. Similar as before, we assume the

true underlying parameter values are θ1 = 14, θ2 = 11.5, and the experimental data are

obs1 = x3(t = 1) = 1.10 ∗ 10−5 and obs2 = x3(t = 3) = 1.04 ∗ 10−15. Therefore, the

model and data together represent a situation where the data is not enough to constrain the

model parameters, making this problem amendable to model reduction. In the following,

we apply two model reduction methods to derive reduced models for this example.
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2.3.3 Model reduction based on Manifold Boundary Approximation Method (MBAM)

The Manifold Boundary Approximation Method (MBAM) [63] performs the model reduc-

tion by manifold boundaries. The main idea of this method is to view the experimental data

as a point in the data space, project it on the model manifold, and identify the nearest man-

ifold boundary. This manifold boundary corresponds to a reduced model with one fewer

degree of freedom, and is able to better fit the data than other reduced models corresponding

to other boundaries of the manifold.

In this example model, the model manifold has three boundaries, which are represented

in Fig. 2.12. Starting from the original model in equations (2.1) and (2.2), if θ1 is set to

infinity, the solution of the model becomes x3(t) = e−θ2t, as the exponential term corre-

sponding to infinite θ1 decays to 0 instantaneously. Given the same initial experiment that

makes two measurement, the model manifold for the reduced model becomes a 1D object

in the 2D data space, which is the blue boundary of the original model manifold in Fig.

2.12. Setting θ1 is close to 0 leads to another reduced model x3(t) = e−θ2t + 1, whose

corresponding model manifold is the green boundary in Fig. 2.12. Lastly, if the two decay

rates are equal θ1 = θ2, the original model reduces to x3(t) = 2e−θ2t, and the model mani-

fold reduces to the red boundary. This example shows the boundaries of the original model

manifold correspond to reduced models that can be derived by physically meaningful limits

of the parameters.

The MBAM algorithm [63] is as follows:

1. Based on the current model, set up a least squares cost function for parameter esti-

mation c = 0.5 ∗
∑

i(obsi − predi(θ))
2. Perform parameter estimation and obtain

the best estimated parameter based on the data, which corresponds to the projection

of the experimental data onto the model manifold.

2. Identify the manifold boundary nearest to the experimental data by numerical in-

tegration of the geodesic equation, using the estimated parameter as the 0’th order
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Figure 2.12: Model manifold boundaries

initial condition and the least sensitive parameter directions from the Fisher Informa-

tion Matrix as the first order initial condition. The geodesic equation is a set of N

nonlinear second-order differential equations: d2θµ

dτ2
+
∑

α,β Γµα,β
dθα

dτ
dθβ

dτ
= 0, where

µ runs from 1 to N , indexing the parameters. Γµα,β is known as the connection coef-

ficient. Γµα,β =
∑

v,m(gµv ∂predm
∂θv

∂2predm
∂θα∂θβ

) where, gµv = (
∑

m
∂predm
∂θµ

∂predm
∂θv

)−1 is the

(µ, v) element of the inverse of the Fisher Information Matrix. In the summations,

α, β, v run from 1 to the number of parameters, and m runs from 1 to the number of

experimental observations. If we set θ(τ = 0) to be the estimated parameter and set

θ′(τ = 0) to be the eigenvector of the smallest eigenvalue of the Fisher Information

Matrix (the least sensitive parameter direction), solution to the geodesic equation is a

nonlinear curve in the parameter space which maps to a “straight” line on the model

manifold, leading to the boundary closest to where the projection of the experimental

data sits.

3. As the geodesic path approaches a boundary, the Fisher Information Matrix becomes

singular, and certain parameters approach to limiting values (such as 0, ∞). We

evaluate the limits and manually write down the mathematical form of a reduced

model.
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4. With the reduced model, go through steps 1-3 to derive further model reductions,

until the reduced model cannot fit the experiment data well.

One challenging step of MBAM is the numerical integration of the geodesic equation,

which is a set of second-order differential equations. In orde to use existing differential

equation solvers to perform numerical integration, the geodesic equation can be changed

into the following first-order form.

d
dτ

(θµ) =
(
dθµ

dτ

)
, µ = 1, 2, ..., N (2.7)

d
dτ

(
dθµ

dτ

)
= −

∑
α,β Γµα,β

dθα

dτ
dθβ

dτ
, µ = 1, 2, ..., N (2.8)

Denote dθµ

dτ
as new variables [dθµ], equation (2.8) becomes clearer.

[θ̇µ] = [dθµ] (2.9)

[ ˙dθµ] = −
∑

α,β Γµα,β[dθα][dθβ] (2.10)

The dot above represents the first order derivative with respect to τ . Numerical integration

of Eq.2.10 requires the connection coefficients Γµα,β , which are functions of the parameters

θ. As mentioned in step 2 of MBAM, calculating the connection coefficients involves

the first- and second-order partial derivatives of the model predictions of the experimental

data with respect to the parameters, which can be computed by finite differences or the

sensitivity equations [72]. Overall, the process of integrating the geodesic equation is the

following: first specify an initial parameter and initial velocity, numerically compute the

connection coefficients at the initial parameter, inch forward both θµ and dθµ using Euler

formula, then recompute the connection coefficient at the new θµ, inch forward again, and

keep repeating this process to obtain the geodesic path in the parameter space.
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Since MBAM uses manifold boundaries to derive reduced models, it requires the model

manifold to be bounded and requires the model to be differentiable. In general, mathemati-

cal models are usually constructed with biological assumptions and constrained by bounded

production, exponential decay or mass conservation. Since these ofthen make the model

manifold bounded, MBAM is generally applicable to models describing biological pro-

cesses. The manifold for the sum-of-two-exponentials example is obviously bounded, and

hence can be analyzed using MBAM. In the sum-of-two-exponentials example, the decay

parameters are non-negative. Many models in systems biology also involve non-negative

constraints on the parameters. For such constraints, one neat trick is to modify the model to

work with log-parameters, which are unconstrained because the exponentiation automati-

cally takes care of the non-negative constraints. The modified model in log-parameters is

shown in equation (2.11):


x3(t) = e−te

logθ1 + e−te
logθ2

obs1 = x3(t = 1)

obs2 = x3(t = 3)

(2.11)

where the two parameters are logθ1 and logθ2.

In this example model, we assume that the parameter estimation in step 1 is perfectly

accurate. Also, the true parameter values are used as the initial parameter for integrating

the geodesic equation, logθµ = [log(14), log(11.5)]′ = [2.6391, 2.4423]′. The initial ve-

locity dlogθµ is the least sensitive parameter direction. To obtain the initial velocity, we

compute the Jacobian matrix J at the initial parameter,and then we compute the Fisher In-

formation Matrix J ′J . After that we find its eigenvalues and eigenvectors. The eigenvector

corresponding to the smallest eigenvalue is the initial velocity direction. Equivalently, the

initial velocity direction can be defined by the right singular vector of J that corresponds

to J’s smallest singular value. The eigenvector (or the singular vector) is not the initial ve-

locity yet, there is still ambiguity about the direction, because the opposite direction of an
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Figure 2.13: Geodesic path obtained in the first iteration of MBAM model reduction
for the sum-of-two-exponentials model (a) The log-parameter values along the geodesic
path. (b) The deviation of log-parameter from the initial point. (c) The geodesic path in the
original parameter space overlaid with the cost surface contours. (d) The velocity of the
log-parameters along the geodesic path.

eigenvector is also an eigenvector corresponding to the same eigenvalue. To determine the

direction, we compute the right hand side of the ˙[dlogθµ] equation in (2.10), which defines

the acceleration. If the inner product of the eigenvector and the acceleration is positive,

we define the initial velocity to be the eigenvector itself. If the inner product is negative,

we define the initial velocity to be the negative of the eigenvector. In this case, the initial

velocity is [−0.9950, 0.0994].

After determining the initial conditions of the geodesic Eq. 2.10, we numerically in-

tegrate it to identify the nearest boundary. Fig. 2.13a shows the trajectory obtained by

integrating the geodesic equation, the log-parameter values as functions of τ which pa-
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rameterizes the geodesic path. We can see that the two parameters gradually approach each

other and become almost the same. In Fig. 2.13c, we show the geodesic path in the original

parameter space, overlaid with the least squares cost surface. We can see that the geodesic

path starts from the initial parameter we specified, and moves along the canyon of the cost

surface until some limit is achieved. As shown in Fig. 2.13d, the accelerations of both

parameters grow very large. This is an indication that the identified boundary corresponds

to a limit that involve both parameters. Since the two parameters gradually approach each

other along the geodesic path, the limit involving both parameters corresponds to the sym-

metry of the model, where the two parameters are equal. Evaluating this limit leads to a

reduced model x3(t) = 2e−te
logθ2 , corresponding to the bottom-right boundary (red) of the

original model manifold shown in Fig. 2.12.

After presenting one geodesic path in the parameter space, natural next questions are

how about its corresponding image in the data space on the model manifold, and how does

the geodesic path look like given different starting points? To answer these questions,

we compute initial velocities corresponding to various initial log-parameters that map to

different points on the model manifold, and map the initial velocities of the log-parameters

to directions on the model manifold. The mapped velocities on the manifold are visualized

as a vector field on the model manifold in Fig. 2.14. From this vector field, it is easy to

imagine the trajectory of the geodesic paths on this model manifold, and map out regions

on the manifold that lead to each boundary.

After the first iteration of MBAM, the model reduces to x3(t) = 2e−te
logθ2 with only

one parameter. If we perform a second iteration of MBAM with the initial log-parameter

logθ2 = log(11.5) = 2.4423, the initial velocity is +1, and the geodesic path leads to

the limit of logθ2 → ∞. Evaluating this limit further reduces the model to a constant of

x3 = 0, which corresponds to the bottom-left corner of the original model manifold.
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Figure 2.14: Vector field on the model manifold The initial velocities in the data space at
the starting points of geodesic paths corresponding to initial parameters that map to various
regions on the model manifold

2.3.4 Model reduction based on the profile likelihood method

The profile likelihood approach for experimental design can also be applied to perform

model reduction [62]. The idea is related to the manifold boundary approximation method,

but has notable differences. As mentioned in the discussions of experimental design, the

profile likelihood of one parameter is a function of the parameter and is defined by solving

many optimization problems with the parameter fixed at various values. The optimized

values for other parameters along the profile likelihood form a trajectory in the parameter

space, along a canyon defined by cross-sections of the cost surface at various values of the

fixed parameter. The profile likelihood approach examines these canyons associated with

the profile likelihood of all the parameters, and suggest appropriate limits to derive reduced

models. Here is a simplified procedure for model reduction based on profile likelihood:

1. Compute profile likelihood for each parameter. Basically, pick one parameter and

vary its value in the feasible region, and for each value perform optimization to esti-

mate the other parameters. The optimization objective is a least squares cost function

c = 0.5 ∗
∑

i(obsi − predi(θ))2. Perform the same analysis for each parameter.
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2. Define thresholds for acceptable likelihoods.

