
Effects of Insufficient Time-Scale Separation in Cascaded, Networked
Systems

Kazunori Sakurama Erik I. Verriest Magnus Egerstedt

Abstract— In this paper, we investigate the effect of insuffi-
cient time-scale separation between inner and the outer loops in
a cascaded, networked system under multiple clients. Inspired
by the AQM (inner loop) and TCP (outer loop) at the Internet
transport layer, a qualitative model is developed where the
stability of the cascaded system is analyzed in terms of the
gains acting at the outer and inner loops.

I. INTRODUCTION

Networked control systems comprise of a number of nodes
whose dynamic behavior depend on their interactions with
adjacent nodes in the network. Such systems have been
studied extensively during the last decade, with applications
found in areas as diverse as multi-robot systems, mobile
sensor networks, power grid control, data and communication
networks, and manufacturing chains [1]. Distributed coordi-
nation and control strategies have been devised for, achieving
and maintaining geometric formations [2], [3], coveraging
areas [4], establishing connected communication links [5],
or agreeing on global state values across the network [6],
just to name a few. These strategies can be thought of as
control laws that are internal to the network in the sense
that they dictate how the node values should evolve over
time as a function of the locally available information. For
example, the AQM (Active Queue Management) protocol at
the Transport Layer of the Internet [7], or the consensus
protocol for reaching agreement among multiple agents [6],
constitute such internal control strategies.

These internal controllers can be contrasted with external,
or end-to-end controllers that adjust the input to the network
at some peripheral nodes based on the performance of the
network, as measured at other nodes in the network. For
example, an operator could be driving leader nodes in a
multi-robot network based on how the centroid or how
specialized output nodes are behaving [8], or the rate at
which data is injected into a network under the TCP protocol
at the sender-side is based on the received data rate and
congestion at the receiver-side in the network [9]. These
types of constructions are examples of cascaded control
design, and it is well-known that as long as the time-
scales are sufficiently separated – the inner control loops
are significantly faster than the outer ones – the addition of

*This research was partly supported by JST, CREST and partly by
the U.S. National Science Foundation through Grant Number 1329683.
Kazunori Sakurama is with the Graduate School of Engineering, Tot-
tori University, 4-101 Koyama-Minami, Tottori-shi, Tottori 680-8552,
JAPAN, sakurama@mech.tottori-u.ac.jp. Erik I. Verriest and
Magnus Egerstedt are with the School of Electrical and Computer En-
gineering, Georgia Institute of Technology, Atlanta, GA 30332, USA,
{erik.verriest,magnus}@ece.gatech.edu.

an outer loop does not harm the stability properties of the
system, e.g., [10].

However, as has been observed in the networking com-
munity, as these time-scales approach each other, the perfor-
mance of the system is affected in a negative way, e.g., when
TCP and AQM start to act at similar time-scales [9], [11].
Similarly, when human operators are to interact with large
collections of mobile robots, the performance deteriorates
significantly if the input nodes and the output nodes are
too far away, resulting in systems that are very hard for
the human operator to interact with [12], [13]. Moreover,
when multiple operators access the output nodes at once,
the congestion occurs on relay servers and the performance
deteriorates much more.

In this paper, we investigate these effects. In particular,
we develop a simple model in which a number of these
informal observations can be made concrete. This model
is loosely inspired by TCP/AQM but two things should
be noted already at this point: 1. We do not attempt to
model TCP/AQM in any great level of detail. Instead, 2.
We are simply interested in capturing qualitative aspects of
such systems in a way that constitutes a first stepping stone
towards understanding the general issue of insufficient time-
scale separation.

The outline of the paper is as follows: First, Section II
gives the problem formulation. Next, Section III analyzes the
stability of the simple model of the cascaded system under no
congestion. Section IV considers the networked system in the
situation that congestion occurs. Then, Section V illustrates
the validness of the analysis results through several numerical
examples. Finally, Section VI concludes the discussion.

II. PROBLEM FORMULATION

Notations: Let R and C be the sets of the real and complex
numbers. The imaginary unit is denoted as j. For a complex
number λ ∈ C, its real and imaginary parts are denoted
as Re(λ) and Im(λ). For a matrix A ∈ Rn×n, σ(A) ⊂ C
represents the set of all eigenvalues of A. Let λRmax(A) ∈ R
be the maximum real part of the eigenvalues of A, that is,

λRmax(A) = max
λ∈σ(A)

Re(λ).

