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SUMMARY 

 

 Traffic signs, which transportation agencies must inventory and manage, are one 

of the most important roadway assets because they are used to ensure roadway safety and 

provide important travel guidance/information. Traffic sign inventory and condition 

assessment are two important components that are essential for establishing a cost-

effective and sustainable traffic sign management system. Traditionally, state 

departments of transportation (DOTs) have conducted traffic sign inventory and 

condition assessment manually, a process that is labor-intensive, time-consuming, and 

sometimes hazardous to field engineers in the roadway environment. Methods have been 

developed to automate sign inventory and condition assessment using video log images in 

previous studies. However, the performance of these methods still needs to be improved. 

Based on the need to inventory signs and manage them more effectively, this study has 

two focuses. The first focus is to develop an enhanced traffic sign detection methodology 

to improve the productivity of an image-based sign inventory for state DOTs. The 

proposed methodology includes two enhanced algorithms: a) a lighting dependent 

statistical color model (LD-SCM)-based color segmentation algorithm that is robust to 

different image lighting conditions, especially adverse lighting and b) an ordinary/partial 

differential equation (ODE/PDE)-based shape detection algorithm that is immune to 

discontinuous sign boundaries in a cluttered background. The second focus of the study is 

to explore a new traffic sign retroreflectivity condition assessment methodology to 

develop a mobile method that uses emerging computer vision and mobile light detection 

and ranging (LiDAR) technologies to assess traffic sign retroreflectivity conditions. The 

proposed methodology includes a) an image-LiDAR registration method employing 

camera calibration and point co-planarity to register the 3D LiDAR point cloud with 2D 

video log images, b) a theoretical-empirical normalization scheme to adjust the 
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magnitude of the LiDAR retro-intensity values with respect to LiDAR beam distance and 

incidence angle based on the radiometric responses, and c) a population-based 

retroreflectivity condition assessment method to evaluate the adequacy of a traffic sign 

retroreflectivity condition based on the correlation between the normalized LiDAR retro-

intensity and the retroreflectivity values. For the proposed traffic sign detection 

methodology, comprehensive tests using representative datasets (e.g. with different road 

functions, data collection sources, and data qualities) were conducted to validate the 

performance of the two enhanced algorithms and the complete methodology. For the 

proposed retroreflectivity condition assessment methodology, the fundamental behavior 

of LiDAR retro-intensity was comprehensively tested and simulated under a controlled 

lab and roadway environment to quantify the impact of beam distance and incidence 

angle. A preliminary test on Type 1 engineer grade stop signs was conducted in the field 

to validate the performance of the proposed sign retro-reflectivity condition assessment 

method. The results from both of the proposed methodologies are promising.  



 

1 

CHAPTER 1  

INTRODUCTION 

1.1. Background 

 Traffic signs are one of the most important assets for transportation systems; they 

provide vital guidance to road users regarding traffic regulation, warnings, destination 

information, and temporary road condition information. Because of the vital role traffic 

signs play in roadway safety and information conveyance, they must be managed 

effectively by state departments of transportation (DOTs) using a traffic sign 

management system. A traffic sign management system is “a coordinated program of 

policies and procedures which ensure that the highway agency provides a sign system 

that meets the needs of the user most cost-effectively within available budget and 

constraints” (McGee & Paniati, 1998). It contains the four primary components shown in 

Figure 1-1 and described as follows:  

 Inventory, which collects the locations and attributes of every individual traffic sign;  

 Condition assessment, which determines the performance adequacy of inventoried 

signs by assessing retroreflectivity and identifying visual defects; 

 Performance evaluation, which evaluates a traffic sign system's performance and 

predicts the performance and life of an individual sign or a group of signs in the 

system based on the collected condition data; 

 Decision-making, which generates maintenance strategies, methods, and 

prioritizations based on the performance evaluation outcomes and available budget, 

and generates the needed annual budget based on expected safety requirements.  
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Figure 1-1 Diagram of the four primary components of a traffic sign management system 

 As pointed out by Wolshon (2003) and Rasdorf (2009), traffic sign inventory and 

condition assessment are the two most important components in a traffic sign 

management system. Management actions can only be effectively carried out with 

reliable inventory and condition assessment information.  

 During traffic sign inventory, detailed traffic sign information, including sign 

locations and attributes (e.g. type, dimension, lateral offset, etc.), is recorded and used to 

build a comprehensive traffic sign inventory database. Among all traffic sign information 

in a sign inventory database, identifying “where the traffic signs are” (i.e. traffic sign 

detection) is the first and most critical step, without which all the remaining sign attribute 

information cannot be acquired or populated in the database. However, most 

transportation agencies do not even have the information about where their traffic signs 

are along the road, not to mention the detailed traffic sign attribute information. There is 

an urgent need to develop methods to cost-effectively and reliably locate traffic signs first 

so that the remaining detailed traffic sign information can be populated and the 

subsequent management operations can be successfully carried out, e.g. condition 

assessment, performance evaluation, etc.  
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 During traffic sign condition assessment, the traffic signs that do not meet 

requirements are identified by insufficient retroreflectivity and/or visual surface defects 

that interfere with traffic signs' displayed information (Howe, 2006). Among all the 

traffic sign conditions, traffic sign retroreflectivity condition is the most critical one for 

nighttime driving safety. There is an urgent need to develop methods to cost-effectively 

and reliably evaluate traffic sign retroreflectivity condition because the Federal Highway 

Administration (FHWA) has mandated minimum traffic sign retroreflectivity standards, 

which transportation agencies must implement.  

 Traditionally, traffic sign detection and retroreflectivity condition assessments 

have used manual methods in state DOTs. However, manual methods require field 

engineers to physically inspect and record the information of each individual traffic sign, 

which takes excessive time, consumes great amounts of labor, and sometimes puts field 

engineers in dangerous situations. To overcome the drawbacks of manual methods, some 

effort has been made to develop automated methods for both traffic sign detection and 

retroreflectivity condition assessment using video log images. However, the performance 

of these methods still needs to be improved so that they can be practically applied in state 

DOTs’ practices. In recent years, emerging sensing technologies, e.g. computer vision, 

mobile light detection and ranging (LiDAR), etc. have advanced greatly so that current 

image-based automatic methods have been improved, and new traffic sign detection and 

retroreflectivity condition assessment methods have become possible. Consequently, this 

study focuses on the two key needs in the inventory and condition assessment 

components of a traffic sign management system: 1) developing an enhanced traffic sign 

detection methodology to improve the productivity of an image-based sign inventory for 

state DOTs, and 2) exploring and developing a new traffic sign retroreflectivity condition 

assessment methodology to cost-effectively and reliably assess traffic sign 

retroreflectivity conditions using the emerging computer vision and mobile LiDAR 

technologies. 
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1.2. Research Objective 

  The objective of this study is to propose a sensing methodology that takes 

advantage of computer vision and mobile LiDAR technologies supporting an intelligent 

traffic sign inventory and condition assessment. The specific objectives are as follows:  

 Develop an enhanced traffic sign detection methodology to improve the productivity 

of an image-based sign inventory for state DOTs.  

o Develop new automated algorithms to ensure the enhanced traffic sign detection 

methodology produces a reliable outcome. 

 Explore and develop a new traffic sign retroreflectivity condition assessment 

methodology employing the emerging computer vision and mobile LiDAR 

technologies. 

o Study the fundamental behavior of LiDAR retro-intensity values to reveal the 

feasibility of developing a mobile retroreflectivity condition assessment 

methodology by conducting simulated and field tests under controlled lab and 

roadway environments; 

o Develop new automated algorithms and methods to ensure the new traffic sign 

retroreflectivity condition assessment methodology produces a reliable and 

consistent outcome.  

1.3. Dissertation Organization  

 The background of traffic sign inventory and retroreflectivity condition 

assessment is briefly introduced, and the research need and objectives are identified in 

Chapter 1. A literature review of current practices and studies of traffic sign inventory 

and traffic sign retroreflectivity condition assessment are presented in Chapter 2. The 

methodology for an enhanced traffic sign inventory using image processing is presented 

in Chapter 3. The methodology for an automatic traffic sign retroreflectivity condition 
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assessment using computer vision and mobile LiDAR technologies is presented in 

Chapter 4. The experimental tests for validating the methodologies for traffic sign 

inventory and retroreflectivity condition assessment are presented in Chapter 5. Finally, 

the contributions and findings of this study and recommendations for a future research 

are summarized in Chapter 6.  
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CHAPTER 2  

LITERATURE REVIEW 

 Traffic signs are the traffic control devices erected on public roads to provide 

critical information for road users, including notification of regulations, warning of 

hazards on or near the roadway, and guidance for destinations. The Manual on Uniform 

Traffic Control Devices (MUTCD) developed by Federal Highway Administration 

(FHWA) requires all transportation agencies to adopt a sign management and 

maintenance program to promote the functionality and efficiency of traffic signs (FHWA, 

2009). Traffic sign inventory and traffic sign retroreflectivity condition assessments are 

the two indispensable components of a traffic sign management and maintenance 

program. Traffic sign inventory collects the locations and attributes of each individual 

traffic sign, while retroreflectivity condition assessment determines the performance 

adequacy of the inventoried signs by assessing their retroreflectivity. This chapter 

reviews manual and automatic traffic sign inventory and retroreflectivity condition 

assessment methods and the practices adopted by transportation agencies. In addition, 

this chapter identifies the challenges and research needs in the current manual and 

automatic methods.  

2.1. Traffic Sign Inventory 

A traffic sign inventory is a data collection process obtaining essential traffic sign 

information, e.g. traffic sign location, type, etc. The data is used by transportation 

agencies to manage their invested assets. This section reviews manual and automatic 

traffic sign inventory technologies and the practices adopted by different transportation 

agencies.  
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2.1.1. Traffic Sign Inventory Data Collection 

 The objective of traffic sign inventory for transportation agencies is to identify the 

locations of their invested assets by constructing a geo-referenced inventory database. 

The inventory database will be used for estimating sign life, managing and prioritizing 

maintenance activities, and budgeting and minimizing tort liability. To fulfill the 

objective of the traffic sign inventory, two key data items, the location and the MUTCD 

code, are included in all traffic sign inventory programs (McGee, 2010); some other 

auxiliary data items, such as sign support type, sign offset, etc., are also collected. Both 

manual method and video logging method are used by transportation agencies to collect 

these inventory data items.  

2.1.1.1. Manual Method 

Many transportation agencies use manual methods for traffic sign inventory data 

collection because it is easy to implement and relatively inexpensive. The manual data 

collection method requires that field engineers physically approach each traffic sign and 

collect the necessary data. The field engineers use paper-based spreadsheets to input the 

data (Larson & Skrypczuk, 2004). With the development of portable devices and GPS 

technologies in recent years, many agencies have started to use GPS-equipped handheld 

computers to accelerate the data collection process (Paoly & Staud, 2010; Rasdorf, et al., 

2009). 

Although the applications of the information technology improve the data 

collection efficiency, the manual method is still labor-intensive, dangerous, and time-

consuming because the manual method still requires field engineers to physically 

approach traffic signs to collect data. Many traffic signs are difficult and dangerous to 

approach, such as median signs, overhead signs, etc. In addition, the discrete distribution 

of traffic signs along roads needs much traveling and frequent stops between different 
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signs, which costs transportation agencies much in terms of resources and effort 

(Wolshon, 2003). 

2.1.1.2. Video-logging Method 

To improve the data collection efficiency and safety, many transportation 

agencies and vendors use video-logging methods to collect traffic sign inventory data. 

Video log images are first collected by using a data collection vehicle at highway speed. 

The collected data is then transferred to the office and manually processed by the 

operators who perform a frame-by-frame review, manually extract traffic sign 

information, and input the sign attributes into a data system.  

Many transportation agencies, including almost all the state departments of 

transportation (DOTs), are equipped with a mobile data collection system (Findley, et al., 

2011), and they collect video log image data for roadway visualization purposes 

periodically (PennDOT, 2010). Nevertheless, there are only a limited number of 

transportation agencies that use these data for traffic sign inventory because the image 

reviewing process is time-consuming and tedious. The North Carolina Department of 

Transportation (NCDOT) only uses the video-logging method to inventory overhead 

signs (2011). The city of Phoenix, Arizona, uses a similar method to inventory the 28,000 

traffic signs in the city area (Moreno & Cook, 2010). There are also several contracting 

vendors using such methods to help large transportation agencies inventory their traffic 

signs, e.g. Trimble® Geo-3D, Roadware®, Mandli®, etc. Although some data-reviewing 

software has been developed to facilitate the process, manual review of the collected 

video log images frame by frame is still required. In 2010, Roadware conducted an 

internal study on the efficiency of traffic sign inventory using the video-logging method; 

the result implied that the processing rate is approximately 10 traffic signs per hour 

(Dew, 2010). It is identified that although video log image data are widely available in 

many transportation agencies, manually reviewing the images and inputting attribute data 
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are so labor-intensive and time-consuming that they hinder the full utilization of these 

data for traffic sign inventory. There is a need for an automatic method to process video 

log images in support of traffic sign inventory efficiently. 

2.1.2. Image-based Traffic Sign Detection Methods 

To fully utilize the widely available video log images and to improve the 

efficiency of the traffic sign inventory process, some automatic methods have been 

developed using video log images in recent studies. These automatic methods attempt to 

reduce the effort of manual review. Based on a thorough literature review, the majority of 

the studies using this approach set the inventory problem into two stages: detection and 

recognition. The traffic sign detection stage serves as a filter to eliminate the majority of 

the video log images that do not contain traffic signs and to extract the regions of interest 

(ROIs) within the video log images in which traffic signs may exist; the traffic sign 

recognition stage serves as a classifier to validate whether or not the extracted ROIs 

contains a sign and to associate them with the MUTCD code if a sign is present.  

It is identified that traffic sign detection is the most critical and challenging stage. 

Unreliable detection results could lead to excessive errors in subsequent stages of 

recognition. Developing a robust sign detection algorithm using video log images 

contains such technical challenges as light condition changes, noise introduced by the 

camera, and complicated image contexts (e.g. cluttered backgrounds, occlusions, etc.) 

within a natural environment. In addition, because there are more than 670 types of traffic 

signs defined in the MUTCD, it is even more challenging to design a reliable traffic sign 

detection algorithm for all the MUTCD specified signs. Therefore, this dissertation 

focuses on image-based traffic sign detection, while traffic sign recognition is 

recommended for future research.  

From the literature, it is identified that most of the existing image-based traffic 

sign detection algorithms have been developed following a two-stage approach using the 
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two distinct traffic sign features defined in the MUTCD, color and shape. In these 

algorithms, color segmentation is first applied to video log images to segment different 

color clusters, and then shape detection is employed to extract the traffic sign candidates 

(i.e. ROIs) from the segmentation results.  

2.1.2.1. Color Segmentation 

Color segmentation is a process of partitioning the collected video log images into 

different segments which contain different colors. The unique traffic sign colors are used 

to differentiate potential traffic signs from the background objects within video log 

images. General color segmentation techniques for an object detection problem attempt to 

find an optimal boundary in the defined color space that can accurately cluster the pixels 

that belong to the same color. Traffic sign color segmentation follows the same principle. 

However, two unique challenges need to be addressed specifically for traffic sign 

detection: 1) there are ten colors specified in the MUTCD that should be distinguished 

from the background rather than a single color; 2) there is a discrepancy between the 

MUTCD defined sign colors and the actual colors in the video log images due to the 

change of illumination, the noise introduced by the camera, or the deterioration of signs. 

To address these unique challenges, previous studies have been carried out, focusing on 

the selection of color spaces and the methods for color classification.  

2.1.2.1.1. Color Space Selection 

RGB/nRGB Color Space: Red, green, and blue (RGB) color space is one of the 

most basic color spaces used in a camera and monitor system. Therefore, it is the simplest 

color space for segmentation without need for transformation. Therefore, many studies 

have employed RGB color space for traffic sign detection (Benallal & Meunier, 2003; 

Wu & Tsai, 2006). However, due to the high correlation among the three color 

components, the segmentation results are typically not robust to illumination changes. In 
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order to improve the performance, normalized RGB (nRGB) color space was introduced 

by Janssen et al. (1993) and Kamada et al. (1990). The original RGB values are 

normalized by the summation of RGB values (i.e., intensity) so that illumination changes 

have less effect on RGB color. Although RGB/nRGB color space is simple to implement, 

each color component (i.e. R, G or B) is still lighting-condition dependent.  

HSV Color Space: Hue, saturation, and value (HSV) is a color space that is 

defined as being similar to what the human eye perceives (Berk, et al., 1982). Hue 

represents the perceived color information, and saturation represents the purity of the 

perceived color. Value represents the brightness of the perceived color. By isolating the 

color information from the brightness, such color space is more immune to the lighting 

condition changes in the video log images. Many studies have employed HSV color 

space for traffic sign detection with reasonably good segmentation results (de la Escalera 

et al., 2003; de la Escalera et al., 2004; Maldonado-Bascon et al., 2007).  

Other Color Spaces: Other color spaces, including YUV, L*u*v*, Ohta, etc., 

have also been attempted in processing video log images for traffic sign detection. YUV 

is a color space that is defined as being similar to how a television system displays the 

image. The brightness component (Y) and the chromatic components (UV) are 

completely separated. The chromatic components only rely on the R and B components 

in the RGB color space, while the Y component is a weighted average of all the RGB 

values. L*u*v* is a color space that is defined by international commission on 

illumination (CIE) by reserving the simplicity of the legacy CIE XYZ color space while 

attempting perceptual uniformity. L*u*v* values are computed with a non-linear 

transformation from the XYZ values. There have been several attempts to use these color 

spaces in previous studies (Kang et al., 1994; Miura et al., 2000). Ohta et al. (1980) 

proposed a new Ohta space that demonstrates some true beneficial characteristics in 

processing video log images. The Ohta color space is derived from attempting to find the 

best uncorrelated color components. Therefore, each color component can be 
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independently processed. The transformation matrix is derived by Ohta et al. (1980) 

based on extensive experiments and the Karhunen-Loeve transform. However, due to the 

limited physical correlation between the color components in these color spaces and the 

video log image color features, the attempts were not extensively carried on in processing 

video log images.  

From the literature review of different color spaces, there is no single color space 

that can robustly work for all video log images in different contexts and lighting 

conditions. Among all of other color spaces, HSV color space is the most accepted color 

space for image processing in natural settings. The isolation of the color and illumination 

information into different components minimizes the impact of the change of lighting 

conditions in video log images with natural scene settings. The further isolation of the 

chromatic information into two individual components, i.e. H and S, ten MUTCD defined 

colors can be distinctively separated with limited confusion (Tsai et al., 2009). However, 

the HSV color space has one drawback: color information in the hue component becomes 

unreliable for achromatic pixels, especially when the image is really bright (e.g. over-

exposure) or dark (e.g. under-exposure) where the RGB values of the pixel are too close 

(Maldonado-Bascon et al., 2007). 

2.1.2.1.2. Color Classification 

Color classification groups pixels with similar color features into the same cluster. 

As a general color classification problem, many classical methods have been studied, 

such as connected component analysis (Khan et al., 2011; Marinas et al., 2011), the 

Gaussian and Gaussian mixture model (GMM) (Ruta et al., 2010), etc. To deal 

specifically with traffic sign color classification problems, two popular groups of 

methods, thresholding, neural network (NN) and support vector machine (SVM), 

focusing on processing speed and robustness, have been used. In addition, 
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chromatic/achromatic decomposition (CAD) has been introduced to be used individually 

or to complement other methods for white and black color classification.  

Thresholding Method 

Color classification uses thresholding to find a set of optimal values that can 

effectively threshold the components in a selected color space. Most of the threshold 

values are empirically established by selecting the traffic sign image samples with 

different colors. By analyzing the distribution (Maldonado-Bascon et al., 2007) or 

histogram (de la Escalera et al., 2003) of the selected samples, the best thresholding 

values are empirically selected for each color. To ease the process for empirical threshold 

value selection, color spaces that contain uncorrelated components are commonly used, 

e.g. HSV, Ohta, etc. Although the thresholding method is easy to implement with a fast 

processing speed, it has two drawbacks: 1) there are a large number of threshold values to 

be adjusted, especially when the number of color classes are large; 2) the effectiveness of 

the color classification dramatically depends on the generality of the traffic sign samples 

used for determining threshold values.  

Neural Network and Support Vector Machine Method 

To obtain a good generalization for color classification and reduce the need for 

empirical threshold value adjustment, color classification methods using NN and SVM 

have been introduced. Both NN and SVM-based approaches follow a training-validation 

process, which requires a training dataset to establish the classifier, i.e. a neural network 

and support vectors, respectively. The established classifier is used to achieve the 

classification job.  

NN was introduced first and received considerable attention. In most of the NN 

formation, the input is typically the value of each component in the selected color space, 

while the output is the labeling indicating different traffic sign color. Nguwi and Kouzani 

(2008) segmented the input image in the HSV color space and located traffic signs. The 

classification module determined the type of detected traffic signs using a series of one-
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to-one architectural multilayer perceptron neural network. Tsai et al. (2009) input the 

HSV component values and an additional 157 non-linear compound components to 

formulate a function linked network (FLN) to classify ten MUTCD colors. Fang et al. 

(2003) proposed spatial neural network to classify seven different colors based on only 

the hue value and spatial adjacency of the values. Although NN demonstrated good color 

classification capability with good generalization, the structure of the hidden layer can 

only be arbitrarily designed with empirical experience, the network weights are hard to 

correlate with physical meanings of the input or output, and the network could have 

multiple solutions associated with local minima (Vemuri, 1993). 