3. Examine the shapes of the profiles with respect to the threshold and decide on the

limits to simplify the model. If both ends of a profile exceed the threshold, the cor-

responding parameter is considered to be identifiable and thus cannot be reduced. If

neither ends of a profile exceed the threshold, the corresponding parameter is uniden-

tifiable and can be fixed to an arbitrary value. If one end exceeds the threshold and the

other stays below it, the corresponding parameter can be taken to the limit associated

to the end that stays below the threshold.

The profile likelihood of the sum-of-two-exponential model is already presented in Fig.

2.6a and 2.6b. For both parameters, the profile likelihood exceeds the threshold on the left

end, and stays below the threshold on the right end, indicating that both parameters can

be taken to +∞ without making the profile likelihood unacceptable. Since the example

model is symmetric with respect to the two parameters, an appropriate reduction should

take either one parameter to +∞, or both parameters to +∞. The corresponding reduced

model is either x3(t) = e−θ2t, or a constant model x3(t) = 0, corresponding to the bottom-

left boundary or the bottom-left corner of the original model manifold in Fig. 2.12. Both

are reasonable reduced models for this example because the observed data sits close to the

bottom-left corner of the original model manifold.

2.4 Conclusion and Discussion

Mathematical modeling is a crucial tool for studying complex biological processes. In sys-

tems biology, mathematical modeling often faces the situation of highly complex models

and insufficient experimental data. This makes it challenging to perform parameter estima-

tion and obtain insights into the underlying biological mechanisms that give rise to the data.

In this chapter, two distinctive strategies, experimental design method and model reduction

method, have been discussed. Experimental design method can help us to choose the most
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informative experiment, and model reduction method can lead us to identify the key con-

trolling part of the process. Although experimental design and model reduction have been

largely considered as distinct problems in the literature, these two problems share deep

connections that can unified them into a common framework. Here, we focus on the model

manifold method and the profile likelihood method, which can tackle both problems by

exploring their connections.

In this work, both manifold perspective and profile likelihood perspective have been

discussed using the the simple example model. From the model manifold perspective, we

consider a mathematical model as a manifold living in a data space, and consider the ob-

served experimental data as a point in the data space. In addition, parameter estimation

can be viewed as projecting the data point onto the manifold. By examining the singular-

ity around the projected point on the manifold, we can perform both experimental design

and model reduction. Experimental design is to identify new experiments that expand the

manifold and remove the singularity to reduce parameter uncertainty. Model reduction is to

identify the nearest boundary, which is the nearest singularity that suggests an appropriate

form of a reduced model.

From the profile likelihood perspective, we consider a mathematical model and ob-

served experimental data together as an optimization problem. Parameter estimation tech-

niques and sampling techniques can be used to obtain a collection of acceptable parameters,

all of which fit to the data decently well. By examining this collection of acceptable pa-

rameters, both experimental design and model reduction can be performed. Experimental

design examines model predictions of new experiments based on the acceptable parame-

ters. Also, it identifies the new experiment with largest variations in the model predictions.

Model reduction examines the range of the acceptable parameters. Then, it identifies which

parameters can be taken to the limits and hence removed, while still maintaining a decent

fit.

One key difference between the two perspectives is the computational complexity. The
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profile likelihood method is more computationally expensive. Since each iteration of the

profile likelihood method involves computation of N profiles. Each profile is computed by

many runs of parameter optimization, with one parameter fixed at various values. The dif-

ference in the number of parameter optimization runs suggests that the manifold boundary

method is more computationally efficient compared to profile likelihood. This is because

that parameter optimization is typically the most time consuming operation in these anal-

yses. On the other hand, the parameter estimations required in profile likelihood can be

achieved by relatively standard optimization procedures, whereas the numerical integration

of geodesics in the model manifold approach requires more sophisticated mathematical

machinery and higher numerical precision. For very complex models, it is possible that

the profile likelihood approach works but the model manifold approach fails because of

numerical issues with the geodesic integration.

Another key difference between the two algorithms is whether parameter symmetry is

considered. The profile likelihood can identify limits that involve taking individual param-

eters to their limits (0 or ±∞), and can also identify combinations of parameters that go

to their limits together. However, profile likelihood is not able to identify limits related to

symmetry in the system, for example, the limit of θ1 → θ2 in the sum-of-two-exponentials

example model. On the other hand, the manifold boundary approximation method is able

to identify limits associated to parameter symmetry and derive the corresponding reduced

models. This kind of symmetry is actually quite common in systems biology and also in

other engineering practices. For instance, nearly all machine learning models in regression

analysis and neural networks have lots of internal symmetries.
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CHAPTER 3

QUANTIFYING THE RELATIVE IMPORTANCE OF DATA FOR IMPROVING

PARAMETER ESTIMATION

3.1 Introduction

Ordinary differential equations (ODEs) are usually used to understand and describe bi-

ological processes. ODE-based models usually contain many unknown parameters, and

thus the parameter estimation is an important step toward deeper understanding of the pro-

cess. Parameter estimation is often formulated as a least squares optimization problem,

and this formula considers all experimental data points as equally important. However, this

equal-weight formulation ignores the possibility of existence of relative importance among

different data points. This may lead to misleading parameter estimation results [82, 83].

Fig. 3.1 shows one example misleading parameter estimation result because of treating

all data points equally important. For the Fig.3.1 example, the equal-weight cost function

is used and the measurement error is ignored. In Fig. 3.1A and 3.1B, the solid curves

represent the same experimentally observed data, and the dotted curves represent model

predictions based on different parameter settings, A and B. In Fig. 3.1A, the dotted curve

fits the steady state accurately, whereas the dynamical region of the behavior is not well

captured. Since we measure the quality of the fit by the equal-weight cost function, the

shaded area in-between the two curves represent the cost value. In comparison with fig.

3.1A, the parameter setting in Fig. 3.1B produces a better fit. Although the fit is slightly

off at the steady state, It captures the dynamical behavior accurately. If the steady state

region lasts for a long period of time, the cost value of the second parameter (Fig. 3.1B)

can be the same as the cost value in (Fig. 3.1A) or even larger. This example shows that if

all data points are considered equally important, the equal-weight cost function is not able
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to distinguish a poor fit from a good fit. If the weights are strategically distributed to give

higher emphasis to data points in the dynamic region and lower emphasis to data points in

the steady state region, the weighted cost function will be able to favor the parameter setting

in fig. 3.1B over that in fig. 3.1A, regardless of the length of the steady state region. From

Figure 3.1: Illustrative example showing limitations of the equal-weight cost function

this example, we can see that weights representing the relative importance of different data

points are needed (Eq. 3.1 when formulating the least squares optimization problem.

Cost =
1

2

n∑
i=1

wi(obsi − predi(θ))2 (3.1)

Each weight can be defined by the uncertainty of one data point given the other data points.

If one data point can be accurately inferred given the other data, the uncertainty of this data

point is low and the importance of this data point is low. Whereas, if inferring one data

point from the other data is almost impossible, it contains a huge uncertainty and carries

more information for estimating parameters. In order to consider the relative importance

of data points when formulating the parameter estimation cost function (Eq.3.1), we need

to define a weight for each data point by the amount of unique information it provides [82,

83]. In other words, we define each weight of a data point by the uncertainties of the data

point given thel other data points. This uncertainty quantifies how well we can infer one

data point using the other data points. For example, if one data point can be accurately

predicted given the other data points, its uncertainty is low, and it carries a very small
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amount of new information beyond what other data points provide. On the other hand, if

one data point cannot be accurately inferred given the other data points, this data point has

high uncertainty and carries unique information beyond other data points.

3.2 Methods

3.2.1 Parameter uncertainty given experimental data

Before explaining how we define the weights given the other data, we first discuss the

uncertainty of parameters given data points. Assume we have an optimal parameter setting

(θ?) which minimizes the weighted cost function (Eq. 3.1). A small region of parameter

settings near the optimal parameter set exists. These near optimal parameter settings form

the confidence interval for the estimated optimal parameter, and the corresponding variation

in these near optimal parameters is the uncertainty of parameters, which can be estimated

by a second-order Taylor expansion of the cost function (Eq.3.1) at the optimal parameter

set.

C(θ) ≈ C(θ?) +
1

2

m∑
a=1

m∑
b=1

∂2C

∂θa∂θb
(θa − θ?a)(θb − θ?b )

= C(θ?) +
1

2
(θ − θ?)TH(θ − θ?) (3.2)

In Eq. 3.2, m represents the number of parameters. The first-order term does not appear in

the Taylor expansion because the gradient of the cost function at the optimal parameter is

0, and the second-order derivatives evaluated at the optimal parameter is the Hessian (H)

at the optimal parameter. The eigenvalues and eigenvectors of the Hessian matrix reflect

the confidence interval of the near optimal parameters. For instance, when the Hessian

has a small eigenvalue, moving the optimal parameter along the corresponding eigenvector

direction does not significantly increase the cost value, leading to a huge confidence interval

and a large uncertainty of the optimal parameter. On the other hand, if the eigenvalues of
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the Hessian are all large, moving the optimal parameter in any eigendirection will lead to

large increase in the cost value which means a very small confidence interval and small

uncertainty of optimal parameter. The Hessian matrix can be approximated by the Fisher

Information Matrix (FIM) as follows (Eq.3.3),

Ha,b =
∂2C

∂θa∂θb

∣∣
θ?

=
n∑
i=1

∂

∂θb

(
(obsi − predi(θ))(−wi)

∂predi(θ)

∂θa

) ∣∣
θ?

=
n∑
i=1

(
wi
∂predi
∂θa

∂predi
∂θb

− wi(obsi − predi(θ))
∂2predi
∂θa∂θb

) ∣∣
θ?

≈
n∑
i=1

wi
∂predi
∂θa

∂predi
∂θb

∣∣
θ?

(3.3)

In Eq. 3.3, n represents the total number of data points, and in the final line, the approxima-

tion is based on the assumption that the fit error is very small at the optimal parameter. This

approximation of Hessian is the Fisher Information matrix, and its inverse is the covariance

matrix that approximates the uncertainty of the optimal parameter given the data. The pa-

rameter uncertainty can be quantified using Eq. 3.4,where m is the number of parameters

and I is the Fisher Information matrix.

