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SUMMARY 

Today’s typical power systems have a mix of conventional generation (CG) and 

variable generation (VG). Examples of VG are wind turbine systems (WTSs) and solar cell 

generators (SCGs). VG is characterized by intermittency and its integration into power 

systems affects power systems operation, reliability and planning practices. The focus of 

this research is generation adequacy when adding VG.  

The objective of this thesis is to develop reliability assessment models of power 

systems with wind farms (WF) and/or solar farms (SF); each WF may have a number of 

WTSs and each SF may have a number of SCGs. These models involve finding WF/SF 

power output probability. Three different methods for computing the generated power 

probability distribution function (PDF) of a WF or a SF are proposed: (1) analytical 

method, (2) non-sequential Monte Carlo simulation, and (3) sequential Monte Carlo 

simulation. Historical wind speed/solar radiation data are utilized to perform the study. 

Further, force outage rates (FORs) of components are incorporated in the process of 

computing the WF/SF generated power PDF. All methods yield comparable results. The 

usefulness of the computed PDF is demonstrated by integrating them into a probabilistic 

production costing (PPC) model for assessing the reliability of a system comprising one or 

more WFs/SFs. A further development of these models includes a unit commitment 

economic dispatch model (UCED) to simulate real operation of power systems, specifically 

CG constraints in presence of VG at different penetration levels.  Also, the UCED will be 

used to solve for optimal energy storage system (ESS) sizing and its expected charging and 

discharging power profile. This profile determines the expected ESS effect on reliability. 



 

 xxi 

The optimal ESS sizing problem is modeled as a mixed integer linear program (MILP) that 

takes into account: (a) VG units FORs, (b) reserve and demand requirements, and (c) CG 

operational constraints. (d) seasonal wind speed, solar radiation, and demand correlation.     
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

The reliability of power systems is defined as the probability that electric power 

components continuously deliver electricity to customers with an acceptable quality of 

service. It should be noted that the reliability is defined for a given period and under certain 

operating conditions [1]-[4]. Reliability analysis methods are classified into three 

hierarchical levels: generation, transmission and distribution [3]. The generation level 

which is concerned with total system generation adequacy over a period of time and 

assumes 100% reliable and adequate transmission and distribution networks. In other 

words, it assesses power system generation adequacy to meet its demand assuming that 

transmission/distribution networks are capable of transmitting the power from generation 

to the customer without constraint. A higher level is created by adding transmission 

reliability analysis which accounts for transmission network failures capacity limitations. 

Lastly, adding the distribution network constraints to the reliability assessment yields to 

the highest hierarchical level which is more complex. This is shown in Figure 1-1. 

 

Figure 1-1. The three hieratical levels of reliability assessment. 
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The research of this thesis focuses on the first hierarchical level: generation level. 

Today’s typical power system has a mix of conventional and renewable generation. 

Renewable energy, e.g., wind and solar, has increased due to the need to decrease 

greenhouse emissions and to address energy security concerns [5]. For instance, the 

International Energy Outlook 2019 shows that non-hydroelectric renewable energy share 

in the electricity sector is projected to increase 5.7% annually between the years 2018 and 

2050. Moreover, the solar generation is globally forecasted to increase steadily and reach 

6.7 trillion kWh by 2050 while the wind generation is forecasted to reach 8.3 trillion kWh 

by 2050 [6]. However, wind and solar power generations are characterized by intermittency 

and referred to as variable generation (VG) or not dispatchable. This characteristic affects 

system reliability and operating costs. Hence, assessing the reliability of power systems 

under different penetrations of VG is important. A holistic reliability assessment should 

take into consideration all generators possible outages and VGs’ intermittent output.   

Finally, the energy storage systems (ESSs) utilization and their effects on power 

systems reliability. The Energy Storage Association reports that the global ESSs market is 

currently growing exponentially and it is forecasted to have annual installation rate of 40 

GW by 2022 [7]. ESSs come in various forms, depending on the technology used, and in 

different scales. The technologies that have been used to store energy include electrical, 

thermal, hydro, mechanical, and electrochemical [8]. These technologies make the 

characteristics and the applications of various ESS different. The applications of ESS 

include (a) supporting increased renewable generation penetration, (b) load peak shaving 

and (c) enhancing reliability of power systems [8]-[9]. These applications offer flexibility, 

improvement of power quality and increased reliability of power systems. An important 
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problem in power systems planning and reliability studies is ESS sizing in the presence of 

VG, and the overall impact of VG and ESS addition on power system reliability.  

1.2 Problem Statement and Proposed Research 

This research proposes probabilistic reliability assessment models for power systems 

under different penetration levels of VG. The VG comes from either solar cell generators 

(SCGs), wind turbine systems (WTS), or both. The models take into account weather 

prediction based on historical data of a certain location in addition to load forecast and 

forced outage rates (FORs) of VG and conventional generation (CG) units. Also, a model, 

based on the previous models, is developed to find the optimal ESS sizing, in presence of 

VG, and its effect on reliability. This model takes into account VG units forced outages, 

weather seasonal forecast error, demand and reserve requirements, and demand and VG 

correlation. 

1.3 Thesis Outline 

The dissertation consists of nine chapters. CHAPTER 2 is a review of the past and 

state-of-the-art research regarding quantification of VG and ESS effects on power systems. 

CHAPTER 3 presents in detail a and the reliability assessment method, namely the 

probabilistic production costing (PPC), and the importance of modeling load with the load 

duration curve (LDC); this method is used throughout the thesis. CHAPTER 4 and 

CHAPTER 5 present detailed derivation of probabilistic models of power output of a wind 

farm (WF) and a solar farm (SF), respectively. In addition, the two chapters show how 

these models are incorporated into the PPC method. CHAPTER 6 presents an additional 

development of the reliability assessment models in presence of VG by introducing the 
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UCED model. CHAPTER 7 integrates the optimal ESS sizing into the UCED model and 

explains how to quantify reliability when adding ESS in presence of VG. CHAPTER 8 

presents the addition of seasonal variations to the model of CHAPTER 7. CHAPTER 9 

presents an advanced model that integrates into the ESS sizing model the seasonal 

correlation between the demand and the VG. Finally, CHAPTER 10 presents conclusions 

and future research directions.         
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CHAPTER 2. LITERATURE REVIEW  

2.1 Introduction 

 In traditional power system operation, demand is exogenous variable and there is 

uncertainty associated with its forecast. Thus, the historical chorological demand data is of 

importance to understand and study a specific power system. However, in planning and 

reliability studies, it is crucial to know the probability of having a certain level of the load. 

The load probabilistic model is the LDC [4]. The probability here is defined as percentage 

of time. To construct the LDC, the load is arranged in descending order of magnitude. As 

an illustrative example, a typical chronological load curve, shown in Figure 2-1, can be 

converted to a LDC with the time axes normalized as depicted in Figure 2-2. As discussed 

later, finding the LDC is important step in assessing the reliability when adding VG. The 

LDC in presence of VG and/or ESS is referred to as effective load duration curve (ELDC). 

The ELDC is an integral part in reliability assessment method used in this work, as 

discussed in detailed in the following chapter.   

 

Figure 2-1. The chronological load curve example. 
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Figure 2-2. The load duration curve. 

2.2 Variable Generation Impact on Power System Reliability 

VG impact on power systems has been intensively studied. Taking wind generation as 

an example, there has been a plethora of studies on modeling its impact on power systems 

reliability. These studies use probabilistic modeling that falls into two categories: either 

analytical or Monte Carlo simulation (MCS). The latter one is either sequential (SMCS) or 

non-sequential (random) (NSMCS). The analytical method uses mathematical derivations 

to enumerate all possible outcomes and their probabilities. For example, reference [10] 

presented an analytical probabilistic reliability model for a number of WTSs taking into 

consideration WTS FOR. Reference [11] showed that a WTS generation model could be 

simplified to a 6-step analytical model that could be used to assess generation reliability 

with acceptable accuracy. On the other hand, MCS has been used to simulate the 

randomness of the wind power and the WTSs failures instead of directly enumerating all 

cases. For instance, both NSMCS and SMCS have been used to assess generation adequacy 
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and composite reliability assessment [12]-[14]. However, [11] and [13] used approximated 

models and ignored FOR of the WTSs.  

On the other hand, there have been studies on modeling SCG impact on power 

systems reliability. Similarly, these studies used probabilistic modeling and are categorized 

as either analytical, NSMCS or SMCS. For example, reference [15] found the probability 

density function (PDF) of SCG as discrete function i.e., impulses that are equally spaced. 

The impulses were calculated based on the average daily output of the SCG. Reference 

[16] combined the solar radiation PDF and the SCG power output curve to model the SCG 

power output as multi-state model and computes the probability of being in each state (up-

derated-down). For computational efficiency, it suggested using linear rounding to 

decrease the number of states in modeling the SCG power output.  On the other hand, 

instead of analytically enumerating all possible events, MCS has been used to count for the 

randomness of solar radiation intensity and components failures of SCGs. For instance, 

SMCS was used to assess the reliability assessment of a power system containing a SCG 

and a WTS [17]. The method used in [17] is a modified method of modeling CG. Reference 

[18] used a solar radiation prediction method along with a PV three-state model to evaluate 

adding PVs to an isolated system. The reliability assessment in [18] was based on MCS.  

However, there is a need to develop models that compute WF/SF, which consists of number 

of WTSs/SCGs, power output pdf using the analytical and MCS methods that yield to 

comparable results. Hence, any method of the three, analytical, SMCS or NSMCS, can be 

used to probabilistically represents WF/SF output depending on its compatibility with the 

reliability assessment method. This becomes clear later when comparing these three 

methods, and when adding storage to the test system. All three methods take into 
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consideration outages of the WTSs/SCGs and weather predictions of a certain location. 

Notably, no method among the analytical and MCS is superior over the other. Instead, each 

has its own advantages and disadvantages as will be discussed later.   

As the penetration level of VG increases, planning and operation should account for 

economic dispatch, reserve requirements and reliability requirements. All aforementioned 

could be accounted for in the formulation of the unit commitment economic dispatch 

(UCED). This problem can determine the expected impact of VGs under different 

penetration levels.  The unit commitment (UC) determines the optimal commitment 

(OFF/ON decisions) schedule by simulating the operation of the system over a period of 

time. The UC problem in general has the following constraints:   

1) CG minimum and maximum production limits. 

2) CG minimum Up/Down times. 

3) CG ramp Up/Down limits. 

4) Demand and reserve requirements. 

Many models have been developed to solve the UC problem. These methods include 

dynamic programing, Lagrangian relaxation, genetic algorithm, fuzzy logic algorithm, and 

mixed integer programming (MIP) [19]-[21]. The focus of this work is on solving the UC 

using MIP. There have been numerous works on solving the UC problem for power 

systems without the presence of VGs using MIP. Starting with UC of CGs, reference [20] 

introduced a tighter description of the generation polytope by introducing a new class of 

inequalities that led to faster computation time. In [21], a state-transition variables model 

that captures the generator transition instead of their ON/OFF statuses. In the presence of 
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VGs, the traditional UC model could be modified to account for VGs. For instance, 

reference [22] used a mixed integer quadratic programing (MIQP) to solve a UC problem 

of an insular power system that incorporates VG. In [22], VGs were modeled as CGs but 

with constraints that took into account the climate prediction that governed VGs’ 

production. In [23], a day-ahead UCED model was proposed with finer time scale (5 mins). 

The model in [23] reported providing responsive ramping following abrupt VG output 

change. It also claimed difficulty in applying long look-head horizons especially for large 

systems due to its computational requirement. 

2.3 Energy Storage Systems Impact on Power System Reliability 

Finally, incorporating energy storage systems (ESSs), in addition to VGs, to a power 

system and assessing reliability improvement. A plethora of literature exists on ESSs 

impact on power system reliability. Most of these studies assume an ESS size (power and 

energy ratings) and subsequently assess system reliability. A number of studies address the 

issue of optimal ESS sizing and then assessed reliability for the optimal ESS. Starting with 

the studies that assess reliability without ESS sizing, reference [24] used the Weibull 

distribution to model wind speeds and subsequently used SMCS to simulate a wind farm 

WF and CGs outputs. Then, it set criteria to calculate the portion of WF power to serve the 

demand directly and the portion to be stored. Finally, it assessed reliability contribution 

from adding ESSs. Reference [25] used MCS to assess the reliability of CGs, WTSs, ESSs, 

and hydro power plants, by chronologically coordinating WTSs and hydro plants. The wind 

speed was modeled as a time series auto-regressive moving average (ARMA) model while 

the ESS was modeled as the IEEE four-state model (reserve shutdown, in service, forced 

out but not needed, and forced out when needed). It showed that strategic coordination 
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between these resources could improve generation adequacy. Reference [26] introduced an 

analytical method to study ESSs impact in presence of WTSs generation. It analyzed the 

impact of ESSs initial stored energy and rated capacity analytically. The study found that 

initial stored energy has insignificant impact while rated capacity of ESSs had the most 

impact on reliability improvement.  On the other hand, the study in [27] evaluated the 

reliability of hybrid SCG-ESS system using discrete time Markov chain (DTMC). The 

DTMC aimed to capture uncertainty in the SCG and ESS outputs. However, all 

aforementioned studies, did not address the issue of optimizing ESS size and [24], [25] and 

[27] did not include individual VG units (WTS or SCG) FORs but rather used aggregate 

models of WFs and SFs. However, the cost of ESS has been considerably high. Hence, the 

other set of studies on reliability assessment considered ESS optimal sizing. For instance, 

reference [28] introduced a probabilistic model for ESS sizing with peak shaving policy in 

presence of wind generation. The model was based on cyclic nonhomogeneous Markov 

chain and dealt with generation-load mismatch. It claimed that the model was fast and 

accurate, and with little sacrifice on profit, it could represent the WTSs-ESSs as reliable 

committed generation. For example, reference [29] considered the VG forecast error when 

sizing ESS using a two-stage stochastic model predictive control. Also, it considered wind 

forecast error as a chance constraint. With emphasis on reliability applications, reference 

[30], used pattern search-based optimization and SMCS to find the optimal size of hybrid 

SCG/WTS/ESS system components while maintaining certain reliability requirements. 

Reference [31] used a two-stage probabilistic model to solve for ESS-reserve sizing 

problem considering reliability by integrating loss of load index into ESS sizing.  However, 

the literature lacks a holistic ESS sizing model that takes into account all aspects: WF/SF 
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outages, weather forecast error, meeting reserve requirements and load and VG correlation. 

The proposed ESS sizing model will account for all aforementioned aspects.  
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CHAPTER 3. RELIABILITY ASSESSMENT METHOD 

  The chapter presents the reliability assessment method that is going to be used for 

all cases discussed in later chapters. This method is called the probabilistic production 

costing method (PPC).  

3.1 The Probabilistic Production Costing  

3.1.1 Introduction  

The probabilistic production costing is a probabilistic simulation method based on 

the Baleriaux, et al method that was introduced first in 1967 [32]. Production costing refers 

to any methodology that computes operating cost of an economic activity [33]. The 

problem that this method addresses is the simulation or the projection of power system 

operation cost over a period, given the load forecast, available generating units and their 

FORs [4].  As explained in [32] and [34], the method is based on using the probabilistic 

model of the electric load in addition to the probabilistic model of CGs expressed in terms 

of their FORs to assess the system reliability and compare future expansion plans. The 

solution is given through a series of convolutions between each CGs and the LDC; the 

mathematical formulation will be discussed in detail later. The method calculates the 

following indices:  

1) Loss of load probability (LOLP): which is the probability that generation is 

insufficient; i.e., Probability (generation < load). Note that LOLP does not 

give indication of the severity of the loss. 
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2) Expected unserved energy (EUE): the expected energy not supplied to 

customers due to generation failure. 

3) Expected energy generated by each CG unit. 

4) Expected total generation cost. 

5) Amount of environmental pollution by generation unit. 

An important step when performing the PPC method is the merit of loading CG units. As 

described in [35], the most effective unit should be loaded first. In other words, the units 

of lowest average cost should be loaded first to meet the load starting from 0 MW to the 

unit rated capacity. Then, loading the second lowest average cost unit, and so on.  One of 

the improvements to this loading procedure suggested in [34] was to divide the capacity of 

each CG unit into two blocks and these blocks are placed nonadjacent in the loading 

procedure. Every block has a different average production cost. This improvement 

increased accuracy and as the number of blocks increased, the accuracy improved. 

Reference [35] suggested a phased approach based on incremental loading procedure by 

dividing generation units into subsets based on their marginal cost, the minimum subset is 

loaded first. Taking into consideration the FORs of the components and maintenance, the 

projected cost could be calculated in phased manner by adding up the cost of generating 

electricity from each subset. The aforementioned works are examples of the early work on 

this method. There have been many published papers. For examples, reference [36] 

introduced a modification that takes into account energy limitation of generation facilities. 

Specifically focused on hydraulic units which were categorized as no energy storage or 

with energy storage (either large or restricted). The improved method alters the loading 

procedure to account for using energy storage relative to its type.   
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3.1.2 Mathematical formulation 

A description of the PPC and the ELDC is as follows: 

3.1.2.1 Conventional Generation Units 

The CG unit is modeled as a 2-state Markov model: available or unavailable. In other 

words, either the unit is available with capacity equal to max
gp  or unavailable with capacity 

equal to zero, as shown in (3.1) and Figure 3-1.   

max , if  unit is operational

0 , otherwise

g

g

P
Capacity


= 


 (3.1) 

where max
gp  is the rated capacity of the gth CG. The probability that the unit is unavailable 

is denoted by q. q is referred to as FOR and calculated as explained in [3]:  

1

g

g

g g

g

g

g g

MTTR
q

MTTR MTTF

MTTR
q

MTTR MTTF

=
+

− =
+

 

(3.2) 

(3.3) 

where MTTRg is the unit mean time to repair and MTTFg is the mean time to failure. Both 

MTTRg and MTTFg , and the repair and failure processes are exponentially distributed.  
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Figure 3-1. The CG two-state availability model. 

