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INTRODUCTION

The understanding and ability to manipulate fluids at the nano-scale is a matter

of continuously growing scientific and technological interest [1, 2, 3, 4]. This topic

is crucial for the design of nano-fluidic devices, and for a better understanding of

aquaporine behavior, protein ion channels functionality, and clay swelling [5, 6, 7].

Fluid flow in nano-confined geometries is relevant in biology, polymer science and

geophysics. Confined fluids exhibit unique structural, dynamical, and mechanical

properties that are different from those of the bulk liquids. Their behavior depends

on the degree of confinement, shear rate, temperature, fluid molecular structure, and

interactions with boundaries. Surprising effects have been found when liquids are

confined to nano-gaps. For example, the electric field induced freezing of water at

room temperature [8] and the spontaneous condensation of water in under-saturated

pressure at room temperature [9, 10, 11].

Early studies proved that squeezing a molecular liquid between two surfaces leads

to oscillating solvation forces and an increase of the shear viscosity [12, 13, 14, 15, 16].

The idea is that, due to confinement, more “order” is induced in the fluid and as a

consequence, its viscosity increases. Furthermore, when the distance between the

two surfaces is of the order of the liquid molecule, oscillating forces are observed due

to transitions between “more” ordered and “more” disordered states, i.e. solvation

shells. Indeed, the period of these oscillations is the molecular dimension of the liquid.

However, as some agreement has been reached on the behavior of non-polar complex

liquids [16, 17, 18, 19, 14, 20], the structure and dynamics of nano-confined water

remain unclear despite the intense scientific scrutiny. Some studies show that the

structure of nano-confined water is ice-like [21, 22, 23], some researchers find a liquid
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phase [24, 25, 26] and other investigations suggest a gas-like behavior [27, 28, 29, 31].

Controversial results have also been found about solvation shells [32, 24, 33, 34,

35]. This controversy is partially due to experimental limitation, in term of force

resolution, spacial resolution and confining-surfaces choices. These limitations have,

for example, prevented an understanding of how the topography and wettability of the

confining surfaces determine the structural and dynamical response of nano-confined

water.

Oscillating solvation forces in water have only been experimentally measured when

at least one of the two confining surfaces was hydrophilic [32, 33, 36]. Experiments

on graphite (hydrophobic) have suggested the absence of oscillations in force-distance

curves [37]. Molecular dynamics simulations show that when water is confined be-

tween hydrophobic surfaces, a gas like structure can be promoted [29, 30]. Also X-ray

reflectivity [27] and neutron scattering measurements [28, 31] have highlighted a gas-

like water structure at the interface of a hydrophobic polymer floating on water. This

suggests that chemistry and wettability of the confining surfaces might play a key

role in determining water structure.

The key questions of this thesis are the following:

1. What is the structure and dynamics of water in the close proximity of a solid

boundary surface?

2. What is the role of surface roughness and wettability?

3. How does water differ from other liquids?

This thesis explores the structure and dynamic properties of liquids enduring

nano-confined geometries. In the chapter I of this thesis, we present an overview

of the basic concepts of the physics of confined fluids, as well as a brief review of

the different methods used to study surface forces in liquids at the nano-scale. In

the experiments presented in this thesis, we measure the properties of nano-confined

liquids by means of state-of-the-art atomic force microscopy (AFM) techniques (see
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Figure 0.0.1: The schematic of the experimental setup used in this thesis.

chapter II). The force acting on the AFM tip is measured while the tip approaches

the sample surface in liquid and the liquid molecules in between the tip and sample

surface are naturally confined (as shown in Fig. 0.0.1). Furthermore, the tip is oscil-

lated laterally (parallel to the surface) while the approaching, thus the lateral force

is measured simultaneously with the normal force and the distance between the tip

and sample. By utilizing information from the measured normal and lateral force,

the structural and dynamical properties of nano-confined liquids are investigated.

In chapter III, we show the experiments that find oscillatory solvation forces for

hydrophilic surfaces (mica and glass) and less pronounced oscillations for a hydropho-

bic surface (graphite). In this chapter, we also present lateral force measurements that

indicates , for sub-nanometer hydrophilic confinements, orders of magnitude increase

of the viscosity with respect to bulk water, agreeing with a simulated sharp decrease

in the diffusion constant. No viscosity increase is observed for hydrophobic surfaces.

Chapter IV presents the results of the dynamic response of nano-confined fluids.

In this part of the research, the shear rate of the AFM tip is changed in a large

range of values by using different shear amplitudes and/or frequencies. Surprisingly,
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the viscoelastic response of nano-confined water is not linear; more specifically, it

depends on shear amplitude. Furthermore, we observe the same non-linear behavior

in both nano-confined water and nano-confined silicon oil. This highly non-linear

behavior can be described by a theory developed for bulk complex fluids, e.g., colloid

system, glassy materials, or gels. The origin of this non-linear phenomenon is the

extremely slow intrinsic relaxation time of the nano-confined liquid molecules. By

analyzing the viscoelastic behavior of nano-confined water, the intrinsic relaxation

time is found to be about 10 orders of magnitude slower than that of bulk water.

This value is comparable with the dielectric relaxation time measured in supercooled

water at 175 K. In other words, the local temperature seems to be reduced by the

confinement that reduces the thermal motion of the “trapped” molecules.

Based on the results of this thesis, two future developments are proposed in chap-

ter V. In the first section of chapter v, we introduce the concept of “slip length” that

provides an interpretation of the different viscous behavior observed with hydrophilic

and hydrophobic confinements. In the second section, we propose new method to

study confined liquids by means of nano-fabricated surfaces. Based on a new chem-

ical nano-lithography technique developed in our group [38], we envisage to design

confinement geometries with the desired chemical properties and dimensions. Some

ideas based on this unique ability of manipulating nano-confined geometries are pre-

sented and discussed.
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SUMMARY

In this thesis, we investigate the structural and dynamical properties of nano-confined

liquids by means of a new AFM-based technique that has the ability to measure

normal force, lateral force, and the distance between the AFM tip and the sample

simultaneously. Thanks to the mechanical stability of our apparatus, a judicious

choice, and a new mechanical drift analysis, we are able to measure the tip-sample

distance with sub-angstrom resolution, all the way down to the last liquid layer.

For tip-surface distances, 0±0.03 nm < d < 2 nm, experiments and grand canon-

ical molecular dynamics simulations (performed by Prof. Landman’s group) find os-

cillatory solvation forces for hydrophilic surfaces, mica and glass, and less pronounced

oscillations for a hydrophobic surface, graphite. For sub-nanometer hydrophilic con-

finement, the lateral force measurements show orders of magnitude increase of the

viscosity with respect to bulk water, agreeing with a simulated sharp decrease in the

diffusion constant. No large viscosity increase is observed for hydrophobic surfaces.

Furthermore, the viscoelastic dynamics of nano-confined wetting liquids is stud-

ied. We observe a nonlinear viscoelastic behavior remarkably similar to that widely

observed in metastable complex fluids. We show that the origin of the measured

nonlinear viscoelasticity in nano-confined water and silicon oil is a strain rate depen-

dent relaxation time and slow dynamics. By measuring the viscoelastic modulus at

different frequencies and strains, we find that the intrinsic relaxation time of nano-

confined water is in the range 0.1− 0.0001 s, orders of magnitude longer than that of

bulk water, and comparable to the dielectric relaxation time measured in supercooled

water at 170− 210 K.
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CHAPTER I

FUNDAMENTALS

In this thesis, the rheological properties of nano-confined liquids are studied by mea-

suring the interaction forces between two surfaces sandwiching the liquid. In order to

interpret the force measurements in this thesis, it is necessary to understand all the

interactions that participate in the force measurements.

In the first section of this chapter, we will discuss the surface forces acting between

the surfaces of two solids. After discussing the force between two surfaces sandwiching

liquids, it is essential to discuss the properties of the confined liquid itself, which is

the main purpose of this thesis. As it will become clear in chapter III and IV, the

viscoelasticity theory used to describe the rheological behaviors of the soft matter,

such as polymers, gels, or glassy materials is a good theoretical tool for interpreting

the rheological behaviors of nano-confined liquids.

Since the major technique used in this thesis is the atomic force microscopy

(AFM), a brief review of AFM is presented in third section of this chapter.

In the final part of this chapter, we will present and compare some previous

remarkable studies on nano-confined fluids performed by other groups by means of

other apparatus or techniques.

1.1 Surface Forces

1.1.1 Van der Waals Force

By definition, the van der Waals (vdW) force is a relatively weak attraction between

neutral atoms and molecules arising from the polarization induced in each particle

by the presence of other particles. In order to interpret the Van der Waals force, we

need to understand all the interactions related to dipoles.
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From the classical electro-magnetic theory, the Coulomb potential between two

electric charges in vacuum is:

V =
Q1Q2

4πε0 · d (1.1.1)

where Q1 and Q2 are the charges, d is the distance between them and ε0 is the

permittivity of free space. From the Coulomb potential, the energy between two

dipoles can be calculated, and it is known as the Keesom energy [39]:

V = − µ2
1µ

2
2

3(4πε0)2kBT

1

d6
(1.1.2)

where, µ1 and µ2 are the dipole moments for these two dipoles. Also the energy

between a static dipole and a polarizable molecule can be calculated, and it is known

as the Debye energy [40]:

V = − µ2α

(4πε0)2

1

d6
(1.1.3)

where the α is the polarizability defined as µind = αE, where E is an external applied

electric field and µind is the dipole moment induced by the electric field.

The next term of the dipole-related potential energy is the one between two polar-

izable molecules. A proper calculation of this interaction needs quantum mechanics

perturbation theory, but the general form of the result can be obtained by the fol-

lowing simple argument [43]. In the Bohr model of the hydrogen atom, the smallest

orbital radius, a0, is the ground state and Bohr calculated that:

a0 =
e2

8πε0hν
(1.1.4)

where e is the proton charge, h is Planck’s constant, and ν is a characteristic frequency

associated with the electron’s motion around the nucleus. Although the H atom has no

permanent dipole, it can be regarded as having an instantaneous dipole momentum,

p ≈ a0e. The electric field of this instantaneous dipole at a distance d is:

E ≈ p

4πε0d3
≈ a0e

4πε0d3
(1.1.5)
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If a polarizable molecule is nearby, it is polarized by this electric field and the induced

dipole momentum is:

p′ = αE ≈ αa0e

4πε0d3
(1.1.6)

The potential between p and p′ is then:

V = − pp′

4πε0d3
= − αa2

0e
2

(4πε0)2d6
(1.1.7)

The d−6 distance dependence and the main physical coefficients are the same as in

the result deduced from the perturbation theory. Instead of two hydrogen atoms,

the general situation of two molecules can be obtained as the London dispersion

Energy [41]:

V = −3

2

α1α2

(4πε0)2

hν1ν2

(ν1 + ν2)

1

d6
(1.1.8)

where hν1 and hν2 are the ionization energies for these two molecules.

The vdW force is the sum of the Keesom, the Debye and the London dispersion

interaction, i.e., all the terms that consider dipole interactions. All three terms contain

the same distance dependence, V ∝ d−6, and usually the London dispersion term is

dominating. By integrating over different geometries, the vdW potential energy for

several commonly used geometries can be calculated and they are shown in Fig. 1.1.1.

The geometry of our AFM experiments where a silicon conical tip approaches a

flat mica surface in water, can be represented by a sphere and half-space, with the

d ¿ R approximation, the vdW force can be written as (see Fig. 1.1.1):

F = −AR

6d2
(1.1.9)

The AFM tip radius is R ∼ 30 nm and the Hamaker constant for mica/silicon in

water is A ∼ 10−19 J. The van der Waals force at d = 1 nm is thus ∼ 0.5 nN.

1.1.2 Electrostatic Force

As mentioned in section 1.1.1, the vdW force between two particles in a medium is

always attractive. Therefore if the vdW force is the only interaction, all dissolved
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Figure 1.1.1: The Van der Waals potential for several common geometries. The
Hamaker constant A is defined as A = π2Cρ1ρ2 where ρ1 and ρ2 are the number of
atoms per unit volume in two bodies and C is the coefficient in the atom-atom pair
potential. V1 and V2 are the potentials for the dimension of the objects much larger
and smaller than the distance (d), respectively.
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particles are expected to stick together (coagulate) as a mass of solid material in

liquids. Also our bodies will be subject to the same fate since we are composed

of 75% water. However, it does not happen, because particles suspended in water

or in any other liquid with high dielectric constant, are usually charged, and the

repulsive electrostatic force prevents the coagulating. Other repulsive forces that also

can prevent the coagulating, will be presented in following sections.

The charge of the particle surface in liquids has two origins: i) the ionization

or dissociation of surfaces and ii) the adsorption of ions from the solution onto an

uncharged surface. In some ionic conditions, even the air-water and hydrocarbon-

water interfaces can become charged in this way. Whatever the charging mechanism,

the final surface charge is balanced by the counterions present in the solution, which

are bound or usually transient to the surface, as shown in Fig. 1.1.2. These charged

regime is usually called the diffuse electric double layer, thus the force due to it is

called the double layer force.

Because of the charged surfaces, the ions density in the solution is going to be

redistributed and the potential energy is no more a constant in between the two

flat charged surfaces as shown in Fig 1.1.2. From classical electro-magnetism, the

potential energy (per unit area) between these two charged surfaces can be written

as [13]:

V (d) = 64πkTC0γ
2λD ≈ 2σ1σ2λD

εε0

e
− d

λD (1.1.10)

where C0 is the ion concentration, γ = 1
2
[tanh( e0Ψ1

4kBT
)+tanh( e0Ψ2

4kBT
)] (ψ1 and ψ2 are the

effective surface energy of the two surfaces in water and e0 is the electron charge),

σ1 and σ2 are the surface charge density of the two plates, ε is the permittivity of

the liquid in between the plates, and λD is the Debye Length. The magnitude of the

Debye length depends only on the properties of the liquid and not on any property of

the surfaces such as its charge or potential. At room temperature, the Debye length
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Figure 1.1.2: The schematic of the charge density and potential energy of the double
layer effect between two plates separated by a distance d. Vx and ρx are the potential
energy and charge density as the function of x.
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of aqueous solution is:

λD =
0.304√
[NaCl]

nm for 1 : 1 electrolytes (e.g., NaCl) (1.1.11)

=
0.176√
[CaCl2]

nm for 1 : 2 electrolytes (e.g., CaCl2) (1.1.12)

=
0.152√

[MgSO4]
nm for 2 : 2 electrolytes (e.g., MgSO4) (1.1.13)

The double layer force together with the van der Waals force constitute the DLVO

theory (Derjaguin, Landou, Verwey, and Overbeek).

