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SUMMARY

Black holes (BHs) as massive as 109M� has been discovered at redshift z > 6, that is

within one billion years after the big bang. It is believed that some seed black holes with

large initial masses formed at very early times, which then grow to the supermassive black

holes we observe at z ∼ 6. First stars (Pop III) remnants are considered to be one of the

promising pathways to form such seed BHs. We study the dynamics of seed BHs formed

out of Pop III star remnants through cosmological simulation. We evolve a representative

volume across 1Mpc in comoving coordinates, and write 1000 outputs every ∼0.5 Myr.

We then extract all seed BHs in each output and investigate the distribution and evolution

of their orbital properties from redshift z ∼ 17 to z ∼ 9, which are crucial to their growth

and merger rate. We show that most of seed BHs in halos are gravitationally bounded, and

a significant fraction of them have orbits with short semi-major axes and high eccentricity.

They are prime candidates for black hole mergers as they are the ones that will venture

closest to the halo center and any massive black hole that might exist in the (proto-)galaxy

center. We attempt to estimate the merger rate of BHs by calculating the loss rate of angular

momentum, but find that this approach is not suitable for our simulation data. We propose

a possible remedy for angular momentum calculation in the end. This work is the first so

far to study BH evolution in full cosmological simulation on a sample large enough to draw

statistical conclusions.

xii



CHAPTER 1

INTRODUCTION

1.1 History of Black Holes

1.1.1 Theory

Pursuing the idea that gravity acts on light, British natural philosopher John Mitchell en-

visioned the existence of “dark stars” in a paper published in 1783. Starting with escape

velocity, ve =
√

2GM/r = r
√

8πGρ/3, where r and ρ are the radius and density of the

star, and he realized that increasing a star’s radius with constant density would increase the

escape velocity. When the escape velocity exceeds the speed of light, all the light emitted

by the star would be pulled back, thus no distant observer could see it. Such a star would

become essentially invisible at a distance. However, probably due to the increasing popu-

larity of theory of light as a wave, the development of this idea was paused. It was unclear

how waves could interact with gravity.

The breakthrough came shortly after Albert Einstein formulated his theory of general

relativity in 1915 (one of the many reasons why this is a scientific milestone in history),

when Karl Schwarzschild obtained the first analytical solution of Einstein’s field equations

for a non-rotating spherical star, now known as the Schwarzschild metric:

ds2 = −c2dτ 2 = −
(

1− rs

r

)
c2dt2 +

dr2

1− rs/r
+ r2(dθ2 + sin2 θdφ2) (1.1)

where rs = 2GM/c2 is the Schwarzschild radius of the star with mass M . Here τ and t are

the proper time and the time coordinate; r, θ, and φ are the radial and angle coordinates, and

c is the speed of light. At the Schwarzschild radius from the center of the star, light emitted

from the surface would have an infinite gravitational redshift, and therefore infinite time
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dilation. Schwarzschild concluded that such star would be undetectable by an observer at

any distance from the star since any signal within the Schwarzschild radius could not come

out of the Schwarzschild sphere due to the infinite gravitational redshift. However, without

the knowledge of how a real star could reach this critical radius at the time, most theorist

were skeptical with this proposition, including Einstein himself.

This problem was solved quite serendipitously in the 1930s through a series of semi-

nal work. It was started by Subrahmanyan Chandrasekhar when he set himself to derive

the structure of white dwarfs. Combining the theory of stellar polytropes [1] and Fowler’s

equation of state for a non-relativistic degenerate electron gas, Chandrasekhar found that

the radius (thus density) of a white dwarf star is proportional to the inverse cubic root of

its mass: r ∼ M−1/3. Applying this relation on Sirius B, however, he discovered that a

white dwarf star of 1M� would have high enough density in its core to push the electron

gas into fully relativistic regime, which invalidates Fowler’s equation of state. He then re-

laxed the non-relativistic constraint to include relativistic momentum of the electrons, and

deduced that the pressure’s dependence on electron density softens from Fowler’s N5/3
e to

N
4/3
e . This seemingly little change, however, resulted in a bizarre conclusion that a fully

relativistic polytropic gas can only be in equilibrium for a mass of precisely 0.91M� (later

corrected to be 1.4M� by improved calculations, e.g. Harwit 1998), independent of its

radius and density. This work was published in 1931, in which Chandrasekhar interpreted

this value as the maximum mass attainable by a white dwarf star as it approaches fully rela-

tivistic degenerate conditions. One year later, the Russian physicist Lev Davidovic Landau

obtained a similar result in the context of degenerate neutron stars, and went on to claim

that stars beyond this limit would shrink in free fall, collapse to a point in the end — a sin-

gularity arises. The physical picture are simple: electrons and neutrons are both fermions.

According to Pauli’s exclusion principle and Fowler’s equation, quantum degeneracy pres-

sure would balance the gravitational pressure for stars within Chandrasekhar’s limit. When

the stars get more massive beyond the Chandrasekhar limit, additional gravitational pres-

2



sure lead to further contraction and therefore high enough core densities to push the kinetic

energy at the top of the Fermi sea to levels comparable to the rest energy of the particles

— the gas becomes relativistic. As mentioned above, the equation of state would soften

fromN
5/3
e toN4/3

e , whereNe is the number density of electrons, so the increase in quantum

pressure slows down and always less than the increase of gravitational pressure, thus the

contraction can not be stopped until shrink into a singularity.

After more detailed study of equilibrium configuration of white dwarfs [2] and neutron

stars [3], in 1939, Oppenheimer and Snyder laid the foundation for the brand new field

of physics about gravitational singularities in “On Continued Gravitational Contraction”.

They obtained an analytical solution for the collapse of a cloud of gas by applying the

general relativistic field equations to a sphere of cold neutrons, and demonstrated how

collapsed objects are ideal test ground for a fully relativistic theory of gravity. The concept

of black hole as we have today, were born, although the term “black hole” had not appeared

until John Wheeler coined it two decades later in 1960.

1.1.2 Observations

In his paper “Nuclear Emission in Spiral Nebulae” published in 1943 [4], Carl Seyfert

identified 12 galaxies with abnormal nuclei which have “high excitation nuclear emission

lines superposed on a normal G-type spectrum”. For two of the galaxies identified, NGC

3516 and NGC7469, the broadened profiles of hydrogen emission lines indicated that the

proper motion of gas inside their nuclei had velocities up to 8500 km s−1. A supernova

explosion was the only known source that can generate a flow of this magnitude in our

own galaxy. Another anomaly of these galactic nuclei observed by Seyfert was their high

luminosity, comparable to a whole galaxy. For example, the nucleus of NGC 4151 has

about 70% of the luminosity of M 31 in the near ultraviolet. Not only bright, observations

of variability timescales later also showed that these nuclei were compact, many of them

were smaller than a few light minutes.
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However, at the time, it was not realized that these super bright and compact active

galactic nuclei (AGNs) were powered by central black holes. Seyfert’s work also had not

drew much attention until 1950s, when several newly discovered radio sources provided

strong evidence that there was some new and extraordinary processes in the nuclei of these

galaxies. The most unambiguous example was M87 from Virgo cluster. In 1954, Baade

and Minkowski first suggested that the nucleus of M87 was the source of radio emitting

plasma based on a bright narrow optical jet and unusual spectra of the ionized gas from the

nucleus. 40 years later, M87 was the first galaxy confirmed to host a supermassive black

hole in the center by the Hubble Space Telescope [5, 6].

M87 was not an isolated case. In the same year, Baade and Minkowski identified

Cygnus A as one of the strongest radio sources in the sky, and its nucleus also showed

strong extended emission like M87. Applying the newly developed theory of synchrotron

radiation from a relativistic plasma (Shklovski, 1954) to the observed power law spectrum,

luminosity and volume of Cyg A, the minimum energy in the relativistic electron and mag-

netic field was estimated to be 4×1058 erg, equivalent to the rest mass energy of 11000M�.

It can be about 100 times greater if we include the contribution of the relativistic protons

too. At the time, it was hard to imagine any classical power source could meet this require-

ment while residing in the relatively small nuclei.

This energy deficit became too big to ignore when quasi stellar objects (QSOs) were

discovered in the 1960s. Almost a third of the high latitude radio sources were QSOs. The

brightest one has about 1000 times of the luminosity of the Andromeda galaxy. Moreover,

some of the QSOs were proved to have size less than 1 pc by showing a variability on

timescales of order of 1 year [7, 8, 9]. In 1970s, the newly launched X-ray telescope

orbiting in space discovered that AGNs are luminous source of X-rays. More importantly,

it observed that the luminosity some AGNs can change by factors of 2 within days, hours

and even minutes, and thus put a even tighter constraint on the sizes of the central engine.

Since the discovery of QSOs, speculation about how the luminosity of these brightest
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objects in the sky could be generated within such a small region initially concentrated on

runway explosions triggered by supernovae explosion in a tightly packed star cluster [10],

the collapse and disintegration of a massive star with 105 − 108M� [11], rapid star forma-

tion in an infant galaxy [12], and galaxy collisions [13]. But none of these models seemed

natural and simple enough. On the other hand, the idea that the energy source was gravi-

tational became more and more popular after a series of pioneering work. John Wheeler,

who popularized the term of “black hole”, first envisioned a gravitational singularity at

the center of a galaxy, converting the matter that falls onto it to energy. A more detailed

description of this process was given by Zel’dovich and Novikov [14] and Salpeter [15].

Lynden-Bell [16] attempted to explain the exotic properties of QSOs and Seyfert galaxies

directly in terms of a black hole formalism.

Despite the promising theory developed so far, the single most important event that lead

to the acceptance black holes as the power source was probably the discovery of pulsars by

Jocelyn Bell in 1967 [17], when she was still a graduate student in University of Cambridge.

Her work cleared the prevailing skepticism about the existence of neutron stars. With the

presence of a critical mass above which neutron star could not stay in equilibrium, a stellar-

mass black hole is the inevitable fate of such stars. Such stellar mass black hole was first

detected when the mass of the rapidly varying X-ray source Cygnus X-1 was proven to be

greater than the critical mass of a neutron star [18, 19, 20, 21].

In 1974, using then-new 35km baseline radio interferometer, Balick and Brown [22]

discovered the point-like radio source at the center of our Milky Way Galaxy in the direc-

tion of constellation of Sagittarius, named Sagittarius A* (Sgr A*) 8 years later by Brown.

Since then, numerous observations of the orbits and proper motions of stars in the vicinity

of Sgr A* strongly suggest the radio source is a supermassive black (SMBH) hole weighing

2− 4 × 106M� [23, 24] looked further away into other nearby galaxies, we found similar

evidence indicating that SMBHs with masses ranging from 106 to 109M� ordinarily dwell

in their centers. Moreover, the masses of the central black holes are observed to have strong
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correlations with their host galaxy spheroids properties, such as velocity dispersion (a.k.a.

M − σ relation [25, 26, 27, 28], mass [29, 30], luminosity [31], or other host properties.

This is a rather surprising relation since the gravitational reach of the central black holes

is rather small with respect to the sizes of their host galaxies. Since the launch of of Sloan

Digital Sky Survey (SDSS) in 2000, the number of detected quasars has been increasing

rapidly. On the other hand some very bright quasars estimated to be powered by central

black holes weighing 109M� are observed at high redshift (z > 6). Up to now the furthest

quasar was observed at z ≈ 7.085, which is just about 1 billion years after the big bang,

less than 10% of current cosmic age, discovered in the United Kingdom Infrared Deep Sky

Survey (UKIDSS) Large Area Survey (LAS) [32] by Mortlock et al. [33]. Further obser-

vation on this quasar showed that the central black hole has a mass of (2 − 3) × 109M�.

Adding to the surprise of tight correlation between central black holes and host galaxies,

how SMBHs as massive as 109M� formed in less than a billion years is an open question.

1.2 The physics of black hole formation

The observed tight correlation between central black holes and host galaxies indicates there

might be common root between galaxies and MBHs formation. To determine how these

relationships have arisen and especially how SMBHs formed so fast, we must look into the

early universe, and study black hole formation under cosmological context. In this section,

I will briefly review the current theory about black hole formation and related cosmological

background.

1.2.1 Structure formation

In current Cold Dark Matter (CDM) cosmology, matter in the universe right after the big

bang is a smooth hot soup with very small density fluctuations arising from quantum ef-

fects. While the universe has been cooling down due to expansion, the small perturbations

in density started to grow due to gravitational instability. The early universe can be con-
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sidered as ideal fluid, which is described by continuity equation (mass conservation), Euler

equation (fluid dynamics), Poisson equation (gravity), and equation of state (relates pres-

sure and density). Combining the four equations mentioned above, the linearized equation

describe the perturbation growth reads:

d2δk

dt2
+ 2

ȧ

a

dδk

dt
=

(
4πGρ̄− k2c2

s

a2

)
δk −

2

3

T̄

a2
k2Sk (1.2)

Quantities with subscript k denotes the kth mode of the Fourier transformation of this

quantity. ρ̄ is the average density of the universe, and δ(x) = (ρ(x) − ρ̄/ρ̄ is the density

contrast against the average density of the whole universe. S is the entropy. The second

term on the left expresses how the expansion suppresses the growth of perturbation. 4πGρ̄

on the right hand side is the source of growth, while k2c2
s/a

2 and the last term expresses

how pressure due to spatial gradients and entropy influence the growth of perturbation.