3.1.2.2 Load/VG Representation 

The net load is computed as follows:   

load VGN N

l,t vg,t

l=1 vg=1

Net load  = Load VG        t t t TESS Power−−     (3.4) 

Note that CHAPTER 4 and CHAPTER 5 assess the reliability when adding only VG; 

hence, the ESS power term in equation (3.4) is omitted. Figure 3-2 shown how the Net (or 

apparent) load is calculated generally in presence of VGs and ESS.  Subsequently, the 

chronological net load curve is converted to an inverted probability distribution function 

(IPDF) as explained in [4]. The vertical axis of the IPDF is normalized time and horizontal 

axis is power.  

3.1.2.3 Reliability Assessment and Production Cost 

LOLP and EUE can be calculated using series of convolutions as explained in [4], 

[34] and [35]. Once the IPDF curve is constructed and FORs of all G units are known, the 

LOLP can be calculated as follows: the loading of a unit changes the apparent load on the 

remaining units as in (3.5): 
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1 1

max

g g g g g gL (l) = (1- q ) L ( l p )+ q  L ( l )− −+  (3.5) 

Figure 3-3 shows an example of convolving two CG units with the ELDC, and similarly it 

can be extended to G number of CG units. The curve L0 is the ELDC and once the first CG 

is loaded, the resultant curve is L1. Similrly, loading the second CG will give the curve L2. 

This procedure is repeated till the Gth CG is loaded. 

 

Figure 3-2. The load duration curve. 
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Figure 3-3. Convolution example between the ELDC and two CG units. 

After all units are loaded, LOLP is simply:  

0GLOLP  L ( )=  (3.6) 

EUE is computed after all units are loaded, i.e., LG curve is constructed, as follows: 

0

Peak  Load

GEUE T L ( l )  dl=   (3.7) 

where PeakLoad is the system peak load and T is the simulation time.  

EUE is the area under LG multiplied by the total simulation time. The values of LOLP and 

EUE are shown Figure 3-4. 
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Figure 3-4. The values of LOLP and EUE. 

The expected production cost for each CG, Eg, is computed as follows:  

1

0

1

max
GP

g

g g g

f (l))
E T( q ) L (l) dl

dl
−


= −   (3.8) 

where 
𝑑𝑓𝑔(𝑙)

𝑑𝑙
 is incremental cost of gth CG unit.  

Note that other costs, e.g., maintenance cost, are neglected. The VG production cost is zero. 

Hence, the total production cost is the summation of the CG production costs. 
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CHAPTER 4. PROBABILITY CHARACTERIZATION OF WIND 

FARM POWER OUTPUT AND IMPACT ON SYSTEM 

RELIABILITY    

  The chapter presents a computational procedure for the generated power probability 

distribution function ( ( )
WFG WF

p ) of a WF consisting of NWTS WTSs. The PDF is computed 

using three alternate methods: (1) analytical method, (2) NSMCS, and (3) SMCS. Once

( )
WFG WF

p has been computed, using any of the three probabilistic methods mentioned, a 

subsequent step is to assess the overall system reliability using the PPC Method. 

Specifically, the WF power output probabilistic model and the electric load probabilistic 

model are combined to create an equivalent load duration model. The CG system must 

supply the equivalent load. The PPC simulates the operation of the CG system and the main 

operational constraints (mainly economic dispatch) to determine the expected production 

from the conventional units, the LOLP, the EUE, etc. For comparison purposes, the system 

is also simulated assuming that the operation of WF is deterministic, i.e. forced outages of 

the WTSs are ignored. An overview of reliability assessment procedure in precedence of 

wind generation is shown in Figure 4-1. 

4.1 Problem Statement and Basic Calculations 

Given a number of WTSs i = 1,…, NWTS. Each WTS has FOR equals to qWTSi and 

capacity pWTS.rated. The wind speed over period of time t =1,..,T is assumed given. The WTS 

power as a function of the wind speed is also given. It is desirable to compute the PDF of 

the WTS generation. Subsequently, the PDF of the power output of NWTS number of WTSs  
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Figure 4-1. Reliability assessment procedure in presence of wind generation. 

is computed. Moreover, it is also desirable to perform reliability assessment of a system, 

which incorporates a WF or multiple WFs, that probabilistically accounts for the WTSs 

unavailability and wind speed variation.  

A first step is to use wind speed historical data to find the PDF of wind speed ( )
V

v

. One method to find ( )
V

v  is to construct a histogram with a large number of bins. 

Subsequently, the histogram is converted to a PDF of wind speed. The fact that 

∫ ρ
V
 (v)dv

∞

-∞
= 1 is used to normalize the count of occurrences on the horizontal axes by 

dividing it over the histogram total area. Mathematically, this is expressed as follows: 

 

(4.1) 

Once ( )
V

v is known, the wind turbine power curve can be utilized to find the PDF of the 

WTS power (ρ
TG

 (pWTS)) as discussed in the next sections. pWTS can be mathematically 

expressed as follows [37]: 

( )

1

no. of occurrences of bin

bin width x no. of occurrences of bin

w

W

w

wf bin =



Load 

Wind 

Generation 

Equivalent 

Load 

Duration 

Curve PPC 

Method 

Reliability 

Indices and 

Cost Projection 

Conventional 

Generation 
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(4.2) 

Where vci /vco /vrated are the WTS cut-in/ cut-out/ rated speeds, respectively, and s typically 

equals 1,2, or higher values depending on the WTS type. s is chosen to be 1 throughout 

this study. The above probability is conditional upon the availability of the WTS. If the 

WTSs are close to each other, then wake effect must be considered in this model.  In this 

work, the wake effect is not considered as the WF under study is located in mountainous 

areas with sufficient separation that wake effect is not a major factor.  

4.2 Mathematical Formulation of WF Power Output PDF computation 

Three alternative methods are used to compute the WF power PDF as follows: 

4.2.1 Analytical Probabilistic Method 

The WTS is modeled as a 2-state model: available or unavailable. In other words, 

either the unit is available with capacity equal to pWTS.rated or unavailable with capacity 

equal to zero, as shown in Figure 4-2. Note that more complicated models are available 

where each component of a WTS has a two-state Markov model.  

The probability that the ith WTS is unavailable is denoted by qWTSi and calculated as 

explained in [3]:  

( )

)

.  ,   

.  ,   

               

                                 

  

0                                           otherwise

s s

t ci
WTS rated t ci rateds s

rated ci

WTS WTS rated t rated co

V v
p V v v

v v

p p V v v

  −
    −  


=    





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(4.3) 

where MTTRWTS is the WTS mean time to repair and MTTFWTS is the WTS mean time to 

failure. Both MTTRWTS and MTTFWTS are exponentially distributed. Note that qWTSi is 

assumed identical for all WTSs. 

 

Figure 4-2. The WTS two-state availability model. 

To find the probability of all possible cases, Figure 4-3 and Figure 4-4 could be helpful. 

The law of total probability is used to account for all cases:  

where ( )TG WTSρ   p is the PDF of a single WTS power output. 

i

i

i WTSi

WTS

WTS

WTS

MTTR
q

MTTF MTTR
=

+

 

( ) ( ) ( )

( ) ( )

TG WTS TG WTS WTS

TG WTS WTS

ρ   p  = ρ   p WTS is UP   1-q  

      

|

|             + ρ  p WTS is DOWN   q
 (4.4) 
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Figure 4-3. WTS power curve and wind speed PDF relationship. 

 

Figure 4-4. Probability tree for single WTS possible outcomes. 

For pWTS = 0, there are three possibilities: either the WTS is failed, Vt ≤ vci, or Vt ≥ vco , thus 

a single WTS power output pdf ( )TG WTSp : 
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( ) ( )( ) ( )0 ( 1 )TG WTS WTS WTSq q A p = + −  (4.5) 

 ( ) ( ) ( ) ( )where A     1
ci

co

v

V V V ci V co

v

v dv v dv F v F v 


−

= + = + −   

For 0 < pWTS < pWTS.rated, it is a continuous region that can be expressed mathematically as 

follows: 

 
(4.6) 

For pWTS = pWTS.rated, the wind speed ranges vrated <Vt < vco. This is expressed mathematically 

as follows: 

 
(4.7) 

 ( ) ( ) ( )where B      
co

rated

v

V V co V rated

v

v dv F v F v= = −  

In the case of a WF, there are NWTS WTSs. The probability mass function (PMF) of WF 

availability ( ( )WFA WFc ) is expressed using the binomial distribution as follows: 

( ) ( ) ( ) ( ).

0

 1    
WTS

WTS

N
r N rWTS

WFA WF WTS WTS WF WTS rated

r

N
c q q c r rp

r
 

−

=

 
= − − 

 
  (4.8) 

where r is number of operational WTS in the WF. ( )WFA WFc  is shown in Figure 4-5. 

( ) ( ) ( ) ( ) ,   1    TG WTS WTS V t t ci ratedp q V V v v = −  

( ) ( )( ) ( ). .1TG WTS rated WTS WTS WTS ratedp q B p p = − −
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Figure 4-5. The WF availability PMF (ρWFA(cWF)). 

The ( )
WFG WF

p is generalized for NWTS WTSs as follows:  

For pWF = 0, 

( ) ( ) ( ) ( )
1

0   1   
WTS

WTSWTS

N
r N rWTSN

WFG WTS WTS WTS WF

r

N
q q q A p

r
 

−

=

   
= + −    

   
  (4.9) 

For 0 < pWF < r pWTS.rated,  

( ) ( ) ( ) ( )

( )

 

 ,   

    1

 where  as in eq.(4.2)    

V

WTSr N rWTS

WFG WTS WTS WTS t

WTS t ci rated

N
rp q q V

r

p V v v

 
− 

= − 
 

 

 (4.10) 

For this case, ( )
WFG WTS

rp  should be calculated for all possible values of rpWTS [0, r pWTS.rated] 

for all r, and eventually sum up all probabilities resulting from equal rpWTS values.  

 

 

 


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For pWF = r pWTS.rated, 

( ) ( ) ( ) ( ) ( ). .
    1  

                                                             [1,2,..., ]

WTSr N rWTS

WFG WTS rated WTS WTS WF WTS rated

WTS

N
r p q q B p r p

r

r N

 
− 

= − − 
 

 

 (4.11) 

4.2.2 Non-Sequential Monte Carlo Simulation 

In this method, the state sampling is non-chronological, i.e., specific MTTFWTS and 

MTTRWTS do not have direct effect. Rather, any combination of MTTFWTS and MTTRWTS 

based on equation (4.3) with equal availability would have similar results. The states of the 

WTSs availability are modeled as uniform distribution random variable (Y) where 

Y~unif(0,1). Subsequently, the availability states for each WTS are calculated as follows 

[12]: 

,

,

,

0  ,  
  {1,2,.. }, {1,2,.. }

   ,      1

WTS

W

i m

WTSi m WT

TS

S

i m

q
iQ N

Y

Y
m M

q

 
=    

 
 (4.12) 

where QWTSi,m represents the availability state of WTS i at sample m, and YWTSi,m is the 

random number uniformly distributed between 0 and 1 for WTS i at state m. Afterwards, 

M wind speed samples are generated by duplicating the available wind speed data. Note 

that M in this study is chosen to be multiple of the available wind speed data size, e.g., M 

= 10×the size of the wind speed data. Finally, under the assumption that all WTSs are 

subject to the same wind speed at each sample m, the power output values for the WF is 

generated as shown in equation (4.13).  
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( )

)

, .

1

 ,   

, .  ,   

1

       

                                    

             

0                       

WTS

i

WTS

i

N s s

m ci
WTS m WTS rated s s

i rated ci

m ci rated

N

WF
WTS m WTS rated m rated co

i

V v
Q p

v v

V v v

p Q p V v v

=

=

  −
   −  

 

=   





               Otherwise

                                                        

                            . ,   1 ,  2 } { ,.. Mm














 

 
(4.13) 

Subsequently, ( )
WFG WF

p  is calculated similar to the method used to find ( )
V

v .  

4.2.3 Sequential Monte Carlo Simulation 

In this method, the state sampling is chronological, i.e., MTTFWTS and MTTRWTS 

are used in the state duration samples [12]. This is explained as follows: M is the size of 

the samples, as in the non-sequential case. M could be interpreted as the length of multiple 

cycles; each cycle has the length of the original wind speed data size. For each cycle, there 

are sub-cycles when the WTS is either UP or DOWN as explain next: 

When WTS is UP, it transitions to the DOWN state with rate equals to: 

1
WTS

WTSMTTF
 =  (4.14) 

When WTS is DOWN, it transitions to the UP state with rate equals to: 

1
WTS

WTSMTTR
 =  (4.15) 
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The failure and repair processes are assumed to be exponentially distributed.  These 

processes are modeled as a continuous time Markov chain. The following two equations 

describe being in either UP/ DOWN State and transitioning to either DOWN/UP: 

( )
 ( )  ( )UP

WTS DOWN WTS UP

dP t
P t P t

dt
 = −  

( )
 ( )  ( )DOWN

WTS UP WTS DOWN

dP t
P t P t

dt
 = −  

Solving for the previous equations gives:  

( ) ( )

( ) (0)( )  (0)( )
WTS WTS WTS WTS

DOWN

t t

WTS WTS WTS WTS

DOWN UP

WTS WTS WTS WTS

e e
P t p p

      

   

− + − +
+ −

= +
+ +

 

( ) ( )

( ) (0)( ) (0)( )
WTS WTS WTS WTS

UP

t t

WTS WTS WTS WTS

DOWN UP

WTS WTS WTS WTS

e e
P t p p

      

   

− + − +
− +

= +
+ +

 

Assuming pDOWN (0) = 0 and pUP(0) = 1, and as t →  : 

1  
 

WTS

UP WTS

WTS WTS

P q


 
= = −

+
 (4.16) 

 

WTS

DOWN WTS

WTS WTS

P q


 
= =

+
 (4.17) 

For each sub-cycle (UP or DOWN), a uniform random number is generated, U~unif(0,1). 

The duration sample is calculated using the inverse transform method, as follows: 
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(ln( ))Up WTST MTTF U= −  (4.18) 

(ln( ))Down WTST MTTR U= −  (4.19) 

When the WTS is DOWN for period of TDown, the WTS contribution to WF generated power 

equals zero. On the other hand, when the WTS is UP, the output is computed as has been 

discussed earlier: WF power output is the summation of the power generated of the UP 

units. Finally, ( )
WFG WF

p is evaluated similar to the method used to find ρ
V
(v).  

4.3 Reliability Assessment Based on WF Generated Power PDF  

The original PPC method is slightly modified to account for the addition of WF 

generation. In this case, the load duration is the combination of the actual load minus the 

WFs generation output. We refer to this as the equivalent load duration, ELDC. The ELDC 

is computed from the WF probabilistic model and the actual load probabilistic model. The 

ELDC is computed as follows:   

ELDC = Forecasted Load  Expected WF Power−  (4.20) 

WF expected power output is computed from the three probabilistic methods used to 

compute ( )
WFG WF

p : first, hourly Gaussian distributions with means μ̂ℎand standard 

deviations σ̂ℎ  (h = 1,2,…,24) are estimated from the historical wind data. Afterwards, all 

possible wind speed values are found and converted to power using equation (4.2) with 

NWTS number of WTSs. Then, the probabilistic expectation is found using the sample WF 
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power found and their corresponding probability, i.e., ( )
WFG WF

p . Subsequently, the ELDC 

is computed using the forecasted load minus the expected values of WF power output. The 

resultant curve is converted to an IPDF as required by the PPC method. The vertical axis 

of the IPDF is probability and horizontal axis is the total load (l). Note that all reliability 

and cost indices are calculated as in mentioned previously in section 3.1.2.  

4.4  Case Study 

The hourly wind speeds for a year is collected from the System Advisory Model 

(SAM) [38]. The location under study is at a rolling hills area in AZ, USA. The wind speed 

data PDF, ρV (v), and CDF, FV (v), of this site are found as described before and is shown 

in Figure 4-6 and Figure 4-7, respectively. Under the assumption that all WTSs are subject 

to the same wind regime and have the same specifications, ρWFG(pWF) can be found using 

one of the three methods described previously. Siemens Wind Turbine (SWT-2.5-120) 

specification is utilized to perform the analysis of different cases [39]. Theses 

specifications are: pWTS.rated = 2.5 MW, vci = 3 m/s, vrated = 11 m/s, and vco = 22 m/s. qWTS is 

assumed to be 0.15, MTTFWTS = 950 hrs. and MTTRWTS = 167.7 hrs. NWTS in the WF under 

study is 10. The reliability test system consists of the following: (1) two CG units each has 

capacity of 58 MW and FOR = 0.05, (2) the WF mentioned previously, and (3) load with 

the p.u. data taken from the RTS test system considering a base of 100 MW [40], described 

in details in APPENDIX A. The test system topology is shown in Figure 4-8.   
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Figure 4-6. The wind speed PDF. 

 

Figure 4-7. The wind speed CDF. 