1.1.3 Derjaguin Approximation

In order to derive the double layer interaction in different geometries, the straightfor-

ward method is to integrate the point-to-point potential energy over all the surface

area. It is very time consuming. Fortunately, a useful approximation can be easily

used to derive the force between two curved surfaces from the potential energy per

unit area between two planar surfaces. This approximation is based on the situation

that the distance between these two surfaces is much smaller than the radii of them,

d ¿ R1, R2. For two spherical surfaces, the force is:

F (d) ≈ 2π(
R1R2

R1 + R2

)V (d) (1.1.14)

where F (d) is the interacting force between two spheres and V (d) is the interacting po-

tential energy (per unit area) between two plates of the same material of the spheres.

This is called the Derjaguin approximation [42]. It is applicable to any type of force

law, whether attractive, repulsive, or oscillatory, as long as the condition d ¿ R1, R2

is satisfied. Also, the Derjaguin approximation for two right-angle-crossed cylinders

gives:

F (d) ≈ 2π
√

R1R2V (d). (1.1.15)
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Note that for two cylinder of equal radii (R1 = R2 = R), it reduces to the same result

as for a sphere of radius R near a flat surface:

F (d) ≈ 2πRV (d). (1.1.16)

By applying the Derjaguin approximation to Eq. 1.1.10, the double layer force

between a sphere and a flat surface is given by:

F (d) ≈ 4πRσ1σ2λD

εε0

e
− d

λD . (1.1.17)

The other practical form of Eq. 1.1.17 can be written as:

F (d) = αλDRγ2 exp(− d

λD

) (1.1.18)

α = 128πC0 kBT

γ =
1

2
[tanh(

eΨ1

4kBT
) + tanh(

eΨ2

4kBT
)]

where kB is Boltzmann’s constant, T is the absolute temperature, λD is Debye length,

R is the spherical radius, e is the electron charge, Ψ1 and Ψ2 are the effective surface

energies of the two surfaces in the liquid, Co is the ionic concentration.

In our AFM experiments, when a silicon tip approaches a flat mica surface in

water, the surface charge density of mica and silicon are σmica ≈ −0.0025 C/m2

and σsilicon ≈ −0.032 C/m2; the permittivity of water and vacuum are εwater =

80 C2/m2N and ε0 = 8.8542 × 10−12 C2/m2N ; the Debye length for water in air is

λD = 0.304√
10−6

≈ 300 nm (pH value of water in air is ∼ 6), and the radius of the tip

is R = 30 nm. The double layer force at d = 1 nm is about 12 nN, which is much

larger than the van der Waals force. However due to the extremely long Debey length

of water in air, the double layer force is very uniform for a short distance range (as

shown in Fig. 1.1.3), which is the range where we measure forces in our experiments

on nano-confined liquids.
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Figure 1.1.3: The numerical result of the double layer and van der Waals force
for a silicon tip approaching the flat mica surface in water. The double layer force
dominates the DLVO until the distance smaller than 1 nm. The inset shows both of
them for d < 10 nm, which is the same regime of our experiment.

1.1.4 Structural Force

When the distance between two surfaces or particles in liquids is smaller than several

nanometers, continuum theories of van der Waals and electric double layer forces usu-

ally fail to describe the interaction between them. This is because either one or both

the DLVO forces break down or there are non-DLVO interactions come into play at

small separations. These non-DLVO forces can be monotonically attractive, mono-

tonically repulsive, or oscillatory in different circumstances, e.g., different geometries,

different liquids, or different surfaces.

In order to understand how the structural force behaves between two surfaces,

we have to know the way solvent molecules pack themselves on an isolated surface.

Previous studies indicate that the liquid density profile does not oscillate at a liquid-

vapor or liquid-liquid interface, but a very different situation arises at a liquid-solid

interface [44]. The geometric constraining of the solid wall and the attractive inter-

action between a solid wall and liquid molecules and force the liquid molecules to
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Figure 1.1.4: The schematic of the density profile of the liquid molecules on an
attractive flat surface. a is the diameter of the liquid molecules.

structure into quasi-discrete layers. This layering is reflected in a oscillatory density

profile as shown in Fig. 1.1.4, which extend several molecular dimensions into the

liquid.

Now, we consider two of the same isolated surfaces in the liquid, approaching to

each other. During the approaching, the interaction between them can be described

by the DLVO forces until the distance between them is less than some molecular

dimensions. The interacting force between the two surfaces starts to oscillate with

the distance due to the transition between layering and non-layering structures, see

Fig. 1.1.5. In a first approximation, the oscillation in terms of pressure between these

two surfaces may be described by an exponentially decay cos-function:

P (d) ≈ −kTρf (∞) cos(2πd/a)e−d/a (1.1.19)

where k is the Boltzmann constant, T is the temperature, ρf (∞) is the bulk liquid

density, d is the distance between these two surfaces, and a is the radius of the liquid

molecule.
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Figure 1.1.5: The schematic of the interacting force between two flat surfaces sep-
arated by distance d. Due to the transition between layered and non-layered liquid
molecules by varying the distance, the interacting force is oscillating with d.

1.1.5 Hydrodynamic Force

The motion of a particle moving in a liquid can be described by the equation:

η52 −→v −5P + Fb = ρf (
∂−→v
∂t

+−→v · 5−→v ) (1.1.20)

where −→v is the velocity of the fluid flow past the particle, ρf is the fluid density, P is

the pressure, η is the dynamic viscosity of the fluid, t is the time, and Fb is the body

volume force exerted on the particle. For a spherical particle under gravity (−→g ), Fb

is:

−→
Fb =

4

3
πR3(ρp − ρf )

−→g (1.1.21)

where ρp and R are the density and radius of the particle. For incompressible liquids,

we have:

5 · −→v =
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
= 0 (1.1.22)

Equations 1.1.20 and 1.1.22 together are called the Navier-Stokes equation. The

Navier-Stokes equation is a highly non-linear equation and the complete solution
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Figure 1.1.6: A spherical particle approaching a flat surface.

only exits for simple geometries. Fortunately, in most of the cases, the hydrodynamic

steady-state is established very quickly, then the ∂−→v
∂t

can be neglected. Also, due to

the small particle size (≤ µm), the Reynolds number is small ( Re = |ρ−→v ·5−→v |
|η52−→v | = ρvR

η
≤

10−2 [43]) and the convective force term (ρ−→v · 5−→v ) can be neglected respected to

the viscous force term (η52−→v ). By considering a sphere particle driven to approach

a plane surface in liquids (Fig. 1.1.6), the body force Fb can be neglected. Therefore,

the Navier-Stokes Eq. becomes:

η52 −→v = 5P (1.1.23)

After taking the non-slip boundary condition and the geometric symmetry in Fig. 1.1.6

into account, the hydrodynamic force between the spherical surface of the particle and

the plane can be deduced as [45]:

F = −6πηR2

h

dh

dt
(1.1.24)

In our experiments, for an AFM tip approaching to a flat mica surface in water,

the approaching speed is 0.2 nm/s, the tip radius is 30 nm, and the viscosity of bulk

water is about mPa·s (10−3 kg/m·s). The force at d = 1 nm should be about 3×10−10

nN, which is way too small for the sensitivity of our AFM force measurements.
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Figure 1.2.1: Schematic of how the soft material behaves in between two plates when
one plate is moving and the other one is stationary.

1.2 Viscoelasticity of Soft Matter

1.2.1 The General Response to Shearing Stress

The ideal behavior for an elastic solid experiencing a tensile stress ST is described by

the Hook’s Law:

ST = F/A = Y γ (1.2.1)

where Y is called the Young’s modulus of the material. The strain γ is in this case

the relative change in length. The corresponding behavior under a shearing stress is

described as:

S = F/A = Gγ (1.2.2)

where G is the shear modulus of the material and γ is defined as γ = tan α = 4x/h,

as shown in Fig. 1.2.1. Many solids follow Eq. 1.2.2 for small stresses. Under a limit

stress SL, they will recover completely when the stress is removed. If S > SL, the

material suffers permanent deformation, i.e., flow or creep occurs and the solid has

begun to exhibit some of the characteristics of a plastic or liquid.

For an ideal liquid-like material, the applied shearing stress is directly proportional

13



to the rate of strain (γ̇ = dγ/dt):

S = ηγ̇ (1.2.3)

where the proportionality constant, η, is the viscosity of the liquid-like material. Con-

sider the situation shown in Fig. 1.2.1 where the liquid material is confined between

two plates (z = 0 and z = h). The lower plate is stationary and the upper plate is

being pulled at a velocity, v, by the shearing stress. It is assumed that the liquid in

contact with both the planar surfaces has no slippage against these surfaces. Thus,

the velocity of the liquid confined between these plates has a gradient as shown in

Fig. 1.2.1. The rate of shear/strain, γ̇, for this simple shear regime is equal to the

velocity gradient v/h. In the more general case γ̇ = dv(z)/dz.

However, in most of the cases, the study of soft materials reveals that either liquid-

like or solid-like behavior is an exception. In general, a soft material is viscous and

elastic (for example, the clay minerals). Such materials are said to be visco-elastic

and they may be intrinsic liquid or solid depending on which state is dominant. For

the viscoelastic materials, the history of deformation may influence its present state.

An introduction to this theory is given in Ref. [46]. By the effect of the sequential

change in strain is assumed to be additive, the stress for general viscoelastic materials

can be written as:

S(t) =

∫ t

−∞
G(t− t′)γ̇(t′)dt′ (1.2.4)

where G(t) is called the shear/relaxation modulus.

1.2.2 The Response to an Oscillating Strain

Consider a viscoelastic material that undergoes a periodic strain with frequency ω:

γ = γ0 sin ωt (1.2.5)

and

γ̇ = ωγ0 cos ωt. (1.2.6)
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where the γ0 is the amplitude of the strain. By substituting γ and γ̇ into Eq. 1.2.4

with t− t′ = τ , the time dependent stress can be written as:

S(t) =

∫ ∞

0

G(τ)ωγ0 cos[ω(t− τ)]dτ (1.2.7)

= γ0[ω

∫ ∞

0

G(τ) sin ωτdτ ] sin ωt + γ0[ω

∫ ∞

0

G(τ) cos ωτdτ ] cos ωt (1.2.8)

τ is called the relaxation time which is the time needed for a material to relax back

to the original shape under a stress. Thus, when τ → ∞, the shear modulus will

converge and the material is liquid-like since a liquid can not permanently support a

shearing stress. The terms in square brackets are functions of ω but not t and we can

write

S(t) = γ0(G′ sin ωt + G′′ cos ωt) (1.2.9)

where G′ is a modulus that measures the ratio of the in-phase stress to the strain.

This is the shear storage modulus, which is the elastic part of the viscoelastic material.

On the other hand, the G′′ is the out-of phase modulus (shear loss modulus), which is

the viscous part of the viscoelastic material. For a purely elastic material, the stress

and strain are in phase and G′′ = 0 and G′ = G. For a purely viscous liquid (G′ = 0),

according to Eq. 1.2.3:

η = S/γ̇ = S/[ωγ0 cos ωt] = G′′/ω. (1.2.10)

Since the the viscoelastic behavior can also be described by the phase lag, δ,

between stress and strain. The stress can also be written as:

S = S0 sin(ωt + δ) = S0 cos δ sin ωt + S0 sin δ cos ωt (1.2.11)

By comparison with Eq. 1.2.9, we have:

G′ =
S0

γ0
cos δ (1.2.12)

G′′ =
S0

γ0
sin δ. (1.2.13)
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Figure 1.2.2: The schematic of the Maxwell model and Voigt model for viscoelastic
materials.

1.2.3 Maxwell Model and Voigt Model

The simplest mechanical model analogous to a viscoelastic system is one elastic spring

coupled with a damping dashpot, either in series (Maxwell Model) or in parallel (Voigt

Model) (as shown in Fig. 1.2.2).

Following the Maxwell model for a material under a periodic strain as in Eq. 1.2.5,

the shearing storage and loss modulus can be written as [46]:

G′ =
G0ω

2τ 2

1 + ω2τ 2
(1.2.14)

G′′ =
G0ωτ

1 + ω2τ 2
. (1.2.15)

where τ is the relaxation time which is a measure of the time required for stress

relaxation. For the Voigt model, we have:

G′ = G0 (1.2.16)

G′′ = G0ωτ ′. (1.2.17)

where τ ′ is defined as the retardation time which is a measure of the time required for

the extension of the spring to its equilibrium length while retarded by the dashpot.

It is important to point out that the Maxwell model describes stress relaxation

instead the Voigt model does not. A simple picture for interpreting these models, is

16



to consider a sudden strain applied to both of them at t = 0 and the strain is fixed

as a constant for t > 0. In the Voigt model, the deformation of the spring is fixed

with the fixed strain and the stress (proportional to the force) is fixed, too. There is

no stress relaxation in this circumstance. In the Maxwell model, the deformation of

the spring is going to relax while the damping dashpot relaxes. In this circumstance,

the stress is not a constant and decays with time.

1.3 Surface Force Measurements: Atomic Force Microscopy

The atomic force microscopy is the most popular and powerful tool for measuring

forces at the nano-scale since it was invented in 1986 [47]. It is a cantilever-based

technique for imaging topology and measuring forces. Figure 1.3.2 shows how the

AFM detects forces. The tip is located at the end of the cantilever and facing down

toward the sample surface. A piezo scanner is used to move the cantilever/tip in x-,

y- and z-direction by applying voltages to deform the piezo as shown in Fig. 1.3.1.

Forces between the tip and the sample surface cause the cantilever to bend, or deflect.

The normal force acting to the apex of the tip makes the cantilever to bend and the

lateral force makes the cantilever to torque. A laser is projected onto the back of the

cantilever and its reflection is detected by a four-quadrant-photo-detector as shown

in Fig. 1.3.2. The bending of the cantilever makes the position of the laser reflection

change normally (up and down) on the photo-detector. The torsion of the cantilever

makes the same laser spot to change laterally (left and right) on the photo-detector.

Normal forces are measured by detecting the change of intensity difference between

the upper and lower parts of the photo-detector (∆[(A + B) − (C + D)]). Lateral

forces are measured by detecting the change of intensity difference between left and

right parts (∆[(A + C)− (B + D)]).
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Figure 1.3.1: The schematic of a piezo scanner tube used to drive the AFM tip in
x- and y-direction. By applying a voltage to four individual ports of the tube, the tube
can be manipulated to bend in x- and y-direction and to drive the tip mounted on it
(not shown here). In our AFM, the z-position of the tip is manipulated by another
separated piezo, which only deform in one direction (not shown here).

