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II. Summary of the Completed Work: 

The primary objective of this research was to design, analyze and implement a class 
of proposed learning controllers for non-linear mechanical systems. The two main 
proposed tasks of the project, which included the theoretical development and 
experimental evaluation of the proposed controller, has now been completed. The 
proposed learning controller does not require an exact knowledge of the system 
dynan1ics and is computationally efficient. The stability of the overall control systen1 
taking into account the full nonlinear dynamics of the system has also been proven. To 
investigate its practical feasibility, the control scheme was simulated using a realistic 
model of a Scara type robot. The simulation results demonstrated a significant 
improvement in performance compared to conventional PID schemes. A research 
article [1,2] based on this work was prepared and has been accepted for publication. 

An IBM Scara robot (7545) robot has been modified to be used as a test-bed for 
the developed control schemes. The results obtained so far indicates a substantial ( 
about 2 orders of magnitude ) increase in tracking accuracy of the robot over the IBM's 
original controller. [3] 

Other work resulting from this research includes some new theoretical results on 
repetitive control of more general dynamic systems. This work has been submitted for 
publication [ 4 ]. 

Currently under investigations are: (1) Implementation of the proposed controller 
in Cartesian space, (2) Neural-Network Learning Control design, (3) End-point sensing 
and control of flexible robots. 



III. Technical Information 

As a result of this award the following research articles have been submitted/and or 
accepted for publication in refereed journals or conference proceedings: 

[ 1] N. Sadegh and K. Guglielmo, "A new Learning Controller for Mechanical 
Manipulators", Accepted for publication in the Journal of Robotic Systems, August, 
1991. 

[2] K. Guglieln1o and N. Sadegh, "A new Learning Controller for Mechanical 
Manipulators Applied in Cartesian Space", To be presented at the ASME Winter 
Annual Meeting, Dallas, Texas, Nov. 1990. 

[3] N. Sadegh, "Synthesis and Analysis of Repetitive Control Systems", Submitted to 
IEEE Trans. on Auto. Control for publication. 

[ 4] K. Guglielmo and N. Sadegh, "Experimental Evaluation of a New Robot Learning 
Controller", Submitted to IEEE Int. Conference on Robotic and Automation, April, 
1991. 

IV. Abstracts of the Resulting Research Articles 

See the attached sheets. 



A New Learning Controller 
For Mechanical Manipulators 

Nader Sadegh 

Kennon Guglielmo 

The George W. Woodruff School of Mechanical Engineering 
Georgia Institute of Technology, Atlanta Georgia 30318 

ABSTRACT 

A new learning controller for motion control of mechanical manipulators undergo­
ing periodic tasks is developed. This controller does not require exact knowledge of the 
manipulator dynamic structure or its parameters, and is computationally efficient. In 

addition, no actual joint accelerations or any matrix inversions are needed in the control 
law. The global asymptotic stability of the ideal and the robust stability of the nonideal 
control system is proven taking into account the full nonlinear dynamics of the manipu­
lator. Simulation results of this algorithm applied to a realistic Scara type manipulator 
[7], which includes dry friction, pay-load inertia variations, actuator/sensor noise, and 
unmodelled dynamics are also presented. 



A New Learning Controller 

for Mechanical Manipulators 

Applied in Cartesian Space 

Kennon Guglielmo 

Nader Sadegh 

Abstract 

This paper presents a new learning controller for motion control of mechanical manipulators 

undergoing periodic tasks defined in Cartesian space. The controller does not require knowledge 

of the manipulator dynamic parameters beyond a simple geometric description. Feedback will 

be accomplished through the use of a Cartesian space position sensor for the end-effector, 

and standard joint position and joint velocity sensors. No Cartesian velocity signal and no 

acceleration feedback of any kind is required, and the Cartesian end- effector position may be 

easily generated using forward kinematics if direct measurement is not possible. The desired task 

will be defined in Cartesian coordinates, and no inverse kinematics or inverse Jacobian will be 

calculated. The asymptotic stability of this algorithm is proven using the Lyapunov approach, 

and the non-linear characteristics of the manipulator are explicitly taken into account. 

Simulation results applied to a realistic SCARA type manipulator model are presented [11]. 

This model has been patterned very accurately after an actual manipulator and includes realistic 

friction, sensor/ actuator noise, payload variation, high order dynamics, digital quantization, 

and actuator saturation effects. These simulation results confirm the asymptotic stability of the 

learning control scheme and also demonstrate robustness to simulation and trajectory induced 

disturbances. 

1 Introduction 

Most industrial robots working In assembly line applications perform a desired task repetitively 

with each task requiring a prescribed period of time. Just as humans become more proficient at 

performing a series of motions with practice, the "repetitive" or "learning" class of controllers 

enable robots to increase their tracking accuracy while performing a periodic task. As the ma­

nipulator works, position, velocity, and/or acceleration feedback is used to form error signals, and 

the "learning" law attempts to reduce these errors from one cycle to the next by modifying the 

calculated input torque. 

Early works on learning or repetitive control can be found in [2,9,4,22]. The most common 

technique used in these works is a "delayed integral" action of the form (1- e-•T)-1. Theoretically, 

this algorithm would learn the time history of the periodic disturbances and eventually cancel their 

effects after several cycles of the trajectory. In these works as well as more recent ones, such as 
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Synthesis and Stability Analysis of Repetitive 

Control Systems * 

Nader Sadegh 

The George W. Woodruff School of Mechanical Engineering 

Georgia Institute of Technology, Atlanta Georgia 30318 

Abstract 

A class of repetitive controllers for tracking control of dynamical systems subject to repetitive 

desired trajectories is presented. Within the framework of periodic functions, the necessary and 

sufficient conditions along with an explicit procedure for stably inverting a linear time-invariant 

plant is formulated. This procedure, which is also applicable to nonminimum phase plants, can 

be used in determining the exact feedforward input of the plant. Next, the stability of a repetitive 

control system, which is a distributed parameter system, is analyzed and the necessary and 

sufficient conditions for its asymptotic convergence are postulated. An extended Nyquist criteria 

for the stability analysis and synthesis of this controller is subsequently proposed. Finally, a 

modified repetitive controller is introduced, which expands the domain of applicability of the 

original controller to a wider class of plants, including nonminimum phase systems. The main 

stability results pertaining to the original controller are then extended to those of the modified 

controller. Several simulation examples and design guidelines are also presented. Simulation 

results confirm a perfect asymptotic tracking performance for the repetitive control systems that 

satisfy the stability conditions. 

•This work was supported by the National Science Foundation under grant MSS-8910427. 
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Experimental Evaluation of a New 

Robot Learning Controller 
Kennon Guglielmo 

Nader Sadegh 

The George W. Woodruff School of Mechanical Engineering 

The Georgia Institute of Technology 

Atlanta, Georgia, 30332-0405 

Abstract 

The results of the implementation of a new learning control algorithm on an IBM 7545 robotic 

manipulator are presented. Simulation studies of this repetitive controller have been presented in 

[8] and [17]. The implementation of the joint space algorithm on the IBM manipulator confirms 

and even exceeds the performance estimated by the previous simulation work. Feedback was 

obtained from optical joint position encoders, and velocity was estimated by simple numerical 

differentiation in software. No acceleration feedback of any kind was used, and no dynamic 

parameters, dynamic equations of motion, or kinematic equations were needed. The performance 

of the algorithm was compared to that of a simple PD feedback system (common in many current 

industrial robots), and an adaptive algorithm which performs at lea8t as well as a "Computed 

Torque" controller. The learning algorithm outperformed both of these controllers by a huge 

margin, and exhibited convergence within approximately three cycles. 





Nader Sadegh 
Georgia ~e£h~Research Foundation 
Mechanical Engineering 
Atlanta, GA 30332 

PART I - PROJECT IDENTIFICATION INFORMATION 
1. Program Officiai/Org. Devendra Garg 

2. Program Name Dynamics Systems and Control 

3. Award Dates {MMIYY) From: 8/1/89 

4. Institution and Address 

Georgia Tech Research Foundation 
Mechanical Engineering 
Atlanta, GA 30332 

5. Award Number 8910427 

6. Project Title 

To: l/31/92 

Research Initiation Award: Learning Control of Mechanical 
Systems 



NSF Grant Conditions (Article 17, GC-1, and Article 9, FOP-II) require submission of a Final Project 
Report (NSF Form 98A) to the NSF program officer no later than 90 days after the expiration of the 
award. Final Project Reports for expired awards must be received before new awards can be made 
(NSF Grant Policy Manual Section 677). 

Below, or on a separate page attached to this form, provide a summary of the completed project and technical information. Be 
sure to Include your name and award number on each separate page. See below for more instructions. 

PART II -SUMMARY OF COMPLETED PROJECT (for public use) 

The summary {about 200 words) must be self-contained and Intelligible to a scientifically literate reader. Without restating the 
project title, It should begin with a topic sentence stating the project's major thesis. The summary should Include, If pertinent 
to the project being described, the following Items: 

• The primary objectives and scope of the project 
• The techniques or approaches used only to the degree necessary for comprehension 
• The findings and implications stated as concisely and Informatively as possible 

PART Ill· TECHNICAL INFORMATION (for program management use) 

Ust references to publications resulting from this award and briefly describe primary data, samples, physical collections, 
inventions, software, etc. created or gathered in the course of the research and, if appropriate, how they are being made available 
to the research community. Provide the NSF Invention Disclosure number for any invention. 

Date 

-'ii"ji~c:T'z};}1 ~~7~1 0~ ·~i~{~',/:::v ~·:> IM~ORT ANT: 