 

Figure 4-8. The reliability test system. 
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4.4.1 Analytical Probabilistic Method Results   

Equations (4.9), (4.10) and (4.11) were used to find ρWFG(pWF) for a WF that 

consists of 10 WTSs. Figure 4-9 shows ρWFG (pWF) found using the analytical approach. The 

probability at 0 MW is 0.1987. Equation (4.9) shows that pWF = 0 is because either all WTSs 

are at a failure state or wind speeds are out of the generation region of the operational 

WTSs. Since (qWTS=0.15)10 ≈ 0, having r operational WTSs out of NWTS, given that the 

wind speeds are out of the generation region of the WTSs, contributes most to ρWFG (pWF = 

0). On the other hand, the probability at 25 MW (WF rated power) equals to 0.0193, which 

gives indication that the cumulative probability of wind speeds above vrated and within the 

generation range of the WTS is small. Because in this case, (1-qWTS)
10 ≈ 0.1969 multiplied 

by FV (vrated <Vt < vco). Note that there are impulses at r pWF.rated, where r = 0, 1,…, 10, 

generated mostly from equations (4.9) and (4.10) and small contribution small contribution 

from equation (4.11). 

 

Figure 4-9. ρWFG (pWF) using the analytical method. 
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4.4.2 Non-Sequential Monte Carlo Simulation Results 

The state sampling was used to non-chronologically generate hourly UP and 

DOWN states. M is chosen to be 10 times the wind speed data size, i.e., M simulates 10 

years of the WTSs UP and DOWN states. Equation (4.13) was used to evaluate pWF and 

subsequently ρWFG(pWF). Figure 4-10 shows ρWFG (pWF). The probability at 0 MW is 0.2001, 

compared to 0.1987 in the analytical case. On the other hand, the probability at 25 MW 

equals to 0.0191 compared to 0.0193 in the analytical case. The comparison is favorable. 

 

Figure 4-10.  ρWFG (pWF) using the NSMCS. 

4.4.3 Sequential Monte Carlo Simulation Results 

     As explained earlier, UP and DOWN sub-cycles are chronologically generated with M 

equals 10 times the wind speed data size. For each year, sub-cycles of UP and DOWN are 

generated using equation (4.18) and (4.19). The probability at 0 MW is 0.2001, compared 

to 0.1987 in the analytical case. On the other hand, the probability at 25 MW equals to 

0.0185 compared to 0.0193 in the analytical case. Figure 4-11 shows ρWFG(pWF).  



 

 34 

 

Figure 4-11. ρWFG(pWF) using the SMCS. 

The numerical values off all three methods are shown in Table 4-1. A comparison 

of the WF generated power CDF (FWFG(pWF)) found using all three methods is shown in 

Figure 4-12. All three methods could be used to evaluate ρWFG(pWF). However, an 

advantage of the MCS method over the analytical solution is the capability to simulate 

complex systems without the need for complex derivations. An example is when FORs are 

not identical across simulated WTSs or there are derated states. It would be 

computationally challenging to derive all possible events. Further, SMCS has an advantage 

over the two other methods because of its ability to preserve the chronology of the process 

under study, e.g., failure or repair. This could be crucial, for example, when WTS is 

coupled with a storage system.   
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Figure 4-12. FWFG (pWF) for all three methods. 

 

Table 4-1. ρWFG(pWF) values at 0 ~10 pWTS.reated. 

pWF (MW) Analytic

al 

NSMCS SMCS 

0 0.1987 0.2001 0.2001 

2.5 0.0008 0.0012 0.0011 

5 0.0006 0.0012 0.0011 

7.5 0.0009 0.0012 0.0014 

10 0.0013 0.0012 0.0010 

12.5 0.0017 0.0017 0.0010 

15 0.0048 0.0048 0.0054 

17.5 0.0134 0.0137 0.0153 

20 0.0274 0.0273  0.0287 

22.5 0.0342 0.0347 0.0311 

25 0.0193 0.0191 0.0185 

 

 

4.4.4 Reliability Assessment Results 

Table 4-2 shows the reliability assessment using the PPC method of all cases. When 

there was no wind generation the LOLP = 0.05495. After the addition of the WF to the test 

system, the LOLP was lowest when the WF farm output was deterministic (WTSs 
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unavailability is ignored). In this case, it was reduced by 34.8%. When using the inverse 

transform sampling (F-1
WFG (random generated numbers from a uniform distribution)), the 

averages of running the PPC 10 years (each with 8760 samples) of all indices were close 

to the deterministic forecast results. The reduction in this case ranged 32.1% ~ 33.1%. 

Whereas the results of using the Gaussian distribution sampling gave higher LOLPs values 

since it computed the probabilistic expectation of the hourly WF power output. The LOLP 

was reduced 21.4% ~23.5%. The EUE and expected CG results followed the same pattern 

as the LOLP did.   

Table 4-2. PPC results of all cases. 

Case LOLP 
EUE  

(MWh) 

Expected CG 

(MWh) 

Base case (No WF generation) 0.05495 7,577.1 533,999.7 

Deterministic WF output (WTSs FORs 

ignored) 
0.03582 4,370.5 442,457.8 

Analytical (Inverse Transform Sampling) 0.03675 4,545.3 455,347.8 

Analytical (Gaussian) 0.04304 5,243.4 486,763.8 

NSMCS (Inverse Transform Sampling) 0.03730 4,577.9 456,428.1 

NSMCS (Gaussian) 0.04320 5,261.9 486,0523.2 

SMCS (Inverse Transform Sampling) 0.03708 4,561.0 455,866.6 

SMCS (Gaussian) 0.04205 5,093.8 482,687.0 

4.5 Conclusions 

Three different probabilistic methods were presented in this chapter to compute the 

power output PDF of a WF consisting of multiple WTSs. The three methods were discussed 

in detail, and a case study on a WF that consists of 10 WTSs has been presented. First the 

power output PDF was computed analytically. In addition, both NSMCS and SMCS were 
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used to simulate WTSs failures non-chronologically and chronologically, respectively. The 

resulting PDFs computed with all three methods were found to be very close. Subsequently, 

the PPC method was used to compute the system reliability by combining the WF power 

outputs PDFs and the electric load probabilistic model. The probabilistic WF power output 

model and the electric load model were combined to provide an equivalent load duration 

model which was inputted to the PPC method. The results of the PPC provided reliability 

indices for the system. These indices quantified the impact of wind farms on the reliability 

of the system. 
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CHAPTER 5. PROBABILITY CHARACTERIZATION OF 

SOLAR FARM POWER OUTPUT AND IMPACT ON SYSTEM 

RELIABILITY    

  The chapter presents a computational procedures of generated power probability 

distribution function of a SF ( ( )
SFG SF

p ) consisting of NSCG SCGs. Probabilistic methods 

are utilized to compute ( )
SFG SF

p in a certain location and assumed FORs of the SCGs. 

Three methods have been investigated: (1) analytical, (2) SMCS and (3) NSMCS. The 

study aims to draw a comparison of these alternate methods. ( )
SFG SF

p  is dependent on the 

solar radiation historical data, FOR of individual SCGs and operating constraints of SCGs. 

Once ( )
SFG SF

p has been computed, using any of the three probabilistic methods mentioned 

previously, the PPC method is used to assess the reliability of the overall system. 

Specifically, the SF power output probabilistic model and the electric load probabilistic 

model are combined to create an ELDC model. The CG system must supply the equivalent 

load. The PPC simulates the operation of the CG system and the main operational 

constraints (mainly economic dispatch) to determine the expected production from the 

conventional units, the LOLP, the EUE, etc. For comparison purposes, the system is also 

simulated assuming that the operation of SF is deterministic, i.e. forced outages of the 

SCGs are ignored. An overview of reliability assessment procedure in precedence of solar 

generation is shown in Figure 5-1. 

. 
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Figure 5-1. Reliability assessment procedure in presence of solar generation. 

5.1 Problem Statement and Basic Calculations 

Given a number of SCGs i= 1,…,NSCG, each SCG has FOR qSCGi and availability 1- 

qSCGi. The solar radiation over period of time t = 1,…,T is assumed given as a forecast. Also, 

each SCG capacity is known. Moreover, SCG power (pSCG) versus solar radiation (G) curve 

is known, given that the SCG is available. It is desired to find the PDF of individual SCG 

power ( ( )SG SCGp ). Subsequently, the PDF of the power output of NSCG SCGs is found. 

Moreover, it is desirable to compute the ELDC probabilistically and to perform reliability 

assessment using the PPC method. The reliability assessment is performed on a test system 

that incorporates a SF or multiple SFs to compute LOLP and EUE, and other indices. The 

reliability indices computed with this procedure account for the SCG forced outages and 

solar radiation variability.  

 The first step is to use the solar radiation historical data of a specific location to find 

pdf of the solar radiation ( ( )G g ). One method to find ( )G g  is to construct a histogram 

with appropriate number of bins. To convert the histogram to a PDF, the fact that 

∫ ρ
G

 (g)dg
∞

-∞
=1 is used. The counts of occurrences on the horizontal axes of the histogram 

for each step (bin) are normalized by dividing them by the histogram total area, similar to 

Load 
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finding the pdf of wind speed. Once ( )G g is known, the solar power versus solar radiation 

curve, conditional upon the availability of the SCG, can be utilized to find the SCG power 

PDF, ρSG(pSCG). pSCG can be mathematically expressed as follows [5]: 
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(5.1) 

Where Rc is a certain radiation point set usually at 150 W/m2 and Gstd the solar radiation in 

the standard environment , measured in W/m2. 

5.2 Probabilistic Evaluation of SF Generated Power PDF 

Three probabilistic methods, analytical, NSMCS and SMCS for evaluating ( )
SFG SF

p

are described next in detail. 

5.2.1 Analytical Probabilistic Method 

The SCG is modeled as a 2-state model: either the unit i is available with capacity 

equal to pSCG.rated or unavailable with capacity equal to zero, as depicted in Figure 5-2. The 

probability that the ith SCG is unavailable, qSCGi, is calculated as in [3]:  

SCGi
SCGi

SCGi SCGi

MTTR
q

MTTF MTTR
=

+  
(5.2) 
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where MTTRSCG is the unit mean time to repair and MTTFSCG is the mean time to failure 

of a SCG. Both MTTRSCG and MTTFSCG are exponentially distributed. Note that qSCGi is 

assumed to be identical for all SCGs. 

 

Figure 5-2. The SCG two-state availability model. 

Figure 5-3 and Figure 5-4 are important to derive all the cases analytically. To find the 

probability of all possible cases, the law of total probability is used:  

( ) ( ) ( )

( ) ( )

SG SCG SG SCG SCG

SG SCG SCG

ρ   p  = ρ   p SCG is UP   1-q  

                     + ρ  p SCG is DO| WN   q

|  

 
 (5.3) 

For pSCG = 0, there are two possibilities: either the unit is in a failure state, or Gt = 0: 

( ) ( ) ( ) ( )0 ( 1 0 )
SG SCG SCG G t SCG

q q F G p = + − =  (5.4) 
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Figure 5-3. SCG power and solar irradiance PDF relationship [16].  

 

Figure 5-4. Probability tree for SCG possible outcomes. 

For 0 <pSCG < pSCG.rated, it is a continuous region. There are two regions as follows: 0 ≤ Gt < 

Rc, and Rc ≤ Gt ≤ Gstd. In this case, ρSG(pSCG) can be expressed mathematically as follows:  

( ) ( ) ( )1          (0, ]
SG SCG SCG G t t std

p q G G G = −    (5.5) 

For pSCG = PSCG.rated, the solar radiation ranges Gt ≥ Gstd. ρSG(pSCG.rated) in this case can be 

expressed mathematically as follows: 
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( ) ( ) ( ) ( ). .
1

std

SG SCG rated SCG G SCG SCG rated

G

p q dg g p p  
 

= − −  
 

  (5.6) 

Or equivalently: 

( ) ( )( ) ( ). .
1 1 ( )

SG SCG rated SCG G std SCG SCG rated
p q F G p p = − − −  (5.7) 

In the case of a SF, there are NSCG SCGs. The PMF of SF availability ( ( )
SFA SF

c ), shown in 

Figure 5-5, can be expressed using the binomial distribution as follows: 

( ) ( ) ( ) ( ).

0

1    
SCG

SCG

N
r N rSCG

SFA SF SCG SCG SF SCG rated

r

N
c q q c r p

r
 

−

=

 
= − − 

 
  (5.8) 

 

Figure 5-5. The SF availability PMF (ρSFA(cSF)). 

The ( )
SFG SF

p  can be generalized for NSCG number of SCGs as follows:  

For pSF = 0, 
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( ) ( ) ( ) ( ) ( )
1

0   1 0   
SCG

SCGSCG
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For 0 < pSF < r pSCG.rated,  

( ) ( ) ( ) ( )     1

 where  as in eq.(5.1)     [0, ]

G

SCGr N rSCG

SFG SCG SCG SCG t

SCG t std

N
rp q q G

r

p G G

 
− 

= − 
 

 

 (5.10) 

For this case, ( ).   SFG SCG ratedr p  should be calculated for all possible values of rpSCG  [0, r 

pSCG.rated] for all r, and eventually summing up all probabilities resulting from equal rpSCG 

values.  

For pSF = r pSCG.rated, 

( ) ( ) ( ) ( ) ( ). .
     1 1 ( )  

SCGr N rSCG

SFG SCG rated SCG SCG G std SCG ratedSF

N
r p q q F G p r p

r
 

− 
= − − − 

 
 (5.11) 

5.2.2 Non-Sequential Monte Carlo Simulation 

In this method, the state sampling is non-chronological. This means if the SCG is 

UP/Down, it could be UP/Down in the following state and the MTTFSCG or the MTTRSCG 

do not affect the length of the transition from UP state to DOWN state, or vice versa. In 

other words, any combination of MTTFSCG and MTTRSCG based on equation (5.2) with 

equal availability would have similar results. The states of the SCGs availability are 
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modeled as uniform distribution random variable (Y) where Y~unif(0,1). Subsequently, the 

availability states for each SCG are converted to binary numbers as follows: 

,

,
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0  ,  
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(5.12) 

where Qi,m is a binary vector that represents the availability state of SCG i at sample m, and 

Yi,m is the random number uniformly distributed between 0 and 1 for SCGi at state m. 

Afterwards, M solar radiation samples are generated by duplicating the available solar 

radiation data. Note that M in this study is chosen to be multiple of the available solar 

radiation data size, e.g., M = 10×the size of the solar radiation data. Finally, under the 

assumption that all SCGs are subject to the same solar radiation at sample m, the power 

output values for the SF is generated as shown in equation (5.13).  
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 (5.13) 

Once pSF is calculated for all samples, ( )
SFG SF

p is calculated with a method similar to that 

for finding ( )
G

g . 
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5.2.3 Sequential Monte Carlo Simulation 

  As discussed in the WF case, in this method the state sampling is chronological, 

i.e., MTTFSCG and MTTRSCG are randomly used to compute the state duration samples 

[12]. This is explained as follows: M is the size of the samples, as in the non-sequential 

case. M could be interpreted as the length of multiple cycles; each cycle has the length of 

the original solar radiation data size. For each cycle, there are sub-cycles when the SCG is 

either UP or DOWN as explained next: 

(1) when the SCG is UP, it transitions to the DOWN state with rate: 

1
SCG

SCGMTTF
 =  (5.14) 

(2) when the SCG is DOWN, it transitions to the UP state with rate: 

1
SCG

SCGMTTR
 =  (5.15) 

The failure and repair processes are assumed to be exponentially distributed. As derived 

for the WTS case, the following equations are derived:   

1  
 

SCG

UP SCG

SCG SCG

P q


 
= = −

+
 

 
 

SCG

DOWN SCG

SCG SCG

P q


 
= =

+
 

(5.16) 

(5.17) 
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For each sub-cycle (UP or DOWN), a uniform random number is generated, U~unif(0,1). 

The duration sample is calculated using the inverse transform method, as follows: 

(ln( ))Up SCGT MTTF U= −  

(ln( ))Down SCGT MTTR U= −  

 (5.18) 

 (5.19) 

When the SCG is DOWN for period of TDown, the SCG has no contribution to SF generated 

power. On the other hand, when the SCG is UP, the SF generated power is the summation 

of the power generated of the UP units. Finally, ( )
SFG SF

p  is evaluated with a method 

similar to that for finding ( )
G

g .  

5.2.4 Reliability Assessment Based on SF Power Output PDF 

The PPC method, described previously in CHAPTER 3 is used to assess the reliability 

when adding SF to a power system. In this case, the net load is the forecasted load minus 

the SFs generation output. The ELDC is computed from the SF probabilistic model and the 

actual load probabilistic model. The ELDC is computed as follows:   

ELDC = Forecasted Load  Expected SF Power−  (5.20) 

Similar to the WF case, SF expected power output is computed from 𝜌𝐹𝐺(pSF): first, a 

Gaussian distribution with mean μ̂ℎand standard deviation σ̂ℎ  (h = 1,2,…,24) is estimated 

from the historical solar radiation data. Subsequently, using equation (5.1), all possible 

solar radiation values are converted to power with NSCG number of SCGs. Then, the sampled 
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SF power outputs multiplied by their corresponding probability represents the probabilistic 

expectation. Subsequently, the ELDC is computed using the forecasted load and the 

expected values of SF power output. Finally, the resultant curve is converted to an IPDF.   

5.3 Case Study 

The hourly solar radiation for a year is used in this study. The data was collected 

from the System Advisory Model (SAM) [38]. The location under study is in Phoenix, AZ 

(TMY2).  Next, the solar radiation PDF, ρG(g), and CDF FG(g), are found as described in 

section II, shown in Figure 5-6 and Figure 5-7, respectively. All SCGs are assumed to be 

subject to the same solar radiation and have the same specifications. Each SCG has pSCG.rated 

= 0.5 MW, Gstd = 1000 W/m2, and RC = 150 W/m2. The unavailability (qSCG) = 0.15, 

MTTFSCG = 950 hrs., and MTTRSCG = 167.7 hrs. The number of SCGs, n, in the SF under 

study is 10. Finally, the reliability test system consists of the following: (1) two CG units 

of capacity 35 MW and FOR = 0.05 each, (2) the SF with the parameters provided earlier, 

and (3) load with the p.u. data taken from the RTS test system considering a base of 60 

MW [40]. The test system is shown in Figure 5-8.    
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Figure 5-6. Solar radiation PDF. 