Uncertainty(θ|data) =
1

m
trace(I−1) (3.4)

Since model parameters in biology models are often constrained to be non-negative, it is

often advantageous to compute the Fisher Information matrix in the log-parameter space:

Ia,b =
∑n

i=1wi
∂predi
∂ log(θa)

∂predi
∂ log(θb)

|θ? . In addition, the Fisher Information matrix can be repre-

sented by JTJ , where the J represents the Jacobian matrix. Therefore, the eigenvalues of

Fisher Information matrix are equal to the squares of the singular values of the Jacobian,

and the Eq.3.4 can be calculated by
∑m

a=1
1
sa2

, where s indicates the singular values of the

Jacobian.
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3.2.2 Data uncertainty given other data

Similar to the formulation of parameter uncertainty given data, the uncertainty of estimating

one set of data points (S1) given another set of data points (S2) using the Fisher Information

can be defined as follow:

Uncertainty(dataS1|dataS2) =
1

m
trace(IS1IS2

−1) (3.5)

where [IS1]a,b =
∑

i∈S1wi
∂predi
∂ log(θa)

∂predi
∂ log(θb)

|θ? , and [IS2]a,b =
∑

i∈S2wi
∂predi
∂ log(θa)

∂predi
∂ log(θb)

|θ? . θ?

here is the best fit parameter defined by data points in S2. The matrix inverse and multi-

plication inside the trace operation in Eqn. 3.5 approximate the derivatives of data points

in S2 with respect to data points in S1. To quantify the importance of a data point, we

calculate the uncertainty of one data point i given all the other data points. We define the

two subsets as follows: S1={i} and S2={1, 2, ..., n}\S1. The Fisher Information matrices

Is1 and Is2 are computed using the ith row of the Jacobian and all the other (n − 1) rows

of Jacobian, respectively. The data uncertainty reflects whether one data point can be accu-

rately predicted based on all other data points. As shown in Eq.3.5, calculating the weight

of a data point requires the Fisher Information matrix evaluated at the optimal parameter,

which is in turn defined by optimizing the weighted least squares cost function (Eq.3.1)

that requires the weights.

3.2.3 Iterative algorithm for quantifying the weight of each data point

Fig.3.2 shows a flowchart of the iterative algorithm for quantifying the different weight

of each data point. In the first iteration, the algorithm is initialized by assigning equal

weights, 1, to all data points. To optimize the parameters with respect to the initial equal-

weight cost function, the interior-point algorithm [84] is used with randomly generated

initial parameters. We evaluate the Jacobian at the estimated parameter, which is used for

calculating the uncertainty associated to each data point (Eq.3.5). The uncertainty of each
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data point serves as its updated weight. We normalize the weights, so that the sum of the

weights equals the total number of data points. Such a normalization makes the weighted

cost function and the equal-weight cost function comparable. In the subsequent iterations,

Figure 3.2: Flowchart of the iterative algorithm for quantifying the weight of each
data point

the estimated parameter and the updated weights from the previous iteration serve as the

initial parameter and weights for the parameter estimation step. Therefore, the parameter

estimation is performed with respect to the updated weights. After that, the weights are

re-computed based on the newly estimated parameter. This process is repeated until the

weights converge.

The intuition of this algorithm is that even if the optimal parameter setting derived from

the equal-weight cost function in the first iteration is incorrect, as long as it represents a
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decent fit to the data, the updated weights at the end of the first iteration will roughly capture

the curvature and relative importance of the data points. The subsequent iterations start with

the updated weights, and will gradually adjust and fine-tune the optimal parameter, as well

as the weights until convergence. In practice, to ensure the first iteration obtains a decent

fit, we typically perform 100 runs of parameter estimation using random initial parameters

generated by the Latin hypercube sampling method. We pick the best estimated parameter

among the 100 to compute the Jacobian and updated weights. The second and subsequent

iterations pursue the best fit in the first iteration and fine-tune it until weights converge,

which typically takes only a few iterations.

3.2.4 Sampling algorithm

To evaluate the performance of the re-formulated weighted cost function and compare with

the equal-weight cost function, we developed a parameter sampling algorithm, similar to

the Markov Chain Monte Carlo algorithm [85]. The sampling algorithm generates a collec-

tion of near optimal parameter settings. Given an acceptance threshold for near optimal, the

sampling algorithm identifies the acceptable parameter region which is defined as the union

of all parameter settings whose cost value is smaller than the given acceptance threshold.

Although most of the acceptable parameter settings are not optimal, they generate decent

model predictions which fit well to the data. Thus, this acceptable parameter region can be

used to visualize the confidence interval of the estimated parameter and the model predic-

tions. Fig. 3.3 shows a flowchart for the sampling algorithm. It starts with the estimated

parameter setting obtained from optimizing the weighted cost function, which serves as a

seed (θcurr) inside the acceptable parameter region. To explore the parameter space, we

perturb the current parameter, and we evaluate the cost function at the perturbed param-

eter. If the cost value is smaller than the acceptance threshold, the perturbed parameter

is accepted and becomes the current parameter. On the other hand, if the cost value is

larger than the threshold, the perturbed parameter is rejected and the current parameter is
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Figure 3.3: Flowchart of the parameter sampling algorithm

not changed. This sampling algorithm is performed iteratively, resulting in a collection of

acceptable parameters.

In order to achieve efficient sampling and low rejection rate, we designed the direc-

tion and amplitude of the perturbation using the Fisher Information Matrix and parameter

uncertainty. At each iteration of the sampling algorithm, we compute the inverse of the

Fisher Information matrix at the current parameter. We apply larger perturbation along the

eigendirection associated to large eigenvalues, and smaller perturbation along the eigendi-

rection associated to small eigenvalues. Since the inverse of the Fisher Information Matrix
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approximates the covariance of the estimated parameter, such a choice of perturbation leads

to larger perturbations along the insensitive directions that have little influence on the cost

function, and smaller perturbations along the sensitive direction, enabling efficient explo-

ration even when the covariance is highly anisotropic.

To determine the amplitude of the perturbation, a normal distribution, N(0, σ2) is used.

A large σ value makes the sampling algorithm explore the parameter space quickly, but

is at the risk of low acceptance rate and low sampling efficiency. On the other hand, a

small σ value has the opposite effect. In the sampling algorithm, the value of σ is adjusted

during the process, doubled when the perturbed parameter is accepted and halved when

the perturbed parameter is rejected. The purpose of adjusting σ is to balance between

the exploration and the acceptance rate. Furthermore, if the σ value is too close to zero,

meaning that the sampling process is stuck at a narrow corner of the acceptable parameter

region, we randomly pick a previously found acceptable parameter and set is as the current

parameter. This heuristic effectively resets the sampling process when it is stuck.

3.3 Results

3.3.1 G1/S transition module

To test the iterative algorithm for computing uncertainty-based weights, the G1/S transition

model was used [86, 87]. This model consists of 2 variables, pRB (Retinoblastoma protein)

and E2F1 (Activator), and 10 model parameters. We also consider the initial concentrations

of both variables as parameters, and therefore, the total number of model parameters is 12.

The ordinary differential equations of the model are described in Eq. 3.6.

d
dt

[pRB] = K1
[E2F1]

Kn1+[E2F1]
J11

J11+[pRB]
− ϕpRB[pRB]

d
dt

[E2F1] = Kp +K2
a2+[E2F1]2

K2
n2+[E2F1]2

J12
J12+[pRB]

− ϕE2F1[E2F1] (3.6)
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To generate the ”experimental data” shown in Fig. 3.4, we simulated Eq. 3.6 using the

parameter setting in [86] as the true parameter, with observed time points evenly spaced

every 25 minutes from 0 to 800 minutes, and therefore, the observed data points are evenly

spaced along the time axis.

Figure 3.4: Experimental data of the G1/S transition model The gray curve: simulated
noise free data obtained from true parameters, The red circles: noisy data (adding and
multiplying a small amount of Gaussian noise)

G1/S transition module with 6 parameters

For the first model, we examined a simple setting where only 6 parameters are unknown and

need to be estimated. The 6 unknown parameters are the initial condition of two variables

(pRB(t = 0), E2F1(t = 0)) and 4 model parameters K1,J11, Kn2, and J12.

The weights are shown in Fig. 3.5. The two data points at t=0 received the largest

weights because they are directly related to the unknown parameters. In general, data

points corresponding to the dynamic time regions received higher weights compared to

data points corresponding to the flat regions. After obtaining the weights, we compared the

equal-weight cost function and the weighted cost function, using the sampling algorithm.

For each cost function, we used the interior point algorithm to obtain a best fit. We defined
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Figure 3.5: Weights of the G1/S transition with 6-parameters The black circle: weight
of each data point on the log scale, the dashed line: weight of the equal-weight cost function

the acceptable parameter region as the collection of parameters whose cost function value

is smaller than 3 times the cost of the best fit. The sampling algorithm was used to obtain a

collection of acceptable parameters. Finally, we simulated the model using the acceptable

parameters, and overlaid the model simulations with the experimental data. The resulting

visualization is a simulated belt centered around the experimental data, showing the range

of model predictions based on the acceptable parameters.

The first column of Fig. 3.6 visualizes the acceptable parameters derived from the

equal-weight cost function. In the bottom panel for E2F1, we can see that the belt is quite

thick in the dynamic region of the data and quite thin in the flat region. This is because

the large number of data points in the flat region all reflects the steady state, forcing the

parameter optimization algorithm to focus on finding the steady state accurately, even at the

expense of errors in the dynamic region. The unbalanced belt width is a manifestation of

the limitations of the equal-weight formulation as discussed in Fig. 3.1 in the Introduction

section. The unbalanced belt width is less pronounced in the upper panel for pRB, because

the flat region is shorter, and the data is noisier when pRB reaches its steady state.

The second column of Fig. 3.6 visualizes the acceptable parameters derived from the
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Figure 3.6: Numerical result for evaluating G1/S transition with 6-parameters The
black curve: experimental data, The gray curve: simulated data sets obtained from the
sampling algorithm.

weighted cost function. In the bottom plot, we can see that belt is much thinner in the

dynamic region, compared to the first column of Fig. 3.6. This is because data points

corresponding to the dynamic region received large weights while data points in the flat

region received small weights. Since the data points at t=0 received very large weights, the

beginning of belts are extremely thin, indicating that the two initial condition parameters

are estimated with high accuracy. Overall, the comparison in Fig. 3.6 shows that weights

computed by the iterative algorithm is able to discount redundant information present in

the data, and enable the parameter optimization step to better capture the dynamic behavior

in the data.

To test the sensitivity of the algorithm for computing the weights, we generated 100
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Figure 3.7: G1/S transition with 6-parameters: robustness of the uncertainty-based
weights A) The black curve represents the noise-free data and the gray dots represent 100
simulated noisy data sets for sensitivity analysis. B) The dotted line represent the weight of
equal weight cost function (”0” on log scale), and each box represents the weights for one
data point, computed from the 100 noisy experimental datasets. The small range of each
box indicates the robustness of the uncertainty based weights.

experimental datasets by randomly perturbing the noise-free simulation in Fig. 3.4. The

variation among the 100 datasets is shown in Fig. 3.7A. Using the iterative algorithm,

weights are computed based on each experimental dataset. The variation among the 100

sets of weights is shown in Fig. 3.7B. The first measurement time point for both variables

consistently receive large weights across the 100 datasets, very robust to the noise. For

other measurement time points, we can observe the same pattern as in Fig. 3.5, where the

dynamically change regions consistently receive higher weights than flat regions.