· .•. :>:: .. :.":···:::.:-:>~;",;.~ •..• ;:;:·,:...:.~;.·;· ... ~' · MAILING INSTRUCTIONS 
~~~J~~:;~.L·-·sr~:~:~~~1J~n tll,~s.. entire pac~et plus all attachments in the 
~(envelope.attached to the back of this form. Please·.copy the· infor-
S:}~R;atlon from Part_l, B_iock I to the_ Attention block o·ri the envelope~ 

' ,, ;: .' '. ' ' ~ '", ' > v"' • ~ ,'• • ~ 0: • .,. •; • • '• • • • 

NSF Form 98A (Rev. 1 0/90) 



PART IV - FINAL PROJECT REPORT - SUMMARY DATA ON PROJECT PERSO . 
(To be submitted to cognizant Program Officer upon completion of project) 

The data requested below are important for the development of a statistical profile on the personnel supported by 
Federal grants. The information on this part is solicited in response to Public Law 99-383 and 42 USC 1885C. All informa-
tion provided will be treated as confidential and will be safeguarded in accordance with the provisions of the Privacy Act 
of 1974. You should submit a single copy of this part with each final project report. However, submission of the requested 
information is not mandatory and is not a precondition of future award(s). Check the "Decline to Provide Information" 
box below if you do not wish to provide the information. 

Please enter the numbers of individuals supported under this grant. 
Do not enter information for individuals working less than 40 hours in any calendar year. 

- ·· . -
Senior Post- Graduate Under- Other 
Staff Doctorals Students Graduates Particip~nts 1 

Male Fern. Male Fern. Male Fern. Male Fern. Male Fern. 

A. Total, U.S. Citizens 1 

B. Total, Permanent Residents 1 

U.S. Citizens or 
Permanent Resldents2: 

American Indian or Alaskan Native ... 

Asian ............................. 

Black, Not of Hispanic Origin ......... 

Hispanic .•.......................• 

Pacific Islander .............•...... 

White, Not of Hispanic Origin ...•.... 1 i 1 

c. I_ 

Total, Other Non-U.S. Citizens 

Specify Country 
1. 

2. 

3. 

D. Total, All participants 
(A+B+C) 1 1 

Dlaabled3 
·-

0 
Decline to Provide Information: Check box if you do not wish to provide this Information (you are still required to return this page 
along with Parts 1-111). 

1Category Includes, for example, college and precollege teachers, conference and workshop participants. 
2Use the category that best describes the ethnic/racial status for all U.S. Citizens and Non-citizens with Permanent Residency. (If more 
than one category applies, use the one category that most closely reflects the person's recognition in the community.) 

3A person having a physical or mental Impairment that substantially limits one or more major life activities; who has a record of such 
Impairment; or who Is regarded as having such Impairment. (Disabled individuals also should be counted under the appropriate 
ethnic/racial group unless they are classified as "Other Non-U.S. Citizens.") 

AMERICAN INDIAN OR ALASKAN NATIVE: A person having origins In any of the original peoples of North America, and who main-
tain cultural Identification through tribal affiliation or community recognition. 

ASIAN: A person having origins In any of the original peoples of East Asia, ~outheast Asia and the Indian subcontinent. This area 
Includes, for example, China, India, Indonesia, Japan, Korea and VIetnam. 

BLACK, NOT OF HISPANIC ORIGIN: A person having origins In any of the black racial groups of Africa. 

HISPANIC: A person of Mexican, Puerto Rican, Cuban, Central or South American or other Spanish culture or origin, regardless of race. 

PACIFIC ISLANDER: A person having origins In any of the original peoples of Hawaii; the U.S. Pacific Territories of Guam, 
American Samoa, or the Northern Marianas; the U.S. Trust Territory of Palau; the Islands of Micronesia or Melanesia; or the 
Philippines. 

WHITE, NOT OF HISPANIC ORIGIN: A person having origins in any of the original peoples of Europe .. North Africa, or the Middle East. 

NSF Fonn 98A (Rev. 10190) 



Learning Control of Mechanical Systems 

Prepared for the National Science Foundation 

Principal Investigator: 
Nader Sadegh 

George W. Woodruff School of Mechanical Engineering 
School of Mechanical Engineering 

Part 11-Summary of the Completed Work 

The primary objective of this research was to design, analyze and implement a class 
of leat:,ning/repetitive controllers for non-linear mechanical systems. The main tasks of 
the project, which included theoretical development and experimental evaluation of the 
proposed controllers, have been successfully completed. The developed learning controllers 
require no exact knowledge of the system's model and are computationally efficient. They 
can be used as a "plug-in" module to significantly improve the tracking performance of an 
existing servo controller without significantly increasing its cost or complexity. 

An ffiM Scara (7545) robot was modified to serve as a test-bed for the implementation 
of the proposed control schemes. The implementation results demonstrated the feasibility 
of the learning controllers for applications in which high-performance position or force 
control would be required. These results also confirmed and even exceeded the performance 
estimated by the previously published simulation results [1,2]. The learning algorithms were 
compared to that of a simple PD feedback system (common in many current industrial 
robots), and a "Computed Torque" controller. They outperformed both of these controllers 
by a significant margin, and exhibited fast convergence. 

Other work resUlting from this project includes some new theoretical results on repetitive 
control of more general class of dynamical systems, and synthesis of neural network based 
learning controllers for nonlinear systems. 

1 



Part Ill-Technical Information 

III-A Background 

The increase in complexity oftoday's engineering systems, coupled with tighter requirements 
on their control performance, have necessitated a search for alternatives to the conventional 
control strategies. The conventional linear control techniques are often satisfactory for 
regulating a single plant with known dynamics about a certain operating point. As the 
operating range of the plant is expanded, more uncertainty is introduced to the control 
system and the nonlinear effects become more prominent. As a result, the performance 
of a conventional controller based on the linear model may deviate significantly from the 
desired ~ehavior. The learning control techniques have been proposed in recent years as a 
promising approach to maintain a high level of performance in the presence of plant and 
environmental uncertainties, and to increase the autonomy of the control system. 

In this research we investigate a class of learning controllers for mechanical systems. The 
mechanical systems considered here possess highly nonlinear dynamic equations of motion 
and are influenced by other nonlinear effects such as static friction and digital quantization. 
Typical "adaptive" control techniques attempt to use the specific structure of some model 
of the overall system and estimate unknown constant parameters within that model. The 
problem with this approach is that the model may not be known or may be incomplete. 
"Learning" control algorithms, such as those developed as a part of this project, avoid 
the use of specific modeling equations and attempt to estimate the overall input-output 
relationship of a system. 

The general topologies of the controllers investigated in this project are similar in that 
they are all derived from a modified "Computed Torque" scheme (see [14, 15]). In this 
scheme, the nonlinear dynamics are "canceled" by feeding forward an input signal which is 
derived directly from the equations of motion of the manipulator. Some type of feedback 
loop is also present to add robustness to the system. 

The computed torque method and its derivatives are considered superior to many other 
algorithms because the nonlinearities of the system are dealt with in a direct manner as 
opposed to some type of linearization scheme or the pure application of a linear feedback 
controller. This type of control is not without its problems and limitations, however. There 
is always some uncertainty associated with the dynamic inertial parameters included in the 
equations of motion used to form the feedforward signal. Also, some unmodeled effects 
are almost always present such as unknown friction mechanisms or unknown payloads. 
Adaptive control based on the computed torque method has been developed to deal with 
these problems. In many of these adaptive schemes (see [14] for examples) the dynamic 
equations of the manipulator are decomposed into a known nonlinear function of the state 
of the manipulator and an unknown vector of inertial and kinematic parameters. An update 
law driven by some type of error signal is then used to "adapt" the unknown parameter 
vector - hopefully to the true parameters of the robot. 

An extension of adaptive controllers to include estimation of the entire feedforward term 
-not just unknown constants- has been given the name "learning" control. Many of these 
schemes require that the task being performed is periodic. This means that the manipulator 
is required to execute some trajectory with a finite period in a cyclic fashion. In this way 
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the class of "learning" or "repetitive" controllers acquires a knowledge of the feedforward 
quantity necessary to operate the robot with desirable performance. One problem with 
the "repetitive" class of learning controllers is that the desired task must be periodic. By 
exploring the general structure of the dynamic effects present in a robotic manipulator, 
a learning algorithm may be derived which relaxes the restriction of periodicity of the 
task. This new controller, referred to as the Configuration Learning Law (CLL), learns the 
functional relationship between the feedforward control input and the desired states of the 
system. As a result the desired task does no longer have to be periodic. 

Up to this point we have only mentioned adaptive and learning position control of 
mechanical systems. A field even more recent than this is the adaptive or learning force 
control. In most of the existing works in this area, MRAC (Model Reference Adaptive 
Control) or simple gain tuning is used to maintain a desired contact force with a surface 
while moving tangentially to it with some prescribed motion. Few new control algorithm 
applications are explored and the performance of these controllers is questionable since 
simulation results are usually presented. Simulation studies are not very reliable since real 
surface interactions are often very difficult to model and are usually highly nonlinear. As 
a part of this project, we have developed and experimentally verified a learning controller, 
referred to as the Hybrid Learning Law (HLL) [3], for applications requiring force control. 
This controller enables the robot to "learn" how to accurately follow a desired path on an 
unknown surface while maintaining a prespecified contact force. 

The algorithms developed in this research extend the application of learning control to 
several specific areas. This work should facilitate the use of learning control in the flexible 
manufacturing arena and provide a basis for application of these schemes to other linear 
and nonlinear systems. 

111-B Completed Tasks of Project 

We now briefly describe the completed phases of this project and the resulting publications. 

Repetitive Controller 

The goals of this phase of the project, which included the theoretical design and analysis of 
the proposed repetitive controller, have now been fulfilled. The objective of this controller, 
which serves as the backbone for the subsequent phases of this project, is to "learn" and 
generate the feedforward input torque for tracking a trajectory specified in either the joint 
or Cartesian space. When the task is specified in the Cartesian space, the controller is 
formulated so that it requires no kinematic inversions. Only forward kinematics, if direct 
measurement is not possible, is needed. 

The way that this controller "learns" the required feedforward input can be described as 
follows: the periodic feedforward input is expressed as a linear combination of a countable 
set of appropriately selected periodic functions with unknown coefficients (e.g., Fourier series 
approximation). A learning control law, which uses a steepest descent parameter estimation 
law is employed to directly estimate a finite number of these unknown coefficients and use 
them in the calculation of the feedforward torque input. The stability and robustness of 
this controller to effects such as truncation errors and input disturbances was rigorously 
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analyzed. All of these analyses were carried out by considering the full nonlinear dynamic 
model of the manipulator. 

The main advantages of this controller as compared to those in the previous works 
may be summarized as follows: (1) No need for joint acceleration measurements or any 
matrix inversions; (2) Reduction in memory space requirement since for most trajectories, a 
moderate number of coefficients suffices for approximation purposes; (3) Faster convergence 
rate and improved robustness to unmodeled disturbances, and (4) pamllel processability of 
the learning algorithm. The results of this phase of the project have appeared in references 
[10, 11, 14]. 

Experimental Evaluation of Proposed Controllers 

In this phase of the project, the control algorithms described previously were implemented 
on an IBM 7545 four degree of freedom robot using an Intel80386/387 based microcomputer 
and associated hardware. The links of this robot are actuated by DC motors coupled 
to harmonic gear drives. The harmonic drives of the actuators introduce a significant 
degree of flexible unmodeled dynamics into the control system. In addition, a substantial 
amount of Coulomb friction is present at each joint. In spite of these undesirable effects, the 
implementation of the proposed algorithms confirmed and even exceeded the performance 
estimated by the earlier simulation results. It was demonstrated that the implemented 
repetitive control scheme not only outperformed the existing robot PID controller by a 
significant margin - about 2 orders of magnitudes in terms of the position tracking error -
but also exhibited a faster convergence rate than that of the existing repetitive algorithms. 
In fact, the controller forced the robot to track the entire desired trajectory within the 
resolution capabilities of the position encoders after about four cycles. The main results of 
this work has been presented in [2, 7]. 

Repetitive Force Control 

The previous position controller was extended to a hybrid learning force/position control 
scheme for tracking an unknown surface with a specified contact force. The algorithm used 
for all elements of the control scheme was a repetitive learning similar to that described 
above. The learning law was also applied to on-line trajectory generation for maintaining 
normal contact to the unknown surface. The complete control scheme was implemented on 
an mM 7545 robot, and excellent performance was observed in terms of position, force, and 
orientation tracking. A Simple PID version of the overall control strategy was implemented 
for comparison purposes, and the learning controller outperformed the PID implementation 
by a large margin in all areas. The learning algorithm proved robust to non-periodic 
disturbances, and was almost as computationally efficient as the simple PID scheme. The 
preliminary results of this work have appeared in reference [3]. 

Configuration Learning Law 

One limitation that all previously mentioned controllers have in common is that they all 
require a. periodic task. Once a. particular task is learned it is performed with little error. 
However, if the task is slightly altered, the entire learning process must be reactivated for 
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the new task. The Configuration Learning Law ( CLL) has been developed to specifically 
address this problem. The CLL learns and generates the feedforward control input as a 
function of the desired states of the system. As a result the desired task does no longer 
have to be periodic. The preliminary experimental results of this work are reported in [1]. 

Repetitive Control of Nonminimum Phase Systems 

One key property of a rigid robot manipulator that makes it attractive for control purposes 
is that it is a passive system from an input-output point of view. This passivity property is 
lost however for flexible robots with noncollocated input-outputs. Instability may occur if 
the aforementioned repetitive controller is applied to such a system. As part of this project, a 
modified repetitive controller was developed, which expanded the domain of applicability of 
the original controller to a wider class of plants, including the non passive and nonminimum 
phase systems. 

Moreover, in the case of linear plants, a set of necessary and sufficient stability conditions 
was derived, which can be used for design and analysis of the repetitive controller. The 
results of this work have been appeared in references [9, 12]. 

Neural Network Based Control 

The Artificial Neural Networks (ANN) are massively parallel computational machines capa­
ble of learning and reconstructing nonlinear mappings. These capabilities of the ANN have 
spurred an interest among the control researchers to apply them for solving complex control 
problems, especially those dealing with nonlinear systems. The main advantage of using the 
ANN as a controller is twofold: 1) complex nonlinear, even "table-look-up", control algo­
rithms can be dynamically mapped onto the ANN, and recalled instantly when demanded; 
2) the learning capability of the ANN enables the resulting controller to adapt itself to 
possible variations in the plant (i.e., system under control) dynamics while in operation. 

Motivated by our. previous work in the robotics area, we have introduced an ANN-based 
control methodology that can be used for a large class of nonlinear dynamical systems, which 
includes the previously mentioned mechanical systems as a subset. The structure of the 
control law incorporating the ANN network can be derived based on the identified and 
analytical nominal model of the nonlinear system using the geometrical control techniques 
for nonlinear dynamical systems. The performance of the proposed ANN controller has 
been investigated in several case studies including guidance of ground vehicles, and control 
of free-flying (nonholonomic) robots. These systems are chosen as their dynamic models 
are highly nonlinear and subject to uncertainties thus providing a suitable test-bed for the 
proposed control system. 

The developed control scheme, as in the case of the robot controller, includes a feedback 
and a feedforward control component. An important feature that distinguishes this scheme 
from other existing neural network controllers is that the feedforward input is learned di­
rectly, without having first to identify the inverse dynamics of the plant. In most of the 
existing neural network controllers this process is carried out indirectly- first, an network 
is trained to model the inverse plant dynamics, and then the trained network is used to 
compute the control input. The main advantages of the direct controller are that 1) it can 
react to unexpected changes and disturbances more effectively, 2) it has a faster convergence 
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rate, 3) in general, it requires fewer processing elements, and 4) it requires no inversion of 
the plant dynamics. The main results of this research have appeared in references [8, 6, 13]. 
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Summary 

This dissertation addresses the application of "learning" control to robotic manipulators. 

Learning control attempts to estimate the feedforward input necessary to force the robot to 

perform some desired task with zero error. This feedforward signal is estimated in a · general 

way so that very little modeling or identification of the system is involved. The task may be 

position control descriped in either the joint or Cartesian space of the manipulator, or force 

control as the robot interacts with an object. Two basic forms of the learning control law 

are developed. This first is a "repetitive" controller which requires the desired trajectory to 

be cyclic with a finite period. The second is a "non-repetitive" scheme which relaxes the 

restriction of periodicity of the task, but requires some very general modeling of the system. 

Stability of the learning algorithms is proven using the Lyapunov approach, and all of the 

controllers are implemented on an actual ffiM 7545 robot. Performance comparisons ~o sim­

ple classical feedback algorithms as well as some high performance "computed-torque" and 

adaptive controllers show that the learning schemes are capable of obtaining significantly 

better tracking in all cases. 

All of the new learning controllers presented are computationally and memory efficient, 

and are easily implemented on today's digital hardware. In fact, one of the "non-repetitive" 

schemes can be viewed as an efficient form of a "neural network" capable of being imple­

mented in real-time on a low cost microcomputer. Although a robotic manipulator was 