To illustrate how gravitational instability operates, let’s consider a simple case where

the expansion of the universe and the entropy are dropped. The equation (1.2 is reduced to

a wave equation:
d2δk

dt2
= −ω2δk, where ω

2 =
k2c2

s

a2
− 4πGρ̄ (1.3)

w2 = 0 defines a characteristic scale mode kJ, which further defines a characteristic scale,

Jeans length:

λJ = a(t)
2π

kJ

= cs

√
π

Gρ̄
(1.4)

Then we have the Jeans criterion:

λ < λJ ⇒ w2 > 0⇒ δk(t) ∝ e±iωt wave, propagate w. sound speed (1.5)

λ > λJ ⇒ w2 < 0⇒ δk(t) ∝ e±ωt static, decaying or growing exponentially(1.6)

This solution shows that on scales greater than Jeans length, the pressure can not balance

the self-gravity, which means for over(under)-dense region the density perturbation will
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grow (decay) exponentially with time. Considering the universe is expanding sub-horizon

perturbation above Jeans length will grow slower in power law due to Hubble drag, while

super-horizon perturbation froze after inflation because, in reality, it has no causal knowl-

edge of the metric on scales larger than itself.

Given Jeans length, we can also define Jeans mass:

MJ =
4π

3
ρ̄

(
λJ

2

)3

=
π

6
ρ̄λ3

J (1.7)

At matter-radiation equality (teq), MJ = 1.5 × 1016(Ωb,0h
2)−2M�. After recombination

(trec), MJ = 1.5× 105(Ωb,0h
2)−2M�. The huge drop is because at recombination, photons

decouple from baryons, which dramatically reduces the pressure.

Combining how average density scales with scale factor given by Friedmann equation,

we have the following qualitative description of evolution of Jeans length:

t < teq ⇒ ρ̄ ∝ a−4, cs ∝ a0 ⇒ λJ ∝ a (1.8)

teq < t < trec ⇒ ρ̄ ∝ a−3, cs ∝ a−1/2 ⇒ λJ ∝ a0 (1.9)

t > trec ⇒ ρ̄ ∝ a−3, cs ∝ a−1 ⇒ λJ ∝ a−1/2 (1.10)

We see that before matter-radiation equality time, the baryons are coupled with the pho-

ton fluid, thus the Jeans length grows with scale factor, and stays roughly constant between

matter-radiation equality to recombination. Thus for baryons alone, there is perturbation

growth in scales smaller than Jeans length. Moreover, since the coupling is imperfect

before decoupling, there is damping of perturbations in the photon distribution, causing

further damping through acoustic oscillations in baryons. This mechanism is known as

Silk damping, with a characteristic scale defined as a typical distance photon can diffuse in

Hubble time:

λd = (
ct

3σTne

1/2

(1.11)
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If matter is purely baryonic, and perturbations are isentropic (no entropy as source, just

density fluctuation) structure formation will only proceed through the fragmentation of

perturbation larger than the Silk damping scale at recombination, with a typical mass

Md ∼ 1013 M�. Then the structure formation would continue in a “top-down” fashion,

inconsistent with current observations. Also to allow sufficient time for fragmentation at

this magnitude, the large-scale perturbations need large amplitudes in order to collapse

early enough, which requires |δm| > 10−3 at recombination. Since the perturbations are

isentropic, ρr ∝ T 4 ⇒ δT = 1/4δr = 1/3δm ⇒ ∆T/T > 10−3. This contradicts the

CMB observation that ∆T/T ∼ 10−5. Isothermal perturbation can eliminate the problem

of Silk damping, thus allowing structure formation to proceed hierarchically (bottom up).

However it would also result in large temperature fluctuations in CMB.

Now we see the necessity of dark matter. Since dark matter is collisionless, it does not

obey the Euler equation. The Collisionless Boltzmann Equation (CBE)

∂f

∂t
+

p

m
· ∇f + F · ∂f

∂p
= 0 (1.12)

which is also known as the Vlasov equation, is required to describe its evolution in phase

space f , where p is the particle momentum and F is some external force. However, a

collisionless fluid with isotropic and homogeneous velocity dispersion can be described

by the same continuity and momentum equations as a real fluid, but with sound speed cs

replaced by velocity dispersion σ = 〈v2
i 〉1/2. Thus we can also define Jeans length for dark

matter:

λJ = σ

√
π

Gρ̄
(1.13)

Instead of Silk damping, dark matter perturbations below Jeans length will undergo free

streaming damping, caused by velocity dispersion. According to its definition, we can esti-

mate the Jeans length of dark matter from the typical velocity of a dark matter particle. As

of today, the physical nature of dark matter is still unclear. There is still some current debate
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over whether dark matter particle is relativistic (hot dark matter, HDM), non-relativistic

(cold dark matter, CDM), or somewhere in between (warm dark matter, WDM). We define

the free-streaming length as comoving distance traveled by a dark matter particle up to the

time of matter-radiation equality.

λfs =

∫ teq

0

v(t′)

a(t′)
dt′ (1.14)

For HDM, v ∼ c, we get λfs ∼ 30 Mpc, the corresponding free-streaming mass is Mfs ∼

1.3×1015 M�. So structure formation in HDM cosmology proceeds top-down. This is why

current cosmology theory prefers CDM, which has a negligible free-streaming mass around

the mass of Earth. With CDM at play, baryons can fall into the potential well formed by

dark matter halo formed in bottom-up fashion, thus comprise the small scale fluctuation

before recombination. This is now the widely accepted starting point of how galaxies are

formed.

As discussed above, the baryonic Jeans mass right after recombination is ∼ 106 M�,

so the baryons are expected to cluster in the same way as collisionless dark matter particles

when the perturbations on galaxy scales are still in linear regime. When perturbations

evolve into nonlinear stage and overdense regions start to collapse, unlike collisionless

dark matter, baryons will be shock-heated when flow lines of the infalling gas converges,

i.e., when gas is shocked. We can assume that the shock thermalizes all the kinetic energy

of the gas cloud, and the internal energy of infalling gas can be ignored. Then the internal

energy of the shocked gas is equal to the kinetic energy of the gas at infall. Assume the gas

is mono-atomic, for which the adiabatic index γ = 5/3:

Eint,sh =
3

2
NkBTsh =

1

2
Mgasv

2
in (1.15)

⇒ Tsh =
µmp

3kB

v2
in (1.16)

where, N = Mgas/(µmp is the number of gas particles. If the gas falls in from large
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distance and has negligible initial velocity, then

vin ≈ vesc(rsh =
√

2|Φ(rsh| (1.17)

It is customary to equate the shock radius to what is known as the virial radius, giving

v2
in ≈

GMvir

rvir

= V 2
vir (1.18)

Then the temperature of the shocked gas in a halo with virial velocity is

Tsh ≈
µmp

3kB

V 2
vir (1.19)

If we further assume the halo has spherical symmetry and the gas is non-radiative, then

when the shocked gas settle in hydrostatic equilibrium, ∆P (r) = −ρgas∆Φ(r). Then

combining the relation between potential Φ and temperature Tsh above, we obtain a relation

between the total mass profile of the halo , temperature profile and gas density profile:

M(r) = Mgas(r) +MDM(r) = −kBT (r)r

µmpG

[
d ln ρgas

d ln r
+
d lnT

d ln r

]
(1.20)

For stars to form in the gaseous halo, cooling mechanism is necessary for the gas to

radiate away heat so that gravitational contraction can overcome the thermal pressure and

lead to further collapse on smaller scale. The primary cooling processes relevant for galaxy

formation are two-body radiative processes. Gas loses energy by emitting photon after

two-body interactions. There are mainly four types of two-body interactions:

Bremsstrahlung occurs when free electrons are accelerated by ions. According to Maxwell’s

equations, charge particles emit photons when accelerated.

Recombination occurs when free electrons recombine with ions. Binding energy and the

kinetic energy of the free electron are both radiated away.
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Collisional ionization occurs when free electrons collide with an atom, ionizing the atom.

The ionization takes away the kinetic energy of the free electron.

Collisional excitation occurs when a free electron knocks a bound electron to an excited

state. When the excited electron decays back to ground state later, it emits a photon.

We see that all 4 types of cooling process need free electrons, and all but bremsstrahlung

also need neutral atoms or to form neutral atom. At high temperature, above a few times

107K, gas is fully ionized (for primordial gas this threshold is 106K). The only significant

effect is bremsstrahlung. At T < 105.5K, a large fraction of the electrons are bound to

their atoms, so the dominant cooling process is collisional excitation followed by radiative

de-excitation. At temperatures below 104K, most of the electrons are bound to their atoms,

and radiative cooling rates drop dramatically. The cooling is mainly accomplished through

chemically enriched gas.

In addition to collisional ionization, an atom can also be ionized through photoioniza-

tion, absorbing a photon. An external radiation field can thus change the population of

ions, thereby changing the cooling rate of gas. Moreover, photoionization can directly heat

the gas when the surplus energy of the photon is transformed to the kinetic energy of the

electron. Depending on the density, temperature, and intensity of external radiation field,

the gas may be in a state of net cooling, thermal equilibrium, or net heating, depending on

the competition of heating and cooling process.

All stars form in Giant Molecular Clouds (GMCs). Observations have shown that the

structure of GMCs is extremely clumpy. They consist of molecular clumps, which further

consist of molecular cores (a.k.a. proto-stellar cores). The mass of a typical GMC is

M = 105 − 106 M�, with number density n = 100 − 500 cm−3. For clumps and cores,

these two numbers are M = 102 − 104 M�, n = 102 − 104cm−3 and M = 0.1 − 10 M�,

n > 105 cm−3, respectively. The lifetime of GMCs is of the order of tGMC ' 107yrs, while

the free-fall time of GMCs is about tff =
√

3π/32Gρ ' 3.6× 106 yr. We see that free-fall

time is significantly smaller than the lifetime for GMCs. This poses the question of how
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does GMCs support itself against gravitational collapse. Current observations and theory

suggest that GMCs are supported by supersonic turbulence. In the presence of turbulence,

the Jeans mass of GMCs scales as

MJ ∝
(c2

s + σ2
v)3/2

M̂ρ1/2
(1.21)

where M̂ is the Mach number, cs is the sound speed, and σv is the velocity dispersion. Since

σv ∝ R1/2, on large scales, σv � cs, turbulent motions increase the effective pressure,

suppressing gravitational collapse, thus preventing the whole GMC from forming stars. On

the other hand, the Jeans mass is dominated on small scales (σv < cs) by the sound speed

cs, thus local turbulent motions may cause local overdensities that surpass the Jeans mass,

thus promoting collapse and star formation.

There still exist open questions on the formation of GMCs, though. Molecular gas can

form wherever external pressure is sufficiently high and radiation intensity is sufficiently

low. But this is not enough to explain the clumpiness of GMCs. It is believed that GMCs

are formed through three types of instabilities, thermal, gravitational and Parker (magnetic

buoyancy). These instabilities can be triggered by a wide range of processes such as accre-

tion of matter, large scale turbulence, spiral arms of disk galaxies, star formation itself, and

galaxy mergers and interactions.

1.2.2 Pathways of black hole formation

As mentioned in the first section, black holes as massive as 109 M� have been discov-

ered at redshift z > 6, that is within one billion years after the big bang. It is easy to

understand why this is remarkable by estimating the growth time of a MBH. It is believed

that usually, MBHs cannot accrete at rates significantly higher than allowed by the Ed-

dington limit, which is the point when the luminosity of a source becomes large enough

that radiation pressure balances gravitational force. The Eddington luminosity is written as
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LEdd = MBHc
2/tEdd, where tEdd = σTc/4πGmp = 0.45 Gyr, where σT is Thomson cross

section and mp is the proton mass. Assuming the efficiency of conversion of rest-mass into

energy (radiation) is ε, inflow rate of mass toward the MBH is Ṁin, we have

L = εṀinc
2 = LEddc

2 (1.22)

Then the growth time of an MBH with initial mass M0 is

tgrowth = tEdd
ε

1− ε
ln

(
MBH

M0

)
(1.23)

If the seed black hole is on the order of a solar mass, it needs to grow 9 orders of magnitude

in about 1 Gyr. From the equation above we can see that it is possible only if the black hole

accretes at the Eddington rate all the time, which means the feedback effects from stars and

the MBH have to be negligible. But such a scenario is extremely rare with these SMBHs

at z ∼ 6 having a number density of ∼1 comoving Gpc−3. It is then natural to assume

that some seed black holes formed at the very early times and had large initial masses,

which then grow to the supermassive black holes we observe at z ∼ 6. There are several

proposed scenarios for the formation of MBH seeds, reviewed in the following sections

and illustrated in Figure 1.1.