 

Figure 5-7. Solar radiation CDF. 
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Figure 5-8. The example test system. 

5.3.1 Analytical Probabilistic Method Results  

ρSFG (pSF) of the SF that consists of 10 SCGs was computed using the steps 

illustrated previously in equations (5.9), (5.10) and (5.11). Figure 5-9 shows ρSFG (pSF) found 

using the analytical method. The probability at 0 MW is 0.5306. Equation (5.9) shows that 

the probability that the SF produces 0 MW comes from either all SCGs are experiencing a 

failure, or solar radiation is 0 W/m2 given r out of are available. Since (qSCG=0.15)10 ≈ 0, 

having r operational SCGs out of NSCG while the solar radiation is 0 W/m2 contributes most 

to ρSFG (pSF = 0). On the other hand, the probability at 5 MW (SF rated power) = 0.0002 ≈ 

0, which indicates that the cumulative probability of the solar radiation above Gstd is very 

close to 1. Note that the values at r pSF.rated, where r = 0, 1,…,10, were generated mostly 

from equations (5.9), (5.10) and a small contribution from equation (5.11) since 

( )  1 or 1 ( )  0G std G stdF G F G −  . 
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Figure 5-9. ρSFG (pSF) using the analytical method. 

5.3.2 Non-Sequential Monte Carlo Simulation Results 

The state sampling in the case of the NSMCS is non-chronological. M number of hourly 

UP and DOWN states were generated. M is chosen to be 10 times the solar radiation data 

size, i.e., M simulates 10 years of the SCGs UP and DOWN states. pSF was computed using 

equation (5.13). Subsequently, ρSFG(pSF) was computed as mentioned before. Figure 5-10 

shows ρSFG(pSF). The probability at 0 MW is 0.5360, compared to 0.5306 in the analytical 

case. On the other hand, the probability at 5 MW equals to 0.0003 compared to 0.0002 In 

the analytical case.  

5.3.3 Sequential Monte Carlo Simulation Results 

     In the case of the SMCS, UP and DOWN sub-cycles are chronologically generated with 

M equals 10 times the solar radiation data size. For each year, sub-cycles of UP and DOWN 

are generated using equations (5.18) and (5.19). The probability at 0 MW is 0.5363, 

compared to 0.5306 in the analytical case. On the other hand, the probability at 5 MW was 
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found to be 0.0004 compared to 0.0002 in the analytical case. Figure 5-11 shows ρSFG(pSF) 

for this case.  

 

Figure 5-10. ρSFG(pSF) using NSMCS. 

 

Figure 5-11. ρSFG(pSF) using SMCS. 

The numerical values of the resultant probabilities of all three cases are summarized 

in Table 5-1. Figure 5-12 shows a comparison between the SF generating capacity 

cumulative probability functions (FSFG(pSF)) found using all three methods. As shown 

previously, three methods can be used to evaluate ρSFG(pSF). However, the analytical method 
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required complex derivations that are needed to weigh in all the possible outcomes whereas 

both MCS methods did not. If, for example, the FORs of SCGs are not identical, or under 

the existence of derated states, it would be computationally challenging to mathematically 

derive all possible events in order to perform the analytical method. Further, the SMCS 

method simulates the failure and repair process chronologically.  

 

Figure 5-12. FSFG(pSF) for all three methods. 

Table 5-1. ρSFG (pSF) values in the range 0 ~10 pSCG.reated. 

pSF (MW) Analytical NSMCS SMCS 

0 0.5306 0.5360 0.5363 

0.5 0.0041 0.0024 0.0022 

1 0.0029 0.0030 0.0031 

1.5 0.0032 0.0025 0.0027 

2 0.0037 0.0030 0.0032 

2.5 0.0051 0.0059 0.0057 

3 0.0069 0.0070 0.0070 

3.5 0.0073 0.0079 0.0073 

4 0.0061 0.0059 0.0060 

4.5 0.0023 0.0025 0.0024 

5 0.0002 0.0003 0.0004 
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5.3.4 Reliability Assessment Results 

Table 5-2 shows the reliability assessment using the PPC method of all cases. The 

LOLP improved the most when the SCGs forced outages were ignored, 9.7%. Using the 

transform inverse sampling method ((F-1
SFG (random generated numbers from a uniform 

distribution)), gave LOLP results higher than the deterministic SF output forecast case. 

The LOLP improvement range was 6.2% ~ 6.7%. On the other hand, the LOLP results 

were highest when SF power outputs sampled from the Gaussian distribution. In this case, 

the LOLP improvements were in the range of 3.8% ~ 4.6%.  The EUE and the expected 

conventional generation of all cases followed similar pattern as the LOLP did.   

Table 5-2. PPC results of all cases. 

Case LOLP 
EUE 

(MWh) 

Expected CG 

(MWh) 

Base case (No SF generation) 0.06016 5,330.3 336,269.1 

Deterministic SF output (SCGs FORs 

ignored) 
0.05433 4,419.9 323,785.2 

Analytical (Inverse Transform Sampling) 0.05644 4,792.7 326,475.7 

Analytical (Gaussian) 0.05790 4,739.2 328,732.3 

NSMCS (Inverse Transform Sampling) 0.05610 4,750.5 325,805.6 

NSMCS (Gaussian) 0.05740 4,663.4 327,729.7 

SMCS (Inverse Transform Sampling) 0.05622 4,758.5 325,919.6 

SMCS (Gaussian) 0.05740 4,628.9 326,819.6 

5.4 Conclusions 

Three probabilistic methods were presented to evaluate SF power generation 

probability distribution functions. The three methods were used to find the ρFG(pSF)of an 



 

 55 

example SF that consists of ten 0.5 MW SCGs. Based on the historical solar radiation data 

of a specific location, ρG(g) was found and subsequently ρFG(pSF) was analytically 

computed. The SCGs forced outages were simulated non-chronologically and 

chronologically using NSMCS and SMCS, respectively. The results extracted from all 

three methods were found to be very close. Subsequently, the PPC method was used to 

compute the system reliability by combining the SF power outputs PDFs and the electric 

load probabilistic model. By combining the probabilistic SF power output model and the 

electric load model, an equivalent load duration model was computed. The equivalent load 

duration model was inputted to the PPC method to assess the overall system reliability. 

The results of the PPC in terms of reliability indices quantify the impact of SF on system 

reliability. 
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CHAPTER 6. UNIT COMMITMENT AND PROBABILISTIC 

RELIABILITY ASSESSMENT OF POWER SYSTEMS WITH 

VARIABLE GENERATION    

This Chapter presents a reliability assessment framework for power systems with VG 

and considering UC schedules and startup/shut down constraints as well as ramp limits. 

The VG chosen for illustration is SCGs, however, similar analysis can be applied when 

adding combinations of SCGs and WTSs. The aim is to compute distributions of SCG 

generated output by taking into account: (1) SCGs FORs, (2) solar radiation forecast, and 

(3) the CGs ramping, maximum and minimum limits and startup/shutdown period limits. 

To compute the expected generation contribution of SCGs, G-1 (G is the number of CGs) 

is applied, i.e., a single CG unit contingency is applied. At every iteration, a UCED model 

is solved. In total, there are G+1 cases: the base case is when all CGs are in UP state and 

G cases by taking a single CG out at a time. Once the expected SCGs power output is 

known, assessing reliability is performed using the probabilistic production costing, PPC, 

method. 

6.1 Problem Statement  

Given a number of SCGs i= 1,…, NSCG, each with a FOR of qSCGi.; a forecast of the 

solar radiation over period of time t = 1,…,T ; and the capacity of each SCG. The SCG 

power, pSCG, versus solar radiation curve is known, given that the SCG is available. The 

number of SCGs that are subject to the same solar radiation in a SF is known; the solar 

farm consists of NSCG SCGs. It is desired to find the expected SCGs generated power by 
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formulating a UCED optimization problem, as explained in detail later in this chapter. The 

expected SCGs output subtracted from the expected demand, i.e., the net equivalent load, 

is then inputted to the PPC to find the projected cost and reliability metrics when adding 

the SCGs. 

6.2 Unit Commitment Economic Dispatch Incorporating Solar Generation    

In this section, the UCED formulation is discussed in detail. The goal of performing 

a UCED is to determine the optimal schedule of CGs. The UCED aims to minimize the 

production cost over a period of time. The UCED problem is a complex problem. 

Integrating VGs, e.g., renewables, increases the degree of complexity due to VG 

uncertainty. In general, the UCED should consider the following set of constraints: 

minimum and maximum production limits, CGs minimum up/down times, ramp up/down 

limits and demand and reserve requirements. The UCED in this work has been proposed 

in [20] and explained in [21].  The set of constraints are as follows:  

=        
g ,t g ,t 1 g ,t g ,t

x x s z g G , t T
−

   − −  (6.1) 

Where xg,t is a binary variable the represents the gth CG status (1: ON, 0: OFF), sg,t is a 

binary variable of the gth CG startup status (1: turned on, 0: otherwise), and zg,t is a binary 

variable of the gth CG shutdown status (1: turned off, 0: otherwise) at time t.   The constraint 

in (6.1) captures changes in CG status (ON→OFF or OFF→ ON) at time t and a time step 

before t, i.e., t −1. Variables sg,t  and zg,t capture CG transitions. Both sg,t  and zg,t  are known 

once xg,t  and xg,t-1 are determined and cannot be both 1 at the same time, either all 0 (no 

transition) or one of them is 1. 
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The second constraint is the minimum generation limit which is zero if a CG is off and 

Pg
 min otherwise. 

        min

g ,t G g ,t
p P x g G , t T      (6.2) 

Where pg,t is the gth CG produced power at time t. 

The constraint in (6.3) insures that the generated power does not exceed Pg
 max when it is 

ON and does not exceed the shutdown rate (SDg) when it is OFF at t+1.  

 + ( )             
+

     −max max

g ,t g ,t G g ,t g G g ,t 1
p p P x SD P z g G , t T  (6.3) 

Note that p
g,t

=p
g,t

+rg,t, where  p
g,t

 is the gth CG provided power and reserve, and rg,t  is the 

gth CG reserve provision at time t. 

The reserve (R), which is calculated as percentage of the peak load plus the largest CG unit 

capacity, this constraint is formulated as follows: 

+          


   g ,t t
g G

p D R t T  (6.4) 

Next, the CGs and the SF available generation at time t must meet the demand (D):  

   
g ,t SF ,t t

g G

p p D t T


+ =    (6.5) 
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The SF power output at time t (p
SF,t
 ) is dependent on the forecasted solar radiation, Gt, and 

the number of operational SCGs in the SF at time t. The SMCS is used to find the 

UP/DOWN states of the SCGs. In this method, the state sampling is chronological, i.e., 

MTTFSCG and MTTRSCG are randomly used to compute the state duration samples [12]. 

For each sub-cycle (UP or DOWN), a uniform random number is generated, U~unif(0,1). 

A sub-cycle represents the time a SCG is either UP or DOWN. Thus, the simulation time, 

T, consists of a sequence of UP and DOWN sub-cycles. The duration of each sub-cycle is 

calculated using the inverse transform method, as introduced earlier in section 5.2.3: 

(ln( ))Up SCGT MTTF U= −  

(ln( ))Down SCGT MTTR U= −  

(5.18) 

(5.19) 

When the SCG is DOWN for period of TDown, the SCG has no contribution to SF generated 

power. Qi,t in (6.6) represents the UP/DOWN status of the ith SCG at instance t, and its 

summation is the number of the operational SCGs in the SF at time t. To find the upper 

bound of SF power at time t, the number of operational SCGs is multiplied by the 

corresponding power output in the SCG power versus solar radiation curve at time t. The 

detailed derivation is as previously introduced in when discussed SMCS in section 5.2.3.   
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(6.6) 

The minimum up time (UTg) and minimum down time (DTg) constraints are respectively 

as follows: 

   

g

t

g ,i g ,t
i t UT 1

s x t T , g G
= − +

      

      
g

g

t

g ,i g ,t DT
i t DT 1

s 1 x t T , g G
−

= − +

 −      

(6.7) 

(6.8) 

The constraint in (6.7) insures that there has been at most one transition from ON→OFF 

in the UTg period. Similarly, while (6.8) insures that there has been at most one transition 

in DTg period. 

The ramp up and ramp down constraints ((6.9) and (6.10), respectively) follow that the 

maximum ramp rate up/down is RUg / RDg if a CG is on at t and t+1. Whereas, it is 

shutdown rate/startup limit SDg / SUg if the CG status changes ON→OFF/OFF→ ON on t 

and t+1.    
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g ,t g ,t 1 g g ,t g g ,t 1

p p SU s RU x
− −

−  +  

   
g ,t 1 g ,t g g ,t g g ,t

p p SD z RD x
−

−  +  

(6.9) 

(6.10) 

The objective function is linear and is in the form of: 

 
g

T G
g ,t ,t g ,t g

t g

min ( y SU cos t z SD cos t )
 

+ +  (6.11) 

The objective function is to minimize operation cost (yg,t), start-up (SUcostg,t) and 

shutdown (SDcostg,t) costs. While the shutdown cost computation is straightforward 

because the shutdown cost is constant, the production (fuel) and the start-up cost are not. 

The production cost is quadratic and is in the form of:  

g ,t g ,t

2

g g g
a p b p c+ +   

Where ag, bg and cg are respectively the fuel quadratic, linear, and constant cost coefficients 

of the gth CG unit. This cost function can be approximated and linearized as in [41]. The 

quadratic cost function is divided into segments (J number of segments). Each segment has 

minimum, maximum, and slope values as shown in Figure 6-1. The slop mj of the jth 

segment is the difference between the maximum and the minimum costs (c values on the 

vertical axis) divided by their corresponding MW values (x values on the horizontal axis).  

Once the slope is known, yg,t can be computed as follows:   
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g ,t j g ,t j j

y m ( p x ) c j 1 ,2 , ..., J − + =  (6.12) 

Variable yg,t  is nonnegative. The constraint in (6.12) ensures that the generated power 

belongs to the appropriate cost segment. For every time instance, cost of generating pg,t is 

calculated J times and the corresponding cost is the highest, which is determined by the 

slope mj and upper limits of each segment xj. Since the objective is minimized, yg,t strictly 

equals to this cost.    

 

The piecewise production cost [41]. 

Similarly, the start-up cost is non-linear. However, it can be represented as staircase 

function as in Figure 6-2 [42],[43]. Assuming there are s segments, each segment has cost 

kτ (τ=1,2,…,s), the constraint in (6.13) represents the staircase linearized start-up cost 

computation for each CG at time t. the more time a  CG remains off, the higher the start-

up cost incurred to turn it on. Obviously, SUcostg,t is nonnegative. If a CG is ON after it 

has been OFF for time ≥ tg
τ , SUcostg,t is incurred depending on the length of the OFF period. 
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The maximum cost is when a CG has been OFF for a time that equals the cold start time 

(CT). 

   =1,2,...,s
gt

g ,t g ,t g ,t i
i 1

SU cos t k ( x x )






−
=

 −   (6.13) 

 

Figure 6-2.  Staircase start-up cost function [42]. 

An important note is that the analysis is applied G+1 times: one time with all CGs 

up and reserve requirement, the constraint in (6.4), is imposed, and G times with a single 

CG outage in each iteration, and (6.4) is relaxed because it is a contingency. Then, the 

power output of the SF is computed at each iteration and averaged. The UCED is applied 

for all cases: normal operation and contingencies to calculate the expected SF utilized 

generation. Due to computation limitation, 4 weeks (672 hrs.) are chosen to represent every 

season, i.e., the year is represented using the data of 16 weeks. The average power output 

of the SF will be inputted to the PPC as explained next.   
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6.3 Reliability Assessment Using the Probabilistic Production Costing 

The PPC method, described previously in CHAPTER 3 is used to assess reliability 

when adding SF to a power system.  

6.3.1 Conventional Generation Units 

A CG unit is modeled as a 2-state model as explained earlier in 3.1.2.1: available 

with probability qg and capacity equals to Pg
 max or unavailable with probability 1 − qg and 

capacity equals to zero.   

6.3.2 Equivalent Load/SF Representation 

The ELDC is computed as explained earlier in CHAPTER 5:   

ELDC = Forecasted Load  Expected SF Power−  (5.20) 

The ELDC is computed using the forecasted load and the expected values of SF power 

output from the contingency and normal operation cases.  

6.3.3 Reliability Assessment  

The PPC method is used to assess reliability when adding SF to a power system. The 

LOLP and EUE are calculated as before. Once LOLP is computed, another index can be 

computed, loss of load expectation, LOLE, as follows: LOLE=LOLP x 8760 (hrs. /year). 

Lastly, it is desired to compute the capacity credit (CC), which is the capacity of a CG unit 

(dispatchable) that would provide the same reliability improvement that the VG (non-

dispatchable) provides. To compute CC, the effective load carrying capacity (ELCC) is 
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computed first. ELCC in this work is defined as load increase that the power system may 

carry when adding SF generation with LOLP equals the LOLP before adding the SF to the 

system [44]. The CC, which represents a single SCG capacity credit, is computed once the 

ELCC is known as in (6.14):  

SCG

ELCC

N
CC =  (6.14) 

6.4 Case Study 

The annual hourly solar radiation data is obtained from Phoenix, AZ (TMY2) [45].  For 

the example system, all SCGs are assumed to be subject to the same solar radiation and 

have the same specifications. Each SCG has specifications as shown in Table 6-1. The 

number of SCGs in the SF, NSCG, under study is dependent on the penetration level. The 

penetration levels are 5% to 30% of the total CG installed capacity. Finally, the reliability 

test system consists of the following: 

 (1) 10 CGs with specifications in Table 6-2, cost coefficients in Table 6-3 [46] with 

assumed FORs in Table 6-4. 