chosen as the test bed for implementation studies of these learning controllers, many other 

nonlinear systems may benefit from application of these algorithms. In fact, the exten­

sion of the basic topology of the learning scheme to these different areas of robotic control 

demonstrates the algorithm's easy applicability. The work presented in formulating the con­

trollers in terms of the nonlinear equations of motion of a mechanical manipulator provides 

an outline for extension to other systems. 
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Chapter 1 

Introduction 

The robotic systems considered in this dissertation possess highly nonlinear dynamic equa­

tions of motion and are influenced by other nonlinear effects such as static friction and 

digital quantization. Typical "adaptive" control techniques attempt to use the specific 

structure of some model of the overall system and estimate unknown constant parameters 
J 

within that modeL The problem with this approach is that the model may not be known 

or may be incomplete. "Learning" control algorithms, such as those developed in this dis­

sertation, avoid the use of specific modeling equations and attempt to estimate the overall 

input-output relationship of a system. 

The general topologies of the controllers investigated in this dissertation are similar in 

that they are all derived from a modified "Computed Torque" scheme (see [10,3,30]). In this 

scheme, the nonlinear dynamics are "canceled" by feeding forward an input signal which is 

obtained directly from the equations of motion of the manipulator. Some type of feedback 

loop is also present to add robustness to the system. A controller of this type referred to 

as the Desired Compensation Control Law (DCCL) has been presented in [30] and will be 

used here for comparison purposes to the new learning algorithms. 

The computed torque method and its derivatives are considered superior to many other 

algorithms because the nonlinearities of the system are dealt with in a direct manner as 

opposed to some type of linearization scheme or the pure application of a linear feedback 
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controller. This type of control is not without its problems and limitations, however. There 

is always some uncertainty associated with the dynamic inertial parameters included in the 

equations of motion used to form the feedforward signal. Also, some unmodelled effects 

are almost always present such as unknown friction mechanisms or unknown payloads. 

Adaptive control based on the computed torque method has been developed to deal with 

these problems. 

In many of these adaptive schemes (see [11,30,31,35] for examples) the dynamic equa­

tions of the manipulator are decomposed into a known nonlinear function of the state of 

the manipulator and an unknown vector of inertial and kinematic parameters. An update 

law driven by some type of error signal is then used to "adapt" the unknown parameter 

vector - hopefully to the true parameters of the robot. The general concept of an update 

law can be understood using the following static example. 

Given some function Y which can be expressed as the product of a time varying matrix 

w ( t) and a constant vector e: 
Y=W(t)9 (1.1) 

an estimate of Y is given by: 

-y = w(t)e (1.2) 

where e is an estimate of e. The update law fore is given by: 

e = -KWT(t)e (1.3) 

where K is a positive definite gain matrix and e is the function estimate error defined by: 

(1.4) 

In this way we force the parameter estimate to the true parameter vector so that the func­

tion estimate Y follows Y. This update law has come to be known as the "steepest descent" 

law in the controls literature, and it is important since all of the learning algorithms devel­

oped in this dissertation use it in some form. By using this law to update the parameters 
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within the DCCL's feedforward compensation, we can derive an adaptive form of this con­

troller. This algorithm, referred to as the Desired Compensation Adaptive Law (DCAL), has 

been presented in [30] and will be used here for comparison purposes to the new learning 

algorithms. 

An extension of adaptive controllers to include estimation of the entire feedforward term 

- not just unknown constants - has been given the name "learning" control. Many of these 

schemes require that the task being performed is periodic. This means that the manipulator 

is required to execute some trajectory with a finite period Tin a cyclic fashion. In this way 

the class of "learning" or "repetitive" controllers acquires a knowledge of the feedforward 

quantity necessary to operate the robot with desirable performance. Many of the early 

works on learning controllers can be found in [2,17,4,36,20,5]. In these works as well as 

many others, one or more of the following assumptions or requirements are usually needed 

to accomplish the controller design and the convergence analysis: 

1. The inverse of the manipulator inertia matrix must be calculated on-line. 

2. The joint accelerations must be available. 

3. The dynamics of the manipulator must be approximated by a linear time-varying 
differential equation. 

In [32), a new repetitive learning control law is presented in which the above restric­

tions and assumptions are relaxed. The key ideas behind this approach which make the 

relaxations possible are: 

1. The properties of the nonlinear dynamic structure of the manipulator are utilized by 
creating a Lyapunov function which resembles the total energy of the robot, and by 
using a feedback control law which makes this function non-increasing [30,34]. 

2. The feedforward input to the manipulator, which may include the inertial, Coriolis, 
gravity, and friction effects, is decomposed into two terms: 

(a) a nonlinear function of the position and velocity errors 

(b) a periodic term, which is only a function of the desired trajectory signals 

A delayed integral type controller was used in this particular scheme to generate the pe­

riodic term. However, a controller of this type requires a huge memory space for digital 
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implementation because of its infinite dimensional dynamics. Also, simulation studies show 

that controllers of this type demonstrate a slow convergence rate when non-periodic and 

impulsive disturbances are present [37 ,32]. This scheme is important, however, since the 

repetitive learning algorithm presented in this dissertation has the same structure. 

In (33], another new joint space repetitive controller referred to as the Desired Com­

pensation Learning Law {DCLL) is developed. By joint space we mean that the trajectory 

description and feedback are in terms of the joint angles of the manipulator. By using 

a linear combination of unknown coefficients and known periodic "shape functions," the 

required feedforward compensation can be formed for a periodic task. The general form 

of the previously mentioned "steepest descent" update law for the unknown coefficients is 

used. In [16,14] a Cartesian space version of this same repetitive control law is presented 

in which the trajectory description and feedback are in terms of some Cartesian coordinate 

system. We will refer to this controller as the Desired Compensation Cartesian Learning 

Law {DCCLL). 

Up to this point we have only mentioned adaptive and learning position control of 

manipulators. A field even more recent than this is the adaptive or learning force control 

of manipulators. Some recent works in this area can be found in [23,9,24,22]. In these 

papers and others, MRAC {Model Reference Adaptive Control) or simple gain tuning is 

used to maintain a desired contact force with a surface while moving tangentially to it 

with some prescribed motion. Few new control algorithm applications are explored and 

the performance of these controllers is questionable since simulation results are usually 

presented. Simulation studies are not very reliable since real surface interactions are often 

difficult to model and are usually highly nonlinear. A new repetitive learning algorithm 

specifically formulated for force control will be developed which is based on the DCCLL. 

Actually, this controller will be a combination of Cartesian position control, force control, 

and on-line trajectory update, and will be referred to as the Hybrid Learning Law {HLL). 
. \ 

One problem with the "repetitive" class of learning controllers is that the desired task 

must be periodic. By exploring the general structure of the dynamic effects present in a 
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robotic manipulator, a learning algorithm may be derived which relaxes the restriction of 

periodicity of the task. As previously mentioned, unknown friction mechanisms may exist in 

a robot which consume a large portion of the control effort. Accurate cancellation of these 

effects without requiring a specific model may be achieved with non-repetitive learning 

control. The Friction Compensation Adaptive Law (FCAL) implements this concept by 

using the basic structure of the DCAL along with a learning term which is a function of 

the joint velocities. 

Although the FCAL does not require the desired trajectory to be periodic, the dynamic 

equations of motion of the system must be derived because of the inclusion of the DCAL 

portion of the feedforward signal. A new controller referred to as the Configuration Learning 

Law ( CLL) addresses this problem by allowing the equations of motion to be expressed in 

only a general form. This scheme uses the same velocity dependent friction learning term as 

the FCAL as well as several position dependent terms to approximate the specific equation 

of motion for the system. 

The algorithms developed in this dissertation extend the application of learning control 

to several specific areas. This work should facilitate the use of learning control in the flexible 

manufacturing arena and provide a basis for application of these schemes to other linear 

and no~linear systems. 
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Chapter 2 . 

IBM 7545 Manipulator 

2.1 Introduction 

In this chapter we will describe the hardware and software used for implementation studies 

of the controllers developed in this dissertation. Although computer simulations of dy;namic 

systems offer some insight into the. relative performance of a controller, accurate evaluation 

of an algorithm's computational efficiency, robustness qualities, and ultimate performance 

must be accomplished by implementation on a physical system. Toward this end, an IBM 

7545 four degree of freedom (DOF) robot was modified for use as a controller test bed. 

This robot was introduced in the United States in 1984, and is actually a modified 

Japanese design from Sankyo, Inc. The principal use of this manipulator was printed circuit 

board (PCB) "stuffing" (i.e. electronic part installation). Its four DOF design allowed 

enough mobility for this type of planar insertion task, and its SCARA configuration offered 

compliance in the arm so that misaligned parts could mate properly. 

This manipulator's open kinematic chain design gives rise to some highly nonlinear 

dynamic effects which will be discussed in chapter 3. Since the robot is a nonlinear dynamic 

system, it is an excellent test bed for evaluation of nonlinear control algorithms. In the next 

section we will discuss the system configuration in terms of actuators, amplifiers, link design, 

and available feedback, and in the last section of this chapter we will detail modifications 
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Theta 1 

Figure 2.1: IBM 7545 Four Degree of Freedom Robot 

of the manipulator for use as a generic controller test system. 

2.2 System Configuration 

AB previously mentioned, the IBM 7545 manipulator used for controller performance com­

parison in this dissertation is a four DOF device using an open kinematic chain design. Its 

first two degrees of freedom consist of revolute joints with their axes aligned in a vertical 

direction. This is a typical SCARA, or specified compliance, configuration offering compli­

ance in the horizontal plane based on the feedback system in place around the actuators. 

The third DOF is a prismatic "z" axis generating movement in the vertical direction, and 

the last DOF is a "roll" motion about the z axis which allows independent orientation in 

the horizontal plane. 

The z axis is naturally dynamically decoupled from the horizontal plane motion gener­

ated by the action of the first two revolute joints. Due to the belt driven design of the "roll" 

axis, this DOF should also be decoupled from the other degrees of freedom. However, since 

friction is present in the bearings and pulleys used to transmit motion to this axis, some 
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coupling does occur. 

All of the actuators are brush-type DC motors coupled to high reduction harmonic gear 

drives. The gear reduction allows the ffiM 7545 to generate high accelerations, but limits 

the maximum link velocity due to speed limitations of the motors. The harmonic drives 

offer the advantage of zero backlash, but this comes at a c<lst of increased ftexibility over a 

"standard" type gear reduction. The prismatic z axis is of the preloaded ball screw type. 

This design again offers very low backlash, but has the drawback of highly nonlinear and 

large friction effects. 

The first two links are very rigid, and the flexibility of this portion of the manipulator 

is essentially due to the harmonic drives. The z axis has highly variable flexibility which is 

a function of its extension. When the z axis is fully retracted, the system is much stiffer 

than when this axis is extended. This is because the z axis is supported at both ends when 

retracted, but becomes effectively cantilever supported from one end when extended. All 

of the experiments in this dissertation were performed with the z axis at most only slightly 

extended to avoid large flexibility effects. Table 2.2 gives the link lengths and travel for 

each axis of the robot. 

Feedback of the manipulator position is provided via optical incremental encoders lo­

cated on the motors driving each link of the robot. Because these encoders are located on 

the motor side of the gear reduction system, their resolution is multiplied by the gear ratio. 

Table 2.3 gives the encoder resolution for each axis of the robot. 

Length -Travel +Travel 
P' Axis 400mm -15° +205° 
2nd Axis 250mm -15° +135° 
Z Axis - Omm +250mm 
Roll Axis - -185° +185° 

Figure 2.2: IBM 7545 Link Specifications 

The DC motors were driven by pulse width modulation (PWM) type power amplifiers. 
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Resolution 
1•t Azis ±0.0011° 
2DC1 Azis ±0.0023° 
Z Azis ±0.0026mm 
Roll Axis ±0.0044° 

Figure 2.3: ffiM 7545 Optical Encoder 4X Quadrature Resolutions 

These amplifiers were originally designed and used in the manufacturer's control system 

as PI (Proportional-Integral) velocity control servos. A tachometer signal was derived 

from the optical encoders using a frequency to voltage converter, and was fed back to 

the amplifiers. These units have been modified for current command control by utilizing 

their current detection circuit for feedback instead of the tachometer signal. Since a DC 

motor's torque is proportional to the current flowing through it, these amplifiers provide an 

effective torque command capability. This modification was done to facilitate application of 

control algorithms formulated in terms of torque/force input to the actuators. The amplifier 

dynamics are very fast in comparison to the sampling rates used for the digital portion of 

the control schemes implemented in this dissertation. Although it may be conjectured 

that these dynamics have some slight effect on this robot's performance, investigation and 

cancellation of these fast effects is an area of control unto itself and will not be directly 

addressed. 

2.3 Computer Integration 

In this section we will discuss the problems and details associated with modification of the 

ffiM 7545 robot for use as a controller test system. The original controller consisted of an 

inner analog PI velocity feedback loop surrounded by an outer digital proportional position 

feedback. The analog PI velocity servo was described in the previous section, and the 

digital position feedback loop was implemented using an on-board microprocessor. This 

microprocessor was not user programmable in terms of the controller software, and had 
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to be removed from the control loop. The analog PI velocity servo amplifiers were also 

modified for current (torque) demand as described previously. 

A microcomputer based (PC) control platform was chosen to replace the original digital 

control system for several reasons: 

1. Low cost 

2. Computing power similar to that available for industrial systems 

3. Standard bus for easy connection to interface cards 

4. Excellent programming software already developed and available 

5. Easy upgradability 

6. Multipurpose system capable of running other software 

Originally, an Intel 80386 25MHz based PC was chosen, but this computer has since been 

upgraded to an 80486 25MHz unit. Both of these computers offered more than enough com­

puting power to implement the controllers presented in this dissertation at high sampling 

rates. 

To obtain link position information from the robot, the optical encoder's quadrature 

signals were fed into a Keithley /Metrabtye, Inc., bus mounted encoder board. This board 

was capable of monitoring all four of the ffiM 7545's encoders simultaneously, and came 

equipped with software drivers for accessing the position information. The modified analog 

power amplifiers were driven by a Keithley /Metrabyte digital to analog output board. Many 

of the digital signals such as proximity switch outputs and gripper actuation inputs were 

connected to the PC through digital 1/0 ports located on this same board. 

An ATI, Inc., wrist force/torque sensor was also added to the robot to facilitate imple­

mentation of the force control algorithms to be presented in chapter 8. This sensor was 

equipped with an Intel8255 based digital parallel interface which was connected to the PC 

via a Keithley /Metrabyte digital 1/0 board. Although the sensor also provided an RS232 

based serial interface, the parallel system was used for higher speed feedback. This sen­

sor provided the six Cartesian force and torque components felt by the manipulator at its 

end-effector at an update rate of 500Hz. 
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Controller code was principally written in Microsoft C with several assembly language 

subroutine components. The structure of the software provided a very simple means for 

implementing a control law either for actual control of the robot or simulation using a 

near exact model of the system. A "control module" was simply written in C to perform 

the required controller computations using input and output routines from a single library. 

This library contained all of the file manipulation, robot 'interface, kinematic calculation, 

and initialization routines necessary for controller support. For actual robot control, the 

control module was linked to the implementation library, and for simulation studies, the 

same control module was linked to the simulation library. From the control module's point 

of view, the library routines looked exactly alike for both implementation and simulation. 

The advantage of this system .. was that a new controller could be written, debugged, and 

tuned before ever having to perform a run on the actual robot. Once the new controller was 

working properly, it could simply be relinked with the implement.ation library and executed 

on the physical manipulator. 

The typical digital feedback rate for all of the controllers evaluated in this dissertation 

was 500Hz. Many of the adaptive or learning portions of the algorithms were updated at 

125Hz to demonstrate their parallel processing capability and their easy implementation 

on slower digital hardware. We may express this dual rate control by using the following 

digital equivalent of the continuous time controllers presented in later chapters: 

(2.1) 

where q(k) is the input to the actuators, qJb(k) is the input due to the feedback portion of 

the control law, and qJJ(k) is the input due to the feedforward portion. k is the index for 

the feedback portion of the controller, k is the index for the adaptive or learning portion, 

and m is an integer which relates these indices according to k = mk. Each increment in 

k represents a time step of tl.t seconds, and each increment ink represents a time step of 

mtl.t seconds. To implement the 500Hz feedback and 125Hz feedforward rates previously 

mentioned, tl.t = 2ms and m = 4. 
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All of these controllers could have been operated at 1500Hz on the original 80386 based 

PC, and 3000Hz on the newer 80486 PC. These sampling rates include not only the time for 

control law computation, but also error history storage and other non-necessary functions 

that would not be present in a real-time application of these algorithms. 