G1/S transition module with 12 parameters: evenly spaced along the time axis

The experimental data is shown in Fig. 3.4, the gray curve represents a noise free data

obtained from the true parameters and the red circles represent the noisy data which will

be used as experimental data. The simulated data was perturbed with a small amount of

multiplicative and additive Gaussian noise [24]. Since pRB inhibits E2F1 activation, the

concentration of E2F1 decreases as the concentration of pRB increases as shown in Fig.

3.4. Afterwards, the concentrations of both variables approach steady state gradually.
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Figure 3.8: Weights of the G1/S transition with 12-parameters The black circle: weight
of each data point on the log scale, the dashed line: weight of the equal-weight cost function

The iterative algorithm is carried out with this data to calculate corresponding weights.

The resulting weights are shown in Fig. 3.8 : larger weights in dynamic regions and lower

weights in flat regions. As shown in Fig. 3.8, the resulting weights are qualitatively similar

to Fig. 3.5, but not exactly the same. This analysis shows that the weights do not just simply

encode the curvature of the data. They are also dependent on the mathematical structure of

the model and which parameters need to be estimated. Another example not shown here

is that: if we assume the initial conditions of the two variables are known and only aim to

estimate the remaining 10 parameters, the data points at t=0 will receive weight 0. This is

because the data points at t=0 represent noisy measurements of the initial condition. When

the initial conditions are known, the data points at t=0 do not provide any new information

for estimating the other parameters. This example again shows that the weights are also

influenced by the mathematical structure of the model.

Fig. 3.9 illustrates the model predictions of acceptable parameters for both cost func-

tions, using the sampling algorithm. The equal-weight cost function led to highly unbal-

anced belt width because of the large number of data points in the steady state region,

whereas the weighted cost function led to relatively balanced belt width by assigning larger
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Figure 3.9: Numerical result for evaluating G1/S transition with 12-parameters The
black curve: experimental data, The gray curve: simulated data sets obtained from the
sampling algorithm.

weights to data points in dynamic regions and lower weights to the data points in flat re-

gions.

Similar as before, we compared the equal-weight cost function and the weighted cost

function for this 12-parameter model. As shown in Fig. 3.9, the comparison is qualitatively

the same as the previous 6-parameter model. The equal-weight cost function led to belt with

highly unbalanced width, favoring the steady state. The weighted cost function focused

more on the dynamic region of the data, generating well constrained model predictions

(thin belt width) for the early time points.

To examine the sensitivity of the weights in the 12-parameter model, we used the same

52



Figure 3.10: G1/S transition with 12-parameters: robustness of the uncertainty-based
weights The dotted line represent the weight of equal weight cost function (”0” on log
scale), and each box represents the weights for one data point, computed from the 100
noisy experimental datasets.

100 experimental datasets introduced in the previous example (Fig. 3.7A), and calculated

weights based on the 100 datasets. The variation of the weights is shown in Fig. 3.10.

Comparing Fig. 3.7B and Fig. 3.10, we can see that weights of the data points in this

12-parameter model are not as robust as the weights in the previous 6-parameter model.

This is caused by the higher complexity of the 12-parameter model, making the parameter

estimation component of the iterative algorithm to overfit to the noise and subsequently

lead to different weights.

G1/S transition module with 12 parameters: unevenly spaced along the time axis

In the 12-parameter models above, the experimental data points are evenly spaced along

the time axis. As shown in Fig.3.8, data point in different time periods receive differ-

ent weights. The magnitudes of weights decrease as time increases, indicating that the

data points located at later time points may be redundant. In order to reduce the ef-

fect of these redundant data points, we manually selected unevenly spaced time points

as the experimental observations: data points in dynamic regions are densely sampled,

while data points in steady state region are sparsely sampled. The selected time points are
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0, 5, 10, 15, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 300, 400, 600, and 800. The experi-

mental data with these time points is shown in Fig. 3.11.

Figure 3.11: Experimental data of the G1/S transition model with unevenly spaced
time points The gray curve: simulated noise free data obtained from true parameters, The
red circles: noisy data (adding and multiplying a small amount of Gaussian noise)

Figure 3.12: Weights of the G1/S transition with unevenly spaced time points The
black circle: weight of each data point on the log scale, the dashed line: weight of the
equal-weight cost function

The circles represent the noisy data at the unevenly measurement time points and the
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gray curve represents simulated noise free data obtained from true parameters. Using this

data, the iterative algorithm was performed to obtain the weights shown in Fig. 3.12. In

contrast to the weights in the previous examples, all data points except the first data point

(t = 0) receive very similar weights regardless of the region (dynamic or steady state). This

is because the measurement time points are selected strategically to make the data points

roughly equally important, so that redundancy among the data points is reduced.

Figure 3.13: G1/S transition with unevenly spaced data: Results of the sampling algo-
rithm The black curve: experimental data, The gray curve: simulated data sets obtained
from the sampling algorithm.

Using the sampling algorithm, the model predictions of acceptable parameters for these

two cost functions are visualized in Fig.3.13. The belts associated to the two cost functions

are quite similar to each other. This is due to the low variation among the weights shown
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in Fig. 3.12, which makes the weighted cost function and the equal-weight cost function

almost equivalent to each other. This example shows that the weighted cost function can

also be achieved by strategically selecting measurement points to avoid redundancy in the

resulting experimental data.

Figure 3.14: G1/S transition with unevenly spaced time points: robustness of the
uncertainty-based weights A) The black curve represents the noise-free data and the gray
dots represent 100 simulated noisy data sets for sensitivity analysis. B) The dotted line
represent the weight of equal weight cost function (”0” on log scale), and each box repre-
sents the weights for one data point, computed from the 100 noisy experimental datasets.
Although some outliers exist, majority of the weights are very close to the dotted line,
meaning that the weights are robust to the simulation noise.

To test the sensitivity of the iterative algorithm, we randomly simulated 100 experimen-

tal datasets, shown in Fig. 3.14A. We applied the iterative algorithm to compute weights

based on each experimental dataset. Fig. 3.14B describes the variations among 100 sets of

weight, where weights for the majority of the simulated datasets are close to ”1” (0 in log

scale), corresponding to the equal-weight cost function.

3.3.2 MAPK module

To test the weighted cost function in a more complex model, the MAPK module was con-

sidered [88]. This module consists of 5 variables and 9 model parameters. The ordinary

differential equations of this module are depicted in Eq. 3.7, where X represents MAPK,
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XE represents the complex of X with the enzyme E, XP is singly phosphorylated form

of MAPK, XPE is complex of XP with the enzyme, and XPP is doubly phosphorylated

form [88]. In this example, we assume that the concentration of the enzyme E is initially

0.01, changes to 10 at t=1, and changes back to 0.01 at t=5. When the enzyme concen-

tration is increased at t=1, the dynamic variables either increase or decrease, in respond

to the enzyme change. To generate the experimental data, we used the model parameters

in [88] as the true underlying parameters. All 9 parameters and 5 initial conditions were

considered as unknown model parameters, thus the total number of parameters is 14.

d
dt

[X] = −K1[X]E +K2[XE] +K7[XP ]

d
dt

[XE] = K1[X]E − (K2 + k3)[XE]

d
dt

[XP ] = K3[XE]−K7[XP ]−K4[XP ]E +K5[XPE] +K8[XPP ]

d
dt

[XPE] = K4[XP ]E − (K5 +K6)[XPE]

d
dt

[XPP ] = K6[XPE]−K8[XPP ] (3.7)

Fig. 3.15 shows the simulated noise-free data generated from the true parameter and

noisy experimental data obtained by randomly perturbing the noise-free data. The mea-

surement time points are evenly spaced, every 0.5 hours from 0 to 10 hours. Therefore,

the total number of experimental data is 105 (21 data points for each variable). When the

catalyzing enzyme E concentration was changed at t=1 and t=5, the dynamic variables re-

sponded to the change. For example, the concentration of X decreased rapidly after t=1,

while the concentrations of remaining four variables increased. As the catalyzing enzyme

E decreased back at t=5, all variables returned to the initial condition gradually.

Using the iterative algorithm, we calculated weights for the data points, shown in Fig.

3.16. Similar to the previous models, the initial data point at t=0 receives the largest weight

because it is directly related to some of the unknown model parameters. The data points
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Figure 3.15: Experimental data of the MAPK module The solid curve represents noise-
free data obtained from the true parameter. The circles represent the noisy experimental
data, generated by adding and multiplying a small amount of Gaussian noise.

in the dynamic region (from t=1 to t=2) of all five variables receive the large weights.

Since all five variables exhibit little dynamics from t=2 to t=5, weights of data points in

these flat regions are relatively small. After t=5, weights of X , XP , XPE, and XPP

slightly increased because their model predictions are changed dynamically, whereas the

concentration of the XE barely changed and hence its data points after t=5 received small

weights.

Fig. 3.17 shows the results of the sampling algorithm for both cost functions. In this

example, the acceptance threshold was defined as five times the cost value of the optimal

parameter setting. In the first column, equal-weight cost function, the belt of variable XE

58



Figure 3.16: Weights of the MAPK module Each dot represents the weight of a data
point, and the dashed line corresponds to the equal-weight cost function. Data points in
dynamically changing regions receive larger weights and the data points in flat regions
receive relatively smaller weights.

(the second row) is quite thick in the dynamic region and thin in the flat region. This imbal-

anceness of acceptable model predictions between dynamic and flat regions is consistent

with results in the previous examples. In the second column, the corresponding belt of vari-

able XE generated with the weighted cost function is much thinner in the dynamic region,

compared to the equal-weight cost function. This is because the dynamic regions receive

larger weights than the flat regions. For all five dynamic variables, the belt width (variation

in acceptable model predictions) from the weighted cost function is smaller than or equal

to that from the equal-weight cost function.

To test the noise sensitivity of the weights in the MAPK module, we randomly gener-
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Figure 3.17: Numerical result for evaluating the MAPK module The black curves show
the noisy experimental data. The gray belts show the model predictions based on the ac-
ceptable parameters obtained by the sampling algorithm. By comparing the belt width of
the second variableXE between the two cost functions, we can see the benefit of the weight
cost function. The equal-weight cost function generates imbalanced belt width between dy-
namic regions and flat regions. The weighted cost function produces a thin belt, meaning
that it is able to better constrain the model parameters to reproduce the experimental data.

ated 100 noisy time series data, as shown in Fig.3.18. We applied the iterative algorithm to

compute weights starting from each of the 100 times series data. The resulting weights are
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shown in Fig.3.19. The first measurement time points of all variables consistently receive

high weight, because they directly reveal the initial condition parameters. The variation

of each weight across the 100 noisy datasets is small compared to the variation of weights

across different data points, indicating robustness of the algorithm with respect to noise.