 (2) The SF with the parameters provided earlier,  

 (3) Load with the p.u. data taken from the IEEE-RTS with a base of 1,200 MW [40]. 
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Table 6-1. SCG specifications. 

pSCG.rated 10 MW 

Gstd 1,000 W/m2 

RC 150 W/m2 

qSCG (assumed) 0.15 

MTTFSCG 950 hrs. 

MTTRSCG 167.7 hrs. 

Table 6-2. The 10 CGs specifications. 

g 
Pmax 

(MW) 

Pmin 

(MW) 

DT 

(h) 

UT 

(h) 

Hot  

start  

cost ($) 

Cold 

 start  

cost 

($) 

Cold 

start 

time 

 (h) 

Ramp 

Rate 

(MW) 

1 455 150 8 8 4500 9,000 5 264 

2 455 150 8 8 5000 10,000 5 264 

3 130 20 5 5 550 1,100 4 110 

4 130 20 5 5 560 1,120 4 110 

5 162 25 6 6 900 1,800 4 137 

6 80 20 3 3 170 340 2 60 

7 85 25 3 3 260 520 2 60 

8 55 10 1 1 30 60 0 45 

9 55 10 1 1 30 60 0 45 

10 55 10 1 1 30 60 0 45 

Table 6-3. The 10 CGs cost coefficients. 

g a ($/MW2) b ($/MWh) c ($/h) 

1 4.80E-04 16.19 1,000 

2 3.10E-04 17.26 970 

3 0.002 16.6 700 

4 0.00211 16.5 680 

5 0.00398 19.7 450 

6 0.00712 22.26 370 

7 7.90E-04 27.74 480 

8 0.00413 25.92 660 

9 0.00222 27.27 665 

10 0.00173 27.79 670 
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Table 6-4. The 10 CGs FORs. 

g MTTF (hrs.) MTTR (hrs.) FOR 

1,2 967 33 0.0033 

3,4,5 960 40 0.04 

6,7 1,960 40 0.02 

8,9,10 969 31 0.031 

6.4.1 UCED Results  

The UCED solutions for normal operation and contingencies were different, as 

expected.  For instance, Table 6-4 shows the difference between the SF generated power 

at 30% penetration between normal operation and when CG 1 is out. Also, for the purpose 

of calculating the ELCC, the same analysis was applied on different loads peaks. 

 

Table 6-5. PSF Utilization Example. 

 Unit Hours of the year 

325 326 327 328 329 330 331 

A
ll

 u
n
it

s 
ar

e 
U

P
 

1 175 167 167 175 258 455 455 

2 150 150 150 150 151 150 150 
3 20 20 20 20 20 43.6

633

333

333

333 

68.8

888

888

888

897 

4 20 20 20 20 20 56.6

666

666

666

671 

83.0

111

111

111

106 

5 25 25 25 25 25 25 25 

6 0 0 0 0 20 20 20 

7-10 0 0 0 0 0 0 0 

pSF 338 330 322 313 241 60 0 

G
en

. 
1
 o

u
t 

1        

2 365 351 385 390 442 455 455 

3 0 0 0 0 0 0 0 

4 0 0 0 0 28 130 130 

5 0 0 0 0 250

000

000

000

003 

145 162 

6-10 0 0 0 0 0 0 0 

pSF 363 361 346 313 241 60 0 
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6.4.2 Reliability Assessment and Capacity Credit  

Table 6-6 shows the reliability assessment and cost projection of different penetration 

levels, and different peaks (needed to compute CC and ELCC). The improvement range 

was 20% to 52% in LOLP and LOLE. However, the rate of improvement decreased as the 

penetration increased. The EUE decreased from 19% to 54.6% as the penetration level 

increased and with same rate of improvement as the LOLP and LOLE. On the other hand, 

Figure 6-3 shows the ELCC of all cases. To compute the ELCC, the UCED and the PPC 

analysis were applied to different load peaks. The dotted line in Figure 6-3 shows the 

criterion in the ELCC computation. The ELCC increased from 24 to 90 MW as penetration 

increased, while the CC decreased from 30 to 18.75 MW as shown in Figure 6-4. 

 

Figure 6-3. The ELCC of all penetration levels. 
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Table 6-6.  Reliability assessment results. 

Peak 

(MW) 

Penetration 

level 
LOLP 

LOLE 

(h/year) 

EUE 

(MWh) 

Total Cost 

(k$) 

1,100  

0% 0.00045 3.942 456.61 116,165 

5% 0.00038 3.3288 360.83 112,679 

10% 0.00033 2.8908 294.59 109,695 

15% 0.00028 2.4528 248 106,698 

20% 0.00025 2.19 221.73 103,888 

25% 0.00023 2.0148 212 100,594 

30% 0.00021 1.8396 197.5 98,282 

1,000  

0% 0.00028 2.4528 212.6 105,073 

5% 0.00023 2.0148 153.26 102,223 

10% 0.00018 1.5768 119.9 99,342 

15% 0.00015 1.314 101.48 96,274 

20% 0.00014 1.2264 93.03 93,235 

25% 0.00013 1.1388 89.99 89,887 

30% 0.00012 1.0512 84.98 87,275 

1,200 

0% 0.00081 7.096 863.04 126,947 

5% 0.00065 5.694 697.58 123,733 

10% 0.00057 4.993 589.69 120,478 

15% 0.00051 4.468 508.56 117,140 

20% 0.00046 4.030 452.69 114,242 

25% 0.00042 3.679 424.8 111,162` 

30% 0.00039 3.416 391.53 108,890 

1,300 

0% 0.00193 16.9068 1,747 137,738 

5% 0.00144 12.6144 1,354 134,390 

10% 0.00117 10.2492 1,144 131,247 

15% 0.00104 9.1104 1,003 127,913 

20% 0.00096 8.4096 907 124,774 

25% 0.00092 8.0592 852 121,544 

30% 0.00085 7.446 785.70 119,103 
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Figure 6-4. The ELCC and CC of all penetration levels. 

6.5 Conclusions 

This chapter presented a reliability assessment for systems with different levels of 

penetration of SCGs. A unit commitment economic dispatch model is used to compute the 

expected CGs output at different penetration levels and the output of SF given the 

probabilistic model of solar radiation. The probabilistic load and SF output model were 

inputted to the PPC method to compute reliability indices. The proposed model used solar 

radiation prediction based on historical data and took into consideration random outages of 

both SCGs and CGs. The model also provided the capacity credit of the SFs. The study 

showed that reliability improvement lessened as the solar generation penetration increased. 
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CHAPTER 7. ENERGY STORAGE SIZING AND RELIABILITY 

ASSESSMENT FOR POWER SYSTEMS WITH VARIABLE 

GENERATION    

This chapter formulates the energy storage system, ESS, sizing problem in the presence 

of both WTSs and SCGs at different penetration levels as a mixed integer linear 

programing, MILP. The method takes into account: (1) SCGs and WTSs FORs, (2) solar 

radiation and wind speed forecasts, and (3) the CGs ramping, max./min. limits and 

startup/shutdown period limits, as in the previous chapter. The ESS sizing problem is 

formulated as a UCED with an objective function of minimizing CGs costs in addition to 

the cost associated with the ESS. Once the ESS size is computed, reliability assessment is 

performed to quantify the ESS impact on reliability. Reliability assessment is performed 

using the probabilistic production costing (PPC) method with appropriate modification to 

account for VG and ESS. Figure 7-1 illustrates the flow chart of the proposed 

computational procedure. Moreover, Figure 7-2 shows the reliability assessment procedure 

using the PPC method in presence of VGs and ESS.  

7.1 Problem Statement  

The following data is assumed given: a number of SCGs i= 1,…, NSCG, each with 

FOR of qSCGi., rated power equals to pSCG.rated, and a forecast of the solar radiation, Gt, over 

a period of time t = 1,…,T. Also, the SCG power, pSCG, versus solar radiation curve is 

known. A solar farm, SF, consists of NSCG number of SCGs and they are assumed to be 

exposed to the same solar radiation. Similarly, a number of WTSs i= 1,…, NWTS, each with 
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FOR of qWTSi, rated power equals to pWTS.rated, and a forecast of the wind speed over period 

of time t = 1,…,T. The WTS power as a function of the wind speed is also given. A wind 

farm, WF, consists of NWTS WTSs and they are exposed to the same wind speed. Also, the 

energy and power costs of ESS of a certain ESS technology are given. It is desired to 

optimally size the needed ESS as to minimize the overall cost of the power system with the 

VG. Once the optimal ESS size is known, the net equivalent load is computed and inputted 

to the PPC to find the projected cost and reliability metrics.  

 

Figure 7-1. Proposed computational procedure. 
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Figure 7-2. Reliability assessment procedure in presence of VG and ESS. 

7.2 Energy Storage Sizing Optimization Formulation    

In this section, the method for finding the optimal ESS size is discussed in detail. The 

ESS sizing is formulated as a MILP problem which can be viewed as a modified UCED 

problem.  The constraints are similar to the ones introduced in section 6.2. The complete 

set of constraints is as follows:  

 =        
g ,t g ,t 1 g ,t g ,t

x x s z g G , t T \t 1
−

−   =−   (6.1) 

        min
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+       
g ,t t

g G

p D R t T


    (6.4) 
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s x t T , g G
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g

g

t

g ,i g ,t DT
i t DT 1

s 1 x t T , g G
−

= − +

 −      (6.8) 

   
g ,t g ,t 1 g g ,t g g ,t 1

p p SU s RU x
− −

−  +  (6.9) 

   
g ,t 1 g ,t g g ,t g g ,t

p p SD z RD x
−

−  +  (6.10) 

Next, the CGs, the VG (SF and WF) and ESS available at time t must meet the demand a 

in (7.1):  

   
g ,t SF ,t WF ,t dis ,t t ch ,t

g G

p p p p D p t T


+ + + = +    (7.1) 

Where pch,t is the power injected (charging) into ESS and pdis,t Power drawn (discharging) 

from ESS at time t. 

The VG set of constraints determines the expected output of SCGs and WTSs taking 

into consideration Gt and Vt, respectively, and random outages of SCGs and WTSs. Starting 

with SCGs in a SF, pSF,t is dependent on the forecasted solar radiation, Gt, and the number 

of operational SCGs in the SF at time t. SMCS is used to find the UP/DOWN states of the 
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SCGs. In this method, the state sampling is chronological as described earlier. consists of 

a sequence of UP and DOWN sub-cycles. The duration of each sub-cycle is calculated 

using the inverse transform method, as follows: 

(ln( ))Up SCGT MTTF U= −  (5.18) 

(ln( ))Down SCGT MTTR U= −  (5.19)  

QSi,t in (7.2) represents the UP/DOWN status of the ith SCG at instance t, and its 

summation is the number of the operational SCGs in the SF at time t. To find the upper 

bound of SF power at time t (pSFmax,t), the number of operational SCGs is multiplied by the 

corresponding power output in the SCG power versus solar radiation curve at time t.  
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Similarly, pWF,t is dependent on the forecasted wind speed ,Vt, and the number of 

operational WTSs in the WF at time t. Chronological sampling using MTTFWTS and 
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MTTRWTS, as in the SF case, is applied. The duration of each sub-cycle is calculated using 

the inverse transform method, as follows: 

(ln( ))Up WTST MTTF U= −  (4.18) 

(ln( ))Down WTST MTTR U= −  (4.19) 

QWi,t in constraint (7.3) represents the UP/DOWN status of the ith WTS at instance t, and 

its summation is the number of the operational WTSs in the WF at time t. To find the bound 

of WF power at time t (pWFmax,t), the number of operational WTSs is multiplied by the 

corresponding power output in the WTS power versus wind speed curve at time t.  
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Where The WF power output at time t (p
WF,t
 )  s is chosen to be 1 throughout this model. 
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It is important to add a variable that represents the unutilized VG generation (pu,t) at 

time t. This variable represents the VG power which is available but not used because there 

is no demand and the ESS is fully charged:  

, max, , max, ,u t SF t SF t WF t WF t
p p p p p− −= +  (7.4) 

The constraints in (7.5) to (7.12) dictate the operation of ESS energy resources and they 

are important for optimal ESS sizing. The constraint in (7.5) provides the relationship of 

the state of charge (SOC) between two consecutive time intervals, i.e., the dynamics of the 

ESS.  The constraints in (7.6), (7.7) and (7.8) limit the operation of ESS within its ratings 

(maximum storage limit and charging/discharging limits). Notably, EESS and PESS (the ESS 

energy and power optimal sizing, respectively), are decision variables. The two constraints 

in (7.9) and (7.10) ensure that charging and discharging cannot occur simultaneously. M is 

a large number, e.g., 1000 MW. While it is not necessary in this work, PESS is restricted to 

be less than or equal one third EESS, as represented with constraint (7.11).   

      dis ,t

t 1 t ch ch ,t

dis

p
E E p t T

+
= + −    (7.5) 

      
t ESS

0 E E t T     (7.6) 

      
ch ,t ESS

0 P P t T     (7.7) 
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dis ,t ESS

0 P P t T     (7.8) 

      
ch ,t t

0 P M t T     (7.9) 

      
dis ,t t

0 P ( 1 )M t T  −    (7.10) 

3

ESS

ESS t

E
p 


 (7.11) 

Where Et is the ESS energy level or the SOC at time t, ηch and ηdis are the ESS charging 

and discharging efficiency, and Δt is the simulation time step (Δt = 1 hr.). 

Last ESS constraint is to restrict the ESS charging power to be less than or equal to the 

unutilized VG power. 

, ,
   

ch t u t
t Tp p    (7.12) 

  The objective function is linear and is in the form of: 
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Where d is ESS energy capacity capital cost in $/MWh, e is the ESS power capacity capital 

cost in $/MW, and π is a penalty on  utilized VG as VG reduces the greenhouse emissions.  

The objective function is to minimize fuel cost, startup and shutdown costs, the ESS 

energy and power capital capacity costs, and a penalty for the unutilized VG (SF+WF) 

power. While the shutdown cost computation is straightforward (constant), the production 

(fuel) and the startup cost are linearized as discussed earlier in section 6.2.  

For simplicity, 4 weeks (672 hrs.) are chosen for this study. Once the ESS optimization 

problem is solved, the expected power output of the SF, WF and ESS is inputted to the 

PPC to assess production costs and reliability. 

7.3 Reliability Assessment Using the Probabilistic Production Costing 

The PPC method is described earlier is applied to assess the reliability when adding 

ESS. The CG model stays the same. However, the equivalent load model is modified to 

account for the ESS addition as follows: 

7.3.1    Equivalent Load Representation 

The ELDC is computed as follows:   

ELDC = Load - Expected VG Power - ESS power  (7.14) 

The ELDC is computed using the forecasted load, the expected values of SF and WF 

power output consumed directly by the demand, and ESS power. Subsequently, the 

resultant curve is converted to IPDF.  
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Once the IPDF is constructed, reliability indices are calculated as explained earlier. 

7.4 Case Study 

The hourly solar radiation data is obtained from Phoenix, AZ (TMY2) [45].  For the 

test system, all SCGs are assumed to be subject to the same solar radiation and have the 

same specifications. Each SCG has specification as shown in Table 7-1. The number of 

SCGs in the SF (NSCG) under study is dependent on the solar penetration level. For instance, 

if the penetration level is 30 %, 15% is solar generation and 15 % is wind generation. The 

penetration levels are 10% to 30% of the total CGs installed capacity. Similarly, the wind 

speed hourly data of the same location is collected [45]. All WTSs in the WF are assumed 

to be subject to the same wind patterns and have the same specifications. The Areva 

Multibird M5000 WT specifications are utilized to perform the analysis of the case study 

[45]. Theses specifications are listed in Table 7-2. The ESS technology chosen for the study 

is lead-acid with following specification shown in Table 7-3 [47]. Note that the study is for 

672 hrs. and e and d are calculated to reflect the cost of the ESS over the study period. With 

the assumption that the ESS lifetime is 20 years and the discount rate is 5%, e=2,037 

$/MWh and d = 2,469 $/MW. The price penalty on unutilized VG, π, equals 80 $/MWh. 

Finally, the test system consists of the following:  

(1) The 10 CGs as introduced earlier in Table 6-2,Table 6-2 and Table 6-3.  

(2) The SF with the data provided earlier.  

(3) The WF with the data provided earlier. 
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 (4) Load with the p.u. data taken from the IEEE-RTS considering a base of 1,150 MW 

[40]. 

Table 7-1. SCG specifications. 

pSCG.rated 5 MW 

Gstd 1,000 W/m2 

RC 150 W/m2 

qSCG (assumed) 0.15 

MTTFSCG 950 hrs. 

MTTRSCG 167.7 hrs. 

Table 7-2. WTS specifications. 

Type Areva Multibird M5000 WT 

pWTS.rated 5 MW 

vci 4 m/s 

vrated 12.5 m/s 

vco 25 m/s 

qWTS (assumed) 0.15 

MTTFWTS 950 hrs. 

MTTRWTS 167.7 hrs. 

Table 7-3. ESS specifications. 

ESS technology lead-acid 

ηch / ηdis 80% 

Energy capital cost 330 k$/MWh 

Power capital cost 400 k$/MW 

Lifetime 20 years 

Discount rate 5% 

e 26480.05 $/MWh 

d 32,097.03 $/MW 

7.4.1     ESS Sizing Results   

 The proposed ESS optimal sizing method was applied to the test system for three VG 

penetration levels as follows: 10%, 20% and 30 %. SCGs and WTSs contributed equally 

to each penetration level. Table 7-4 shows the optimal PESS, EESS and ESS cost for all cases.  
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Notably, when the penetration level was 10%, the optimal decision was not to have ESS 

rather changing the operation of the CGs and directing most VGs to meet the demand 

directly. On the other hand, when penetration levels were 20% and 30%, having ESS 

provided the optimal solution.  

