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Summary

Characterization of dispersion curves in plate-like structures is possible with guided

Lamb waves. In this research, experimental development of dispersion curves re-

lies on the spectrogram, which suffers from the Heisenberg Uncertainty Principle.

Reassignment is capable of localizing ill–defined dispersion curves. Unfortunately,

reassignment also introduces spurious components, which reduce reassignment per-

formance. This research develops an algorithm that provides both localization of

dispersion curves and elimination of spurious components. To achieve this, an al-

ternative formulation of reassignment called differential reassignment is modified and

superimposed with nonlinear anisotropic diffusion. This study first examines reassign-

ment and diffusion components individually. Three different versions of differential

reassignment are considered, two of which are modifications explicitly derived in this

research. The combined algorithm is then applied to reassign experimentally mea-

sured spectrograms, leading to a significant increase in clarity and notch detection

performance.

xiv



CHAPTER 1

Introduction

Defects in plate-like structures such as aircraft skins can be located and sized

using guided Lamb waves.

Previous research conducted by Hurlebaus et al. [14] and Benz [5, 13] has shown

that a combination of laser based ultrasound, with a time frequency representation

(TFR), is effective in locating notched defects plates. In this procedure, notch de-

tection relies on a TFR’s ability to resolve the individual modes of a plate, and to

localize the generated dispersion curves. The TFR Benz selected was the reassigned

spectrogram because previous research by Niethammer [20, 23] indicated that for this

specific purpose, the reassigned spectrogram is superior to other TFR’s, including the

reassigned scalogram, the Wigner-Ville distribution, and Hilbert spectrum.

Unfortunately, the spectrogram suffers from the Heisenberg uncertainty princi-

ple, making it impossible to simultaneously have perfect resolution in both time and

frequency. In an effort to enhance the spectrogram’s readability, reassignment can

reduce the time frequency spread, thus better localize ill-defined dispersion curves.

The reassignment method was developed by Auger and Flandrin [4], who found a

computationally effective way to calculate the modified moving window method de-

veloped by Kodera et al. [10]. Although reassignment localizes dispersion curves, it

does introduce spurious components. A few years later, Chassande–Mottin et al. [3]

published an alternative formulation of the reassignment method, called differential

reassignment. While the “conventional” reassignment method works on the time-

domain signal, differential reassignment can be viewed as image processing, based on

a partial differential equation (PDE).

Any spurious components introduced by the reassignment method will reduce

the clarity of a reassigned spectrogram. Notch detection relies on the reassigned

1



spectrogram, so detection quality increases with reassignment quality. The objective

of this research is to improve the performance of spectrogram reassignment. This

study develops an algorithm that provides both localization of dispersion curves and

elimination of spurious components.

First, both differential reassignment and anisotropic diffusion are treated individ-

ually. Three different versions of differential reassignment are examined. The first

one follows the defining equations of differential reassignment to move energy towards

maxima of a scalar potential function. The second version uses alternative trajecto-

ries and velocities to move energy in a different fashion towards the same maxima.

The third version uses the same trajectories as predicted by reassignment equations,

but introduces a design parameter to favorably vary travel velocity along these tra-

jectories. It is this third version that proves to be most effective, so it is combined

with anisotropic diffusion to yield the final algorithm. A PDE is presented which

fully describes image evolution caused by energy movement.

The final, combined algorithm is applied to experimentally measured spectro-

grams, which are then used for notch localization.

2



CHAPTER 2

Theoretical background

This chapter provides a brief introduction to wave propagation in elastic solids and

to the signal and image processing methods used in this study. There are a number of

authoritative and comprehensive books on wave propagation theory and the author

recommends interested readers looking at [1, 11, 12, 24] for deeper coverage. For more

information on signal processing, the reader is referred to Niethammer [20] and [23]

providing a variety of signal processing methods that have the potential to assist in the

interpretation of ultrasonic waveforms; for more mathematical details and derivations

see for example [9, 18, 19]. For details on reassignment methods, consider [2, 3, 4, 6].

To learn more about diffusion algorithms, refer for example to [22, 25]. Note that a

complete coverage of these subjects is beyond the scope of this thesis, but this chapter

provides a basic review.