Figure 3.18: Simulated datasets for MAPK module The black curve represents the noise-
free data, and the gray dots represent 100 simulated noisy datasets for sensitivity analysis.
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Figure 3.19: MAPK module: robustness of the uncertainty-based weights The dot-
ted line indicates the equal-weight cost function. Each box shows the variation in of one
weight caused by variations among the 100 noisy experimental datasets. Although some
outliers exist, most weights exhibit small variations in this sensitivity analysis, showing the
robustness of the uncertainty-based weights.

3.4 Conclusion and Discussion

In this chapter, we have demonstrated the new novel approach, weighted cost function

which reflects the relative importance of each data point when estimating the model pa-

rameters by assigning a different weight. The weight of each data point is defined by the

uncertainty of each data point given the other data points which quantifies the amount of

unique information it carries. More specifically, high weights are assigned to data points

that are difficult to predict based on the other data points whereas low weights are as-

signed to data points that can be accurately inferred from other data points. To evaluate
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our method, a 12-parameter model describing the G1/S transition was examined with two

different sets of experimental data: evenly spaced and unevenly spaced data along the time

axis. For evenly spaced measurement data, our method demonstrated superiority in estimat-

ing parameter set which fit the experimental data very well especially in the dynamically

changing region. For the unevenly spaced measurement data set, the dynamically chang-

ing region was densely sampled, and the data in the flat region was sparsely sampled. We

observed that in such measurement data set, our method did not demonstrate any better

performance compared to equal weight cost function method. This is because this sort of

data set was strategically done to avoid large amount of redundant information which made

the equal weight cost function just as effective. This strategy is often adopted by biologists

when designing time series experiments. Our analysis showed a mathematical perspective

of why the biologists’ intuition of unevenly spaced time points is effective in time series

experiments.

Caveat to our method was that it is based on an assumption that dynamically changing

part is more important than the steady state part. For the case when the steady state region

is critical to understand the process, the iterative algorithm would be modified to reflect the

changing assumption. To do this, we would simply change the weight to reciprocal of the

weight. Consequently, data points in steady state region would receive larger weights com-

pared to the data points in dynamically changing region. Also, our method would not work

for all biological models such as oscillating model. For example, Lotka-Volterra model

[89] only has dynamically changing region which means all data points should be treated

equally important. In this case, our method would not provide any advantage compared to

the equal weighted cost function method. Furthermore, other methods run into overfitting

problem when new data points are introduced. One of the ways to address this problem is

by introducing regularization term such as L1 (Lasso) and L2 (ridge) which are added to

the cost function [90, 91]. However, our weighted cost function can also prevent overfitting

problem by re-calculating the weights (relative importance of data points) whenever new
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data points are obtained. Lastly, the limitation of our weighted cost function method is that

outliers cannot be identified. Outlier would receive the largest weight using our iterative

algorithm because outliers cannot be predicted easily using the other data points. Although

outliers occur seldomly in biological experiments, the aim of our work is to explain the

general behavior of the system biology.
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CHAPTER 4

MODELING A MICROFLUIDIC CELL SORTING DEVICE

4.1 Introduction

Mathematical modeling is very efficient to describe, control, and simulate biological sys-

tems. In previous sections, we have shown that how to model several biological processes

mathematically. In this section, modeling the microfluidic cell sorting device will be dis-

cussed as an application.

Microfluidic cell sorting is one of the methods to separate the cells from a mixed batch

of cells. The objective of cell separation is to isolate a desired cell type from a mixed

batch of cells for experimentation. The microfluidic cell sorting technique can be classified

into two groups: Active sorting and passive sorting [92, 93]. The difference between these

two techniques is the use of external sources. For active sorting technique, external fields

such as electric or magnetic fields was used to separate cells. To make cells respond to the

external field, the process for labeling the cell is needed. During this process, some cells are

loss and the cost is relatively high. On the other hand, the passive microfluidic cell sorting

methods do not require an externally supplied force to separate cells. It depends only on cell

biophysical properties, such as cell stiffness or cell size. Therefore, it is simple to operate,

and the cost is low because external sources and labeling step are not required. In this

chapter, the passive sorting microfluidic device is used because of its benefits compared to

the active sorting device. Since the passive sorting techniques only depend on the channel

design and biophysical properties of cells, optimizing the device parameters such as device

width, length, and height, is crucial step to achieve accurate cell separation. To simulate and

optimize the cell separation procedure, a mathematical model describing cell trajectories

according to the cell properties, and device parameters is needed. Once the mathematical
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model is developed, before performing the cell separating experiment, we can simulate the

experiment using different parameter settings.

Microfluidics is a promising technology for biological inquiries at the single-cell level,

such as single-cell gene expression for lineage analysis, microfluidic cell sorting, and sig-

naling dynamics [35]. Also, the microfluidic cell sorting device help us to distinguish the

cells based on their stiffness. The stiff cells move up and the soft cells move down along

the path of the cells flow. This is a very important property because it can be used to detect

the cancer cells, such as breast cancer and leukemic cancer cells, which are typically softer

than the normal cells [36]. The study of single-cell biomechanical characteristics, such as

elasticity, viscosity, stiffness and adhesion is very interesting application [38, 37, 92, 93,

39, 40, 94].

Using a microfluidic channel decorated with ridges that are diagonal with respect to

the flow direction (Fig. 4.1), cells are compressed and translated when passing through

the channel, and exhibit different trajectories depending on their biomechanical properties.

The trajectories are also affected by the channel design, in terms of the ridge height, angle,

and spacing. The microfluidic approach for studying cellular biomechanics is highly cost

effective compared to atomic force microscopy, and has high throughput similar to flow cy-

tometry. Ridged microfluidic channels have been used to separate cells based on stiffness,

adhesion, and viability. This thesis focused on the microfluidic cell sorting device divid-

ing cells based on their stiffness since this is a very important property to detect cancer

cells from the mixed cell batch. For example, breast cancer and leukemic cancer cells are

typically softer than the normal cells.

4.2 Method

Our ultimate goal is to develop the ODE model that describes the trajectories of the cell

flowing through the device. With a mathematical model, the device parameters such as

ridge width, ridge separation and ridge angle can be optimized before preforming experi-

66



Figure 4.1: Cartoon illustration of a ridged microfluidic channel A system that can be
used for sorting cells according to their biomechanical properties, e.g. stiffness of cells.

ment. Furthermore, we can simulate different trajectories of cells with different physical

parameters setting.

In this work, the ridge induced circulation device (Fig. 4.1) was used in this work.

This microfluidic channel is decorated by periodic diagonal ridges. Since these ridges are

located in the celling of the device as shown in Fig. 4.1, the cross sectional area under the

ridge is smaller than the other arear within the device. Because of the smaller cross sec-

tional area, flowing cells are compressed by the ridges [37, 38, 39, 40]. Therefore, flowing

cells are squeezed under the ridges and when they receive pressure from the ridges, they

move differently according to their stiffness. Stiff cells receive higher pressure than the

softer cells. So, it moves upward compared to the soft cells (The ridges generate circula-

tions that sort cells based on cell properties).

4.2.1 Extracting cell trajectory data

In order to develop mathematical model describing cell trajectories according to different

biophysical cell properties, experimentally observed cell trajectory data is needed to fit the

model. However, the format of the experimental data is video recording of flowing cells
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within the device. Therefore, we need to extract the cell trajectory data from the video.

Experimental data: trajectories of cells

The trajectories of cells contain rich information pertaining to the interactions between the

cells and the ridged channel, providing an opportunity for quantifying cell biomechanical

properties. By mounting the microfluidic chip on an inverted microscope and a high-speed

camera, cells can be recorded when passing through the channel, and this is our observed

data. Therefore, the trajectories of cells can be computationally extracted from the record-

ings. The extracted trajectories will be used for the experimentally observed data when

developing the ODE model.

Cell tracking algorithm

Our goal is to automatically extract the trajectories from the gray-scale video recordings

[35]. For the example data in Fig. 4.2a, the desired trajectories are shown in Fig. 4.2b.

Although time is not shown explicitly, the two cells with entangling trajectories passed

through the channel together, and they collided and detached a few times. One cell caught

up and collided with the other, the doublet rotated, and the follower became the leader

when the two cells detached. This happened again later and the order of the two cells

switched back. This example highlights one challenge in this analysis, how to automat-

ically handle the collision and detachment of cells. Our computational pipeline contains

three steps: frame-by-frame foreground identification and segmentation, forward matching

between consecutive frames, and backward matching between consecutive frames. Since

the microfluidic device and the camera are both fixed, the background stays relatively con-

stant, without any rotation, translation or deformation. The baseline intensity of the back-

ground varies, due to slight changes in the illumination condition during the experiments.

Therefore, the background of each frame can be estimated by the median of nearby frames.
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Figure 4.2: Example data. (a) a short segment of video recording shown by overlapping
multiple frames, (b) desired single-cell trajectories to be extracted.

Foreground identification and segmentation

To identify the foreground objects in an image frame, we first estimate the background

by taking the median of nearby frames within a small window, as shown in the illustra-

tive example in Fig. 4.3. A linear regression is performed to predict the image frame by

the estimated background. The prediction residues for all the pixels are fitted by a Gaus-

sian distribution. The foreground pixels can be identified by the collection of pixels with

residues larger than three standard deviation away from the mean of the residues of all pix-

els. The foreground is further refined by median filtering to remove noise, and filling in

the holes to recover low contrast pixels in the cell nucleus. The foreground pixels can be

visualized as a binary image in the bottom-right of Fig. 4.3. We then perform segmentation

on the binary representation of the foreground, by computing its connected components.

We call each component an ”event” in the image frame. This may correspond to a cell, an

aggregate of multiple cells, a piece of debris, or noise. In this particular example in Fig.

4.3, the foreground consists of only one event, which is an aggregate of two cells. The

outputs of this preprocessing step in the pipeline are the events extracted from each frame.

For each event, we compute the (x, y) position of its center, the number of pixels, the radius

defined by the maximum distance from the pixels to the center, the mean and standard de-

viation of the pixel intensities. The cell ID of each event is initialized as NaN, meaning that

these events are not associated with any cells yet. The subsequent forward and backward
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matching steps will segment the aggregates and associate these events to cells.