It is said that a complex number λ ∈ C is stable if Re(λ) <
0, and that a matrix A ∈ Rn×n is stable if λRmax(A) < 0.
Let nCi be the number of i-combination from n-elements.

The networked systems under consideration in this paper
consist of subsystems that are themselves networks organized
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Fig. 1. Cascaded, networked systems consisting of m subsystems of n
length.

along a directed line topology as shown in Fig. 1. Each node
in this system, say node ij – with index i ∈ {1, 2, . . . ,m}
corresponding to subsystem i, and j ∈ {1, 2, . . . , n} denoting
the j:th position along the line in subsystem i – is tasked with
balancing its state value to the state value to node i(j − 1),
i.e., the node incident to node ij along the directed line
graph, while at the same time regulating the sum across
all subsystems to some reference value at each position.
The interpretation here could for example be a network
model, where multiple clients send data under congestion on
relay servers. Each subsystem is a cascaded system which
represents the path of packets sent by a client toward a
destination via several servers. On each server, network
congestion occurs which limits the amount of the data rates
under the server’s capacity.

Based on the previous discussion, subsystem i ∈
{1, 2, . . . ,m} is given by the n-dimensional system as

ẋi1(t) = ε(ri − xin(t)) + η(xin(t)− xi1(t))

ẋij(t) = xi(j−1)(t)− xij(t) + κ

(
r̄j −

m∑
k=1

xkj(t)

)
,

j ∈ {2, 3, . . . , n}
(1)

where xij(t) ∈ R, j ∈ {1, 2, . . . , n} are the state variables,
ri ∈ R is the reference of xin(t), r̄j ∈ R is the reference
of
∑m

k=1 xkj(t), and non-negative numbers ε, η and κ are
gains. The block diagram of this system is depicted in Fig. 2.
From the viewpoint of the network model, xi1(t) represents
the packet rate sent by client i, xij(t), j ∈ {2, 3, . . . , n−1}
denotes his packet rate transfered through relay server j and
xin(t) means the packet rate arriving at the destination. The
basic control objective is to send packets with the desired
rate ri throughout any servers, that is, xij(t) = ri for all
j. The first equation in (1) describes a behavior model (or
protocol) of client i. The two terms with the gains ε and η
represent the outer and inner loops, respectively, as shown in
Fig. 2. The first term denotes the rate control for adjusting his
sending packet rate xi1(t) to the desired one ri. The second
term represents the congestion control for reducing xi1(t) if
the packet rate xin(t) at the destination is small because of
congestion. The second equation in (1) represents behavior
of server j such that it attempts to relay packets with the

same rate as xi(j−1)(t) of the previous server, but the actual
rate is xij(t) because of network congestion. The congestion
is described by the term with the gain κ such that the amount
of the all clients’ packet rates, i.e.

∑m
k=1 xkj(t), is attracted

to the capacity r̄j .
Note that if κ = 0, the subsystems (1) are not connected

with each other. Then, each subsystem is described as the
n-dimensional system{

ẋi1(t) = ε(ri − xin(t)) + η(xin(t)− xi1(t))
ẋij(t) = xi(j−1)(t)− xij(t), j ∈ {2, 3, . . . , n} . (2)

This equation represents the network model under no conges-
tion, where ε and η represent the feedback gains of the outer
and inner loops. Thus, it is expected that if the outer loop
gain ε is small enough, the system (2) is stable. Then, what
happens on the connected systems (1) under the influence of
the network congestion?

The main problem in this paper is as follows.
Problem 1: Derive (necessary/sufficient) conditions for

the connected systems (1) and the disconnected systems (2)
to be stable.
First, we expect to know what gains ε and η guarantee the
stability of the disconnected systems (2) depending on the
dimension n of the subsystems in order to understand the
issue of insufficient time-scale separation. Next, we investi-
gate the relationship between the stability of the connected
systems (1) and that of the disconnected ones (2) in order to
understand the effect of the network congestion.

III. STABILITY OF THE DISCONNECTED SUBSYSTEM

Consider the disconnected subsystem (2). Let xi(t) =
[xi1(t) xi2(t) · · · xin(t)]

⊤ be the state of subsystem i ∈
{1, 2, . . . ,m}. Then, (2) is described as

ẋi(t) = Axi(t) +Bri

where B = [ε 0 0 · · · 0]⊤ ∈ Rn and

A =


−η 0 0 · · · η − ε
1 −1 0 · · · 0
0 1 −1 0
...