Pop III star remnants

One of the popular proposed pathways for MBH formation is that MBH seeds form out

of remnants of Pop III stars, i.e., the first generation of stars formed out of gas with zero

metallicity. As discussed above, first stars are expected to form in minihalos, with Mmin ≈

106M�. The virial temperature of these minihalos is Tvir > 103K, allowing cooling by

molecular hydrogen.

Simulations of collapsing GMCs [35, 36, 37, 38] showed that the characteristic stellar

masses are massive with m? ' 30 − 300 M� among the first generation of stars. The
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Figure 1.1: Possible routes for massive black hole formation through remnants of massive
metal-free stars, the collapse of dense stellar clusters, and the direct collapse of a gas cloud.
Taken from Rees [34].
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mass accreting rate in the hydrostatic protostellar core is ∼ 103 times the observed local

forming stars, indicating that first stars could indeed be very massive [39, 40, 41]. Massive

stars usually have short lifetime, due to the enormous gravitational contraction and high

luminosities. The final fate of first stars depends on their mass M?.

(M? = 25− 140 M�) The remnants of first stars are predicted to collapse to black hole

directly, with about half of the stellar mass going into the black hole [42]. If the

formed black hole is not massive enough however, it might not stable enough to dwell

at the center of the galaxy. Instead it might wander within its host and dynamically

interact with the stars of similar mass.

(M? = 140− 260 M�) The Pop III stars explode in supernovae after death. In this mass

range, when the helium burnt out, the temperature and density enter the regime in

which electron/positron pairs are created, converting internal gas energy into rest

mass and drastically reduce the pressure [43]. Without the support of pressure against

gravity, the star will implode, leading to the burning of oxygen and silicon, which

produces enough energy to reverse the collapse, triggering a supernova explosion

and leaving nothing behind.

(M? > 260 M�) The extreme temperature and density inside the star will trigger photo-

disintegration instability, where high-energy photons are absorbed by nuclei which

then split into a ligher nuclei and subatomic particles, before the burning of oxygen

and silicon core trigger explosion ( [43]. When this instability occurs, it absorbs

energy, reducing the temperature and pressure. The collapse of the core is thus catas-

trophic, leading to the formation of a seed black hole, with at least half of the initial

stellar mass [44].

This path to MBH formation seems very natural. However, it is unclear if it really is

a common process of forming a black hole seed because the initial mass function of Pop

III stars is not constrained well enough. Furthermore, the binary fraction of this population
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and how many stars form per minihalo are also unconstrained. The latter case will produce

less massive first stars, given a constant star formation efficiency, as defined as the fraction

of gas mass converted into stars. Even if single stars are formed in abundance, as mentioned

before, simulations have shown that typically gas clumps with mass∼ 103M� can collapse

and form a very dense core of ≈ 0.01M� first. Afterward the gas around the core accretes

rapidly onto the core, and eventually growing into the final main sequence Pop III star. Due

to feedback during the protostellar phase, the final mass can be much less than the mass

of the initial clump [45]. In short, currently it is uncertain whether or not there exists a

non-negligible fraction that are very massive, and especially if they are above the threshold

of 260 M� to form MBH seeds.

Besides baryons, it has also been proposed that weakly interacting massive particles

(WIMPs), one of the promising candidates for dark matter particles, may also form a type

of “dark star”, which is supported by dark matter annihilation instead of nuclear fusion

[46, 47]. The dark matter annihilation can be triggered if the dark matter halos have steep

density profiles, so that baryonic infall during the star formation can compress the dark

matter further adiabatically. It is estimated that dark stars have masses in the range 500−

1000 M�, high luminosity (106 − 107 L�), but low surface temperature (< 104K). Such

massive objects are also expected to collapse and form MBHs.

Direct collapse

Another way to form black holes is that a single clump of dense gas directly collapses into

a massive black hole [48, 49, 50, 51, 52, 53, 54]. While it seems to be a natural way to

form black holes, the physical conditions have to be in the regime where fragmentation and

star formation is suppressed. The inner regions of gaseous proto-galaxies provides ideal

locations for that due to the zero to very low metallicity of the primordial gas. Chem-

ically enriched gas have more atomic transitions and are thus more efficient in cooling,

facilitating fragmentation and star formation and reducing the amount of gas for black hole
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formation. Besides metal cooling, H2 cooling can also lead to fragmentation during the

collapse. Suppressing H2 formation in primordial galaxies requires a dissociating UV, so-

called Lyman-Werner, background radiation.

In addition to suppressing fragmentation, the gas clumps need to have low intrinsic

angular momentum and/or mechanisms to transport excessive angular momentum away.

Global dynamical instabilities, such as the “bars-within-bars” mechanism which relies on

global gravitational instability during a dynamical infall [55, 53] is a good candidate to shed

angular momentum efficiently. Major galaxy mergers may also provide external torque on

large scale to drive rapid gas inflow [56], in which case fragmentation may be inhibited

by turbulence. Some idealized numerical simulations of gaseous disk in halos can lose up

to 90% of its angular momentum due to supersonic turbulent motions, forming a compact

but vertically thick disk supported by rotation that is marginally stable against gravitational

instabilities.

The gas accumulates in the central few parsecs that can form a massive object of 104−

106M�. If the mass accretion proceeds slowly and less efficiently from this point, the

condensed gas clump might form a supermassive star (SMS, & 5 × 104M�) first, and

then collapse to black hole after its death. On the other hand, if the mass accumulation is

fast, the condensed gas clump would form a more complex structure that consists a star

(convective core) in the center and surrounded by a convectively stable envelope. An initial

black hole of a few M� would form as a result of core collapse after the star exhausts

its fuel, and continued to grow through accretion from the bloated envelope. This stage

is named “quasistar”, an initially low-mass black hole embedded in a massive envelope

supported by radiation pressure [53, 57]. As mentioned in the beginning of this section, its

growth is limited by the Eddington limit for the whole quasistar stage. The final massive

seed would stop growing when the entire envelope is consumed. More detailed calculation

of the mass accretion process show that the final seed MBHs would have masses in the

range 104 − 105M� [58]
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Collapse of dense stellar clusters

As mentioned in the direct collapse scenario, if H2 forms in abundance, molecular cooling

will facilitate the formation of Pop III stars in mini-halos (Tvir < 104K, thus direct collapse

is not possible since it is mutually exclusive with star formation). By the time more massive

halos are built up through mergers, they will contain metal-enriched gas that is impacted by

metal ejecta from Pop III supernovae. Enriched gas can fragment and cool more efficiently

than primordial gas, and thus enable more efficient formation of “normal” stars. These

stars can form very compact nuclear star clusters [59, 60] where star collisions can lead to

the formation of a VMS, and thus may form a MBH remnant of 102 − 104M� [61]

The evolution of such collisional stellar systems is driven by dynamical interactions. As

less bound stars running away from the center, the core radius will decrease due to energy

conservation. Therefore the central density will increase and, as a result, the inner region

relaxes faster then the outer region. Eventually the core will thermally decouple from outer

region, where star-star collisions occur in the way of runway collisions and leads to the

formation of a VMS in a short timescale [62, 63].

Primordial black holes

The last but controversial candidate occurs very early in the cosmic timeline, before the

epoch of galaxy formation. These are primordial black holes that also form out of high

density fluctuations during the first mintues after the Big Bang. The masses of primordial

black holes roughly equal the mass within the particle horizon at the redshift of their forma-

tion [64, 65], ranging from Planck Mass (formed at Planck epoch) to about 1 M� (formed

at the QCD phase transition) up to 105 M� [66].

Some additional constraints can be applied to primordial black holes to narrow down

their mass range. If the initial mass is less than 5 × 1014 g, the the primordial black holes

are expected to evaporated due to Hawking radiation. For masses in the order of 1015 g,

observed intensity of diffuse gamma ray background [67] suggests their contribution to
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Figure 1.2: A schematic diagram of a halo merger tree with the width of the branches
proportional to the halo mass. Galaxy and black hole semi-analytical models are build
upon these types of merger trees. Taken from [71].

the matter density is less than 10−8 of the critical density. For larger masses, observation

through micro-lensing techniques [68, 69] and spectral distortions of CMB [70] limit the

mass to less than ∼ 103M�

1.3 Modeling Black Hole Growth in the Early Universe

In order to study the evolution of black holes from their birth to present day, we must

model black holes in cosmological background, and evolve them within their host galaxy

and halo. In this section, I will review two popular modelling methods of galaxy and

black hole formation and evolution – semi-analytical models and numerical simulations,

along with an overview of the current state of the field concerning black holes at very high

redshifts (z & 6).

1.3.1 Semi-analytical modeling

Semi-analytical models of galaxy and black hole evolution describes the assembly history

of a halo by its merger tree, which is typically built upon extended Press-Schechter formal-

ism [72, 71] in a Monte Carlo manner. The random process is accomplished by calculating
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the probabilities of the merger time and mass ratio of the last merger, creating two progen-

itor halos. Then the same calculation is performed recursively until some minimum halo

mass is reached. A schematic of a merger tree is shown in Figure 1.2. Merger trees can

also be extracted from cosmological dark matter simulations that serve as an alternative

method, which contains the spatial and clustering information about the halos at an added

computational cost [73]

Provided a merger tree, physically motivated recipes that describe physical processes,

such as gas accretion, star formation and feedback, black hole growth and feedback, and

stellar evolution, are used to evolve the galaxy and black hole within each halo in the

merger tree [74]. These recipes start with the earliest and least massive progenitors of

the target halo and evolve them forward in time, which is the reverse of the merger tree

creation process. When generating production data, hundreds or thousands of merger tree

realizations are generated in this Monte Carlo method to compile a multitude of statistics.

Furthermore, these recipes also consider specialized models for merging galaxies and

the associated merger of the central massive black holes [75, 76]. They can also include any

type of “kick” of the resulting black hole after a merger whose velocities average around

a few hundred km s−1 [77, 78, 79]. The black hole growth and feedback model needs the

user to specify a seeding mechanism (e.g. stellar-mass or direct collapse) the accretion

rate (e.g. Eddington or Bondi), accretion disk properties (e.g. thin disk), and any physical

trigger for accretion (e.g. galaxy mergers or various types of feedback).

After calculating the merger tree and applying a semi-analytical galaxy and black hole

model, one obtains a history of the massive black holes that live within the progenitor halos,

which can include formation rate, merger rate, ejection rate, growth rate, and the duty cycle

[80].
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1.3.2 Cosmological numerical simulations

Thanks to the exponential growth of computing power, modern cosmological simulations

directly model the dark matter and gas dynamics of galaxy formation self-consistently in a

large-scale environment with high dynamic scale. Sub-resolution models are then incorpo-

rated into the hydrodynamical framework to model the formation of stars and black holes

and their subsequent feedback onto their environments through mechanical (supernovae for

stars and jets for black holes) or radiative processes [81].

Simulations that focus on typical galaxies, such as the Milky Way, and more massive

ones cannot resolve the halos that form the seed black holes. In this case, one assumes

that halos with some pre-determined mass (Mvir ∼ 1010 M�) that are well-resolved by

the simulation are seeded with a massive black hole with mass ∼ few × 105 M� that

usually already follows the M − σ relation [82, 83]. These simulations can reproduce

the luminosity function of lower redshift quasars, which are generally not sensitive to the

seeding mechanism [84] but cannot capture the physics of the seeding mechanism.

Simulations that can resolve the dark matter halos that possibly host black hole seeds

formation can directly model black hole formation, through the three pathways discussed

in Section 1.2.2. The maximal resolution of these simulations are hundreds of parsecs

at best, which model the hydrodynamics on scales many orders of magnitudes greater

than the Schwarzschild radius. Thus we can not simulate the feedback of black hole self-

consistently (e.g., solving Einstein’s field equations).

However in a uniform medium, the accretion onto the black hole can be described with

Bondi-Hoyle accretion [85, 86] that assume spherical symmetry but provides the length

scale in which gravity overcomes thermal pressure. This length scale is known as the

Bondi radius,

rb =
GMBH

cs,∞
' 0.1 pc

(
MBH

100 M�

)(
T

3000 K

)−1

(1.24)
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where cs,∞ =
√
γkBT/µmp is the sound speed at large distances (well outside rb) and γ is

the adiabatic index. The associated accretion rate is

ṀBH = 4πλBr
2
bρ∞cs,∞ = 4πλBρ∞

G2M2
BH

c3
s,∞

, (1.25)

where ρ∞ is the gas density far outside rb. Here λB is a dimensionless accretion rate that

ranges from ∼ 1.1 for an isothermal gas to 1/4 for an adiabatic gas. The Bondi-Hoyle rate

decreases if the ambient gas has a velocity vrel relative to the black hole at a rate

ṀBH = 4πλBρ∞
G2M2

BH

(c2
s,∞ + v2

rel)
3
, (1.26)

Currently, only the small volume, high resolution cosmological simulations [87, 88]

that focus on the seeding mechanisms can resolve the Bondi radius. Here the simulation

takes the gas density and temperature of the gas element in which the black holes resides

in Equation 1.26.