1.3.1 Contact AFM

In contact AFM mode, also known as repulsive mode, an AFM tip makes soft “phys-

ical contact” with the sample. The tip is attached to the end of a cantilever with a

low spring constant, lower than the effective spring constant holding the atoms of the

sample together. As the piezo gently traces the tip across the sample (or the sam-

ple under the tip), the contact force causes the cantilever to bend to accommodate

changes in topography. Or, a feedback loop maintains a constant bending/force on

the sample by adjusting the height of the cantilever to compensate for topographical

features.

When the tip is brought to within less than 10 nm of the sample surface , the

resulting interacting forces can be represented by a Lennard - Jones intramolecular
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Figure 1.3.2: In a typical AFM, a four-quadrant photo-detector is used to detect the
bending and torsion of the cantilever to measure the normal and lateral forces.

potential:

V (d) =
α

d12
− C

d6
(1.3.1)

where d is the distance between molecules and α and C are constants. The behavior

of the Lennard-Jones potential is shown in Fig. 1.3.3. The second term is the van

der Waals energy (as shown in Fig. 1.1.1). The first term is repulsive and is the

electrostatic repulsion felt by electrons in each molecule during orbital overlap. As

the atoms are gradually brought together, they first weakly attract each other (vdW

force). This attraction increases until the atoms are so close together that their

electron clouds begin to repel each other electrostatically. This electrostatic repulsion

progressively weakens the attractive force as the interatomic separation continues to

decrease. The force goes to zero when the distance between the atoms reaches a

couple of angstroms, about the length of a chemical bond.

The slope of the curve is very steep in the repulsive or contact regime. As a result,

the repulsive force balances almost any force that attempts to push the atoms closer

together. In AFM this means that when the cantilever pushes the tip against the
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Figure 1.3.3: The schematic of the Lennard-Jones potential. The α and C are
constants. The attractive term is van der Waals potential, which is described in
section 1.1.1.

sample, the cantilever bends rather than forcing the tip atoms closer to the sample

atoms. Even if you design a very stiff cantilever to exert large forces on the sample,

the interatomic separation between the tip and sample atoms is unlikely to decrease

much. Instead, the sample surface is likely to deform (nanoindentation).

In addition to the repulsive force described above, two other forces are generally

present during contact AFM operation in air: a capillary force exerted by the thin

water layer often present in an ambient environment, and the force exerted by the

cantilever itself. The capillary force arises when water wicks its way around the tip,

applying a strong attractive force (about 10−8 N) that holds the tip in contact with

the surface. The magnitude of the capillary force depends upon the tip-to-sample

separation. The force exerted by the cantilever is like the force of a compressed spring.

The magnitude and sign (repulsive or attractive) of the cantilever force depends upon

the deflection of the cantilever and upon its spring constant.

Most AFMs currently on the market detect the position of the cantilever with

optical techniques. In the most common scheme, shown in Fig. 1.3.2, a laser beam

bounces off the back of the cantilever onto a position-sensitive photo-detector (PSPD).

As the cantilever bends, the position of the laser beam on the detector shifts. The
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PSPD itself can measure displacements of light as small as 10 Å. The ratio of the path

length between the cantilever and the detector to the length of the cantilever itself

produces a mechanical amplification. As a result, the system can detect sub-angstrom

vertical movement of the cantilever.

In standard contact mode AFM, the probe is scanned over the surface in an x-y

raster pattern.

1.3.2 Tapping Mode, TM

Tapping Mode imaging is a key advance in atomic force microscopy (AFM) of soft,

adhesive or fragile samples. This technique allows high resolution topographic imag-

ing of sample surfaces that are easily damaged, loosely held to their substrate, or

otherwise difficult to image by other AFM techniques. Specifically, Tapping Mode

overcomes problems associated with friction, adhesion, electrostatic forces, and other

difficulties that can plague conventional AFM scanning methods.

Tapping Mode imaging overcomes the limitations of the conventional scanning

modes by alternately placing the tip in contact with the surface to provide high

resolution and then lifting the tip off the surface to avoid dragging the tip across

the surface. Tapping Mode imaging is implemented in ambient air by oscillating the

cantilever assembly at or near the cantilever’s resonant frequency using a piezoelectric

crystal. The piezo motion causes the cantilever to oscillate with a high amplitude

(the ”free air” amplitude, typically greater than 20nm) when the tip is not in contact

with the surface. The oscillating tip is then moved toward the surface until it begins

to lightly touch, or “tap” the surface. During scanning, the vertically oscillating tip

alternately contacts the surface and lifts off, generally at a frequency of 5 kHz to 500

kHz. As the oscillating cantilever begins to intermittently contact the surface, the

cantilever oscillation is necessarily reduced due to energy loss caused by the interaction

between the tip and surface see Fig. 1.3.4. The reduction in oscillation amplitude is
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Figure 1.3.4: The schematic of how the oscillation amplitude changes with shifted
resonant frequency. When the tip is close enough to have interactions with the surface,
the resonant frequency will shift from curve I to II and the amplitude of the oscillation
at the free resonant frequency f0 will decrease. For a case of even stronger interaction,
the damping of the resonance comes in and decreases the amplitude more as shown
by curve III.

used to identify and measure surface features. During Tapping Mode operation, the

cantilever oscillation amplitude is maintained constant by a feedback loop. When

the tip passes over a bump in the surface, the tip has stronger interaction with the

surface and the oscillation amplitude decreases. Conversely, when the tip passes

over a depression, the tip has less interaction with the surface and the amplitude

increases (approaching the maximum free air amplitude). The oscillation amplitude

of the tip is measured by the detector and input to the controller electronics. The

digital feedback loop then adjusts the tip-sample separation to maintain a constant

amplitude and force on the sample.

1.3.3 Non-Contact Mode, NC-AFM

Non-Contact AFM (NC-AFM) is one of several vibrating cantilever techniques in

which an AFM cantilever is vibrated near the surface of a sample. The spacing

between the tip and the sample for NC-AFM is of the order of tens to hundreds of

angstroms. This spacing range is the same as van der Waals interaction in Fig. 1.3.3
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as the Non-Contact regime.

In contact mode, AFM measures surface topography by utilizing the systems

sensitive response to the repulsive interactions in Eq. 1.3.1 that exist between the

ion cores when the distance between the probe tip and the sample surface atoms is

very small. However, the NC-AFM utilizes the attractive interaction regime of the

Lennard-Jones potential, which is relatively larger distance than the one in contact

mode. Because of the attractive force between the probe tip and the surface atoms,

the cantilever vibration at its resonant frequency near the sample surface experiences

a shift in spring constant from its intrinsic spring constant (k0). This is called the

effective spring constant (keff ), and the following equation holds:

keff = k0 − ∂F

∂d
. (1.3.2)

When the attractive force is applied, keff becomes smaller than k0 since the force

gradient (∂F
∂d

) is positive. According to the relation between the spring constant

and resonant frequency, f =
√

k
m

, the effective resonant frequency is shifting to

lower as shown in Fig. 1.3.4. If we vibrate the cantilever at the frequency a little

larger than the intrinsic resonant frequency where a steep slope is observed in the

graph representing free space frequency vs. amplitude, the amplitude change (4A)

becomes very large even with a small change of intrinsic frequency caused by atomic

attractions. Therefore, the measured amplitude change reflects the distance change

between the tip and the surface atoms. By maintaining the amplitude constant with

the feed back loop, the distance between the tip and sample will be constant. And

the topography of the surface can be imaged by the voltage applied to z-scanner for

compensating the feed back.

23



1.3.4 Lateral Force Microscopy

Lateral Force Microscopy (LFM) is an AFM technique that identifies and maps rela-

tive differences in surface frictional characteristics. It is particularly useful for differ-

entiating among materials on surfaces. Applications include identifying transitions

between different components in polymer blends, composites and other mixtures,

identifying organic and other contaminants on surfaces.

The principle of LFM is the same as contact AFM, a feedback loop maintains

a constant normal force on the sample by adjusting the height of the cantilever to

compensate for topographical features. However in LFM, it records the torsion or

twisting of the cantilever while scanning along the direction perpendicular to the

cantilever length. The torsion, or twisting, of the cantilever supporting the probe will

increase or decrease depending on the frictional characteristics of the surface (greater

torsion results from increased friction). Since the laser detector has four quadrants,

it can simultaneously measure and record topographic data, normal force, and lateral

force data as shown in Fig. 1.3.2. All of these data sets can be viewed as side-by-side

images in real time, as well as stored and processed independently.

1.3.5 Force-Distance Curves

Force-distance curves are used to measure the force normally acting on the tip while

the tip approaches or retracts from the sample surface. In an elastic regime, the

vertical forces between the tip and the surface (including adhesional forces) are pro-

portional to the deflection 4z of the cantilever F = kN · 4z, where kN is the spring

constant of the normal cantilever bending.

Strictly speaking, a force vs. distance curve is a plot of the deflection of the

cantilever versus the extension of the piezo scanner, measured by a position-sensitive

photo-detector. The method of how to convert the bending and the scanner extension
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Figure 1.3.5: The schematic of the force vs scanner deformation in vacuum.

into normal force and tip-sample distance is described in 2.2.1 and 2.2.3. The discus-

sion here refers to Fig. 1.3.5, 1.3.6, and 1.3.7 and represents a gross simplification,

where shapes, sizes, and distances should not be taken literally.

Consider the simplest case of AFM in vacuum (Fig. 1.3.5), at the right side of

the curve, the piezo scanner is fully retracted and the cantilever is undeflected since

the tip is not touching the sample. As the piezo scanner extends, the cantilever

remains undeflected until it comes close enough to the sample surface for the tip

to experience the attractive van der Waals force. The tip snaps into the surface

(point a in Fig. 1.3.5). Equivalently, the cantilever suddenly bends slightly towards

the surface. (The physical reason of the cantilever not following the van der Waals

force but snapping into the surface is described in 1.4.2). As the piezo continues to

extend, the cantilever deflects, approximately linearly (region b in Fig. 1.3.5) and

this deflection bz is proportional to the normal force applied by the tip to the surface,

FN = kN · bz. After full extension, at the extreme left of the plot, the piezo begins

to retract. The cantilever deflection retraces the same curve (in the absence of piezo

hysteresis) as the piezo pulls the tip away from the surface.
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Figure 1.3.6: The schematic of the force vs scanner deformation in air. The hu-
midity in air forms a layer of water and causes the adhesion.

In air, the retracting curve is often different because a monolayer or a few mono-

layers of water are present on many surfaces and because of the adhesional forces

between the tip and the surface (Fig. 1.3.6). This water layer exerts a capillary force

that is very strong and attractive. As the piezo pulls away from the surface, the wa-

ter holds the tip in contact with the surface, bending the cantilever strongly towards

the surface (region c Fig. 1.3.6). At some point, depending on the thickness of the

water layer, the piezo retracts enough that the tip springs free (point d in Fig. 1.3.6).

This is known as the snap-back point. As the piezo continues to retract beyond the

snap-back point, the cantilever remains undeflected as the piezo moves it away from

the surface in free space.

If a lubrication layer is present along with the water layer, multiple snap-back

points can occur, as shown in Fig. 1.3.7.

1.3.6 AFM measurements of Solvation Forces in Liquids

By measuring force-distance curves, the forces between two surfaces (usually the AFM

tip and the solid sample surface) in liquids can be measured to investigate how the

liquid behaves under nano-confinements. Previous studies show that the oscillatory
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Figure 1.3.7: The schematic of the force vs scanner deformation in air with impu-
rities. There is one more step of the adhesion due to the lube on the water layer.

solvation forces characterize the layered structure of many liquid molecules under

nano-confinements, as shown in Fig. 1.3.8 [48]. Another way to measure tip-surface

interactions is by applying normal oscillations with small amplitudes (∼ 0.1 nm) and

low frequency (several orders lower than the resonant frequency of the cantilever)

to the cantilever. The stiffness of squalane (C30H50) [49] and water [50] can then

be investigated by measuring the change of the cantilever amplitude and phase, see

Fig. 1.3.9.

Frequency Modulated AFM (FM-AFM) Measurements

Frequency modulation atomic force microscopy (FM-AFM) is an alternative dy-

namic technique that employs a feedback circuit to self-excite the cantilever at its

resonant frequency. The frequency can be measured with very high sensitivity and

thus the frequency modulation mode allows for the use of very stiff cantilevers. Stiff

cantilevers provide stability when the tip is very close to the surface and, as a re-

sult, this technique was the first AFM technique to provide true atomic resolution in

ultra-high vacuum conditions [56]. Recently, FM-AFM was extended to measure the

interaction forces in liquids [57]. The interaction force between tip and sample is de-

tected as a change in resonant frequency, while the presence of dissipative forces can
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Figure 1.3.8: The oscillatory structural normal force for different liquids measured
by AFM. Picture from [48].

be detected by monitoring the change in excitation required to keep the tip amplitude

constant during the interaction. By means of this method, Uchihashi et al. [58] have

studied the solvation forces between an AFM tip and a graphite surface in OMCTS

(Fig. 1.3.10).

The FM-AFM has some unique advantages in force measurements, such as better

noise-to-signal ratio and no jump-to-contact instability. However, there are some

disabilities, which have to be pointed out here:

1. Since the oscillatory solvation force comes from the local organization of the liquid

molecules, there is a doubt that the oscillatory solvation force is still the same when

the applied normal oscillation (∼ 2 nm) is equal or larger than the dimension of the

liquid molecular size (∼ 0.2− 1 nm).

2. The force is not directly measured from the AFM force measurement. Instead,

the interacting force is deduced from a non-trivial mathematical calculation with

approximations.

3. It has no capability to measure the interacting lateral force.
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Figure 1.3.9: The stiffness of squalane vs distance under nano-confinement. It is
measured by applying a external normal oscillation to the cantilever and detecting the
change of the cantilever amplitude. Picture from [49].

1.4 Surface Force Measurements: Other Methods

1.4.1 Surface Force Apparatus

The surface force apparatus is a wildly used instrument to study surface forces be-

tween two surfaces separated by gaps in the range between 100 µm and 1 Å. It

was initially invented by Tabor and Winterton [51] and then extensively modified

by Israelachvili and Adams [52] for measurements in liquids. Figure 1.4.1 shows the

schematic of a Mark II model SFA. The SFA contains two curved molecularly smooth

mica surface (of curve radius R ≈ 1 cm) between which the interaction forces are

measured using interchangeable springs. The resolution of the force measurement is

about 10 nN. The two mica surfaces are in a crossed cylinder configuration. The

separation of the two mica surfaces can be measured by use of an optical technique

called Fringes of Equal Chromatic Order (FECO), which gives the SFA a distance

resolution about 0.1 nm. By acquiring the separation and forces simultaneously, the

force-distance curve is measured.

