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ABSTRACT

Many early virtual environment (VE) applications were simple walkthroughs.
The effect was intended to be visual, with little or no direct manipulation of the
space by the user. A logical next step is the creation of interfaces and tools that
allow a user to design within an immersive space. In this paper we identify
issues and desired attributes for immersive design tools. We also describe a
preliminary design metaphor, WiMP, that combines menus, pointing, direct
manipulation and widgets to provide a useful set of design tools.

Beginning in the summer of 1994, a group of
computer scientists, architects and engineers
began regular meetings at Georgia Tech to
discuss issues related to both teaching design
concepts and doing design within virtual
environments. This paper is intended as both
a report on those discussions and a
description of some of the ideas that have
been implemented and tested.

MOTIVATION AND CHALLENGES

Virtual environments (VEs) offer an
immersive geometry in which one can
physically and psychologically be in the
space that one is designing. Many of the
initial virtual reality applications were
walkthroughs and visual inspections of
architectural spaces (Brooks, 1986; Teller and
Sequin, 1991). The ability to walk through a
virtual model of a design has been generally
accepted as an effective way to increase
understanding of the model. Some of the
advantages of an immersive geometry for
understanding spatial designs include:

The ability to inspect lines of sight, and
scale and form of objects within a
geometrically correct full-scale visual
model of the space.

The option of exploring a space from
different points of view, such as shrinking
the user to see the space from a child's
point of view or examining the space with
respect to the viewpoint and accessibility
of a person in a wheelchair.

The ability to dynamically interact with
lighting conditions affecting a model. The
perception of an architectural space is
much affected by considerations of
volume, material and light.

The illusion of “presence” in the space.
In a way that we still do not completely
understand, a person's experience of a
situation in a virtual environment may
evoke the same reactions and emotions as
the experience of a similar real-world
situation. This may be true even when the
virtual environment does not accurately or



completely represent the real-world
situation. (Rothbaum, et al., 1994).

It is inevitable that the process of inspecting a
space via a virtual reality walkthrough will
result in the desire to make changes in the
model of the space. A logical next step for
VR and design is the creation of a virtual
reality CAD (Computer-Aided Design)
system that allows a user to design from
within an immersive space. Attempts to
create such a system, however, have not yet
lived up to the expectations of professional
designers. Prototypes have been "toy
systems" lacking both the rich set of tools and
display modalities available for workstation-
based CAD.

There are a number of challenges associated
with creating immersive, interactive
environments for computer-aided design.
Some of these challenges, such as the limited
resolution of head-mounted displays,
inaccurate data from tracking devices, and
real-time computation of complex scenes, are
being addressed by the rapid improvement in
hardware devices associated with VR and
computer graphics. Conceptual issues,
however, concerning how design should be
done and if it should be done within
immersive environments are almost all open
research questions. In particular, the more
general problems of how to do 3-D
interaction and what type of tool interfaces
are appropriate to support that interaction are
actively being discussed (Gomez, et al., 1994,
Snibbe, et. al., 1992).

Some general issues include:

* The familiar physical input and interaction
devices such as keyboard, mouse, buttons,
and dials are not present inside a virtual
environment.

* VR input and interaction devices such as 3-
D mice and whole-hand input devices
(gloves) are still in the development stage.
It is not yet clear which types of devices

will prove to be useful or even how they
should be used.

e Familiar 2-D metaphors such as the
desktop, pop-down menus, cursors,
widgets and icons must be modified or
completely redesigned in order to be usable
in an immersive 3-D space.

+ Although an immersive environment is
very helpful for a local understanding of
geometry and visual impact of design
changes, it is not helpful for global
understanding of where the user is within
the entire design and how changes in one
part of a structure will affect other parts.
Simultaneous multiple presentations of the
structure are still needed to make design
decisions.

¢ Multiple windows in a head-mounted
display obscure the user's view, and also
detract heavily from the sense of
immersion.

+ The space within which the user is working
is visually more confusing. Spatial
locations extend in all three dimensions,
and dimensions may not be bounded.

DESIGN TOOL ATTRIBUTES

During meetings with  architects and
engineers from the School of Architecture at
Georgia Tech and the Architectural firm of
Lord, Aeck and Sargent, Inc. in Atlanta, our
discussions focused on defining what types of
design tasks should be done within immersive
virtual environments, what types of tools
were useful, and what tools users would
actually use and accept.

Two paradigms for tools emerged from these
discussions. The industry architects preferred
tools that were extensions of those used in
traditional PC- or workstation-based CAD.
The academic architects and engineers, who
ranged from expert CAD users to non-CAD
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users, also indicated an interest in virtual
environments in which tools were available
which were metaphors for those tools they
were accustomed to using in the physical
world.!