The appropriate window size for estimating background depends on the speed of the

slow moving cells. If the window size is so small that a slow moving cell appears to

be stagnant, it will not be identified as the foreground. In this work, the window size is

300, which corresponds to 0.1 seconds in real time. If a cell is temporarily stuck in the

microfluidic channel, moving extremely slowly for > 150 consecutive frames which is

half of the window sizethis algorithm can produce incorrect foreground. In addition, the

median filtering window size is 5-by-5, which is effective in removing noise in foreground

identification. It also removes events smaller than 4 pixels in size, which are typically

debris and not of interest.

Figure 4.3: Foreground identification. Background is estimated by the median of nearby
frames. Then, we perform linear regression of the frame of interest against the estimated
background, threshold the regression residue to identify foreground pixels. For the last
step, we finally perform median filtering to refine the foreground.
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Forward matching of consecutive frames

Each cell passing through the microfluidic channel should appear in a series of consecutive

frames. Also, it should ideally produce one event in each of those frames. This may not

be true due to various reasons. First of all, a cell with low contrast in one frame may

not be detected as an event in the frame-by-frame foreground identification step; a cell

can generate multiple events in one frame if part of it is of low contrast which leads to

over segmentation; an aggregate of multiple cells in one frame only produces one event.

We develop a forward matching algorithm to compare an image frame to its immediate

subsequent frame, associate the events to cells, and handle the above situations by merging

or segmenting the events when necessary. The algorithm generates all possible matchings

of events between the two consecutive frames, scores the possible matchings, and applies

the one with the highest score.

(1) Generate all possible sets of matchings of events between the two frames. From

the current frame to the next one, each event in the current frame can either disappear, or

match to a nearby event in the next frame whose position is further along the flow direction.

Similarly, each event in next frame can either suddenly appear, or match to a nearby event

upstream of the flow direction in the current frame. Events appear or disappear when cells

enter or exit the channel. Two events are considered ”nearby” if the distance between their

centers is within 5 times of the maximum of their radii. This parameter defines the speed

limit of cells that can be tracked. For an extremely fast-moving cell whose center position is

far away in the current and next frames, it will be considered as two cells, one disappearing

after the current frame and another appearing in the next frame. However, our data does not

contain such fast-moving cells, which is guaranteed by the sampling rate of the high-speed

camera and the flow rate in the microfluidic channel in our experimental setup.

The φ denotes an empty set here. A φ-to-one matching represents an event that suddenly

appears in the next frame and does not match to any event in the current frame. A one-to-φ

matching represents an event in the current frame disappears in the next frame and does not
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match to any event in the next frame. In addition to φ-to-one and one-to-φ, the matchings

can also be one-to-one, one-to-multiple or multiple-to-one. A one-to-multiple matching

represents aggregate becoming detached cells, and a multiple-to-one matching represents

multiple cells colliding and forming an aggregate. We do not consider matchings that are

multiple-to-multiple. Fig. 4.4 shows two examples. In Fig. 4.4a, compared to events

1 and 2 in the current frame, events 3 and 4 in the next frame are nearby and further

downstream the flow direction, left to right. Therefore, both events in the next frame can

potentially match to both events in the current frame, allowing a total of eleven possible

sets of matchings. In Fig. 4.4b, the total number of possible sets of matchings is four,

smaller than the previous case, because not all events in the next frames are downstream

and nearby all events in the current frame. Event 9 in the next frame is upstream of all

events in the current frame, meaning that it must have just appeared. Although event 8 in

the next frame is downstream of both 5 and 6 in the current frame, it can only match to

event 6 because it is far away from event 5.

Figure 4.4: Matching events in consecutive frames. Two examples of sets of possible
matchings between events in current frame (light gray) and events in the next frame (dark
gray), along with scores of the matchings. Numbers are used to label the events.

(2) Score the possible sets of matchings. Cells do not divide or significantly change

their shape when moving through the channel. Therefore, their center positions, sizes and

pixel intensities should be similar for two events that correspond to the same cell in two

consecutive frames. To score matching events, we use differences in these aspects.
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The M denotes a particular set of matchings, which may contain one-to-φ, φ-to-one,

one-to-one, one-to-multiple, and multiple-to-one matchings. For an event i, denote its size

by Pi, its center position (xi, yi), mean and standard deviation of pixel intensities µi and

σi. For a collection of multiple events j1, ...jk, denote their overall mean and standard

deviation of pixel intensities as µ(j1,...,jk) and σ(j1,...,jk). The basic idea here is to compare

the matched events, and penalize changes in size, distance of movement, and differences in

pixel intensity distribution. For each individual matching in this set, we score each type of

matching as follows.

S(i→ φ) =

(
1

Pi

)2

(4.1)

S(φ→ j) =

(
1

Pj

)2

(4.2)

S(i→ j) =

(
1

Pi − Pj

)2(
1

|xi − xj ||yi − yj |

)(
1− µi − µj

max(µi, µj)

)(
1− σi − σj

max(σi, σj)

)
(4.3)

S(i→ j1, ..., i→ jk) =

(
1

Pi −
∑
k Pjk

)2(
1

maxk(|xi − xjk |)maxk(|yi − yjk |)

)
...

...

(
1−

µi − µ(j1,...,jk)

max(µi, µ(j1,...,jk))

)(
1−

σi − σ(j1,...,jk)

max(σi, σ(j1,...,jk))

)
(4.4)

S(i1 → j, ..., ik → j) =

(
1∑

k Pik − Pj

)2(
1

maxk(|xik − xj |)maxk(|yik − yj |)

)
...

...

(
1−

µ(i1,...,ik) − µj
max(µ(i1,...,ik), µj)

)(
1−

σ(i1,...,ik) − σj
max(σ(i1,...,ik), σj)

)
(4.5)

The illustrative examples shown in Fig 4.4 are constructed by replicating one cell ex-

tracted from our data. All events in these two examples are exactly 53 pixels in size, and

share the same pixel intensity distribution. Distances between nearby events range from 10

to 15 pixels. Fig 4.4 shows the overall scores of all possible sets of matchings. This shows

us that the most reasonable set receives the highest score in both examples.

(3) Apply the best set of matchings. An algorithm is developed to perform forward match-

ing of consecutive frames, associating events to cells with the scoring function to identify

the best set of matchings between events in two consecutive frames. To initialize the al-

gorithm, each event in the first frame is considered as a different cell, and assigned with a
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unique cell ID. After that, based on the best set of matchings between events in the first and

second frames, the algorithm determines which events in the second frame are associated

to cells in the first frame, and which events in the second frame are new cells that should

be assigned with new cell IDs. Iteratively, the algorithm examines the second and third

frames, the third and fourth frames, and continues until the last two frames. We apply the

matchings using the algorithm detailed in Table 4.1 with given cell IDs of events in frame

f and the best set of matchings between frames f and f + 1.

For one-to-φ matchings that represent events disappearing, nothing needs to be done.

For φ-to-one matchings of events appearing, the newly appeared events in frame f + 1

are assigned with new cell IDs. For a one-to-one matching, the event in frame f + 1 is

associated to the cell ID of the matching event in frame f . For a multiple-to-one matching,

the cell IDs of the multiple events in frame f are examined. For each pair of these cells, we

identify all previous frames where they co-exist, compute the distance between their centers

in each of those frames, and compute the maximum distance. Each pair of cells in the

”multiple” forms a pairwise matrix of maximum distances, which represents evidence of

whether these ”multiple” events in frame f have been separated in previous frames. Since

these events in frame f match to one event in frame f + 1, we define a threshold using the

radius of the ”one” event. If the smallest element of this pairwise matrix is smaller than the

threshold, meaning the two corresponding events have never shown decent separation in

the frames 1 ∼ f analyzed so far, we merge them into one event and assign to it a new cell

ID. We then re-compute the pairwise matrix for the remaining events of the ”multiple”, and

check whether any pair should be merged. This is essentially an agglomerative clustering

process that merges events in the ”multiple” that have never been decently separated. If all

the events in the ”multiple” are merged together, the matching reduces to the one-to-one

case. If not, it is still a multiple-to-one situation. We use the multiple events in frame f

to construct templates to segment the matched one event in frame f + 1. The templates

are constructed by shrinking the distances among the multiple events by a varying scalar
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(s <= 1) and rotating them by a varying angle (θ ∈ [−π, π)). Using the template that

overlaps most with the ”one” event, we segment the ”one” event into multiple events, each

of which is assigned with the cell ID of the corresponding event in frame f . Fig 4.5 shows

an example of how a three-to-one matching is performed. For a one-to-multiple matching,

we also first examine the pairwise distances between the multiple events. Since they have

not yet been associated to any cells, their pairwise distances can only be computed based

on the frame f + 1 which they belong to. Using the radius of the ”one” event in frame f as

threshold, we perform the same agglomerative merging as in the multiple-to-one situation

above. If all the events in the ”multiple” are merged together, the matching reduces to one-

to-one. If not, the multiple events after merging are considered as newly appeared cells and

assigned with new unique cell IDs.

Figure 4.5: Multiple-to-one matching. By shrinking the distances among the multiple
events and rotating them together, templates are generated to represent possible configura-
tions of the multiple in the next frame. Templates are evaluated by their number of pixels
that overlap with the one event in the next frame. The maximal overlapping template is used
to segment the one event in the next frame into multiple pieces, turning the multiple-to-one
matching into one-to-one.
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Table 4.1: Algorithm for forward matching of consecutive frames.