For larger simulations that cannot resolve this scale, the rate is multiplied by a “boost

factor” α ∼ 200 that mimics a density gradient ρ ∝ r−β , where β = 2 for an isothermal

sphere, below the resolution limit. The boost factor effectively connects the density in the

coarse gas element to the unresolved Bondi radius [82, 89]. Bondi-Hoyle accretion rates

are usually not allowed to exceed the Eddington rate. Other more simplified models use

the Eddington rate with some radiative efficiency ε.

Once the accretion is known it is straightforward to convert it into a luminosity (Equa-

tion 1.22 that can be injected into the simulation medium through (i) thermal energy, (ii)

radiation, or (iii) kinetic energy in a collimated jet. This energy will impact the surround-

ing regions as the (radiation) hydrodynamics solver incorporates this energy into the system

[89].
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1.3.3 Current understanding of high-redshift black hole formation and growth

Due to the lack of observations at very high redshifts, all seeding pathways have large

uncertainties. However in ΛCDM cosmology, we can use these models to understand how

the first stars, galaxies, and black holes form in the early universe given some reasonable

guess of initial conditions.

The formation rate of stellar mass black hole seeds, which are the subject of this thesis,

are directly tied to the Population III star formation rate [90]. Even more uncertain is the

formation rate of direct collapse black holes, but the optimal physical conditions are being

constrained to metal-free and highly-irradiated environments, such as an infalling, starless

dark matter halo [91].

Concerning the stellar mass seeds, their stellar progenitors are massive stars, which heat

and ionize the surrounding proper kpc through the absorption of far-ultraviolet radiation

above the ionization potential E = 13.6 eV of hydrogen [92, 93, 94] After a few million

years, typical gas densities and temperature are 1 cm−3 and 104 K, respectively.

Once the star dies, any possible black hole remnant will reside in a warm, diffuse and

ionized region [87], which is hostile for accretion (see Equation 1.26. This suppression

of prompt accretion lasts for tens of millions of years until “fresh” gas is supplied through

cosmological smooth accretion or mergers [88]. Even if they exist in the center of their host

halo, their growth is severely limited by radiative feedback. Alvarez [87] and Jeon [88] both

found that a 100 M� seed black hole grows less than one solar mass over ∼ 100 Myr (as

the halo grows by a factor of ∼100) when radiative feedback is considered. Without its

effects, the black hole can grow by a factor of 100.

To date, simulations only follow a handful of these stellar mass black holes and their

feedback. They have always focused on the first star to form in the simulations, but very

few have looked at the formation and evolution of the high-redshift population of these

compact remnants.
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1.4 Overview of thesis

The focus of this thesis is to characterize the formation and dynamics of the first black holes

in the universe, stemming from metal-free Population III stars. We evolve a representative

volume of the early universe including first black holes self-consistently by cosmologi-

cal simulation, and investigate the distribution and time evolution of dynamical properties

statistically from a sample of several hundred BHs.

We briefly review the numerical methods and software used to simulate black holes

formation in a cosmological context and to analyze in post-processing these simulated data

in Chapter 2. Then we describe the cosmological simulation setup and the physical recipes

incorporated in the numerical framework in Chapter 3. In Chapter 4, we derive the analyt-

ical models used to extract orbital properties of black holes. Chapter 5 presents our results

on various dynamical properties of black holes within the first galaxies. We conclude this

thesis, along with discussing future work, in Chapter 6.

25



CHAPTER 2

COMPUTATIONAL AND NUMERICAL METHODS

2.1 Cosmological simulation code: Enzo

The simulation in this work is run in Enzo [95], a structured adaptive mesh refinement

(SAMR) code originally developed for cosmological hydrodynamics. It has since been

used on a wide variety of problems, and it has grown to become a general tool for astro-

physical fluid dynamics. Here I summarize the key physical equations and sub-grid models

relevant to this work. For a full description of Enzo, please refer to the methods paper [95].

2.1.1 Physical equations

The basic equations solved by Enzo are Eulerian equations of ideal magneto-hydrodynamics

(MHD) including gravity, in a coordinate system comoving with the cosmological expan-

sion.
∂ρ

∂t
+

1

a
∇ · (ρv) = 0 (2.1)

∂ρv
∂t

+
1

a
·
(
ρvv + Ip∗ − BB

a

)
= − ȧ

a
ρv− 1

a
ρ∇φ (2.2)

∂E

∂t
+

1

a
∇ ·
[
(E + p∗)v− 1

a
B(B · v

]
= − ȧ

a

(
2E − B2

2a

)
−ρ
a

v · ∇φ− Λ + Γ +
1

a2
∇ · Fcond

(2.3)

∂B
∂t
− 1

a
∇× (v× B) = 0 (2.4)
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In above equations, E, ρ, v, and B are the comoving total fluid energy density, comoving

gas density, peculiar velocity, and comoving magnetic field strength vector, respectively.

The matrix I is the identity matrix, and a is the cosmological expansion parameter. The

first three equations are conservation laws of mass, momentum, and total (kinetic, thermal,

and magnetic) fluid energy. They are the first, second, and third moments of Boltzmann

equation. Λ, Γ and Fcond in Equation 2.3 represent radiative cooling, radiative heating,

and flux from thermal heat conduction, respectively. The fourth equation is the magnetic

induction equation.

The comoving total energy density E is calculated as

E = e+
ρv2

2
+
B2

2a
(2.5)

where e is the comoving thermal energy density. The terms on the right hand side of the

equation represent the thermal, kinetic, and magnetic energy density.

The total comoving isotropic pressure p∗ is given by

p∗ = p+
B2

2a
(2.6)

where p is thermal pressure. The terms on the right hand side represent the thermal and

magnetic pressure components.

To complete the set of equations, we still need an equation of state and Poisson’s equa-

tion for the gravitational potential φ:

e =
p

γ − 1
(2.7)

∇2φ =
4πG

a
(ρtotal − ρ0). (2.8)

We treat the gas as ideal gas with a ratio of specific heats γ. The source of gravitational
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potential is total mass density contrast, where ρtotal = ρgas + ρdm + ρstars, and ρ0 is the

mean density.

2.1.2 Numerical methods

Structured Adaptive Mesh Refinement

Adaptive mesh refinement (AMR) is a technique to refine the mesh and timestep of the

simulation where higher resolution is needed, which is highly suitable for cosmological

simulation due to its extremely high dynamical range. Enzo employs Berger & Colella’s

structure AMR (SAMR) [96], which utilizes an adaptive hierarchy of grid patches at vary-

ing levels of resolution. Each grid covers some region of space requiring higher resolution

than its parent grid, and can have one or more child grid of even higher resolution if neces-

sary.

The grid hierarchy starts with a root grid, which is a coarse uniform Cartesian grid cov-

ering the whole volume of simulation. As the solution evolves, some regions of interest,

e.g., regions with high density, start to form, which require higher resolution to accurately

capture the physical detail. Then finer grids are placed within these coarse regions. Typ-

ically the ratio of cell sizes between parent and child grids are set to two or four, and all

grids with the same cell size are defined as the same level.

The solution is advanced in a manner of a W-cycle (see Figure 2.1 in a multigrid solver.

First, we determine the maximum timestep allowed for the coarsest grid given some accu-

racy and stability criteria and advance this grid by that time interval. We then move to the

next level and advance all grids on this level for the same timestep. We repeat this proce-

dure until we reach the bottom level of grid hierarchy and advance the finest grid patches

until it is synchronized in time with the coarsest (root) grid.

Whenever a level has caught up to its parent level, all grids on this level and at finer

resolutions will be rebuilt. The hierarchy rebuilding process is achieved by applying certain

grid refinement criteria to grids on this level and flagging zones that require finer resolution.
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dt

dt/2 dt/2

dt/4 dt/4 dt/4 dt/4

level 0

level 1

level 2

Timesteps Order of steps

time

Figure 2.1: Left: An example where the timesteps on AMR levels are restricted by a factor
of one-half, but Enzo does not necessarily place use this restrction, where the timesteps
obey the CFL condition. Right: The “W-cycle” that depicted the order in which timesteps
are taken in AMR grids on each level. Taken from [95].

The exact criteria applied depend on the physical problem being simulated, but usually the

cells are flagged if the difference of some physical quantities of interest exceeds some

threshold. Once a grid has a set of flagged cells, an algorithm based on computer vision

[97] is applied to find edges and determine a good placement of subgrids. The initial value

on these new subgrids will be interpolated from their parent grids. This whole procedure

is then repeated recursively on the new grids until all levels of grids (old and new) are

examined and no new level of grids needs to be built. In this way, the whole hierarchy is

rebuilt.

(Magneto)-hydrodynamic Solver Methods

Four different (magneto)-hydrodynamic methods are implemented in Enzo: (1)the hydro-

dynamic only piecewise parabolic method (PPM) developed by Colella [98] and extended

to cosmology by Bryan [99], (2) the MUSCL-like Godunov scheme [100] with or with-

out magnetic fields and Dedner-based divergence cleaning [101, 102], (3) a constrained

transport (CT) staggered MHD scheme [103], and (4) the second-order finite difference

hydrodynamics method described in ZEUS [104, 105].
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Gravity

Enzo employs the fast Fourier transformation (FFT) technique [106] to solve Poisson’s

equation on the root grid on each timestep. It is fast, accurate, and naturally allows both

periodic and isolated boundary conditions for the gravity, which are commonly used in

astrophysics and cosmology. On subgrids, we first interpolate the boundary conditions

from the parent grid, then solve Poisson equation on one subgrid at a time with a multigrid

technique.

N-body Dynamics

Dark matter and stars are modeled as collisionless matter, which is then modeled with

particles that interact with the baryons only through gravity in the Enzo code. We uti-

lize a drift-kick-drift algorithm [106] to advance these particles every timestep, which has

second-order accuracy even in varying timesteps. Since the collisionless particles follow

the collapse of structure, they are not adaptively refined, nor are there duplicate sets of

particles for each level; instead, each particle is associated with the highest refined level

available at its position, and particles are moved between grids as the hierarchy is rebuilt.

Although the particles are fixed in mass once created (except for star particles, which can

lose mass due to feedback), these particles can be created with any initial set of masses and

positions.

Chemistry

Enzo uses a non-equilibrium chemical network, capable of tracking up to 12 particle species.

The simplest model includes just atomic hydrogen and helium (H, H+, He, He+, He++,

e−). More complicated models can include species related to gas-phase molecular hydro-

gen formation (H−, H2, and H+
2 ), and HD formation (HD, D, D+). The cooling and heating

due to these species are also modeled. The evolution of these species is described by rate

equation, which is solved using one Jacobi iteration of an implicit Euler time discretiza-
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tion to ensure stability. The rate equations are further sub-cycled within one hydrodynamic

timestep to ensure accuracy.

Radiative Cooling and Heating

There are several modes of radiative cooling and heating built in Enzo. The simplest mode

computes the cooling rate from a simple temperature-dependent cooling function [107]

without considering any differences between cooling and heating effects between different

chemical species. When the chemistry is turned on, the code can include cooling from all

species of hydrogen and helium, which are computed in the same Jacobi iteration as the

chemistry. Cooling from heavier elements (known as “metals” in astronomy) based on a

set of lookup tables computed with the CLOUDY code [108] can also be included [109,

110].

Star Formation and Feedback

Star formation and feedback processes are modeled by simple heuristic methods based

on the work of [111], which involves the identification of plausible site of star formation

according to a set of criteria, e.g., dense gas with a short cooling time. The local star forma-

tion rate can be calculated by several methods, such as the density-dependent method based

on Schmidt-Kennicutt relation [112]. The affected gas is converted to a star particle over

a few dynamical times, and metals and thermal energy are injected into region surround-

ing the star particle accordingly. Simulations of single Pop III stars rather than ensembles

are also utilized to model high-resolution star formation, which is calibrated by ab initio

simulations of primordial star formation.

2.2 Halo Finding

In ΛCDM cosmology, dark matter (DM) halos form the basis of the gravitational potential

in which galaxies form, and therefore the building blocks of universe. All of the analysis
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in this work is based on statistics over all the DM halos in a single simulation volume.

However, identifying halos in numerical simulation is far from a trivial task. Because

simulated DM halos consist of discrete DM particles, the task of finding halos boils down

to dividing dark matter halos into different dense groups.

There are over a dozen of packages available now specifically for this task (see Knebe

et al. 2011 [113]. However, most of these codes share some common basic methods, which

I will briefly review here.

2.2.1 Friends-of-friends Method

The friends-of-friends (FOF) method is the first kind of method proposed to address the

halo-finding problem, which can be traced back to Davis et al. [114]. The idea is simple:

attach any two particles to the same group if they are within a prespecified linking length,

resulting in an interconnected group of particles that is considered a halo. Typically, the

linking length is chosen in terms of a fraction b of the mean interparticle distance, usually

in the range 0.15–0.2 [115].

While it seems stragithforward and easy to implement, in practice this method has two

main drawbacks:

• Setting a uniform linking length means that in high density regions, particles might

have to link tens of thousands of neighbors whose distance is much smaller than the

linking length, which is very inefficient. Although this disadvantage can be miti-

gated by adaptively adjusting the linking length at different densities, this approach

involves calculating a density estimation which technically is not pure a FOF method

anymore.