For comparison purposes, the same analysis discussed earlier was applied to the test 

system without ESS. For instance, Figure 7-3 shows that in presence of ESS more VG 

power was utilized than the case without ESS. Figure 7-4 shows ESS hourly energy and 

charge/discharge power.  

Table 7-4. Optimal sizing and cost of ESS. 

 

 

 

Figure 7-3. Unutilized VG comparison at 30% penetration. 

VG % PESS EESS 

(MWh) 
ESS Cost ($) 

30% 53.2 167.50 521,925.9 

20% 29.9 89.71 282,400.3 

10% 0 0 0 
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Figure 7-4. ESS power and energy profiles at 30% penetration. 

7.4.2 Reliability Assessment  

Table 7-5 shows the reliability assessment and cost projection of different penetration 

with/without ESS. The improvement ranged from 51.5% to 70% in LOLP and LOLE in 

presence of VG and ESS while it ranged from 42.4% to 66.7% in presence of just VG. All 

cases are compared to having neither VG nor ESS, base case. The EUE and the total cost 

followed the same pattern for all cases.  Note that even though the 10% VG penetration 

optimal ESS sizing was zero, the 10% VG penetration affected the reliability of the system 

as compared to the base case. In this case, avoiding the unutilized VG penalty resulted in 

utilizing more VG and improved reliability. 
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Table 7-5. Reliability assessment results. 

Case  VG % LOLP 
LOLE 

(hrs./y) 

EUE 

(MWh) 

Total Cost  

(k$) 

Base case 0% 0.00033 2.8908 14.44 8,276 

VG only 

10% 0.00019 1.6644 7.52 7,827 

20% 0.00013 1.1388 5.14 7,328 

30% 0.00011 0.9636 4.22 6,894 

VG+ESS 

10% 0.00016 1.4016 6.41 7,561 

20% 0.00013 1.1388 5.02 7,318 

30% 0.00010 0.8760 3.86 6,820 

7.5 Conclusions 

This chapter presented an optimization model for ESS sizing for systems with VG. 

Further, a reliability assessment method for power systems with specific VG penetration 

and available ESS has been proposed. Several cases were analyzed considering different 

VG penetrations and optimal ESS size. In the case of 10% penetration level, the optimal 

sizing of ESS was zero. However, as the VG penetration level increased, the optimal ESS 

size that reduces the total cost increased.  The probabilistic load, VG and ESS models as 

well as the probabilistic models of CG were inputted to the PPC method to compute 

reliability indices. The proposed model used solar radiation and wind speed predictions 

based on historical data for a specific area and considered random outages for both SCGs 

and WTSs. The study shows that reliability improvement rates lessen as the VG penetration 

level increased indicating that the cost and reliability improvements levels off as the 

penetration increases. 
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CHAPTER 8. ANALYTICAL METHOD FOR ENERGY 

STORAGE SIZING AND RELIABILITY ASSESSMENT FOR 

POWER SYSTEMS WITH VARIABLE GENERATION 

This chapter formulates the ESS sizing in presence of VG at different penetration 

levels. The problem is formulated as MILP similar to the model in CHAPTER 7, but here 

the seasonal PDFs of wind speed and solar radiations are considered.  Firstly, for specific 

locations, historical seasonal wind speeds and solar radiation data along with WTSs/SCGs 

FORs and their generation models are used to find power output PDFs of WTSs/SCGs. 

The PDFs are computed analytically and integrated into the MILP for finding ESS sizing 

with objective to minimize CGs production cost, startup and shutdown costs in addition to 

ESS investment costs. Once the ESS optimal sizing is computed, a reliability assessment 

is performed, using PPC method, to quantify reliability improvements from the addition of 

ESS. 

8.1 Problem Statement  

Assuming that the number of CG units is G and their specifications are given. In 

addition, the energy and power costs of ESS are given as well as the ESS 

charging/discharging efficiency. The ESS sizing optimization problem requires the 

following data: the VG is represented by solar farms, SFs, and wind farms, WFs. There are 

NSF SFs and NWF WFs in the system under study. A SF consists of NSCG number of SCGs. 

The number of SCGs in the SF defines the solar generation penetration level. For SCG i, 

where i= 1,…, NSCG, the FOR of SCGi is denoted by qSCGi and the rated power by pSCG.ratedi. 
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The historical data of the solar radiation (Gh) is given, where h=1,2,…,H. The solar 

radiation data is partitioned into four different groups depending on the season: winter, 

spring, summer and fall. Also, pSCG versus solar radiation curve is known. While not 

necessary, for simplicity all SCGs are assumed to be exposed to the same solar radiation. 

Also, we assume that the type of SCGs, and NSCG are identical in each SF. Similarly, a WF 

consists of NWTS WTSs. The number of WTSs in the WF defines the wind generation 

penetration level. For WTSs i, where i= 1,…, NWTS, the FOR is denoted by qWTSi and the 

rated power by pWTS.ratedi. The historical data of the wind speed (Vh) is given, where 

h=1,2,…,H. The wind speed data is partitioned into four different seasonal groups as in the 

solar radiation case. Also, the WTS power as a function of the wind speed is also given. 

Similar to SCGs, in this study, all WTSs in the WF are assumed to be exposed to the same 

wind speed. Also, we assume that the type of WTSs and NWTS are identical in each WF. 

Given the four partitioned data sets of solar radiation/wind speed of a specific location, 

it is desired to find the PDF and CDF of solar radiation/wind speed for each season. Then, 

using these PDFs and CDFs conditioned on the availability of SCGs/WTSs, the SFs/WFs 

power output PDFs and CDFs are computed for each season. Once the PDFs and CDFs of 

SFs/WFs power output of all four seasons are computed, SFs/WFs power samples can be 

integrated into the ESS sizing optimization problem to represent SFs/WFs forecasted 

outputs. Then, solving for the ESS sizing gives ESS charging/discharging profile and 

utilized WFs/SFs power to be inputted to the PPC method in addition to the forecasted load 

to compute the net equivalent load.  
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8.2 Computation of SFs/WFs Generated Power Probability Distribution Function 

8.2.1 SF Power Probability Distribution Function  

This section presents the analysis for a single SF, which is repeated for every SF in the 

study. For simplicity, the subscript s (s=1,…, NSF )  in pSFs, NSCGs, …, etc. is omitted. For 

each season’s solar radiation, the PDF of solar radiation is found, subsequently, the 

PDF/CDF of the SF power output, ρSFG (pSF)/ FSFG (pSF), is computed analytically, as 

explained earlier in section 5.2.1. 

8.2.2 WF Power Probability Distribution Function  

This section presents the analysis for a single WF, which is repeated for every WF in 

the study. For simplicity, w (w=1,…, NWF )  in pWFw , NWTSw ,…etc. is omitted. For each 

season’s wind speed, the PDF of wind speed is found, subsequently, the PDF/CDF of the 

WF power output, ρWFG (pWF)/ FWFG (pWF), is computed analytically, as explained earlier 

in section 4.4.1. 

8.3 Energy Storage Sizing Optimization Formulation    

In this section, the method for finding the optimal ESS size considering multiple 

SFs/WFs and seasonal variation of solar radiation/wind speed is discussed in detail. The 

ESS sizing is formulated as a MILP problem. The complete set of constraints is as follows:  

 =        
g ,t g ,t 1 g ,t g ,t

x x s z g G , t T \t 1
−

−   =−   (6.1) 
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Next, demand and energy charging into the ESS at time t must be met by CGs, SFs, WFs, 

and ESS:  

           
SF WFN N

g ,t SFs ,t WFw ,t dis ,t t ch ,t
g G s 1 w 1

p p p p D p t T
 = =

+ + + = +      (8.1) 
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Where p
SFs,t
  is s SF power output at time t, and p

WFw,t
  is s WF power output at time t. 

The VG (SFs and WFs) set of constraints determine the expected output of SCGs and 

WTSs taking into consideration the uncertainty associated with this type of generation. 

Earlier, Gh and Vh, were partitioned to four groups depending on the season. Subsequently, 

it was shown how to analytically compute ρSFGs(pSFs)/FSFGs(pSFs) and ρWFGw(pWFw)/  

FWFGw(pWFw). Samples from these CDFs are used represent the SFs/WFs power output. The 

number of generated samples for each WF/SF equals T, the simulation period. As T must 

represent the four seasons, the samples are divided into 4 groups, each with length equals 

T/4. Each group is sampled from its corresponding WF/SF power output CDF, as discussed 

next. Starting with SCGs in a SF, once the FSFGs(pSFs) of each season is computed, uniform 

random numbers are generated, Ut ~unif(0,1). Then, these random numbers are used to 

compute the power using the ITM. The power computed here is the maximum output of 

every SF (pSFs max, t) at instant t as follows: 

max,

1 ( )        1,...,
SFs t SFGs t SFp F U s N−= =  (8.2) 

The constraint in (8.3) represents the SF production limits:  

, max,
0 1 ,...,    

SFs t SFs t SFp p s N  =  (8.3) 

Similarly, once FWFGw(pWFw) of each season is computed, uniform random numbers are 

generated, Ut ~unif(0,1). Then, they are used to compute the power using the ITM. The 

power computed is the maximum output of the WF (pWFw max, t)  at instant t as follows: 
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max,

1 ( )     1,...,
WFw t WFGw t WFp F U w N−= =  (8.4) 

Constraint in (8.5) represents the WF production limits:  

, max,
0      1,...,

WFw t WFw t WFp p w N  =  (8.5) 

It is desirable to utilize all the VG either to serve the load directly or to charge the ESS. 

However, this may not be always possible. Hence, pu,t  is the unutilized VG computed as 

follows:   

, max, , max, ,

1 1 1 1

SF SF W

t

W

u

F FN N N N

SFs t SFs t WFw t WFw t

s s w w

p p p p p
= = = =

= − + −     (8.6) 

The ESS set of constraints remain the same as in model introduced in the previous 

chapter:  
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         
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3
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, ,
   

ch t u t
t Tp p    (7.12) 

  The objective function is linear and as introduced earlier in section 7.2: 

 

                     
 



+ +

+  − + +





g ,t g ,t g ,t g
t g

u ,t ch ,t ESS ESS

T G

Tt

min ( y SU cos t z SD cos t )

t ( P P ) dE eP
 (7.13) 

For simplicity, 4 weeks (672 hrs.) are chosen for this study. Once the ESS optimization 

problem is solved, the expected power output of the SF, WF and ESS is inputted to the 

PPC to assess production costs and reliability. 
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8.4 Reliability Assessment Using the Probabilistic Production Costing 

The PPC method is described earlier is applied to assess the reliability when adding 

ESS. The CG model and the equivalent load model stay the same as in section 7.3. 

8.5 Case Study  

Hourly solar radiation and wind speed data for 6 years of Texas is collected [48],[49]. 

The SCGs/WTSs in the SFs/WFs have the same specifications. The VG penetration levels 

are 20% and 30% of the total CG installed capacity. There are 2 WFs and 2 SFs in the 

study. The WFs and SFs contribute equally to each penetration level. For instance, if the 

VG penetration level is 20%, 5% is the contribution of each WF/SF.  NSCG and NWTS are 

dependent on the considered VG penetration level.  Starting with the SFs, there are NSCG 

SCGs in each SF and each SCG has specifications as in Table 7-1 . On other hand, the 

Areva Multibird M5000 WT specifications are utilized to perform the analysis of the case 

study [48]. These specifications are shown in Table 7-2. The ESS technology chosen for 

the study is lead-acid with following specification shown in Table 7-3  [47]. The time of 

simulation, T, is 672 hrs., Δt = 1 hr. and e and d are computed to reflect the cost of the ESS 

T, as introduced earlier in section 7.4. The price penalty on unutilized VG, π, equals 80 

$/MWh. Finally, the test system consists of: 

(1) 10 CGs as introduced earlier in Table 6-2, Table 6-2 and Table 6-3,  

 (2) 2 SFs and  2 WFs, 

 and (3) load with the p.u. data taken from the IEEE-RTS with a base of 1,150 MW [40]. 
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8.5.1 SFs/WFs Power Output PDF/CDF Results  

SFs and WFs power output PDFs and CDFs were computed for all seasons and for 

the two penetration levels. Taking 30% penetration level as an example, Figure 8-1-Figure 

8-8 show comparison between the two SFs output PDFs and CDFS. These figures show 

that SF1 has lower zero output probabilities in all seasons than SF2 does. On the other 

hand, Figure 8-9-Figure 8-16 compare the output of WF1 and WF2 PDFs and CDFs. WF2 

has lower probabilities of having zero output in all seasons. The PDFs and CDFs of SF1, 

SF2, WF1 and WF2 power outputs at 20% penetration level are in APPENDIX B. 

 

Figure 8-1. Winter season PDF and CDF of SF1 at 30% penetration level. 
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Figure 8-2. Spring season PDF and CDF of SF1 at 30% penetration level. 

 

Figure 8-3. Summer season PDF and CDF of SF1 at 30% penetration level. 
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Figure 8-4. Fall season PDF and CDF of SF1 at 30% penetration level. 

 

Figure 8-5. Winter season PDF and CDF of SF2 at 30% penetration level. 
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Figure 8-6. Spring season PDF and CDF of SF2 at 30% penetration level. 

 

Figure 8-7. Summer season PDF and CDF of SF2 at 30% penetration level. 
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Figure 8-8. Fall season PDF and CDF of SF2 at 30% penetration level. 

 

Figure 8-9. Winter season PDF and CDF of WF1 at 30% penetration level. 
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Figure 8-10. Spring season PDF and CDF of WF1 at 30% penetration level. 

 

Figure 8-11. Summer season PDF and CDF of WF1 at 30% penetration level. 
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Figure 8-12. Fall season PDF and CDF of WF1 at 30% penetration level. 

 

Figure 8-13. Winter season PDF and CDF of WF2 at 30% penetration level. 
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Figure 8-14. Spring season PDF and CDF of WF2 at 30% penetration level. 

 

Figure 8-15. Summer season PDF and CDF of WF2 at 30% penetration level. 
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Figure 8-16. Fall season PDF and CDF of WF2 at 30% penetration level. 

8.5.2 ESS Sizing Results   

Table 8-1 shows the optimal PESS, and EESS as well as the resultant ESS cost for the two 

penetration levels over the simulation period. Comparing the ESS sizing at 30% and 20%, 

PESS and EESS at 30% were significantly larger than PESS and EESS at 20%. This might be 

attributed to the significant increase in penetration (10% more) that resulted in more VG 

utilized and a change in CGs operation to reduce the overall cost while maintaining the 

operational constraints.  

Table 8-1. ESS sizing results. 

 VG % PESS (MW) EESS (MWh) ESS Cost ($) 

30% 52.60 157.79 451,287.60 

20% 9.81 29.46 84,230.91 
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To compute reliability the same analysis was applied first without ESS and VG (base 

case with just CG) and then with only VG (no ESS). Taking the 30% penetration level as 

an example, Figure 8-17 shows the charging/discharging and SOC profiles of the ESS. 

Figure 8-18 shows the unutilized VG power with and without ESS. The ESS clearly 

decreased the unutilized energy significantly and resulted in reducing the total cost of the 

system from $ 7,946,000 to $7,341,000 and improved the system reliability as well. 

 

Figure 8-17. ESS power and energy profiles at 30% penetration. 

 

Figure 8-18. Unutilized VG at 30% penetration (with/without ESS). 
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8.5.3 Reliability Assessment Results   

Table 8-2 shows the reliability assessment and cost projection of the two penetration 

levels with/without ESS. Compared to the base case, the improvement ranged from 35 % 

to 63% in LOLP and LOLE in the presence of VG and ESS while ranged from 22% to 43% 

in presence of only VG. similarly, the EUE improvement ranged from 36% to 54% in 

presence of only VG while the improvement ranged from 54% to 74% in the case of VG 

and ESS. The total cost followed the same pattern as the EUE and LOLP. 

Table 8-2. Reliability assessment results. 

Case  VG % LOLP 
LOLE 

(hrs./y) 

EUE 

(MWh) 

Total Cost 

(k$) 

Base case 0% 0.00054 4.73 43.11 9,184 

VG only 
20% 0.00042 3.68 27.46 8,470 

30% 0.00031 2.72 19.92 7,946 

VG+ESS 
20% 0.00035 3.07 19.71 8,045 

30% 0.00020 1.75 11.05 7,341 

8.6 Conclusions 

This Chapter presented a MILP model for optimal ESS sizing that considers VG units 

forced outages, seasonal and locational variation of wind speed and solar radiation and 

different penetration levels. Subsequently, the PPC method was used to assess the ESS 

impact on reliability. The results indicate that for the specific system considered, ESS 

improved both LOLP index and the EUE index, and reduced the total expected cost.   
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CHAPTER 9. ENERGY STORAGE SIZING AND 

PROBABILISTIC RELIABILITY ASSESSMENT FOR POWER 

SYSTEMS BASED ON COMPOSITE DEMAND 

This chapter introduces a comprehensive model for long-term optimal ESS sizing that 

takes into account VG-load seasonal variations and mutual correlations while also accounts 

for VG failure and repair rates, CG operational practices and constraints and operational 

reserve requirements. As the VG and demand are key factors in ESS sizing, the correlation 

between VG and demand is important for more accurate long-term model for ESS sizing 

when representing VG and demand. The model formulates the optimal ESS sizing as a 

MILP problem accounting for different VG penetration levels over time. The proposed 

ESS optimal sizing model considers the following: (a) WTSs and SCGs FORs, (b) solar 

radiation and wind speed seasonal variation and uncertainty and their correlation with each 

other and the demand, (c) CGs operational constraints, and (d) demand and reserve 

(provided by both CGs and ESS) requirements. First, as introduced before in CHAPTER 

8, for a specific location, historical wind speeds and solar radiation data is partitioned into 

four groups, one for each season. Then, the expected WTSs and SCGs generation is 

computed based on (a) their generation model, and (b) availability and unavailability 

model, i.e., the collective WTSs/SCGs availability PDFs based on their FORs. 