1: Each event in the first frame is assigned a unique cell ID.
2: for f = 1 : number of frames - 1 do
3: Compare the events from frame f to frame f + 1, generate all possible sets of matchings and score them.
4: Identify the best set of matching with highest score.
5: for each matching in the best set do
6: if matching represent event disappearing (i→ φ) then
7: Do nothing.
8: end if
9: if matching represent event appearing (φ→ j) then

10: Assign a new cell ID to event j.
11: end if
12: if one-to-one matching (i→ j) then
13: Assign the cell ID of event i to event j.
14: end if
15: if multiple-to-one matching (i1 → j, ..., ik → j) then
16: Compute pairwise distance for i1, ..., ik based on the associated cells in frames 1 ∼ f .
17: while (The smallest pairwise distance < radius of event j) do
18: Merge the two corresponding events, and assign a new cell ID to the merged event
19: Recompute the pairwise distance in based on the corresponding cells in frames 1 ∼ f .
20: end while
21: if (Events i1, ..., ik are merged to one event i) then
22: Assign the cell ID of event i to merged event j.
23: else
24: Use the remaining events in frame f as templates to split event j into multiple events.
25: Assign the cell ID of each remaining event in frame f to the events generated by splitting j.
26: end if
27: end if
28: if one-to-multiple matching (i→ j1, ..., i→ jk) then
29: Compute pairwise distance for events j1, ..., jk in frame f + 1.
30: while (The smallest pairwise distance ¡ radius of event i) do
31: Merge the two corresponding events.
32: Recompute pairwise distance.
33: end while
34: if (Events j1, ..., jk are merged to one event j) then
35: Assign the cell ID of event i to merged event j.
36: else
37: Assign new and unique cell IDs to each remaining event after the merge.
38: end if
39: end if
40: end for
41: end for

Backward matching of consecutive frames

When events are merged by agglomerative clustering in the multiple-to-one or one-to-

multiple matchings during the forward matching, the merged events are assigned with new

cell IDs. When there is a one-to-multiple matching, the multiple events in the next frame

receive new cell IDs. Those events with new cell IDs are not associated to any events in

the previous frames, but their corresponding cells may exist in the previous frames. The

backward matching addresses this issue.
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The backward matching algorithm is almost identical to the forward matching algo-

rithm, except for two key differences. First of all, the backward matching process starts

from the last frame. Then, it goes back in time to match events in the current frame to

events in its previous frame. Second, the pairwise matrix of maximum distances between

the multiple events is computed based on their associated cells in all frames when the

agglomerative merging in multiple-to-one or one-to-multiple matchings is performed. The

combination of forward and backward matching enables accurate tracking of cells involved

in complex sequences of collisions and detachments. We assume that we have a short video

of four frames, and first row of Fig 4.6 represents the events obtained from foreground iden-

tification and segmentation. The numbers of events in these four frames are two, one, two,

and three. Upon initialization of the algorithm, the two events in the first frame receive

unique cell IDs (1, 2). Each subsequent row shows the tracking result after one step of the

forward and backward matching. From the first to the second frame, the best matching is

two-to-one. Since the two events in the first frame are not well separated compared to the

size of the one event in the second frame, they are merged into one event and assigned with

a new cell ID (3). After the first iteration of forward matching, there is only one event in

the first frame. The matching from the second to the third frame is one-to-two, and the two

events in the third frame receive new cell IDs (4, 5) because they are decently separated

compared to the size of the one event in the second frame. Similarly, the matching from

the third and fourth frame is also one-to-two with decent separation between the two, and

therefore, new cell IDs (6, 7) are assigned to events in the fourth frame. The backward

matching from the fourth to third frame has a two-to-one matching. Since the two (6, 7) are

decently separated, the one (5) is split into two events and assigned with the corresponding

cell IDs. The matching from the third and second frame is three-to-one. Since the three

events (cells 4, 6, 7) have been well separated in other frames, the one (3) is split to three

events and assigned with appropriate cell IDs. The last step of backward matching is also

three-to-one, and follows the same operation. At the end of the forward and backward
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matching process, all frames have three events which are correctly associated to three cell

IDs. Performance of the matching algorithm can be affected by the quality and availability

of the data. In the above example, if the fourth frame does not exist, the algorithm will only

be able to identify two cells, one is the upper cell (4), and the other is the doublet (5) of the

middle and bottom cells in the third frame.
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Figure 4.6: The forward and backward matching process. Each column corresponds
to one image frame. Left-to-right is the forward directions. Numbers are used to indicate
the cell ID associated to each event. Each vertical arrow represents one step of the for-
ward or backward matching between two consecutive frames. As the algorithm proceeds,
multiple-to-one matchings either cause the multiple merge or the one to split. One-to-
multiple matchings either cause the multiple to merge (not contained in this example), or
cause the multiple to receive new cell IDs.
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4.2.2 Modeling cell trajectory in ridged microfluidic device

As a first step for establishing mathematical model for cell trajectories, the velocity field

of water within the microfluidic channel was obtained from the COMSOL multiphysics

software. To simulate the flowing cell trajectory, all forces exerted to the cell should be

considered. Then we can use the Newtons law, force is mass times acceleration. The

acceleration is the first derivative of velocity with respect to the time. Velocity is the first

derivative of position with respect to the time. Therefore, If we know the force exerted to

the cell, we can get the position of the cell, which is the cell trajectory (Eq. 4.6).

d
dt
Position = V elocity

d
dt
V elocity = Acceleration (4.6)

Basically, the drag force should be considered (Eq. 4.7), where µw is the viscosity of

the water, r is the radius of a cell, and Vwater, Vcell represent the velocity of water and a

cell, respectively. The drag force is a force acting to opposite the relative motion of moving

object with respect to a surrounding fluid (Vp-Vw). Therefore, the direction of drag force

is the same with the cell flowing so, it propels cells forward.

Fdrag(t) = 3πµwr(Vwater − Vcell) (4.7)

When flowing cells confront periodic ridges in a microfluidic channel, they experience

elastic force and frictional force. When the cell is entering the ridge or leaving the ridge,

some part of the cell is deformed and because of the deformation, the cell experiences the

force perpendicular to the ridge, shown in Fig 4.7. When the cell is leaving the ridge, some

part of the cell is escaped the ridge and it experiences the force perpendicular to the ridge.

The Hertzian contact stress (Eq. 4.8) is usually used to refer the stress close to the area of

contact between two spheres of different radius [95]. In this case, I assumed the radius of
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Figure 4.7: Cartoon illustration of elastic force exerted to a flowing cell under the
ridge When the flowing cell is entering or leaving the ridge, the elastic force (red arrow) is
exerted to the cell. The direction of the force is perpendicular to the ridge.

the ridge is infinite. In Eq. 4.8, E is Young’s modulus, u is Poisson ratio of a cell. Youngs

modulus (E) represents the cell stiffness, and its definition is the ratio between the applied

pressure and the strain. So, when we press the cells, there is strain because cell is elastic.

If this Youngs modulus is big, then the cell is relatively stiff, if this modulus is small, then

the cell is relatively soft.

Felastic(t) =
4

3

E

1− u2
√
rstrain1.5 (4.8)

The magnitude of the force is proportional to the deformed area of the cell, which is the

difference between cell diameter and ridge gap.

The frictional force direction is opposite to the moving direction, and its magnitude is

proportional to the normal force,N , and frictional coefficient ,µfric (Eq. 4.9).

Ffric(t) = µfricN (4.9)

We assumed that the normal force is the z-direction component of the elastic force.

If the cell is soft, the compression force is weak and then cells move with fluid flow

streamlines. And stiff cell experiences strong deformation forces and moves upward.

Therefore, soft and stiff cells migrate to opposite sides of the ridged microfluidic chan-
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Figure 4.8: Cartoon illustration of strain of a flowing cell under the ridge. When the flowing
cell is deformed due to the ridge, the strain (ε) can be calculated by difference between
diameter of a cell and ridge height.

nel, separating according to their mechanical stiffness.

4.3 Results

4.3.1 Experimental data: trajectories of cells

The recordings under 0CD condition contained 23312 frames and 23416 events in total,

indicating that the 0CD recordings were sparse, and each frame contained only one cell on

average. In fact, 36% of the frames were empty, 38% of the frames contained one cell,

and 24% of the frames contained 2 or more cells. This was because K562 cells under 0CD

condition were stiff and easily slowed down by the ridges, and thus, they tended to clog

the microfluidic channel if the cell concentration was higher and more cells were passing

through the channel simultaneously. The cell concentration under the 1.5CD condition was

higher. The recordings under 1.5CD condition contained 9718 frames with 27026 events,

translating to roughly 3 events per frame.

The forward and backward tracking process associated the events to cells and trajec-

tories. Trajectories that started and ended at the boundaries of the field of view were

considered as correctly tracked trajectories, whereas incorrectly tracked trajectories were

those either started or ended in the middle of the field of view. Under the two perturba-

tion conditions, the percentage of events associated to correctly tracked trajectories were
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92% and 97% respectively. Fig. 4.9 shows that events associated to incorrectly tracked

trajectories were much smaller compared to the correctly tracked cells. Those incorrectly

tracked events were typically small debris that had low contrast and high speed when mov-

ing through the device.

Fig. 4.10 shows overlays of the correctly tracked trajectories. We can see that cells

under 0CD condition drifted up along the y-direction, whereas cells under 1.5CD condition

exhibited a slightly negative drift along the y-direction. This was a significant difference as

shown in Fig. 4.11a.

For each cell/trajectory, we computed its average speed when overcoming the ridges,

and its average speed when traveling in the gaps between the ridges. The results were

visualized in Fig. 4.11b. Cells under 1.5CD condition scatter close to the 45 degree line,

meaning that their speed on ridges and speed in gaps are similar, because they were soft and

could easily deform and overcome the ridges. The variation of speed was tightly correlated

with size, with smaller cells traveling faster and large ones traveling slower. Under 0CD

condition, cells were stiff and more affected by the ridges, and thus, their speed on ridges

was much slower than their speed in gaps. The two populations in Fig. 4.11b can be well-

fitted by two straight lines, suggesting that the stiffness of cells was relatively constant

within each population, and the slopes were useful for quantifying the stiffness.

The trajectories enabled quantification of subtle changes of cells as they overcame sev-

eral ridges. For each trajectory, we computed the cell’s average speed when passing each

ridge, and normalized by its average speed on the first ridge. For cells under 0CD con-

dition, the mean and standard deviation of the normalized average speed per ridge was

shown in Fig. 4.11c. We observed that stiff cells tended to travel slightly faster as they

passed more ridges. Given the large standard deviation shown in Fig. 4.11c, this trend of

increasing speed was not statistically significant. However, it was consistent with previous

observations that stiff cells can become softer after repeated biomechanical perturbation.

In contrast, Fig. 4.11d showed that the soft cells maintained constant speed with respect to
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the number of ridges they encountered.

Figure 4.9: Summary of tracking results on recordings of cells under two perturbation
conditions. (a) Size of the data and tracking performance. (b) Comparing the size of events
associated to correct and incorrect trajectories, the incorrectly tracked events are mostly
small debris.

Figure 4.10: Visualization of tracking results. Overlay of the correctly tracked trajecto-
ries on the background of the recordings.

4.3.2 Modeling cell trajectory in ridged microfluidic device

Velocity field of water: COMSOL

In order to consider forces exerted to the cells in the microfluidic device, the velocity of

the water surrounding the moving cell is required. Once specification of the microfluidic

device is determined, velocity of flowing water can be simulated through the COMSOL

software, and the velocity field data (water) can be extracted. The device parameters was

defined as follows: Height = 22µm, length = 1400µm, width = 560µm, gap height = 8µm,
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Figure 4.11: Comparison of 0CD (stiff) and 1.5CD (soft) cells. (a) Stiff cells drift up
along the y-direction, whereas soft cells tend to have a slightly negative drift. (b) The
speed on ridge of stiff cells is smaller than their speed in gap. Soft cells are less affected
by the ridges. (c) Stiff cells tend to travel faster after passing each ridge, whereas (d) soft
cells travel at a relatively constant speed irrespective of the ridges.

and ridge angle =π
4
. Fig. 4.12 shows that the water velocity at 5µm device height within the

device. As shown in the figure, since the water flows from the left to right direction within

the device, the velocity of water in X direction is always positive. Also, the magnitude of

the velocity in X direction is increase under the ridges because the cross sectional area is

decrease. The Y direction of the water velocity becomes negative under the ridges. For

the Z direction of the water velocity, the direction of velocity is negative when the water

entering the ridges, while the direction becomes positive when they escape from the ridge.
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Figure 4.12: Velocity field of water within the ridged microfluidic device at 5µm height
To visualize the water flow within the microfluidic device, velocities of flowing water in
X,Y, and Z direction are shown. X,Y, and Z represent direction of length, width, and height
of the microfluidic device. Water flows from the left to right direction. Color represents the
water velocity (m/s).