Whichever of these two paradigms is used, it
became clear that all tools for immersive
interaction should share some minimal set of
attributes. This set of attributes includes the
following:

* Input tools should have both a physical
and virtual manifestation, i.e., they should
be felt as well as seen inside the
immersive environment.

* The user should be able to interact with
anything he can see, regardless of the
scale of the space or the apparent distance
of an object from his current location.
This extension of the user’s powers (being
able to perform what would be
superhuman tasks in the physical world)
is one of the most compelling reasons for
the use of virtual reality.

» Tools should provide visual, tactile and/or
auditory feedback to indicate what is
currently being picked, chosen or located.

* Tools should be simple and intuitive. As
far as is feasible they should be an
extension of 2-D tools and utilities with
which users are already familiar.
Alternately, they may be metaphors for
real-world tools.

* Tools should operate the same way for
every user, and the tools should be
reusable in many different types of
applications.

 Users should retain a feeling of
immersion while using tools.

1This second idea is similar to the self-
disclosing widget discussed by Snibbe, et al.
(1992).

WIMP: WIDGETS,
POINTING

MENUS AND

Most CAD systems, along with almost all
other contemporary workstation applications,
use WIMP (Windows, Icons, Menus and
Pointing) graphical user interfaces. (GUIs).
This approach has a twenty year history and
has been very successful. We have pursued a
strategy of combining some of the aspects of
WIMP, particularly menus and pointing, with
direct manipulation in 3-D and 3-D widgets
(Gomez, et al., 1994). Because it was too
good an acronym to pass up, we call this
approach the WiMP (Widgets, Menus and
Pointing) interface for immersive
environments. Our prototype system, known
as Conceptual Design Space (CDS) is built
using the Simple Virtual Environment (SVE)
toolkit. SVE supports both the creation of
virtual environments (VEs) and the creation
of VE interface tools and objects (Kessler, et
al., 1994).

MENUS

Menus, in general, offer a number of
advantages for human-computer interaction.
The user is not required to memorize long
lists of commands (keyboard input, hand
signals, or multiple button combinations) in
order to carry out desired actions. Instead,
one can choose from a list of possible actions.
We have developed a menu system for virtual
environments that is effective, intuitive, and
does not detract from the immersive sense of
the user.

Issues in the creation of immersive, 3-D menu
systems include the appearance of the menus
in the virtual environment, the location of
menus, visual cues when choosing menu
items, and toolkit support.

For our first implementation, it was decided
that menus should be three-dimensional, solid
objects just like other objects in the virtual
world. Each entry is represented by a
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trapezoidal box of a fixed size. Each menu
has a “header entry” or “title bar” which
names the menu and defines its top. Menu
entries are placed sequentially below the title
bar. Each header and entry is associated with
a text string which is printed on the front of
the box.

At first, menus were always visible, but
remained fixed in a single position. If the
user moved too far in any direction, or went
“behind” a menu, the commands were no
longer readable or reachable. The next idea
was to have menus “follow” the user around
the virtual environment. With this
enhancement, the commands would always
be available, but the user might have to turn
away from his/her work to select an action.
Finally, we agreed that menus should be
attached to the user’s head position, so that
they always appeared in the same position in
the view area (Figure 1).

We also had to consider the fact that menus
could obscure much of the actual working
environment. In the initial implementation,
menu entries were always visible to the user.
In a complex application, though, this would
mean that most of the limited screen real
estate would be taken up by menus! The
solution was taken from the traditional 2-D
menu metaphor, in the form of “pull-down”
menus. In this implementation, only menu
title bars are visible initially. When the user
selects a title bar, the entries associated with it
appear (Figure 2). After the selection process
has been completed, the entries disappear
again, so that the workspace remains
uncluttered.

Visual cues for the user were also an
important aspect of our design. In three
dimensions, it is much more difficult to
ascertain what is being pointed at by the
pointing device. In order to make this process
easier, and avoid mistakes, some sort of
visual feedback is needed by the user. Again
borrowing what works from 2-D menu
design, when a menu item is selected, it

changes from its normal color to a “highlight
color” (Figure 2). This is immediately
obvious to the user, easing the process of
pointing and selecting.

Figure 1. Menu Positioning
Creation of an application programmer
interface to allow developers to create their
own menu items was made straightforward by
the existing structure of our SVE toolkit
(Kessler, et al., 1994). SVE uses two file
formats to specify the virtual world: the
“world” file, which lists all of the objects in
the environment, and gives their properties,
and “primitives” files, which specify
characteristics of individual objects.