With the extremely high distance-resolution, the first oscillatory solvation force

was demonstrated by Horn et al [53], as shown in Fig. 1.4.2. Also, the increase
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Figure 1.3.10: The oscillatory solvation force measured by FM-AFM technique [58].
(a) and (b) are the frequency shift of the cantilever with OMCTS and water. (a’) and
(b’) are the interacting forces deduced from (a) and (b). Picture from [58].

30



Figure 1.4.1: Surface force apparatus (SFA) for directly measuring the force laws be-
tween surfaces in liquids or vapors at the angstrom resolution level. Picture from. [55]
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Figure 1.4.2: The first observed oscillatory solvation force in liquids (OMCTS)
by the SFA. The reason of no measuring of the dashed regimes is described in sec-
tion 1.4.2. Picture from [53].

of magnitudes of the viscosity of OMCTS under nano-confinement was observed by

shearing the mica surface and measuring the lateral viscous force with a SFA [?]. So

far, the SFA is one of the most wildly used tools for studying surface forces in liquids.

1.4.2 Comparison between SFA and AFM

The concepts behind AFM and SFA force measurements are straightforward and sim-

ple, however there is a major disadvantage for both of them: during the approach-

ing/retracting, the tip jumps off the true force-distance curve when the gradient of

the curve exceeds the spring constant of the apparatus (cantilever for AFM), kN , i.e.,

|∂F
∂d
| ≥ kN [49, 54] (see Fig 1.4.3). It is a common disadvantage for all spring-based

force measurements. Therefore, to minimize this mechanical instability in different

force measurements, selecting a proper spring constant is crucial.

Although AFM and SFA have the same capabilities on direct force measuring, it
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Figure 1.4.3: The schematic of a typical force-distance measurement by spring-
based methods, e.g., SFA and AFM. When the gradient of the true force-distance
curve exceeds the spring constant (|∂F

∂d
| ≥ kN), the measurement jumps off the real

force curve and follows |∂F
∂d
| = kN .

is useful to point out several main differences that matter in our experiments:

1. Because of the usage of FECO, all the materials on the light path have to be

optical transparent, which limits the choice of the sample and substrate.

2. SFA needs molecularly smooth samples, thus it works best with mica surfaces

or thin layers deposited on thin mica sheets.

3. AFM is less subject to contamination due to the orders of magnitude smaller

interacting area.

4. SFA can not characterize indentation and topography.

1.4.3 Interfacial Force Microscopy, IFM

The interfacial force microscopy (IFM) is designed to avoid the mechanical instability

problem mentioned in section 1.4.2 and allow quantitative measurements of normal

and lateral (shear) forces throughout the entire range of interfacial separation [59].

The IFM sensor consists of a capacitor common plate suspended above two individual

capacitor pads by torsion bars bisecting the long axis, as illustrated schematically

in Fig 1.4.4. A tip is placed on one side of this teeter totter such that when a
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Figure 1.4.4: Schematic of the differential-capacitor IFM forcefeedback sensor. The
common plate supports the probe tip and is suspended above two capacitor pads by
torsion bars going in and out of the page. Interactions between the tip and sample
rotate the top plate, which is detected by an RF bridge. Low-frequency voltages are
then supplied to the capacitor pads by a controller to maintain capacitor balance.
Picture from [59].

force is applied to the tip, arising from the interaction with a neighboring sample

surface, the teeter totter will rotate about the torsion bars imbalancing the differential

capacitance. The deflection is measured by an RF bridge circuit, and the resulting

signal is fed to a controller which applies the appropriate dc voltages to the capacitor

pads to rebalance the deflection. The result is that voltages appear at the controller

output related to the level of applied force without sensor motion. The relationship

between the voltage and force is dependent only on the capacitor geometry and is

easily calibrated. In addition, the force-feedback sensor will balance any force applied

to the tip which produces a torque about the torsion-bar axis, and it is this fact that

is the basis for making lateral-force measurements in the friction mode.

By means of IFM techniques, Major et al. [61] showed that the shear viscosity of

water, for 0.6 nm hydrophilic confinements, is 7 orders of magnitude higher than the

bulk water viscosity.
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1.4.4 Transverse Dynamic Force Microscopy, TDFM

The transverse dynamic force microscopy (TDFM) is also designed to measure the

surface forces without the mechanical instability mentioned in section 1.3 [60]. In

TDFM a tapered optical fiber is mounted vertically and perpendicularly to the sam-

ple surface and set in horizontal oscillation using a dither piezo. The oscillation

amplitude and the corresponding phase signal are quantitatively measured with an

optical detection system. The tapered probe is obtained by pulling and fracturing

an optical fiber heated in the beam of a CO2 laser. This technique produces a flat

circular end with ∼ 50 nm radius. A known sinusoidal shear strain is imposed on

the confined fluid and the corresponding stress response is evaluated. Figure 1.4.5

shows all the important elements involved in a typical force spectroscopy experiment.

A sinusoidal displacement (d0sin(ωt)) is applied at the top end of the probe. The

corresponding oscillation amplitude and phase (u0sin(ωt + φ)) are recorded at the

lower end. By detecting the damping of the amplitude and change in phase, the

viscous and elastic forces are deduced. Thereby, the shear viscosity and rigidity of

nano-confined water are extracted, see Fig. 1.4.6
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Figure 1.4.5: The schematic of TDFM. Picture from [60].

Figure 1.4.6: The viscosity and rigidity of nano-confined water obtained by TDFM
techniques. Picture from [60].
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CHAPTER II

MATERIALS AND METHODS

This chapter will describe the details of the AFM experiments presented in this thesis.

The goal of this work is centered on the behavior of liquids confined between an AFM

tip and a solid surface. The first half of this chapter is focused on the preparation

and properties of the materials used in our experiments. In the second half of this

chapter, we will present the details of how forces were measured and calibrated in our

AFM experiments.

2.1 Liquids and Surfaces Preparation

2.1.1 Liquids

Water

The water used in this experiment is deionized ultra-filtered (DIUF) water pur-

chased from Fisher Scientific. Due to the water’s exposure to the atmosphere, it has

dissolved CO2, some of them reacts with water to form carbonic acid, which lowers

the pH value to 6.1 instead of the expected 7. Previous studies show that a mica

surface (we mainly used in our experiments) immersed in water is negatively charged

due to the dissolved K+ ion [62]. In our experimental setup, a liquid cell is used

to contain the fluids. The liquid cell is composed of rubber and teflon, which may

dissolve in water, therefore it is necessary to check for impurities on the mica surface

and/or in water. For the investigation of impurities on the mica surface, the contact

angle measurement was chosen because of its simplicity. Contact angle (θc) measure-

ments of water were performed on a (i) freshly cleaved mica surface, (ii) mica surface

left to evaporate the water used in our experiment, and (iii) mica surface where the
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water used in the experiments was gently poured out of the liquid cell. If there were

impurities, all of them should have been left on the mica surface in (ii). Only surface-

active impurities could have remained on the mica surface in (iii). The first and

third measurements gave the same θc, while in the second measurement indicated an

increase in θc. These results suggest the presence of impurities in the experimental

water, but the impurities were not surface-active. Conductivity measurements were

performed, indicating an impurity concentration of 1.3 × 10−5 mole/l. Considering

the volume of interest is defined by the confined space between the AFM tip and

the mica surface, i.e. about 120 nm3 for d=2 nm in Fig. 0.0.1, there were only 10−3

impurity molecules in the confined region .

The impurities were also tested by gas chromatography - mass spectrometry (GC-

MS). GC-MS spectra of used and not previously used water samples were taken

by 70SE spectrometry (VG Instruments). In both cases the results conveyed that

any small molecular weight (less than 700 Da) organic contaminants were present at

amounts below the instrumental threshold (5 ppm).

Before and after each measurement, AFM topography and friction images of the

mica surface were taken to avoid any contaminated and/or inhomogeneous area, which

could be detected by AFM images.

OMCTS

Octamethylcycloterasiloxane (OMCTS, C8H24O4Si4) is a kind of silicon oil used

in waterproofing agent and lubricant for vacuum devices. Rheological properties of

OMCTS are widely studied under nano-confinement [53, ?, 63] because OMCTS has

a spherical molecular shape, large molecular size (about 7 − 9 Å), and is non-polar.

Unlike water, it is stable on mica, rubber, and teflon, thus, the mica surface is not

charged in OMCTS and presents no impurities. OMCTS wets the mica surface, as

the contact angle of OMCTS on mica is less than 10o. However OMCTS is sensitive
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(i) (ii) (iii)

Figure 2.1.1: Contact angle measurements of water on mica surface. (i) Water
contact angle on freshly cleaved mica surface. (ii) Water contact angle on mica surface
which has been left to evaporate all the water used in the experiment. (iii) Water
contact angle on mica surface where the water used in the experiments was gently
poured out. The contact in (i) and (iii) are the same, which means that the water
used in our experiment does have some contaminations which are not mica surface
active.

to moisture, so high purity nitrogen was used to gently flush the AFM chamber to

minimize the humidity of the experiment. The OMCTS used in our experiments was

purchased from Fluka, purity ≥ 99.0%.

2.1.2 Surfaces

Mica

Because of the atomically smooth surface and simple preparation, mica has been

used for AFM calibration for more than two decades. The most widely used mica is

muscovite mica, which is a phyllosilicate mineral of aluminium and potassium with the

following molecular formula: KAl2(AlSi3O10)(F,OH)2. It has a highly perfect basal

cleavage yielding remarkably thin laminae (sheets), which are often highly elastic. It

has a layer-like structure of aluminum silicate sheets not strongly bonded, are held

together by the K+ ions. Before use, the mica surface was refreshed by peeling some

layers with scotch tape, followed by an immediate immersion in the fluid contained

by the AFM liquid cell (see Fig. 2.1.3).

HOPG
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Highly Oriented Pyrolytic Graphite (HOPG) is a highly ordered form of pyrolytic

graphite with an angular spread of the c axes of less than 1 degree. It is also com-

monly used as a calibration tool for probe microscopies such as Scanning Tunnelling

Microscopy or Atomic Force Microscopy due to the atomically smooth surface. HOPG

has also a layered structure and the same method for refreshing the mica surface is

also used on the HOPG surface in experimental preparation. The HOPG sample used

in this experiment was purchased from SPI supplies (HOPG SPI-2 grade, 20× 20× 1

mm).

Glass

The third sample surface used in this experiment is glass (Fisherbrand Microscope

Slides). Before use, the glass slide was cut into squares roughly 2 × 2 cm2 with

thickness of 1 mm and cleaned with the same method used to clean liquid cell (see

2.1.3).

HOPG Mica Glass

Figure 2.1.2: Solid surface samples used in this thesis.

2.1.3 Liquid Cell and Experimental Setup Preparation

To measure forces in liquids, a liquid cell must be used to contain the liquid on the

solid sample surface. The cross-section schematic of the liquid cell for the AFM

(PicoPlus SPMII) is explained in detail in Fig. 2.1.3. The liquid cell is clamped by a
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[H]

Table 2.1.1: Comparison of the hydrophobicity and roughness of mica, HOPG, and
glass.

Mica Glass HOPG
atomically smooth nanometer-roughness atomically smooth

hydrophilic hydrophilic hydrophobic

spring used to secure it on the sample stage. A rubber o-ring is clamped in between

the liquid cell and sample surface to prevent leakage. The retaining clip is used to

support the compressed spring by inserting into a track on the retaining rod which

one end of the spring is fixed on. During the experiment, the scanner-driven nose

bearing the cantilever and tip is immersed in the liquid in liquid cell.

Liquid

Sample

surface

O-Ring

Liquid Cell

Sample

Stage

Compressed

Spring

Retaining

Rod
Retaining

Clip

Figure 2.1.3: Schematic of the liquid cell used in this experiment.

Experiments performed at the nanometer scale are extremely sensitive to impu-

rities. Therefore, all the parts that will contact to the liquid or sample surface (e.g.,

liquid cell, o-ring, retaining clips, AFM nose, tweezers used for mounting tips and
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samples, or glass samples) were cleaned by the following procedure:

1. Sonicated in laboratory detergent for 30 mins.

2. Rinsed with water to remove the residual of the detergent.

3. Blew dry under N2 or Ar gas.

4. Rinsed with isopropyl alcohol and wiped with clean gloves or clean wipes.

5. Sonicated in fresh isopropyl alcohol for 30 mins.

6. Blew dry under N2 or Ar gas.

7. Repeated step 5 and 6 by replacing isopropyl alcohol with ethanol.

Even after the cleaning, impurities could have been presented in the liquid for the ex-

periment, however they are not surface-active and had no influence on the experiment,

as described in 2.1.1.

2.2 Force Measurements by AFM

In our AFM experiments [10], a nano-size spherical silicon tip is brought quasi-

statically to the vicinity of a flat sample surface, all immersed in purified water or

OMCTS, while small lateral oscillations are applied to the cantilever support. Lateral

forces acting on the tip provide the cantilever with a torque, and the torsion of the

cantilever starts to oscillate due to oscillation of the tip. By monitoring the amplitude

of the torsion, the lateral force acting on the tip can be measured. The normal and

lateral forces acting on the tip are measured directly and simultaneously as a function

of the liquid film thickness, i.e., tip-sample distance, d. The zero distance, d = 0,

is evaluated by comparison of the normal force vs. d curves with contact mechanics

models (discussed in 2.2.3).

The experiments were performed with a Molecular Imaging PicoPlus AFM. We

used silicon tips with radii R = 40 ± 10 nm and Ultrasharp NSC12/50 cantilevers
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Piezo

Scanner

Lateral

Oscillation

Constant

Approach

z

x

Tip

Sample Surface

Figure 2.2.1: Setup for AFM force measurements. A piezo scanner is used to drive
the cantilever (not shown in the figure) and the tip on the cantilever. The tip is driven
to constantly approach the sample surface and is also laterally oscillated by the piezo
scanner. Both the tip and sample surface are immersed in liquids.

with normal and lateral spring constants in the ranges of kN = 3 − 4.5 N/m and

kL = 50 − 120 N/m, respectively. Before use in our experiments, all of the tips

were imaged by a scanning electron microscope (SEM), JEOL JSM-5910, to make

sure that the AFM tips apex is spherical and to measure the precise geometry of

individual cantilevers for force constant calibrations. The apex spherical tips might

not be atomically smooth; however the lateral force-distance curve was found to

be reproducible for different tips. The approach velocity was 0.2 nm/s . During

the approach, lateral oscillations parallel to the sample surface were applied to the

cantilever holder by means of a lock-in amplifier. The same lock-in amplifier was then

used to measure the amplitude of the lateral force, FL, and the phase difference, θ,

between the applied lateral displacement and the detected lateral force. The θ = 0 was

chosen when the tip was in hard contact with the mica surface, for lateral oscillation

amplitudes, X0 is small enough to guarantee an elastic contact without slippage [64].
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2.2.1 Normal Force Measurements

To measure the normal force-distance curve, the tip is driven by the scanner piezo in

z-direction. The cantilever does not bend until the normal forces have been acted to

the tip. By acquiring the information of the scanner deformation and the bending of

the cantilever, the normal force and the distance between tip and sample surface is

extracted.