Simulation results: cell trajectory

Based on the velocity field of water within the microfluidic device, we can simulate the cell

trajectory by using the method discussed in the Method section. Fig. 4.13 shows simulated

cell trajectory of 4µm diameter cell. As shown in this figure, the 4µm diameter cell is

smaller than the gap size (8µm), therefore this cell is not compressed under the ridges.

As a result, this cell translated when passing through the channel without experiencing the

elastic force and frictional force, so its trajectory is almost same with the water streamline.

This simulation result is similar to the fig. 4.10(b), which is a collection of trajectories

of soft cells. From this comparison, we can imagine that if a cell is bigger than the ridge

gap and very soft which means it has very low Young’s modulus, then it will receive very

small amount of elastic and frictional force. This is because these forces are proportional

to Young’s modulus.

As shown in Fig. 4.14, if the trajectory of the cell is visualized in 3-D, a helical pattern

is shown. This helical pattern is induced by periodic ridges.
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Figure 4.13: Simulated cell trajectory The white pixels represent diagonal ridges and blue
curve represents the cell trajectory. The green trajectory represents the trajectory of 4µm
cell.

Figure 4.14: Simulated cell trajectory in 3-D Trajectory of 4µm cell has a helical pattern.
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4.4 Conclusion and Discussion

To develop the ODE model describing cell trajectory within the ridged microfluidic cell

sorting device, the experimental data, cell trajectories, was needed. To obtain the cell tra-

jectory, a computational algorithm was developed. This algorithm can automatically and

accurately extract the cell trajectories in high-speed video recordings of microfluidic cell

sorting devices. We tested the algorithm on recordings of K562 cells under two perturba-

tion conditions, representing stiff and soft cells. The algorithm successfully handled the

collision and detachment of cells. We showed that the automatically extracted trajectories

correctly captured the difference in stiffness between the two perturbation conditions. The

tracked trajectories revealed the subtle increase in speed when the stiff cells pass through

consecutive ridges, which is an indication that cell biomechanical properties may change

when passing through the ridges. The accurately tracked trajectories enables future ef-

forts of optimizing device design, for the purposes of modeling and quantification of the

dynamical changes of cell biomechanical properties in the context of microfluidics.

To construct the ODE model representing cell trajectory depending on different bio-

physical properties of cells, we have discussed three forces exerted to the cell when they

are flowing within the device: Drag force, Elastic force, and Frictional force .There are

still rooms for improvement in the model but this is still an on-going project which will be

continued by the next graduate student.
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CHAPTER 5

CONCLUSION AND FUTUREWORK

Dynamic behaviors of biological processes can be described in Ordinary Differential Equa-

tions (ODEs). By describing biological processes in ODEs, we can control and predict the

behaviors of biological processes. The ODE-based model contains several unknown model

parameters such as reaction rates and they should be estimated based on experimentally

observed data. The problem is that the amount of experimental data is almost always lim-

ited and the model complexity is relatively high. This imbalance between the insufficient

data and high model complexity makes the parameter estimation more challenging. To

address this problem, experimental design method and model reduction method have been

developed. The most informative experiment can be selected among other candidate ex-

periments using experimental design method. By performing the selected experiment, the

number of data is increase, and as a result, parameter estimation can be improved. Model

reduction method finds the insensitive parameters, and by removing or combining these

insensitive parameters, complexity of the model can be reduced with maintains its ability

to fit the data. Furthermore, model reduction method can be used to find the key part of the

system.

Currently, these two methods are considered as two distinct approaches. However, in

chapter 2, the possibility of unified framework of these two methods was shown. In order

to consider these two methods in a common framework, we applied the geometric concept.

We considered the mathematical model as a manifold living in a data space, and considered

experimentally observed data point as a point in the data space. Also, parameter estimation

can be viewed as projecting the data point onto the model manifold. In this manner, we

can perform both experimental design and model reduction by examining the singularity

around the projected point on the manifold. We have shown that what experimental design
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method does is expanding the model manifold around the projected point. Model reduction

method can identify the nearest manifold boundary which suggests appropriate forms of

reduced models.

Our new unified framework will lead to a new technique for reducing the information

gap between limited data and complex mathematical model efficiently by identifying the

most informative experiment and finding the key controlling mechanism of the system at

the same time. In addition, this unified approach can bring intuitive geometric interpreta-

tion in systems biology. However, the expected limitation of this approach is that as the

dimension of the data space increases, the computational cost will increase because finding

manifold boundary is not that simple. Also, visualizing the changing model manifold will

not be an easy task because of the high dimension of the data space.

In chapter 3, a new novel approach in parameter estimation is introduced. The moti-

vation of our approach stems from the imbalance between high complexity of the model

and limited availability of experimental data, which brings about the ill-conditioned pa-

rameter estimation. Another motivation of our approach comes from the assumption of the

experimental design method. Experimental design method assumes that all experiments

contain different amount of information. In the same manner, we assume that data points

obtained from one single experiment also contain different amount of information. To ap-

ply this assumption to the least square cost function, the cost function was re-formulated

by embedding the different amount of information of each data point.

One of the benefits of our approach is that additional experiments are not required to

improve parameter estimation. Instead of suggesting new experiments to obtain more data

to estimate parameters more accurately, our approach uses a weighted cost function which

improves the parameter estimation by giving a different weight for each data point. A

different weight for each data point is quantified based on the uncertainty of each data

point given the other data points. By giving a different weight for each data point, we have

improved the parameter estimation problem. In addition, we have shown that our approach
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can reduce the redundancy among the experimentally observed data points. This also shows

that the mathematical perspective of why the biologists’ intuition of unevenly spaced time

points is effective in time series experiments. This ability which is reducing redundancy of

data can be utilized to experiment setting, especially when there is not much information

about which time points are crucial to explain the behaviors of the system.

Some limitations of our weighted cost function approach are identified. First of all,

our method would not work for all biological models such as oscillating model. For ex-

ample, Lotka-Volterra model [89] only has dynamically changing region which means all

data points should be treated equally important. In this case, our method would not provide

any advantage compared to the equal weighted cost function method. However, the case

that the steady-state region is more important than the dynamically changing region can

apply our approach with a simple change in our approach. Since the assumption of our ap-

proach is that dynamically changing part is the most important in biological behavior, we

need to change this assumption to deal with this different case. For this case steady state

region is important compared to other region, the weights can be embedded to the cost

function as a reciprocal of the weights. Then, the steady-state region will receive higher

weight than the other region. Another limitation of our weighted cost function method is

that outliers cannot be identified. Outlier would receive the largest weight using our it-

erative algorithm because outliers cannot be predicted easily using the other data points.

Although outliers occur seldomly in biological experiments, the aim of our work is to ex-

plain the general behavior of the system biology. Next, our approach is still not perfect

for parameter estimation as many different parameter settings still can fit the data well.

One of the future works could be somehow combining model reduction technique and our

weighted cost function to further improve the parameter estimation. Lastly, one expected

challenging problem is that if our weighted cost function is applied to more complex bi-

ological model, the computational cost will increase drastically. Since our approach uses

sensitive equations when we calculate the fisher information matrix to quantify the relative
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importance of each data point, the number of model parameters will affect to computational

cost. Therefore, reducing computational cost can be another future work to improve our

approach.

In chapter 4, we discussed the computation approach in modelling the cell flow in

ridged microfluidic channel device to demonstrate the procedure and the practicality of

modeling the biological system. The ridged microfluidic channel device is used to sort

the cell depending on the biophysical properties of cells such as cell stiffness or size.

The mathematical model approach describing the microfluidic cell trajectory can help us

tremendously and save time by eliminating the unsuccessful experiments. For example,

before performing an experiment for sorting the cells, we can simulate the experiment and

optimize the device parameters such as length, width and height of the device, and angle of

the ridge as well as the cell size and cell stiffness.

To develop the ODE model describing cell trajectory within the ridged microfluidic

cell sorting device, the experimental data of cell trajectories was needed. However, we

only had the video recordings of cells flowing through microfluidic channel. Therefore, the

new cell tracking algorithm was developed and introduced in this chapter. This algorithm

automatically and accurately extracted the cell trajectories in high-speed video recordings

of microfluidic cell sorting devices. Although the accuracy of the tracking algorithm is

almost 92%, there is still room for improvement. For example, the speed of our algorithm

can be improved because when the video containing more than 20 cells per frame, the

speed of our algorithm slowed down. In addition, we can improve our pre-processing step

to obtain more accurate cell information such as cell size. Since the contrast within in one

cell is different, for instance, some parts of a cell is dark and some part of a cell is bright,

these kinds of cells can give us incorrect size information of cells. Therefore, in order to

utilize our tracking algorithm into different projects such as tracking cell size changing

within the microfluidic channel, these improvements will be very helpful to track changing

information of moving cells accurately.
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The next step was to construct the ODE model representing cell trajectory depending

on different biophysical properties of cells. We have discussed three forces exerted to

the moving cell when they are flowing within the device: Drag force, Elastic force, and

Frictional force. The developed model was able to predict the flow of the cells correctly

when the cell was smaller than the ridge gap. However, the current model was unable to

accurately describe the trajectories when the cell is bigger than the ridge gap. This is where

the model needs an improvement and this is still an on-going project to be continued by the

next graduate student.

In order to obtain more accurate simulation results, we also need to think about other

forces exerted to the moving cells. For example, the elastic force we used is based on

the assumption that the cell is completely uniaxial compressed by the ridge. However, the

elastic force would be different in the case when the cell is entering or leaving the ridge.

As only part of the cell is in contact with the ridge, uniaxial compression cannot be used

as elastic force. Thus, in this case, the direction and magnitude elastic force exerted to the

cell would be different and subsequently, frictional force would be different. Reflecting

this different force information exerted to one cell would be the most challenging part to

develop the ODE model for this microfluidic device.

Once the ODE model describing cell flowing within the microfluidic device is devel-

oped, our weighted cost function introduced in chapter 3 should be used to identify the

important part of the cell trajectory. As the simulation result of cell trajectories would have

a lot of redundancy, our weighted cost function approach can make the optimization of the

microfluidic channel device more efficiently.
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