In general, the IBM 7545 robot and associated hardware and software for controller 

implementation provides an excellent vehicle for control algorithm evaluation. Its dy­

namic equations of motion are inherently nonlinear, the harmonic gear reduction drives 

possess highly nonlinear and time varying friction characteristics, and digital quantization, 

input/output time delays, and input/output noise are present. All of these effects serve to 

accurately test the performance of a control algorithm on a real world system. 

Gain selection for implementation of the controllers is a topic of interest. The feedback 

portion of the control law given in equation 2.1 consist of a PD (Proportional-Derivative) 

term in all of the control algorithms presented in this dissertation. These gains may be easily 

estimated by first linearizing the robot equations of motion about some nominal operating 

point, and then using standard classical control design techniques [8,10] for a linear PD 

controller. At this point the algorithm should achieve stable, although not necessarily high 

performance, trajectory tracking with the feedforward portion q/1 set to zero. With the 

feedback loop in operation, it is now a straightforward task to find any gains associated with 

the feedforward (learning) term. In each of the learning control schemes, the DCLL, FCAL, 

CLL, and HLL, only one learning gain is associated with each axis of the coordinate space. 

Therefore, each learning gain may be adjusted in a pseudo-decoupled fashion to achieve the 

desired speed of convergence and steady state error (see [16] for a detailed Cartesian gain 

selection description). 

12 



Chapter 3 

Dynamics of Robotic 

Manipulators 

3.1 Introduction 

In this chapter we will review the dynamic equations of motion for an n dimensional ma­

nipulator. We define this manipulator to be a Lagrangian system with n degrees of freedom 

consisting of an open kinematic chain with n links. Also, each of its degrees of freedom 

will be equipped with an independent actuator. We will further assume that the number of 

degrees of freedom is less than or equal to 6 (i.e. a non-redundant robot). The controllers 

developed in subsequent chapters will either be formulated in the joint or Cartesian space 

of the manipulator. For this reason, the following two sections will address the equations 

of motion for the robot in terms of each coordinate system. 

3.2 Joint Space Dynamics 

In this section we will review the joint space dynamics of robotic manipulators. Let M;(.) 

denote the joint space inertia matrix, which is bounded, positive definite and locally C 00 in 

the position x; [21]. Using the Lagrangian formulation in the joint space of the manipulator, 
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the equations of motion of an n degree of freedom robot may be expressed by: 

d 
dtx; - X.; 

M;(x;) !x; + C(x;,X;)X; + g(x;) +Vi; - q + d (3.1) 

where x; and X.; are the position and velocity vectors, g(x;) represents the force due to 

gravity, V is the diagonal matrix of villcous joint friction coefficients, q is the input force 

supplied by the actuators to the manipulator joints, and d summarizes the effect of input 

disturbances such as unmodelled friction, actuator noise, and contact forces. The ij-th 

element of C, c;;, also known as the Christoffel symbol, is given by: 

1 n • [am;; am;lc am;lc] Ci; = - L Xplc -- + -- - --
2 lc=l ax,lc ax,; ax,; 

(3.2) 

where m;; is the ij-th element ofM;, x,; is thej-th element ofx; and Xplc is the k-th element 

of X.; [32,30]. Also see [7] for a more general treatment. Note that the term C(x;,X.;)X.; is 

usually referred to as the Coriolis vector in the robotics literature. 

Example 3.2.1 

This example specifically gives the joint space inertia matrix M;(x; ), the Coriolis matrix 

C(x;,X.;), the gravity vector g(x;), and the viscous friction matrix V, for the first two 

revolute links of the IBM 7545 manipulator in terms of the constant inertial parameters 81 

-9s: 

M ·(x ·) = [ 81 + 29s cos(x;2) 82 + 9s cos(x;2) ] 
' ' 82 + 9s cos(x;2) 82 

(3.3) 

C(x ·,x ·) = [ -9s.x;2 ~in(x;2) -9s(x;l + %;2) sin(x;2) ] 
' ' · 8sx;1 sm(x;2) 0 

(3.4) 

g(x;) = [ 0 0 ]T (3.5) 

(3.6). 

Note that the viscous friction matrix V was included in this formulation due to the large 

amount of friction present in the IBM 7545 manipulator. 
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The dynamics of a manipulator have some special properties which are central to the 

convergence proofs presented in this paper. Although these properties are well known [30], 

we present them here for completeness: 

Definition 3.2.1 The covariant derivative .of a C 1 vector fieldv(.): R"--+ R" along a C1 

curve Xp(.) : R + --+ R" 1 denoted with 

~ is defined by 

~ (v(Xp),xp) = ~ v(xp) + M-1(xp)C(xp,xp)v(Xp) (3.7) 

To show the covariant derivative has properties similar to those of an ordinary derivative, 

we present the following theorem: 

Theorem 3.2.1 Given two vector fields Vt and v2 in R" and scalar functions /1 and /2: 

R"--+ R 1 the following relations hold: 

J (3.8) 

and 

(3.9) 

where we have used the notation 

Proof: The first property is an immediate consequence of the definition. The second 

property follows from the skew symmetry of the matrix [M(xp) - 2C(Xp, Xp) J [35,30]. For 

a complete proof see [29]. 0 

By combining the result of equation 3.9 with equation 3. 7, we obtain the following simple 

relationship: 

(3.10) 

where Vt = v2 = v. This equation will be used in the Lyapunov analysis of the following 

chapters. 
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3.3 Cartesian Space Dynamics 

In this section we will review the Cartesian space dynamics of the robotic manipulator. Let 

Me (.) denote the Cartesian inertia matrix which is assumed to be bounded, positive definite 

and locally C 00 in the position Xc [21]. Note that the assumption of Me being bounded 

is not valid when the manipulator is near a singular position. In other words, when the 

manipulator configuration places the end~ffector at the work space boundary the inertia 

matrix defined for Cartesian generalized coordinates becomes infinite . 

.A13 an example, let us explore the relationship between the joint space inertia matrix 

M;(x;) and the Cartesian space inertia matrix Mc(Xc)· 

Definition 3.3.1 If Xc = ~(x;) then define: 

J( ·) = d~(x;) 
x, - dx · 

' 
(3.11) 

This J is known in the robotic literature as the manipulator Jacobian. By using its~trans­

formation properties on the joint space inertia matrix, we obtain the following (see [29], [3] 

for details): 

(3.12) 

Since the Jacobian matrix becomes singular in the singular positions of the manipulator 

[3], the inertia matrix for the Cartesian coordinates, Mc(Xc), becomes unbounded near 

singularities. This poses a problem for direct Cartesian space control. The convergence 

proofs for this type of algorithm and the controller itself break down if the desired trajectory 

passes through a singular position of the manipulator. We will require that any desired 

trajectory which the manipulator will perform never ventures closer than some 8 to the 

workspace boundary. Therefore, we will make the following assumption: 

Assumption: The desired Cartesian position trajectory is confined to a connected and 

compact set S in the interior of the manipulator workspace such that 

(3.13) 
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where O'min denotes the smallest singular value, and Xd is the desired position vector. In 

this way we avoid the effective infinite inertia phenomenon. H the manipulator mU8t pass 

through or very near a singular position, then a joint space scheme may be "switched on" 

temporarily until the robot is clear of the workspace boundary. 

The equation of motion in terms of the Cartesian space of the manipulator is written 

as: 

d 
dtXc - Xc 

Mc(Xc) !xc + C(xc,Xc)Xc + gc(Xc) = q + d (3.14) 

where Xc and Xc are the Cartesian position and velocity vectors, gc(xc) represents the 

Cartesian force due to gravity, q is the input force supplied by the actuators expressed in 

terms of Cartesian coordinates at the end-effector, and d once again summarizes the effect 

of input disturbances such as friction, actuator noise, contact forces, etc. C(xc, Xc) may be 

obtained in an analogous fashion to the joint space quantity using equation 3.2. 
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Chapter 4 

Adaptive and Non-Adaptive 

Control Laws 

4.1 Introduction 

In this chapter we will review the development of the Desired Compensation Control Law 

(DCCL) and the Desired Compensation Adaptive Law (DCAL) presented in [30]. These 

algorithms are applicable to joint space control of robotic manipulators performing either 

periodic or non-periodic tasks, and are included here for two reasons. The first is that 

they are closely related to the learning laws (both repetitive and non-repetitive) which will 

be presented in later chapters, and the second is that they will be used for performance 

comparison to these same learning algorithms. Some of the similarities which exist between 

the DCCL, the DCAL, and the learning laws are: 

1. The same PD (Proportional Derivative) feedback loop, nonlinear error compensation, 
and feedforward structure is used. 

2. The same steepest descent update law is used to estimate unknown parameters in the 
feedforward signal (DCAL and learning only). , 

3. The desired trajectory signals are used, as opposed to the actual ones, to generate the 
feedforward signal. 

4. The same Lyapunov stability approach is used in the analysis. 
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The DCCL is actually a modified computed torque [10,3] non-adaptive algorithm which uses 

the system equations of motion in joint space with fixed dynamic parameters to form the 

feedforward signal. It will be presented first to preface the development of the DCAL, which 

is the adaptive version of this algorithm. Before a detailed description of each controller 

is presented, we will outline some basic definitions which will be used throughout this 

dissertation. 

We will refer to the desired trajectory of the manipulator as Xd(t): 

Xd(t) - desired position (4.1) 

xd(t) - !xd(t) =desired velocity {4.2) 

xd(t) - ! Xd ( t) = desired acceleration (4.3) 

We will restrict the set of allowable desired trajectories for the controllers presented in this 

and following chapters to be "bounded" in the following sense: 

Definition 4.1.1 First, let C 2 be the space of twice continuously differentiable fun~tions. 

A subset of C 2 , denoted by Ad, i3 said to be a set of allowable desired trajectories if 

sup sup I dd f(t)l < oo 
fEA.tt~O t 

and sup sup dcP2 f(t)l < oo 
fEA.tt~O t 

(4.4) 

This simply means that we require the first and second derivatives of the desired trajectory, 

Xd(t) and i:d(t), to be bounded. By assuming that every xd(t) we choose belongs to a 

particular Ad, the subsequent stability results will hold for any allowable desired trajectory. 

4.2 Desired Compensation Control Law 

The DCCL, as well as most of the other controllers presented in this dissertation, consist 

of three main parts: 

1. A linear PD feedback compensation. 

2. A nonlinear feedback compensation. 

3. A feedforward compensation. 
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The PD control action, which uses an inner velocity and an outer position loop, together 

with the nonlinear portion of the control law are used to guarantee the exponential stability 

of the overall system. It should be noted that both of these portions of the control law 

have fixed gains. The feedforward term, which is a function of the desired trajectory signals 

and manipulator dynamic parameters, is used to provide the required feedforward joint 

force/torque input for trajectory following purposes. 

To formulate the feedback controller, we first need to define the trajectory following 

position and velocity errors. Define the actual joint position and velocity vectors as x;(t) 

and x;(t), and define the joint tracking position error, e(t), by: 

e = x;- Xa (4.5) 

In order to guarantee the exponential stability of the algorithm, we need to introduce an 

auxiliary signal, v;(t), which will be the reference velocity input to the inner velocity loop. 

v; = Xa- .Xe ; (4.6) 

We will define the error corresponding to the reference and actual velocity as the reference 

tJelocity error, e11 (t): 

(4.7) 

The control law, whic;J:t determines the joint force/torque, is given by: 

(4.8) 

Kp and K 11 are the positive definite PD gain matrices. qn is the nonlinear feedback term 

given by: 

tTn > 0 (4.9) 

and w a is an estimate of the feedforward compensation term whose desired value is given 

by: 

Wa = M;(xa):X:a + C(xa,X.a)X.a + g(xa) +Via (4.10) 
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Remark: H the desired trajectory quantities, Xd, xd, xd, are known in advance, the com­

putation of the wd(t) vector, needed for the feedfo:iward compensation, can be performed 

ofF-line. 

Remark: The viscous friction term, Vxd, was specifically included in the formulation of 

w d because of the presence of high viscous friction in the ~armonic drives of the ffiM 7545 

manipulator. 

Example 4.2.1 

Note that equation .J.10 can be reparameterized by separating the functional portion of 

the equation of motion from the constant dynamic parameters in the following way: 

(4.11) 

where C3 is the tJector of constant dynamic parameters. The specific form of W for the first 

two axes of the IBM 7545 robot is: 

(2xdl + Xd2) cos(xd2) - (2xd1Xd2 + %~2 ) sin(xa2) 
xd1 cos(xd2) + x~1 sin(xd2) 

and the actual value of the constant parameter tJector, e 1 is: 

e = [ o.55o o.o35 o.o45 1.3 o.2 ] r 

Applying the control law given by equation 4.8 to the manipulator system whose dy­

namics are governed by equation 3.1, we obtain the following error dynamics: 

·.d 
M;(x;) dt ev - -Kvev- K,e- Qn- C(x;,x;)ev (4.12) 

-Aw(ev,e) + d 

(4.13) 

where 

d=d+wd-wd (4.14) 
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and is defined as the feedforward estimation error . .6.w(ev,e) is the resulting disturbance 

due to the use of the desired trajectory signals, instead of the actual ones, in the feedforward 

compensation and is defined by: 

.6.w(e.,e) = [M;(x;)! v; + C(x;,X;)v; + g(x;) + VX;] - Wd (4.15) 

We need the following lemma to establish the bounds on .6.w(ev,e). 

Lemma 4.2.1 For the error system in equation ,/.1!, the following equation holds: 

(4.16) 

where 

(4.17) 

where b1, b2, and bs are all positive valued functions, bounded by lxdl and lxdl· 

Proof: See [30] and [15,16]. 

We now present the following stability theorem for the DCCL: 

Theorem 4.2.1 For a set of allowable desire-d trajectories, Aa, the disturbance free error 

system described by equations -1.12 (i.e. d = 0}, which results from the application of the 

control law given by equation .1.8 to the manipulator system governed by equation 9.1 is 

globally exponentially stable, i.e. both ev(t) and e(t) converge to zero exponentially from 

a given initial condition, provided that the control gains Kp, Kv, ..\, and Un are chosen 

sufficiently large. 

Proof: The proof of this theorem is based on the Lyapunov approach. Choose the 

following Lyapunov function candidate: 

(4.18) 

Note that Vis both decrescent and locally positive definite. Differentiating V(t, ev, e) with 

respect to t and using equation 3.9, we obtain: 

(4.19) 
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Upon using the error equations 4.12 we have: 

(4.20) 

After invoking the result of lemma 4.2.1 and performing some tedious but straightforward 

algebra (see [32] for details), we obtain: 

d T- T-· 
dt V ~ -e11 Kt.let.l - Ae Kpe ( 4.21) 

where 0 < Kt.l ~ Kt.l and 0 < Kp ~ Kp. Thus the system is uniformly stable. We can also 

write 
d T T~ 
dt V ~ -ut.let.l M;(x;)et.l- Ae Kpe 

'iTt~ = O"min (MjT/2Kt.IMj1
/

2
) > 0 

where D'min denotes the smallest singular value. Consequently, 

! V ~ -"YV ~ 0 where "Y = min(ut.l, A) > 0 

Integrating equation 4.23 we have: 

(4.22) 

(4.23) 

(4.24) 

Thus, V(t,et.1,e) and consequently both ev(t) and e(t) converge to zero exponentially. 0 

Corollary 4.2.1 Under the hypothesis of theorem 4.2.1, the perturbed system described by 

equations ../..12 (i.e. d # 0) is L 00 input/output stable, in the sense that there exist positive 

constants, a1, a2, /31, and /32 such that: 

(4.25) 

(4.26) 

Remark: This corollary states that if our estimation of the manipulator dynamics is not 

exact, the norm of the resulting error will be proportional to the parameter error norm and 

the norm of the other possible disturbances. 
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Proof: See [30] and [16]. D 

This concludes the section on the DCCL. The development of the algorithm and the 

stability proof were presented here in detail so that the controllers described in later chapters 

may be· presented in more brevity. 

4.3 Desired Compensation Adaptive Law 

This is the adaptive version of the DCCL joint space controller described in the previous 

section. The DCAL uses the same structure as the DCCL, except that the dynamic param­

eter vector is updated on-line as the controller operates. For a detailed development of the 

DCAL see [30]. 

The control law for the DCAL, which determines the joint force/torque, is given by: 

(4.27) 

where Kp .and Kv are again the positive definite PD gain matrices, and qn is the nonlinear 

feedback defined in equation 4.9. w d is an estimate of the feedforward compensation similar 

to that of the DCCL whose desired value is given by: 

(4.28) 

Using the reparameterization of equation 4.11 in example 4.2.1, we may also write 

(4.29) 

where 9 is the vector of constant dynamic parameters. AB in the DCCL, W(t) may be 

calculated off-line if the desired trajectory quantities are known in advance. 

An estimate of w d is given by 

(4.30) 
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where e is an estimate of the parameter vector 8. The following standard parameter 

update law with constant adaptation gains is used: 

( 4.31) 

where Ka is the positive definite adaptation gain matrix and the parameters 9 are updated 

on-line using a simple numerical linear integration routine. 

After applying the control law of equation 4.27 and the parameter estimation law of 

equation 4.31 to the manipulator system given by 3.1, we arrive at the following error 

dynamic system: 

d 
M;(x,) dt ev - -Kvev- Kpe- qn- C(x;,:X:;)e11 

-Aw(ev,e) + W(xd,xd,i:d)e + d 

where e represents the parameter estimation error given by 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

and Aw(eu,e) is the same as that given in 4.15. The following lemma will be used to 

linearize this term about the desired trajectory in the subsequent stability analysis .. 

Le:rmna 4.3.1 The term Aw(e11 , e) given by equation 4.15 is continuously differentiable 

with respect to e and e11 , and Aw(O,O) = 0 for all t ~ 0. Moreover, the partial derivatives 

A1 _ a:; (o,o) 

8Aw(O O) 
- aev , 

Proof: It is easily seen from equation 4.15 that Aw(O, 0) = 0 and that Aw is coo with 

respect to ev and e. Therefore, since the desired trajectory signals are bounded, the partial 

derivatives evaluated along this trajectory are bounded. 0 
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We will also make use of the following definition to ensure convergence of the parameter 

vector 9: 

Definition 4.3.1 The •weighting" matrix W(t) is said to be persistently exciting if there 

exist posititJe scalars it1 ;2, and s such that 

(4.36) 

for all t > 0. 

The following theorems address the global and local stability of the DCAL. These theo­

rems are general in that they will be refe~enced by the other adaptive (learning) controllers 

to be presented in subsequent chapters. 

Theorem 4.3.1 There exists a set of control gains Kp, Kv, and lTn such that the ideal (i.e. 

d = 0} manipulator error system gitJen by equations .1.92--/.99 is globally asymptotically 

stable. 

Proof: We prove the theorem by constructing a suitable Lyapunov function similar to the 

one used in the proof of theorem 4.2.1: 

1 T 1 T 1-T 1-V(t) = -e M·(e+xd)e + -e K e+ -8 K- 8 
2 v 3 v 2 .P 2 a (4.37) 

Note that the function V(t) is both decrescent and positive definite hence it is a Lyapunov 

function candidate [38]. Differentiating equation 4.37 with respect to time, and following 

steps which parallel the proof of theorem 4.2.1, we obtain: 

(4.38) 

where 0 < Kv 5 Kv and 0 < Kp 5 Kp are the same as those i.Iitroduced in theorem 

4.2.1. Therefore, ! V(t) ::; 0, and the system is globally asymptotically stable, i.e. e and ev 

converge to zero asymptotically starting from any initial condition. 0 

26 



Theorem 4.3.2 Select z = [euT eT 8T]T as the state vector. Then, if W(xd,xd,i:d) is 

persistently exciting, there eziats a set of control gains Kp and Ku such that the ideal error . 
system of theorem 4.9.1 is locally exponentially stable - i.e. there eziat an h > 0, Q > 0 

and M > 0 such that if z(to) E Bh, then 

jz(t)l ~ Me-a(t-to)lz(to)l V to~ 0 

where Bh denotes a ball of radius h centered at the origin. 

Proof: We prove this theorem by the indirect Lyapunov method. Consider the original 

nonlinear error system of equations 4.32--4.34 expressed in the standard form 

d 
dtz = f(t,z) 