. . .
...

0 0 0 · · · −1

 ∈ Rn×n. (3)

We analyze the stability of the subsystem (2) by investi-
gating the eigenvalues of the matrix A. First, consider the
simplest case that n = 2. Then, A is always stable.

Proposition 1: The matrix A ∈ R2×2 given by (3) is
stable for any ε > 0 and η ≥ 0.

Proof: The characteristic polynomial of A is given as

|λI −A| =
∣∣∣∣ λ+ η −η + ε

−1 λ+ 1

∣∣∣∣ = λ2 + (η + 1)λ+ ε.

Its roots are given by

λ =
−(η + 1)±

√
(η + 1)2 − 4ε

2

whose real parts are negative for all ε > 0 and η ≥ 0.
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Fig. 2. Block diagram of the target system.

Next, consider the case that n ≥ 3. In this case, the gains
ε and η affect the stability of A. Actually, the following
theorem gives a necessary condition for A to be stable, which
implies that A can be unstable for large ε.

Theorem 1: For an integer n ≥ 3 and real numbers ε > 0
and η ≥ 0, the matrix A ∈ Rn×n given by (3) is stable only
if

ε <
3(1 + (n− 1)η)(2 + (n− 2)η)

(n− 2)(3 + η(n− 3))
. (4)

Proof: The characteristic polynomial of A is derived
as

|λI −A| =

∣∣∣∣∣∣∣∣∣∣∣

λ+ η 0 0 · · · −η + ε
−1 λ+ 1 0 · · · 0
0 −1 λ+ 1 0
...

. . .
...

0 0 0 · · · λ+ 1

∣∣∣∣∣∣∣∣∣∣∣
= (λ+ η)(λ+ 1)n−1 − η + ε (5)

= (λ+ η)
n−1∑
i=0

n−1Ciλ
i − η + ε

= λn +

n−1∑
i=1

(n−1Ci−1 + n−1Ciη)λ
i + ε. (6)

An eigenvalue λ ∈ C is not zero for ε > 0. Thus, λ is stable
if and only if µ = 1/λ is stable. Because (6) is zero for an
eigenvalue λ,

1

λn
|λI −A| = εµn +

n−1∑
i=1

(n−1Ci−1 + n−1Ciη)µ
n−i + 1

= 0 (7)

is obtained. Then first part of the Routh table of the polyno-
mial (7) is given as

µn ε n−1C1 + n−1C2η · · ·
µn−1

n−1C0 + n−1C1η n−1C2 + n−1C3η · · ·
µn−2 b1 b2 · · ·

...
...

...

where

b1 = {(n−1C0 + n−1C1η)(n−1C1 + n−1C2η)

−ε(n−1C2 + n−1C3η)}/(n−1C0 + n−1C1η). (8)

From the Routh-Hurwitz stability criteria, (7) has only stable
roots µ only if b1 > 0. From (8), b1 > 0 holds if and only if

ε <
(n−1C0 + n−1C1η)(n−1C1 + n−1C2η)

n−1C2 + n−1C3η
.

The right-side hand of this inequality is reduced to that of
(4).

For η > 0, the Taylor series of (4) with respect to n−1

around n−1 = 0 is reduced to

ε < 3η +O(n−1).

In this case, for a large dimension n of the subsystem (2),
the gain ε cannot be larger than 3η. On the other hand, for
η = 0, (4) is reduced to

ε <
2

n− 2
. (9)

In this case, ε is monotonically decreasing toward zero as n
becomes large.



The next question is what kinds of gains ε and η guarantee
the stability of A. In the case of η > 0, the following
sufficient condition gives a certain criterion of such ε and
η.

Theorem 2: For an integer n ≥ 3 and real numbers ε, η >
0, the matrix A ∈ Rn×n given by (3) is stable if

0 < ε ≤ 2η. (10)
Proof: This is from the secant condition in [14] or from

the Gershgorin circle theorem.
In the case of η = 0, we can just say that A is stable if

ε > 0 is sufficiently small.
Theorem 3: For an integer n ≥ 3, there exists a positive

number ε̄ ≤ 2/(n−2) such that the matrix A ∈ Rn×n given
by (3) with η = 0 is stable for any positive number ε < ε̄.