In an ideal situation with no interaction other than contact, the cantilever would

not bend before contact, regime I in Fig. 2.2.2, i.e., the tip totally follows the scanner

deformation toward the sample surface. However, once the tip is in contact with

the surface, the tip can not follow the deformation to ‘approach’ anymore, as there

is no more space for approaching. Therefore, the cantilever starts to bend due to

the ‘extra’ displacement driven by the scanner. In a perfect hard contact case (no

deformation of the tip and sample surface), the amount of bending is equivalent to

the amount of scanner deformation, as shown in regime II of Fig. 2.2.2, i.e., all the

scanner deformation contributes to the cantilever bending.

For small bending, the relation between the normal force (FN) acting on the

tip/cantilever and the bending (δX) follows Hook’s law, FN = δX · kN , where kN is

the force constant of bending. The distance between the tip and sample surface is the

scanner deformation minus the bending. The corresponding normal force-distance

curve is in Fig. 2.2.3.

Normal Force Calibration

For the normal force calibration, both the bending (δX) and the normal force

constant (kN) must be calibrated. In the AFM experiment, bending of the cantilever

is detected by monitoring the normal position change of the laser spot reflected from

the back of the cantilever, as shown in Fig. 1.3.2. The pre-amplified coefficient used to
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III Contact Scanner

Deformation

Bending

0

Scanner

Approaching

Approaching

Δ Bending

Δ Deformation

Figure 2.2.2: A typical bending vs scanner deformation curve without any inter-
action other than the perfect hard contact. In regime I, the tip doesn’t contact the
surface, thus there is no normal force acting to the tip, and the bending of the can-
tilever is zero. In regime II, the tip is in hard contact with the surface, normal force
acting to the tip, and the bending proportionally increases with the scanner defor-
mation. The ∆Bending equals to ∆deformation after calibrated the pre-amplified
coefficient between the bending signal detected in voltage and in nanometer.

Distance (d)

= Scanner Deformation - Bending
0

Normal Force

= Bending x Force Constant

0

(Contact)

Figure 2.2.3: Typical normal Force-distance curve deduced from Fig. 2.2.2. The
regime II in Fig. 2.2.2 is deduced to a vertical line, contact point.
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Figure 2.2.4: A SEM image of the cantilever shows the length, L, and the width, w.
They are the essential values in the force constant calibration, Eq. 2.2.1 and 2.2.3.

convert bending in unit of volts to nanometer has to be calibrated before every mea-

surement. Since the bending and scanner deformation should be equal in hard contact,

the coefficient can be easily adjusted until the slope of the bending-deformation curve

equals to −1 in the contact regime, as illustrated Fig. 2.2.2.

The normal force constant is a function of the cantilever geometry and elastic

Young’s modulus, E, [65]:

kN =
E

4

wt3

L3
(2.2.1)

where L, w, and t are the length, width, and thickness of the cantilever respectively.

All the geometrical parameters are conveyed in the SEM image taken before the use

of a new tip/cantilever, as shown in Fig. 2.2.4. By comparing the values provided by

the manufacturer and the SEM image, kN for individual cantilevers can be extracted

without measuring the elastic Young’s modulus.

2.2.2 Lateral Force Measurements

For a rectangular cantilever, a lateral force acting on the tip will cause three different

kinds of elastic deformation: bending of the tip, lateral bending of the cantilever,

and torsion of the cantilever, as illustrated in Fig. 2.2.5. For measuring the lateral
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Figure 2.2.5: The total displacement in lateral direction for lateral force measure-
ments is contributed by three independent parts: tip bending, lateral cantilever bend-
ing, and cantilever torsion. The lateral elastic contact deformation is not consid-
ered here due to the much higher force constant. It can be considered as three dif-
ferent springs (kB, kL, and kT ) in series, and the lateral force can be written as
FL = kB · δXB = kL · δXB = kT · δXT , where δXB, δXL, and δXT are the corre-
sponding displacement for each part. For generalizing the lateral force calibration to
different type of cantilevers, the torsion displacement is written as δXT = h∆θ, thus
the calibration of θ can be applied to different cantilevers with different tip hight, h.

force, FL = kB · δXB = kL · δXL = kT · δXT , only one of the spring constants and

its corresponding displacement are needed. For AFM techniques, the lateral force is

detected by monitoring the lateral change of the laser spot reflected from the back of

the cantilever, which is the only contributed by the torsion of the cantilever, as shown

in Fig. 1.3.2 and Fig. 2.2.5. In our experiments, a lock-in amplifier (SRS830) is used

to apply a sinusoidal signal to the piezo scanner in x-direction to oscillate the tip

laterally. Once the tip apex has lateral interactions with the surrounding material,

the cantilever is going to torque back and forth accordingly to the oscillation. Due

to the oscillation of the torsion, the photo-detector generates an oscillating electric

signal accordingly. The same lock-in amplifier is used to monitor the amplitude of

this oscillation, which can be converted to the amplitude of cantilever torsion. With

proper calibrations, the amplitude of the torsion can be converted to the lateral force

acting to the tip, Fig. 2.2.6.

Lateral Force Calibration
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(X-direction)
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the tip (f, X0)
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Figure 2.2.6: Setup of the lateral force measurement. A lock-ing amplifier is used
to oscillate the scanner piezo in x-direction to shear the tip laterally. The same lock-in
amplifier is also used to detect the amplitude of the torsion due to the lateral force.
After calibrating, the lateral signal in volts can be converted to lateral force in nano-
Newtons. The θ is the phase difference between the oscillating signal applied to the
scanner and the torsion oscillation detected. The amplitude applied to the scanner X ′

is not necessary the same as the lateral amplitude of the tip, X0, due to the resonant
effect, which is calibrated in 2.2.6.

The lateral force acting on the tip can be extracted by:

FL = KT · δXT = KT · h∆θ (2.2.2)

where the XT is the displacement due to the torsion only, h is the height of the tip, and

∆θ is the torqued angle, as seen in Fig. 2.2.5. For the lateral force detection, the lateral

change of the laser reflected spot (corrected to the cantilever torsion) is detected, and

what we applied is the shearing amplitude and frequency. Unfortunately, the shear

amplitude is not the same as XT here; for a non-slippage friction, it is the total

displacement of the tip bending, cantilever lateral bending, and cantilever torsion

(δX = δXB+δXL+δXT ). Therefore to calibrate lateral force, the δXT in terms of δX

and the coefficient used to convert the lateral signal in voltage to lateral displacement

in nanometers are needed.

In order to eliminate the unknown factors, a silicon nitride tip (B, MLCT-NOHW,

Veeco Nanoprobe Tips) with a large apex angle ( 70 degree) was used to avoid the tip

bending term in Fig. 2.2.5, which is difficult to calibrate. By imaging the rectangular
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cantilever with the SEM, the spring constant of lateral cantilever bending and torsion

can be extracted by [65]:

kT = 0.4kN
L2

(H + t
2
)2

(2.2.3)

kL = kN
w2

t2
(2.2.4)

where L, w, and t are the length, width, and thickness of the cantilever. For this

particular cantilever, kT is 28 m/N and kL is 14 m/N. Since the tip bending can be

neglected, the torsion displacement is 1/3 of the total displacement, δXT = 1/3δX.

For calibrating the coefficient between the lateral signal in voltage and the lateral

displacement in nanometers, the same silicon nitride tip is used to scan a friction

image on silicon surface in contact mode. In the cross-section curve of the friction

images forward and backward in Fig. 2.2.7, only the circled linear segments were used

for calibrating the coefficient because only these parts of the curve are non-slippage

cases, i.e., the total cantilever displacement (δX) is the same as the scanner dis-

placement (∆X). The slope of these linear segments is the coefficient. The average

value of the coefficient between the lateral signal change (∆V ) and the total can-

tilever displacement (δX) is ∆V
δX

= 0.083 (V

Å
) (averaged over 30 different segments).

Therefore, the coefficient between the lateral signal and torsion displacement (XL) is

∆V
δXL

= 0.25(V

Å
) = ∆V

h0∆θ
, where h0 is the height of the tip (h0

∼= 3 µm). Ultimately, the

relation between the torqued angle and the lateral signal can be presented as

∆θ =
∆V

7.5× 103
. (2.2.5)

In our AFM, Eq. 2.2.5 is universal for rectangular cantilevers.

By combining Eq. 2.2.3, 2.2.2 and 2.2.5, the lateral force can be deduced to

FL = (0.4kN · L2

(h + t
2
)2

) · ( h∆V

7.5× 103
) (2.2.6)

where ∆V is the lateral change of the reflected laser spot on the photo-detector, i.e.,

the ∆[(A + C)− (B + D)] in Fig. 1.3.2. Apparently, ∆V is proportional to the total
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Figure 2.2.7: The typical friction image for forward direction (upper) is taken in
contact mode with a silicon nitride tip on silicon surface at room temperature. The
normal force is maintained at 2 (nN). The scan area and speed are 10×10 nm2 and 2
lines per second. Only the circled parts of the cross-section curve are used for lateral
force calibration because they are non-slippage parts, i.e., the change of the lateral
signal is proportional to the change of the scanner deformation.

intensity of the laser spot projected onto the photo-detector (Itotal = A+B +C +D).

Therefore the value of ∆V in Eq. 2.2.6 has to be normalized to the Itotal used in

the calibration friction experiment of Fig. 2.2.7, which was 0.47 V. Another essential

calibration is the difference between the amplitude signal detected and send out by

the lock-in amplifier. For the lock-in amplifier used in my experiment (SRS 830),

the relation between the output and detected signal (here is the amplitude of the

torsion/lateral signal, ∆V ) is Voutput = Vdetected × 10
Sen.

, where the Sen. is the selected

sensitivity of the lock-in amplifier. By the corrections of Itotal and the signal of lock-in

amplifier, Eq. 2.2.6 can be finally written as:

FL = 2.51× 10−3 × kN
hL2

(h + t
2
)2
· ∆Voutput × Sen.

Itotal

(nN) (2.2.7)

With SEM images, L, t, w, (Fig. 2.2.4) and h (Fig. 2.2.8) can be measured and the

analytical value of Eq. 2.2.7 can be extracted from the measurement.
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Figure 2.2.8: A SEM image of the tip shows the tip height, h, a essential value for
the lateral force constant calibration, Eq. 2.2.6.

2.2.3 Tip-Sample Distance Calibration

In Fig. 2.2.3, there is an assumption of zero deformation of the tip and sample surface

contact, i.e., both the hardness of the tip and surface are infinitely high. However,

realistically, there exists deformation in contact, Fig. 2.2.9. For the small elastic

deformation, the contact behavior can be described by the Hertz model [66]:

δ = (
9FN

2

16RE∗2 )

1
3

(2.2.8)

where δ is the total deformation, R is the tip radius, FN is the normal force loaded

on the surface, and E∗ = 1
1

E1
+ 1

E2

is the reduced elastic modulus of the tip and sample

surface. All the parameters on the right side of Eq. 2.2.8 are known (FN from the

force-distance curve, R from the SEM image, and E∗ from literatures) and the total

deformation can be extracted.

Figure 2.2.10 shows that the force-distance curve determined by the method

in 2.2.1 is in a good agreement with the Hertz model fitting (less than 0.1 nm error).
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δ

Figure 2.2.9: In a non-perfect hard contact between the tip and sample, both the
tip and surface are deformed by the normal force. For elastic deformation, the total
deformation, δ, follows Eq. 2.2.8.
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Figure 2.2.10: A normal force-distance curve and the fitting of Hertz model
(Eq. 2.2.8). The error between the measurement and the theoretical fitting is less
than 0.1 nm.
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2.2.4 Drift Analysis

The force-distance curve used for the pre-amplified coefficient calibration is measured

with a approaching speed (> 200 nm/s), much faster than the drifting speed, there-

fore the effect of the drifting can be neglected for this force-distance curve. In our

force measurements, the tip is quasi-statical (with extremely slow constant speed)

approaching to the sample surface. Therefore, any drift of the tip and/or sample in

the z-direction is going to distort the force-distance curves. However, if the drifting

is linear (constant speed), the precise force-distance curve still can be deduced. The

basic idea is to acquire the same force-distance curves by approaching and retracting

in order to deduce the drifting speed, the same idea as driving a boat downstream

and upstream to measure the current velocity.

Without any drift, bending vs scanner deformation curves acquired by approaching

and retracting are the same as the curve in Fig. 2.2.2, i.e., the contact points for both

approaching and retracting are equivalent and the curve slope is −1 in the contact

regime (regime II of Fig. 2.2.2) if there is no deformation in Eq. 2.2.8 (the E∗ is

infinite). According to section 2.2.3, it is a good approximation in this thesis and the

following section is based on this approximation.

In our method of calibrating the linear drift, we measure the force-distance curve

by approaching and retracting with the same speed and time, the total scanner defor-

mation for approaching and retracting are the same (D nm). With linear drifting, the

scanner deformation is not the sole source of how much the tip travelled. Therefore

the contact point for approaching and retracting are different and the slope of the

curve in contact regime is not −1 anymore as shown in Fig. 2.2.11. Since the total

deformation is the same for both approaching and retracting, the total displacement

showed by the AFM for both is still ‘D nm’, see Fig. 2.2.11. Here, we would like to

remark that the ‘D nm’ for the approaching and retracting curve are actually differ-

ent due to the linear drift. An efficient method to correct the effect of the drift is to
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Figure 2.2.11: With a constant speed drift, the typical approaching and retracting
bending-scanner deformation curve becomes non-identical to each other. The slope
of the curve in contact regime is not −1 for both approaching and retracting. Al-
though the sweep range (D nm) is the same for approaching and retracting in the
measurement display, the unit, nm, of them are distorted by the constant drifting.
True compensated units, Ub, Ua, and Ur, are introduced for the purpose of calibrating
the bending, approaching curve, and retracting curve. In contact regime, the original
slope of the approaching and retracting curves in terms of the distorted ’nm’ unit, S0

a

and S0
r , are used for calibrating these true compensated units.

introduce new length units for the scanner deformation in approaching and retracting

and for the cantilever normal bending. By determining the ratio between these new

units and the original unit (1 nm) the true force-distance curve can be extracted.