To improve the performance of NN, SVM is more popularly used in color 

classification and many other classification problems. SVM deploys the simple concept 

of maximizing classification boundary in a linear setup. Then it introduces the concept of 

kernel functions so that a non-linear classification problem is transformed into linear 

classification problem in a higher dimension. Eventually, by solving a quadratic 

programming optimization problem, the optimal classification boundary is identified 

(Cortes & Vapnik, 1995). With such formation, SVM demonstrates better generalization 

and optimal solution convergence than NN. However, due to the nature of SVM, SVM is 

only capable of classifying two classes, which is not feasible for traffic sign color. 

Therefore, multi-class SVM has been introduced and used in multiple color classification 

by introducing one-over-all or pair-wise strategy. Maldonado-Bascon et al (2007) 

formulated the SVM using one-over-all strategy to classify different traffic sign colors 

using RGB color space.  

The previous studies show many studies have been carried out for traffic sign 

color segmentation. HSV color space and NN- or SVM-based color classification are 

among the most popular methods to achieve reasonably good color segmentation results. 

However, due to the complication of the natural scene video log image, especially the 

variant lighting condition changes, there is no universal method that can robustly segment 
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all the MUTCD colors. One possible direction to further improve the performance of 

color segmentation is to adapt the existing color segmentation methods to the natural 

variant lighting conditions.  

2.1.2.2. Shape Detection  

Shape detection is a process of identifying unique geometrical shapes as defined 

in the MUTCD. These unique shapes can be used to detect traffic signs from the 

segmented images. After the color segmentation, the video log images are segmented 

based on different color clusters, represented by the boundary contours or image blobs. 

Shape detection methods are proposed to analyze the geometry information of contours 

or blobs. Three primary challenges include: 1) there are ten types of traffic sign shapes 

defined in the MUTCD; 2) the segmented contour or image blob may contain defects 

compared with the original shape due to color segmentation error. For example, a straight 

line could be curved, a small corner could be missed in a square shape, etc.; 3) the 

perspective view of the video log camera distorts the geometrical shape of the traffic 

sign. For example, parallel lines in a rectangular traffic sign are not long parallel. In 

previous studies, element-based methods and pattern-based methods have been developed 

to address the identified challenges.  

2.1.2.2.1. Element-Based Method  

An element-based method detects a traffic sign by identifying fundamental sign 

elements from color segmented images, i.e. corner, edge, etc. The identified elements are 

further assembled into detected traffic sign candidates. Most of the element-based 

methods are used when the color-segmented results are represented as contours.  

De la Escalera et al. (1997) used different pre-defined masks to identify the corner points, 

and then used the triangular and rectangular constraint to identify the detected corner 

points as the vertexes of different shapes. Haritaoglu (2003) applied two effective 
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enhancement methods, including a symmetric neighborhood filter (SNF) to retain the 

edge and hierarchical connected component (HCC) analysis to identify the traffic sign 

region, and then the corner points of the traffic sign could be revealed. Garcia et al. 

(2003) used the horizontal and vertical gradient of the image to extract the traffic sign 

edges in the images, followed by the two directional projections to extract the shape of 

the traffic sign region. There are several other methods that are applied to identify the 

edges of traffic signs, such as Harris corner detection (Paulo & Correia, 2007), radial and 

circular edge detections (Sandoval, et al., 2000), etc. The element-based methods are 

robust to the defects from color segmentation because only local element-based features 

are extracted. However, assembling the extracted elements is not an easy task. It requires 

a priori elimination of the false assembling of the extracted elements. Blancard (1992) 

defined a group of a priori knowledge that is essential for assembling the extracted 

elements, including perimeter (number of pixels), outside bounding box, center of 

gravity, aspect ratio, freeman code, etc. Piccioli et al. (1994) concentrated exclusively on 

the geometry reasoning for assembling the extracted elements to formulate different 

traffic sign shapes. Escalera et al. (1997) formulated a composite energy function using 

the fundamental elements of a traffic sign, including gradient, sign distance, sign 

geometry, etc. Detection is achieved by minimizing the formulated energy using a genetic 

algorithm (GA).  

2.1.2.2.2. Pattern-Based Method 

A pattern-based method detects the overall patterns of traffic sign shapes instead 

of the individual element to improve the algorithm’s robustness. Most of the element-

based methods are used when the color segmented results are represented as blobs. 

Maldonado-Bascon et al. (2007) proposed a distance-to-boundary (DtB) pattern for 

traffic signs so the rotations of the traffic sign in natural scenes are addressed. By plotting 

the DtB in 1-D, the traffic sign shape can be classified based on the sudden change of 
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DtB values where there is vertex. The DtB pattern is further generalized using the SVM-

based classification method. Parada-Loira and Alba-Castro (2010) proposed the local 

contour pattern (LCP), derived from a local binary pattern (LBP), and applied the pattern 

to the texture area for detecting areas with unique shapes. For traffic signs, only the LCP 

code-word representing linear structures with selected angles are kept for detection. 

However, the DtB method and the LCP method require “perfect” extraction results from 

the color segmentation step. Otherwise, the defined patterns cannot be reliably 

recognized. Haar-like patterns that are originally proposed for face detection were, also, 

introduced for traffic sign detection (Bahlmann, et al., 2005). However, the Haar-like 

patterns are very hard to be generalized when defining different types of traffic signs (Hu 

& Tsai, 2011).  

Through the review of previous studies, it is identified that neither the edge-based 

nor pattern-based method pose a reliable solution for robust shape extraction due to the 

complications of the cluttered background captured in the video log image and imperfect 

color segmentation results. For the edge-based method, it is challenging to effectively 

assemble the extracted unorganized elements. For the pattern-based method, it is 

challenging to provide perfect blobs from color segmentation for the algorithm to 

recognize the shape pattern reliably. One way to improve the performance of shape 

detection might be to combine the edge-based method and pattern-based method by 

retaining the capabilities to reliably extract individual sign elements and maintain the 

integrity of sign shape features from both methods, respectively.  

2.1.2.3. Generalized Image-Based Traffic Sign Detection 

Despite the fact that researchers have made numerous efforts to implement an 

automatic traffic sign detection algorithm for transportation agencies using video log 

images, implementing an effective algorithm still remains a challenge. This hinders the 

use of widely available video log images. Most of the existing traffic sign detection 
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methods have only focused on certain types of traffic signs, which are primarily designed 

for driver support systems (DSS) and focus only on safety-related traffic signs, e.g. 

regulatory signs, etc. Many of the methods are implemented in high-class vehicles or new 

anonymous vehicles, e.g. Google driverless car. For example, the traffic sign recognition 

(TSR) module is found on Volkswagen and Audi cars for speed limit signs and no-

parking signs (Volkswagen, 2010), while similar technology is used on BMW cars for 

speed limit sign recognition (BMW, 2012). For the new Google driverless car (Guizzo, 

2011), although light detection and ranging (LiDAR) is used as the primary object 

detection sensor, image-based TSR is still used for detecting and recognizing certain 

types of traffic signs, e.g. stop sign, speed limit sign, etc., that might impact the behavior 

of the vehicle. Although many of these methods can achieve very good detection 

accuracy, i.e. more than 95% for speed limit sign detection (Wei et al., 2011), and have 

been commercially available, these methods cannot be practically used for traffic sign 

inventory purposes because they do not work for all types of traffic sign types. A 

generalized traffic sign detection method is hard to find in the literature. De la Escalera et 

al. (1997, 2003, 2004) and Gil-Jiménez et al. (2005, 2007, 2007) both developed a 

generalized traffic sign detection method using pictograms and a priori knowledge of the 

shapes and colors of traffic signs was proposed for the European traffic sign system. The 

algorithms developed by de la Escalera et al. achieved a detection rate of 90.4% (true 

positive rate) and approx. 30% (false positive rate) using 83 tested traffic signs. Gil-

Jiménez et al. achieved a detection rate of 93.24% (true positive rate) and 21.2% (false 

positive rate) using 5,176 video log images collected by the research team in Spain. 

However, both algorithms only detect a small number of sign types and colors (only red 

circles, blue circles, and blue rectangles).  

The algorithm developed by Tsai et al. (2009) is the first and only attempt 

identified in the literature review to detect all types of traffic signs defined in the 

MUTCD. The algorithm was developed using an NN-based color segmentation model 
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and a Douglas-Parker (DP)-based shape approximation method. The algorithm was 

validated using 37,640 video log images collected by the Louisiana Department of 

Transportation and Development (LaDOTD) and achieved a detection rate of 83.7% (true 

positive rate) and 12.9% (false positive rate).  

To obtain a better understanding of the algorithm's performance, a critical 

assessment was conducted using the actual video log images collected in Nashville, 

Tennessee, by Georgia Tech’s sensing vehicle. The algorithm developed by Tsai et al. 

was tested. From the results of the assessment, the following issues were identified 

(detailed assessment results can be found in the Appendix):  

 Variant lighting condition: The appearance of the colors of traffic signs within video 

log images can be severely distorted due to the varying illumination captured by 

video log images. In addition, colors of traffic signs can also be distorted non-

homogeneously by shadows cast from surrounding objects (Garcia-Garrido et al., 

2006; Huang et al., 2010).  

 Cluttered background: Both colors and boundaries of signs captured in video log 

images can be confused with cluttered backgrounds that contain similar colors (e.g. 

green vegetation and green information signs, etc.) and/or shape patterns (e.g. house 

windows and rectangular signs, etc.) (Lowe, 1999; Piccioli et al., 1996; Ruta, et al., 

2008). 

 Occlusion: Trees, poles, buildings, vehicles, and pedestrians captured by video log 

images frequently occlude traffic signs due to the camera view angle. Occlusions can 

break the integrity of shape patterns or boundaries captured by video log images (de 

la Escalera et al., 2003, 2004; Khan, et al., 2009; Maldonado-Bascon et al., 2007; 

Paclik, et al., 2006).  

 Physical condition change: Traffic signs with poor physical conditions, such as 

sheeting deterioration, vandalism, tilting, etc., do not share colors and/or shape 

features in common with signs in good condition (Tsai et al., 2010).  
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 Video log image quality: Because of the vibrations of a moving vehicle, camera 

malfunctions, and /or lens debris, many video log images are captured with poor 

quality. These images may not be usable for automatic sign detection (Sheikh & 

Bovik, 2005; Tsai & Huang, 2010).  

Among all the identified issues from the assessment, varying lighting conditions 

and cluttered backgrounds contribute more than half of the identified false negative cases. 

Therefore, these two key issues are identified for enhancement as the focus of this 

dissertation.  

2.1.2.4. Discussion 

Through the literature review of image-based traffic sign detection methods and 

the corresponding assessment (presented in the Appendix), challenges and research needs 

are identified primarily on the algorithm development level. Although there are many 

image-based traffic sign detection algorithms, to develop a reliable and generalized 

image-based traffic sign detection algorithm that is capable of accurately detecting more 

than the 670 types of signs specified in the MUTCD still remains a challenge. Several 

key technical challenges are identified in the literature and the assessment of the selected 

algorithm, including variant lighting conditions, cluttered backgrounds, occlusions, 

physical condition changes, poor image quality, etc. This dissertation focuses on 

enhancing the image-based traffic sign detection algorithm by addressing the light 

condition challenge and the cluttered background challenge.  

2.2. Traffic Sign Retroreflectivity Condition Assessment 

Traffic sign condition assessment is used to determine the performance adequacy 

of the traffic signs so that transportation agencies can determine the signs that need to be 

maintained or replaced. Failed traffic signs are indicated by insufficient retroreflectivity 

and/or visual defects that obscure the displayed information of the traffic sign (Howe, 
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2006). A reliable and effective traffic sign condition assessment method is needed to 

enable transportation agencies to determine the adequate timing for traffic sign 

maintenance and replacement. As FHWA has proposed the minimum traffic sign 

retroreflectivity conditions and mandated that transportation agencies plan and implement 

procedures to maintain minimum traffic sign retroreflectivity, the need for a reliable and 

effective retroreflectivity condition assessment method is urgent. This dissertation 

focuses on traffic sign retroreflectivity condition assessment to meet the urgent need of 

transportation agencies. Other visual defects will be recommended for future research.  

2.2.1. Traffic Sign Retroreflectivity Condition Data Collection 

Traffic signs are designed to be reflective during the nighttime under the 

illumination of vehicles’ headlights so that drivers can read the vital information without 

other external lighting. To serve such a purpose, special sheeting materials with “retro”-

reflective feature are used for traffic signs so that light can be reflected back to its 

original source and perceived effectively by drivers’ eyes. The objective of traffic sign 

retroreflectivity condition assessment is to evaluate the retro-reflective capability of 

traffic signs in support of traffic sign replacement or maintenance. “Highway statistics 

nationwide reveal that the nighttime fatal crash rate is approximately three times that of 

the daytime crash rate, measured in million miles traveled” (Carlson & Picha, 2009). 

Every transportation agency responsible for maintaining public highways and streets is 

required to use retro-reflective materials on traffic control devices to facilitate driver 

safety. Traffic sign retroreflectivity condition is determined using nighttime visual 

inspection by using retroreflectometer measurement or a management method. The 

following introduces the existing traffic sign retroreflectivity condition determination 

methods.  

 Nighttime visual inspection. Nighttime visual inspection is a manual process that 

requires an investigator to drive a sport utility vehicle (SUV)-type vehicle during the 
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nighttime and visually assess the traffic sign retroreflectivity condition using “trained 

eyes” (FHWA, 2009). As it is easy to conduct, most transportation agencies use 

nighttime visual inspection as the primary method to determine the traffic sign 

retroreflectivity condition. For example, the Georgia Department of Transportation 

(GDOT) annually conducts retroreflectivity condition assessment using this method. 

Although the nighttime visual inspection is widely used by state DOTs, the 

assessment results are subjective and inconsistent from one investigator to another. 

Hawkins and Carlson conducted a field test using 50 traffic signs removed from the 

roadside. Sign investigators in the test identified 26 unacceptable signs, while only 

one traffic sign was considered unacceptable using a retroreflectometer following 

FHWA's standard (2001). 

 Retroreflectometer measurement. Retroreflectometer measurement is a manual 

process that requires the investigator to conduct contact measurements for each traffic 

sign using a retroreflectometer. The American Society for Testing and 

Materials (ASTM) has provided a standard measurement procedure using the 

retroreflectometer, which mimics the traffic sign brightness as seen by an SUV driver 

at a distance of 200 m distance. An average or median of four measurements for each 

reflective color of the traffic sign are required. The average of the readings for each 

reflective color will be compared with the MUTCD standard to determine the sign's 

retroreflectivity condition (ASTM, 2009). The retroreflectometer can provide a 

quantitative and consistent measurement to determine the traffic sign's 

retroreflectivity for each measurement point. Several transportation agencies are 

using this method, including LaDOTD, the Indiana Department of Transportation 

(InDOT), the Virginia Department of Transportation (VDOT), Hillsborough County, 

Florida, etc. However, as the retroreflectometer measures the traffic sign 

retroreflectivity by contacting the traffic sign surface, the investigator needs to 

physically approach each traffic sign and conduct the survey, which is time-
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consuming, costly, and sometimes dangerous. In addition, as the average of the 

selected measurements is used to represent the overall retroreflectivity condition for 

each reflective color, the results can be over or under-estimated if the traffic sign is 

non-uniformly deteriorated (Remias et al., 2011).  

 Management method. The management method is a management process that 

predicts how long signs with similar characteristics, e.g. installation date, sign 

sheeting, and color, etc., will maintain an above-standard retroreflectivity. The 

expected sign life method, the blanket replacement method, and the control sign 

methods are included under the management method.  

o The expected sign life method calculates a sign's life from known sign 

retroreflectivity deterioration rates for combinations of sign sheeting color and 

sheeting type. The Michigan DOT uses expected sign life based on 

retroreflectivity deterioration research to determine when a sign should be 

replaced (Cambridge Systematics Inc. & Meyer, 2007).  

o The blanket replacement method replaces all signs along a corridor, within an 

area, or of the same sign and sheeting type at intervals based on the expected sign 

life of the signs. The city of Phoenix is performing the blanket replacement 

method to replace more than 28,000 traffic sign along the major corridor in the 

city (Moreno & Cook, 2010).  

o The control sign method uses signs either in a controlled study yard or a sample 

of signs from the field to determine sign life.  

Although no individual retroreflectivity condition assessment is needed using 

management methods, there are potential issues for blindly replacing traffic signs in a 

region based on the limited criteria. On one hand, these management methods could 

potentially replace many traffic signs with good retroreflectivity condition, which is a 

waste of investment. On the other hand, these management methods could overlook some 
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critical traffic sign with a poor retroreflectivity condition while the majority of the signs 

in the region are still in good condition, which introduces potential liability concerns.  

The current practices in transportation agencies are primarily manual methods, either 

nighttime visual inspection or retroreflectometer measurement. These methods require 

individual assessment for each traffic sign, which is time-consuming and costly. In 

addition, the assessment result can be subjective and inconsistent (using the nighttime 

inspection method) or inaccurate (using the retroreflectometer measurement method). 

Management methods are also used by transportation agencies to save time and cost. 

However, blind replacement of traffic signs with good retroreflectivity condition leads to 

a waste of investment. Therefore, transportation agencies are in urgent need of a reliable 

and cost-effective traffic sign retroreflectivity condition assessment method to meet 

FHWA’s requirements and their own management needs.  

2.2.2. Traffic Sign Retroreflectivity Condition Assessment Methods 

To reliably and cost-effectively collect traffic sign retroreflectivity condition 

information, previous research has attempted to develop automatic assessment methods. 

The image-based method is the most commonly used sign retroreflectivity condition 

assessment method. The key principle of this kind of methods is establishing the 

correlation between image intensity and traffic sign retroreflectivity. Nevertheless, there 

are very few systematic studies exploring such correlation. Most of the studies are based 

on the empirical results established using limited traffic sign samples. Siegmann et al. 

(2008) systematically developed the fundaments between image intensity and 

retroreflectivity from a photometrical perspective. Different factors, including the camera 

aperture number, the camera exposure time, the surface element and color, the distance 

from the light source to the surface and the incident angle, etc., were studied. A close 

form equation between retroreflectivity and the studied factors was derived. The equation 

was validated using a circular speed limit sign. This equation can be applied to 
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correlation of the image intensity and the retroreflectivity under different camera 

configurations, e.g. the camera exposure time, the camera aperture, etc., and different 

data collection parameters, e.g. distance, incidence angle, etc.  

Using correlations established between the image intensity and the 

retroreflectivity, several image-based traffic sign retroreflectivity condition assessment 

systems have been developed. The Sign Management and Retroreflectivity Tracking 

System (SMARTS) van was first developed by FHWA in 1999. The pilot test was 

conducted by Alaska DOT (Smith & Fletcher, 2001). An external light-emitting diode 

(LED) was used to provide lighting to the traffic sign with known luminance to mimic a 

vehicle’s headlight, while a single camera was used to collect video log images for the 

illuminate d traffic signs. However, the results from the SMARTS van demonstrated poor 

correlations with the retroreflectometer. Facet Inc. and Mandli® Communications Inc. 

developed a similar system called RetroView. Two-camera systems were used that were 

dedicated to collecting low and high levels of intensity separately (Retterath & 

Laumeyer, 2008, 2011). Several pilot tests have been conducted by the Tennessee 

Department of Transportation (TDOT) and the Texas Department of Transportation 

(TxDOT) using the RetroView system; the results indicate that the system is potentially a 

cost-effective method for traffic sign condition assessment. In Europe, the VISUAL 

Inspection of the Sign and panEL (VISUALISE) system was developed by Gonzales, et 

al. (2011). The VISUALISE system was tested on 500 traffic signs in Spain, and 91% of 

the traffic signs were correctly assessed. To avoid ambient lighting, the system can only 

be operated during the nighttime.  

In summary, in previous studies, there have been a few attempts to develop an 

automatic image-based traffic sign retroreflectivity condition assessment method. 

Although some prototype systems have been developed, two challenges that hinder their 

implementation in DOTs’ practices remain: 1) the existing system can only operate 

during nighttime to minimize the impact of ambient lighting and get reliable traffic sign 



 26 

retroreflectivity condition results; 2) there are very limited validations that have been 

conducted for these systems to demonstrate the feasibility for implementation. Based on a 

nationwide survey of different vendors providing comprehensive roadway appurtenance 

acquisition (Findley, et al., 2011), no vendors in the current market provide any data or 

services for traffic sign retroreflectivity condition assessment. At present, none of the 

state DOTs have adopted any of these systems for traffic sign retroreflectivity condition 

assessment.  