The world file is hierarchical; that is, objects
are placed in a tree format, with parent and
child objects. Any change to a parent object
is automatically reflected in all of its children.
Thus, a menu is specified with the title bar
being a top-level object, and its entries listed
as children. Each child is given a position
offset by a certain fixed amount in the
negative Y direction, so that the menu
appears as a stack of items. This also allows
for the creation of submenus (menus within a
menu). Submenu items are simply listed as
children of the appropriate menu entry.
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In the primitives files, only a few
characteristics must be given to each menu
object. In the case of a menu header, all that
is required is the title itself (a string), and the
desired color of the title bar. For an actual
entry, a name, a normal color, and a highlight
color (see above) are needed.

One advantage to these file formats is that
they are independent of the source code for
the application. In other words, changes to
the world file or primitives files do not
require re-compilation. Thus, many different
options can be explored easily.

Finally, we provide a simple method for
programmers to specify the actions their
menu items will be linked to. This,
obviously, is the only part of the menu system
which requires additional source code on the
part of the application developer. For each
menu item, the programmer specifies a
callback function to be executed when that
menu entry is selected. The callback function
may be user-defined or it may come from a
library of common commands.

POINTING

Pointing, and the use of pointing to
implement choice and pick operations, is
intrinsically harder to do in three dimensions
than in two. Positioning is harder, visual
feedback is less precise, and tasks are more
complex.

An effective pointing device must have both a
physical and virtual manifestation. The
physical manifestation is the object the user
holds and operates. The virtual manifestation
is the representation and the behavior of the
object within the virtual environment.

Over the past two years we have
experimented with several interaction
metaphors and devices. Whole-hand input
devices (gloves) have been promoted by some
as providing a natural interface for interacting
with objects in virtual spaces (Zimmerman,
et. al., 1987). Despite these claims, the use of

whole hand input has been limited in almost
every published report to recognition of a few
commands associated with the hand's posture.
Most glove and other hand posture
recognition devices are used for tasks that
could be accomplished as well or better (and
at a fraction of the cost) with a three-button
mouse used in conjunction with a 3-D tracker
(Kessler, et al., 1994).

Based on our own glove experience in an
early prototype we decided instead to develop
a three-dimensional mouse as the physical
manifestation of a pointing tool. In its
simplest form, this is just a common
computer mouse with a tracker attached to it.
The tracker allows for the three dimensional
positioning of the mouse object, and events
can be generated easily by the existing mouse
button(s). Events may then be queued by the
operating system, and the VR application can
interpret them and take appropriate action.

We also built a more elegant and natural
physical manifestation known to our group as
the “FliteStik”. This device resembles the top
portion of many joysticks used by players of
flight simulation games. It fits the hand much
better than a mouse, and has two buttons, one
in the “trigger” position, and another on top
for the thumb. The device is built so as to
produce the same events as the left and right
buttons on a standard three-button mouse.

The virtual manifestation was more
challenging. Accurate pointing in an
immersive three dimension space is not as
gasy as pointing on a 2-D screen. To be
useful, a representation of the pointing device
within the virtual environment must give
accurate feedback as to what is being pointed
to, and must be able to reach anything that is
visible.

To solve this problem, the analogy of a laser
pointer is used (Figure 2). When the top
button on the FliteStik is depressed, an
elongated polygon resembling a ray of light is
attached to the FliteStik object in the virtual

Bowman & Hodges - 5



world. This causes the design system to enter
selection mode. If, at any time while
selection mode is active, the light ray
intersects one of the menu headers, the entries
associated with that menu will appear. As the
user continues to hold the button down, if
then the light ray intersects one of the menu
entries, it changes color as a visual cue that it
is being pointed at. When the button is
released, a final intersection test is performed.
If the light ray is intersecting one of the
visible menu items, that item is selected, and
the appropriate callback function is executed.

%59
XX
x|
XX
203
203
XX
X
X
XX
X
3
A
%%
1%
$
i3t
b
3%
AR
X
X
X
X
%

KHRLKRRR AL

FigurEZ.Taser Pointer and Pull-down
Menus

There are two major advantages to this
system. First, it simulates the behavior of
common menu systems used by millions of
people on personal computers, in that the
pressing of the button begins the selection
process, and the release of the button causes
an item to be selected, if appropriate. Today,
almost everyone has used such a system and
is familiar with its operation. Thus, little
training is involved.

Secondly, the system eliminates mistakes.
An early problem that we faced when using a
pointer was the selection of the wrong item.
This occurred because selection happened
when the button was pressed, not when it was

released (essentially, a gun). Thus, the user
was forced to guess what was being pointed
at before pressing the button. At first, to
solve this problem, we implemented a two-
button system. One button was used as a test
button. It highlighted the menu item being
pointed at, but no action was taken. When the
user found the proper position, the other
button could be pressed to select the object.
This eliminated most mistakes, but it’s not
unlikely that the hand could move slightly in
between the test and the actual selection,
causing a mistake, or that an inaccurate
tracker could change the hand position and
produce an error. Besides this, the system
was quite cumbersome, and required the use
of both buttons on the FliteStik.