• Using a linking length as the only criterion to group particles can result in highly

irregular halo shapes, having a lot of filaments. Consider an illustrative example: if

two disjoint spherically symmetric halos are close enough so that the closest pair of
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particles on the two halo surfaces are within linking length from each other, these

two halos will be identified as one halo, which is obviously unphysical.

2.2.2 HOP Method

HOP method was proposed in Eisenstein & Hut [116]. The idea is to divide the parti-

cles into distinct sets such that particles in individual high-density regions (e.g. halos) are

grouped together and left seperate from those in other regions. In order to do that, we

distinguish between nearby groups by assigning each particle to the group necleus that it

reaches by following in the direction of increasing density. This is done by calculating an

estimate of the density at every particle position and then finding the highest density parti-

cle position among each particle and itsNhop−1 nearest neighbors, i.e., finding the density

peak. The value of Nhop is usually taken to be∼16. Notice here that if the paricle itself has

the highest density among itself and its Nhop−1 nearest neighbors, it will be the nucleus of

its group. Since the maximum density must be a finite value, this loop is guaranteed to end

in finite steps. At the end of the loop, each particle is linked to its densest nearest neighbor.

Chains of particles are built by “hopping” (hence the name) from lower to higher density

particles, and the chain terminates on a particle that is it its own densest nearest neighbor.

There is usually no restriction on the chain otherwise, so its shape can often be very ir-

regular, just as the case in FOF. Thus the last step is to merge geometrically adjacent chains

into halos according to merging rules and threshold cutoffs, which is usually a mulitiple

of the mean density. This way, the final object would have much smoother edge, and be a

much more physcially meaningful representation of a DM halo.

The density at each particle position is estimated by using a spherically symmetric

cubic spline kernel [117] and radial positions of the Ndens ∼ 64 nearest neighbors, giving

unit weight to particles at zero distance from the given particle and zero weight to those at

distances equal to the Ndens nearest neighbors.
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2.2.3 Rockstar Method

The previous two methods are classic approaches and are the basis of many modern halo-

finding packages. However, they have some common drawbacks. One is that since they

only utilize the position space, it is not capable of identify substructure within individual

DM halos, so-called subhalos. The other is that during major mergers, the density contrast

alone is not enough to distinguish which particles belongs to which halo, so when two halos

are close enough, the assignment of particles is virtually random in the overlap region.

However, both of these drawbacks can be overcome if we also utilize the velocity in-

formation and thus distinguish two clusters in space-velocity phase space. ROCKSTAR is

an open source phase space based halo finder designed not only to overcome the aforemen-

tioned drawbacks, but also to maximize halo consistency across timesteps, and it is the halo

finder used in this work. For the details of ROCKSTAR, please refer to its method paper

[118].

The algorithm combines FOF and AMR:

• As a first step, it performs a rapid variant of the 3D position-space FOF to find over-

dense regions.

• Then for each 3D FOF group created in the first step, the algorithm proceeds to build

a hierarchy of FOF subgroups in position-velocity phase space. Like AMR, deeper

levels of subgroups have a tighter linking-length criterion in phase space, which

means that deeper levels correspond to tighter isodensity contours around peaks in

the phase-space density distribution. This enables us to easily distinguish substruc-

tures. The hierachy ends at the deepest level of subgroups, at which a pre-specified

minimum number of particles remains in the same group.

• The last step is to convert all phase-space FOF subgroups to halos, working from the

deepest level bottom-up recursively. First in each of the subgroups at deepest level

of the FOF hierarchy (centers at the local phase space density maxima), a seed halo
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is generated. Then the algorithm recursively analyzes higher levels of the hierarchy

and assigns particles to these seed halos, until some denstiy cutoff limit is met. This

final part of the ROCKSTAR algorithm is very similar to the last step of HOP.
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CHAPTER 3

SIMULATION SETUP

3.1 Cosmology parameters

We use a comoving simulation volume of 1 Mpc3 that has a 2563 root grid resolution which

gives a dark matter (DM) mass resolution of 1840M�. This resolution enables us to resolve

minihalos with at least 100 DM particles, allowing us to resolve 2×105 M� DM halos that

can cool by H2 [119]. We refine the grid on baryon overdensities of 3 × 2−0.2l, where l is

the AMR level, resulting in a super-Lagrangian behavior [120]. DM overdensity is refined

to three, and local Jeans length is refined by at least 4 cells to avoid artificial fragmentation

during gaseous collapse [121]. If any of the above criteria are met in a single cell, it is

flagged for further spatial refinement. Maximum refinement level is set at l = 12, resulting

in a maximal comoving spatial resolution of 1 pc. The adaptive particle-mesh solver has a

source resolution of two cell widths of a given AMR grid. We stop the simulation at z ∼ 9

to prevent any large-scale modes with r ∼ Lbox/2 from entering the non-linear growth

regime. We write approximately 1000 outputs every 0.5 Myr.

The initial conditions were generated with MUSIC [122] at redshift z = 130. The cos-

mological parameters are adopted from the 2013 Planck results [123]: ΩM = 0.3175, ΩΛ =

0.6825, Ωb = 0.049, h = 0.6711, σ8 = 0.8344, and n = 0.9624, where the variables have

the usual definitions.

3.2 Radiative cooling

We use the nine-species (see Section 2.1.2) non-equilibrium chemistry model in Enzo [124,

125] that tracks atomic hydrogen and helium species, along with molecular hydrogen but

not species containing deuterium. We spatially distinguish the metal ejecta from Pop III
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and metal-enriched stars, and we obtain the cooling rates in the simulation from a tabu-

lated cooling rate table that is calculated with CLOUDY [109]. This sophisticated photo-

ionization solver includes all atomic species and many molecular species in a complex

reaction network. We use a cooling rate table that is logarithmically spaced in four dimen-

sions with a spacing ∆:

1. Density: 10−6 to 106 cm−3, ∆ = 0.25 dex;

2. Temperature: 10 to 108 K, ∆ = 0.1 dex;

3. Electron fraction: 10−6 to 1, ∆ = 0.25 dex;

4. Metallicity: 10−6 to 1Z�, ∆ = 1 dex;

In the CLOUDY calculations, a CMB radiation spectrum was used as the input spectrum.

In addition to these radiative cooling processes, we include a uniform radiation background

that dissociates molecular hydrogen, which we describe next.

3.3 Molecular hydrogen dissociating background

A time-dependent Lyman-Werner (LW) optically thin radiation background is utilized in

this simulation on which the LW radiation from point sources are added. LW flux from

point sources dominates over the background within 3 kpc, dissociating H2 and thus delay-

ing Pop III star formation in nearby haloes [126, 127, 120]. We use the semi-analytical

model of Wise & Abel [128], updated with the 7-year WMAP parameters and optical

depth to Thomson scattering. The LW radiation intensity is plotted in Figure 3.1. For

convenience, we fit the background evolution with function

logJ21(z) = A+Bz + Cz2 +Dz3 + Ez4 (3.1)

where (A,B,C,D,E) = (2.567, 0.4562, 0.02680, 5.882 × 10−4,−5.056 × 10−6 and J21

is the specific intensity in units of 10−21erg s−1 cm−2 Hz−1 sr−1. This fits the model data
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Figure 3.1: Time evolution of the Lyman-Werner background in unit of J21 =
10−21erg s−1 cm−2 Hz−1 sr−1, calculated with an updated version of the model in [128]

within 1 percent in 6 ≤ z ≤ 30 and is consistent with J21 values in Trenti & Stiavelli [129].

This Lyman-Werner background radiation can be attenuated in dense, molecular hydro-

gen rich gas. Rather than performing radiative transfer on the 76 rotational and vibrational

transition lines of H2, we approximate the absorption through a fitting function. We use an

improved variant of the original self-shielding function by Draine & Bertoldi [130], which

reads as

fsh = min

[
1,

(
NH2

1014 cm−2

)−3/4
]
, (3.2)

where NH2 is the H2 column density between the intergalactic medium and some position

in the simulation. These authors and later Wolcott-Green et al. [131] also included an

improved treatment of line broadening and overlap that altered this power-law to become

fsh =
0.965

(1 + x/b5)1.1
+

0.035

(1 + x)0.5
× exp

[
−8.5× 10−4(1 + x)0.5

]
. (3.3)
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Here x ≡ NH2/5 × 1014 cm−2, b5 ≡ b/105 cm s−1, and b is the Doppler broadening

parameter. For simulations, the difficulty lies in calculating the column density for each

cell. There exist several approximations without resorting to ray tracing the domain. Most

define a characteristic length scale Lchar in which the local density is related to the column

density,

NH2 = nH2Lchar (3.4)

We select the Wolcott-Green et al. [131] best-fitting method that uses the “Sobolev-like”

length for Lchar

Lchar ≡ LSob−like =
ρ

|∇ρ|
(3.5)

and is spherically averaged and only considers values in the average with dρ/ds > 0 so

that only directions toward dense regions are not considered.

3.4 Star formation

Pop II and Pop III star formation (SF) are distinguished by total metallicity of the densest

cell in the molecular cloud. Pop III stars are formed if [Z/H] < –4, and Pop II stars are

formed otherwise.

3.4.1 Pop III Stars

The Pop III SF model are the same as Wise & Abel [132], in which each star particle repre-

sents a single star. A star particle forms when a cell meets all of the following requirements:

• a total gas number density of 106 cm−3,

• a converging gas flow (∇ · vgas < 0), and

• a molecular hydrogen fraction fH2 > 5× 10−4.

These requirements are typical for collapsing metal-free molecular clouds at ∼ 10 Myr

before the birth of a Pop III main-sequence star [133], [134], roughly when initial free-fall
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Table 3.1: Fractional metal-free stellar endpoints for different characteristic masses
Endpoint Mchar = 10M� Mchar = 40M� Mchar = 100M�
Black hole 14% 59% 64%
Type II supernova 68% 30% 1%
Pair-instability supernova 1% 11% 35%

Note: The Mchar = 10M� does not add to unity because there exist stars that are not
massive enough to produce supernovae but will die in planetary nebulae.

phase ends. The fragmentation mass scale is characterized by the minimum temperature

at this stage [135]. The molecular hydrogen fraction requirement effectively constrains

star formation to cooling molecular clouds, in which the H2 formation rate is significantly

larger than the dissociation rate from a Lyman-Werner radiation field.

The Pop III stellar masses are randomly sampled from an IMF

f(logM)dM = M−1.4 exp

[
−
(
Mchar

M

)1.6
]
dM (3.6)

that behaves as a power-law IMF atM > Mchar and is cutoff exponentially below that mass

[136]. We can integrate this IMF over all possible masses (0.1− 500M�) to determine the

fraction of stars with particular endpoints: a Type II supernova, a direct-collapse stellar-

mass black hole, or a pair-instability supernovae (see Section 1.2.2. We show the expected

fractional endpoints in Table 3.1 for different characteristic masses Mchar = 10, 40, and

100 M�. One can see that for a top-heavy IMF, over half of the Pop III stars produce black

holes after their death. In this simulation we choose Mchar = 40M�. Latest results of Pop

III stars formation simulation shows that choosing Mchar this way is more consistent [137,

138, 139, 140].

If multiple cells meet the star particle formation criteria within 1 pc, we form one Pop

III star particle with the center of mass of these flagged cells to ensure that one massive

star is created per metal metal-free molecular cloud. After the star particle forms and its

mass is determined, an equal mass of gas is removed from the grid in a sphere that contains

twice the stellar mass and is centered on the star particle. At this stage of collapse, a sphere
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enclosing 200M� has a radius of 1–2 pc and has about 200 cells. The velocity of the star

particle is set as the mass-weighted velocity of the gas contained in the sphere.

3.4.2 Pop II stars

The prescription of Pop II star formation is similar to the one for Pop III star but without

the requirement of minimum H2 fraction. This requirement is not necessary because metal-

enriched gas can cool efficiently even in a strong UV radiation field [141]. In addition, we

restrict star formation in cold gas with temperature T < 1000K. Another difference is that

Pop II star particles represent a star cluster of some total mass and assumed Salpeter IMF

instead of a single star particle that represents a Pop III star whose mass is drawn from an

IMF (Equation 3.6.

When a cell meets these criteria, the prescription searched outward with increasing

radius for the boundary of the molecular cloud from the most dense cell. The molecular

cloud here is defined as a sphere with a dynamical time tdyn = 3Myr, which corresponds to

an average density ρ̄MC ' 500µ cm−3 ,where µ is the mean molecular weight. The radius

of the molecular cloud defined as such is typically 6 pc for the smallest ones and include

2500 cells, increasing as M1/3
MC. Once the radius is determined, a fraction c? = 0.07fcold of

the cold gas with temperature T < 1000 K inside the sphere is converted to a star particle

with mass m? = c?(4π/3)ρ̄MCR
3
MC. After the star particle is created, we replace the sphere

with a uniform density ρMC = (1 − c?)/(Gt
2
dyn) and temperature T = 104 K, which is

approximately the environment of initial stages of an H II region.