2.2.3. Discussion 

 The literature review shows that transportation agencies currently use, primarily, 

manual methods for traffic sign retroreflectivity condition assessment. These methods 

can be subjective and inconsistent when using nighttime inspection or time-consuming 

when using retroreflectometer measurement. Some management methods are also used 

by transportation agencies. Although the cost for the assessment of each individual traffic 

sign can be saved, such methods may replace a good percentage of traffic signs with good 

condition, which is potentially wasteful, or overlook some critical traffic signs with poor 

condition, which causes potential liability concerns. There are only a few studies on 

developing automatic traffic sign retroreflectivity condition assessment methods. The 

most commonly used methods are image-based methods that depend on the correlation 

between image intensity and traffic sign retroreflectivity. All of these systems can only 

operate during the nighttime to obtain reliable condition assessment results, and yet none 

of these methods have been validated or adopted by any state DOT. There is a need to 

explore an alternative automatic method to assess traffic sign retroreflectivity condition 

reliably and cost-effectively.  
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2.3. Summary 

The following summarizes the finding from the literature review and the 

identified research needs: 

 Video log images are widely available for different state DOTs. However, frame-by-

frame reviewing of collected signs is labor-intensive and time-consuming. Although 

many image-based traffic sign detection algorithms have been developed, it still 

remains a challenge to automatically extract all types of traffic signs specified in the 

MUTCD from video log images because of two key challenges: 1) variant lighting 

conditions that distort the appearance of colors of signs within images; 2) cluttered 

backgrounds that confuse both the color and boundary of traffic signs with non-sign 

objects by adding additional false edges and interrupting the traffic sign boundaries. 

There is a need to develop an enhanced automatic traffic sign detection methodology 

to address these key challenges. 

 Three traffic sign retroreflectivity condition assessment methods are currently used by 

transportation agencies. However, these methods can be subjective and inconsistent 

(using nighttime inspection method), time-consuming (using retroreflectivity 

measurement method), or potentially wasteful/liable (using management methods). 

Although several image-based automatic methods have been developed, none of them 

have been validated or adopted by state DOTs. There is a need to explore the 

feasibility of developing an automatic traffic sign retroreflectivity condition 

assessment methodology, e.g. using the retro-intensity values from a mobile light 

detection and ranging (LiDAR).  
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CHAPTER 3  

AN ENHANCED GENERALIZED IMAGE-BASED TRAFFIC SIGN 

DETECITON METHODOLOGY  

3.1. Objective 

The objective of this chapter is to propose an enhanced image-based generalized 

traffic sign detection methodology to address the two challenges identified in the 

literature review in Chapter 2 and the critical assessment in the Appendix: 1) variant 

lighting conditions that distort the appearance of colors of signs within images, and 2) 

cluttered backgrounds that confuse both the color and boundary of traffic signs with non-

sign objects. First, a lighting-dependent statistical color model (LD-SCM) -based color 

segmentation algorithm is proposed that is robust to different image lighting conditions, 

especially adverse lighting. Second, an ordinary/ partial differential equation 

(ODE/PDE)-based shape detection algorithm is proposed that is immune to the 

discontinuous sign boundaries in the cluttered background.  

3.2. Proposed Methodology 

The existing traffic sign detection methodology is proposed based on the 

fundamental features of traffic signs defined in the Manual on Uniform Traffic Control 

Devices (MUTCD) and consisting of three key steps: 1) color segmentation, 2) shape 

detection, and 3) post validation (Tsai et al., 2009). The color segmentation step is to 

conduct pixel-wise color classification on the video log image. The shape detection step 

is to conduct the polygon detection and approximation using the extracted image edge 

and contours. The post validation step is to conduct the verification of each of the 

detected sign candidates using traffic sign geometry and color constraints. Tsai et al. 

(2009) have established a good framework for developing a generalized traffic sign 
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detection algorithm. The proposed, enhanced methodology is based on the previous 

framework. Figure 3-1 shows the complete flow of the enhanced automatic traffic sign 

detection method based on the existing framework, where the highlighted steps are the 

enhanced algorithms that are proposed in this study. The LD-SCM-based color 

segmentation algorithm is proposed to enhance the performance in the color 

segmentation step, and the ODE/PDE-based shape detection algorithm is proposed to 

enhance the performance in the shape detection step. The algorithms are seamlessly 

integrated into the existing framework to form a new enhanced traffic sign detection 

methodology.  

 

Figure 3-1 Flowchart of the enhanced image-based generalized traffic sign detection method 
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3.2.1. LD-SCM-Based Color Segmentation Algorithm 

Variant lighting conditions are common in video log images because the data 

collection vehicle collects video log images under varying weather conditions, in varying 

driving directions, at varying times of the day, and using varying camera configurations. 

Figure 3-2 shows the four typical lighting conditions that are captured in video log 

images, including (a) over-exposure, (b) normal, (c) under-exposure and (d) adverse 

lighting. These lighting conditions can significantly distort the representation of the 

colors captured in video log images. In this section, an image lighting condition 

classification model is first proposed to identify the four typical lighting conditions, 

including the challenging adverse lighting conditions. A series of SCMs under different 

lighting conditions is established using local homogeneity features, and artificial neural 

networks (ANN) are then formulated. By selecting the corresponding SCMs for video log 

images under different lighting conditions, the images can be reliably segmented into 

different MUTCD colors to support the subsequent shape detection step.  

      
   (a) Over-Exposure                (b) Normal   

      
   (c) Under-Exposure    (d) Adverse Lighting 

Figure 3-2 Examples of the video log images under different lighting conditions 
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Figure 3-3 shows the detailed flow of the proposed LD-SCM-based color 

segmentation algorithm. The input video log image I0(x, y) is first analyzed to be 

classified into one of the four lighting conditions i using the developed image lighting 

condition model. The output lighting condition associated video log image I0(i, x, y) is 

then input into the LD-SCM-based color segmentation. The corresponding look-up table 

of the LD-SCM, i.e. LUT(i), is selected for this segmentation. Especially if the lighting 

condition of the image is identified as an adverse lighting condition, an adaptive 

thresholding method is applied to the image to identify the adverse lighting region R
-
(i, x, 

y) and non-adverse lighting region R
+
(i, x, y), where two LD-SCM LUTs, i.e. LUT(i) and 

LUT(j), are applied for segmentation. Typically, the LUT associated with the over-

exposure lighting condition is applied to the non-adverse lighting region, while the LUT 

associated with the under-exposure lighting condition is applied to the adverse lighting 

region. After the color segmentation, the segmented images will be input into the 

subsequent shape detection step. In the following three sub-sections, the formulation of 

the image lighting condition model, the formulation of the LD-SCM color model, and the 

adaptive thresholding method are presented in details.  

 

Figure 3-3 Flowchart of the proposed LD-SCM-based color segmentation algorithm 
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3.2.1.1. Image Lighting Condition Modeling 

Four types of lighting conditions identified in video log images by Tsai and 

Huang (2010) are modeled in this study. They include: 1) over-exposure condition, 2) 

under-exposure condition, 3) normal lighting condition and 4) adverse-lighting. Figure 3-

2 shows the examples of four different lighting conditions.  

a) An over-exposure condition is a scene in which light sources are so strong that most 

of the pixels in the image are over-saturated with a general high intensity value. In 

such cases, most of the colors are distorted to be close to the white color, especially 

the light sign colors of yellow and fluorescent-yellow-green (FYG).  

b) A normal lighting condition is a scene in which light sources are adequately applied 

to the whole image region, and the objects captured in the image truthfully reflect 

their real color.  

c) An under-exposure condition is a scene in which light sources are not sufficient, so 

that most of the pixels in the image of under-exposure case are dimmed with a 

general low intensity value. In such cases, most of the colors are distorted to be close 

to the black color, especially the sign colors of red, blue, and green.  

d) An adverse-lighting condition is a scene in which light sources are located behind the 

traffic signs. For the adverse-lighting case, the pixels in the image can be grouped 

into two clusters with general low and high intensity values, respectively. The 

adverse-lighting region typically contains pixels that are under-exposed with a low 

intensity value, while the non- adverse-lighting region typically contains pixels that 

are over-exposed with a general high intensity value.  

There are some previous studies of image lighting condition identifications using 

the Gaussian mixture model (Tsai & Huang, 2010), fuzzy logic (Murakami & Honda, 

1996), etc. Although demonstrating good identification capabilities, these methods are 

typically computationally complex and time consuming. To achieve an efficient, reliable 
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identification result, a simple lighting condition model using only a mean value and a 

median value of the video log image is employed in this section.  

a) Over-exposure/ Normal-Lighting /Under-exposure Conditions 

In the case of normal lighting conditions, the brightness level of all pixels follows a 

steady distribution throughout the whole color, and the average intensity is not 

overwhelmingly large or small. To the contrary, in the cases of over-exposure conditions, 

the mean value of the brightness levels tends to reside in the large-value section, while in 

the cases of the under-exposure condition; the mean value of the brightness levels tends 

to reside in the small-value section. Therefore:  

Bover = 1 while Bmean > BThreshA, Bunder = 1 while Bmean < BThreshB, otherwise, Bnorm = 1 

where Bover, Bunder and Bnorm are the indices indicating if the current video log image 

is under over-exposure, under-exposure, or normal conditions, respectively, while BthreshA 

and BthreshB are the upper and lower bounds of the image intensity.  

b) Adverse Lighting Condition 

In the case of normal lighting conditions, the brightness level of all pixels follows a 

steady distribution throughout the whole color and brightness ranges of each image. 

Therefore, the mean value differs little from the median value. To the contrary, in the 

cases of back lighting conditions, the median value of the brightness levels tends to reside 

in the small-value section and, consequently, it differs much from the average value of 

the whole array of all pixels. Therefore: 

Bbl = 1 while |Bmean - Bmedian|>DThresh, otherwise, Bbl = 0 

where Bbl is the index indicating if the current video log image is under back-

lighting condition, and DThresh is the minimum value determining whether or not the 

current video log image is in adverse lighting condition.  

In this simple lighting condition modeling process, the thresholds DThresh, BThreshA 

and BThreshB are yet to be determined. A calibrating dataset is created to calibrate these 
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thresholding values. Images containing four different lighting conditions and 300 images 

for each condition are selected, while the conditions are determined by human inspection.  

3.2.1.2. LD-SCM Modeling 

The LD-SCM model for traffic sign color segmentation follows the existing SCM 

model using statistical information of the nine MUTCD defined sign colors, as proposed 

by Tsai et al. (2009). In addition, two additional features are embedded into the 

formulation of the model: 1) replacing the local HSV feature with the local homogeneity 

feature to create new input for the LD-SCM; 2) incorporating the global image lighting 

condition to separately create different LD-SCM models for the corresponding lighting 

conditions. The former feature will help to reduce the impact of the local color non-

homogeneity on the color model caused by the local noise, while the latter feature will 

help reduce the impact of the color distortion caused by lighting condition changes.  

3.2.1.2.1. Local Pixel-Level Homogeneity Feature 

Each pixel of a video log image is identified as an element of a larger 

homogenous region corresponding to an object, e.g. traffic sign. For color segmentation, 

it is very important to label the pixel with the correct color index but, more importantly, 

to associate the pixel with a larger homogenous region corresponding to an object. 

Therefore, instead of individually treating a pixel to be segmented, a local homogeneity 

feature is proposed to create more representative input for the LD-SCM, representing 

local color homogeneity. HSV color space is used to extract the pixel-level color feature, 

because HSV color space is recognized to effectively separate color information and 

intensity information. Assuming Iij = (Hij, Sij, Vij) represent the three color components of 

a pixel at the location of (i, j) in an M×N image, the following two steps describe the 

detailed process:  
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Step 1: Construct the local image window: For each pixel, a size d×d window is 

centered at (i, j) for the computation of the pixel-level color feature. The window size 

influences the computation of the local homogeneity value. The window should be big 

enough to allow enough local information to be involved in the computation of the local 

homogeneity for the center pixel of the window. Furthermore, using a larger window in 

the computation of the local homogeneity increases the smoothing effect and makes the 

derivative operations less sensitive to noise. However, smoothing the local area might 

hide some abrupt changes of the local region. Also, a large window causes significant 

processing time. A 5×5 size is selected in this study to avoid large computation time and 

maintain the representativeness of the homogeneity and robustness to noise.  

Step 2: Compute the pixel color feature: Homogeneity is largely determined by 

the standard deviation and discontinuity of each color component. The standard deviation 

of color component    
            is commutated as 
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The discontinuity of the color component    
            is computed by edge 

values. Here the edge values are computed using a Sobel operator for the simplicity 

purpose: 
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Where   
  and   

  are the edge components in x and y directions for each color 

component, respectively.  
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Step 3: Normalization: To maintain the computation consistency, the computed 

values for both standard deviation and the discontinuity measurement should be 

normalized between 0 and 1: 
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Therefore, the local color homogeneity is represented as    
           , which 

is also within the range between 0 and 1. The more uniform the local region surrounding 

a pixel is, the larger the local color homogeneity value the pixel is associated with.  

   
       

     
  

Through such computation, the HSV values for each pixel are transformed into 

the local color homogeneity values, i.e.     
     

     
  , not only retaining the original HSV 

information, but also incorporating the local neighboring homogeneity information.  

3.2.1.2.2. SCM Formulation 

The objective of the SCM is to establish an estimation function to fill up the 

missing reference values for the complete 24-bit RGB color space. The estimation 

function interpolates the probability density functions (PDFs) for each MUTCD defined 

color. To serve such objective, Tsai et al. (2009) used an ANN to train the MUTCD SCM 

estimation function. The ANN was implemented using a functional link network (FLN) 

architecture proposed by Pao and Takefuji (1992). Figure 3-4 shows the formulation of 

the ANN architecture, where the higher order input terms can be computed based on the 

formulation by Tsai et al (2009). However, to incorporate the local pixel-level 

homogeneity feature proposed in previous subsection, both (H, S, V) and      
     

     
   are 

input into the ANN, together with their corresponding high-order input terms. Therefore, 

both the local pixel-level color information and the local pixel-level homogeneity 

information are integrated into the training process.  
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Figure 3-4 Formulation of the ANN architecture for SCM 

For each lighting condition, a separate LD-SCM using the ANN training process 

is created. Therefore, for each pixel that is associated with different lighting conditions, 

three representations of the LD-SCM are used for segmentation, namely LD-SCMOE, LD-

SCMUE, and LD-SCMNL. Figure 3-5 shows an image captured in the under-exposure 

lighting condition and the segmentation results to demonstrate the different performance 

using different LD-SCMs. When applying LD-SCMNL, almost all the pixels (in both sign 

region and background region) are incorrectly segmented as black. Instead, when 

applying LD-SCMUE, the pixels are correctly segmented as yellow and green for the sign 

region and background region, respectively.  

   
    Sign in Under-Exposure          LD-SCMUE Segmentation        LD-SCMNL Segmentation 

Figure 3-5 Examples of segmentation results using different LD-SCMs 
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To accelerate the processing speed of color segmentation, three LUTs are created 

for LD-SCMOE, LD-SCMUE, and LD-SCMNL separately. Instead of running through the 

model and conducting color space transformation for each individual pixel, the LUTs are 

created, and the corresponding probabilities are hardcoded in the LUT for each color 

(Gomez-Moreno et al., 2010; Tsai et al., 2009). To practically implement the LUTs, 8 

bits are assigned to each color component, i.e. representing the (H, S, V) as in [0, 255] 

levels, while 3 bits are assigned to each homogeneity indices, i.e. representing 

the     
     

     
   as in [0, 7] levels. 

3.2.1.3. Adverse Lighting Region Identification Using Adaptive Thresholding 

Video log images captured under adverse lighting conditions typically contain 

two peaks in the histograms, one peak with high-intensity values (i.e. non-adverse 

lighting region, typically over-exposed) and one with low-intensity values (i.e. adverse 

lighting region, typically under-exposed). The objective of the adverse lighting region 

identification is to cluster the image into two regions using adaptive thresholding so that 

different LD-SCM models can be applied to minimize the color distortion due to different 

lighting conditions. Figure 3-6 shows the flow of the proposed adaptive thresholding 

method for adverse lighting region identification. The video log image is first diffused 

using an anti-geometric heat equation to produce a threshold surface (i.e. diffused image 

u(x, y)). By comparing the video log image and the threshold surface, the regions that are 

above the threshold surface are the candidates for non-adverse lighting regions, while the 

regions that are below the threshold surface are the candidates for adverse lighting 

regions. To remove the isolated noise points in the candidates, morphological open and 

close operations are applied to candidate regions. The outputs of the operations are 

respectively indexed as the adverse lighting region R
-
(x, y) and non-adverse lighting 

region R
+
(x, y).  
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Figure 3-6 Flowchart of the adaptive thresholding method for adverse lighting 

region identification 

A standard adaptive thresholding technique is to generate a threshold surface over 

the whole image domain and binarize the image by determining whether the intensity of a 

pixel is below or above the threshold surface. The most frequently used method is to blur 

the image with a designed Gaussian low-pass filter to smooth the image (equivalent to a 

linear heat equation). The challenge of such a method is that the filter cannot adaptively 

yield an optimal variance to the pixels from an edge concerning a local average (i.e. a 

small variance) or away from an edge concerning a global average (i.e. a large variance). 

To minimize the impact of image edges in finding a reliable threshold surface, an anti-

geometric heat equation (Manay & Yezzi, 2003) is introduced to diffuse the image. By 

applying such an equation, only the diffusion in the normal direction of the edge is 

preserved, while the diffusion in the tangential direction is omitted.  
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Assuming the edge in the image is decomposed into two orthogonal directions, 

normal direction η and tangential direction ξ, the directions in terms of the first 

derivatives of the image Ix and Iy can be written as 

  
       

√       
   

        

√       
 

As the Laplacian operator is rotationally invariant, the linear heat equation can be 

rewritten by replacing the second order derivatives in x and y directions into in η and ξ.  

  

  
                

To minimize the impact of edges in creating the threshold surface, the component 

in the tangential direction is omitted, i.e. ξ direction. Therefore, the anti-geometric heat 

equation is constructed, whose “diffusion occurs deliberately across the boundaries of 

image features” (Manay & Yezzi, 2003). 

  

  
            

  
                

    

       
 

Figure 3-7 shows an image captured under adverse lighting conditions and the 

adaptive thresholding result using dt = 0.2 and total 100 steps. By applying the anti-

geometric heat equation to the image for diffusion, it is observed that the equation 

successfully identifies the adverse lighting region in the image.  

 
Figure 3-7 Examples of the results from the proposed adaptive threshold 

The final step for identifying the adverse lighting region, a morphological open 

and close operation, is applied to the thresholded image so that the small spikes and holes 
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will be removed. Figure 3-8 shows the final results after the morphological operations. 

The bright regions are corresponded to the non-adverse lighting regions, while the dark 

regions are corresponded to the adverse lighting regions. Different LS-SCMs will be 

applied to the two identified regions respectively.  

 
Figure 3-8 Examples of the results before and after the morphological operation 

3.2.2. ODE/PDE-Based Shape Detection Algorithm 

A cluttered background is frequently captured in the video log images for traffic 

sign inventory, as in many other outdoor scenes. Different man-made objects, vegetation, 

and casting shadows of these objects are captured in the images to produce cluttered 

backgrounds. Figure 3-9 shows two examples of a cluttered background. A cluttered 

background poses a challenge for most of the shape detection algorithms using edge-

based operation because the cluttered background not only contains false edges that 

complicate the shape detection process, but, more importantly, they intersect with the true 

edges that potentially destructs the shape feature of traffic signs. In this section, an ODE/ 

PDE-based shape detection algorithm is proposed to address the identified challenge. In 

this section, a region-based energy function is formulated to minimize the impact of false 

edges produced by a cluttered background. Both the standard region-based active contour 

and region-based active polygon are formulated to fit the energy function, and the 

optimal solution is suggested. A generalized Hough transform model for different 
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MUTCD defined traffic sign shapes is created to fast locate the initialization of the active 

polygon.  

 
Cluttered shadows 

 
Cluttered objects 

Figure 3-9 Examples of the cluttered background 

3.2.2.1. Region-Based Energy Functional 

The concept for the region-based curve evolution model defines the energy 

functional based on the statistics from image regions rather than gradient. Such a model 

was first introduced by Mumford and Shah (1989) which “approximates the image to a 

piece-wise smooth representation forms of the basis for various region statistics based on 

segmentation algorithms” (Appia & Yezzi, 2011). A specific case of the Mumford and 

Shah energy functional was implemented by Chan and Vese (2001), and uses the mean 

value of inside and outside the curve as the region statistics. This formulation is widely 

accepted for different image segmentation and object detection problems because of the 

simple implementation, strong physical meaning, and its unique, gradient-free feature. 

The same energy functional proposed by Chan and Vese is introduced in this dissertation. 

The intent of introducing such an energy functional is to minimize the impact of the false 

edges (gradients) due to the cluttered background.  

The region-based energy functional consists of four components, including 1) the 

arc-length component, 2) the area component, 3) the inside energy and 4) the outside 

energy.  
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Where c1 and c2 are the average intensity levels inside and outside of the contour, 

λ1, λ2, μ and γ are fixed parameters that need calibration. The solution of the 

minimization problem is the solution for the specific object detection problem in the 

image domain.  

                     

3.2.2.2. Formulation 

This section develops and presents two formulations, active contour (AC) /active 

polygon (AP), using the region-based energy functional and compares their outcomes to 

choose the one most suitable for traffic sign detection.  

3.2.2.2.1. Active Contour Formulation 

Active contour is first formulated to implement the region-based energy 

functional. The original region-based energy functional is customized to fit the need for 

detection of traffic signs with 1) appropriate initialization location for the video log 

image and 2) fast convergence to trace the traffic sign shape. To achieve this, a new 

hybrid active contour (HAC) is proposed (Ai & Tsai, 2012) by incorporating three sub-

energy components: location probability distribution function (PDF) sub energy, SCM 

sub energy, and global contour length sub energy. The complete energy functional is 

formulated as shown below:  
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Where  

ISCM  is the color-segmented video-log images, 

IPDF is the location PDF bitmap; 

λ is a scaling parameter to balance the two sub energy components 1 and 2; 

µ is a scaling parameter to control the sub energy component 3; 

u and v are the average intensity inside and outside of the contour respectively. 