Proof: Consider the characteristic polynomial of A
given by (5). Let λ(ε) ∈ C be a function representing an
eigenvalue of A, which explicitly shows the dependency on
ε. The function λ(ε) is continuous and its derivative λ′(ε)
is measurable [15]. By differentiating (5) with respect to ε,
the following equation is obtained for η = 0.

d

dε
|λ(ε)I −A| = λ′(ε)(λ(ε) + 1)n−2(nλ(ε) + 1) + 1 (11)

The characteristic polynomial (5) is always zero for any
eigenvalue, so is (11). Therefore,

λ′(ε) = − 1

(λ(ε) + 1)n−2(nλ(ε) + 1)
(12)

is achieved as long as λ(ε) is not −1 or −1/n.
For ε = 0, σ(A) = {−1, 0} holds from (5). First, we

consider the eigenvalue −1, namely, λ(0) = −1. Then,
λ(ε) is stable for a sufficiently small ε because λ(ε) is a
continuous function. Next, we consider the eigenvalue 0,
namely, λ(0) = 0. Then, from (12), λ′(0) = −1 < 0 holds.
Thus, Re(λ(ε)) < 0 holds for a sufficiently small ε > 0.
Therefore, A is stable for a sufficiently small ε > 0.

The upper bound of such ε is given by ε̄ ≤ 2/(n − 2)
from (9). The proof is completed.

IV. STABILITY OF THE CONNECTED SUBSYSTEM

Consider the connected subsystem (1), which is described
as

ẋi(t) = Axi(t) +

m∑
k=1

Āxk(t) +Bri − Ār̄

for r̄ = [0 r̄2 r̄3 · · · r̄m]⊤ and

Ā =


0 0 0 · · · 0
0 −κ 0 · · · 0
0 0 −κ 0
...

...
. . .

...
0 0 0 · · · −κ

 ∈ Rn×n. (13)

Then, we have the following collective dynamics

ẋ(t) = Âx(t) + B̂r

for x(t) = [x1(t)
⊤ x2(t)

⊤ · · ·xm(t)⊤]⊤, r =
[r1 r2 · · · rm r̄⊤]⊤ and

Â =


A+ Ā Ā · · · Ā
Ā A+ Ā Ā
...

. . .
...

Ā Ā · · · A+ Ā

 ∈ Rmn×mn

(14)

B̂ =


B 0 · · · 0 −Ā
0 B 0 −Ā
...

. . .
...

...
0 0 · · · B −Ā

 ∈ Rmn×2m.

Now, the following lemma specifies the eigenvalues of Â
given by (14). Note that this lemma is valid for any matrices
A and Ā, namely it does not restrict the matrices to (3) and
(13).

Lemma 1: For matrices A, Ā ∈ Rn×n and an integer
m ≥ 2, consider the matrix Â ∈ Rnm×nm given by (14).
Then,

σ(Â) = σ(A) ∪ σ(A+mĀ) (15)

is obtained, which yields

λRmax(Â) = max{λRmax(A), λRmax(A+mĀ)}. (16)
Proof: Let Im ∈ Rm×m and 1m ∈ Rm be the identity

matrix and the vector all whose entries are 1. Then, from
(14), Â is described as follows.

Â = Im ⊗A+ 1m1⊤
m ⊗ Ā (17)

Let W = [w1 W2] ∈ Rm×m be an orthogonal matrix for
w1 = 1m/

√
m and some matrix W2 ∈ Rm×(m−1). Then,

from (17), the following is derived for λ ∈ C.

(W ⊗ In)
⊤(λImn − Â)(W ⊗ In)

=

[
λIn −A−mĀ 0

0 Im−1 ⊗ (λIn −A)

]
Because of this equation and (W ⊗ In)

⊤(W ⊗ In) = Imn,
the characteristic polynomial of Â is reduced to

|λImn − Â| = |(W ⊗ In)
⊤(λImn − Â)(W ⊗ In)|

= |λIn −A−mĀ||λIn −A|m−1.

Thus, the set of the eigenvalues of Â consists of the eigen-
values of (A + mĀ) and A. Then, (15) is derived. (16) is
directly from (15). The proof is completed.

Lemma 1 suggests that in order to investigate the stability
of Â, we just have to consider those of A and (A + mĀ).
The stability of A has been discussed in Section III. Thus,
now, we consider (A+mĀ) as follows.