where 

[ 

F(t,z) [-G(t,z)- Kpe- 'In- 6-w(eu,e) + W(xd,xd,i:d)e] ] 
f(t,z) = -.Xe + eu 

-Ka W(xd,Xd,i:d)T eu . 

and 

F(t,z) = Mj1(xd +e) 

It is easily seen that f(t, z) is C 00 -hence locally Lipschitz- in z. 

(4.39) 

( 4.41) 

(4.42) 

Linearizing this system about the equilibrium state z = 0, we obtain the following set 

of linear time varying differential equations: 

where 

d 
-z = A(t)z 
dt 

A(t) = I -AI 
[ 

-Mj1(xd)[Ku + C(xd,xd) + 6.1] -Mj1(xd)[Kp + 6.2] 

-K4 WT 0 
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Following exactly the same method of analysis as in theorem 4.3.1, and invoking the 

result from [30] for the convergence of the parameter error vector 9 to zero under the per­

sistent excitation condition on W(t), we can prove that the system z = A(t)z is uniformly 

asymptotically stable. However, exponential stability and uniform asymptotic stability are 

equivalent for linear systems. Now by combining the indirect Lyapunov theorem ([38), p. 

188, theorem 5.4.21) and the converse of the Lyapunov theorem ([6], p. 28, theorem 1.5.1), 

it follows that 4.39 and therefore the original nonlinear error system is locally ezponentially 

stable in the sense of the statement of the theorem. D 

In light of the exponential stability results obtained in theorem 4.3.2, we may now show 

that the overall control system is robust to disturbances and unmodelled dynamics. 

Theorem 4.3.3 Consider the original manipulator error system given by equations 4.9e-

4.94. Under the hypothesis of theorem 4.9.e, there ezist ;, c and h > 0 such that iflldlloo ~ c 

and z(O) E Bh1 then 

1. z(t) remains bounded for all time. 

e. z(t) converges to a B6 ball of radius o = 1lldlloo1 or more precisely, limt-oolz(t)l ~ o 
· where lim denotes the upper limit. 

Proof: Similar to the previous theorem, equations 4.32-4.34 can be expressed in the form 

d 
dtz = f(t,z) +F(t,z)d (4.45) 

where f and Fare the same as the ones defined in 4.40. In addition to the properties stated 

in the proof of theorem 4.3.2 for f as a function oft and z, it is easily seen that the right 

side of 4.45 is also Lipschitz in d. Thus the differential 4.45 satisfies the hypothesis of the 

Small Signal 1/0 Stability theorem in ([6] p. 221, theorem 5.3.1) and the conclusions of the 

theorem follow. D 

This concludes the development of the non-adaptive and adaptive controllers which will 

be used for performance comparison to the learning controllers in later chapters. Many of 

the definitions and terms presented in this chapter will be referred to in later chapters in 
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the interest of brevity. In the following section we present some performance comparisons 

for these controllers. 

4.4 DCCL and !)CAL Implementation Results 

Both the DCCL and DCAL were implemented on the IDM 7545 manipulator to compare 

their performance to each other and to a simple PD feedback law. These algorithms were ap­

plied to joint space control as described in the previous sections. The joint space trajectory 

is shown in figure 4.1. 
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Figure 4.1: Joint Space Test Trajectory 

This trajectory was prepared using a 7th order polynomial for the desired position, and 

the velocities and accelerations shown correspond to the maximums specified for the DC 

motors and power amplifiers. Only the performance of the first two joints of the IDM 7545 

will be presented in this and other implementation results sections because, as mentioned 

in chapter 2, these are the only links possessing nonlinear and coupled dynamic equations 

of motion. 

Figures 4.2, 4.3, and 4.4 show the position error time history for the PD only, DCCL, 
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and DCAL control laws over six cycles of the desired trajectory. Note that all of these 

plots are on the same ordinate scale, and that the difference in performance is entirely due 

to the feedforward signal since all of the controllers use identical PD feedback loops. The 

DCAL's dynamic parameters quickly converge to appropriate values within the first few 

seconds of the trajectory. Steady state performance of the DCAL is better than that for 

the DCCL because the DCAL is able to "reshape" its feedforward signal on-line to achieve 

better tracking. This action demonstrates that there are effects in the system which are 

not represented by the model used for the DCCL and DCAL's feedforward signals. 

Figures 4.5 and 4.6 show the RMS (root mean square) position error of all three con­

trollers for the first and sixth cycles of the d~ired trajectory. These figures represent an 

average of the RMS error for the first two axes. The DCAL "steady state" position error 

betters the DCCL by 53%, and the PD feedback by 91%. The DCAL's ability to absorb 

some unmodelled disturbances by perturbing the dynamic parameters demonstrates the 

need for a more ftexible way of forming the feedforward signal. Since the DCAL possesses 

the best "steady state" performance, it will be used for comparison to learning sc:hemes 

developed in later chapters. 
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Chapter 5 

Desired Compensation Learning 

Law 

5.1 Introduction 

In this chapter we will present a repetitive learning controller referred to as the Desired 

Compensation Learning Law (DCLL). This algorithm will be formulated in both the joint 

and Cartesian space of the manipulator. The Cartesian controller, referred to as the Desired 

Compensation Cartesian Learning Law (DCCLL), will be capable of executing a desired 

trajectory described in Cartesian coordinates without calculation of any inverse kinematics. 

This algorithm also forms a foundation for the learning force controller to be presented in 

chapter 8. 

Both algorithms use the same feedback/feedforward structure of the DCCL and DCAL 

presented in the previous chapter. The joint space DCLL does not require any dynamic or 

kinematic information about the robot to calculate the feedforward signal, and the Cartesian 

space DCCLL only requires a kinematic description. Both schemes are highly computation­

ally and memory efficient, and are easily implemented on simple, low cost digital hardware. 

As previously mentioned, these algorithms are applicable to the control of a robotic 
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manipulator undergoing a repetiti11e or periodic task. By repetitive we mean that the robot 

is required to repeat some desired task with each cycle requiring the same, finite period of 

time. Therefore, it is assumed that the desired trajectory signals, xd(t), xd(t), :X:d(t), are 

periodic with a known period T, i.e.: 

Xd(t + T) - Xd(t) 

:Xd(t + T) - xd(t) 

:X:d(t + T) - :X:d(t) 

(5.1) 

Note that xd(t) may imply a joint space or Cartesian space desired trajectory depending 

on the context of the controller. 

5.2 Joint Space DCLL 

This is the repetitive learning controller formulated in the joint space of the manipulator. 

We will be using the same structure of the control law presented in equation 4.27, ·which 

we restate here for convenience: 

(5.2) 

where wd is again an estimate of the desired feedforward torque wd: 

(5.3) 

The difference between the control law of equation 4.27 (from the DCAL) and equation 5.2 

(from the DCLL) is the way in which the feedforward portion, wd, is calculated. Note that 

an immediate consequence of equations 5.1 is that the desired feedforward torque, w d, is also 

periodic and a continuous function of time. The goal of the DCLL is to "learn" this periodic 

feedforward term needed in the control law of equation 5.2 as the manipulator cycles. To 

accomplish this, we will approximate wdi' thej1h component ofwd, by a linear combination 

of some appropriately selected periodic functions q,,, referred to as shape functions. We will 
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refer to this approximation as Wd;: 

N 

wd;(t) =I: e{c!Ji(t) (5.4) 
i=O 

where a{ are the unknown coefficients (to be determined by the learning algorithm) of each 

shape function for each w4 . , and N is the total number of shape functions which we wish 
1 

to select. 

To make the idea of shape functions precise, we give them a mathematical definition: 

Definition 5.2.1 First, let C(T) denote the space of continuous T-periodic functions. 

Consider a countable set of linearly independent { c/Ji E C(T)} such. that 

1. unity can be expressed as a linear combination of finitely many c/Ji 's. 

2. the span of {cpi} is dense in C(T), that is, for any W4 E C(T) and e > 0, there ezist 
an N and 8i E R" such that: 

sup lwd(t)- w4(t)l < e 
tE[O,T) 

where W4(t) is the vector of the Wdi 1S1 and 8i is the vector of the 9{ 's. 

(5.5) 

Here are some typical examples of shape functions which we can use to approximate the 

periodic continuous function wd: 

Example 5.2.1 

a) Fourier Series Approximation: 

. t _ { cos (21ri+) if i::::;; m where m = Nfl 
cp,( ) - sin (21r(i- m) ~) if i > m (5.6) 

This is a classic choice for a time dependent function of the form of equation 5.4 and 

offers some advantages in particular situations. How ever, on-line calculation of the 

update law becomes computationally expensive as the number of terms becomes large. 
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b) Piecewise Linear Approximation: 

In this example the periodic continuous function is approzimated by a piecewise linear 

function, similar to a finite element approximation. Let the linear function for the J-th 

component of the ,-th piece be 

(5.7) 

where tz is the local normalized time (i.e. 0 ~ tz < 1} for that particular piece. This 

particular shape function choice offers the advantage of extremely efficient update law 

computation since only two coefficients must be updated at any time (i.e. co and c1). 

It also has the ability to generate "corners 11 in the feedforward approximation in order 

to approzimate such nonlinear effects as static friction. Other higher order piecewise 

continuous functions such a8 a piecewise quadratic or piecewise cubic approzimation 

are also valid shape functions. These may offer possibly higher performance than the 

linear version with a small penalty in computational load. 

For the purpose of describing the piecewise linear function as a shape function, we will 

use the following notation: 

Define r, = ;N- i 

the shape functions <f>,(t) for t E [0, T] can be expressed by: 

{ 

1 - T.· if 0 ~ r, < 1 
<f>s ( t) = 

0
1 + T: if -1 ~ Ti < 0 

else 

and <Ps(t + kT) = <!J,(t),k = 1,2,3, ... 

c) Piecewise Quadratic Approximation: 

(5.8) 

In this example the periodic continuous function is approximated by a piecewise quadratic 

function, similar to the piecewise linear approximation of part (b), but with an added 

degree of freedom for each piece whose corresponding shape function is a square of 

time. Let the quadratic function for the 2ith piece be 

(5.9) 
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where tz is the local normal time for that particular piece. In this example only 9 

coefficients must be updated at a time (i.e. co, c1, and c2). 

For the purpose of describing this piecewise quadratic function as a shape function, 

we will use the following notation: 

Define T.· = ! (!... N - i) 
' 2 T 

the shape functions ~i(t) fortE [0, T] can be expressed by: 

,P;(t) = ( 

where m = 1, 2, 3, ... 

l- Ti if 0 ~ Ti < 1 and i = 2m 
rf - ~ if - j ~ Ti < ! and i = 2m + 1 
1 + Ti if -1 ~ Ti < 0 and i = 2m 
0 else 

and ~i(t + kT) = ~i(t), k = 1, 2, 3, ... 

d) Polynomial Approximation: 

~i ( t) = ti for t E [ 0, T] 

and ~i(t + kT) = ~i(t),k = 1,2, 3, ... 

(5.10) 

:(5.11) 

Although the polynomial approximation is straightforward, a linear or higher order 

piecewise continuous shape function such as those described in item (b) or (c) will 

usually be more computationally efficient and offer higher performance. 

We may write the total feedforward term Wd in equation 5.2 as: 

N 

*d =I: ai~i(t) (5.12) 
i=O 

where the vector Si E R n is the estimate of the coefficient vector ei. These coefficients 

are updated on-line using the following parameter estimation law: 

d A 

dt 0i(t) = -Klilf>i(t)etl(t) Kli > 0 (5.13) 
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Remark: The computations involved in performing the integration of equation 5.13 may 

be performed in parallel with the remainder of the control algorithm calculations if parallel 

processing capabilities exist. This means that the sampling time of a digital implementation 

of the DCLL may be kept on the order of a simple PID control algorithm. Also, choices 

(b) and (c) of example 5.2.1 have an advantage over choices (a) and (d) in that only two 

or three parameters (respectively) must be updated at a time. This feature makes the 

piecewise linear or quadratic shape functions very attractive in a situation where parallel 

processing is not feasible and sampling times must be kept very small. 

Remark: Since the shape functions are linearly independent, the resulting adaptation 

regression vector, 4>T = [t/>o • • • tPi • • · tPN], is persistently exciting over one period of the task 

repetition, i.e. there exist an a > 0 such that: 

!.
t+T 

t t/>(r)tj>T(r)dr > ru for any t > 0 (5.14) 

This remarkable fact is true even if the desired trajectory is not persistently exciting. 

In order to utilize previous stability results, we can reparameterize equation 5.12 as 

N 

Wz(t)e = L eitPi(t) (5.15) 
i=O 

Applying the control law of equations 5.2 and 5.12, and the parameter estimation law given 

by equation 5.13 to the manipulator system of equation 3.1, we arrive at the following error 

dynamic system: 

d 
Mi(xi) dt e" = -K"e"- Kpe- 'In- C(xi,xi)e" 

-Aw(e",e) + WzS+d 
d 
dte - e"- ~e 

d- T 
-9 - -KzWz e" 
dt 

where e represents the parameter estimation error given by 
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(5.16) 

(5.17) 

(5.18) 

(5.19) 



and .6.w(e11 ,e) is the same as that given in 4.15. dis a bounded disturbance due to the 

series approximation truncation error and any other disturbances. 

We now state and prove our main stability theorem for the joint space DCLL (see also 

(33]). First, we prove that when d = 0, the system is globally asymptotically and locally 

exponentially stable. 

Theorem 5.2.1 Due to the natural persistent excitation of the «weighting" matrix W,(t) 

git~en in equation 5.1~1 the results of theorems ~.9.1-~.9.9 hold for the error system git~en 

by equations 5.16-5.18. 

Proof: The proof of the theorem follows directly from the proofs of theorems 4.3.1-4.3.3. 

D 

Remark Due to the analogous result of theorem 4.3.3 for the DCLL, if the disturbance dis 

"small" in the sense of the theorem, all the trajectory error signals will also remain "small" 

provided that the system initially starts inside of a prescribed region. Thus, if the series 

truncation is the only source of disturbance, the tracking error can be made arbitrarily 

small by selecting a larger number of shape functions. Conversely, the system ~an be 

made robust to high frequency disturbances by effectively decreasing the bandwidth of the 

feedforward signal by selecting fewer shape functions. Therefore, a trade off exist between 

the ability of the feedforward signal to approximate system dynamics and at the same time 

reject unwanted high frequency disturbances. However, the appropriate number of shape 

functions is usually easy to determine since the frequency content of the system dynamics 

and the noise are generally separated by a wide margin. The subsequent implementation 

results confirm the robustness of the proposed learning algorithm to disturbances such as 

digital quantization, sensor/ actuator noise, and high order dynamics. 

5.3 Cartesian Space DCCLL 

This is the Cartesian space version of the same repetitive learning controller presented in 

the previous section. A desired trajectory for this formulation may be expressed, stored, 
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and executed directly in terms of some Cartesian coordinate system. This is advantageous 

because a robot trajectory is usually much more easily described in terms of Cartesian co­

ordinates. Also, since intJerse kinematics are not .required, the algorithm is computationally 

efficient and easy to implement. 

To formulate the Cartesian feedback controller, we first need to define the trajectory 

following position and velocity errors analogous to their joint space counterparts. Define 

the actual Cartesian position and velocity vectors as Xc(t) and Xc(t). We will define the 

Cartesian error and feedback quantities similar to equations 4.5-4. 7 by: 

etl = Xc -Vc 

(5.20) 

.(5.21) 

(5.22) 

· The actual Cartesian position vector, Xc(t) is found by using the forward kinematics for 

the manipulator or by using direct Cartesian feedback (from a camera or laser system). The 

actual Cartesian velocity vector, Xc(t), is found by using the joint positions x;(t) to form 

the manipulator Jacobian, together with the joint velocities :X;(t). The equation relating 

these quantities is: 

Xc = J(x;)x; (5.23) 

Under the assumption of equation 3.13, we may write the following control and update 

laws for the DCCLL analogous to equations 5.2, 5.12, and 5.13: 

(5.24) 

N 

Wd = L Sit/>i(t) (5.25) 
i=O 

(5.26) 

where q represents an imaginary Cartesian force/torque vector applied to the end-effector. 

To determine the actual input to the manipulator actuators, q;, we use the properties of 
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the Jacobian matrix: [3,10]: 

(5.27) 

For compatibility with the previous stability analysis, we once again reparameterize 

equation 5.25 as 
N 

w,(t)9 = 2: 9i</>i(t) (5.28) 
i=O 

Applying the control law of equations 5.24 and 5.25, and the parameter estimation law given 

by equation 5.26 to the manipulator system of equation 3.14, we arrive at the following error 

. dynamic system: 

d 
Mc(Xc) dt eu - -Kueu- Kpe- Qn- C(xc,Xc)e" 

-tl.w(e",e) + w,e + d 

(5.29) 

(5.30) 

(5.31) 

where e, tl.w(eu,e), and dare analogous to the quantities defined for the joint spac~ error 

system (see equations 5.16-5.18). 

We now state and prove the stability theorems for the DCCLL. 

Theorem 5.3.1 Under the assumption of equation 9.19, there exists a set of control gains 

Kp, K", and O'n such that the ideal (i.e. d = 0} system described by equations 5.29-5.90 is 

locally asymptotically stable. 

Proof: The proof of this theorem is completely analogous to the proof of theorem 4.3.1 

except that the results are local instead of global since the manipulator must operate in a 

subset of the total workspace. This restriction is imposed by equation 3.13 which requires 

that the robot arm not venture close to a singular configuration. Theorem 4.3.1 states that 

the tracking errors will converge to zero asymptotically starting from any initial condition. 

The proof of this theorem is identical if the initial conditions are such that equation 3.13 is 

satisfied, yielding local asymptotic stability. 0 
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Theorem 5.3.2 Due to the natural persistent excitation of the «weighting" matrix W,(t) 

(see equation 5.1./.}, and under the assumption of equation 9.19, the results of theorems 

./..9.2-./..9.9 hold for the error system gitJen by equations 5.29-5.91. 

Proof: The proof of the theorem follows directly from the proofs of theorems 4.3.2-4.3.3. 

0 

5.4 DCLL Implementation Results 

In this section we examine the performance of both the joint space and Cartesian space 

DCLL repetitive controllers. 

5.4.1 DCLL Joint Space Implementation Results 

The DCLL joint space scheme was implemented on the mM 7545 robot for performance 

comparison to the DCAL. The DCLL easily outperformed the adaptive controller during 

"steady state" tracking. In fact, the DCLL was able to drive the position error to \vithin 

the accuracy of the optical encoders after only five cycles of the desired trajectory, and 

excellent tracking error was attained after only three cycles. 

The desired trajectory for both controllers was the same as that shown in figure 4.1. 

The piecewise linear shape function mentioned in example 5.2.1 was used in conjunction 

with the DCLL. 

Figures 5.1 and 5.2 show position error over six cycles of the desired trajectory for the 

first two (revolute) axes of the IBM 7545. Note that the position error plots are on the 

same ordinate scale for easy comparison. It can be easily seen that the learning controller 

(the DCLL) has much superior steady state performance to the DCAL throughout the path 

period. The DCLL outperforms the DCAL due to its ability to absorb unmodelled dynamic 

effects in the joints, actuators, and amplifiers, and to cancel unmodelled effects introduced 

by digital implementation and sampling. 
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Figure 5.3 shows the RMS (root mean square) position error over the last cycle of both 

controllers. This figure represents an average of the RMS error for the first two axes. 

Numerical values of the RMS position error are 0~21 mrad for the DCAL and 0.036 mrad 

for the DCLL, or an improvement of approximately 82%. The converged error for the DCLL 

corresponds to less than one encoder line resolution. 
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0.003 Axis 1 ,.... 
~ 

0.002 e ........, Axis 2 