In the current system, no action is taken until
the user is sure the correct item will be
selected, and he/she releases the button.
Also, the user may cancel the selection
process by releasing the button while nothing
is highlighted.

WIDGETS AND DIRECT MANIPULATION
The immersive menu system is an important
step towards achieving a high level of
interaction, since it can provide an interface
for any type of functionality desired. In some
situations, however, it is preferable to use the
same point and click ideas to provide
alternate methods of working with objects in
the virtual environment. For example, there
may be a menu command to rotate an object
five degrees. Even if it works perfectly and
efficiently, it will be tiresome for the user to
select the item eighteen times in order to
perform a ninety-degree rotation. Further, the
user would not be allowed to rotate the object
2.3 degrees, or at least would be required to
traverse more menus in order to change the
amount of rotation to an acceptable level.
Clearly, there are some design tasks that are
ill-suited to a menu interface. We want our
virtual environments interaction tools to aid
in the work to be done, rather than creating
more work for the user, which could quickly
overshadow the benefits gleaned.
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To supplement the menu system, we use both
3-D widgets and direct manipulation of
objects. Widgets and direct manipulation all
use the same point and click interface that is
used in the menu system, so that the
integration of the two parts is seamless.

To select an object the user simply holds
down the FliteStik button until the light ray
intersects the desired object, then releases the
button. When two or more objects are
intersected, the selection algorithm
consistently chooses the one nearest to the
user, so that no guessing is involved. When
an object is chosen, widgets such as a set of
axes, proportional to the size of the object,
appear within the object (Figure 3). Currently,
our software supports common 3-D
transformations such as translation, rotation
and scaling.

Figure 3. Geometric Object with Widgets

Our current application has several widget
and direct manipulation modes that allow the
user to perform a variety of tasks using the
same basic actions. The mode is changed via
menu commands. With the program in
translate mode, when the user selects a world
object, that object becomes attached to the
light ray in the virtual environment. In order

to translate the object, the user simply moves
his/her hand, or uses the flying capability of
the program to move the object farther than
he/she can reach. To rotate the object, the
user simply rotates the hand holding the
FliteStik. When the desired transformations
are complete, depressing the button releases
the object. This method is also used
automatically when the user creates a new
object, so that it may be placed in the
environment at an appropriate initial position.

Scaling is accomplished through an intuitive
interface, as well. After an object has been
selected, when the program is in scale mode,
the user may point to one of the six widget
boxes that appear on the ends of the
coordinate axes. This action causes the light
ray to attach to the box, and as the user moves
his/her hand in the world, the object scales in
proportion to the movement. Stretch or
shrink mode allows scaling in a single
dimension, determined by the axis the user
selects (Figure 3).

Figure 4. Slider Widget

If the user requires finer control over these
transformations, each of them is accessible
through a menu command as well. To
determine the amount of rotation, scaling,
stretching, or shrinking, a slider widget was
developed (Figure 4). The slider is a bar in
the virtual world which shows the current
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transformation value for each of the modes
mentioned. When a new mode 1s selected, its
slider automatically appears. The value is
represented graphically, with a “handle” on
the slider, and with a numerical value printed
below it. There are two interaction methods
for changing the value. First, the user may
point and click the two arrow buttons at either
end of the bar to change it in set increments.
Alternately, the handle may be selected and
moved to a precise location on the slider.

Direct manipulation may also be used in
conjunction with the menu to implement
other basic actions on objects. For example,
one may select an object using the FliteStik
and then select the “copy” menu item to
obtain an exact copy of the object, or the
“delete” menu item to remove it from the
environment. Also, we have implemented a
“group” function that allows the user to select
a number of objects. The first object chosen
then becomes the parent of all subsequent
objects, so that a hierarchical structure may
be dynamically obtained. Later, when a
transformation is applied to the parent, it
automatically becomes applied to the
children.

CONCLUSION

We have described an implementation that
combines three-dimensional extensions of
menus and pointing with widgets and direct
manipulation in an immersive environment.

These tools are precise: the laser pointer
metaphor allows the user to select with
certainty the command or object desired, and
the text of the menu items can be more
descriptive than an icon representation of a
command.

The system is also intuitive. While menus are
not completely natural, they are understood
by a large portion of the population. The use
of menus is an efficient way to select
commands. Because functions can be

grouped in a meaningful way, and can include
submenus, negotiating the menus takes little
time and effort, and users can focus on the
work to be performed, rather than on the use
of the interface. Widgets allow simple, direct
manipulation of designed objects.

In addition, the menus and other tools we
describe are easy-to-use. All that is required
is the pointing of a device and the pressing of
a button. Both the creation of application
objects and the creation of VE interface tools
and objects are supported by the underlying
SVE toolkit.
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