The suffix indicates the intensity value is either from the color-segmented video-

log image or the location PDF bitmap.  

Sub energy component 1: Location PDF energy. The Location PDF is a 2-D 

probability density function that is spatially represented by a gray level bitmap in the 

range of a video log image, shown as Figure 3-10. It is one of the traffic sign spatial 

distribution characteristics that have been identified and incorporated into the energy 

function to speed up active contour convergence speed. The Location PDF bitmap shown 

in Figure 3-10 is created using 1500 video log images containing traffic signs collected 

by the city of Nashville by manually extracting the sign boundary. The pixels inside of 

the boundary are marked as black and outside of the boundary are marked as white. By 

cumulating the entire 1500 manually marked images, normalizing them into gray level 

scale and smoothing, the location PDF is generated (Hu & Tsai, 2011). The dark area 

indicates the locations with the high sign occurrence frequency (i.e. an image location 

with high likelihood of having a sign). This component is formulated using the location 

PDF bitmap and controls the evolvement of a contour at the early stage and enables the 

initial contour to quickly converge to the area with a high sign occurrence frequency with 

a larger contour evolving step size. Component 2 is designed to accurately trace the 
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detailed traffic sign boundary with a smaller contour evolving step size as described 

below:  

 
Figure 3-10 A location PDF created using 1500 video log images containing traffic signs 

Sub energy component 2: SCM energy. SCM is a 2-D probability density 

function that is spatially represented by a gray level image in the range of the video log 

image shown in Figure 3-11, i.e. short for LD-SCM in this subsection. It is another 

important traffic sign characteristic in a 2-D image. The image is called a color-segment 

image, which indicates that each pixel of the image represents the likelihood of a 

standard MUTCD color. The dark area indicates the locations with the high likelihood of 

a certain color (Tsai et al., 2009). There are ten color-segmented images produced in the 

procedure of color segmentation using SCM, as shown in Figure 3-3. This component is 

formulated over one of the ten color-segmented images. For example, a yellow color-

segmented image is used in Figure 3-11 because it is a yellow warning sign. This 

component controls the contour’s evolvement at the later stage and enables the contour to 

accurately trace the detailed traffic sign boundary with a smaller contour-evolving step 

size. 
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Figure 3-11 Contour evolvement forced by three sub energy components 

Sub energy component 3: Global contour length energy. Global contour length is 

represented as the pixel length of the contour. This component is used to establish a 

termination criterion at the later stage that prevents the contour from being over-evolved. 

A termination criterion of a contour length not exceeding ½ of the perimeter of a video 

log image is used because a traffic sign in a video log image is typically less than ¼ of 

the entire image.  

By constructing the three sub energy components, the key characteristics of a 

traffic sign in a video log image are incorporated into the HAC energy function 

formulation. The contour evolves to minimize the formulated energy function and 

converges when the energy is minimized. The contour evolvement is divided into a 

global evolvement at the early stage and a local evolvement at the later stage.  

At the early stage, based on location PDF, the contour will converge to the 

location at which a traffic sign is mostly likely to occur in a vide log image (i.e. dark area 

in the location PDF bitmap), shown as Figure 3-11. The arrows show one of the contour 

pixels progressing directions with the contour evolvement (i.e. shrinking to the rough 

location globally) in this stage to quickly identify the rough location of a traffic sign at a 

larger step size. After the sign location is identified roughly, at the later stage, the detailed 

sign boundary can be traced (as shown in Figure 3-11) using a smaller contour-evolving 

step size. The arrows show the contour pixels progressing directions with the contour 

evolvement (i.e. deformation and tracing the boundary locally) at this stage. The contour 
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within the traffic sign area is pulled by the energy outward and with the contour outside 

of the traffic sign area is pushed by the energy inward until the accurate boundary is 

obtained. The sign boundary can be accurately traced with fast convergence speed using 

the proposed two-stage, contour-evolving process based on unique traffic sign 

characteristics.  

The formulated energy in HAC can be implemented using the level set method 

(Chan & Vese, 2001). The energy function can be rewritten using the Heaviside function 

H as 
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where  

ϕ is the level set function, where ϕ=0 is used to guarantee each point of the 

contour evolves in its normal direction (Osher & Sethian, 1988); 

H is the Heaviside function, which is used to differentiate the inside and outside 

of the contour. 

The objective of the implementation is to minimize the energy function E with 

respect to uSCM, uPDF, vSCM, vPDF and ϕ. Keeping ϕ fixed and minimizing the energy 

function with respect to the constants uSCM, uPDF, vSCM and vPDF, these constants can be 

expressed using Equation (3). Keeping uSCM, uPDF, vSCM and vPDF fixed and minimizing the 
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energy function with respect to ϕ, ϕ can be expressed using the equation below, where an 

artificial time t is introduced for the energy decent direction.  
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where      , that Hε is a C
1
-approximation of H, which is a classical 

approximation function as proposed by Chan and Vese (2001). 

The objective of introducing the location PDF sub energy component is to let the 

contour quickly evolve to the location where a traffic sign is most likely to occur. In 

order to accelerate the contour convergence, the variant step sizes are designed based on 

location PDF area. When the evolving contour intersects with the location PDF area with 

95% probability having a sign, the evolving speed will reduce from 5 pixels per step size 

to 1 pixel per step size. Changing the evolving speed enables a faster contour 

convergence with a larger step size when it is outside the location PDF area and a 

detailed traffic sign boundary trace with a small step size when reaching the location PDF 

area with high probability having a sign.  

µ is defined as the scaling factor to balance the energy between the contour shape 

and its boundary length. 0.1 is used for the µ value as recommended in the region-based 

active contour method (Chan & Vese, 2001). λ is the scaling factors to balance the 

importance of the energy value contributed from the location PDF and the energy 

contributed from the color segmented image using the SCM. It is between 0 and 1. With 

λ closes to 1, the contour demonstrates the evolving behavior globally (in the whole 

image) to converge the contour quickly, controlled by the location PDF. With λ close to 

0, the contour demonstrates the evolving behavior locally (in the traffic sign area) to trace 
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the boundary accurately, controlled by the SCM. The values of λ can be adaptively 

selected to balance the contour converging speed and the contour accuracy. Based on our 

trial and error test, the value of 0.85 can achieve a reasonable outcome in obtaining the 

sign boundary. 

3.2.2.2.2. Active Polygon Formulation 

An active polygon is, also, formulated to compare the performance of the ones 

obtained from the active contour (detailed results can be found in Chapter 5). Although 

the active contour formulation, in general, obtains good detection results, there are 

several cases in which the formulated unconstraint active contour using the region-based 

energy does not converge to the boundary of the traffic signs. Figure 3-12 shows an 

example where the unconstraint active contour intrudes the pictogram of the traffic sign. 

Many of these cases are due to the unconstraint contours over-evolving over the traffic 

sign that are not perfectly color segmented. To further improve the performance dealing 

with these cases, a constrained active contour is needed, not only following the 

formulated energy to trace the traffic sign boundary, but also maintaining the geometrical 

shape. In addition, by maintaining the geometrical shape of the active contour, the 

processing time will be significantly reduced.  

 
Figure 3-12 Example of a false negative case using the unconstraint active contour 
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To achieve the above-mentioned objective and improve the performance of the 

shape detection algorithm, a constraint version of region-based active contour, i.e. region-

based AP, is proposed. The region-based AP algorithm follows the same philosophy as 

the unconstraint active contour, but by adding additional constraints, the constructed 

shape only evolves following a limited number of vertices rather than arbitrarily evolve at 

each contour point.  

The principle of formulating an active polygon initially is similar to formulating 

an active contour where the contour evolves following the gradient flow associated with 

the energy E. Instead of evolving each point of the contour following the gradient flow at 

each point, the goal is to design flows to move the “contour” by its vertices. The general 

form of contour   [   ]       around some region     , in which the integrand f 

consists of a function        is written as below: 
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where N denotes the outward unit normal to C, ds the Euclidean arc-length, and 
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For the proposed active polygon, v denotes a Cartesian coordinate of any vertex; 

therefore, as manipulated by Zhu and Yuille (1996) and Yezzi et al. (2002), the gradient 

flow is associated with E, the derivative of E with respect to v.  
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When considering C as a closed polygon V instead of a smooth curve with a fixed 

number of vertices                                 . Therefore, C is 

parameterized by   [   ] as 

           ⌊ ⌋  ⌊ ⌋  ⌊ ⌋    

Where ⌊ ⌋ denotes the largest integer which is not greater than p, and where L(t, 

A, B) = (1-t)A+tB parameterized between 0 to 1 the line from A to B with constant speed, 

where A and B denote the end points of a polygon edge. Following such a 

parameterization, Unal et al. derived the gradient descent flow is 
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Where Nk,k-1 (resp. Nk+1,k) denotes the outward unit normal of edge (Vk-1-Vk) 

(resp.(Vk-Vk+1)). Such a gradient descent flow essentially indicates that each of the 

vertices is controlled by the images values along two adjacent edges (Vk-1-Vk) and (Vk-

Vk+1). The motion of each vertex is based on a weighted combination of the unit normal 

only at the polygon’s edge points. The PDE problem as defined in an unconstraint active 

contour formulation is converted to an ODE problem by individually solving the ODE for 

each vertex for the proposed active polygon. Figure 3-13 shows an illustration of how the 

active polygon evolves over a video log image. The detected diamond shape maintains its 

geometrical shape even when there is a slight part of the legend merged into the 

background.  

 
Figure 3-13 Demonstration of the active polygon flow 
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3.2.2.2.3. Polygon Initialization 

One of the most important steps for the active polygon problem is to define the 

initialization location for the active polygon. The objective of polygon initialization is to 

identify the rough locations that have the highest likelihood for each traffic sign type. 

Since traffic signs are man-made objects with well-defined geometrical shapes specified 

in the MUTCD with a limited number of types, it is straightforward to find the polygon 

initialization by taking advantage of such strong geometry features. Therefore, a 

generalized Hough transform (GHT) is introduced for the polygon initialization. The 

advantages of the GHT algorithm include its being 1) capable of detecting arbitrary 

objects without using any analytic equation, and 2) capable of adapting to different object 

orientations and scales.  

The GHT algorithm is a two-step algorithm containing an R-table establishment 

step and a detection step. The R-table establishment step is to create a template table that 

contains the complete specification of the exact shape of the target object.  

 For the arbitrary shape shown in Figure 3-14, select the centroid (xc, yc) as a 

reference point; 

 Connect the reference point and the boundary point (x, y). 

 Compute the angle ϕ (i.e. the angle between the normal of the boundary point (x, 

y), G, and the horizontal direction, X); 

 Store the corresponding parameters r (i.e. distance between the reference point 

and the boundary point) and α (i.e. the angle between the line linking (xc, yc) and 

(x, y) and the horizontal direction) as a function of ϕ; 
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Figure 3-14 Illustration of the R-table establishment for each ϕ and edge point (x, y) 

The R-table represents the complete specification of the exact shape of the target 

object. For different traffic sign shapes, different R-tables should be prepared 

individually. There are seven different convex traffic sign shapes that are defined in the 

MUTCD as shown in Figure 3-15, including, triangle, rectangle, trapezoid, diamond, 

pentagon, octagon, and circle. Nine different R-tables are created for sign detection 

purposes.  

 
Figure 3-15 Illustrations of different MUTCD defined traffic sign shapes 

The detection step is to find the object center where the maximal similarity is 

identified based on the complete specification of the target object. The pseudo-code 

below shows the process of shape detection step. As the orientation and scale of traffic 

signs captured in the video log images can be changed due to different capture distances, 

angles or the condition changes of the signs themselves, the orientation and scale factors 

are introduced.  

Quantize the parameter space: 

 [     
      

][     
      

][         ][         ] 
For each edge point (x, y) 

Using gradient angle ϕ, retrieve all the (α, r) values from the 

R-table 

For each (α, r), compute the candidate reference points: 

           
           

For (               ++) 
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For (               ++) 
                          
                          
++ [  ][  ][ ][ ] 

Possible locations of the object are given by local maxima in 

 [  ][  ][ ][ ]  

 

Figure 3-16 shows an example of the result finding a diamond-shaped polygon 

initialization location. The initialization shown in Figure 3-16(c) will be used as the 

starting shape of the proposed active polygon algorithm. The exact shape of the traffic 

sign will be extracted.  

    
       (a) Segmented Image     (b) GHT Accumulator               (c) Initial Polygon 

Figure 3-16 Examples of the results from GHT-based polygon initialization 
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CHAPTER 4  

AN MOBILE TRAFFIC SIGN RETROREFLECTIVITY CONDITION 

ASSESSMENT METHODOLOGY USING MOBILE LIDAR AND 

COMPUTER VISION 

4.1. Objective 

The objective of this chapter is to propose a mobile traffic sign retroreflectivity 

condition assessment method to improve the efficiency and reliability of the current 

retroreflectivity condition assessment method used by state department of transportation 

(DOTs). As identified in Chapter 2, the intent of proposing such a mobile method is to 

explore the feasibility of using emerging mobile light detection and ranging (LiDAR) and 

computer vision technologies for retroreflectivity condition assessment purposes, along 

with existing image-based methods. First, an image-LiDAR registration algorithm is 

developed to associate the 3D LiDAR point with traffic sign color information. Second, a 

study of the fundamental behavior of LiDAR retro-intensity values with respect to the 

key mobile LiDAR data attributes is conducted. Finally, the traffic sign retroreflectivity 

condition is associated with the LiDAR retro-intensity value for condition assessment.  

4.2. Proposed Methodology 

Retroreflectivity is the most critical attribute of a traffic sign for nighttime 

visibility. It is defined as the ratio of the luminance that is redirected from a sign’s 

surface to the luminance originating from a vehicle’s headlight (ASTM, 2011). A LiDAR 

system collects the retro-intensity values in a way similar to the measurement of traffic 

sign retroreflectivity. A retro-intensity value is acquired with each LiDAR point, which 

measures the ratio of the energy redirected from the object to the energy emitted from the 
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LiDAR sensor. Hence, there is a possible correlation between the retro-intensity values 

and the traffic sign retroreflectivity conditions. Such a correlation can potentially be used 

to conduct an automatic traffic sign retroreflectivity condition assessment. Nevertheless, 

there are two challenges preventing direct application of the raw LiDAR point cloud data 

to assess the traffic sign retroreflectivity condition: 1) multiple colors for the same traffic 

sign need to be assessed separately to meet the manual of uniform traffic control devices 

(MUTCD) requirements, but the raw LiDAR point cloud data does not contain any color 

information; 2) the raw retro-intensity values are acquired at different beam distances and 

incidence angles, but the population of the retro-intensity values associated with the same 

traffic sign should be assessed at the same beam distance and incidence angle. Therefore, 

the proposed method focuses on three key points: 1) automatically clustering the raw 

LiDAR point cloud data to generate the populations of retro-intensity values for different 

traffic sign colors; 2) normalizing the retro-intensity values based on the beam distance 

and incidence angle to make a consistent assessment of the traffic sign; 3) establishing 

the relationship between the retro-intensity values and the retroreflectivity conditions. 

Figure 4-1 shows the flow for the proposed method. The proposed method includes five 

steps:  

 Traffic sign detection to automatically extract the traffic sign ROIs from video log 

images.  

 Color segmentation to segment different traffic sign colors for each extracted ROI 

from the previous step.  

 Traffic sign-associated LiDAR point extraction to register the LiDAR point cloud 

with the corresponding image pixels and to extract these LiDAR points with the 

associated sign and color information.  

 Retro-intensity normalization to normalize each retro-intensity value within the 

clusters created in STEP 3 based on the beam distance and the incidence angle.  
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 Retroreflectivity condition assessment to quantitatively assess the traffic sign 

retroreflectivity condition by comparing the median value from the population of the 

normalized retro-intensity with the established threshold defining PASS and FAIL 

conditions. 

 
Figure 4-1 The proposed method for traffic sign retroreflectivity condition assessment 

4.2.1. STEP 1 and STEP 2 - Traffic Sign Detection and Color Segmentation 

Traffic sign detection and color segmentation in this step uses the method 

proposed in Chapter 3. The output of this step is the traffic sign ROIs and the color 

segmentation results for each detected ROI. Every traffic sign-associated image pixel is 

indexed with a MUTCD color.  

4.2.2. STEP 3 - Traffic Sign-Associated LiDAR Point Extraction 

A 3D LiDAR point contains accurate position information and a corresponding 

retro-intensity value. However, there is no prior traffic sign location information or traffic 

sign color information incorporated into the point cloud. It is essential to incorporate the 

results from STEP 1 (i.e. traffic sign location information in a 2D coordinate system) and 
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STEP 2 (i.e. traffic sign color information for legend and background), so that the 

subsequent condition assessment can be conducted based on the corresponding 

population of LiDAR points that are associated with each color for the same traffic sign.  

Figure 4-2 shows the flowchart for the proposed traffic sign-associated LiDAR 

point extraction method. First, camera calibration is conducted to obtain the intrinsic 

camera parameters and to establish the camera homography. Using the camera 

homography and the existing sensor configuration, the transformation matrix from GPS 

coordinates and image coordinates can be obtained. As the camera homography and the 

sensor configuration are the same during the data collection, an image-LiDAR 

registration can be achieved using only the transformation matrix. With the detected 

traffic sign's location in the image and the corresponding color segmentation results, 

traffic sign-associated LiDAR points for each sign can be extracted. Due to the noise and 

irregularity of the LiDAR points, the extracted sign-associated LiDAR points for each 

traffic sign can be projected as a 2D image containing the essential retro-intensity 

information for subsequent condition assessment steps.  

 

Figure 4-2 The flowchart for the STEP 3 of Traffic Sign-Associated LiDAR Point 

Extraction 
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4.2.2.1. An Image-LiDAR Registration Method 

The objective of image-LiDAR registration is to obtain the transformation matrix 

between the 2D image coordinate system and the 3D LiDAR sensor collection system. 

Therefore, each LiDAR point can be associated with the traffic sign detection result and 

it corresponding color. There are many studies that have been conducted for registering 

LiDAR point clouds with satellite/airborne imagery, most of which use feature matching 

techniques between a 3D LiDAR point cloud and a 2D image using control points or 

unique objects that are visible in both data (Mishra & Zhang, 2012). However, it is 

identified that the feature-matching-based registration methods are not only 

computationally expensive, but most of them require re-registration for different datasets. 

In this study, an image-LiDAR registration method is proposed using only the sensor 

position transformation, camera calibration, and point cloud co-planarity, as shown in 

Figure 4-2.  

4.2.2.1.1. Coordinate Transformation between LiDAR Sensor and ECEF 

For a LiDAR system, the measurement from the sensor includes the distance 

between the LiDAR sensor center to the object and the offset angle between the laser 

beam and the center scanning beam. To obtain the 3D coordinates in the Earth-Centered, 

Earth-Fixed (ECEF) reference datum (e.g. WGS-84 in this study), a series of translations 

and rotations obtained from sensor observation and configuration constants is essential to 

a LiDAR pulse measurement for direct geo-positioning of the object (NGA, 2009). 

Figure 4-3 shows the illustration of all the necessary translations and rotations .  
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Figure 4-3 Translations and rotations between the LiDAR and the ECEF reference systems 

The coordinates of a sensed object point in a geocentric ECEF coordinate system 

are obtained from the following equation:  

                               

                                    

 RSCA - vector from the scanner to the ground point in the scanner reference frame            

 RGIM - vector from the gimbal center of rotation to the sensor in the gimbal reference frame       

 RINS - vector from the IMU to the gimbal center of rotation in the platform reference frame        

 RGPS - vector from the GPS antenna phase-center to the IMU in the platform reference frame         

 RECEF - vector from the ECEF origin to the GPS antenna phase-center in the ECEF reference  

 REP - vector from the ECEF origin to the ground point in the ECEF reference frame    

 MSEN - rotation matrix from scanner reference frame to sensor reference frame                      

 MGIM - rotation matrix from the sensor reference frame to the gimbal reference frame               

 MPLA - rotation matrix from the gimbal reference frame to the platform reference frame            

 MVER - rotation matrix from the platform reference frame to the local-vertical reference frame     

 MELL - rotation matrix from the local-vertical reference frame to the ellipsoid-tangential 

(NED) reference frame 

 MECEF - rotation matrix from the NED reference frame to the ECEF reference frame 
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In the equation, M represents the rotation matrix between different reference 

coordinate systems, while R represents the translation between different reference 

coordinate systems. Specifically, RSCA and MSEN are the readings obtained from the 

LiDAR sensor for each scanning point, while MVER is the reading obtained from the IMU 

sensor for each scanning point, and the RECEF is the reading obtained from the GPS for 

each scanning point. The remaining values can be obtained from the sensor configuration 

on the data collection vehicle (i.e. lever arms) and the simple geo-referencing system 

conversion (i.e. MELL and MECEF).  

By applying the above equation for each LiDAR point, corresponding GPS 

coordinates (i.e. ECEF coordinates) can be obtained. These 3D coordinates will be input 

into the subsequent camera coordinate system to obtain the corresponding image 

coordinates.  