Lemma 2: For integers n,m ≥ 2 and real numbers ε, κ >
0 and η ≥ 0, consider the matrices A, Ā ∈ Rn×n given by
(3) and (13). Then, there exists c ≤ 0 such that

λRmax(A+mĀ) ≤ max {λRmax(A), c} , (18)

where c is given by

c = max

{
−η,−η(n− 1) + 1 +mκ

n

}
. (19)



Proof: The characteristic polynomial of (A +mĀ) is
given by

|λIn− (A+mĀ)| = (λ+η)(λ+1+mκ)n−1−η+ ε (20)

for λ ∈ C from the same calculation as (5).
We have consider the case that η = ε, which can be easily

proved from from (5) and (20).
Consider the case that η ̸= ε, then λ + 1 + mκ ̸= 0

holds for any eigenvalues λ. Each eigenvalue of (A+mĀ) is
regarded as a continuous function λ(κ) ∈ C with the variable
κ such that λ′(κ) is measurable. Because the characteristic
polynomial (20) is always zero for the eigenvalue λ, by
differentiating (20) with respect to κ, we obtain

Re(λ′(κ))=
−m(n− 1)f(ρ, ω)

(nρ+ (n− 1)η + 1 +mκ)2 + (nω)2
(21)

where ρ = Re(λ(κ)), ω = Im(λ(κ)) for certain κ ≥ 0, and

f(ρ, ω) = (ρ+ η)(nρ+ (n− 1)η + 1 +mκ) + nω2. (22)

From (19), (21) and (22), the expressions

Re(λ(κ)) = ρ > c ⇒ f(ρ, ω) > 0 ⇒ Re(λ′(κ)) < 0 (23)

are satisfied for any ω ∈ R.
Now, we focus on one of the eigenvalues λi(κ), i =

1, 2, . . . , n. If Re(λi(0)) ≤ c is satisfied, then Re(λi(κ)) ≤
c holds for any κ from (23). On the other hand, if
Re(λi(0)) > c, then Re(λ′

i(κ)) < 0 holds from (23), and
Re(λi(κ)) monotonically decreases as κ increases as long
as Re(λi(κ)) > c. Therefore, Re(λi(κ)) ≤ Re(λi(0)) is sat-
isfied for any κ > 0. Thus, Re(λi(κ)) ≤ max{Re(λi(0)), c}
is achieved. Then,

Re(λi(κ)) ≤ max

{
max

j=1,2,...,n
Re(λj(0)), c

}
(24)

is obtained for any i = 1, 2, . . . , n. Note that λi(κ) and λi(0)
are the eigenvalues of (A+mĀ) and A, respectively. Then,
(24) is reduced to (18).

From Lemmas 1 and 2, we can specify the maximum real
part of the eigenvalues of Â as follows.

Theorem 4: For integers m,n ≥ 2 and real numbers
ε, κ > 0 and η ≥ 0, consider the matrices A, Ā ∈ Rn×n

and Â ∈ Rnm×nm given by (3), (13) and (14). Then,

λRmax(A) ≤ λRmax(Â) ≤ max{λRmax(A), c} (25)

is satisfied for c given by (19).
Proof: The first inequality of (25) follows from (16).

The second inequality is obtained from (16) and (18). The
proof is completed.

Note that if m or κ is large enough, then c = −η holds
from (19). Then, if η > 0 (i.e. c < 0), (25) guarantees that
Â is stable if and only if A is stable. However, if η = 0 (i.e.
c = 0), then (25) does not guarantee the stability of Â even
if A is stable. However, also in this case, the stability of Â
and A are equivalent.

Theorem 5: For integers m,n ≥ 2 and real numbers
ε, κ > 0 and η = 0, consider the matrices A, Ā ∈ Rn×n

and Â ∈ Rnm×nm given by (3), (13) and (14). Assume that
A is stable. Then, the following is satisfied.

λRmax(A) ≤ λRmax(Â) < 0 (26)
Proof: The first inequality of (26) is directly from (16).

Let λ(κ) be the eigenvalues of (A + mĀ) for η = 0. If
Re(λ(κ)) = 0 held for some κ,

Re(λ′(κ)) =
−m(n− 1)nω2

(1 +mκ)2 + (nω)2
≤ 0 (27)

would be satisfied from (21). Because A is stable, any
its eigenvalues satisfy Re(λ(0)) < 0. From this and (27),
Re(λ(κ)) < 0 holds for any κ > 0, which implies the second
inequality of (26) with (16).