3.5 Stellar feedback

After a star is created, we take into account its radiative feedback which ionizes neutral

hydrogen. The radiation field is evolved with adaptive ray tracing [142, 143] based on the

HEALPix framework [144] and is self-consistently coupled to the hydrodynamics. Each

star is considered as a point source of radiation with a spectrum of energy that is sampled
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by three energy groups:

1. Hydrogen-only ionizing photons: Eph = 28 eV for Pop III stars and 21.6 eV for Pop

II stars;

2. Neutral helium ionizing photons: Eph = 30 eV;

3. Singly-ionized helium ionizing photons: Eph = 60 eV.

The luminosity of the star is equally split into 48 rays initially in each energy group, and

each of them adaptively split into 4 child rays as they propagate into a high resolution

AMR grid and the solid angle of the ray θ = 4π/(12 × 4L) is larger than 1/3 of the cell

area, where L is the HEALPix level. The maximum HEALPix level is limited to 13, which

is equivalent to 8.05 × 108 rays per source. The H2 dissociating radiation is modeled as

optically-thin, inverse-square profile, centered on all Pop II and Pop III star particles, and

is added to the radiation background that was described in Section 3.3.

In addition to photo-ionization and photo-heating, the simulation in this work consid-

ers momentum transfer from (continuum) ionizing radiation to the absorbing gas. The

momentum of absorbed ionizing radiation

dPrp =
dP Eph

c
r̂ (3.7)

is transferred to the absorbing medium, where dP is the number of photons absorbed, Eph

is the photon energy, and r̂ is the normal direction of the radiation. The gas that absorbs

this momentum acquires an acceleration

daap =
dprp

dt ρ Vcell

(3.8)

per unit mass, where ρ is the gas density, dt is the radiative transfer timestep, and Vcell is

the cell volume.
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3.5.1 Pop III stellar feedback

Radiative feedback

The lifetime of Pop III stars and their mass-dependent hydrogen ionizing and LW photon

luminosities is adopted from Schaerer [145]. They die as Type II SNe if 11M� ≤ M? ≤

40M�, or as PISNe if 140M� ≤M? ≤ 260M� (see section 1.2.2). For Type II SNe betwen

11–20 M�, we use an explosion energy of 1051 erg and a linear fit to the metal ejecta mass

[146]

MZ/M� = 0.1077 + 0.3383× (M?/M� − 11). (3.9)

The corresponding metal yield fraction is

y = 0.3383− 3.614M−1
? . (3.10)

We model the SNe of stars with 20M� ≤ M? ≤ 40M� as hypernova with energies and

ejecta masses (y ∼ 0.15 − 0.2) also taken from Nomoto et al., linearly interpolating their

results to M?. For PISNe, we use the explosion energy from Herger & Woosley [147],

where we fit the following function to their models,

EPISN = 1051 × [5.0 + 1.304(MHe/M� − 64)] erg, (3.11)

where MHe = 13/24× (M? − 20)M� is the metal ejecta (helium core) mass. If the stellar

mass is outside there ranges, then an inert, collisionless black hole (BH) particle is created.

Mechanical feedback

Besides radiation, SNe also generates a blastwave that eject stellar material into space

around it. The blastwave is modeled by injecting the explosion energy and ejecta mass into

a sphere of 10 pc, smoothed at its surface to improve numerical stability [132]. We resolve

the blastwave with several cells across at its initialization. The thermal energy is converted
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into kinetic energy and agrees with the Sedov-Taylor solution [148].

3.5.2 Pop II stellar feedback

We set Pop II star particles to emit 6000 hydrogen ionizing photons per stellar baryon

averaged over their lifetime, or equivalently 1.12× 1046 ionizing photons s−1M�
−1 [149].

The star particles live for 20 Myr, the maximum lifetime of an OB star. These stars generate

most of the ionizing radiation and SNe feed back in stellar clusters, so we ignore any

feedback from lower mass stars. Assuming a constant luminosity may underestimate the

impact of the radiative feedback because given an IMF, the total luminosity of a cluster is

maximal at early times when thermal and radiation pressure forces are greatest, i.e. the

edge of H II region is still near the massive stars.

For SN feedback, these stars generate 6.8 × 1048erg s−1M−1
� after living for 4 Myr,

which is injected into spheres with a radius of 10 pc. if the resolution of the grid is less

than 10/3 pc, we distribute the energy into a 33 cubic grid region surrounding the star

particle. Star particles also return ejected material with mass

∆mej =
0.25∆tM?

t0 − 4 Myr
, when (4 Myr < t− tbirth < t0) (3.12)

back to the finest grid at each timestep. t0 = 20 Myr is the lifetime of the star particle. The

ejected gas has solar metallicity Z = 0.02, giving a total metal yield y = 0.0005.
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CHAPTER 4

ORBITAL MECHANICS

4.1 Orbital analysis

The main goal of this work is to investigate the orbital dynamics of a large set of seed black

holes spread out in many first galaxies, which is crucial to their growth and merger rate.

Although we have the exact location and velocity of each black hole at every timestep, the

time difference between these snapshots are not small enough to trace out a smooth orbit

of each black hole, which requires too much computational resources.

We instead approximate the potential field of their host halos in analytical form, and

use the position and velocity data of each black hole at each timestep to calculate their

approximated orbits, characterized by semi-major axis (sma) and eccentricity (ecc) given

the potential stays the same at each snapshot. This way we can see how the orbits of these

BHs change over time. Two approximation methods, point-mass potential and spherically-

averaged potential were carried out, described in detail below in this section. The results

of these two methods are presented in next chapter.

4.1.1 Point mass approximation

This is the first and simplest approximation. We assume the total mass of the halo is

concentrated at one point, its center. Therefore, given the position and velocity of BH

particle, it is easy to calculate its orbit. Let ~r be the position vector relative to the center

of halo, ~v be the velocity vector relative to the velocity of halo, and M be the mass of the

halo. Then the semi-major axis sma is given by

sma =

(
2

r
− v2

GM

)−1

(4.1)
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where r = |~r|, and v = |~v|. Notice here we only consider the BHs bounded by the halo

potential, so the orbit is supposed to be elliptic. For hyperbola or parabola the equations

are different. Eccentricity ecc is given by magnitude of eccentricity vector, ~e, which is in

turn given by

~e =

(
v2

GM
− 1

r

)
~r−

~r · ~v
GM

~v (4.2)

4.1.2 Using the simulated gravitational potential

The point mass approximation is likely a bad approximation because it over-simplifies the

extended and clumpy mass distribution inside dark matter halos. Fortunately, Enzo can

output the gravitational potential (see Equation 2.8 and Section 2.1.2, which can be used in

the orbital analysis.

The contribution from collisionless matter is calculated by depositing the dark matter,

star, and black hole particle masses onto the adaptive mesh with a second-order cloud-

in-cell (CIC) interpolation [106] to formulate the cumulative density field ρDM + ρstars.

During the interpolation, the particles are integrated to the next half timestep so that the

density field is time centered. The baryon density field ρgas is also integrated so that it is

time centered as well.

To compute the gravitational potential φ on the uniform root grid, a Fast Fourier Trans-

fer is used by multiplying the Fourier transfer of the density field ρ̃(k) by the finite differ-

ence formulation of a Greens function kernel of −k−2 [106]:

G(k = − ∆x

2[sin(kx∆x/2)2 + sin(ky∆y/2)2 + sin(kz∆z/2)2]
, (4.3)

where k2 = k2
x + k2

y + k2
z is the wavenumber in Fourier space and ∆[xyz] is the cell width

in each Cartesian direction. The potential is then calculated by taking the inverse FFT of

φ̃(k) = G(k)ρ̃(k). The potential on the AMR grids are then calculated using a multigrid

method, ensuring that the boundary conditions are consistent between neighboring grids.
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Figure 4.1: Slices of gas density (left) and gravitational potential (right) of the simulation
at z = 10, focused on a halo with a halo mass Mvir = 1.2 × 109M� and virial radius
rvir = 4.59 kpc. The top panels show the entire simulation domain, whereas we restrict the
field of view to 20 rvir in the bottom panels. Note that the colorbar ranges are different for
the gravitational potentials, which is approximately spherical near the halo.

We show slices of the gas density and calculated gravitational potential in Figure 4.1 of

a sample halo with a virial mass Mvir = 1.2× 109M� and a virial radius rvir = 4.59 kpc at

z = 10. These panels show the entire simulation domain in the top panels and the halo and

its neighborhood in the bottom panels. In the former, the gravitational potential is smooth

and follows the cosmological large-scale structure in the simulation. However, it becomes

more spherical near and inside the halo. Thus, we will consider a spherically-average

potential for our black hole orbital analysis in each halo.

From this global potential, we can extract the potential φ(r, θ, ϕ) inside the halo, and
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Figure 4.2: A comparision of the gravitational potentials of the same halo in Figure 4.1,
using point mass approximation (green) and the potential calculated in Enzo (blue). The
calculated potential is much flatter inside the halo and is more extended outside of it, which
should result in more accurate black hole orbital calculations.

integrate it over θ and ϕ then divide it by 4π to obtain the spherically-averaged potential

ψ(r). Using this direct measure is a much better approximation than the point mass because

of the extended mass distribution inside the halo, which we depict the diffenences between

the two approaches in Figure 4.2. In this comparision, we show the gravitational potential

in the same halo as Figure 4.1. Here one can see the gravitational potential having more of

a core instead of a cusp in the central regions of the halo. In addition, the potential is much

more extended than the point mass approximation, as expected. By enforcing spherical
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symmetry, we can have an analytical equation to solve for sma and ecc. In this work ψ(r)

is obtained through numerical integration.

Particles in spherically symmetric potential have constant angular velocity, which means

the particle moves in a plane, the orbital plane. Therefore we can use plane polar coordi-

nates (r, θ) to describe the position of BHs, where r is the distance to halo center, and θ is

the azimuthal angle in the orbital plane. We can then write the specific Lagrangian as

L =
1

2
(ṙ2 + (rθ̇2)− ψ(r) (4.4)

The equations of motion are

d

dt

∂L
∂ṙ
− ∂L
∂r

= r̈ − r(̇θ)2 +
dψ

dr
= 0 (4.5)

d

dt

∂L
∂ṙ
− ∂L
∂r

=
d

dt
(r2θ̇ = 0 (4.6)

The second equation of motion implies that

r2θ̇ = constant ≡ L (4.7)

which is just the result of conservation of angular velocity (or specific angular momentum).

With equation 4.7, we can make the following substitution

d

dt
=
L

r2

d

dθ
(4.8)

equation 4.5 becomes
L2

r2

d

dθ

(
1

r2

dr

dθ

)
− L2

r3
= −dψ

dr
(4.9)
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By making a change in variables u ≡ 1/r, this expression can be further simplified to

d2u

dθ2
+ u =

1

L2u2

dψ(1/u)

dr
(4.10)

In general the solution of this equation must be obtained numerically, and are of two types:

along unbound orbits r → ∞ and hence u → 0, while on bound orbits, r and u oscillate

between finite limits. In order to find these two limit values, we can multiply 4.10 by du/dθ

and integrate over θ to obtain another conservation law

(
du

dθ

)2

+
2ψ

L2
+ u2 = constant ≡ 2E

L2
(4.11)

For bound orbits, at two limit values of u (hence r), we have du/dθ = 0, thus equation

4.11 becomes

u2 +
2(ψ(1/u)− E)

L2
= 0 (4.12)

Normally we have two roots u1 and u2 between which the star oscillates radially as it

revolves in θ. The orbit is confined between, inner radius rp = 1/u1, a.k.a. the pericenter

distance, and outer radius ra = 1/u2, a.k.a. apocenter distance. Of course for a circular

orbit these two radii are the same. In general these two roots must be solved numerically.

After we have these two roots, we can easily calculate sma and ecc as sma = (ra + rp)/2

and ecc = (ra − rp)/(ra + rp).

4.2 Dynamical Friction

The black holes in this simulation are inert DM particles, which interact with other par-

ticles only through gravity. Dynamic friction will be the main factor that affect the orbit

properties of BH particles.
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Assuming the density profile of the host halo is a sigular isothermal sphere (SIS):

ρ(r) =
v2
c

4πGr2
(4.13)

where,σ is the velocity dispersion, vc =
√

2σ is the constant circular speed, the dynamic

friction force on the black hole is given by

F =
4πG2M2ρ(r) ln Λ

v2
c

[
erf(X)− 2X√

π
e−X

2

]
= 0.428

GM2

r2
ln Λ (4.14)

where X = vc/(
√

2σ) = 1 for SIS, Λ is the ratio of maximum impact parameter over 90

degree deflectoin radius, and M is the mass of black hole.