4.2.2.1.2. Coordinate Transformation between Camera Sensor and ECEF 

For a camera system, the measurement from the sensor includes the color 

intensity information obtained by the camera (i.e. lens and the photometric device). To 

project the ECEF coordinate to the camera coordinate system, a 3D-to-2D translation and 

rotation matrix is necessary. In this study, the simple linear model using a collinearity 

equation is introduced to obtain such a transformation matrix. Figure 4-4 shows the 

illustration for the collinearity between the object in the ECEF reference system and the 

camera reference system. As shown in the figure, the camera perspective center L, an 

arbitrary object point A, and its corresponding image point captured in the image plane 

are collinear. Therefore, vectors from the perspective center L to the image point and the 

object point are directly proportional. In order to associate each component of these 

vectors, these vector components must be defined with respect to the same coordinate 

system (NGA, 2009).  
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Figure 4-4 Collinearity relationship between the object in the ECEF and the camera 

reference systems 

Therefore, the association between the object point A and the image point a can 

be defined as  

      

where k is the scalar multiplier and M is the orientation matrix of the camera that 

incorporates the camera rotation angles in three directions (i.e. roll, pitch and yaw) with 

respect to the vehicle local-vertical reference frame and the rotation angles between the 

vehicle local-vertical reference system to the ECEF reference system. From Figure 4-4, 

the collinearity condition can be represented as shown below:  
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Where (x, y) are the image coordinates of a, (X, Y, Z) and (XL,YL,ZL) are the 

coordinates of the object A and the camera perspective center L, respectively. Using the 

subscripts to represent the transformation matrix M, the collinearity equation results in 

the following representation: 
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Note that although the earlier derivation expressed coordinates with regard to the 

image plane (“negative” plane), the image point a in Figure 4-4 is represented by 

coordinates (x, y) whose relation is simply a mirror of the image plane. Thus, the 

components of a will have opposite signs of their mirror components (x, y) as follows: 

 ̅          

 ̅          

where (x0, y0) is the image coordinates for the image center. By solving the 

collinearity equation for any give object, its ECEF ground coordinates (X, Y, Z) are 

related to its image coordinates (x, y) by the following equation: 

       [
                             

                             
] 

       [
                             

                             
] 

where x0, y0 and f are derived from intrinsic camera calibration process as in the 

following matrix: 

    [
        

        

   

] 

where sx and sy are the pixel size of the camera in x and y directions. These 

parameters can be obtained based on the actual camera sensor scale and the 

corresponding resolution. There are many methods that have been conducted in previous 

studies. In this study, Zhang’s approach (Tsai, 1987; Zhang, 2000) was used because it is 

the most popular approach nowadays. The camera calibration results Min can be obtained 

before the data collection is conducted. The transformation matrix M provides the 

alignment between the camera coordinate system and the ECEF coordinate system. 

Therefore, the matrix is simple: the rotation matrices provided for the LiDAR system, 
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where the only difference is that instead of using the MPLA for the LiDAR system, simply 

apply the camera orientation angles.  

                       

For the camera position (XL,YL, ZL), following the same line of thought as shown 

in Figure -4 sets the range vector RSCA to be zero and the RGIM to be the vector between 

the camera sensor and its corresponding support frame RCAM. Therefore, the camera 

position in the ECEF reference system can be represented as 

                                               

4.2.2.1.3. LiDAR Point Co-Planarity Validation 

Using the ECEF coordinates computed from the LiDAR presented in section 

4.2.2.1.1 and the transformation equation derived from section 4.2.2.1.2, each LiDAR 

point can be associated with an image pixel (x, y). With an accurate camera calibration 

and measurements of the offsets and poses among different sensors, i.e. mobile LiDAR, 

cameras, IMU and GPS, the registration between the LiDAR points and the image is 

reliable. However, there are some cases in which some points can be falsely computed 

from the LiDAR sensor. Figure 4-5 shows an example of such a LiDAR measurement 

error. Most of these error points occur at the edge of traffic signs due to the partial 

reflection of the laser beam. Therefore, the retro-intensity values within these points are 

significantly smaller than the typical point reflected from the traffic sign surface. 

Although these points can be registered with image pixels that are associated with the 

detected traffic signs, the retro-intensity values within these points should not be included 

in the subsequent condition assessment.  
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Figure 4-5 An example of LiDAR measurement error – “abnormal points” 

Therefore, a co-planarity validation process is introduced to eliminate these 

“abnormal points.” For each traffic sign associated LiDAR point cloud, principle 

component analysis (PCA)-based traffic sign surface plane estimation is first conducted 

to regenerate the traffic sign surface. The following equations are constructed for PCA 

computation for the optimal normal of the given data, i.e. each traffic sign associated 

LiDAR point cloud. The solution is obtained from the three eigenvectors. The 

eigenvectors represent the three axes of the point cloud, while the eigenvalues denote the 

square sum of points deviating along the corresponding axis. Therefore, the eigenvector 

corresponding to the smallest eigenvalue will be the normal direction of the best-fit plane.  

  
 

 
∑     ̅       ̅      ⃗      ⃗           

 

   

 

where k is the number of points in the point cloud   ,  ̅ is the centroid of the 

cluster,    is the j-th eigenvalue of the covariance matrix C and  ⃗  is the j-th eigenvector.   

The PCA approach utilizes all the data within the cloud for plane estimation, 

including the “abnormal points.” Therefore, the “abnormal points” could still impact the 

surface estimation results. Therefore, a robust estimation approach proposed by Daniels, 

et al. (2007) is introduced here to minimize the impact of the “abnormal points” on the 

final surface estimation results. After the first estimation using PCA, the distances from 
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the points to the initial plane can be computed. If a distance is within 2 times of the 

standard deviation, the point will maintain its weight. Otherwise, it will be assigned a 

lower weight for recalculating the optimal plane. The following equation is used to 

determine the weights: 

  {
       | |    

      
      | |    

 

Where V is the residual for each point, c is a constant for calibration, and p is the 

weight of each point that will be contributing to the optimal plane. Through trial and 

error, c=100 gives the best results for this study. Using the robust estimation approach, an 

optimal plane using PCA and the adjusted weights can be derived. All the points with a 

distance that is greater than 2 cm from the derived plane, i.e. the LiDAR ranging 

measurement precision in this study, from the regressed surface are rejected from the 

subsequent condition assessment steps. 

4.2.2.2. Traffic Sign-Associated LIDAR Point Extraction 

The principle for associating the LiDAR points with the traffic sign detection 

results is straightforward. After establishing the registration between the LiDAR point 

cloud and video log images, the traffic sign-associated LiDAR points can be identified 

and indexed with different traffic sign colors by inputting the traffic sign detection results 

from video log images from Steps 1 and 2 (i.e. image coordinates for the traffic sign 

bounding box). Each detected ROI is associated with a population of LiDAR points. 

Within each ROI, each pixel (x,y) is segmented as one traffic sign color, e.g. red and 

white for a stop sign. The population of the LiDAR points is further indexed based on the 

corresponding segmentation color. Figure 4-6 shows an example of a stop sign after this 

step. The LiDAR points that are indexed with red and white are separated, and they will 

be assessed separately in subsequent steps.  
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Figure 4-6 The result of a stop sign after sign associated LiDAR point cloud retrieval 

4.2.3. STEP 4 - LiDAR Retro-Intensity Value Normalization 

The objective of LiDAR retro-intensity value normalization is to establish the 

relationship between the raw retro-intensity values obtained by the LiDAR and key data 

collection factors that could impact the retro-intensity values. These relationships are 

critical to maintaining the consistency of the retroreflectivity condition assessment for 

traffic signs as proposed in this chapter. Two key factors that are identified from the 

literature are focused on in this study (Voegtle & Wakaluk, 2009): the LiDAR beam 

distance and the LiDAR incidence angle. 

4.2.3.1. LiDAR Retro-Intensity Normalization Modeling 

Characteristics of LiDAR retro-intensity have been studied by other researchers, 

especially in the field of airborne LiDAR. Both theoretical and empirical models have 

been established for airborne LiDAR point cloud data. The key characteristics identified 

in previous studies include beam distance (Aytac & Barshan, 2005; Cheng & Glenn, 

2009), incidence angle (Aytac & Barshan, 2005), atmosphere distortion (Kaasalainen et 

al., 2005; Mazzarini et al., 2007) and surface structure (Voegtle & Wakaluk, 2009). 

However, it is found that establishing a robust retro-intensity model with respect to the 

key factors is challenging due to the imperfect data collection condition, limited 

measurement capability, and complication of surface radiology characteristics. It is 

recommended that a theoretical-empirical model for different applications and individual 

LiDAR equipment (Voegtle & Wakaluk, 2009) be established. However, there are very 
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few studies of the key factors for mobile LiDAR application, e.g. traffic sign 

retroreflectivity condition assessment. Therefore, the focus of this section is to study the 

characteristics of the key factors for the mobile LiDAR application on traffic sign 

retroreflectivity. Beam distance and incidence angle are the two key factors in the mobile 

LiDAR application for traffic sign retroreflectivity condition assessment, while the 

impact of the other factors, i.e. atmosphere distortion and surface structure, is minimal in 

such an application.  

4.2.3.1.1. Theoretical Model 

In previous studies on airborne LiDAR sensors, Kamermann (1993) and Pfeifer et 

al. (2007) introduce a general energy receiving model for laser scanning systems: 

                    

where I is the measured intensity, and R is the distance between the sensor and the 

object ϑ, the incidence angle and a, b, c, d are constant parameters to be calibrated. 

Following is a description of beam divergence. The exponent 2bR concerns the 

attenuation by the two way propagation of the laser beam. The term c models the type of 

reflectivity and d normalizes the whole value to be 1. For mobile LiDAR, as the 

atmosphere attenuation is ignorable, the equation can be further simplified as follows:  

                

By further incorporating the classic light illumination model using an empirical 

Phong surface model (including ambient light, diffused reflection light, and specular 

reflection light (Foley et al., 1995)), the general formula is as follows:  

           [              
    ] 

For retroreflective material, the specular reflection angle is always zero, as the 

incidence beam is always parallel to the reflecting beam. By ignoring the ambient 

lighting (LiDAR operates in the near-infrared spectrum) and considering          

 , the equation is simplified as 
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       [               ] 

For the LiDAR retro-intensity value, which is the ratio between the emitted 

energy from the sensor and the received energy reflected from the surface, the retro-

intensity value from mobile LiDAR can be modeled as 

       [                     ]                

where 

                           and          

Depending on different traffic sign sheeting material, the specular light is a 

function of incidence angles, i.e.      . Such a function requires calibration to determine 

the detailed values at each incidence angle. Based on the internal research conducted by 

3M, the specular function can be a second order function with respect to the incidence 

angle.  

4.2.3.1.2. Empirical Model Parameter Calibration 

To obtain the relationship between the retro-intensity and the beam distance and 

the incidence angle by calibrating the function      , two lab tests were conducted. For 

the beam distance test shown in Figure 4-7(a), the position of the testing traffic sign was 

manually changed to simulate different beam distances, while the LiDAR sensor was 

stationary and adjusted at a fixed orientation. For the incidence angle test shown in 

Figure 4-7 (b), the orientation of the tested traffic sign was manually rotated from 0° to 

80°, and the LiDAR sensor was stationary and adjusted at the fixed beam distance. The 

collected LiDAR data, then, was processed to obtain the retro-intensity relationships as 

functions of the beam distance and of the incidence angle, as shown in Figure 4-7.  
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(a)           (b) 

Figure 4-7 Field test for retro-intensity normalization and generated retro-intensity curves 

For beam distance, by fitting the collected data to the exponential model with 

respect to the beam distance, it is identified that the data points with beam distances 

greater than 15m (approx. 50 ft.) fit the exponential model very well, while the points 

with beam distances less than 15m fit the exponential model poorly. Further investigation 

identified that the specific model used for the field test (i.e. RIEGL LMS-Q120i) contains 

a range-dependent amplification of the laser signal when the range is smaller than 15m. 

Therefore, the beam distance model for the specific LiDAR model is modified based on 

the internal configuration shown below. Figure 4-8 shows the regression results for the 

relationship between the LiDAR retro-intensity and the beam distance.  

     {                           
                        

 



 71 

 
Figure 4-8 Regression results for the relationship between the LiDAR retro-intensity and 

the beam distance 

For incidence angle, different ks values are tested to better fit the       with the 

observed retro-intensity values in response to a different incidence angle. Figure 4-9(a) 

shows an illustration of different ks values and the observed retro-intensity values from 

the test. Figure 4-9(b) shows the ks value in response to a different incidence angle. By 

using a second order polynomial regression, the function of ks(ϑ)= -0.0001∙ϑ
2
-

0.0003∙ϑ+0.9985 can be derived. Therefore, the incidence angle model can be represented 

as shown below: 
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(a)   

    
(b) 

Figure 4-9 Modeling the relationship between ks and incidence angle 
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By combining the model established for the beam distance and the incidence 

angle, the normalization function can be derived. The raw retro-intensity values acquired 

by the LiDAR system can be normalized using the generated retro-intensity 

normalization. In this study, the curves were generated using Type 1 sheeting. Different 

sheeting types and different LiDAR models might introduce different retro-intensity 

relationships that are different from this study. Nevertheless, following a similar process, 

additional curves can be generated for other types of sheeting and LiDAR models.  

4.2.3.2. Beam Distance and Incidence Angle Computation for Sign Associated LiDAR 

Point Cloud 

To conduct the LiDAR retro-intensity value normalization, the beam distance and 

incidence angle for each LiDAR point should be obtained. Figure 4-10 shows the flow 

for obtaining beam distance and incidence angle for each LiDAR point.  

 
Figure 4-10 Flow for determining LiDAR point beam distance and incidence angle 

Based on the results from section 4.2.2.2, the LiDAR point cloud that is 

associated with each detected traffic sign is extracted. Using such a LiDAR point cloud, 

the normal direction of the corresponding traffic sign surface can be obtained using the 
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PCA method in the ECEF reference system, as presented in Section 4.2.2.1.3. As the 

LiDAR sensor position and the position for each LiDAR point within the corresponding 

point cloud can be obtained based on the result from section 4.2.2.1.2, the direction of 

each laser beam can be obtained in the ECEF reference system. Therefore, the incidence 

angle of the each LiDAR point can be obtained using the following equation: 

          
〈 ⃗  ⃗⃗〉

‖ ⃗‖‖ ⃗⃗‖
  

where  ⃗ is the direction of the laser beam,  ⃗⃗ is the normal direction of the traffic 

sign surface, and 〈 ⃗  ⃗⃗〉 is the product of the two direction vector. The beam distance can 

be directly read from the LiDAR point data. With the obtained beam distance and 

incidence angle, the retro-intensity value corresponding to this LiDAR point can be 

normalized using the normalization equation derived from section 4.2.3.1. 

4.2.4. STEP 5 - Traffic Sign Retroreflectivity Condition Assessment 

  The last step is retroreflectivity condition assessment. The objective of this step is 

to determine the retroreflectivity condition based on the population of the normalized 

retro-intensity values obtained from the previous steps for each color of the detected 

traffic signs. The key component in this step is to establish a model that depicts the 

relationship between the retroreflectivity values measured using handheld 

retroreflectometer and the normalized retro-intensity values.  

To establish the model with the help of GDOT signing maintenance office, a lab 

test was conducted by measuring both of red and white colors in 15 Type 1 engineer 

grade stop signs with various retroreflectivity conditions (including 5 brand new signs 

and 10 different in-service signs). The LiDAR point clouds for each traffic sign were 

collected using the sensing van. Based on registration results from Step 3 presented in 

Section 4.2.3, the location of each LiDAR point can be projected to the traffic sign 

surface. Figure 4-11 shows the registration result of the LiDAR points on the traffic sign 

surface in 3D space. At each LiDAR point location, the corresponding handheld 
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retroreflectometer measurement was conducted. To accurately match the location where 

the LiDAR point is collected and the location where the retroreflectometer is measured, 

the layout of the LiDAR point for each sign was sketched on the actual sign surface. At 

each location, three measurements were conducted using small apertures provided by the 

manufacturer, and the average of the four measurements was used to represent the actual 

retroreflectivity of this point.  

 
Figure 4-11 Registration result of the LiDAR points on the traffic sign 

For all of the 15 traffic signs, there were 1123 pairs of measurements conducted 

to establish the correlation between the normalized retro-intensity values and the 

retroreflectivity values. The retroreflectivity values ranged between 0 mcd/m
2
/lux and 64 

mcd/m
2
/lux, while the retroreflectivity of the typical Type 1 engineer grade sheeting is 

between 0 mcd/m
2
/lux and 70 mcd/m

2
/lux. Figure 4-12 shows the correlation between the 

retroreflectivity and the normalized retro-intensity. The blue points represent the actual 

paired measurements, while the red line represents the linear regression results of the 
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measurements. Based on this specific lab test, the regression results can be derived from 

the following equation:  

                                                      

 
Figure 4-12 Correlation between the retroreflectivity and the normalized retro-intensity 

Using the linear regression equation, each normalized retro-intensity value can be 

estimated as the corresponding retroreflectivity value. Therefore, for each traffic sign, the 

population of the normalized retro-intensity values measured from the LiDAR can be 

translated into the population of the retroreflectivity values, which is used to determine 

the retroreflectivity condition of the traffic sign. To make a consistent comparison with 

the current measurement method (i.e. handheld retroreflectometer), the median value of 

the population of the estimated retroreflectivity is used to represent the whole population 

(i.e. tested color) without being biased by some outliers. It is noted that there is a chance 

that the median of the estimated retroreflectivity values can be below zeros following the 

regression result, which does not realistically represent the true values. Therefore, for all 
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the medians of the estimated retroreflectivity values that are below zero, zero values are 

assigned. By comparing the estimated retroreflectivity of the whole population with the 

requirements defined in the MUTCD for different colors, the “FAIL” and “PASS” 

condition can be determined. Section 5.2 in Chapter 5 presents the detailed results and the 

discussion about the drawbacks of current retroreflectometer measurement methods.  

It should be noted that the normalization curve (in Section 4.2.3) and the 

correlation curve between the normalized LiDAR retro-intensity values and the measured 

retroreflectivity values (in Section 4.2.4) are based on the specific LiDAR model (i.e. 

Riegl LMS-Q120i.) in response to the studied material (i.e. Type 1 engineer grade 

sheeting) used in this study. Different LiDAR models and different studied material could 

introduce completely different correlations. Further investigations on different LiDAR 

models (e.g. different beam spectrums, different beam divergence, etc.) and on different 

sheeting types (e.g. diamond grade, prismatic, etc.) are recommended for future research. 

Following the same methods and scheme proposed in this methodology, optimal 

correlations are expected to be derived accordingly.  
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CHAPTER 5  

EXPERIMENTAL TEST 

A comprehensive experimental test was conducted to validate the proposed 

methodologies for the enhanced traffic sign detection and the mobile traffic sign 

retroreflectivity condition assessment. For each methodology, both the individual 

algorithms and the complete methodology were tested using both lab and field tests.  

5.1. Experimental Test for the Enhanced Traffic Sign Detection 

Methodology 

In the experimental test for the enhanced traffic sign detection methodology, two 

focused tests were conducted to validate the performance of the two individual 

algorithms, only focusing on the color segmentation step and the shape detection step 

respectively. Datasets were purposely designed to include the challenging cases for the 

two algorithms to reveal the improvement of the enhanced algorithms. Then, a general 

test was conducted using containing five datasets with different road functions, data 

collection sources, and data qualities to comprehensively validate the overall 

performance of the complete methodology.  

5.1.1. Focused Test for the LD-SCM-Based Color Segmentation Algorithm  

A focused test was conducted to evaluate the accuracy of the proposed lighting 

dependent statistical color model (LD-SCM)-based color segmentation algorithm. The 

testing dataset was collected on I-285 and SR-275 and included different lighting 

conditions, e.g. over-exposure, under-exposure, normal exposure, and adverse lighting 

conditions. To acquire these lighting conditions, different driving directions, times of the 

day, and weather conditions were considered. Overall, 890 signs containing eight 
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different colors were manually extracted, and the corresponding pixels extracted from 

traffic signs under different lighting conditions were manually marked with the 

corresponding Manual of Uniform Traffic Control Devices (MUTCD) colors as the 

ground truth. More than 8 million pixels were collected for this focused test.  

The result of the proposed LD-SCM-based color segmentation algorithm was 

compared with the existing color segmentation algorithm (Tsai et al., 2009). The pixels 

were processed by the existing color segmentation algorithm and the proposed LD-SCM-

based color segmentation algorithm. The confusion matrices are shown in Table 5-1 and 

Table 5-2.  