Theorems 4 and 5 show that the stability of A and Â are
equivalent.

Corollary 1: For integers m,n ≥ 2 and real numbers
ε, κ > 0 and η ≥ 0, consider the matrices A, Ā ∈ Rn×n

and Â ∈ Rnm×nm given by (3), (13) and (14). Then, Â is
stable if and only if A is stable.

Corollary 1 shows that the connected systems (1) are stable
if and only if the disconnected ones (2) are stable for any
κ. However, Theorems 4 and 5 imply that the performance
of the connected systems is deteriorated by the network
congestion. How much the performance deteriorates can be
estimated by c.

Remark 1: Assume that η = 0 and A is stable. Then, al-
though (26) guarantees that Â is stable, one of its eigenvalues
might be in bad condition. Actually, from (20), it is shown
that (A+mĀ) has an eigenvalue such that λ = O((mκ)1−n)
[16]. From (15), Â has the same eigenvalue. Then, even if
A is stable, one of the eigenvalues of Â is almost zero if m
or κ is large.

V. NUMERICAL EXAMPLE

In this section, numerical examples illustrate the validness
of the analysis results. First, consider the disconnected sub-
system (2) and verify the conditions in Theorems 1, 2 and
3.

Fig. 3 shows the stability boundary according to the gain
ε and the dimension n of the subsystem for η = 1. The
solid line is the actual boundary, which shows that ε should
be smaller to guarantees the stability as n is larger. The
boundary is always under the upper broken line, which is
given by the necessary condition (4) in Theorem 1. The
boundary is always over the lower broken line ε = 2, which
is given by the sufficient condition (10) in Theorem 2. It
is observed that for small n the upper broken line (i.e. the
necessary condition) describes the actual boundary well, and
for large n the lower broken line (i.e. the sufficient condition)
describes well.

Fig. 4 shows the stability boundary for η = 0. The solid
line is the actual boundary, which is always under the broken
line given by the necessary condition (4). In this case, the
actual boundary converges to zero as n grows, but it is always
positive as guaranteed by Theorem 3. Therefore, we have to
choose smaller ε as n is larger, which is explained by (9).
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Next, consider the connected subsystem (1) and verify the
correctness of Theorems 4 and 5. For n = 5 and κ = 0.1,
we consider the three cases (η, ε) = (0, 0.09), (0.1, 0.24)
and (1, 2). In each case, λRmax(A) = −0.19 is derived for
A given in (3).

Fig. 5 depicts the value of λRmax(Â) according to the
number m of the subsystems. First, the solid line describes
the case of (η, ε) = (0, 0.09), which shows that λRmax(Â)
converges to zero. As stated in Remark 1, although Theorem
5 guarantees the stability of the connected subsystem, one of
the eigenvalues has a worse condition as m is larger. Next,
the dashed line describes the case of (η, ε) = (0.1, 0.24),
which shows that λRmax(Â) is always between −0.19 (i.e.
λRmax(A)) and −0.1 (i.e. −η). This is guaranteed by
Theorem 4. Finally, the chain line describes the case of
(η, ε) = (1, 2), which shows that λRmax(Â) is always −0.19
(i.e. λRmax(A)). This is because from c = −η < λRmax(A)
in (25), Theorem 4 guarantees that λRmax(Â) = λRmax(A).

These numerical examples show the validness of our
results, Theorems 1, 2, 3, 4 and 5.

VI. CONCLUSION

In this paper, we investigated the effect of insufficient
time-scale separation between inner and the outer loops in a
cascaded, networked system. First, we analyzed the stability
of the cascaded system in order to understand the issue
of insufficient time-scale separation. Then, it was revealed
that the ratio of the outer and inner loop gains is the
key of the stability. Next, we investigated the relationship

λ
R
m
a
x
(Â

)

2 10 20 30 40 50
−0.2

−0.15
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−0.05

0

Number m of the subsystems

Fig. 5. Maximum real part of the eigenvalues of Â according to the number
m of the subsystems. Solid, dashed and chain lines describe the cases of
(η, ε) = (0, 0.09), (0.1, 0.24) and (1, 2), respectively.

between the stability of the connected system and that of the
disconnected systems in order to understand the effect of the
network congestion. Then, it was shown that the congestion
deteriorates the performance of the networked systems, but
it does not harm the stability. These results help us to grasp
the phenomena emerging in the network systems from the
viewpoint of the control theory.
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