J 0.001 

0 

= 
~ -0.001 ..... 
ell 

-0.002 ~ 
-0.003 

-0.004 
0 5 10 15 20 25 30 

Tl.llle (sec) 

·Figure 5.1: DCAL Joint Position Error 

43 



0.004 

,.... 0.003 
"tS as 
.tJ, 0.002 

~ 0.001 

i 0 
c: 
0 -0.001 
~ ..... 
~ -0.002 

-0.003 

-0.004 
0 5 10 15 20 25 30 

Tune (sec) 

Figure 5.2: DCLL Joint Position Error 

0.00025 -"tS e 0.0002 ....... 
~ 

~ 0.00015 
s:: 
0 
~ ..... 

0.0001 ~ 
~ 

~ 0.00005 

0 
DCAL DCLL 

Figure 5.3: Steady State Cycle RMS Joint Position Error 

44 



5.4.2 DCCLL Cartesian Space Implementation Results 

The DCCLL (the Cartesian space version of the DCLL) was also implemented on the 

IBM 7545 manipulator and compared to the DCAL scheme. The desired trajectory was 

prepared using a 7th order polynomial for the z and y position variables. The Cartesian 

path shape displayed on the horizontal plane of the robot workspace is shown in figure 5.4. 

The peak velocity reached in the desired trajectory corresponds to the maximum joint 

0.7 

0.5 
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~------------~------------A 

\_~ 

-0.3 0.2 
X Position (m) 

Figure 5.4: Cartesian Space Test Trajectory 

0.7 

velocity specified by the manufacturer for the actuators. The total trajectory cycle time 

was 7 seconds. The DCCLL was capable of executing the Cartesian space path directly-:­

without the need to perform inverse kinematics. The DCAL, however, was implemented 

for Cartesian space control by using the joint space formulation in conjunction with inverse 

kinematics. The piecewise linear shape function mentioned in example 5.2.1 was again used 

in conjunction with the DCCLL. 

Figures 5.5 and 5.6 show absolute Cartesian position error in the z - y plane over six 

cycles of the desired trajectory. In keeping with the concept of presenting the first two 

axes in the error plots, only the x- y (horizontal) plane errors are shown. The DCCLL 

shows extremely fast convergence (approximately 3 cycles) and excellent steady state error 
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as compared to the DCAL. Note that the position error plots are on the same ordinate scale 

for easy comparison. Once again, the DCCLL outperformed the DCAL by a large margin. 

Figure 5. 7 shows the RMS (root mean square) of the absolute Cartesian position error 

over the last cycle of both controllers. Numerical values of the RMS position error are 

0.104mm for the DCAL and 0.0165mm for the DCCLL, or an improvement of approximately 

84%. Once again, the converged error for the DCCLL corresponds to the equivalent of less 

than one encoder line resolution. 
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Chapter 6 

Friction Compensation Adaptive 

Law 

6.1 Introduction 

At this point we begin our development of non-repetitive learning control laws. The Friction 

Compensation Adaptive Law (FCAL) presented in this chapter is applicable to execution 

of the same type of non-periodic joint space trajectories as the DCAL. In fact, the FCAL 

is based on the DCAL with a modification of the way in which friction is accounted for in 

the system model. To account for friction using the DCAL, the structure of the friction 

mechanism would have to be explicitly defined, and then unknown coefficients associated 

with this model would be updated on-line in an attempt to drive the reference velocity 

erro~, ev, to zero. The problem, of course, is obtaining an accurate model of the friction. 

The FCAL circumvents the need to derive an explicit friction model for a system by using a 

general function capable of describing many different types of friction (linear and nonlinear). 

The same concept of estimating an unknown function of time from the periodic con­

trollers may be extended to ~stimating an unknown function of some other independent 

variable. Specifically in the case of estimating viscous and dry friction, a general function 

of the joint velocities may be appropriate. Certainly the force generated due to viscous 
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friction is velocity dependent, and dry dynamic friction is at the very least dependent on 

the sign of the velocity. Although a good model of dry static friction is also a function of 

actuator input, it turns out that this dependence is not as important as it might seem. 

Before further investigation of the mechanism that the FCAL uses to estimate the 

friction present in a system, let us examine a typical linear and nonlinear friction model. 

First rewrite the joint space equation of motion from equation 3.1: 

d 
dtx; - x; 

M;(x;) !x; + C(x;,X;)X; + g(x;) + F(X;, q) - q + d (6.1) 

where F(x;, q) replaces the purely viscous Vx; term and represents a generalized force 

due to both viscous and dry (static and dynamic) friction. A reasonable representation for 

F(x;, q) would be: 

{ 

Cx; + sign(x; )F d if I :X; I > 0 
F(x;,q) = sqign(q)F, if lql > F, and x; = 0 

if I ql ~ F. and x; = 0 
(6.2) 

where each element of the vector F (x;, q) is computed based on the corresponding element 

of :X; and q. F d is a constant vector of Coulomb (dry) dynamic friction forces, F, is a 

constant vector of static friction ( "stiction") forces, and C is the viscous friction coefficient 

matrix similar to V in equation 3.1. 

Even though 6.2 is a highly nonlinear function of the manipulator joint velocity X.; 

and actuator input q, the real friction model for a physical system may be much more 

complicated. In fact, the ffiM 7545 robot used in this paper for implementation results 

demonstrated slowly time varying C, F d, and F ,, and velocity dependent dynamic dry 

friction coefficients F d and viscous friction coefficients C. These additional functional de­

pendencies show that an accurate friction model for many physical systemS may be quite 

difficult to derive and identify. Moreover, these friction effects are usually not negligible. 

Once again using the example of the ffiM 7545 robot with high reduction harmonic drives, 

a large portion of the input for this manipulator is expended overcoming the friction effects 

mentioned above. 

49 



6.2 FCAL Development 

The particular version of the FCAL presented here will use a piecetoi8e linear function of the 

manipulator joint velocity, x;, to estimate the total friction force for a particular joint. This 

will be the same function as described in example 5.2.1, part (b), but with velocity as the 

independent variable as opposed to time. The other shape functions given in the example 

are possible - such as a piecewise quadratic or a simple polynomial function - but the 

piecewise linear function yields excellent results and is simple to implement computationally. 

Although the friction model presented in equation 6.2 uses both the joint velocity and the 

actuator input as independent variables, we will see that the FCAL's use of a function of 

only the velocity will yield excellent performance. 

We can modify the expression for the manipulator dynamics given in equation 6.1 to 

explicitly account for (riction which is onl~ a function of X.;: 

d . 
dtx; - x; 

M;(x;) !x; + C(x;,X;)X; + g(x;) +F(X;) - q + d (6.3) 

Now the term d accounts for any friction not modeled by F(x;) and any other disturbances. 

An approximation of the friction function F (x;) is given by: 

i=N 

F(x;) = L: w;.c/>;.(x;) (6.4) 
i=O 

where \11;. is a vector of constant coefficients for each shape function </>;.(x;). 

To show that F(x;) in 6.4 can approximate F(x;) within a prescribed tolerance we give 

the shape function for the FCAL a mathematical definition similar to that for a periodic 

system in definition 5.2.1: 

Definition 6.2.1 First, let C(x) denote a space of piecewise continuous functions whose 

domain is confined such that x E [-Xma:z:, Xma:z:]. Consider a countable set of linearly inde­

pendent{</>;. E C(x)} such that 

1. unity can be expressed as a linear combination of finitely many </>;. 's. 
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e. the span of {<P;} ia dense in C(.:i:), that is, for any F(.:i:) e C(.:i:) and e > 0, there exist 
an N and W; E R" such that: 

sup IF(x)- F(x)l < e 
ze[ -z,. .. ,z,. .. ] 

(6.5) 

where F(x) ia the approximation of the friction function for a single axis given by 
equation 6 . .1. 

~his simply means that we may approximate the velocity dependent friction function F(x;) 

as closely as we wish using equation 6.4. 

The FCAL will use the same form of control law as the DCAL: 

(6.6) 

All of the terms are the same as those in equation 4.27 with the exception of the feedforward 

estimate, Wdf· For the FCAL, the purely viscous friction term Vxd in Wd from the DCAL 

has been replaced with the more general friction estimation function. 

The desired value of w df is given by 

(6.7) 

As in the formulation of the DCAL, we can reparameterize the previous equation by sepa­

rating the functional portion from the constant parameters in the following way: 

(6.8) 

where p is the vector containing both the dynamic parameters associated with M;(xd), 

C(xd,xd), and g(xd), and the friction function coefficients W;. 

As mentioned previously, only a piecewise linear approximation of the friction function 

will be presented in this paper. Therefore, the explicit form of the shape functions, <Pi, for 

this type of friction estimation are given in the example below. Note that the other types of 

time dependent shape functions given in example 5.2.1 have direct analogies to the velocity 

dependent forms. 
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Example 6.2.1 Piecewise Linear Friction Approximation: 

In this example the velocity dependent function F (xd) is approximated by a piecewise 

linear function, similar to a finite element approximation. Let the linear function for the 

,-th piece be 

F; = c;(z;z). + Ci-1(1- z;z) (6.9) 

where z;z is the local normalized velocity for the rt" piece for a particular am j. For the 

purpose of describing this piecewise linear function as a shape function, we will use the 

following notation: 

:z:; N . 
Define Ti = -. -- - ' 

z;m.o.z 

The shape function for a particular axis tPi;(z;) for z; E [-z;m.o.z, z;moz] can be expressed 

by: 

{ 

1 - Ti if 0 ~ Ti < 1 
tPii ( z;) = 1 + Ti if -1 ~ Ti < 0 

0 else 
(6.10) 

The i1h shape function tPi represented in equation 6 . ./ is simply the vector of all tPi; shape 

functions for each axis j of the manipulator. 

Keep in mind that the particular formulation of the piecewise linear shape function given 

in the example is necessary for compatibility with the structure of equation 6.4. However, 

this type of formulation would never be used in an implementation of the controller because 

of the simplicity of directly updating the piecewise linear coefficients using equation 6.9. 

An estimate of the feedforward friction F(xd) is given by: 

i=N 

F(xd) = L: ~_i<Pi(xd) (6.11) 
i=O 

and an estimate of the feedforward torque w dJ is given by: 

(6.12) 

where p is an estimate of the parameter vector p which includes the friction estimation 

coefficients ~i. Once again the following standard parameter update law with constant 
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adaptation gains is used: 

(6.13) 

Applying the control law of equation 6.6 and the update law of equation 6.13 to equation 

6.3, we obtain the following error dynamics: 

d 
M;(x;) dte., - -K.,e.,- Kpe- ~(e.,, e)- C(x;,:X;)e., 

-aw1(e.,,e) + W, (xd,:Xd,xd)P + d 
d 
dte - e.,- ~e 

~p - -Ka W, T (xd, xd, xd)e., 

where q,.(e.,,e) is the same as that defined for the DCAL, and pis defined as: 

p=p-p 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

dis a lumped, bounded disturbance which includes the disturbances contained in d from 

equation 6.3 as well as any additional disturbance due to using the approximation of equa­

tion 6.4 for F(xd): 

(6.18) 

~w,(ev,e) is a state dependent disturbance due to using the desired trajectory quantities 

instead of their true counterparts, and is defined by: 

6.w1 = [M;(x;)~v;+C(x;,X;)v;+g(x;)+F(X;l] (6.19) 

- [M;(Xd) ~Xd + C(xd, Xd)Xd + g(xd) + F(Xd)] 

We now present the following stability theorem for the FCAL: 

Theorem 6.2.1 Under the assumption of a persistently exciting W, (t) {see equation .1.96}, 

the results of theorems 4.9.1-4.9.9 hold for the error system described by equations 6.14-

6.16. 

Proof: The proof of the theorem follows directly from the proofs of theorems 4.3.1-4.3.3. 

0 
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6.3 FCAL Implementation Results 

The FCAL was implemented on the ffiM 7545 manipulator for joint space position con­

trol. In comparison to the DCAL with only viscous friction estimation, the FCAL showed 

extremely fast convergence and much better steady state error. In fact, the FCAL steady 

state error corresponded to less than two optical encoder line resolutions. 

The adaptive gains for update of the non-friction associated terms (i.e. the parameters 

associated with M, C, and g) as well as the PD feedback gains were the same for the DCAL 

and FCAL. Therefore, the difference between the performance of the DCAL and the FCAL 

can be completely attributed to the way in which the different friction terms model the 

actual friction. The joint space desired trajectory for both controllers was the same as that 

shown in figure 4.1, and the piecewise linear shape function described in example 6.2.1 was 

used in conjunction with the FCAL's friction estimation portion. 

Figures 6.1 and 6.2 show position error over six cycles of the desired trajectory for the 

first two (revolute) axes. The FCAL demonstrates extremely fast convergence durit:tg the 

first few seconds of the first trajectory cycle. The peak error during this time is less than 

60% of that for the DCAL, and at steady state the FCAL shows excellent tracking with 

peak errors near the resolution capabilities of the position feedback system. Note that these 

position error plots are on the same ordinate scale for easy comparison. 

Figures 6.3 and 6.4 show the RMS (root mean square) position error over the first and 

last cycles of the two controllers. These figures represent an average of the RMS error for 

the first two axes. Note that the first cycle RMS error for the FCAL is less than SO% of that 

for the DCAL, and during the "steady state" or "converged" cycle (i.e. the last cycle), the 

FCAL betters the RMS position error of the DCAL by 66%. The actual numerical values 

for the last cycle RMS error are 0.21 mrad for the DCAL and 0.070 mrad for the FCAL. 

The converged error for the FCAL corresponds to less than two encoder line resolutions. 

Figure 6.5 shows the velocity dependent friction function as estimated by the FCAL for 

the first two axes of the IBM 7545 robot. Note the piecewise linear shape of the curves and 
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the "interpolation" of stiction effects near x = 0. Although this function looks very erratic, 

is must be considered "correct" because of the excellent performance of the FCAL. This fact 

is confirmed by input/output friction identification data taken on the robot. Although not 

directly addressed in this dissertation, the FCAL could be used as a friction identification 

tool if the desired input was persistently exciting. Also, the FCAL is naturally capable 

of absorbing linear and nonlinear velocity dependent actuator dynamics since these efFects 

"look" just like friction from an input/output view of the system. 
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Chapter 7 

Configuration Learning Law 

7.1 Introduction 

In this chapter we present a learning control algorithm with performance similar to that of 

the FCAL, but without the requirement of deriving the specific equations of motion for the 

manipulator. More precisely, we will use a finite element-like approximation of the general 

dynamic equations for a robot. By using this estimate for the position dependent portions 

of the equation of motion, we will generate hypersurfaces whose independent coordinates 

are the joint positions of the robot. Therefore, the shape of these hypersurfaces will be a 

function of the configuration of the open kinematic chain. For this reason we will refer to 

the algorithm as the Configuration Learning Law (CLL). 

The CLL will be applicable to joint space control of a manipulator performing a repet­

itive or non-repetitive task. This controller will again use the same feedback/feedforward 

structure of the FCAL and DCLL presented in previous chapters. Although this scheme 

resembles a neural network in appearance, it is much more computationally efficient and 

easily implemented on today's low cost digital hardware. Memory considerations, however, 

are more critical. Since we will be generating hypersurfaces of several ~ensions, memory 

requirements can quickly multiply. For this reason, we will restrict the approximation to at 

most the first three links of the manipulator. This is usually completely satisfactory since the 
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first three links are by far the most massive and dynamically coupled on many industrial6 

DOF robots. The last three links usually consist of a triple intersecting axes revolute wrist. 

This portion of the robot does not experienc.e the large nonlinear and coupled dynamic 

effects of the first three links. 

By assuming that the last 3 links of a 6 DOF manipulator are decoupled, the con­

figuration space is reduced to three !-dimensional subspaces plus a single 3-dimensional 

subspace. As an example of the memory requirements for a specific application, consider 

the IDM 7545 4-DOF robot. The last 2links are completely dynamically decoupled so that 

the total configuration space for 25 discrete quantities of each joint is 252 + 25 + 25 = 675 

"nodes." This means that only 675 memory elements are required for each approximation 

function within the equation of motion. This corresponds to a total memory requirement 

of less than 2Kbytes for the entire configuration feedforward term. Given this example, it 

can be seen that the CLL is easily implemented with inexpensive memory requirements. 

7.2 CLL Development 

Before presenting the CLL's control law, let us take a closer look at the joint space equations 

of motion for a robotic manipulator (see equation 6.3) 

d 
dtXj = Xj 

M 1(x1) !xi+ C(x1,X1)X1 + g(x1) + F(X1) - q + d (7.1) 

where we have included the velocity dependent friction term F(xj) from the FCAL. Note 

that this equation is only a function of x;, x;, and ~x;, which are n dimensional vectors. 

Theoretically, a feedforward term w d based on this equation could be formed for any point 

in the n8 dimensional space of the robot. This is precisely what a neural network might 

attempt to do- but current reasonable memory and computational limits prevent this as 

previously mentioned. Instead, note that several of the terms have a dependence on the 

position vector, x;. Even the Coriolis term C(x;,X.;)X.; may be rewritten in a general form 
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by using equation 3.2 so that its structure is completely defined by the mass matrix (which 

is only a function of position): 

C(M;(x;),:X;):X; = C(x;,:X;):X; (7.2) 

By separating out the position dependent portions of equation 7.1, we can rewrite the 

desired FCAL feedforward signal in the follOwing form 

{7.3) 

where 11 and J2 are position dependent matrices which replace M;(xd) and g(xd) respec­

tively. By formulating the feedforward input in this way, an approximation of w d may be 

generated which requires that learning be performed only over the space of n dimensions of 

Xd (i.e. the configuration space of ... the manipulator) and the one dimensional n spaces of Xd 

(as in the FCAL): 

(7.4) 

In the spirit of the previous learning controllers, the following approximations are ~ed for 

a three degree of freedom system: 

M 

11(xd) = L: el,jJ:~i;k(xd) (7.5) 
i,i,k=O 

M 

r2cxd) - L: e2,jJ:~i;k(xd) (7.6) 
i,j,lc=O 

N 

F(xd) = L: wi(f>i(xd) (7.7) 
i=O 

where the summation notation is defined as 

M MMM 

L:=L:L:L: (7.8) 
iJ,Ic=O i=O i=O lc=O 

81,iA: is a 3 by 3 symmetric matrix, and 82iiA: is a 3 by 1 vector. The ~i;Jc(xd) terms are the 

multidimensional shape functions for the CLL. 1 1(xd) (and therefore 9 1,iA:) is symmetric 

because it replaces the symmetric mass matrix M;(xd)· This is a general simplification for 
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an open kinematic chain robot, and does not require specific structure in the equations of 

motion. 

F in equation 7. 7 has already been shown to approximate F within a prescribed tolerance 

in definition 6.2.1. We may now state an analogous definition for 11 and .12: 

Definition 7.2.1 First, let C(x) denote a space of piecewise continuous functions whose 

domain i8 confined to a compact subset of R 3 :. 

where X denotes the Cartesian product. Consider a countable set of linearly independent 

{~iik E C(x)} such that 

1. unity can be expressed as a linear combination of finitely many tpi;Jc 's. 

H. the span of {cpi;k} i8 dense in C(x), that is, for any 1(x) E C(x) and e > 0, there 
exist an M and 9i;k such that: 

sup 11(x) -1(x)j < e 
XEDs 

(7.9) 

where 1(x) is any one of the elements in equations 7.5- 7.6. 

Again, this simply means that we can estimate any term in equations 7.5 - 7.6 as closely 

as we wish by using this type of approximation. 