Subsequently, an important step is to compute the correlation between each pair of the 

WTSs/SGSs expected output and demand. The correlation indicates the tendency of 

expected VG power outputs and demand to change or vary together and considering it 

produces more accurate results when representing VG and demand in the ESS sizing 
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model, as explained later. The objective of the ESS sizing optimization problem is to 

minimize CGs production (fuel), startup and shutdown costs in addition to ESS investment 

costs. Once the ESS optimal sizing is computed, a reliability assessment is performed based 

on the PPC method; these computations are repeated for different penetration levels.  

9.1 Problem Statement  

Assuming that these the following information are given:  

1. There are a number of CG units, G, with given specifications.  

2. The energy and power costs of ESS and the charging/discharging efficiency. 

3. The historical wind speed data (Vh) which is partitioned into four groups depending 

on the season: winter (VWi), spring (VSp), summer (VSu) and fall (VFa).  

4. The historical solar radiation data (Gh) which is partitioned into four groups 

depending on the season:  winter (GWi), spring (GSp), summer (GSu) and fall (GFa). 

5. The historical demand data (Dh) for the specific location is collected and partitioned 

into four groups depending on the season, 

6. A SF/WF consists of NSCG/NWTS  SCGs/WTSs. The SCGs/ WTSs specifications and 

FORs are assumed given.  

The optimal parameters of the ESS system are obtained with the following procedure. 

Given the four partitioned data sets of solar radiation/wind speed of a specific location, it 

is desired to find first the expected WF (pWF)/SF (pSF) outputs by convolving the PDF of 

the WF/SF availability and the WF/SF deterministic power outputs. Subsequently, the 

correlation coefficients (CC) between the D and pSF, the D and pWF, and pSF and pWF are 

computed for every season. The correlation is computed using the least square estimation 
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(LSE) method. The correlation gives insight of how demand and VG co-vary. Depending 

on the correlations, the samples composite demand (CD) is computed. CD in general is the 

demand minus the VG at every instant of time. Once the CD samples of all four seasons 

are computed, they are inputted into the ESS optimal sizing problem. The solution of this 

problem provides ESS charging/discharging schedules which, in addition to CD are 

inputted to the PPC method to assess the reliability of the integrated load, VG, ESS and 

CG model, as explained in detail later. 

9.2 Computation of SFs/WFs Expected Power Output  

9.2.1 SF Expected Power Outputs  

Once the historical solar radiation, Gh, is seasonally partitioned, they can be converted 

to power using the SCG generation model, using equation (5.1). Also, as explained in 5.2.1, 

ρSFA(cSF), the PMF of SF availability, is a binomial distribution given by equation (5.8). 

Subsequently convolving the partitioned Gh of each season and ρSFA(cSF) gives the expected 

SF output as follows: 

( )     Season= Wi, Sp, Su, and Fa * 
SeasonFSF SFA S

p c G=  (9.1) 

where * is the convolution operator.  

9.2.2 WF Expected Power Output  

Similarly, Once the historical wind speed, Vh, is seasonally partitioned, they can be 

converted to power using the WTS generation model, equation (5.1). Also, as explained in 
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5.2.1, ρWFA(cWF), the PMF of WF availability,  is a binomial distribution given by equation 

(4.8). Subsequently convolving the partitioned Vh of each season and ρWFA(cWF) gives the 

expected SF output as follows: 

( )     Season= Wi, Sp, Su, and Fa * 
SeasonFWF WFA W

p c V=  (9.2) 

The next step is to find CC between D, pSF and pWF for each season. 

9.3 Correlation Coefficient and Composite Demand PDF Computation  

9.3.1 Correlation Coefficient Computation  

The least squares estimation, LSE,  [50] is briefly introduced here. In general, we 

have a set of observed values (o) and would like to fit a straight line. The LSE minimizes 

the sum of the squared errors (distances) between the observed values and the line. The 

model of the line is in the form of:  

1o
o p = +  (9.3) 

p is an independent (predictor) variable and o is dependent (or response) variable. It is 

desired to find the values of β0, β1 that minimize the sum of the squared residuals: 

2

1 1

1

( , ) ( )
n

o i o

i

S o p   
=

= − −  (9.4) 

To study the correlation of the two variables, the following are computed: 
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i

S p p o o
n =

= − −  (9.7) 

Where n equals the size of o and p, and p̅ and o̅ are averages of p and o, respectively. Once 

the sums of the squares are computed, CC is calculated as in (9.8):  

po

pp oo

S
CC

S S
=  (9.8) 

The slope of the line that fits the data best is follows:  

1

po

pp

S

S
 =  (9.9) 

and the intercept is: 

1o
o p = −  (9.10) 

The fitted line equation is:  
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1o
o p = +  (9.11) 

This analysis will be applied to find the CC of these pairs: (D, pSF), (D, pWF) and (pWF, pSF), 

i.e., in each pair, there is a predictor and a response. 

9.3.2 Composite Demand PDF and CDF Computation Computation  

There are three possible cases, depending on the numerical values of pairwise 

correlation coefficients among D, pSF and pWF: 

1. Small or negligible correlation between all three pairs mentioned before. The 

variables are treated as statistically independent. 

2. D is correlated with pSF and pWF. In this case, CD = D − pSF − pWF. Then, the 

PDF/CDF (ρCD (cd)/ FCD (cd)) of CD is computed.     

3. D is correlated with either pSF or pWF. In this case, two PDFs/CDFs are computed: 

D−correlated VG (either pSF or pWF) PDF/CDF, and the uncorrelated VG  (either 

pSF or pWF) PDF/CDF. Subsequently, CD is D−correlated VG sample minus 

uncorrelated VG sample.  

Intuitively, case 1 is unlikely to happen at least by examining pSF and D. pSF in general is 

zero before the sun rises and then peaks during the day and declines till it reaches zero 

when the sun sets. pSF, roughly speaking, has similar increment and decrement behavior in 

certain hours of the day as the demand does, hence case 1 is unlikely, and cases 2 and 3 are 

more likely. However, if one VG is uncorrelated or weakly correlated its variation can be 



 

 110 

treated as an independent random variable, providing a computational advantage in 

planning methods. Once the correlation coefficients are computed and the CD is 

determined according to either case 1, 2 or 3, samples of CD are computed from appropriate 

PDFs and CDFs to be inputted to the optimal ESS sizing problem, as explained next. 

9.4 Energy Storage Sizing Optimization Formulation    

The optimal ESS sizing is similar to the model introduced in section 8.3. However, here 

some modifications are introduced. The complete set of the constraints are as follows:  

 =        
g ,t g ,t 1 g ,t g ,t

x x s z g G , t T \t 1
−

−   =− 
 

(6.1) 

        min

g ,t G g ,t
p P x g G , t T    

 
(6.2) 

 + ( )             
+

  −    max max

g ,t g ,t G g ,t g G g ,t 1
p p P x SD P z g G , t T  (6.3) 

Where  p
g,t

=p
g,t

+rg,t .  

   

g

t

g ,i g ,t
i t UT 1

s x t T , g G
= − +

    
 

(6.7) 

      
g

g

t

g ,i g ,t DT
i t DT 1

s 1 x t T , g G
−

= − +

 −    
 

(6.8) 
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g ,t g ,t 1 g g ,t g g ,t 1

p p SU s RU x
− −

−  +
 

(6.9) 

   
g ,t 1 g ,t g g ,t g g ,t

p p SD z RD x
−

−  +
 

(6.10) 

Both the CGs and ESS provide reserve capacity. The CG units provide reserve, rg , and 

the ESS should provide up/down reserve (p
𝐸𝑆𝑆_𝑈𝑃

/p
ESS_DN

) while both also must meet the 

demand at any instant t. The required reserve, R, is calculated as a percentage of the peak 

CD plus the largest CG unit capacity while the ESS reserve provision will be discussed 

when discussing ESS constraints. The constraint in (9.12) ensures that the CG units and 

ESS can meet the demand and reserve requirements:  

+          


+  +   g ,t ESS _UP ,t t ESS _DN ,t
g G

p p CD p R t T  (9.12) 

The demand constraint, (9.13), ensures that available CG and discharging ESS power 

should meet the composite demand and charging ESS power at time t: 

         


+ = +   g ,t dis ,t t ch ,t
g G

p p CD p t T  (9.13) 

Sampling for CDt depends in which case it falls into. First, the time of the simulation T, is 

divided into 4 equal periods, i.e., T/4 per season. CDt sampling is performed by generating 

uniform random numbers (~unif(0,1)), for every instant of time, t, and then applying the 

Inverse Transform method (ITM) as follows: 
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Case 1: if D, pSF and pWF are all uncorrelated, CDt samples are the D sample minus pSF and 

pWF sample, where these samples are generated from their individual CDFs in this case.  

Case 2: in this case D, pSF and pWF are correlated, and CD = D − pSF − pWF. Subsequently 

ρCD(cd)/FCD (cd) are computed and random CDt samples are generated. ρCD (cd)/ FCD (cd) 

are computed for every season. CDt sampling is performed by generating uniform random 

numbers, U1,t ~unif(0,1), for every instant of time, t, and then applying using the ITM as in 

(9.14): 

1

1,  ( )     
t CD tCD F t TU−=    (9.14) 

Case 3: when demand is correlated with only one VG, either pSF or pWF. There are two 

possibilities: 

a. if D and pSF are correlated, the PDF/CDF of D− pSF (ρD− SF (d)/ F D−SF (d)) are 

computed first. Then, the PDF/CDF of pWF (ρWFG (pWF)/ FWFG (pWF)) is computed. 

Sampling for CDt in  (9.12) and (9.13), is as follows: 

1 1

2, 3,( ) (  )     
t CD t WFG tCD F U U tF T− −  = −  (9.15) 

Where U2,t ~unif(0,1) and U3,t ~unif(0,1). CDt in this case is the subtraction of WF 

power samples from the D− pSF samples. This procedure is repeated for every 

season.  
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b. if D and pWF are correlated, the PDF/CDF of D− pWF (ρD− WF (d)/ F D−WF (d)) are 

computed first. Then, the PDF/CDF of pSF (ρSFG (pSF)/ FSFG (pSF)) is computed. 

Sampling for CDt, in this case, is performed as in (9.16): 

1 1

4, 5,( ) (  )     
t CD t SFG tCD F U U tF T− −  = −  (9.16) 

where U4,t ~unif(0,1) and U5,t ~unif(0,1). CDt in this case is the subtraction of SF 

power samples from the D− pWF samples. This procedure is repeated for every 

season.  

The ESS set of constraints are modified to account for the addition of ESS reserve 

provision capability The ESS constraints are key factors in determining the optimal ESS 

size as they dictate the operation of ESS. They determine the ESS charge/discharge 

schedule and set power and energy limits. Constraint in (7.5) and (7.6) as introduced 

before. Constraints in, (9.17) and (9.18) are the down reserve and charging, and up reserve 

and discharging power limits, respectively. Constraints (9.19) and (9.20) ensure no 

simultaneously ESS charging and discharging nor simultaneously Up and Down reserve 

provision. Constraints (9.21) and (9.22) ensure that the SOC at time t is not exceeded when 

providing ESS power and reserve.  

      dis ,t

t 1 t ch ch ,t

dis

p
E E p t T

+
= + −  

 

(7.5) 



 

 114 
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(7.6) 

          
ch ,t ESS _DN ,t ESS

0 p p P t T  (9.17) 

          
dis ,t ESS _UP ,t ESS

0 p p P t T  (9.18) 

         
ESS _UP ,t t

0 p M t T  (9.19) 

        −  
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0 p ( 1 )M t T  (9.20) 
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 (9.22) 

3

ESS

ESS t

E
p 

  

(7.11) 

Where and  
ESS _UP ,t dis ,t ESS _UP ,t ESS _DN ,t ch ,t ESS _DN ,t

p p r p p r .= + = +  

  The objective function is linear and as introduced earlier. The objective function 

minimizes CG production cost, startup and shutdown costs, and ESS power and energy 

costs as follows: 
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 

+ + + + g ,t g ,t g ,t g ESS ESS
T g Gt

min ( y SU cos t z SD cos t ) dE eP  (9.23) 

9.5 Reliability Assessment Using the Probabilistic Production Costing 

The PPC method is described earlier is applied to assess the reliability when adding 

ESS. The CG model and the equivalent load model is modified as follows: 

ELDC = CD ESS power-  (9.23) 

9.6 Case Study  

Hourly, solar radiation wind speed and demand data for 6 years in Texas are collected 

[48],[49],[51] . Note that the historical demand data is scaled down to the test system peak. 

The test system consists of: 

(1) The 10 CGs as introduced earlier in Table 6-2, Table 6-2 and Table 6-3,  

(2) A WF with NWTS identical WTSs, the WTS specification shown in Table 7-2. 

(3) A SF with NSCG identical SCGs, the SCG specification shown in Table 9-1. 

(4) Demand data taken from [51] and scaled to a peak of 1,150 MW. 

(5) ESS with specifications as shown in Table 9-2. 

 The VG penetration levels are 20% and 30% of the total CG installed capacity (1,662 

MW). The WF and the SF contribute equally to each penetration level. For instance, if the 
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VG penetration level is 20%, 10% comes from the WF and 10% from the SF.  NSCG and 

NWTS are dependent on the considered VG penetration level. Specifically, for 20% 

penetration level:  NSCG =33, and NWTS =332; for 30% penetration level:  NSCG =50, and 

NWTS =499. The ESS technology chosen is lead-acid and the time of simulation, T, is 8760 

hrs. and Δt = 1 hr.   The ESS life expectancy is 20 years and e and d reflect the energy and 

power capital costs, respectively, over T assuming a discount rate of 5%.  

Table 9-1. SCG specifications. 

pSCG.rated 0.5 MW 

Gstd 1,000 W/m2 

RC 150 W/m2 

qSCG (assumed) 0.15 

MTTFSCG 950 hrs. 

MTTRSCG 167.7 hrs. 

Table 9-2. ESS specifications. 

ESS technology lead-acid 

ηch / ηdis 80% 

Energy capital cost 330 k$/MWh 

Power capital cost 400 k$/MW 

Lifetime 20 years 

Discount rate 5% 

e 26480.05 $/MWh 

d 32,097.03 $/MW 

9.6.1 Expected WF/SF Power Outputs Results 

The historical demand, wind speed and solar radiation data is partitioned into four 

seasonal groups. Samples of the partitioned data are shown in Figure 9-1, Figure 9-2 and 

Figure 9-3. Subsequently, the partitioned wind speed and solar radiation are converted to 

power using the WTS and SCG generation models respectively. Then, the expected WF 

power output, pWF, and expected SF power output, pSF, are calculated using the convolution 

operation explained in section 9.2. Note that this is repeated for every VG penetration level 
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because NSCG and NWTS are computed from the assumed VG penetration level. For instance, 

at 30% penetration level, Figure 9-4 and Figure 9-5 show the expected WF and SF power 

output, respectively. APPENDIX C includes the expected WF and SF power output figures, 

respectively, for the 20% penetration level case. 

 

Figure 9-1. Historical demand data. 
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Figure 9-2. Historical wind speed data. 

 

Figure 9-3. Historical solar radiation data. 
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Figure 9-4. Expected WF power output (pWF) at 30% penetration level. 

 

 

Figure 9-5. Expected SF power output (pSF) at 30% penetration level. 
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9.6.2 Correlation Coefficients and Composite Demand PDF   

The correlation coefficients, CC, were computed for all pairs, (D, pSF), (D, pWF) and 

(pWF, pSF), for all four seasons. Note that the penetration level has no statistical effect on 

the CC, i.e., CC at 30% penetration level equals CC at 20% level for the same pair. Table 

9-3 shows the CC values between the aforementioned pairs. D and pSF CC values were 

highest in summer (0.5699) and lowest in winter (0.2552). Examining the CC values of D 

and pSF indicated that there is strong correlation between D and pSF. On the other hand, D/ 

pWF and pWF/ pSF CC values indicated that there is negligible correlation. Because of the 

negligible CC values of pWF and demand/ pSF, pWF varies negligibly when D/ pSF change. 

For comparative purposes, two cases studied: (a) pWF assumed to be dependent process 

contributing to the CD, i.e., case 2, and (b) as a statistically independent process, i.e., case 

3.  

Table 9-3. Correlation coefficient values. 

Response/predictor Season Correlation Coefficient (CC) 

D/ pSF 

Winter 0.2552 

Spring 0.4507 

Summer 0.5699 

Fall 0.4500 

D/ pWF 

Winter 0.0226 

Spring -0.0237 

Summer 0.1562 

Fall -0.1242 

pSF / pWF 

Winter -0.1658 

Spring -0.0553 

Summer 0.0368 

Fall -0.1380 
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 For each season, ρCD (cd) and FCD (cd) were computed according to case 2 and case 3. 

For case 2, CD was found by subtracting pWF and pSF from D. Figure 9-6 and Figure 9-7 

depict ρCD (cd) and FCD (cd) respectively for all four seasons at 30% penetration level. 