Table 5-1 Confusion matrix for the color segmentation results using the existing algorithm 

 
White Black Green Blue Red Yellow Orange FYG 

White 0.7676 0.1455 0.0003 0.0000 0.0080 0.0780 0.0006 0.0000 

Black 0.0878 0.6207 0.0703 0.0040 0.0924 0.1082 0.0142 0.0024 

Green 0.0143 0.1391 0.6128 0.1707 0.0004 0.0023 0.0007 0.0597 

Blue 0.0327 0.1505 0.1531 0.6633 0.0000 0.0000 0.0000 0.0004 

Red 0.0985 0.0855 0.0000 0.0000 0.7084 0.0182 0.0884 0.0010 

Yellow 0.0419 0.0947 0.0030 0.0000 0.0064 0.7601 0.0757 0.0182 

Orange 0.0007 0.0396 0.0000 0.0000 0.1062 0.1542 0.6893 0.0100 

FYG 0.0206 0.0534 0.0100 0.0003 0.0081 0.0414 0.0021 0.8641 

Table 5-2 Confusion matrix for the color segmentation results using the proposed LD-SCM 

algorithm 

  White Black Green Blue Red Yellow Orange FYG 

White 0.9611 0.0136 0.0060 0.0014 0.0084 0.0043 0.0052 0.0000 

Black 0.0109 0.8245 0.0046 0.0071 0.0501 0.0906 0.0082 0.0040 

Green 0.0118 0.0266 0.9491 0.0125 0.0000 0.0000 0.0000 0.0000 

Blue 0.0071 0.0400 0.0024 0.9502 0.0000 0.0000 0.0000 0.0003 

Red 0.0434 0.0405 0.0001 0.0006 0.9007 0.0076 0.0071 0.0000 

Yellow 0.0096 0.0341 0.0001 0.0078 0.0123 0.9118 0.0238 0.0005 

Orange 0.0000 0.0102 0.0000 0.0000 0.0647 0.0648 0.8603 0.0000 

FYG 0.0015 0.0039 0.0057 0.0053 0.0000 0.0088 0.0089 0.9659 

 

By comparing the results from both algorithms, it can be observed that the proposed 

LD-SCM-based color segmentation algorithm dramatically improves the performance of 

the existing algorithm by reducing the color confusion caused by the distortion of 

different lighting conditions as described below: 
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 Distortion caused by under-exposure or adverse lighting conditions. In the 

existing color segmentation algorithm, 14.55% of the white pixels, 13.91% of the 

green pixels, and 15.05% of the blue pixels are falsely segmented as black pixels. By 

identifying these lighting conditions and applying the new LD-SCM, only 1.36% of 

the white pixels, 2.66% of the green pixels and 4% of the blue pixels are still falsely 

segmented as black pixels (highlighted with yellow in Table 5-1 and Table 5-2). 

 Distortion caused by over-exposure condition. In the existing color segmentation 

algorithm, 8.78% of the black pixels and 9.85% of the red pixels are falsely 

segmented as white pixels. By identifying such lighting condition and applying the 

new LD-SCM, only 1.09% of the black pixels and 4.34% of the red pixels are still 

falsely segmented as white pixels (highlighted in blue in Table 5-1 and Table 5-2).  

 Distortion caused by under-exposure or over-exposure conditions. In the existing 

color segmentation algorithm, more than 15% of the blue and the green pixels are 

confused with each other, while more than 25% of the orange pixels are confused 

with each red or yellow. By identifying these lighting conditions and applying the 

new LD-SCM, less than 2% of the blue or green pixels are confused with each other, 

and less than 13% of the orange pixels are falsely segmented as red or yellow pixels 

(highlighted as pink in Table 5-1 and Table 5-2).  

5.1.2. Focused Test for the ODE/PDE-Based Shape Detection Algorithm  

A focused test was conducted to evaluate the performance of the proposed 

ordinary/partial differential equation (ODE/PDE)-based shape detection algorithm with 

discontinuous image boundaries in cluttered backgrounds. Twenty-six images with 

cluttered backgrounds and discontinuous boundary problems were tested by 

simultaneously running both the active contour and active polygon algorithms. These 

images could not be detected previously using the existing sign detection system (Tsai et 

al., 2009) and led to false negatives.  
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For the proposed active contour algorithm, of the 26 images, 24 images were 

correctly detected by the proposed active contour. Figure 5-1 shows an example of the 

results. From left to right, Figure 5-1 shows the original image, the color-segmented 

image, the extracted contour using existing system, the polygon detection result using the 

existing system, the extracted contour using the proposed active contour algorithm, and 

the polygon detection result using the enhanced system with active contour algorithm 

incorporated.  

 
1   2              3   4   5   6 

Figure 5-1 Comparison of the processed images obtained using the existing sign detection 

system and the proposed active contour algorithm. 1. Original video log image; 2. Color 

segmented image; 3. Extracted contour using the existing system; 4. Detection result using 

existing system; 5. Extracted contour using the proposed active contour algorithm; 6. 

Detection result using the enhanced system 

The proposed active contour algorithm performs well in detecting traffic signs 

that have discontinuous boundary problems, although there are two cases in which the 

proposed active contour algorithm cannot detect signs correctly. Figure 5-2 shows two 

cases that cannot be detected correctly using active contour algorithm. In Figure 5-2(a), 

the original image has a similar foreground and background in the color space, which 

causes undistinguished color segmentation. When the proposed active contour algorithm 

is applied in that area, the contour region expands unwillingly. Figure 5-2(b) shows that 

the proposed active contour algorithm extracts the traffic sign boundary, except the upper 

portion because the contour evolves into part of the legend area. This occurs because, 

after the color segmentation, the upper portion of the boundary is decomposed as a 

different color from the rest of the boundary.  
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(a) 

 
(b) 

Figure 5-2 False negative cases using the active contour algorithm 

For the proposed active polygon algorithm, all of the 26 images are correctly 

detected, including the two cases that could not be detected by the active contour 

algorithm, as shown in Figure 5-3. The results of testing both the proposed active contour 

algorithm and the active polygon algorithm show that the active polygon algorithm has 

better performance for detecting traffic signs with discontinuous boundaries. In addition, 

by constraining the movement only by limited number of vertices, the proposed active 

polygon algorithm performs approximately twice as fast as the proposed active contour 

algorithm. Nevertheless, both of the proposed active contour and active polygon 

algorithms out-perform the existing shape detection algorithm in detecting traffic signs 

containing discontinuous boundaries in cluttered backgrounds. Considering the 

performance and the processing speed, the active polygon-based shape detection 

algorithm was integrated into the final detection methodology.  



 83 

 

 
Figure 5-3 Active polygon algorithm detection result for the identified false negative cases 

5.1.3. General Test 

The objective of the general test is to comprehensively evaluate the performance 

of the complete methodology by integrating the individual enhanced algorithms. Datasets 

for the general test were first designed and collected, followed by comprehensive testing 

of the complete methodology.  

5.1.3.1. Dataset Selection 

In the process of testing dataset selection, an effort was made to cover different 

aspects that could comprehensively validate the performance of the complete 

methodology. The selected datasets consist of a rich diversity. Table 5-3 shows the 

detailed information for the selected datasets and reveals the following:  

1) Three different roadway function levels were included to comprehensively cover 

different sign types and visual conditions, i.e. interstate, state routes, and local roads 

in both rural and urban areas;  

2) Three different data sources were included to cover different image qualities and 

configurations, i.e. Louisiana Department of Transportation and Development 

(LaDOTD), the city of Nashville, and the sensing van at Georgia Tech;  
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3) Two identified challenging cases are included to fully assess the performance of the 

developed algorithm: changing lighting conditions and a cluttered background with 

discontinuous boundaries.  

Table 5-3 List of the selected datasets for general test 

# Source Location Image Sign 

1 LaDOTD SR-541, Westwego, LA 1547 303 

2 City of Nashville Cane Ridge Rd, Nashville, TN 607 133 

3 Sensing Van 37th Street, Savannah, GA 933 475 

4 Sensing Van SR-67, Statesboro, GA 2216 392 

5 Sensing Van I-95, Savannah, GA 5623 875 

LaDOTD dataset: The dataset from LaDOTD contains 1547 images collected on 

SR-541, Westwego, Louisiana (LA). In the 1547 images, there are 1244 negative images 

(i.e. without traffic signs) and 303 positive images (i.e. with traffic signs of different 

sizes, colors, shapes, and conditions). As provided by LaDOTD, the image quality is very 

good with a resolution of 1920x1080. The data was pre-processed by Roadware Corp, 

which was the contractor for the data collection. Therefore, most of the lighting condition 

issues had been already eliminated by the pre-processing. Figure 5-4 shows a sample 

image in this dataset.  

 
Figure 5-4 Sample image in the LaDOTD dataset 

City of Nashville dataset: The dataset from the city of Nashville contains 607 

images collected on Cane Ridge Road, Nashville, Tennessee. In the 607 images, there are 
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474 negative images and 133 positive images. As provided by the city of Nashville, the 

image quality is reasonable with a resolution of 1300x1030. Figure 5-5 shows a sample 

image in this dataset.  

 
Figure 5-5 Sample image in the city of Nashville dataset 

37
th

 Street dataset: The dataset from 37
th 

Street, Savannah, Georgia, contains 

933 images,. In the 933 images, there are 458 negative images and 475 positive images. 

Because they were collected by the sensing van developed at Georgia Tech, the image 

quality is very good, with a resolution of 2448x2048. Figure 5-6 shows a sample image in 

the dataset. This dataset is designed to incorporate the challenging cases of a severely 

cluttered background.  

 
Figure 5-6 Sample image in the 37th Street dataset 

SR-67 dataset: The dataset from SR-67 contains 2216 images collected on SR-

67, in Statesboro, Georgia. In the 2216 images, there are 1824 negative images and 392 
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positive images. Using the Georgia Tech sensing vehicle, the data quality and resolution 

are similar for the data collected on 37
th

 Street. Figure 5-7 shows a sample image in the 

dataset. This dataset is designed to incorporate the challenging case of changing lighting 

conditions.  

 
Figure 5-7 Sample image in the SR-67 dataset 

I-95 dataset: The dataset from I-95 contains 5623 images collected on I-95 in 

Savannah, Georgia. In the 5623 images, there are 4748 negative images and 875 positive 

images. Using the Georgia Tech sensing vehicle, the data quality and resolution are 

similar to the data collected on 37
th

 Street. Figure 5-8 shows a sample image in the 

dataset.  

 
Figure 5-8 Sample image in the I-95 dataset 
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5.1.3.2. Detection Results 

Table 5-4(a) shows the overall detection results of the five selected datasets. In 

general, the results show that the enhanced algorithm, compared with the existing 

algorithm (Tsai et al., 2009), can reduce the false negative rates by 12.2%. The results 

also show that the enhanced algorithm, compared with the existing algorithm (Tsai et al., 

2009), increases the false positive rate by only 1.7%. The detailed analysis for each 

individual dataset is discussed below based on the breakdown in Table5-4(b)-(f).   

Table 5-4 

(a) Overall detection results by the existing algorithm and the enhanced algorithm 
 True Positive True Negative False Positive False Negative 

Existing algorithm 72.8% (1586/2178) 87.1% (7618/8748) 12.9% (1130/8748) 27.2% (592/2178) 

Enhanced algorithm 85.0% (1852/2178) 85.4% (7472/8748) 14.6% (1276/8748) 15.0% (326/2178) 

(b) Detection results on the LaDOTD dataset 
 True Positive True Negative False Positive False Negative 

Existing algorithm 82.2% (249/303) 89.5% (1113/1244) 10.5% (131/1244) 17.8% (54/303) 

Enhanced algorithm 91.7% (278/303) 87.9% (1094/1244) 12.1% (150/1244) 8.3% (25/303) 

(c) Detection results on the City of Nashville dataset 
 True Positive True Negative False Positive False Negative 

Existing algorithm 78.9% (105/133) 88.8% (421/474) 11.2% (53/474) 21.1% (28/133) 

Enhanced algorithm 88.0% (117/133) 87.6% (415/474) 12.4% (59/474) 12.0% (16/133) 

(d) Detection result on the 37th Street dataset 
 True Positive True Negative False Positive False Negative 

Existing algorithm 53.9% (256/475) 68.1% (312/458) 31.9% (146/458) 46.1% (219/475) 

Enhanced algorithm 72.0% (342/475) 72.9% (334/458) 27.1% (124/458) 28.0% (127/475) 

(e) Detection result on the SR-67 dataset 
 True Positive True Negative False Positive False Negative 

Existing algorithm 70.9% (278/392) 84.1% (1534/1824) 15.9% (290/1824) 29.1% (58/392) 

Enhanced algorithm 85.7% (336/392) 83.7% (1527/1824) 16.3% (297/1824) 14.3% (/392) 

(f) Detection result on the I-95 dataset 
 True Positive True Negative False Positive False Negative 

Existing algorithm 79.8% (698/875) 89.3% (4238/4748) 10.7% (510/4748) 20.2% (177/875) 

Enhanced algorithm 89.0% (779/875) 86.4% (4102/4748) 13.6% (646/4748) 11.0% (125/875) 

 The enhanced algorithm improves the most for the 37
th

 Street dataset in terms of 

reducing the false negative rate. The existing algorithm can only detect 53.9% of the 

signs in the 37
th

 Street dataset due to the discontinuous boundaries produced by the 

severely cluttered backgrounds, while the enhanced algorithm can detect 72.0% of the 
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signs correctly. The newly detected signs contain discontinuous boundaries produced 

by the tree shadows and complex backgrounds. The edge-based shape detection 

method in the existing algorithm produces excessive false edges within and across the 

boundaries of the traffic signs. Therefore, the shape approximated in the subsequent 

step fails to formulate a complete sign shape. On the contrary, the proposed active 

polygon method in the enhanced algorithm is a region-based method that dictates the 

average intensity changes in and out of the polygon region. Therefore, as the false 

edges contribute minimal changes to the average intensity, the proposed method is 

immune to such discontinuous boundaries. Figure 5-9 shows an example that could not 

be detected using the existing method.  

 
Figure 5-9 Challenging case due to the casting tree shadow  

(Left: color segmented image; right: original image) 

 The enhanced algorithm improves the SR-67 dataset, which contains lighting 

condition issues (i.e. adverse lighting), the most. The existing algorithm can only 

detect 70.9% of the signs in the dataset due to the lighting condition issues, while the 

enhanced algorithm can detect 85.7% of the signs. Most of the newly detected signs 

are in the adverse lighting condition. The existing color model tends to cluster all the 

dark pixels as black pixels, regardless of the subtle color information in these dark 

pixels. On the contrary, the new color models in the enhanced system classify 

different lighting conditions first and then cluster the colors within each lighting 
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condition category. Therefore, the subtle difference in the dark pixels can be dictated 

more precisely. Figure 5-10 shows an example of the segmentation results.  

 
Figure 5-10 Detection results using 1) the existing algorithm and 2) the enhanced algorithm 

 The enhanced algorithm can consistently improve the performance of the existing 

algorithm on the datasets containing different roadway function levels (i.e. different 

sign types and visual conditions) and data collection sources (i.e. different data 

qualities, resolutions, etc.). Within the selected datasets, there are more than 200 

types of signs with nine shapes and eight colors, and with different visual conditions. 

The enhanced algorithm reduces the false negative rate in the existing algorithm by 

9.0% to 18.1%. The enhanced algorithm demonstrates slightly better results on the 

LaDOTD dataset because of the pre-processing conducted by Roadware Corp. 

Further performance improvement is expected if similar pre-processing steps are 

applied to the rest of the datasets. Currently, the pre-processing algorithm is 

proprietary by Roadware Corp., but customizing the pre-processing algorithm that 

can be incorporated into the enhanced algorithm is recommended for future research.  

 The enhanced algorithm does not excessively increase the false positive rate and 

effectively reduces the false negative rate. In some cases, the false positive rate can be 

reduced by the enhanced algorithm, e.g. 37
th

 Street dataset. In the 37
th

 Street dataset, 

the existing algorithm falsely detected many tree shadows as traffic signs. The shape 

approximation step of the existing algorithm assembles the detected contours into 

shapes based on the extracted edges. Since many false edges were produced by the 
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spotty tree shadows, many false shapes were formulated. Figure 5-11 shows an 

example of the false shapes detected using the existing method. On the contrary, the 

proposed algorithm uses the generalized Hough transform (GHT) algorithm to 

identify the shapes. Although the edge information is still used, the neighboring edges 

are considered as a whole based on the shape template rather than individually, and 

then they are ranked by a global accumulator. Therefore, the false edges that are not 

associated with the polygons initialized by the GHT algorithm do not impact the final 

result.  

 
Figure 5-11 An example of the false shapes detected using the existing method  

From the test results on the selected datasets, the enhanced methodology 

demonstrates, overall, good capability to detect traffic signs under variant conditions 

while, also, showing strong capabilities to detect traffic signs that were challenging to the 

existing algorithm. However, there are still some false negative cases and false positive 

cases that are produced by the enhanced algorithm, which can be improved by further 

research. Three types of false negative cases were identified in the test using the 

enhanced algorithm, including severe casting shadow, occlusion, and several specific 

signs.  

As shown in Figure 5-12, casting shadows distort the color in part of the sign 

surface, which destroys the integrity of the sign in the color segmentation result. The 

broken pieces will be hard to be detected even using the enhanced algorithm. A severe 
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casting shadow issue is identified as the most frequent false negative case through the 

experimental test. There are 56.7% of the false negative cases identified in the 

experimental test are due to this issue. This type of false negative case can be reduced by 

introducing the fuzzy color segmentation approach. Using the fuzzy logic, each pixel can 

be assigned with multiple MUTCD-defined colors instead of a single color according to 

the likelihood. By assigning multiple colors to each pixel, the color fragments broken by 

the casting shadows can be reunited as a complete traffic sign shape when one of the 

colors assigned to the fragment matches another fragment.  

        
Figure 5-12 False negative cases due to severe casting shadow  

(Left: original image; right: color segmented image) 

As shown in Figure 5-13, like the casting shadow cases, the integrity of the sign is 

destroyed by the obstruction. The unique color and shape patterns of the traffic sign will 

not be maintained. There are 26.5% of the false negative cases identified in the 

experimental test are due to this issue. This type of false negative case can be reduced by 

relaxing the shape constraints used in the proposed generalized Hough transform (GHT). 

By relaxing the shape constraints, part of the occluded sign shape can still be identified. 

However, the relaxation may introduce more false positive cases because more irregular 

shapes might still be qualified as sign shape candidates. When the occlusion is so severe 

that almost all of the important information for a sign is diminished, it becomes 

extremely hard to detect it using any advanced algorithm.  
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Figure 5-13 False negative cases due to occlusion  

(Left: original image; right: color segmented image) 

As shown in Figure 5-14, the no-parking sign and the object marker sign are the 

two types of specific signs that are frequently undetected. For the no-parking sign, the 

complex legend segments the sign into tiny blocks (i.e. the no-parking signs are the 

smallest type of signs), which can be very easily merged into background after the 

segmentation. For the object marker signs, the yellow-black pattern of this type of sign 

fragments the sign into different color blocks, and there is no clear boundary by which 

the sign can be defined. There are 12.1% of the false negative cases identified in the 

experimental test are due to this issue. These cases can be potentially minimized by 

applying a shape-merging algorithm to combine the individual pieces into a regular sign 

shape, or directly introducing specific traffic sign recognition algorithms to recognize the 

unique pictogram of the signs.  

        
Figure 5-14 Several specific types of signs undetected 

 (Left: original image; right: color segmented image) 

Several types of false positive cases are identified in the test using the enhanced 

methodology, including house windows, commercial signs, the back of signs, vehicle 

parts, etc. The color features and shape features are used in the enhanced methodology. 
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However, sometimes these two features are not sufficient for traffic signs to be 

distinguished from other objects, as there are many other objects sharing characteristics 

similar to the traffic signs in terms of color and shape. Figure 5-15 shows some of the 

examples of the identified false positive cases. Some of the false positive cases can be 

rejected by identifying their locations if GPS data is available during the data collection, 

e.g. on the pavement, etc. By integrating different traffic sign features for each detected 

traffic sign candidate, e.g. color, shape, location, etc., a confidence score can be designed 

to represent the quality of the detection. Therefore, the false positive cases can be 

systematically reduced by determining a robust confidence level.  

   

   
Figure 5-15 False positive cases identified for the enhanced algorithm 

5.2. Experimental Test for the Proposed Traffic Sign Retroreflectivity 

Condition Assessment Methodology  

In the experimental test for the proposed traffic sign retroreflectivity condition 

assessment methodology, a lab test with a controlled environment was first conducted to 

study the fundamental characteristics of light detection and ranging (LiDAR) retro-

intensity measurement, including the repeatability of consecutive scans, the impact of 
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ambient lighting, and the impact of beam distance and incidence angle. Then, field test 

containing 35 Type 1 engineer grade stop signs was conducted to validate the overall 

performance of the proposed methodology and evaluate the feasibility of its application 

in state departments of transportation’s (DOTs’) practices. The dataset was purposely 

selected to include the most important traffic sign type that is related to roadway safety, 

and the most important traffic sign sheeting type that is the most frequent failed traffic 

sheeting type in service due to the retroreflectivity condition.  

5.2.1. Lab Test for Studying Fundamental Characteristics of LiDAR Retro-Intensity 

Measurement 

This section presents the laboratory tests that were conducted in a controlled 

environment to study the key characteristics of the LiDAR retro-intensity measurement. 

These key characteristics are closely related to the feasibility of applying LiDAR retro-

intensity values for traffic sign condition assessment. Repeatability of the retro-intensity 

measurement, the impact of ambient lighting conditions, and the impact of LiDAR beam 

distance and incidence angle are studied through the three designed lab tests.  

5.2.1.1. Repeatability of the Retro-Intensity Measurement 

To conduct traffic sign condition assessment with consistent results, it is 

important to validate the repeatability of the retro-intensity measurement on the same 

retro-reflective objects. Only when the measurement is consistent through successive 

LiDAR scans (having minimal variance) is it feasible to use LiDAR for consistent 

retroreflectivity condition assessment.  