This force is tangential to the trajectory of the BH and directed oppsite to the velocity

of the black hole , causing it to luse angular momentum L at a rate

dL
dt

= −Fr '= −0.428 ln Λ
GM2

r
(4.15)

Assuming the black hole orbit is circular without dynamic friction, then with friction, the

black hole continues to orbit at speed vc as it sprials inward, with angular momentum

L = Mrvc at radius r. Thus we have

dL
dt

=
∂L

∂r

dr
dt

+
∂L

∂vc

dvc
dt

= Mvc
dr
dt

(4.16)

Combine the last two equations, we have

r
dr
dt

= −0.428 ln Λ
GM

vc
= −0.302 ln Λ

GM

σ
(4.17)

⇒ tfric =
1.65

ln Λ

r2
i σ

GM
=

1.17

ln Λ

M(r)

M
tcross (4.18)

where ri is the initial radius, M(r) = v2
cr/G is the mass of the host galaxy contained

within radius r, and tcross = ri/vc is the time for black hole to trespass the diameter of
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orbit circle with the same orbit velocity. The last equation gives the time needed for a BH

particle whose orbit is nearly circular to sink to the center of halo with a SIS density profile.

However, this result is approximately correct even for mass distributions other than SIS.

Now, if we loosen the restriction of nearly circular orbit, we can still use Equation 4.17

to roughly estimate tfric for BHs with elliptical orbits at pericenter and apocenter, since

only at these two points the velocity is perpendicular to the radial vector, satisfying the

requirement of circular orbit. At these two points,

M(r)|ra,rp = Mvir

(
r

rvir

)
= Mvir

(
sma

rvir

)
(1± ecc) (4.19)

Thus the maximum and minimum value of tfric is given by

tfric|max,min =
1.17

ln Λ

Mvir

Mbh

(
sma

rvir

)
(1± ecc)tcross (4.20)

For a typical stellar mass seed BHs in a minihalo of 106M�, Mvir/Mbh ∼ 106. If ecc =

0.95, sma = 0.1rvir, and tcross = 10 Myr, tfric,min = 50 Gyr, longer than the age of universe.

The above calculation only considers collisionless matter as the source of dynamical

friction (DF). It has been shown that collisional matter, such as gas, has much stronger

(about 4 times) DF force when the object velocity is comparable to the local sound speed

[150]. However, recent hydrodynamical simulations of accreting BHs suggest that the

DF force from the surrounding gas medium can be greatly reduced due to BH radiative

feedback that causes the ambient gas density to drop [151].
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CHAPTER 5

RESULTS

As mentioned in chapter 3, BH particles are created as DM particle in the simulation after

the death of Pop III stars with masses outside supernove ranges. After we finished the

simulation, we extract all BH particles and Pop III star particles (which depending on

its mass could form a BH after death) at each time step accordingly, and analyze their

properties.

5.1 Formation of stellar-mass black holes

First we count the total number of BHs contained by DM haloes at each time step, and plot

it in Figure 5.1.

We can see that the first Pop III star whose remnant is a black hole forms at z = 25,

when the universe was only 130 Myr old. After z = 18, the number of black hole remnants

steadily increase with time, and tops just above 700 at z ∼ 9. At z > 10, there are two very

short intervals when the number of black holes drops by about 150. Since we only count

black holes that exist inside halos, these dips are caused by black holes wandering outside

of the halos, only to be reincorporated into the halos as they merge to form larger halos.

The endpoints in simulation depend on the stellar mass, which are randomly drawn

from the Pop III initial mass function (IMF). However because the IMF is thought to be

top-heavy, there is a large probability that a large fraction (see table 3.1 of Pop III stellar

remnants are black holes. Refer back to the Simualtion setup chapter (Equation 3.6 for the

function form of it. The randomness of stellar masses of Pop III stars may also affect when

the first black hole forms, but the ∆z should not be more than a few redshift.

This simulation has a volume of 1 comoving Mpc3. The early evolution of the number

of stellar-mass black holes at z > 20 would be different if the simulation volume were
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Figure 5.1: The total number of black hole remnants from Pop III stars that exist inside
of dark matter halos in the simulation. After z = 18, it steadily rises as the Pop III star
formation rate plateaus. The dips in the evolution correspond to black holes temporarily
being ejected from their host halos during mergers.

larger. However, it converges to analytical expectations from Press-Schetcher formalism

[72, 152],

N(M)dM =
1√
π

(
1 +

n

3

) ρ̄

M2

(
M

M∗

)(n+3)/6

exp

(
−
(
M

M∗

)(n+3)/3
)
dM (5.1)

Equation 5.1 predicts the number of objects between mass betweenM andM+dM , where

ρ̄ is the mean (baryonic and dark) matter density of the universe, n is the index of the power

spectrum of the fluctuations in the early universe P (k) ∝ kn, and M∗ is critical mass (see

Equation 1.7, above which structures will form.

Since these black holes are Pop III star remnants, its number is directly tied to the Pop

III star formation rate density, which has been shown to be roughly constant in the range

z = 6 − 20 at a value of Ṁ?,3 ' 3 × 10−5 M� yr−1 cMpc−3 [153, 90], where the lower
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case “c” indicates comoving units.

Now we inspect mass distribution of all halos v.s. mass distribution of halos that host

BHs at four redshifts: z = 9.33, 9.94, 10.69, 12.63 (Figure 5.2). The number of black holes

in these four snapshots all surpass 500, providing a good statistical sample. We can see that

the total halo mass distribution is almost the same across the four redshifts, all peak at

about 105M�, although the number of halos have been increasing, from 2628 to 3511. For

halos with BHs, the mass distribution changed slightly more but still are roughly the same,

peaking at a little over 106M�. On the other hand, the number of halos with BHs stays

roughly the same: 116, 114, 117, 110. This invariance most likely occurs because Pop III

BH remnants form in minihalos at a constant rate but then merge into larger halos as time

progresses. Unlike the total distribution, the mass distributions of halos with BHs changes

slightly more across all four snapshots, with steeper slope at lower mass end decreasing

drastically under 106M�. This is consistent with Pop III star formation theory that most

Pop III stars form in minihalos with masses around 106M� (see Section 1.2.1). Halos with

higher masses have steeper potential and thus are more capable of capturing Pop III stars,

resulting in shallower slopes on higher mass end.

We further investigate the average number of BHs in halos in each bin of masses at

the same four redshifts, shown in Figure 5.3. Here we can see that more massive halos

tend to host more black holes because have deeper potential well which makes forming

and capturing Pop III stars (hence black holes) easier. The rightmost bin of three higher

redshifts seems unusually high, corresponding to a single halo with mass over 108M�. We

believe this seemingly abnormality can be removed if the simulation volume is larger so

that we can have more massive halos that contain BHs.

The population of ∼ 700 black holes gives us a good statistical sample in which we

can calculate the orbital properties and their evolution over time. The biggest question is

whether they can sink to the center of their host halos through dynamical friction or do they

stay in orbits far away from the center. This is a key question in order to estimate the merger
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Figure 5.2: This figure shows the whole halo mass distribution and mass distritution of
halos hosting BHs at four selected redshifts. The blue histograms correspond to all halos,
and red correspond to halos with BHs. The blue patches are scaled to left y-axis with blue
ticks, red patches are scaled to right y-axis with red ticks

rate and possible growth of central black holes before the dawn of galaxy formation.

5.2 Distribution of black holes within the first galaxies

We are interested in the spatial distribution of black holes that are Pop III remnants to

inform us about the possible mergers of these stellar-mass compact objects in the first

galaxies. From the position data of the BHs and the center of their their host halos, we can

calculate the distance between each black hole and the center of its host halo. Since halo

size varies in several orders of magnitude, we scale the distance by the virial radius (rvir)

of the corresponding halos.
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Figure 5.3: Average number of black holes per halo in corresponding mass range

First we look at the fraction of black holes that are within 10% of the virial radius

of the host halo as a function of time (5.4 upper panel). Before z ∼ 18, the fraction

widely varies between 30% and unity. The reason is that, first, the number of black holes is

relatively small at early stages, less than 150 as we can see from Figure 5.1; second, since

the structures forms in a bottom-up fashion (see section 1.2.1, halo shape changes relatively

quickly and halo mergers occurs more frequently. Thus the center of host halos flucutate a

lot. Even at z ∼ 15, we can still see that a major merger occurs and causes a drop in the

fraction by 15% as the progenitor halos and their black holes’ orbits are disrupted. After

that the fraction stabilizes to approximately 50% until z ∼ 15, dropping to 40% afterwards

as more black holes form. The variations subside as they are incorporated into larger halos,

less subject to disruption in major mergers.
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Figure 5.4: The time evolution of radial distribution of black holes. The upper panel shows
the fraction of black holes that are within 0.1rvir (virial radius of host halo). The lower
panel shows the average radial distance of the 100 black holes that are closest to the halo
center.

We now restrict our initial analysis on the radial distribution to the 100 black holes

that are closest to their host halo center at each time step. Before z ∼ 18, we see that

the average flucutates between 3% and 35% for the same reason as in the upper panel.

Besides there are only a little over 100 balck holes in the simulation before this time, so the

averge is influenced by black holes that exist in the outskirts of the halo. However after this

time, the sample is now restricted to the innermost black holes. The average radial distance

dramatically drops to 2-5% of the virial radius with a standard deviations on the order of

a few percent. The major merger at z ' 15 also increases the average radial distance by a

few percent but then it slowly drops afterwards as the halo equilibrates.
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Figure 5.5: The radial distribution at four different redshifts: z = 9.33, 9.94, 10.69, 12.63.
The majority of the black hole remnants are situated within a radius of 0.2rvir in these
snapshots.

After having a general picture of the evolution of radial distribution over time from

Figure 5.4, we further inspect the full radial distribution of BHs at four redshifts: z =

9.33, 9.94, 10.69, 12.63 (Figure 5.5). The number of black holes in these four snapshots all

surpass 500, providing a good statistical sample, and halo properties also become relatively

stable at this stage.

The radial distributions in these four snapshots are overall similar, showing the bulk of

the black holes existing within 20% of the virial radius, while fraction of black holes in the

outskirts (r/rvir > 0.2) of the halo are small and approximately invariant with radius. This

shows that the black holes at these selected times are close to the center of the halo, but
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there is a deficit in the smallest radius bin (r/rvir < 0.02), which is indicative of the black

holes’ orbits not having a high probability of passing through the center of mass of the halo.

Meanwhile, this central concentration is consistent with stellar densities within the first

galaxies, showing that the black holes could have similar dynamics to stellar trajectories in

these early galaxies.

Because these data are only “snapshots” in time and only tell us about the instantaneous

position of the black holes, we must perform an orbital analysis on the black holes to

determine their dynamics and positions within their host halos. In particular by studying

the evolution of the semi-major axis and eccentricity, we can understand whether they sink

to the center or remain in stable orbits. This type of analysis can inform us whether these

stellar-mass black holes are good candidates for black hole mergers in the first galaxies or

do they remain as intermediate-mass black holes (MBH ' 102 − 104M�).

5.3 Black hole orbital properties

As mentioned in the end of last section, to determine the evolution of their orbits, we need

look past the radial distribution, which will be rapidly varying with respect to time. We

perform an orbital analysis at every snapshot in the simulation and present the data from

the same four times that are shown in Figure 5.5. The two primary quantities that describe

an orbit are the semi-major axis and the eccentricity. As a reminder, the details about the

orbital analysis are given Section 4.1.

5.3.1 Halo point mass approximation

In this first stage of analysis, we assume that the gravitational potential is spherical that is

sourced from a point mass with Mvir (Section 4.1.1.

The fraction of black holes with semi-major axis shorter than 0.1rvir flucuates from

54% to over 70%, mostly above 60%. This clearly contradicts the radial distribution plot

in 5.5, which shows less than half black holes are within 0.1rvir range in all four redshifts.
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Figure 5.6: The evolution of the fraction of black holes with semi-major axes less than
0.1rvir. It fluctuates rapidly at early times when there are few black holes, but it marginally
stablizes at z & 14 with the fraction between 54% and 70%.

We believe the contradiction comes from the over-simplicfication of approximating a halo

as a point gravitational source. The point source potential is much steeper than a typical

halo potential profile, thus the orbit of black holes would be much more concentrated to the

center under point source potential than it would be realistically. The fraction of the semi-

major axes within 0.1rvir is slighly higher by ∼ 10% than the fraction of radial distances,

shown in Figure 5.5. This difference could be caused by eccentric orbits that spend more

time at larger distances as their orbital speeds decrease.

The discrepancy is more evident when we look at the distribution of semi-major axis at

the same four redshifts as Figure 5.5 in Figure 5.7. This figure shows the semi-major axes

of the black hole remnants inside halos.

Compared to the raw radial distribution, it is more centrally concentrated because of

the over-centralized point source potential : nearly all of the black holes have semi-major

axes less than 0.2rvir. The total distribution over all halos do not vary much between these
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Figure 5.7: Distribution of orbital semi-major axes in point source approximation at the
same four redshifts in Figure 5.5. Notice that the distribution is much more peaked as the
radial distribution.

four times but it still favors the central portions of the halo, which is consistent with Figure

5.5.

From the distribution of sma alone we can already see that point source potential is

a poor approximation to the real halo potentials. For completeness and comparison with

simulated potential in next section, we went on to plot the distribution of eccentricity.