Notably, at 30% penetration level, ρCD (cd) and FCD (cd) has negative values because VG 

was greater than the demand for few hours. To apply the ESS sampling, 2,190, i.e., 8760/4, 

samples were generated from each season FCD (cd) using the ITM (equation (9.14)). In 

total, 8760 samples were generated and inputted to the ESS sizing problem. On the other 

hand, treating pWF as in case 3, CD was computed by subtracting only pWF samples from 

the D- pSF Samples.  Figure 9-8 and Figure 9-9 depict ρD− SF (d) and  F D−SF (d), respectively, 

and Figure 9-10and Figure 9-11 show ρWFG (pWF) and FWFG (pWF), respectively. Similar 

PDFs and CDFs can be found in APPENDIX C for the 20% penetration level. All the 

aforementioned PDFs and CDFs highlight the demand and VG variabilities for this case. 

Sampling from each season PDFs/CDFs captures these variabilities and define the ESS 

sizing problem more accurately. 
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Figure 9-6. Composite demand PDFs (ρCD (cd)) at 30% penetration level (Case 2). 

 

Figure 9-7. Composite demand CDFs (FCD (cd)) at 30% penetration level (Case 2). 
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Figure 9-8. D− SF PDFs (ρD− SF (d)) at 30% penetration level (Case 3). 

 

Figure 9-9. D− SF CDFs (ρD− SF (d)) at 30% penetration level (Case 3). 
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Figure 9-10. WF power output (ρWFG (pWF)) PDFs at 30% penetration (Case 3). 

 

Figure 9-11. WF power output (FWFG (pWF)) PDFs at 30% penetration (Case 3). 
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9.6.3 ESS Sizing Results 

Table 9-4 shows the ESS sizing results for cases 2 and 3 for all penetration levels. 

Case 3 resulted in higher EESS and PESS values compared with case 2. Comparing case 3 

results to Case 2, ESS costs and optimal sizes found by applying case 3 were 9.5% and 

11.7% higher than the one in Case 2 for 20% and 30% penetration levels, respectively. 

These differences between the two cases results could be attributed to the small correlation 

between pWF and D/ pSF. Notably, Case 3 ESS sizing results at 30% and 20% were higher 

than Case 2 at 30%. This could be a result of not considering the small variation between 

pWF and D/ pSF. On the other hand, Figure 9-12 shows the state of charge ,SOC, of the ESS 

for both cases at 30% penetration level over the simulation period while Figure 9-13 shows 

SOC for one day. Figure 9-14 and Figure 9-15 show the CG and ESS reserve provision 

over the period of the simulation for 30% and 20% respectively. Over the period of the 

simulation, ESS provided substantial percentage of the reserve.    

Table 9-4. ESS sizing and cost results. 

  VG % 
PESS 

(MW) 

EESS 

(MWh) 
ESS Cost ($) 

Case 

2 

30%  387.51 1,162.54 43,222,037 

20%  355.69 1,067.06 39,672,395 

Case 

3 

30%  424.38 1,273.14 47,334,148 

20% 397.26 1,191.78 44,309,260 
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Figure 9-12. ESS SOC for case 2 and 3 at 30% penetration level. 

 

Figure 9-13. ESS SOC for case 2 and 3 at 30% penetration level. 
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Figure 9-14. ESS and CG reserve comparison between Case 2 and Case 3 at 30% 

penetration level. 

 

Figure 9-15. ESS and CG reserve comparison between Case 2 and Case 3 at 20% 

penetration level. 
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9.6.4 Reliability Assessment Results 

Once the ESS optimal size has been computed, the results are fed into the PPC to assess 

reliability. Table 9-5 shows the reliability assessment results and the projected cost. At both 

penetration levels, the reliability improvement when considering case 2 was less than case 

3. This indicates that ignoring the correlation between WF expected power output and 

demand/SF expected power output results in slight overestimation of unreliability. 

However, the expected total costs of the CG were slightly higher in case 3 (WF power 

output is assumed statistically independent) than case 2 for both penetration levels. It is 

important to note that these differences are small in this case because the cross-correlation 

is small (less than 0.16, see Table 9-3). 

Table 9-5. Reliability assessment results. 

 
Penetration 

 Level (%) 
LOLP 

LOLE 

(hrs./y) 

EUE 

(MWh) 

Total Cost 

(k$) 

Case 2 
30%  0.00009 0.788 72.94 91,313.53 

20%  0.00013 1.139 113.35 98,092.13 

Case 3 
30%  0.00008 0.701 66.53 91,968.82 

20%  0.00012 1.051 103.51 98,643.22 

9.7 Conclusions 

A MILP model for ESS power and energy sizing has been presented. The model takes 

into account VG and load seasonal correlation, VG unit reliability (modeled as a repairable 

component with certain FOR), reserve and CG operational constraints. A case study 

presented which showed that there is considerable correlation between the SF expected 

power and demand in every season while the correlation between the WF expected power 
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and demand was small. Because of these correlation results, the composite demand was 

computed by subtracting the SF expected power from demand while the WF expected 

power was treated as a statistically independent process. For comparison purposes, the 

composite demand was also computed by assuming that both WF and SF expected power 

outputs are correlated to the demand. The two case results were compared in terms of ESS 

sizing and reliability assessment. The results show that approximating WF power output 

as statistically independent of demand and SF power output, the error is very small. It is 

therefore acceptable to treat wind as statistically independent from demand and SF power 

output if the correlation is below a threshold (recommended threshold value 0.1). For 

example, for the suggested threshold value and for the example data, the analysis for Spring 

will assume WF power output to be statistically independent and for other seasons this 

assumption will not be used. 
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CHAPTER 10. SUMMARY, CONTRIBUTIONS AND FUTURE 

RESEARCH DIRECTIONS  

10.1 Summary 

This thesis introduced models to assess reliability of power systems in presence of VG 

with and without ESS. The models are focused on generation adequacy and assume reliable 

and sufficient transmission and distribution networks. The models can be summarized as 

follows: 

1) Three probabilistic models were presented to evaluate WF/SF power generation 

probability distribution functions. Based on the historical wind speed/solar radiation 

data of a specific location, the wind speed PDF and the solar radiation PDF were 

analytically computed. The WTSs/SCGs forced outages were simulated non-

chronologically and chronologically using non-sequential and sequential MCS, 

respectively. Subsequently, the PPC method was used to compute the system reliability 

by combining the WF/SF power outputs PDFs and the electric load probabilistic model. 

By combining the probabilistic WF/SF power output model and the electric load model, 

an equivalent load duration model is computed. The equivalent load duration model 

was inputted to the PPC method to assess the overall system reliability. The results of 

the PPC in terms of reliability indices quantify the impact of WF/SF on system 

reliability.  

2) A unit commitment economic dispatch, UCED, model was integrated into the 

reliability analysis method to compute the expected CG and VG outputs by taking into 
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account normal and contingency operations of CGs and the forecasted weather and 

FORs of VGs. The UCED was applied on a test system consisting of G CGs and 

different penetration levels of SCG. Then, the expected VGs power output and the 

forecasted load probabilistic model was inputted to the PPC method to assess 

reliability, compute projected production cost, and capacity credit for the VGs. The 

UCED added constraints such as reserve and minimum up time of CGs, etc. that 

determined the operation of both CG and VG.    

3) A mixed integer linear programing, MILP, model for Energy storage system, ESS, 

optimal sizing, based on the UCED model was presented. The model determines the 

optimal parameters (power and energy storage) of ESS taking into account FOR of all 

generating units and operational practices of CG, mainly economic dispatch. For the 

specific size of ESSs, the reliability and projected costs were computed in a 

probabilistic manner. Results were presented using an example test system. 

4) Accounting for weather forecast error and VG and demand correlation. The final model 

in this research work accounts for wind speed and solar radiation forecast errors in ESS 

optimal sizing and reliability assessment. Also, the correlation between wind 

speed/solar radiation and load was computed using the least square method. 

10.2 Contributions of This Research 

This thesis has made the following contributions:  

1) Three different models have been developed to characterize the output of WFs/SFs 

output. The outputs of the three models are comparable and similar, but the 
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methodology is different, providing confidence that the methods are reliable. The 

analytical method required complex derivations that are needed to weigh in all the 

possible outcomes whereas both MCS methods did not. If, for example, the FORs of 

WTSs/SCGs are not identical, or under the existence of derated states, it would be 

computationally challenging to mathematically derive all possible events in order to 

perform the analytical method. Further, the sequential MCS method simulates the 

failure and repair process chronologically. Any of the three methods could be used to 

assess power system reliability in presence of VG. The three models are considered the 

building blocks that can be integrated in more complex models to represent the WFs/ 

SFs power outputs probabilistic models. 

2) Developed a UCED model to compute the expected VGs and CGs output by taking 

into account normal and contingency operations of CGs, the forecasted weather and 

forced outages of VG units.  

3) The UCED is further developed to find the optimal size of ESS for a power system 

with VG. The optimal size of ESS was used to study its effect on reliability taking into 

account FOR of all VG units and operational practices of CG. 

4)  A further development to account for weather forecast errors and the correlation 

between WF/SF power outputs and demand in ESS sizing and reliability assessment.    
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10.3 Publications 

Published Papers: 

1) A. Alamri and A. P. Meliopoulos, "Reliability Assessment and Capacity Credit of 

Variable Generation," 2017 North American Power Symposium (NAPS), 

Morgantown, WV, 2017.  

2) A. Alamri, M. AlOwaifeer and A. P. S. Meliopoulos, "Probability Characterization 

of Solar Farm Power Output and Impact on System Reliability," 2018 IEEE 

International Conference on Probabilistic Methods Applied to Power Systems 

(PMAPS), Boise, ID, 2018. 

3) A. Alamri, M. AlOwaifeer and A. P. S. Meliopoulos, "Probability Characterization 

of Wind Farm Power Output and Impact on System Reliability," 2018 IEEE 

International Conference on Probabilistic Methods Applied to Power Systems 

(PMAPS), Boise, ID, 2018. (Winner of the Roy Billinton Student Paper Award, 

Bronze Award) 

4) M. AlOwaifeer, A. Alamri and A. P. S. Meliopoulos, "Reliability and Cost Impacts 

of Home Energy Management Systems," 2018 IEEE International Conference on 

Probabilistic Methods Applied to Power Systems (PMAPS), Boise, ID, 2018. 

5) M. AlOwaifeer, A. Alamri and A. P. S. Meliopoulos, "HEMS Operation via 

MILP," 2018 Clemson University Power Systems Conference (PSC), Charleston, 

SC, USA, 2018, pp. 1-6. 

6) A. Alamri, M. AlOwaifeer, A. P. S. Meliopoulos and G. J. Cokkinides, "Energy 

Storage Sizing and Reliability Assessment for Power Systems with Variable 

Generation," 2019 IEEE Milan PowerTech, pp. 1-6, Milan, Italy, June 2019.  

7) A. Alamri, M. AlOwaifeer and A. P. S. Meliopoulos, "Unit Commitment and 

Probabilistic Reliability Assessment of Power Systems with Solar 

Generation," 2019 IEEE Power & Energy Society General Meeting (PESGM), 

Atlanta, GA, USA, 2019, pp. 1-5. 
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8) M. AlOwaifeer, A. Alamri, and A.P. Sakis Meliopoulos, “Microgrid Energy 

Management System for Normal and Emergency Conditions”, accepted and 

presented at 2019 North American Power Symposium (NAPS), Wichita, KS, 2019.  

9) A. Alamri, M. AlOwaifeer, and A.P. Meliopoulos, " Analytical Method for Energy 

Storage Sizing and Reliability Assessment for Power Systems with Variable," 

Proceedings of the 53rd Hawaii International Conference on System Sciences, 

Maui, HI, January 6-9, 2020.  

Papers to be Submitted: 

10)  A. Alamri, M. AlOwaifeer and A. P. S. Meliopoulos, “Energy Storage Sizing and 

Probabilistic Reliability Assessment for Power Systems Based on Composite 

Demand.” A Journal Paper.  

Papers to be Submitted: 

11) A. Alamri, M. AlOwaifeer and A. P. S. Meliopoulos, "Multi-Objective Unit 

Commitment Economic Dispatch for Power Systems Reliability Assessment,” 

submitted to the  2020 IEEE International Conference on Probabilistic Methods 

Applied to Power Systems (PMAPS), Liege, Belgium, 2020. 

10.4 Future Research Directions 

This research developed models for reliability assessment when adding VG and/or 

ESS. The research focus was the generation adequacy level, HL1. My research could be 

extended in the future to include models for reliability assessment and cost projection when 

considering transmission networks, HL2, and distribution networks, HL3. Also, my future 

work could include developing probabilistic models for home energy management systems 

(HEMS) and studying their effect on power system reliability when applied on large scale. 

Finally, I am highly interested in studying electricity markets and the effect on markets 
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operation and practices on reliability assessment in presence of high penetration of 

renewable energy resources.  
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APPENDIX A. THE IEEE RELIABILITY TEST SYSTEM - 1996 LOAD 

DESCRIPTION 

This chapter describes the enhanced reliability test system, referred to as the IEEE 

reliability test system (RTS)-1996, for bulk power system reliability evaluation studies 

[40]. The focus here is the load of the RTS which is given in per unit (p.u.). Table A- 1 

describes the daily load in percent of weekly peaks. Similarly, Table A- 2 describes the 

weakly peak load as percentage of annual peaks and Table A- 3 shows the hourly peak load 

as percentage of daily peak. These three tables fully describe the hourly load as percentage 

of the system peak load.  

Table A- 1. Daily load in percent of weekly peak. 

Day Peak Load 

Monday 93 

Tuesday 100 

Wednesday 98 

Thursday 96 

Friday 94 

Saturday 77 

Sunday 75 
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Table A- 2. Weekly peak load in percent of annual peak. 

Week Peak Load Week Peak Load 

1 86.2 27 75.5 

2 90.0 28 81.6 

3 87.8 29 80.1 

4 83.4 30 88.0 

5 88.0 31 72.2 

6 84.1 32 77.6 

7 83.2 33 80.0 

8 80.6 34 72.9 

9 74.0 35 72.6 

10 73.7 36 70.5 

11 71.5 37 78.0 

12 72.7 38 69.5 

13 70.4 39 72.4 

14 75.0 40 72.4 

15 72.1 41 74.3 

16 80.0 42 74.4 

17 75.4 43 80.0 

18 83.7 44 88.1 

19 87.0 45 88.5 

20 88.0 46 90.9 

21 85.6 47 94.0 

22 81.1 48 89.0 

23 90.0 49 94.2 

24 88.7 50 97.0 

25 89.6 51 100.0 

26 86.1 52 95.2 
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Table A- 3. Hourly peak load in percent of daily peak. 
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APPENDIX B.  CHAPTER 8 CASE STUDY FIGURES FOR THE 20% 

PENETRATION LEVEL 

The PDFs and CDFs of SF1, SF2, WF1 and WF2 power outputs for all four seasons 

at 20% penetration level are shown below. These PDFs and CDFs were discussed earlier 

in section 8.5.1. 

 

Figure B- 1. Winter season PDF and CDF of SF1 at 20% penetration level. 
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Figure B- 2. Spring season PDF and CDF of SF1 at 20% penetration level. 

 

Figure B- 3. Summer season PDF and CDF of SF1 at 20% penetration level. 
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Figure B- 4. Fall season PDF and CDF of SF1 at 20% penetration level. 

 

Figure B- 5. Winter season PDF and CDF of SF2 at 20% penetration level. 
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Figure B- 6. Spring season PDF and CDF of SF2 at 20% penetration level. 

 

Figure B- 7. Summer season PDF and CDF of SF2 at 20% penetration level. 



 

 143 

 

Figure B- 8. Fall season PDF and CDF of SF2 at 20% penetration level. 

 

Figure B- 9. Winter season PDF and CDF of WF1 at 20% penetration level. 
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Figure B- 10. Spring season PDF and CDF of WF1 at 20% penetration level. 

 

Figure B- 11. Summer season PDF and CDF of WF1 at 20% penetration level. 
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Figure B- 12. Fall season PDF and CDF of WF1 at 20% penetration level. 

 

Figure B- 13. Winter season PDF and CDF of WF2 at 20% penetration level. 
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Figure B- 14. Spring season PDF and CDF of WF2 at 20% penetration level. 

 

Figure B- 15. Summer season PDF and CDF of WF2 at 20% penetration level. 
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Figure B- 16. Fall season PDF and CDF of WF2 at 20% penetration level. 
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APPENDIX C.  CHAPTER 9 CASE STUDY FIGURES FOR THE 20% 

PENETRATION LEVEL 

This appendix includes the expected WF power output, pWF, and expected SF power 

output, pWF, for the 20% penetration level,  Figure C- 1 and Figure C- 2, respectively. 

Moreover, Figure C- 3 -Figure C- 8 are CDFs and PDFs of the case 2 and case 3 discussed 

earlier in section 9.6.2. Finally,  Figure C- 9 depicts the SOC of ESS at the 20% penetration 

level.   

     

 

Figure C- 1. Expected WF power output (pWF) at 20% penetration level. 
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Figure C- 2. Expected SF power output (pSF) at 20% penetration level. 

 

Figure C- 3. Composite demand PDFs (ρCD (cd)) at 20% penetration level (Case 2). 
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Figure C- 4. Composite demand CDFs (FCD (cd)) at 30% penetration level (Case 2).  

 

Figure C- 5. D− SF PDFs (ρD− SF (d)) at 20% penetration level (Case 3). 
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Figure C- 6. D− SF PDFs (FD− SF (d)) at 20% penetration level (Case 3). 

 

Figure C- 7. WF power output (ρWFG (pWF)) PDFs at 20% penetration level. 
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Figure C- 8. WF power output (FWFG (pWF)) PDFs at 20% penetration level. 

 

Figure C- 9. ESS SOC for case 2 and 3 at 20% penetration level.  
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