During the process of the correction, the approaching and retracting curves have

to be treated separately due to the different units in scanner deformation. Since the

force-distance curve has been well calibrated with a fast approaching speed, the slope

of the approaching and retracting curve in the contact regime, Sa and Sr, should be

also −1, i.e., the bending equals to the scanner deformation. By this assumption, the

new unit for bending, Ub, can be written in terms of the new unit for the scanner

deformation of approaching (Ua) as:

Ub =
Ua

S0
a

(2.2.9)

where S0
a is the initial slope of the approaching curve in contact regime. Also, the

Sr should be −1 and the new unit of scanner deformation in retracting, Ur, can be
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written in terms of Ub/Ua as

Ur = Ub · S0
r =

S0
r · Ua

S0
a

(2.2.10)

where S0
a is the initial slope of the retracting curve in contact regime. We assume

that the drift velocity Vdrift is in the same direction of retraction, therefore, the true

total approaching (D [U
′
a]) and retracting (D [U

′
r]) are:

D[Ua] = (Vscanner + Vdrift)T [nm] (2.2.11)

D[Ur] = (Vscanner − Vdrift)T [nm] (2.2.12)

where Vscanner and T are the velocity of the scanner deformation and the time of

approaching/retracting. From these equations above, Ua, Ub, and Ur can be deduced

in term of the real length unit, nm,

Ua =
2S0

a

S0
a + S0

r

[nm] (2.2.13)

Ur =
2S0

r

S0
a + S0

r

[nm] (2.2.14)

Ub =
2

S0
a + S0

r

[nm] (2.2.15)

After the correction for the linear drifting, the bending vs scanner deformation

curves go return to Fig. 2.2.2 and the force-distance curve can be extracted the same

way as stated in 2.2.1. A program was developed to automatically select the mea-

surements with linear drift and compensate the drift by this method. The program

and this method was submitted as a Georgia Tech Invention Disclosure.

2.2.5 Misalignment Issue in Shearing Experiments

In our lateral force measurements, it is important that the shearing is parallel to the

sample surface. If there is an angle other than zero between the shearing direction

and sample surface, the contact point (zero distance between tip and sample) can not

be determined; also, an artificial lateral force will occur due to the lateral tapping
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Shearing

Lateral Tapping Sample

Figure 2.2.12: If there is an angle between the shearing and sample surface, the
vibrating tip is going to tap the surface laterally. Therefore, it is impossible to deter-
mine the zero distance in force-distance curves and the detected lateral force from the
single of the torsion amplitude is affected largely by the tapping.

between the tip and sample surface (Fig. 2.2.12) and it is impossible to extract the

real lateral force from this artificial lateral force. In order to shear parallel to the

sample surface, before each measurement we tilted the stage that holds the sample

until the difference in height of the sample surface topography across an area of

1 × 1 µm2 (as obtained from AFM sample topography imaging) was smaller than 1

nm. This corresponds to an angle less than 0.06o between the sample surface and

the tip shearing direction, thus, under the largest shearing in our experiments ( 10

nm), the difference in hight of the tip is less than 0.02 nm, which is smaller than the

roughness of our samples (1 nm for glass, 0.2 nm for mica and HOPG) and the error

of the scanning piezo in z-direction (0.05 nm).
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2.2.6 Resonance of Piezo Scanner

In the lateral force measurements, a sinusoidal signal with amplitude X ′ and fre-

quency f is applied to the scanner piezo in x-direction (see Fig. 2.2.6). However, the

amplitude of the scanner piezo (X0) is not the same as X ′ for all frequencies due to

the resonant response of the piezo, which has to be calibrated.

To calibrate the resonance of the scanner piezo, a lock-in amplifier is used to apply

a sinusoidal signal to the scanner piezo in x-direction to oscillate the tip laterally when

the tip is in contact with the surface. The same lock-in amplifier is used to monitor

the amplitude of the lateral signal due to the statical fraction between the tip and

surface. In order to make sure that there is no slippage between the tip and mica

surface, the amplitude applied to the scanner piezo in x-direction is the minimum

output of the lock-in amplifier, 0.004 V, which is correlated to 0.08 nm if there is

no resonance, so the measured amplitude (torsion amplitude in Fig. 2.2.5) will be

proportional to the displacement of the piezo in x-direction. Figure 2.2.13 shows

the resonant behavior of the scanner piezo in x-direction from 50Hz to 3kHz. The

amplitude is normalized to the value at low frequency (50Hz) because of no resonance

at low frequencies. By applying the resonant curve in Fig. 2.2.13, the true amplitude

of the tip/scanner, X0 in Fig. 2.2.6, can be extracted. The value X0 has no effect

on lateral force measurements, however it plays an important role in calculating the

shearing speed (Vshear) in next chapter.
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Figure 2.2.13: There is a significant resonance of the scanner piezo in x-direction.
The silicon tip is in contact with mica surface with the normal force FN

∼= 10 nN.
This experiment was done with the same setup as in Fig. 2.2.6 with X ′ = 0.004 V=
0.08 nm, which is small enough to guarantee a hard contact without slippage.
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CHAPTER III

STRUCTURED AND VISCOUS WATER IN

SUB-NANOMETER GAPS

(This chapter originally appeared as a paper by the author : “Structured and viscous

water in subnanometer gaps,” by Tai-De Li, Jianping Gao, Robert Szoszkiewicz, Uzi

Landman, and Elisa Riedo, in Physical Review B, volume 75, page 115415, in

2007.)

In this chapter, we report on direct high resolution atomic force microscope (AFM)

measurements of oscillatory solvation forces and markedly increased viscosity in sub-

nanometer pure water films. The role of wettability and roughness of the confining

surfaces is also investigated. In our AFM experiments [10, 67], a nano-size spherical

silicon tip is brought quasi-statically to the vicinity of a flat solid surface, all immersed

in purified water, while small lateral oscillations are applied to the cantilever support

(see Chapter II). The normal and lateral forces acting on the tip are measured directly

and simultaneously as a function of the water film thickness, i.e. tip-sample distance

(Fig. 3.0.14. Because of the mechanical stability of our apparatus, and a judicious

proper choice of the cantilever stiffness (see 1.4.2), we are able to measure, during

force acquisition, the tip-surface distance with sub-Angstrom resolution, all the way

down to the last adsorbed water layer. In order to investigate the role of roughness

and surface chemistry of the confining surfaces we have studied water films nano-

confined between a silicon tip and three different solid surfaces: an atomically smooth

hydrophilic, i.e. wetting, surface (mica), a nano-rough (root-mean-squared (rms)

roughness less than 1 nm) hydrophilic surface (soda lime untreated glass), and an

atomically smooth hydrophobic, i.e. non-wetting, surface (highly oriented pyrolytic
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graphite, HOPG). We remark that the surface of our Si tip is likely to be oxidized [68].

All the Molecular Dynamic (MD) simulations in this chapter are provided by Prof.

Landman and Dr. Gao.

50 nm

∆h
 

 

d

R

A

 z

r

Figure 3.0.14: An AFM was used to measure the normal and lateral forces between a
nanosize untreated silicon tip and three different flat solid surfaces in deionized water.
In this figure we also show a scanning electron microscopy (SEM) image of the tip
apex and the schematic of how we approximate the area in Eq. 3.4.1 .

3.1 State of the Art

Water under nano-confinement is ubiquitous, with examples including clay swelling,

aquaporines, ion channels [5, 6], and water menisci in micro-electromechanical-systems

[69, 10]. However, the structural and rheological characteristics of nano-confined pure

[36, 32, 24, 60, 70, 72] and ionized water [33, 26, 25] continue to be the subject of dis-

cussion and debate. In particular, for nano-confined pure water, contradictory results

have been reported about the presence [58], or absence [24, 37, 61], of oscillations

in the solvation forces and concerning the value of the viscosity [24, 60, 71, 72, 61].

This unsatisfactory situation is mainly due to the lack of direct, high resolution mea-

surements of the solvation forces and viscosity for water confinements smaller than
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Figure 3.2.1: A Molecular Imaging PicoPlus AFM.

1-2 nm. Moreover, the influence of the wettability and roughness of the confining

surfaces on the properties of nano-confined pure water remains largely unknown.

3.2 Experimental Setup

The experiments were performed with a Molecular Imaging PicoPlus AFM. We re-

mark that our direct and quasi-static normal force measurements require a signal to

noise ratio close to the instrumental limit of an AFM working in liquids. For good pro-

tection against external mechanical vibrations, our AFM is closed in a noise-isolated

box and hung up by four bungy cords with low resonance frequency (see Fig. 3.2.1).

The complete system is mounted on an optical table (RS1000-36-18) from Newport.

Another instrumental problem in quasi-static force measurements is that, during the

tip-sample approach, the tip snaps into contact with the surface at a distance where

the gradient of the tip-sample forces exceeds the cantilever normal spring constant,

kN [24, 37], i.e. when |∂FN/∂d| ≥ kN . To overcome this problem, we used relatively

stiff cantilevers (see details in 1.4.2).
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While the AFM tip approached the solid surface in water, lateral oscillations were

applied to the cantilever holder by means of a lock-in amplifier (see details in 2.2.2).

In order to shear parallel to the sample surface, the stage that holds the sample was

tilted before each measurement until the difference in height of the sample surface

topography across an area of 1× 1 µm2 (as obtained from AFM sample topography

imaging) was smaller than 1 nm (see details in 2.2.5). This corresponds to an angle

smaller than 0.06o between the sample surface and the tip during shearing.

We remark that even when the noise conditions were ideal, not all the measure-

ments presented oscillations in the normal force. Oscillations were detected in 7

measurements on mica, 5 on glass, and 7 on HOPG. After SEM measurements, we

noted that the presence of protuberances on the tips was the origin of the disappear-

ance of oscillations close to the solid surface. However, the results for the viscosity are

nicely repeatable in all the measurements (about 30 measurements for each surface).

We estimated that the error in the normal and lateral force was about ±0.1 and

0.05nN, respectively. The error in the piezo z-position was estimated to be ±0.3Å.

The purity of the water used in our AFM liquid cell was tested before and after

the experiments by the methods described in 2.1.1.

3.3 Normal Solvation Force

Oscillatory solvation forces for sub-nanometer water confinement were obtained pre-

viously only from indirect dynamic measurements on a soft sample [58], where a

nanotube tip is vibrated along the approach direction with an amplitude of 3.7 nm

and the forces are then extracted from the measured frequency shift through a math-

ematical model [58]. Earlier direct quasi-static measurements of solvation forces in

purified water did not show oscillations and/or could not access confinements smaller

than 2.5 nm [24, 37, 61].

Figure 3.3.1 presents direct quasi-static normal force, FN , measurements ((A),
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(A’), (a) and (b)) together with theoretically calculated FN ((a’) and (b’)) as a

function of the tip-sample distance d for wetting and non-wetting surfaces. Fig-

ure 3.3.1(A) shows the presence of oscillations in FN vs. d curves when the AFM tip

approaches a (wetting) nano-rough glass surface in water for 0.3 nm < d < 2 nm.

Figure 3.3.1(A’) shows FN vs. d for the same glass surface for the full range of dis-

tances, e.g. 0± 0.03 nm < d < 3 nm; the d = 0 location was inferred as the distance

for which the slope of the curve diverges. We remark that the data for separations

smaller than ∼ 0.3 nm correspond to relatively strong interactions between the last

water layer and the wetting surface [73]. Figure 3.3.1(a) shows oscillatory solvation

forces for a (wetting) mica surface, which is atomically smooth. The average distance,

δ, between adjacent steps in Fig. 3.3.1(A) and (a) is 0.27 and 0.22 nm, respectively.

Oscillations of the normal force and values of δ close to the dimension of a water

molecule indicate transitions occurring when the water film passes from n + 1 to n

layers [13, 14, 74].

From Fig. 3.3.2 (for the mica surface), we observe that for smaller d values, δ

decreases from 0.37 to about 0.21 nm, in agreement with the results of X-ray re-

flectivity measurements [75]. A maximum of four different adjacent oscillations are

observed in our experiments. Our measurements indicate the presence of layering on

atomically smooth and nano-rough wetting surfaces. While atomic-scale roughness

obliterates liquid density oscillations of hydrocarbon chain molecules (e.g. alkanes

[14]), the effect is significantly weaker for globular molecules. Small H2O molecules

interact strongly with point charges of the atomically rough wetting glass surface,

thus “filling the holes” and effectively smoothing the morphological inhomogeneities.

Figure 3.3.1(b) shows experimental FN vs. d curves for a non-wetting graphite

surface. The force oscillations found for this case are less developed compared to the

smooth wetting surface case (Fig. 3.3.1(a)).

The stepwise shape of the experimental normal force curves reflect the inability
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Figure 3.3.1: FN vs d for wetting ((A), (A’), (a), and (a’)) and non-wetting ((b)
and (b’)) surfaces. The vertical dashed lines indicate the position of the force maxima
corresponding to layer n = 1, 2, and 3. The estimated error in FN is ±0.05 nN; the
error in d is ±0.3 Å.
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Figure 3.3.2: Average distance (δ) between adjacent steps in Fig. 3.3.1 corresponding
to different layers, obtained from several measurements.

of the cantilever to bend following the “true” force gradient in the attractive region

[24, 37]. However, this problem does not affect the lateral force data (see Fig. 3.4.1)

because the lateral force is given by the amplitude of the cantilever’s torsion.

Figures 3.3.1(a’) and (b’) present the solvation forces for wetting (a’) and non-

wetting (b’) quartz surfaces, obtained through MD simulations. The agreement be-

tween the salient features of the experimental and theoretical force curves is quite

remarkable, exhibiting clearly a higher propensity for solvation force oscillations in

the case of wetting surfaces, as well as a decreasing value of δ as the confining gap

width becomes smaller.

3.3.1 Comparison of Experimental Results with DLVO and Structural
Forces

The forces between a sphere and a plane surface have been previously described by

the DLVO theory and structural force in section 1.1. Thus, the total force are given
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by:

F (d) = F0 cos(
2πd

a
+ φ) exp(−d

k
) + αλDRγ2 exp(− d

λD

)− AR

6d2

where (3.3.1)

α = 128πC0 kBT

γ =
1

2
[tanh(

eΨ1

4kBT
) + tanh(

eΨ2

4kBT
)]

where F0 and φ are the amplitude and phase of the oscillatory solvation term; d is

the distance between the tip and the sample; a is the periodicity of the oscillatory

solvation force, which should be the molecular size of water; k is the decay length of

the solvation force; kB is Boltzmann’s constant; T is the absolute temperature; λD is

Debye length (λD = 0.306/
√

C0 nm for 1 : 1 electrolytes); R is the tip radius; e is the

electron charge; Ψ1 and Ψ2 are the effective surface energies of the two surfaces in

water [76, 62]; A is Hamaker’s constant of the silicon-water-mica system [77]; Co is the

ionic concentration. The first term on the righthand side of Eq. 3.3.1 is the decaying

oscillatory solvation force which corresponds to the transition between ordered and

disordered states of the liquid layers (see 1.1.4). The second and third term are from

the DLVO theory (see 1.1.2 and 1.1.1). For water without salt, Co is the concentration

of protons which is measured by a pH-meter. We note that pure water in air is slightly

acidic due to atmospheric CO2 being dissolved into water. The number of K+ ions

desorbed from the mica surface is negligible compared with protons from CO2 [78].