The CLL will use the same form of control law as the FCAL: 

(7.10) 

where Wd is an estimate of the required feedforward signal given by equation 7.4 and defined 

later in equation 7.22. At this point an example of the type of shape functions we will be 

using is in order. 

Example 7 .2.1 First Order Triangular Approximation: 

In this example the elements of the position dependent functions J'1(xd) and J'2(xd) are 

approximated by a multidimensional piecewise continuous first order function, similar to a 
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finite element approximation. Since these functions will only have 2 independent variables 

(i.e. only 2 dimensions) when implemented on the IBM 75-IS's first two a2:es, we will develop 

the shape functions here in the same form. This formulation is also much easier to physically 

visualize since a 9 dimensional function would have a 4th dependent dimension. 

First, we will divide the two dimensional configuration space of the manipulator into 

equally sized right triangles of area A {see figure 7.1). The height of each «node" Pt-3 

will be the value of parameter 8;; where the «i" index corresponds to the dependent variable 

x1, and the ')" index corresponds to the dependent variable x2. For some point P in the 

interior of area A, the triangle is subdivided into 9 areas At, A2, and A3 as shown in the 

figure. We may normalize the length of the legs of the triangle to unity and define normal 

Figure 7.1: CLL Shape Function Diagram 

coordinates %1 and %2 along the legs such that 0 ~ %1 < 1 and 0 ~ x2 < 1. The expression 

for the areas then becomes: 

A 
1 

(7.11) - -
2 

At 
1 

(7.12) - -x1 
2 

A2 
1_ 

(7.13) - -X2 
2 
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(7.14) 

Now the height of point P may be expressed in terms of the height of the other nodes and 

the normal coordinates of P 

(7.15) 

or 

(7.16) 

Note that there is a similar triangle B opposite to A. Triangle A is defined for x2 ~ 1- XI, 

triangle B is defined for %2 > 1 - XI 1 and the height of a point P within B is given by 

(7.17) 

As in the previous shape function examples, we reformulate the development above for 

compatibility with equations 7. 5 - 7. 6 

Define Ti - XI M . 
-- -1 
ax I 

r · 
' - X2 M . - -3 

ax2 

where axl = Xlmaz- Xlmin· The shape function for a particular fPi;(x) for X E Dz can be 

expressed by: 

fPi;(x) = 

1- Ti- Tj 

1 + Ti 

1 + Tj 

1 + Ti + r; 
1- Tj 

1- Ti 

0 

if 0 ~ Ti < + 1 and 
if -1 ~ Ti < 0 and 
if 0 ~ Ti < + 1 and 
if -1 ~ Ti < 0 and 
if -1 ~ Ti < 0 and 
if 0 ~ Ti < + 1 and 
else 

0 ~ Tj < + 1 and Tj ~ 1 - Ti 

0 < T • < + 1 and T · < - T.· 
- 1 '- ' 

-1 < T · < 0 and T · < - T.· 
- ' '- ' -1 ~ r; < 0 and r; > -1 - Ti 

0 < r· < +1 and r· > -T.· 
- ' ' ' -1 < T · < 0 and T · > - T.· 

- ' ' ' 

(7.18) 

Note that equation 7.18 would not be used in an implementation situation for calculation 

of t{'ij· Instead, equations 7.16 and 7.17 would be used to directly form the "weighting 

functions" for the individual parameters Oi;. 
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An estimate of the position dependent quantities in equations 7.5- 7.6 is given by: 

M 

i1(xd) L elijA:cp,jk(xd) 
iJ,k=O 

M 

~(xd) = L e2;jl;cp,;k(xd) 
i,j,k=O 

(7.19) 

(7.20) 

and the estimate of the friction function from equation 7. 7 is the same as that for the FCAL: 

N 

F(xd) = L (l,q,i(xd) (7.21) 
i=O 

Therefore, the estimate of the total desired feedforward term is: 

(7.22) 

For compactness, we will reparameterize the previous equation as we did for the FCAL: 

(7.23) 

where Pe contains the shape function coefficient estimates S.;;A; and (1,. For development 

of the error equations and stability proof we will also define: 

(7.24) 

where, similar to equation 7.23, Pe contains 9iik and Wi. Again, we will use the following 

standard update law: 

Ka > 0 (7.25) 

Applying the control law and update law of equations 7.10 and 7.25 to equation 7.1, we 

obtain the following error dynamics: 

d -. 
M;(x;) dteu = -Kueu -Kpe- <In(eu,e)- C(M;(x;),x;)eu 

-.6.we(eu,e) +We (xd,xd,xd)Pe + d 
d 
dte - ev- ~e 

!Pe - -Ka We T(xd,xd,xd)ev 
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where Qn(e11 ,e) is the same as that defined for the FCAL, and Pc is defined as: 

Pc = Pc·- Pc (7.29) 

d is a lumped, bounded disturbance which includes the disturbances contained in d from 

equation 7.1 as well as any additional disturbance due to using the approximations of 

equations 7.5-7.7: 

Awc(e11 ,e) is once again a state dependent disturbance due to using the desired trajectory 

quantities. instead of their true counterparts, and is defined by: 

[ 
d - - l Awe = M;(x;) dt v; + C(M;(x;),x;)v; ;t- g(x;) + F(x;) (7.31) 

- [M;(xa) !xa + C(M;(xa),Xa)Xa + g(xa) + F(Xa)] 

In a direct parallel with the DCAL and FCAL, we present the following stability th:eorem 

for the CLL: 

Theorem 7.2.1 Under the assumption of a persistently exciting We (t) {see equation 4.96}, 

the results of theorems -/.9.1-4.9.9 hold for the error system described by equations 7.26-

7.28. 

Proof: The proof of the theorem once again follows directly from the proofs of theorems 

4.3.1-4.3.3. 0 

7.3 CLL Implementation Results 

The CLL was implemented on the ffiM 7545 robot for joint space control. The perfor­

mance of the DCAL and FCAL schemes will also be presented in this chapter for relative 

performance evaluation. In comparison to the FCAL, the CLL demonstrated approximately 

the same convergence rate and slightly better steady state tracking. Recall that the only 
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difference between these two schemes is the way in which the dynamic portion (the part of 

the eq~ation of motion not associated with friction) of the feedforward signal is generated. 

Because the CLL's representation of this portion of the feedforward term is more general 

than that used for the FCAL, it is capable of canceling additional dynamic effects. This 

slightly better performance is achieved with the added advantage of not having to generate 

the specific equations of motion as is required with the DCAL and FCAL. 

The same joint space trajectory as shown in figure 4.1 was used for an three controllers. 

The first ord~r triangular shape function presented in example 7 .2.1 was used in conjunction 

with the CLL's position dependent feedforward term, and the piecewise linear shape function 

of example 6.2.1 was used for friction estimation in both the FCAL and CLL. 

Figures 7.2, 7.3, and 7.4 show position error for the DCAL, FCAL, and CLL respectively 

over six cycles of the desired trajectory for the first two (revolute) axes. Because the 

performances of the FCAL and CLL are very close and very near the resolution capabilities 

of the IBM 7545, the DCAL results are presented for relative comparison. Note that the 

CLL converges slightly faster than the FCAL, but the steady state error for the FCAL is 

slightly better than that of the CLL .. Also note that all of the position error plots are on 

the same ordinate scale for easy comparison. 

Figures 7.5 and 7.6 show the RMS (root mean square) error over the first and last cycles 

of the three controllers. These figures represent an average of the RMS error for the first 

two axes. Both the FCAL and CLL show similar performance during these two stages of 

trajectory execution. 
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The FCAL, however, would have the advantage if the trajectory were to suddenly change 

and place the manipulator in a configuration in which it has never been. At this point the 

CLL would have to converge its position dependent surface from initial conditions m order 

to generate the required feedforward estimate. Since the robot's path must be continuous, 

however, previously learned portions of the position dependent hypersurface serve as initial 

conditions for new areas. After the robot has executed trajectories in many different areas 

of its configuration space, no new convergence time will be required . 

. Overall, very similar performance was observed for the FCAL and CLL. The CLL, 

however, does not require derivation of the specific equation of motion for the system. 

Moreover, the CLL demonstrates a method of approximating the equation of motion of a 

system whose dynamics may be unknown or highly complex without making restrictions on 

the desired trajectory. 
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7.4 CLL- DCLL Parallel Implementation 

Although the performance of the CLL is excellent, it does not exceed that of the DCLL 

when the desired trajectory is periodic. This is due to the DCLL's ability to identify and 

reject periodic disturbances common in mechanical systems. Therefore, it would be de­

sirable to use the DCLL during execution ·of a periodic trajectory, and to use the CLL 

during a non periodic trajectory. Moreover, it would be desirable to update the learning 

parameters associated with the scheme not in control by attempting to match the feedfor­

ward input generated by the current controller. In this section we will address a method of 

accomplishing this parallel update .. 

If information is available that describes the periodicity of the desired task, then either 

the DCLL or CLL may be easily "switched on" to operate in their corresponding trajectory 

domains. If the task is periodic, then the DCLL will have control of the system and will be 

calculating a feedforward signal based on learned coefficients of the shape functions needed 

to form this signal (see equation 5.12). During this time, the CLL's feedforward es~imate 

may be updated to match that of the (higher performance) DCLL. The new parameter 

update equation for the CLL, similar to equation 7 .25, would be: 

d A K w T( ... ) K 0 dtPc =- ap c Xc~.,xd,xd eq ap > (7.32) 

eq is the feedforward torque error defined as 

(7.33) 

where wc1. is the feedforward signal generated by the DCLL (see equation 5.12). 

Another advantage of a parallel implementation of the DCLL and CLL controllers would 

occur during the transition from a nonperiodic to a periodic task. During the first cycle 

of execution of the DCLL, each shape function coefficient could be initialized to reflect 

the CLL's calculated feedforward signal based on the same desired trajectory values. By 

equating the feedforward signals of both controllers we have 
N 

L e.~.(t) =We (xd, Xc~., i:c~.)Pc (7.34) 
i=O 
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where the left hand side of the equation is the feedforward term for the DCLL, and the 

right hand side is the feedforward term for the CLL. H N of these equations are generated 

for each of N points in the desired trajectory, ~ach parameter vector Si may be solved for 

uniquely since the shape functions tPi are linearly independent. This reduces to a simple 

solution if the piecewise linear shape function described in part (b) of example 5.2.1 is used. 

In this case Si is exactly equal to the calculated feedforward torque from the CLL at the 

beginning (or end) of each linear segment. 

7.5 CLL- DCLL Parallel Implementation Results 

We will examine the performance of a parallel implementation of the CLL and DCLL control 

schemes as described in the previous section. First, the DCLL will be placed in control of 

the manipulator while executing the previous periodic trajectory for 6 cycles. During this 

time the CLL will use equation 7.32 to update its parameters from initial conditions. At 

this point the DCLL will be switched off, the CLL will take control, and its first cycle 

performance will be compared to that of section 7 .3. In the second situation, the CLL will 

be placed in control of the robot while executing the same periodic trajectory. After 2 cycles 

of execution, the DCLL using a piecewise linear approximation will be switched on, and its 

parameters will be initialized using the CLL's approximation of the required feedforward 

torque (as in equation 7.34). 

Fig_ures 7.7 and 7.8 show the joint position error time history of the two parallel imple­

mentation schemes. In figure 7. 7, the CLL is switched on after approximately 30 seconds 

(6 cycles) of DCLL execution, and in figure 7.8 the DCLL is switched on after 10 seconds 

(2 cycles) of CLL execution. Note that both plots are on the same ordinate scale. The 

"first" cycle error for these two cases is represented in figures 7.9 and 7.10. Each figure 

shows the average of the RMS joint position error for the first two axes during the first 

cycle of the indicated controller with and without parallel initialization. The CLL achieves 

a 61% decrease in position error during this cycle, while the DCLL's error is reduced by 

88%! This demonstrates that the repetitive controller may be used anytime a periodic task 
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is to be executed without the need for several convergence cycles, and that the nonrepeti­

tive controller benefits from parallel initialization with the DCLL's computed feedforward 

signal. 
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Chapter 8 

Learning Force Control 

8.1 Introduction 

Until this point, we have focused our attention on position control of mechanical manipu­

lators. However, the concept of learning control is also easily extended to force control of 

robots. By utilizing an end-effector mounted force sensor, the robot's normal contact force 

with an object may be monitored and made to track a given "force trajectory." 

Force control on a multi-DOF manipulator, whether it be a numerically controlled ma­

chine tool, robotic manipulator, or any other mechanical system, usually involves force/torque 

control along only one axis. Position control must be maintained in the other direction(s), 

and interaction between the two modes of control must be cooperative. This type of "dual" 

control has been labeled hybrid control as a matter of consensus in the robotics literature. 

This is an appropriate term since the control system must be made up of two distinctly 

different parts while exhibiting the properties of both in a highly blended fashion. 

We will address the formulation of a repetitive hybrid force control scheme in this chapter. 

Much of the problem in applying advanced adaptive position control schemes to force control 

is due to the fundamentally Cartesian nature of the task. However, recall that the DCLL 

was easily applied to direct execution of a Cartesian task. This controller will form the 

"kernel" of our hybrid force control algorithm. The overall topology of the integrated 
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system may be outlined as follows: 

1. Cartesian position control will be applied in the directions tangential to an interaction 
surface. 

2. Force control will be applied in the direction normal to the surface. 

3. The rotational degree of freedom (the "roll" axis) will be used to maintain normal 
contact of the end-effector. 

Therefore, simultaneous repetitive learning control will be applied in three different regimes 

-Cartesian position control, force control, and trajectory generation. We will refer to this 

hybrid controller as the Hybrid Learning Law (HLL). The performance of the HLL will 

be compared to that of a PID (Proportional-Integral-Derivative) system typical in today's 

industrial controllers. 

8.2 HLL Force Control Development 

In this section we will apply the DCCLL Cartesian position controller presented in sec­

tion 5.3 to force control of the end-effector of a robot. The following development Will be 

based on force control of a single degree of freedom of a multiple DOF manipulator. This 

is done for simplicity of development and is actually the way in which the hybrid force 

control scheme will be implemented. The manipulator will be assumed to have a 6 DOF 

wrist force/ torque sensor. 

Much of the work has already been done in extending the DCCLL to force control since 

Cartesian position control is closely related to this problem. We assume that the interaction 

of the robot end-effector with an object possesses a bounded translational stiffness in some 

direction z: 

Fz = k(z) fl.z (8.1) 

where k(z) is a possibly nonlinear stiffness coefficient, and Fz is the force generated at the 

robot wrist in the direction z due to some deformation of the object fl.z. Since we assume 
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that k(z) is bounded, we may write 

sup llk{z)ll < 8 for some 8 > 0 {8.2) 
~ 

This assumption requires that there be some inherent flexibility in either the robot, the con­

tact surface, or both. H we exclude singular configurations of the manip~ator by requiring 

the condition set forth in equation 3.13, then there is certainly always some compliance 

in the robot because of limited torque and the feedback control law that surrounds the 

actuators. This validates the assumption of equation 8.2. 

To formulate the force control law let us first define the force errors similar to their 

position counterparts. Define the Cartesian force tracking error, e, by: 

{8.3) 

where Ftip is the sensed force at the end-effector in some direction z, and Fd is the desired 

force at the tip in this direction. Define the reference force deri11ati11e error, e1. as: 

{8.4) 

We may write the force control law as: 

(8.5) 

where Kdamp is a constant damping coefficient, and z describes the velocity of the end­

effector in the z tool direction.· id is the desired velocity of the end-effector in the tool 

direction, similar to the time derivative of the desired force, and is approximately zero due 

to the stiffness of the system in this direction. This term, along with the K£ e /. term, 

add enough artificial damping to allow higher proportional and learning gains. q is the 

imaginary end-effector Cartesian force in the z tool direction and may be mapped to the 

"world" coordinate system using a simple rotation transformation. Hz= [ 0 0 z ]T then 

we may write {see [3], [10]): 

{8.6) 
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where RT(x;) is the rotation transformation to the "world" coordinate vector Axe. The 

actual input to the manipulator actuators Qj is written as: 

Qj = JT (xj)R(x; )q (8.7) 

where q = [ 0 0 q ]T. 

The other terms in equation 8.5 are scalar force analogs of the position quantities given 

in section 5.3, but are listed here for completeness. qfn is the nonlinear force feedback term 

given by 

Unf > 0 (8.8) 

An estimate of the feedforward term is given by 

N 

Wfa(t) = L ai<f>i(t) (8.9) 
i=O 

with the coefficient update law 

d A I -9· = -K A...(t)e, dt s li'~'' J• 
.. (8.10) 

Although similar in form to the Cartesian position control version, the force control law 

exhibits very different behavior. According to experimental observations, a large "integral" 

and derivative along with a small proportional control is desirable, where the integrator 

action is provided by the update law of equation 8.10. For position control, a large propor­

tional and light derivative and "integral" gains provide the best all-around performance. 

8.3 HLL Position and Force Control Integration 

In this section we will integrate the repetitive Cartesian position controller developed in sec­

tion 5.3 and the force controller presented in the previous section into a hybrid force/position 

algorithm. This hybrid control law will be applicable to tracking a desired position trajec­

tory tangential to a contact surface, and a desired force trajectory normal to the surface. 
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It will be assumed that the direction of the outward normal of the surface is known at any 

point although this assumption will be relaxed in the next section. 

If Xc:tool is a vector describing the manipulator end-effector's current position with re­

spect to the "surface" or "tool" Cartesian coordinate system, then there is a mapping to a 

vector Xc:nonaal describing the surface's outward normal at this point since this direction is 

assumed to be known: 

Xenonaal = '1 ( Xc:tool) (8.11) 

Note that Xc:tool describes the actual position of the manipulator's end-effector in the surface 

frame coordinate system, while Xc:normal describes a vector at this point which is not a func­

tion of the end-effector's orientation. We may define the rotation transformation between 

some "world" or "absolute" Cartesian coordinates and the surface frame coordinate system 

as R(xc:nonnaa): 

(8.12) 

where .6..xc:tool and .6..xcab• are 3 by 1 translation vectors written in the "tool" and "world" 

coordinate systems, respectively. The end-effector also possesses an orientation which will 

be described by the 3 by 1 vector Xc:rot. Combining Xc:tool and Xcrot gives the total "tool" or 

"surface" frame position and orientation vector x,: 

X, = [ Xctool ] 
Xcrot 

{8.13) 

These a.ctua.l quantities have corresponding desired counterparts Xfltool and Xdrot. The 3 by 

1 desired rotation vector, xdrot, which forms the orientation portion of the total desired 

position trajectory vector, Xd, is given by: 

(8.14) 

(8.15) 

In a similar fashion, we may also define the 3 by 1 desired translation vector Xfltool as: 

(8.16) 
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D - [~ ~ ~ ~ ~ ~] 
0 0 1 0 0 0 

(8.17) 

It will be assumed that the position and force trajectories are defined in terms of the 

surface coordinates, and that all orientation vectors (xcno1111lal, Xcro,, X«40 ,) are defined in 