By calculating the eccentricies, we can determine whether the black holes spend most

of their time in the central regions of the halo or travel to the outskirts or even outside of

the host halo.

As suspected from comparing the radial and semi-major axis distributions, the black

holes are mostly on highly eccentric orbits. Nearly all of the black holes have e > 0.6 with
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Figure 5.8: Distribution of orbital eccentricies in point source approximation at the same
four redshifts in Figure 5.5. Between a quarter and one-third of the black holes are on
highly eccentric orbits. We exclude any unbound black holes in these plots.

around a quarter of the population having e > 0.95. This implies that the black holes will

have a nearly radial orbit as they plunge into the halo center. The highly eccentric orbits

means that the black holes will make passages into the central regions of the halo, where

the densities are higher, which will increase the effects of dynamical friction.

5.3.2 Using the simulated gravitational potential

Having shown that point source approximation did not perform well to for calculating BH

orbits, we now turn to the spherically-averaged simulated gravitational potential (Section

4.1.2, as shown in Figure 5.9.
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Figure 5.9: In simulated potential, orbital property stablizes at reshift z . 18. From upper
panel we see that about 20 percent of all black holes stay inside 0.1 viral radius from the
halo center. From lower panel we see that the averge of 100 shortest semi-major axis is
about 0.05 virial radius, with the same order of variation; and the variation kept decreasing.

When compared to our analysis with the point mass approximation, the fraction of

black holes with semi-major axes below 0.1rvir contains less fluctations. More importantly,

these fractions are substantially decreased from 60–70% in the point-mass approximation

to ∼ 20% when we use the simulated potential, which is consistent with the radial position

distribution shown in the upper panel of Figure 5.5.

The average semi-major axes of the 100 innermost black holes shown in the lower panel

have larger fluctuations at early times (z > 18) but stabilize to nearly about 0.05 rvir in the

end, with standard deviation of the same order in a decreasing trend. Comparing to the

average radial position of 100 innermost black holes, about 0.03 rvir, the average sma is
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Figure 5.10: Distribution of orbital semi-major axes at the same four redshifts in Figure
5.5. Notice that the distribution is no longer as centrally peaked than the radial distribution.

slightly larger.

Figure 5.10 shows the full distribution of sma at the same four redshifts in Figure 5.5.

We see that the distribution here is much less centrally concentrated than the same distri-

bution in point source potential well (Figure 5.7). This change is caused by the shallower

potential well created by the more extended mass distribution in the halo. Moreover, the

distribution is also slightly less concentrated than the radial position distribution, which

means the distance of most black holes are less than the their orbit semi-major axes. Con-

sidering the high eccentricity of most BH orbits, this is a very reasonable result. Similarly,

the total distribution over all halos still do not vary much between these four times, yet still

favors the central portions of the halo.
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Figure 5.11: Distribution of orbital eccentricies at the same four redshifts in Figure 5.5. Be-
tween one-third and one-half of the black holes are on highly eccentric orbits. We exclude
any unbound black holes in these plots.

However, there still exists a deficit in the smallest semi-major axis bin, showing that

these black holes do not live in the very centers of the first galaxies. They orbit at relatively

large radii when compared to the separations needed for black hole mergers if a black hole

exists in the center of the halo.

Figure 5.11 shows the distribution of eccentricity at the same four redshifts. Comapring

to the distribution in point source potential , we can see that the distribution of eccentricity

is more skewed towards 1, which is consistent with the difference in semi-major axes distri-

bution of the two methods. Point source potential is much steeper than the spherical averge

of simulated potential and thus exert more gravitationl force on the black holes, resulting
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Figure 5.12: Distribution of BHs in semi-major axis-eccentricity phase space(sma-ecc) at
the same four redshifts as in Figure 5.5. Color bars represent the number of BHs. We can
clearly see that at all four redshifts, BHs number densities peaks at upper left corner. BHs
with high eccentricity and small semi-major axes have the largest proportion.

in shorter and more circular orbits.

The large eccentricity most likely comes from the orbital angular momentum that is

originally associated with the progenitor halos that merged into the main halo, and there

hasn’t been enough time for this angular momentum to be lost through dynamical pro-

cesses, such as dynamical friction. If dynamical friction plays an important role in the

orbital evolution of stellar-mass black holes, they will slowly sink toward the halo center,

possibly resulting in later black hole mergers. These black holes with high eccentiricities

are prime candidates for mergers because they are the ones that will venture closest to the

halo center and any massive black hole that might exist in the (proto-)galaxy center.
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Figure 5.13: Distribution of the ratio of kinetic energy and potential energy at the same
four redshifts as in Figure 5.5.

By plotting the distribution of BHs in sma-ecc phase space, we can easily see that BHs

tend to reside in the upper left corner, i.e. BHs tend to have short semi-major axis and high

eccentricity. According to the discussion in Section 4.2, this is the most favorable scenario

for the growth of BHs, since the BHs will be able to trespass the central regions of host

halo due to high eccentricity and short orbit, where the density is most likely very high in

the halo. Passage into high density region will not only provide more mass for accretion

on to BHs, but also exert higher dynamical friction to slow them down and keep them near

the center.

We end this subsection by inspecting the kinetic to potential energy ratio for the black

holes to search for any decreasing trends in the kinetic energy. A general decreasing trend
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of the whole distribution could be a sign for the orbital energy loss. The potential energy

slowly varies with time with the potential well deepening as it accretes matter through

smooth accretion from the intergalactic medium and halo mergers. However for a single

orbit, one would expect the ratio of these energies to fluctuate with maximal (minimal)

kinetic energy at the pericenter (apocenter). There are no significant differences in the

|K/U | ratio distributions in these four redshifts. Most of the black holes have ratios lower

than 0.2 with very few black holes having |K/U | > 0.5, which makes sense as the black

holes spend most of their time at large radial distances in highly elliptical orbits. We can

further analyze the evolution of the black hole orbits by a direct inspection of their angular

momentum, which we perform next.

5.3.3 Angular momentum

As discussed in Section 4.2, losing angular momentum due do dynamical friction is a major

cause for BHs to sink to center of halos. Given the position and velocity of BHs w.r.t to

the center of host halos, we can calculate the their angular momentum at each timestep and

see how it evolve over time. Let rbh, vbh, rh, vh denote the position and velocity vectors

of black holes and their host halos, the magnitude of (specific) angular momentum is given

by

L = |(rbh − rh)× (vbh − vh)| (5.2)

We were trying to do the same analysis on angular momentum as we did with the semi-

major axes and eccentricity, hoping to find a decreasing trend in the angular momentum

of some BHs particles and to further estimate the merger rate from the rate of decreas in

angular momentum.

However, as we shall see in the plots below, there are two drawbacks that make this

approach impossible for the purpose of estimating merger rate through angular momentum.

• From the analysis of eccentricity (Figure 5.11 we know that most of the BHs’ orbits

are highly eccentric, which means the angular momentum L in equation 5.2 is very

69



sensitive to the position of halo center and halo velocity. We also know from Section

2.2 that halo center coordinate is the peak density location or center of mass (in our

case the latter), and halo velocity is the density weighted average of all particle ve-

locities. This means that the halo center positions and halo velocities are not smooth

functions over time due to the change of mass distribution inside halos or mergers,

and thus the value of angular momentum fluctuates a lot even for slight changes in

the halo center position and velocity. This is the main reason why this did not work.

• The simulation volume is not big enough. Although we have about 700 BH parti-

cles, many of them exist in halos that have experienced mergers at some point in

the simulation, which are not suitable this type of analysis. The number of BHs that

reside in quiet halos (halos without merger) for long enough time to see a trend of

the evolution of angular momentum (hopefully decreasing) is too small to draw any

statistical conclusion.

One technique that can reduce the noisiness is to iteratively calculate the center of mass of

the part enclosed by the a shrinking sphere until the result converges, but the result is still

not good enough for the purpose of this work

Figure 5.14 illustrate how much the discontinuity in the halo center position can be

amplified in the BH angular momentum. This black hole stays in a halo without major

merger for over 500 timesteps from redshift z ∼ 16 to z ∼ 9, which is the second longest

one in the simulation. It is worth noting that the halo center position curve in the figure is

already optimized using the shrinking sphere technique mentioned above.

The first panel shows the BH angular momentum, which is very noisy. The middle

three panels shows the x, y, z coordinate of halo center and the black hole in code unit.

We can see that the BH coordinate varies in a smooth curve, while halo center position

undergoes slight fluctuation in x coordinate, and has tiny jitteries that are barely discernible

in y and z coorinates. However when we look at the relative position of the BH w.r.t the

halo in the bottom panel, we see that there are two series of significant noisy peaks whose
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redshift cooridnates coincide with the most noisy part of the angular momentum curve, in

the middle between redshift 10 and 11.

The smoothness of BH coordinates curve indicates that this noisiness in BH angular

momentum is solely because of the discontinuity of halo center position, which is inevitable

given how these halos are identified numerically. Even if the halo center fluctuates only a

few percent, for black holes that are close to the center, e.g. with sma < 0.1rvir, the

difference is still significant.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In order to study seed black hole formation and evolution, we ran a cosmological simulation

that incorporated star formation, stellar feedback and Lyman-Werner radiation background.

We evolve a comoving simulation volume of 1 Mpc3 from redshift z ∼ 130, and output

over 800 data sets from redshift z ∼ 16 to z ∼ 9, about one per 0.5 Myr. We then find

all the DM halos in each snapshot with ROCKSTAR and extract all seed BHs that reside

in halos and calculate their orbits in spehrically-averaged potential field characterized by

semi-major axis and eccentricity.

The first seed BH appeared at z ∼ 25, and the number steadily grow into around 700

after z ∼ 10 (Figure 5.1). Most black holes exist in minihalos with massesMBH > 106 M�

(Figure 5.2), which is consistent with their birthplaces. Halos in higher mass range tend to

have higher number of BHs per halo (Figure 5.3).

In order to caculate orbital properties, we use point mass potential and spherical average

of simulated potential to approximate the potential field. They both have spherical sym-

metry which allows us to solve for semi-major axis and eccentriciy from simple equations.

Point mass potential turned out to be a bad approximation since its potential well is much

steeper than a extended halo potential, resulting in over-concentration around the center

of halos, contradicts the actual radial distribution (Figure 5.5, 5.7). Spherical average on

the other hand is a much better approximation. In this potential, about 20% of all black

holes have semi-major axes (sma) less than 0.1rvir, and the average of 100 smallest sma

drops to about 0.05rvir at z ∼ 9. Between one-third and one-half black holes are on highly

eccentric orbits, with ecc > 0.95. BHs with both of these properties comprise a significant
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percentage (around 10%, Figure 5.12) of the whole population, and are primary candidates

for sinking to the halo center. Although some black holes might sink to the center, the dy-

namical friction timescale is comparable to the Hubble time. This suggests that most stellar

mass black holes will not migrate to the center, co-existing with the stellar population of

the galaxy.

A further goal of this work is to estimate the merger rate from the sample of seed

BHs through loss rate of angular momentum. The angular momentum is calculated as

the cross product of relative position and relative velocity between BH and halo center.

Unlike the BH positions which are calculated self-consistently from the hydrodynamic and

Poisson equations, halo centers are artificially assigned as density peak or center of mass,

either of which result in jitteries in their position and velocity evolution. Furthermore,

since many BHs have small sma and high ecc, their angular momentum are very sensitive

in discontinuity of halo center positions. Therefore, BHs angular momentum w.r.t. halo

center defined this way is too noisy for calculating merger rate (Figure 5.14). Possible

remedies is proposed below in Section 6.2.

6.2 Future work

There are several possible routes along which this work can be improved.

• We may reduce the nosiness in angular momentum by using minimum location of

potential field instead of center of mass of halo. First, potential field is born to be

much more smoother than density field (consider a point mass and its potential field).

Second, it’s potential field that directly interact with BHs keeps them orbitting around

instead of density field. Using potential field seems more natural. Lastly, potential

field in the simuation is calculated self-consistenly from mathematically rigorous

Poisson equation, carrying much less artifact than halo-finding process. This way,

we may have a better chance to calculate merger rates of BHs properly.
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• The BHs in this simulation are inert. They do not accrete mass or generate feedback,

which is part of the reason why the dynamical friction time scale is so long. We can

add accretion and feedback module into the simulation. This will inevitably increase

computing time, but we will have a clearer picture of how accretion and feedback af-

fect the orbits of BHs, which might either increase or decrease the dynamical friction

time scale.

• We may increase the simulation volume to include more BHs and massive halos

that host BHs. Larger samples can give more statistically justified results with less

uncertainties.

Black hole formation and evolution has long been an active field and difficult problem

to tackle for the lack of observation and associated extreme physical properties. For all the

progress made during the past decades in the field of black hole formation and evolution,

many mysteries still remain. With more advanced observation telescopes such as James-

Webb Space Telescope launching soon, and ever-increasing computing power, I am sure

more and more exciting discoveries will be made in this area in the near future.
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