Table 3.3.1 shows the values of the parameters used in Eq. 3.3.1 to fit the experimental

normal force vs. distance curves. We remark that the only fitting parameters are F0,

φ and k.

As we discussed in 1.1, in our experiment, DLVO forces are uniform for distance

larger than 1 nm, as shown in Fig. 1.1.3. Thus, the DLVO terms in Eq. 3.3.1 were offset

to fit the background force. However, for d < 1 nm, the structural force dominates

the interaction. The experimental result does not fully follow the theoretical curve
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Table 3.3.1: Parameters used in the Eq. 3.3.1 to fit the experimental curves. F0, φ,
and k are fitting parameters. R is measured by scanning electron microscopy (SEM).
ψmica, ψsi, and H are from Ref. [76, 62, 77]. (ΨSi was calculated from the surface
charge density provided in Ref. [62])

F0[nN] a[Å] φ k[nm]
38 2.7 1.4

C0[10−6M] R[nm] Ψmica[mV], Ψsi[mV] A[10−20 J]
3.16 50± 10 130,600 3.5
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because the force gradient can not larger than the spring (|∂F
∂d
| ≥ kN), as discussed

in 1.4.2. The experimental result is in a good agrement with the theory presented in

chapter I.

3.4 Viscous Force and Viscosity of Nano-confined Water

To date, only a few measurements of the viscosity of confined purified water have

been reported [24, 60]. In the first study [24], a surface force apparatus was used

to estimate, through the use of a drainage formula, the viscosity of films with thick-

nesses less than 2.4 nm. In this way, a viscosity comparable with bulk water has been

estimated. In the second study [60], the viscous force in water films with thickness

d > 1 nm was derived by means of a technique based on scanning near-field optical

microscopy. An increased viscosity, by up to 4 orders of magnitude, was reported.

This is in agreement with a dramatic transition in the mechanical properties of a

water meniscus found in Ref. [61]. Clearly, these indirect measurements yielded con-

tradictory results and did not access the d < 1 nm regime which is indeed the focus

of this study.

In our AFM experiments, we detect simultaneously the normal solvation forces

and the viscous lateral forces as a function of the tip-sample distance. We can thus

directly extract the viscosity of the water film confined between our tip and a mica,

glass and HOPG surface (see Fig. 3.4.1 (a), (b) and (c), respectively). In the insets to

these figures we show the lateral force divided by the shear velocity for each surface.

The viscosity has been calculated following the model of two smooth parallel sliding

plates separated by a distance d with a fluid in between them. The lateral force FL

required to keep one plate moving at a velocity vshear with respect to the other one is

proportional to the contact area A and to vshear

d
. The proportionality coefficient η is

called the dynamic viscosity. For a simple incompressible Newtonian fluid, η is given
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by [12]:

η =
FL

vshear

· d

A
. (3.4.1)

A more rigorous treatment of our experimental geometry involves consideration

of a spherical tip, of radius R = 50 nm, sliding close to a planar solid with a distance

d from the tip apex to the surface. Such a case was indeed considered by Goldman

et al. [79] but with a constant viscosity everywhere. Since in our experiments for

d < 1.3 nm the confined water film is able to sustain a shear stress over macroscopic

times, i.e. the viscosity at d < 1.3 nm is much higher in the vicinity of the tip

apex than everywhere else, we limit the treatment [80] to the liquid confined by

the tip in a region of thickness 0 ≤ z ≤ d + ∆h (see Fig. 3.0.14), where the solid

surface is at z = 0. We then use the expression for the local Newtonian shear stress

σ = η[vshear/(d + ∆h(r))] (see Fig. 3.0.14), to evaluate the total lateral force via

FL =

∫ r′

0

2πrσ(r)dr, (3.4.2)

where r′ =
√

2R∆h−∆h2. This yields the expression for the viscosity,

η =
FL

2πvshear[(R + d) ln(1 + ∆h
d

)−∆h]
. (3.4.3)

Equation 3.4.3 gives results which are well approximated by the planar geometry con-

sidered in Eq. 3.4.1, where the effective area A corresponds to the spherical segment

defined by the intersection between the spherical tip and a plane at z = d + ∆h. The

largest difference in the viscosity calculated by using the spherical and planar approx-

imations occurs for small d and large ∆h. For example, for mica with ∆h = 0.25 nm

(a water molecule diameter) and d = 0.5 nm, the spherical approximation yields

η = 3.5× 102 poise, while for the planar one η = 3× 102 poise (see Fig. 3.4.2).

For wetting surfaces (Fig. 3.4.1 (a), and (b)), the viscosity of nano-confined water

increases when increasing the confinement, reaching a value at d = 0.5 nm which

is four orders of magnitude larger than the viscosity of bulk liquid water at room
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Figure 3.4.1: Experimental η vs d as calculated from Eq. 3.4.1 (where A = 75 nm2

calculated for 4h = 0.25 nm, see text) for (a) mica, (b) glass, and (c) HOPG. The
estimated error in FL is ±0.05 nN; the error in d is ±0.3 Å. In the insets of these
figures, we show for the corresponding surfaces the experimental FL/vshear vs d. In
(d), Simulated diffusion constant (D) vs d in water films confined by wetting and
non-wetting interfaces.
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Parallel Approximation Spherical Approximation

Figure 3.4.2: The comparison between viscosities calculated from planar and spher-
ical approximation.

temperature, i.e. about 10−2 poise. The bulk viscosity of water is recovered for gaps

larger than 1.6 nm and 2 nm, for mica and glass surfaces, respectively. In contrast,

for the non-wetting surface (HOPG), the viscosity of the confined water film remains

constant, within experimental error, with increasing confinement (Fig. 3.4.1 (c)); the

slight increase of the lateral force itself (see inset) for smaller values of the gap width is

consistent with Eq. 3.4.1. These measurements are in agreement with the sharp drop

in the diffusion constant, D, (circles in Fig. 3.4.1 (d)) obtained by MD calculations on

the wetting surface, while D remains essentially constant for the non-wetting case. We

believe that the different viscosity and diffusivity between wetting and non-wetting

surfaces is due to the fact that water remains well attached to wetting surfaces, while

it can slip easily on non-wetting surfaces. The overall non-oscillatory (see caption of

Fig. 3.4.1) increase of the viscosity, and the decrease of the diffusion constant in the
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wetting cases originate from stronger pinning interactions between the partial charges

of the water molecules and those associated with the hydrophilic surfaces as the two

surfaces are brought closer to each other.

3.5 Calculations of the minimum number of water molecules
between the AFM tip and the sample

The number of water molecules can be estimated by the following method:

1. The tip apex is modelled as a sphere with a radius of R=50 nm. Our data

(Fig. 3.3.1) show that below 0.3 nm, there is no oscillation of the normal force for all

samples, and 0.3 nm is comparable to the size of a single water molecule. Therefore,

we calculate the volume V of the hashed volume showed in Fig 3.5.1 between the tip

and the sample. V is obtained by subtracting the volume of the spherical cap Vcap

(of height h1 = 0.3 nm, and radius R = 50 nm) from the volume of the cylinder Vcyl

(of base radius a = [R2− (R−h1)
2)]1/2, and height h2 = 0.3 nm + 0.3 nm = 0.6 nm).

We obtain: V = Vcyl − Vcap = πa2h2 − π(h1)
2(R− h1/3) = 42.3 nm3.

2. From the molar mass of water, M = 18 g/mole, the water density in ambient con-

ditions ρ = 1 g/cm3, and the Avogadro number NA = 6.02×1023 molecules/mole, we

obtain the average volume occupied by one water molecule in bulk, Vw = (M/ρ)/NA =

0.03nm3.

3. By dividing V by Vw, we obtain the lower bound (since bulk water is con-

sidered) on the minimum number, N , of water molecules in the confined region:

N = V/Vw = 1410.
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CHAPTER IV

VISCOELASTICITY OF NANO-CONFINED WETTING

FLUIDS

(This chapter originally appeared as a paper by the author : “Nonlinear Viscoelas-

tic Dynamics of Nanoconfined Wetting Liquids,” by Tai-De Li and Elisa Riedo, in

Physical Review Letters, volume 100, page 106102, in 2008.)

This chapter will emphasize the investigation of the viscoelastic response of nano-

confined water and silicon oil (octamethylcylotetrasiloxane, OMCTS), as a function of

shear amplitude and rate, by means of direct high-resolution AFM measurements. We

observe a nonlinear viscoelastic behavior remarkably similar to that widely observed in

metastable complex fluids, such as gels and supercooled liquids [81, 82, 83]. The origin

of this nonlinear viscoelasticity in nano-confined water and in other nano-confined

wetting liquids is a strain rate dependent relaxation time and slow dynamics. By

measuring the viscoelastic modulus at different frequencies and strains, we find that

the intrinsic relaxation time, τ0, of nano-confined water is in the range 0.1− 0.0001 s,

orders of magnitude longer than that of bulk water, and comparable to the dielectric

relaxation time measured in supercooled water at 170− 210 K. [84].

4.1 State of the Art

Confined fluids exhibit unique structural, dynamical, electrokinetic, and mechanical

properties that are different from those of the bulk [10, 85, 60, 70, 58, 86, 61, 88, 90].

Their behavior depends on the degree of confinement, strain rate, temperature, fluid

molecular structure, and interactions with boundaries. Surprising effects have been

found when water is confined in nanogaps. For example, the electric field induced
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freezing of water at room temperature [8] and the extremely high viscosity of water

close to a mica surface [26, 60]. Previous experiments and calculations have pointed

out the key role of the confining surfaces [58]. A notable increase in viscosity and

decrease in the diffusion constant was measured only when water was confined between

hydrophilic surfaces (see chapter III). For hydrophobic confinement, the observed

increase of viscosity was not very pronounced. Intriguingly, a similar behavior has

been observed in confined glassy materials. When a glass-forming fluid is cooled

down to the glass transition temperature, Tg, its viscosity grows by many orders

of magnitude, and the confinement can increase or decrease Tg for strong or weak

interactions with the walls, respectively [88].

So far, the viscosity measurements for nano-confined water have been performed

in the linear viscoelastic regime. However, as observed in macroscopic rheological

measurements, the study of the viscoelastic properties as a function of shear amplitude

and rate is important for a better understanding of the dynamical and structural

properties of fluids [81].

4.2 Non-linear Viscoelasticity

When a viscoelastic material is confined between two parallel plates separated by d,

with area A, and a sinusoidal strain is applied to one of the plates at the frequency

ω, γ = γ0 sin(ωt), the resulting stress between the plates can be written as σ =

σ0 sin(ωt + θ). The relationship between the strain amplitude, γ0 = X0

d
, and the

stress amplitude, σ0 = FL

A
, is given by:

FL

A
=| G∗ | X0

d
(4.2.1)

where G∗ is the viscoelastic modulus (see chapter I). The viscoelastic modulus con-

tains the dissipative and elastic response of the confined material. In particular, G∗

can be written as a complex sum of the storage modulus, G′, and the loss modulus,
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G′′, i.e., G∗ = G′ + iG′′, where [46]:

G′ =
FLd

AX0

cos θ, G′′ =
FLd

AX0

sin θ (4.2.2)

For a purely elastic solid, σ and γ remain in phase, θ = 0, and so G′′ = 0 and G′ = G∗.

In order to study the viscoelastic behavior of nano-confined water we have mea-

sured FL and θ when we laterally oscillate the AFM cantilever holder. As a first

approximation, the lateral spring constant of our silicon cantilever is much larger

than the lateral tip-water contact stiffness for d < 1 nm [87]. As a consequence, the

applied oscillation amplitude to the cantilever holder is equal to the shear amplitude

of the tip apex. Figure 4.2.1 shows FL and θ as a function of d for three different

shear amplitudes at ω = 955.3 Hz. For tip-sample distances larger than 1 nm, FL

is equal to zero within the instrumental error for any X0. As soon as d < 1 nm, FL

increases with decreasing d, and almost diverges at d = 0 nm when the tip is in hard

contact with the mica surface. In our previous study (chapter III), FL has been used

to calculate the viscosity of water (η) by using Eq. 4.2.1, and by considering water

as purely viscous, that is, by making the approximation | G∗ |≈ G′′ ≈ η · ω. This ap-

proximation is true when θ ∼= 90o, which, as we show later, is the case for large strain

rate amplitudes defined as γ̇0 ≡ γ0 · ω. However, the phase measurements presented

in Fig. 4.2.1 show that in general the behavior of nano-confined water is viscoelastic,

and furthermore, FL does not grow proportionally with the shear amplitude, nor with

ω (not shown here). This indicates that the viscoelastic response is not linear, and

the viscoelastic modulus is shear amplitude dependent, G∗ = G∗(γ0). Therefore, a

detailed study of G∗ as a function of γ0 is needed to shed light into this nonlinear

behavior.

By applying Eq. 4.2.2 to the data in Fig. 4.2.1, we have extracted G′ and G′′ as

a function of d for different X0 at a fixed ω. (The A used for Eq. 4.2.2 is the contact

area corresponding to the spherical segment defined by the intersection between the

spherical tip and a plane at z = d + 4h, 4h = 0.25 nm, i.e., a water molecule
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diameter.) Figure 2 shows very clearly that G′ and G′′ strongly depend on X0. For

large X0, G′′ dominates over G′, resulting in the response of nano-confined water

becoming purely viscous. Also, by decreasing the gap size, the rise of G′ and G′′

takes place later (smaller d) for larger X0. Furthermore, for all the investigated X0,

the rise of G′′ occurs earlier (larger d) than the rise of G′. The dramatic drop of both

G′ and G′′ for d < 0.2 nm (shadowed area in Fig. 4.2.2) is due to the invalidity of Eq.

4.2.2 for d smaller than the dimension of one water molecule. Figure 4.2.2 indicates

that the shear amplitude dependence of the viscoelastic modulus is very complex and

nonlinear. For this reason we have performed measurements over a large range of X0

and ω (0.06 nm< X0 < 2.8 nm, 50 Hz < ω < 2 kHz).