the fixed "world" coordinate system. The control law will act to always keep one of the 

principal axes of the tool frame aligned with the desired outward normal of the surface. We 

may assume this without loss of generality since the choice of the tool frame is arbitrary, 

and we will designate this normal direction as the z axis. The other two principle axes 

of the tool frame describe the plane in which tangential motion is to take place, and we 

will call these axes z and y. The first three elements of xd contain the desired z, y, and 

z coordinates, respectively, and the last three elements contain orientation information in 

accordance with equations 8.16 and 8.14. 

AB the end-effector moves over the surface, the tool frame (and the end-effector) ro­

tates to maintain proper alignment. In this way, tracking a complex surface is reduced to 

specifying a trajectory along the surface as well as describing the outward normal .to the 

surface at an~ point. This may sound complicated at first, but if the trajectory can be eas­

ily described in terms of the surface contour it yields a simpler description. For example, 

if an airplane wing is to be checked with some type of rolling contact ultrasonic sensor, 

the position trajectory specified would simply be a number of straight lines over the surface 

contour. Of course, the outward normal to the surface must be specified, but this restriction 

will be relaxed in the next section. 

We may keep track of the current tool frame tangential position relative to an arbitrary 

starting point by using the following: 

(8.18) 

This integration may be performed numerically on-line while the control scheme is operating 

without the need to use or compute Xcab• (see section 8.5.2 for details). Note that although 
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the vector .6.xc:,ool contains all three Cartesian tool coordinates x, y, and z, only the first 

two are meaningful in the position control topology. The z coordinate, however, will be 

used in the stability analysis of the force control portion. The position tracking error vector 

analogous to equation 5.20 is 

(8.19) 

The velocity vector in terms of the tool frame is simply 

(8.20) 

and the time derivative of etool is written as 

(8.21) 

We may then write the reference velocit~ position error analogous to equation 5.22 for tool 

frame trajectory description as 

(8.22) 

The position control law for the hybrid scheme is written as 

(8.23) 

where all of the terms are similar to those described for equation 5.24 except that F P\ool is 

a 3 by 1 vector of only the imaginary end-effector forces. The remaining torque elements of 

the input vector are obtained from an orientation control law which is written in "world" 

coordinates, and is exactly the same as the bottom 3 elements of the 6 by 1 vector q given 

in equation 5.24: 

(8.24) 

We restate the scalar force control law here in terms of Fft.ool for clarity: 

(8.25) 

Recall that all of the errors for the force control law are already in terms of a tool frame. 

Specifically, the direction z is the same as the contact surface normal, and z is the same 
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as the third component of xCtool. We may now write the control input to the manipulator 

actuators, q;, for the HLL control system: 

F aba - R T ( Xc:Donaal) ( AF Ptool + B F !tool) 

Taba - Trab• 

q; _ JT(x;) [ F aba ] 
Tabs 

where A = diag( 1 1 0 ) and B = [ 0 0 1 ]T. 

(8.26) 

(8.27) 

(8.28) 

To analyze the stability of the proposed hybrid learning scheme, we will write the dy­

namic equations of motion of the manipulator in the surface or tool frame of the manipulator. 

Note that this frame is attached to the contact surface as opposed to the manipulator end­

effector. We will assume that the manipUlator maintains contact with the surface during 

execution of the desired task. Similar to definition 3.3.1, we may write the mapping from 

the joint space to the tool or surface space as x, = ~(x;). The Jacobian for this mapping is 

therefore 

J ( ·) = ~(x;) , x, - dx· 

' 
(8.29) 

This new Jacobian, J,(x;), may be used to transform the joint space mass matrix as in 

equation 3.12. The surface frame equation of motion for the manipulator is written as 

d 
dtx' = :X., 

M,(x,) ~X.+ C(x,,X,)X, + g,(x,) +Kx, = q, + d (8.30) 

where we assume that the stiffness matrix K has the form 

K = diag ( 0 0 k% krz krv 0 ) (8.31) 

kz is the linear stiffness in the z (normal) direction, and krz and krv are the rotational 

stiffnesses about the x and y axes (surface tangential directions). q, is the imaginary input 

force at the end-effector described in surface frame coordinates 

q, = [ AFPt~ + BFftool ] 
R('7(Dx,))Tr.b. 
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where A and B are the same as in equation 8.26, and R('l(Dx,)) yields the same rotation 

transformation as equation 8.12. 

For simplicity in the stability analysis, we may set the stabilizing gain Kdamp to zero 

and make the following substitutions in the force control law of equation 8.25: 

e, - kaea (8.33) 

e/. - kaea. (8.34) 

where 

ea - Z- Zd (8.35) 

e._ - . d A 
z - "• = dt ea + le• (8.36) 

and ZtJ. is proportional to the desired force Fa. Applying the hybrid control law from 

equation 8.32 with these modifications to equation 8.30, we arrive at the following error 

dynamic system: 

d 
M, (x,) dt e3. - -K,ve3. - K3pe, - qn - C(x3, x,)e,. 

-~w(e3~)e3) + w3e + d 

(8.37) 

(8.38) 

(8.39) 

where e, ~ w( e3 • , e,), and d are similar to the quantities defined for the Cartesian space 

error system in equations 5.29-5.31. K 3v, K,p, A,, and K 3z are simply diagonal gain matrices 

composed of the corresponding gains from the position and force control laws, and e 3 = 

x, - xd is the total surface frame error vector. 

In an analogous fashion to the pure Cartesian position control law, we state the stability 

theorem for the HLL. 

Theorem 8.3.1 Due to the natural persistent excitation of the «weighting" matrix W ,(t) 

(see equation 5.14}, and under the assumption of equation 9.191 there exists a set of control 
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gains K,p 1 K 1111 CTn 1 and CTnJ such that the result8 of theorems 5.9.1-5.9.£ hold for the error 

system gitJen by equations 8.97-8.99. 

Proof: The proof of the theorem follows directly from the proofs of theorems 5.3.1-5.3.2 

and 4.3.2-4.3.3. D 

8.4 Orientation Control 

In the last section it was pointed out that the normal to the contact surface must be known 

at all points to implement the hybrid controller. In this section we will explore a way to 

relax this restriction so that an unknown surface may be tracked. Toward this end, we 

will utilize the wrist force/torque sensor's torque sensing capability to generate a desired 

orientation trajectory on-line. By examining the torque present about the desired contact 

point, corrections can be made in the end-effector orientation to maintain normal contact. 

Figure 8.1 shows a diagram of the situation which exist when the end-effector is not 

correctly aligned with the surface. The force control portion of the hybrid scheme maintains 

a specified normal contact force, and motion tangential to the surface generates a friction 

force. We may map the tool center point for the force/torque sensor out to the desired 

contact point using the following transformation 

T tool = T sensed + r X F sensed (8.40) 

where r is the vector from the desired contact point to the force/torque sensor center point, 

Taenaed and F sensed are the sensed torque and force vectors about the sensor center point, 

and Ttool is the torque generated about the desired contact point. Note that all of these 

vectors are naturally written with respect to the tool coordinate frame. The friction force 

does not generate a torque about the desired contact point because there is no moment 

arm for it to act through. The normal force, however, can generate a torque component 

in Ttool if it is not collinear with the end-effector center line. When this is detected, the 

orientation of the end-effector can be changed to realign the normal force vector with the 
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Figure 8.1: Orientation Learning Diagram 

center line. Therefore, Ttool becomes an effective error signal for the proposed task of 

maintainin~ normal contact to an unknown surface with respect to a desired contact point 

and center line. 

We can define a trajectory update law as 

{8.41) 

where Xaro~ (t) is once again the 3 by 1 vector of desired orientation quantities for the end­

effector in terms of some "world" coordinate system. Xa1e&l'D ( t) is the learned portion of 

the orientation trajectory, and the product of Dxa(t) is the original desired orientation 

trajectory (see equations 8.14 and 8.15). This term is included in the formulation of a 

"learned" trajectory to take advantage of any knowledge of the surface that may exist. In 

this way the learned portion of the trajectory perturbs the known trajectory to compensate 

for the shape of the true sUrface. 

To use the learned orientation information in the control law of equation 8.26, we must 

assume that the surface orientation is changing slowly, or, more precisely: 

{8.42) 
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at some point Xc:tool (t). As the repetitive control law cycles and drives the position, force, 

and orientation error to zero, this approximation becomes better and better. The form of 

Xdleana (t) is similar to that of the feedforward terms for the position and force control laws: 

N 

Xdleana (t) = L Sit/>i(t) (8.43) 
i=O 

Since no proportional or derivative terms are involved, the trajectory estimation is based on 

only the integral action of the parameter update law. The error signal is simply the torque 

generated about the tool center point Ttool: 

(8.44) 

the rotation matrix R T (xdrot) is the inverse (transpose) of the rotation matrix given in 

equation 8.12, and maps the tool frame torque into the "world" coordinate system. E is a 

masking matrix defined as 

E = diag ( 1 1 0 ) 

which removes the torque about the tool centerline (surface normal) since making an esti­

mation of this rotation is not defined in this scheme. 

Of course, this algorithm is not capable of correctly detecting or correcting all orientation 

errors. Small concave "cups" or internal corners in the surface may not be negotiated, 

but convex "bumps" and external corners are usually handled very well. Also, equation 

8.44 is only valid for incremental changes in the trajectory, and "large" rates of change of 

orientation may not be correctly learned. This trajectory generation scheme is only meant 

to serve as an example of application of the general repetitive learning algorithm, and the 

details of defining and solving the problems of generalized trajectory determination are an 

entire field unto themselves. However, this scheme has demonstrated excellent performance 

with reasonable test cases. 
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8.5 HLL Implementation Details 

In this section we will outline some of the specific methods used to implement the HLL 

on the ffiM 7545 robot. The HLL was implemented in the repetitive learning law form 

described in the previous sections as well as in a pure PID form for comparison purposes. 

8.5.1 HLL Implementation in PID Form 

Since a PD feedback loop is already in place within the position and force control laws 

of equations 5.24 and 8.5, the feedforward term will simply be replaced by the integral 

component to generate a PID implementation of the HLL. This turns out to be a special 

case of the selection of the shape function for the feedforward compensation. 

Recall the form of the feedforward term and its associated update law from equations 

5.25, 5.26, 8.9, 8.10: 
N 

WtJ = L 8,¢,(t) (8.45) 
i=O 

(8.46) 

H we choose ¢,(t) = 1 and N = 0, we obtain: 

(8.47) 

or, more precisely 

' (8.48) 

The first term is exactly a classic "Integrator" with a gain of AKz, and the second term 

just adds to the proportional control action already present in the control laws. H we 

choose the nonlinear control gains Un = 0 and Unf = 0 in the position and force control 

laws, respectively, then we are left with a classic PID implementation of the hybrid control 

scheme developed for the DCLL. This simplification of the DCLL to a pure "integrator" 

also serves to highlight the integral action of the periodic learning compensation. 

86 



The learning trajectory update of equation 8.44 may be modified in a similar fashion to 

yield a pure "Integrator" by the same selection of ~i(t) = 1 and N = 0. No PD feedback 

is needed or desired in the case of the trajectory update since all changes in this quantity 

should happen slowly with respect to the underlying position and force control system. 

8.5.2 HLL Implementation Equations 

Motion in the tool frame of the end-effector is tracked by numerically integrating equation 

8.18. H the contact surface normal vector is changing slowly with respect to the feedback 

update rate (as it must be for any reasonable surface), then we may assume that the rotation 

matrix R(xeuorma&) is constant over the sample period. Therefore, for the duration of one 

sample time, tc, equation 8.18 simplifies to: 

or 

Axctoo,(t) ~ Axctoo1(t- tc) + R(xcuorma~) ft xc.b.(t)dt 
lt-tc 

where dXcab.(t) is defined as 

(8.49) 

:(8.50) 

(8.51) 

Initiation of contact with the unknown surface is accomplished by moving within close 

proximity of the object (about 15mm), and then moving slowly (5mm per second) toward 

the surface. The controller monitors the force sensor for a particular force threshold (1 

pound) as the end-effector's motion proceeds. When this threshold is broken the hybrid 

control scheme is initiated along with the desired trajectory specified along the unknown 

surface. 

8.6 HLL Implementation Results 

The integrated learning hybrid control scheme presented in the previous sections was im­

plemented on the IBM 7545 for performance evaluation. For comparison purposes a PID 
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implementation of the same control topology as described in section 8.5.1 was also tested. 

The ffiM 7545 was required to track an unknown, irregular, curvy surface with a con­

stant contact force of 5 pounds. The desired position trajectory was a straight line at a 

constant height in terms of the surface contour. This trajectory included a ramp up to a 

constant speed of 15mm per second using a 4th order polynomial, a ramp back down to 

zero, and then the reverse of this motion. An entire cycle took approximately 11 seconds, 

and this trajectory was repeated 4 times until the repetitive controller converged to steady 

state operation. 
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Figure 8.2: First Cycle RMS Position Error 

Figure 8.2 shows the RMS position error for the first cycle, and figure 8.3 shows the force 

error for this same cycle for both the PID and DCLL control schemes. The PID controller 

outperformed the DCLL implementation by approximately 41% in terms of position error, 

and approximately 30% in terms of force error during this first cycle. However, this is to be 

expected of a repetitive type control law. Figures 8.4 and 8.5 show the RMS of the position 

and force error during a steady state (i.e. the fourth) cycle of the trajectory. By this time 

the DCLL is bettering the position error of the PID algorithm by 79%, and the RMS force 

error is down to 0.11 pounds (57% better than the PID). 
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Figure 8.5: Steady State Cycle RMS Force Error 

Figure 8.6 displays the "learned" contour of the unknown surface in terms of end­

effector orientation. Notice the "flat spot" which occurs approximately 1/4 and 3/4 of 

the way through the trajectory. This represents a single flat area which is passed over 

during both the forward and backward motion of the manipulator. The flat areas at the 

trajectory end points and center point represent a constant orientation region in time while 

the manipulator comes to rest and reverses itself. Tracking the contact surface required a 

total end-effector rotation of approximately 20 degrees, and included negotiating the large 

flat area as well as several small ripples. Figure 8. 7 shows the sensed torque at the contact 

point generated due to incorrect orientation for both control schemes. The DCLL does a 

73% better job of estimating the correct rotation in terms of this measure. 

The DCLL easily outperformed a well tuned PID implementation of the hybrid algorithm 

with trajectory orientation learning. The repetitive control law performed only slightly 

worse than the PID system during the first cycle. This shows that if execution of the task 

changes due to repositioning of the unknown surface, a different payload, or some other 

alteration, the DCLL implementation of the HLL will only suffer slightly during the first 

cycle after the introduction of the changed environment. Within 3 or 4 cycles the DCLL 
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will once again be tracking with excellent accuracy. 
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Figure 8.6: Steady State Orientation Trajectory for the DCLL 
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Chapter .9 

Conclusion 

Several new learning control algorithms for both position and force control of robotic manip­

ulators have been presented. All of these algorithms, as well as some previously developed 

schemes used for comparison purposes, were implemented on an actual ffiM 7545 robot. 

A joint space and Cartesian space repetitive learning position controller referred to as the 

Desired Compensation Learning Law (DCLL) formed a foundation for extension to the new 
. . 

algorithms. This controller was applicable to control of a robot performing a periodic task, 

and required no specific description of the dynamic structure of the system. Subsequent 

stability results for both forms of the algorithm (joint and Cartesian space) were presented. 

This controller was capable of the highest performance of any of the schemes examined in 

this dissertation. However, valid tasks were restricted to the set of periodic trajectories. 

In the interest of applying learning position control to non-periodic tasks, a new adap­

tive/learning algorithm referred to as the Friction Compensation Adaptive Law (FCAL) 

was developed. This joint .. space scheme used an adaptive feedforward signal based on the 

manipulator's dynamic equations of motion coupled with a general learning signal capable 

of estimating and canceling linear and nonlinear friction effects. The friction learning term 

did not require modeling equations of the friction me~hanism. Stability results based on the 

Lyapunov approach were presented, and robustness qualities were explored. This controller 

exhibited excellent performance in comparison to the "pure" adaptive form, and achieved 
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tracking accuracy almost as good as the DCLL. 

Another new position controller referred to as the Configuration Learning Law_ ( CLL) 

was developed in an attempt to achieve performance at least as good as the FCAL without 

having to specify the exact equations of motion for the system. This algorithm used the gen­

eral form of the robot dynamic equations of motion coupled with the friction learning term 

of the FCAL to generate its feedforward signal. The CLL was applicable to non-periodic 

tasks, and resembled a neural network in its structure. However, it was computationally 

and memory efficient, and was easily implemented for real-time control of the ffiM 7545. 

Stability results were presented, and the performance of the algorithm was similar to that 

ofthe FCAL. 

A new repetitive learning force controller based on the Cartesian space DCLL scheme was 

also developed. This algorithm, referred to as the Hybrid Learning Law (HLL), was actually 

a combination of force, Cartesian position, and trajectory orientation learning control. By 

using a wrist mounted force sensor, the mM 7545 was able to track an unknown surfac~ with 

a specified normal contact force and tangential position trajectory. This controller did not 

require a specific model of the surface interaction stiffness or dynamics of the manipulator. 

Stability results were presented, and excellent performance was observed compared to a 

PID imp!ementation of the same hybrid force/position control topology. 

The work in this dissertation expands the current applications and level of development 

of learning control for nonlinear mechanical systems. Excellent performance results were 

achieved with all of the algorithms while requiring very little knowledge of the system. 

Future work worthy of pursuit might include non-repetitive learning force control and 

even greater relaxation of the structure required for formulation of non-repetitive learning 

position control. Also, as more computational power becomes available and feasible in an 

industrial environment, true neural network real-time control similar in structure to the 

CLL may yield ultimate performance for many nonlinear systems. 
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