A blank white traffic sign sample with brand new, Type 1 engineer grade sheeting 

was used for the test. The sample was attached to a static platform 2 ft. from the road 

edge, as shown in Figure 5-16, while the LiDAR device was stationary at a 41 ft. distance 

from the surface of the sample. To study the repeatability of continuous scans and the 

repeatability of different scans, two scenarios were created in the test: 1) continuous 
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scanning for ten minutes, using the first scan at the beginning of each minute for 

repeatability assessment; 2) discretely triggering one scan at the beginning of each minute 

for ten minutes with the LiDAR device remaining idle between consecutive triggers.  

 
Figure 5-16 Repeatability test conducted using white Type 1 sheeting on campus 

Table 5-5 shows the repeatability under the two designed scenarios. It can be 

observed that both the continuous scanning and discrete triggering scenarios showed 

good repeatability, i.e. standard deviation of the measurement among ten scans is smaller 

than 0.0003. As discussed in the section 4.2.4, the standard deviation of 0.0003 can 

potentially introduce less than ±0.1 mcd/m
2
/lux, which is ignorable in the process of sign 

retroreflectivity condition assessment.  

Table 5-5 Repeatability results using two designed scenarios 

Minute # Scenario 1 Scenario 2 

1 0.78304 0.78315 

2 0.78250 0.78277 

3 0.78305 0.78280 

4 0.78296 0.78274 

5 0.78321 0.78224 

6 0.78296 0.78252 

7 0.78262 0.78278 

8 0.78263 0.78300 

9 0.78253 0.78265 

10 0.78297 0.78254 

Std. Dev. 0.00025 0.00026 
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5.2.1.2. Impact of Ambient Lighting Condition 

As the data acquisition is complete during the daytime, it is important to quantify 

the impact of ambient lighting condition on the LiDAR retro-intensity measurement. 

Only during daytime with different ambient lighting conditions when the LiDAR retro-

intensity measurement is not sensitive to the intensity of ambient lighting condition is it 

feasible to use LiDAR for consistent retroreflectivity condition assessment. A standard 

36x36 stop sign sample with brand new Type 1 engineer grade sheeting was used for this 

test. The sample was attached to a static platform in the laboratory, as shown in Figure 5-

17, and the LiDAR device was placed so that it was stationary at a 41 ft. distance from 

the surface of the sample. With the current configuration, 64 points were collected within 

each LiDAR scan. As shown in Figures 5-17(a) and (b), the light was switched on and off 

to simulate two different lighting conditions (i.e. regular ambient lighting and darkness). 

The first scan under each lighting condition was used to represent the corresponding 

scanning result.  

    
(a)      (b) 

Figure 5-17 Ambient lighting condition tests in lab 

Figure 5-18 shows the results from the single scan with the light switched on and 

off. It is observed that the LiDAR retro-intensity measurements are very close with the 

light switched on and off. When the light is off, the measurements are slightly smaller 

than when the light is switched on at the scale of 0.0002. As discussed in the following 

sections (4.2.4), the standard deviation of 0.0002 can potentially introduce less than 
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±0.08 mcd/m
2
/lux, which is even less than the variance of the successive scans. 

Therefore, the impact of the ambient lighting condition is ignorable in the process of 

traffic sign retroreflectivity condition assessment. 

 
Figure 5-18 Result of the ambient lighting condition test 

5.2.2. Field Test for Traffic Sign Retroreflectivity Condition Assessment 

A field test was conducted to assess the accuracy of the proposed LiDAR-based 

traffic sign retroreflectivity condition assessment method. Thirty-five stop signs with 

Type 1 engineer grade sheeting were collected in a community in a city from Georgia in 

support of this test. Ground truth was established using the Delta GR3 handheld 

retroreflectometer following the American Society for Testing and Materials (ASTM) 

E1709 standard (2009). Using the handheld retroreflectometer, four readings of each sign 

color were collected; the median of the four readings represents the retroreflectivity of 

the measured color. A visual inspection method following the recommendations proposed 

in the MUTCD was used to validate the results. Figure 5-19 shows the map of the data 

collection site and the corresponding location of the stop signs.  
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Figure 5-19 Sites for the general traffic sign retroreflectivity condition assessment test 

5.2.2.1. Image-LiDAR Registration Result 

The accuracy of the proposed image-LiDAR registration algorithm was evaluated 

first using the collected stops signs. The bounding boxes from the LiDAR point cloud 

that are associated with the tested stops signs were manually digitized, each of which was 

represented by a 3D polygon. Using the proposed registration method, each 3D polygon 

can be projected into the corresponding 2D image. The projected polygons were 

compared with the original detection results (i.e. bounding boxes derived from Step 1 and 

2 in Section 4.2.2). Figure 5-20 illustrates three example of the comparison result for 

Signs #17, #27 and #33. The traffic shown in the figures represents the detected results, 

while the red polygons represent the projected results. As shown in Figure 5-20, there are 

very few points that could not be correctly projected due to the measurement outliers for 

the LiDAR sensor that could not be eliminated using co-planar validation, as presented in 

Section 4.2.2.1.3. The result shows that the developed registration method can accurately 

register the 3D LiDAR point cloud with the 2D video log images. 
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Figure 5-20 Illustrations of the registration results for Sign #17, #27 and #33 

By comparing the projected polygon and the detected traffic sign polygon in 

detail, the average offset is less than two pixels along the boundary's normal direction. 

Such pixel offset represents no more than a ½ inch geometrical offset on the tested traffic 

sign surfaces. To conservatively estimate the traffic sign retroreflectivity conditions for 

each sheeting color, all the projected LiDAR points that are close to the boundary of 

different colors (i.e. less than ½ inch) will be removed from the subsequent computation.  

5.2.2.2. Retroreflectivity Condition Assessment Result  

Figure 5-21 shows the overall result for the 35 stop signs, including the assessment 

for both the red and white colors. The blue dots represent the actual results of the 

estimated retroreflectivity using LiDAR retro-intensity values vs. the ground truth values 

measured from the handheld retroreflectometer. The red line represents the ideal result 

between the estimation and the ground truth, while the blue-dashed line represents the 

actual correlation. It can be observed that the estimations align well with the ground truth, 

although some of the estimates over or under-estimate the truth retroreflectivity values as 

recorded in the ground truth. Nevertheless, as each ground truth only contains four 

measurements using the handheld retroreflectometer, measurement bias could be 

inherited when collecting ground truths. Therefore, further investigation for determining 

the traffic sign retroreflectivity condition for each color was done instead of just 

comparing the absolute measurement values.  
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Figure 5-21 Correlation results between the estimated retroreflectivity and ground truth 

Table 5-6 shows the detailed results for the 35 stop signs, including the condition 

assessment for both red and white colors. By applying the proposed minimum 

retroreflectivity standard defined in the MUTCD, if the retroreflectivity measurement is 

smaller than 7 mcd/m
2
/lux for red and/or 35 mcd/m

2
/lux for white, respectively, the 

corresponding traffic sign is in “FAIL” retroreflectivity condition, while in a “PASS” 

condition otherwise.  
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Table 5-6 Testing result for both the background and legend colors of the 35 stop signs  

# 

Red (Background Color) White (Legend Color) 

Retroreflectivity Condition Retroreflectivity Condition 

Handheld Est. Diff. Handheld Est. Handheld Est. Diff. Handheld Est. 

1 4.0 2.7 -1.3 FAIL FAIL 26.0 27.4 1.4 FAIL FAIL 

2 3.0 4.2 1.2 FAIL FAIL 4.5 0.0 -4.5 FAIL FAIL 

3 6.0 5.5 -0.5 FAIL FAIL 37.5 35.1 -2.4 PASS PASS 

4 9.5 8.1 -1.4 PASS PASS 78.0 72.4 -5.6 PASS PASS 

5 3.0 0.6 -2.4 FAIL FAIL 20.5 14.2 -6.3 FAIL FAIL 

6 14.0 12.8 -1.2 PASS PASS 70.5 66.4 -4.1 PASS PASS 

7 8.0 7.7 -0.3 PASS PASS 28.5 29.1 0.6 FAIL FAIL 

8 6.0 6.1 0.1 FAIL FAIL 33.0 33.2 0.2 FAIL FAIL 

9 4.0 6.9 2.9 FAIL FAIL 36.5 41.7 5.2 PASS PASS 

10 3.0 2.2 -0.8 FAIL FAIL 14.0 18.1 4.1 FAIL FAIL 

11 7.0 8.3 1.3 PASS PASS 32.0 30.6 -1.4 FAIL FAIL 

12 3.0 3.3 0.3 FAIL FAIL 18.5 16.3 -2.2 FAIL FAIL 

13 3.0 0.0 -3.0 FAIL FAIL 3.5 9.2 5.7 FAIL FAIL 

14 3.0 0.0 -3.0 FAIL FAIL 1.5 4.7 3.2 FAIL FAIL 

15 2.5 2.7 0.2 FAIL FAIL 11.5 8.2 -3.3 FAIL FAIL 

16 13.0 10.9 -2.1 PASS PASS 61.0 65.7 4.7 PASS PASS 

17 5.0 7.4 2.4 FAIL PASS 15.5 12.4 -3.1 FAIL FAIL 

18 6.0 5.8 -0.2 FAIL FAIL 25.0 15.4 -9.6 FAIL FAIL 

19 4.0 10.9 6.9 FAIL PASS 24.0 17.7 -6.3 FAIL FAIL 

20 5.0 6.2 1.2 FAIL FAIL 8.0 7.8 -0.2 FAIL FAIL 

21 2.5 1.2 -1.3 FAIL FAIL 7.5 9.0 1.5 FAIL FAIL 

22 2.0 7.7 5.7 FAIL PASS 24.5 16.2 -8.3 FAIL FAIL 

23 7.0 0.0 -7.0 PASS FAIL 13.0 13.5 0.5 FAIL FAIL 

24 2.0 2.1 0.1 FAIL FAIL 5.0 2.0 -3.0 FAIL FAIL 

25 12.0 11.9 -0.1 PASS PASS 63.5 62.9 -0.6 PASS PASS 

26 2.0 0.0 -2.0 FAIL FAIL 34.5 32.9 -1.6 FAIL FAIL 

27 6.5 6.5 0.0 FAIL FAIL 25.0 19.4 -5.6 FAIL FAIL 

28 3.0 1.5 -1.5 FAIL FAIL 9.0 13.4 4.4 FAIL FAIL 

29 11.5 7.5 -4.0 PASS PASS 49.0 47.2 -1.8 PASS PASS 

30 7.5 9.3 1.8 PASS PASS 35.0 35.6 0.6 PASS PASS 

31 5.0 2.1 -2.9 FAIL FAIL 27.0 26.0 -1.0 FAIL FAIL 

32 3.0 0.0 -3.0 FAIL FAIL 40.0 45.5 5.5 PASS PASS 

33 4.0 6.1 2.1 FAIL FAIL 30.0 33.4 3.4 FAIL FAIL 

34 9.0 0.0 -9.0 PASS FAIL 39.5 35.6 -3.9 PASS PASS 

35 2.5 0.0 -2.5 FAIL FAIL 3.0 4.4 1.4 FAIL FAIL 

  

A false positive case is defined as a “PASS” condition if mistakenly identified as 

a “FAIL” condition, while a false negative case is defined as a “FAIL” condition if 

mistakenly identified as a “PASS” condition. In this test, only two false positive cases 

and three false negative cases are identified from the testing results, all of which occur in 

assessing the red background color, which is typically <10 mcd/m
2
/lux. Comparison of 

the results from the proposed method and the ground truth shows that most of the 

absolute difference is within 3.0 mcd/m
2
/lux. Considering the data-driven theoretical-

empirical normalization process for beam distance and incidence angle (in Section 
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4.2.3.1) and the limited number of samples in establishing the correlation curve between 

the LiDAR retro-intensity and the actual retroreflectivity measurement in the lab (in 

Section 4.2.4), the sensitivity of the model may introduce errors and propagate them to 

the final condition assessment result. Such errors could result in the false negative and 

false positive cases in the final condition assessment, especially when the retroreflectivity 

is small (i.e. <10 mcd/m
2
/lux), e.g. Sign #17.  

However, the remaining false negative and false positive cases, i.e. Signs #19, 

#22, #23 and #34, require further investigation because the absolute differences are 

relatively large. For white, there is no false positive or false negative case identified. 

However, some of the estimates have relatively big differences from the ground truth, 

e.g. Signs #18 and #22. As previously pointed out, the relatively big differences could be 

introduced by bias in ground truth establishment using retroreflectometer, rather than the 

estimation error using the proposed method. Therefore, the background of Signs #19, 

#22, #23, and #34 and the legend of Signs #18 and #22 need further investigation. To 

further investigate these signs, still images were taken for these traffic signs during 

nighttime using the geometry and headlight setup as specified in ASTM D4956 (2011).  

Signs #19 and #22 – False Negative Cases for Background 

  The proposed methodology overestimated the retroreflectivity for red in these 

signs. Figure 5-22(a) shows the nighttime image of Sign #19. It can be observed that the 

background of the traffic sign is in an overall fair condition. However, three of the four 

quadrants (left-up, right-up and right-bottom) of the sign are deteriorated more than the 

rest of the sign. While measuring the retroreflectivity using the handheld 

retroreflectometer, retroreflectivity from each quadrant was collected. Due to the non-

homogeneous deterioration of the sign, the handheld retroreflectometer just happened to 

be biased on the low values of the sign, while the LiDAR still collected the complete 

distribution of the sign. Therefore, the result from the proposed methodology 

overestimated the actual retroreflectivity for red in this sign. This is the intrinsic 
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drawback of the current ground truth establishment method because the non-

homogeneous deterioration of the sign retroreflectivity cannot be seen during the ground 

truth data collection in daytime. Sign #22 is, also, non-homogeneously deteriorated, 

which causes the over-estimation in the result. Figure 5-22(b) shows the nighttime and 

daytime images for Sign #22.  

 
(a) 

  
(b) 

Figure 5-22 Nighttime and daytime images for (a) Sign #19 and (b) Sign #22 

(Image enhanced to visualize the defects) 

Signs #23 and #34 – False Positive Cases for Background 

The proposed methodology underestimated the retroreflectivity for red in these 

signs. Figure 5-23 shows the nighttime image of Sign #23. It can be observed that the 

background of the traffic sign is in an overall poor condition due to the water damages for 

the majority of the sheeting. However, some of the points in good condition were selected 
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at the four quadrants of each sign where the retroreflectivity using the handheld 

retroreflectometer. Due to such non-homogeneous deterioration of the sign, the handheld 

retroreflectometer just happened to be biased on the high values of the sign, while the 

LiDAR still collected the complete distribution of the sign. Therefore, the proposed 

methodology underestimated the actual retroreflectivity for red in this sign. This is the 

intrinsic drawback of the current ground truth establishment method because the non-

homogeneous deterioration of the sign's retroreflectivity cannot be seen during the 

ground truth data collection in daytime, as shown in Figure 5-23(a). Sign #34 also non-

homogeneously deteriorated, which causes the underestimation in the result. Figure 5-

23(b) shows the nighttime and daytime images for Sign #34.  

  
(a) 

  
(b) 

Figure 5-23 Nighttime and daytime images for (a) Sign #23 and (b) Sign #34  

(Image enhanced to visualize the defects) 
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Signs #18 and #22 – Underestimation Cases for Legend 

Similar to the background, the legends of the traffic signs can, also, deteriorate in 

a non-homogeneous pattern. Parts of the letterings deteriorate more than the rest of the 

letterings. Since only four points were collected for the legend, the readings cannot cover 

the complete region of the legend to dictate the true distribution of their retroreflectivity 

condition. As shown in Figure 5-24, the legends of Signs #18 and #22 are in overall poor 

condition. However, the ground truth just happened to be collected at the locations where 

the relatively high retroreflectivity is located.  

   
(a)                          (b) 

Figure 5-24 Nighttime images for (a) Sign #18 and (b) Sign #22 

5.2.2.3. Result Discussion 

As shown in Section 5.2.2.2., the proposed retroreflectivity condition assessment 

methodology can consistently determine the condition, but the ground truth measured 

using the handheld retroreflectometer cannot. It is also identified that the current 

retroreflectometer measurement using four points may not be a consistent and adequate 

way to define the actual retroreflectivity condition due to the limited measurement. 

Figure 5-25 shows the populations of the estimated retroreflectivity for the red color of 

Sign #22. The locations of the four measurements conducted using the handheld 

retroreflectometer and corresponding values are marked in Figure 5-25. The red bar 

indicates the median of the population of the estimated retroreflectivity. It can be 

observed that the limited number of retroreflectometer measurements cannot adequately 

reflect the true condition of the whole traffic sign. Nevertheless, it is not feasible to 

manually measure more than 100 points for each traffic sign using a retroreflectometer on 
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field. Therefore, the proposed method can serve as a better alternative to reliably reflect 

the true retroreflectivity condition for each sign, since the proposed method assesses the 

traffic sign retroreflectivity condition using the whole population of the sign-associated 

LiDAR points. 

 
Figure 5-25 Distribution of the estimated retroreflectivity for Sign #22 and the 

retroreflectometer measurements 

Currently, the median value derived from the proposed method is used to 

represent the whole population of the traffic sign so that the value can be compared with 

the requirement defined in the MUTCD. Nevertheless, a retroreflectivity condition 

assessment using the complete population of measurements requirement can also be 

achieved using the proposed methodology for practical use, which is more consistent 

with a human’s perception during the nighttime. For example, based on the population, it 

is observed that the majority of the retroreflectivity values (i.e. 61.5% in this case) are 

still above 7 mcd/m
2
/lux, which warrants a “PASS” condition. Therefore, by defining a 
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conservative percentage (e.g. 50%) of the points that are above the requirement can be an 

adequate way to determine the overall condition of a traffic sign. It will provide a more 

reliable and consistent condition assessment result than the current retroreflectometer 

measurement. 



 108 

CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS 

Traffic signs are one of the most important roadway assets because they are used 

to ensure roadway safety and provide important travel guidance/information. 

Transportation agencies must inventory and manage their traffic signs as required by the 

Manual of Uniform Traffic Control Devices (MUTCD). Traffic sign inventory and 

condition assessment are the two most important components in a traffic sign 

management system to ensure a cost-effective and sustainable traffic sign management 

system. Traditionally, state departments of transportation (DOTs) conduct manual traffic 

sign inventory and condition assessment, which is time-consuming, labor-intensive, and 

sometimes hazardous to field engineers in the roadway environment. Methods have been 

developed to automate traffic sign inventory and condition assessment using video log 

images. However, the performance of these methods remains to be improved. There is a 

need to develop a sensing methodology to achieve a cost-effective traffic sign inventory 

and condition assessment. This study focuses on two methodologies, one of which is on 

an enhanced traffic sign detection methodology in support of a cost-effective and reliable 

image-based traffic sign inventory, while the other is on a new mobile retroreflectivity 

condition assessment methodology employing the emerging computer vision and mobile 

light detection and ranging (LiDAR) technologies in support of a cost-effective and 

reliable traffic sign condition assessment. This chapter summarizes the major 

contributions and findings of this study and proposes recommendations for future 

research.  
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6.1. Contributions 

The contributions of this research are the following: 

 An enhanced image-based traffic sign detection methodology is proposed and 

developed to support current state DOTs' traffic sign inventory practices. Two key 

algorithms are developed to ensure the enhanced methodology produces a reliable 

outcome.  

o A lighting dependent statistical color model (LD-SCM)-based color segmentation 

algorithm using local homogeneity features and an artificial neural network 

(ANN). The developed algorithm is robust to different image lighting conditions, 

especially adverse lighting;  

o An ordinary/partial differential equation (ODE/PDE)-based shape detection 

algorithm using a region-based active polygon formulation and a generalized 

Hough transform (GHT) initialization. The developed algorithm is immune to 

discontinuous sign boundaries in a cluttered background.  

 A mobile traffic sign retroreflectivity condition assessment methodology is proposed 

and developed to support state DOTs' traffic sign condition assessment practices 

using the emerging computer vision and mobile LiDAR technologies. Three key 

methods are developed to ensure the new mobile methodology achieves a reliable and 

consistent outcome.  

o An image-LiDAR registration method employing camera calibration and point 

co-planarity to register the 3D LiDAR point cloud with the 2D video log images;  

o A theoretical-empirical normalization scheme to adjust the magnitude of the 

LiDAR retro-intensity values with respect to LiDAR beam distance and incidence 

angle based on the radiometric responses; 
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o A population-based retroreflectivity condition assessment method to evaluate the 

adequacy of a traffic sign retroreflectivity condition based on the correlation 

between the normalized LiDAR retro-intensity and the retroreflectivity values.  

6.2. Findings 

For the enhanced traffic sign detection methodology, 

 The proposed LD-SCM-based color segmentation algorithm is robust to 

different lighting conditions, including the adverse lighting.  

Experimental tests show that the proposed algorithm can improve the accuracy of 

color segmentation under different lighting conditions using the data collected on I-

285 and SR-275. A comparison of the color segmentation confusion matrices between 

the existing color segmentation algorithm (Tsai et al., 2009) and the proposed 

algorithm shows an average of 20.5% reduction in the miss segmentation rate. 

Especially, the proposed algorithm can effectively identify the image regions that are 

affected by the adverse lighting condition and correctly segment the distorted colors 

under such lighting conditions.  

 The proposed ODE/PDE-based shape detection algorithm is immune to 

discontinuous sign boundaries in cluttered backgrounds.  