Following the Maxwell model for a linear viscoelastic system, the relationship

between the intrinsic relaxation time, τ0, and the moduli, G′ and G′′, is given by [46]

G′ =
G0(ωτ0)

2

1 + (ωτ0)2
, G′′ =

G0(ωτ0)

1 + (ωτ0)2
(4.2.3)

where G0 is a constant. According to Eq. 4.2.3, G′ and G′′ do not depend explicitly on

γ0. However, many metastable complex fluids experience a drastic decrease of their

structural relaxation time when they are subjected to large strains. This phenomenon

gives rise to a strong strain dependence of G′ and G′′, which can be described by the

introduction of an effective relaxation time, τ , that depends on the intrinsic relaxation

time and the strain rate, γ̇0 = γ0 · ω [81]. Once defined τ , it is used to replace τ0

in Eq. 4.2.3, and thus to predict G′ and G′′ as a function of the strain. Recently, a

phenomenological expression has been found to characterize a γ̇0 dependent effective

relaxation time in metastable complex fluids [81]

1

τ
' 1

τ0

+ K · γ̇0
ν (4.2.4)

where ν is a positive exponent, and K is a constant. In a glassy system which shows

slow dynamics (ω À 1
τ0

), ν ∼ 1 and K ∼ 1 [89]. By replacing τ0 in Eq. 4.2.3 with τ

in Eq. 4.2.4 when ω À 1
τ0

, the maximum of G′′ is near γ0 ' 1, independently of the

79



8x10
6

4

0

642

5x10
6

4

2

0

1.51.00.5

6x10
6

4

2

0

642

5x10
6

4

2

0

642

30x10
6

20

10

1.51.00.5

25x10
6

20

10

0

642

12x10
6

8

4

840

4x10
6

2

840

G
'(
N
/m
2
)

G
''
(N
/m
2
)

G
''
(N
/m
2
)

G
''
(N
/m
2
)

G
'(
N
/m
2
)

G
'(
N
/m
2
)

γ0γ0

(a’) (a’’)

(b’) (b’’)

(c’) (c’’)

Figure 4.2.3: At d = 0.4 nm, G′ and G′′ in water as a function of γ0 = X0/d, with
ω equals to 52.02 Hz for (a’) and (a”), 955.3 Hz for (b’) and (b”), and 1.9689 kHz
for (c’) and (c”). The insets show the results for OMCTS at d = 1.4 nm

80



ω. Figure 3 presents G′ and G′′ vs. γ0 for nano-confined water, obtained by applying

Eq. 4.2.2 to the measured FL and θ at three different ω for d = 0.4 nm. In Fig. 4.2.3,

G′ and G′′ show remarkable behaviors: (i) the peak position of G′′ is around γ0 ' 1

over a wide range of frequencies; (ii) for γ0 < 1, the viscoelasticity is dominantly

elastic, i.e., G′ > G′′; and (iii) G′ and G′′ decay to zero for large values of γ0. These

features of our nano-confined water system are ubiquitous in metastable complex

fluids [81] and they are all captured by the argument of the strain rate dependent τ .

Indeed, by using Eq. 4.2.3 and 4.2.4 the shape of the curves presented in Fig. 3 can be

fully described. In order to understand if other fluids, newtonian in the non-confined

state, behave like metastable complex fluids and follow Eq. 4.2.3 and 4.2.4 once

confined, we performed the same measurements in nanoconfined OMCTS. OMCTS

is a mica-wetting non-polar liquid, with a molecular diameter of about 0.7 nm. From

the measurements showed in the insets of Fig. 4.2.3 and 4.2.4, it is clear that, nano-

confined OMCTS also presents a nonlinear viscoelasticity with strain rate dependent

effective relaxation times.

4.3 Relaxation Time

From Eq. 4.2.3, τ can be predicted by:

τ =
G′

G′′ ·
1

ω
(4.3.1)

By using Eq. 4.3.1 and the experimental values of G′ and G′′, τ as a function of γ̇0 for

water at d = 0.4 nm is determined and shown in Fig. 4. The effective relaxation time

of nano-confined water decreases from 40 ms to 0.7 ms when γ̇0 increases from 14 s−1

to 6000 s−1. The nonlinearity of the relaxation time sets in when the experimental

time scale (γ̇0) is faster than the intrinsic relaxation time (τ0). In this case, the time

response can only be measured effectively as a function of the experimental time scale.

By fitting the data in Fig. 4 with Eq. 4.2.4 we found that τ0 = 0.06 ± 0.03 s

for nano-confined water at d = 0.4 nm. In OMCTS, τ0 is longer than in water
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for the same d, in particular, τ0 ∼0.13 s for d = 1.4 nm. The striking result

is that the observed τ and τ0 are orders of magnitude slower than the relaxation

time of bulk water and OMCTS at room temperature. The fact that confinement

can drastically slow down the dynamics of a fluid has been previously observed in

diverse systems [12], such as colloidal suspensions [91], and polymers [86], where for

strong fluid-wall interactions, the glass transition temperature is shifted towards high

temperatures upon confinement [88]. An alternative way to view this behavior is to

consider that the confinement defines an effective temperature of the system which

is lower than the canonical temperature [92]. According to a previous study [84], the

dielectric relaxation time of supercooled water confined in clays at 175 K is about

0.06 s, similar to the relaxation time found in our experiments on nano-confined

water at room temperature. Moreover, the value of the viscosity measured in our

investigations is comparable with that of supercooled water at 140 K in a 100 µm
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radius tube [93]. A recent study has shown that the dielectric relaxation time of

supercooled water is very sensitive to the confinement [94]. For confinement lengths

of the order of 1 nm, it was found that, over a wide range of temperatures, the

dielectric relaxation times are always longer than in bulk water. In our experiments,

we also observe that τ is longer for increased confinement, i.e., with decreasing d.

Unfortunately, for d ≥ 1 nm FL becomes too small to be measured precisely due

to low signal-to-noise ratio. The only information that we can extract is that the

intrinsic relaxation time for d ≥ 1 nm is shorter than 10−4 s.

In conclusion, we have studied the viscoelastic properties of nano-confined wet-

ting liquids at 300 K, finding a slow dynamical behavior similar to that observed

in metastable complex fluids. By measuring the viscoelastic modulus at different

frequencies and strains, the intrinsic relaxation time of nano-confined water is deter-

mined to be ≈ 0.06 s. This value is comparable with the dielectric relaxation time

measured in supercooled water at 175 K.
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CHAPTER V

PERSPECTIVE ON FUTURE DEVELOPMENTS

The properties of fluids in confined geometries depend, as described in the previous

chapters, on the fluid molecular structure and the degree of confinement. The future

research activity described in this chapter will be focused on fluids confined in gaps

and/or channels with dimensions of 20 nm down to 0±0.03 nm. In such a high con-

finement the properties of liquids are expected to be very different from the properties

of bulk liquids.

The goal of future research is to understand the dynamic properties, namely vis-

cosity, slippage and electrokinetic effects, of liquids confined in gaps and/or channels

with dimensions in the range 0-20 nm. To achieve this goal we plan to use atomic

force microscopes (AFM) equipped with thermal and conductive AFM tips. Chemical

and topographical nano-patterning and nano-channels will be prepared by means of

a new nano-lithography technique developed by our group in collaboration with the

groups of Prof. S. Marder and Prof. W. King at GeorgiaTech.

5.1 Slippage

In classical fluid dynamics, there is the assumption that fluids do not slip on the

boundary when flowing across a surface. The “non-slippage” assumption is a good

approximation at the macro-scale. However, at the micro- or nano-scale, the usual

no-slip (zero-velocity) boundary condition is no longer a good approximation. The

slip length is then defined as the distance within the solid where the extrapolated

flow velocity is zero, as shown in Fig. 5.1.1. Resent studies show that the slip length

of water can be several nanometers to micrometers depending on the wettability and

roughness of the boundary surfaces [95]. On hydrophilic surfaces, the slip length of
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the case where fluids flow in a macro-scale channel. The right figure shows that the
non-slippage condition is not negligible at the nano-scale.

water is only ∼ 1 nm; on hydrophobic surfaces, the slip length can be as long as

∼ 1 µm.

In our nano-confined liquids experiments, the equation used for calculating vis-

cosity (Eq. 3.4.1) is also based on the assumption of zero slippage on either the AFM

tip or sample surface. The non-zero slip length leads to unexpected flow velocities in

Eq. 3.4.1. The viscosity calculated by Eq. 3.4.1 can then be considered as an effective

viscosity which can be written as [96]:

ηeff =
η0

1 + b
d

(5.1.1)

where η0 is the intrinsic viscosity, b is the slip length, and d is the distance between

two confining plates.

The surface-dependent slip length offers an alternate physical interpretation of dif-

ferent viscous behaviors on hydrophilic and hydrophobic surfaces presented on chapter

III. We argue that the different viscosities measured on wetting and non-wetting sur-

faces are due to the a slip length on non-wetting surfaces, as compared to wetting
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surfaces. In other words, viscous nano-confined fluids slip on hydrophobic surfaces

and the measured lateral force is thus reduced by this slippage. In order to extract

the slip length of water on a hydrophobic surface (HOPG) from our previous results,

we assume that the intrinsic viscosity of water on hydrophilic (mica) and hydrophobic

(HOPG) surfaces are equal, ηmica
0 = ηHOPG

0 . By arbitrarily fixing the slip length of

water on mica (bmica), by using the values of ηmica
eff and d as measured in Fig. 3.4.1, we

can find the intrinsic viscosity of water on mica at different distances (ηmica
0 {d, bmica})

by means of Eq. 5.1.1. The slip length of water on HOPG can be extracted by

substituting the measured ηHOPG
eff in Fig. 3.4.1 and considering ηHOPG

0 {d, bHOPG} as

ηmica
0 {d, bmica} in ηHOPG

eff =
ηmica
0

1+
bHOPG

d

.

Preliminary results of the slip length of water on HOPG are shown in Fig. 5.1.2.

The slip length of water on HOPG (bHOPG) is expected to be constant for different

d. Based on this expectation, the results for bmica = 0 − 1 nm for d ≤ 1 nm offer

the best fit, corresponding to bHOPG = 2 − 10 nm. However, there are some issues

related to these preliminary results. First, the resolution of ηHOPG
eff in Fig. 3.4.1 is

not good enough, especially for larger distances, giving rise to larger errors in bHOPG.

Second, the intrinsic viscosity for mica and HOPG surfaces (ηmica
0 and ηHOPG

0 ) are not

necessary equal under the same geometrical confinement. Since the liquid molecules

are attached or extremely close to the surface, chemical surface energy (wettability)

may have an important role in the intrinsic viscosity in nano-confinements. Presently,

the group is working on these problems.

5.2 Properties of Liquids Confined in Open Fluid Nano-
channels

So far, this thesis has presented results on the rheological and dynamical properties of

liquids confined between an AFM tip and a solid sample surface separated less than

few nanometers, i.e., confined in a quasi-2-D plane. However in nano-fluidics, a more

interesting confined geometry is 1-D, i.e., a nano-channel.
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Recently, Liu et al. [97] measured the shear viscosity of water confined in a sin-

gle wall carbon nanotube (SWCN) by detecting the difference of stiffness between a

SWCN in air and a SWCN filled with water. They observed that the shear viscosity

of water confined in a SWCN is twice of the bulk value. However, the geometry,

dimension, and wettability of confining surfaces can not be manipulated in this ex-

periment.

A key point in our research is to find a simple, fast and versatile technique to mod-

ify and control the topography and chemistry of our surfaces with nano-resolution.

Such a technique will give us the possibility to investigate viscosity, slippage, elec-

trokinetic effects and flow of liquids as a function of chemical and topographical

nanopatterning.

5.2.1 Thermo- Chemical Nanolitography, TCNL

Recently, we developed a new lithography technique called thermo- chemical nanoli-

tography (TCNL) [38]. TCNL employs a resistively- heated AFM cantilever to induce

well-defined chemical reactions to change the surface functionality of thin polymer

films (or, potentially, self assembled monolayers). Such an approach is appealing

because the thermal profile in the vicinity of a heated AFM tip gives rise to sharp

thermal gradients, and the chemical reaction rates increase exponentially with tem-

perature; therefore we can achieve a very high degree of spatial resolution. A wealth

of thermally-activated chemistries can feasibly be employed to change the subsequent

reactivity, surface energy, solubility, conductivity etc. of the material, as desired.

Our TCNL technique can be employed to create a controlled chemical pattern on a

polymer surface with high density and at high resolution. Figure 5.2.1 shows the use

of TCNL to write a chemical change on a copolymer film by heating it locally with a

silicon thermal cantilever (via deprotection of the carboxylic acid functionality). The

magnitude of the friction force between the tip and the sample surface is a sensitive
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Figure 5.2.1: (A) AFM topography image and (A’) corresponding friction image
of a cross-linked p(THP −MA)80p(PMC −MA)20 film showing a high-density line
pattern written chemically on the left side. (B) AFM topography and corresponding
friction image (B’) of a modified copolymer film with the indentation depth kept within
3 nm. (B”) The cross-section profile of modified part in (B’).

relative measurement of the sample hydrophilicity, e.g., the larger the friction force,

the more hydrophilic the sample [10]. The differences visible in the topographical im-

age arise from desorption of dihydropyran. Figures 5.2.1 B and B’ show topography

and friction images of “GIT” written chemically on a copolymer sample. Figure 5.2.1

B” gives the cross-section of a friction line, demonstrating that chemically-modified

lines can be created easily and reproducibly with a width at half-maximum as small

as 12 nm, and the indentation depth kept within 3 nm. By heating at higher temper-

atures the indentation depth can be increased up to tens of nanometers. The width

of the lines can be as large as requested.

5.2.2 Fluid Nanochannels Fabricated by TCNL

Future research activity could include the following experiments:

1. Preparation of surfaces with different chemical and topographical nanopatterns

and fabrication of nanochannels with width in the range 5 to 20 nm and depth

89



in the range of 1.6 to 10 nm.

2. Local (within areas of 1 to 100 nm2) measurements of the dynamic viscosity

of water and other liquids in different confined geometries (down to 0.3 nm

at least in one direction) as a function of shear velocity, ion concentration, ion

specificity, topographical and/or chemical nano-patterning, temperature and

electric field, as described in Fig. 5.2.2.

3. Study of the interplay between confinement induced effects on the viscosity and

slippage.

4. Study of electrokinetic effects as a function of the depth of nanochannels

that are 5-20 nm wide and 1.6-10 nm deep. Role of ion specificity, ion con-

centration, surface chemistry, temperature, slip length will also be studied in

different nanochannel sizes (See Fig. 5.2.3).
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