Experimental tests show that the proposed algorithm can effectively and efficiently 

identify traffic sign shapes with discontinuous boundaries using the data collected on 

37
th

 Street in Savannah, Georgia. A comparison of results from the existing shape 

detection algorithm (Tsai et al., 2009) and the proposed algorithm shows an 18.1% 

false negative rate reduction. In addition, the performance of two different region-

based ODE/PDE formulations (i.e. an unconstraint active contour model (Ai & Tsai, 

2011) and the proposed active polygon model) is compared using the data collected 

by the Louisiana Department of Transportation and Development (LaDOTD) and the 

city of Nashville. The proposed active polygon algorithm demonstrates better 
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performance with a 7.7% false negative rate reduction and, approximately, a 50% 

processing time reduction.  

 The proposed enhanced traffic sign detection methodology can improve 

performance by significantly reducing the false negative rate without excessively 

increasing the false positive rate. More importantly, the enhanced methodology 

still performs consistently well under different lighting conditions and with 

discontinuous sign boundaries in cluttered backgrounds.  

Comprehensive field tests were conducted using the selected five datasets, including 

an I-95 Interstate route, two state routes (SR-541 and SR-67) and two local routes 

(Cane Ridge Road and 37
th

 Street). The five datasets also cover different data 

collection sources and different image qualities. The results show that the proposed 

enhanced methodology provides an overall improved performance of 15.0% in false 

negative rate and 14.6% in false positive rate over the existing system, which has a 

27.2% false negative rate and a 12.9% false positive rate. It demonstrates a significant 

reduction of the false negative rate by 12.1%, while having only a slight increase in 

the false positive rate by 1.7%. Under the challenging lighting conditions and 

cluttered background conditions, the enhanced methodology can still successfully 

detect 85.7% and 72.0% of the traffic signs, respectively.  

For the new mobile traffic sign retroreflectivity condition assessment methodology, the 

following are noted: 

 LiDAR beam distance and incidence angle can significantly impact the 

magnitude of LiDAR retro-intensity values, while the variability of consecutive 

scans and ambient lighting has minimum impact on the magnitude of LiDAR 

retro-intensity values.   

Both theoretical models and empirical simulated tests show that the magnitude of the 

LiDAR retro-intensity is dependent on the beam distance and incidence angle of the 
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LiDAR beam. The difference between the raw LiDAR retro-intensity and the 

normalized LiDAR retro-intensity can be as high as 19.9 mcd/m
2
/lux, which will 

significantly affect the final assessment results. The developed retro-intensity 

normalization scheme is essential to depict such a difference. The lab tests also show 

that the variability of consecutive scans and ambient lighting has an ignorable impact 

on the magnitude of LIDAR retro-intensity. The variation between consecutive scans 

is less than ±0.1 mcd/m
2
/lux, while the difference among different ambient lighting 

conditions is within ±0.08 mcd/m
2
/lux.  

 The proposed image-LiDAR registration method can accurately associate the 

traffic sign detection result and color information with the corresponding 

LiDAR points. 

Experimental test results show that the proposed image-LiDAR registration method 

can accurately associate the sign detection result and color information with the 

LiDAR point cloud. The absolute distance between the actual traffic sign detection 

location in image and projected location using the registration method is less than two 

pixels (i.e. equivalent to less than ½ inch on traffic sign surface). The accurate 

registration result ensures that different colors of the same traffic sign can be 

automatically assessed separately using the proposed methodology. 

 The proposed mobile traffic sign retroreflectivity condition assessment 

methodology can reliably identify the traffic signs with a poor retroreflectivity 

condition.  

The preliminary tests were conducted on 35 Type 1 engineer grade stops signs with 

different in-service lives and retroreflectivity conditions. The red color and the white 

color of the signs were measured separately. The measurements from the proposed 

methodology have average differences of 2.2 mcd/m
2
/lux and 3.3 mcd/m

2
/lux for the 

red and white sheeting, respectively. Out of the 35 signs, 26 failed due to red sheeting 

failure, while 25 out of the 35 signs failed due to white sheeting failure. The results 
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show that 23 out of the 26 signs for red sheeting failure and 25 out of the 25 signs for 

white sheeting failure were correctly identified. There were only three false negative 

cases and two false positive cases identified from the tests. Further investigation 

reveals that most of the false negative and false positive cases are due to the bias of 

the ground truth measurement using handheld retroreflectometer. The proposed 

methodology provides more reliable and unbiased condition assessment results than 

the current handheld retroreflectometer measurement methodology. 

6.3. Recommendations for Future Work 

For the enhanced traffic sign detection methodology,  

 A fuzzy logic-based color segmentation algorithm is recommended to further remove 

the false negative cases produced by severe casting shadows; 

 A relaxed GHT is recommended to further remove the false negative cases produced 

by occlusions. In addition, a set of more restricted sign candidate verification criteria 

is recommended consequently to remove additional false positive cases that might be 

introduced by the relaxed GHT;  

 Several specialized traffic sign recognition algorithms are recommended to further 

remove the false negative cases produced by the small no-parking signs and the 

object marker signs. These algorithms can be attached in parallel to the proposed 

methodology without interfering with the current algorithms; 

 A traffic sign feature-based confidence scoring scheme is recommended to 

systematically determine the quality of each detected candidates. Therefore, false 

positive cases can be systematically reduced by determining an adequate confidence 

level; 

 The developed algorithms for color segmentation and shape detection should be 

further extended to traffic sign classification by accurately identifying the traffic sign 

shape and color and associating with new pictogram/character recognition algorithms.  
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For the new mobile traffic sign retroreflectivity condition assessment methodology,  

 Additional field experimental test is recommended using more Type 1 engineer grade 

stop signs to further validate the performance of the proposed methodology;  

 Comprehensive lab and field experimental tests are recommended to thoroughly study 

the fundamental characteristics of mobile LiDAR retro-intensity in response to 

different traffic sign reflective sheeting types by improving the current LiDAR retro-

intensity normalization model, constructing additional correlation between the 

normalized retro-intensity values and the corresponding retroreflectivity values, and 

identifying additional factors that might impact the accuracy of the proposed 

methodology;  

 The proposed traffic sign retroreflectivity condition assessment methodology is 

recommended to be further extended to assess other traffic sign conditions, e.g. traffic 

sign color deterioration, traffic sign sheeting cracking, etc.  
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APPENDIX  

CRITICAL ASSESSMENT OF THE EXISTING TRAFFIC SIGN 

DETECTION ALGORITHM 

This appendix presents the validation test designed to critically assess the 

performance of the existing sign detection algorithm at an image level. The objectives of 

the validation test is to critically evaluate the causes of false negative (FN) at an image 

level, to group the FN cases in a way that can be related to algorithm refinement, to 

reveal the FN categorization and their statistics (frequency) for refinement prioritization, 

and to study the FN category distribution among different road types for assisting in 

developing the strategy for refining the sign detection algorithm for practical 

implementation on different roadways. 

The Louisiana Department of Transportation and Development (LaDOTD) 

collected 37,640 images on three different road types (including interstate, non-interstate 

rural and non-interstate urban), which were used to evaluate the performance of the 

generalized sign detection algorithm. The images were taken at an interval of 0.002 mi 

(approx. 10 ft. or 3 m). Each image has a resolution of 1,300 x 1,030 pixels and in JPEG 

format. The tested roadways are located in Jefferson Parish, Louisiana, and cover a 

portion of New Orleans. Although site-based sign detection produced promising results in 

the previous paper (Tsai et al., 2009), image-based assessment has not been conducted to 

critically evaluate the performance of the generalized sign detection algorithm. It is 

crucial to conduct such a detailed test so the technical challenges can be revealed that will 

provide a direction for the future algorithm refinement.  

Four statistical indicators, including true positive (TP), true negative (TN), false 

positive (FP), and FN, are often used to evaluate the performance of the developed sign 

detection algorithms. TP means a correct detection/determination of the existence of an 
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object. TN means the correct detection/determination of the non-existence of an object. 

FP means an incorrect detection/determination of the non-existence of an object (i.e. 

there is no sign but the algorithm declares there is a sign). FN means an incorrect 

detection of the existence of an object (i.e. missing sign detection). FN is an important 

indicator that can quantitatively evaluate the performance of a sign detection algorithm 

based on its missing-sign detection rate.  

In addition, to evaluate the performance of the generalized sign asset detection 

algorithm, we can compute the four statistical indicators described above based on either 

a site-based validation or an image-based validation. For a site-based validation, an FN 

means none of the images in a cluster are correctly detected as having a sign after 

evaluating a consecutive (cluster) set of images containing the same traffic sign. As long 

as one of the images in a consecutive image cluster of containing the same sign correctly 

detects the sign, we can correctly detect the sign; we consider it to be a correct detection 

when we can correctly inventory this sign in the inventory. For an image-based 

validation, each image is evaluated independently. It is based on an image rather than a 

cluster. Therefore, image-based validation is a more rigid assessment of the generalized 

sign detection algorithm than site-based. However, this critical assessment is crucial for 

revealing the insight gained from technical challenges for refining the algorithm 

refinement.    

Figure A-1 shows how an FN image sample is generated to support the image-

based validation. First, 37,640 images covering three road types are processed using the 

generalized sign detection algorithm. Second, image-based validation is then conducted 

to generate four categories of images, including TP, TN, FP, and FN. Then, 1,192 FN 

images are used to analyze the causes of false negative detection. These causes are then 

carefully categorized based on the features used in the developed algorithm and lead to 

the potential recommendations for the system improvement from both data acquisition 

algorithm refinement perspectives.   
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Figure A-1 Flowchart of how an FN images sample is generated to support the image-based 

validation 

A.1. Categorization of the Identified False Negative Cases 

To develop a sign detection algorithm to successfully detect the more than 670 

types of signs specified in the MUTCD and in the real world environment with different 

lighting conditions and roadway characteristics is a technical challenge. There is a need 

to explore the insight of technical challenges that remain. There were 1,192 FN images 

containing 2,272 FN cases, which are critically assessed, and the causes of false negative 

detection are carefully identified. These causes are then categorized based on their 

characteristics related to the key features in the generalized sign detection algorithm so it 

can assist in defining the potential areas for algorithm refinement. The categorization is 

based on the fundamental features used in the algorithm, including the color and shape 

features of the traffic sign. It is likely that the FN cases are developed because the certain 

features in the traffic sign are not distinct enough from the background based on current 

mathematical representation of the traffic sign detection algorithm. Six categories of 

causes that lead to false negative detection are identified. They include the following:  
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 Variant lighting conditions: Two types of lighting issues are found in the FN cases. 

One is over-exposure and the other is under-exposure (especially in adverse lighting 

conditions). The over-exposure and under-exposure cases are the relatively low and 

high intensity values in the images. The over-exposure cases can be found in the 

whole image. The adverse lighting cases that can be found have low dynamic range in 

shadow areas (i.e. traffic sign area) but have normal global contrast (Safonov, et al., 

2006). The over-exposure cases are probably produced due to the camera 

malfunctioning or inappropriate camera iris configuration, while the adverse lighting 

cases are likely to happen when the data collection vehicle is driving towards the sun 

and the traffic sign is shaded in its own shadow. Figure A-2 shows the examples of 

overexposure and back lighting issues. 

                
       (a)                                                              (b) 

Figure A-2 Samples of FN cases due to lighting issues 

a) over-exposure; b) adverse lighting 

 

 Cluttered background shapes: Cluttered background shapes refer to the background 

objects that might impact the edge detection and polygon approximation in the 

algorithm. The cluttered background shapes are usually utility cables, building 

boundaries, and tree branches. These background shapes can produce additional 

interfering edges, which can, potentially, impact the polygon approximation of a 

traffic sign's region. Figure A-3 shows an example of a cluttered background shape 

FN case. 
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Figure A-3 Sample of FN cases due to the cluttered background shape 

 

 Similar background and foreground color: Similar background and foreground color 

refers to the chromatic similarity between the traffic sign and its background. The 

color similarity can be visually assessed based on the perception of the traffic sign 

and its background. The Euclidean distance between the average intensity of the 

traffic sign area and the average intensity of the traffic sign background area is 

computed to assist the reviewer assesses this type of FN cases (Grest et al., 2003). 

The common cases are the street name and roadside information signs with green, 

which are similar to the background green color of tree branches. Some of the 

information signs with blue are also identified when the image contrast is low. Figure 

A-4 shows an example of similar background and foreground FN case. 

           
  (a)                                                                         (b) 

Figure A-4 Samples of FN cases due to similar background and foreground color 

a) green color; b) blue color 
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 Occlusion: Occlusion refers to the traffic sign in the video log images that are 

partially occluded by other objects, such as tree branches, passing vehicles, etc. The 

occlusion could produce interfering edges in the image and impact the performance of 

polygon approximation in the algorithm. This case is often identified in urban areas 

where the roadside vegetation and utilities are closer to the road. Figure A-5 shows an 

example of an occlusion FN case. 

          
(a)                                                                     (b) 

Figure A-5 Samples of FN cases due to occlusion 

a) by branches; b) by utility pole 

 

 Small traffic signs: Small traffic signs refer to the pixel size of a traffic sign in which 

the image is too small for the algorithm to detect. In the process of ground truth 

establishment, the smallest traffic sign pixel size is 20 by 20. However, in the 

automatic traffic sign detection algorithm, the small traffic signs extracted in the 

ground truth might be too small to be identified using the algorithm. The minimum 

pixel size of 900 (30 x 30) is introduced to help the reviewer to determine this type of 

FN cases. The common cases are the small no parking signs, milepost, and street 

name signs on the roadsides. Figure A-6 shows an example of small traffic sign FN 

case. 
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(a)                                                                     (b) 

Figure A-6 Samples of FN cases due to small traffic signs 

a) no parking sign; b) milepost and street name signs 

 

 OM Sign: Different from other traffic signs having a close vertex shape boundary to 

bound the entire sign (refine it), the OM signs, including OM1-3, OM2-2H and OM2-

2V, consist  of alternating yellow and black stripes, which  cannot formulate a defined 

boundary. The pattern of this type of sign provides some challenges to the current 

algorithm because the algorithm must identify the boundary of a sign to approximate 

the sign. Figure A-7 shows an example of an OM sign FN case. 

 
Figure A-7 Sample of FN cases due to the OM signs 

There are 2,272 FN cases that are manually reviewed and categorized based on 

the six categorizes of causes identified above. Based on statistical analysis, Figure A-8 

shows the frequency of the six different categories. The categorization here is not 

exclusive, which means different causes could be applied for a single image. Therefore, 

one FN image could have more than one FN case. Based on the statistical analysis, 
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among the six categorizes, the traffic signs having lighting issues, interfering shapes, and 

similar background and foreground colors occur the most often. Based on frequency, they 

could be in a higher priority for algorithm refinement. The areas for the potential 

algorithm refinement are discussed below to provide researchers future research direction 

for developing refined sign detection algorithms.  

 
Figure A-8 FN cases distribution from 2,272 FN cases out of 1,192 FN images 

A-2. Findings of Areas for Potential Traffic Sign Detection Algorithm 

Refinement 

The potential areas for future algorithm refinement on each category of the FN 

causes are discussed and recommended below:  

 Variant lighting conditions: There are 786 FN cases that are identified with lighting 

issues, including 565 cases with overexposure issues and 221 cases with back lighting 

issues. The overexposure issues, it is likely, are caused by the camera malfunctioning, 

which corrupted the image. To improve this type of FN case, it is recommended that 

quality control of the collected video log images to filter out the images with camera 

malfunctioning be done first; then, the automatic traffic sign detection algorithm 

Lighting, 38% 
Too Small  7% 

Similar Color, 
23% 

Cluttered 
Background 

26% Occlusion, 3% 

OM Sign  3% 

FN Cases Identified in the Assessment 
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should be applied (Tsai & Huang, 2010). Varying lighting conditions are identified as 

the most frequent reason for FN cases in this study. They result from cameras 

collecting data from high or low intensity backgrounds, such as the sun or dark sky 

respectively. Adjusting the data collection time of a day, the camera angles, etc. 

should be considered to eliminate or minimize such problems. Adverse lighting issues 

indicate a low dynamic range in dark areas (i.e. traffic sign area), so they can be 

identified by determining the low dynamic range in the dark area and applying 

different color segmentation models.  

 Cluttered background shapes: There are 535 FN cases that are identified as cluttered 

background shapes, such as utility cables, building boundaries, and tree branches. 

These objects produce interfering edges in the polygon detection process. In addition, 

these cluttered backgrounds will produce discontinuous boundaries after the color 

segmentation. Therefore, it is technically challenging to use the current image 

processing method for identifying a set optimized polygon detection parameters that 

fit all of the collected video log images, including the Canny for edge extraction and 

the Douglas-Peucker for polygon approximation. However, instead of considering the 

individual elements of traffic signs (e.g. edges, corners, etc.), taking each traffic sign 

shape as a whole pattern could, potentially, reduce the impact of cluttered background 

shapes so as to minimize such FN cases.  

 Similar background and foreground color: There are 491 FN cases that are identified 

as having similar background and foreground colors. Among the 491 FN cases, about 

90% of the images contain green or blue and share similar colors with background 

vegetation. By further exploring the color segmentation step in the current algorithm, 

it is noticed that the statistical color model (SCM) developed by Tsai, et al. (2009) in 

the step is established with 413,724 distinct pixels color-tagged with 10 MUTCD 

colors. However, out of 413,724 distinct pixels, only 1% and 2% of the values are 

depicted from green and blue colors, respectively. The lack of green and blue samples 
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is the major reason to produce this type of FN cases. It is recommended that 

additional green and blue pixel samples be added to the current SCM.  

 Occlusion: There are 55 FN cases that are identified as occlusion issues. These FN 

cases are produced due to partial blockage of the traffic sign by branches and leaves, 

utility obstacles (due to the tilt of the sign), etc. In the processing of these images 

using the algorithm, the traffic sign boundaries are broken due to the occlusion. There 

are two types of occlusions identified in the assessment, including the temporary 

occlusion and the permanent occlusion. The temporary occlusion is caused by such 

things as waving tree branches or passing vehicles. For such issues as t analyzing a 

consecutive cluster of the images using a single camera stereo vision and object 

tracking method is recommended (Wang et al., 2010) to recover the occluded traffic 

sign. Permanent occlusion indicates that a traffic sign is partially occluded in all the 

frames containing this traffic sign. For this type, the stereo vision and tracking 

methods will no longer work. Considering in the current video log image collection 

process, each image is geo-referenced with the GPS receiver, retrieving the 

information from the previous data collection cycle based on the geo-reference to 

identify the traffic sign change and recover the traffic sign is recommended to 

minimize the impact of the occlusion issues (Tsai et al., 2010). 

 Small traffic signs: There are 150 FN cases that are identified as small traffic signs. 

These FN cases are produced because either this traffic sign is physically small, such 

as no-parking sign, milepost, etc., or the traffic signs in the image has been captured 

from a relatively long distance, which makes the traffic sign captured in the image a 

small pixel size. From the data acquisition perspective, increasing the camera 

resolution could provide more pixel size for these small traffic signs, which could 

help the algorithm identify them. Consequently, the processing time increases for 

each image because of the high resolution. In addition, using a LiDAR system is 

recommended to use the unique characteristics of the high retroreflectivity of the 
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small traffic sign. The high retroreflectivity readings from the small sign's area can be 

used to locate the small traffic signs and differentiate them from other objects. 

Currently, the algorithm is using both the Canny edge detection and multi-level 

threshold to extract contours. There are many contours are spatially overlapped. 

Within overlapped polygons, if they form a traffic sign candidate, only the most 

external contours within the nested groups of contour are used as traffic sign 

candidates. Therefore, for the small traffic signs, there is a chance that the contours of 

the small traffic signs are ignored if there is a bigger external contour. Releasing this 

contour selection criterion to maintain all the extracted contours is recommended. 

Consequently, there will be more traffic sign regions of interest (ROI) produced, and 

a further enhancement in ROI validation algorithm is still needed.  

 OM Signs: There are 255 FN cases are identified. Due to the unique pattern of this 

type of sign, the current system is challenged to fully identify the traffic sign region 

using shape feature because, unlike other traffic signs, OM signs do not have a 

boundary for the algorithm to extract the shape. From a data acquisition perspective, 

the LiDAR system could also be introduced to minimize the impact of this FN case. 

Instead of using the depth information to differentiate the foreground and background 

object, the received retroreflectivity readings from the LiDAR system could be used 

to locate this type of traffic sign. A subsequent algorithm to extract and validate the 

region with high retroreflectivity still needs to be developed. From the algorithm 

refinement perspective, by further testing the OM sign using polygon detection 

algorithm, it is noticed that instead of identifying the OM sign as a whole polygon, 

the black and yellow stripes on the sign are always individually identified as multiple 

polygons side by side. These polygons are further removed by the post validation 

shown in Chapter 3. Introducing an enhanced post validation criterion to avoid 

eliminating these side-by-side polygons from the OM sign is recommended. Instead, 

a polygon merging algorithm could be developed to reconstruct the multiple side-by-



 126 

side polygons into a single polygon. Therefore, this kind of FN case could be 

minimized.   

This sub-section discussed and recommended the potential areas for minimizing 

false negatives. Among the six categories, variant lighting conditions and cluttered 

background shapes are the most frequent reasons for the FN cases (almost 64% of the FN 

cases). It should be the high priority for improvement. Again, it is hoped that the findings 

discussed above will reveal the technical challenges and provide researchers/direction for 

improvement that can lead to the successful implementation of an intelligent sign 

inventory system.  
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