2.1 Wave propagation

In order to provide the reader with an at least rudimentary understanding of the

materia, wave propagation in elastic solids is briefly outlined in this section. This

will allow for interpretation of the information content carried by the spectrograms

used in Chapter 4. The following subsections are not essential for an understanding

of the algorithm derived in Chapter 3. However, this knowledge enables the reader

to appreciate the significance of the achieved reassignment improvement.

2.1.1 Linear elasticity and equation of motion

In linear elasticity, the traction ti on a plane nixi = d is given by

ti = σijnj, (2.1)

3



where σji is the stress tensor.

The balance of linear momentum for a body with volume V and surface S can be

expressed as
∫

S

σlknkdS +

∫

V

ρfldV =

∫

V

ρüldV, (2.2)

with ρ representing the material mass density and fi the body force. Gauss’ theorem

applied to Equation 2.2 leads to

∫

V

(σlk,k + ρfl − ρül)dV = 0. (2.3)

Equation 2.3 has to be fulfilled for any arbitrary volume V of the body, and therefore

the stress equations of motion becomes

σlk,k + ρfl = ρül. (2.4)

It is often more efficient to have the equations of motion given solely in terms of

the displacement, ui (as opposed to Equation 2.4, which has terms of stress σij and

displacement ui). This can be achieved by applying to Equation 2.4 Hooke’s law for

homogeneous, isotropic and linear elastic medium

σij = λεkkδij + 2µεij, (2.5)

where εij is the strain tensor, related to the displacement ui by

εij =
1

2
(ui,j + uj,i), (2.6)

and µ and λ are the Lamé constants. Plugging Equation 2.6 into Equation 2.5 and

subsequently into Equation 2.4 leads to Navier’s equations of motion

µui,jj + (λ + µ)uj,ji = ρüi (2.7)

µ∇2u + (λ + µ)∇∇ · u = ρü. (2.8)

Note that in this development, body forces f are neglected. Solving Equation 2.8,

however, is difficult, because it is a coupled partial differential equation (PDE). Ap-

plying to Equation 2.8 the Helmholtz decomposition

u = ∇ϕ + ∇× ψ, (2.9)

4



provides a convenient way to uncouple these equations. Equation 2.9 represents the

three components of displacement u with the four functions ϕ, ψ1, ψ2 and ψ3. To

guarantee the uniqueness of the solution, an additional constraint

∇ · ψ = 0 (2.10)

is introduced. Substitution of equation Equation 2.9 (Helmholtz decomposition) into

the displacement equations of motion (Equation 2.8) leads to two uncoupled wave

equations expressed in terms of the displacement potentials ϕ and ψ

∇2ϕ =
1

c2
L

ϕ̈, ∇2ψ =
1

c2
T

ψ̈, (2.11)

where (as will be shown later) cL represents the wave speed of the longitudinal wave

and cT the wave speed of the vertically and horizontally polarized (transverse) shear

waves,

c2
L =

λ + 2µ

ρ
, c2

T =
µ

ρ
. (2.12)

Both wave speed equations are expressed in terms of material properties, namely the

density ρ and the Lamé constants µ and λ. A relationship for the material properties

Young’s modulus E and Poisson’s ratio ν can be obtained through

λ =
Eν

(1 + ν)(1 − 2ν)
, (2.13)

µ =
E

2(1 + ν)
. (2.14)

2.1.2 Wave phenomena

Wave phenomena discussed in this section are based on the plane wave assumption,

i.e. assuming a wave with constant properties (ε, σ, u) on a plane perpendicular to

its direction of propagation p. Equation 2.15 shows the mathematical representation

of a plane wave,

u = f(x · p − ct)d, (2.15)

where d is the unit vector defining the direction of particle motion, and c is either

the longitudinal wave speed cL or the transverse wave speed cT . By substituting

Equation 2.15 into Equation 2.8, one obtains

(µ − ρc2)d + (λ + µ)(p · d)p = 0. (2.16)

5



Since p are two different unit vectors, it can immediately be seen that the two possible

solutions that form the basis of wave propagation are either d = ±p or p · d = 0:

• d = ±p leads to p · d = ±1 and yields with Equation 2.16, c = cL (see

Equation 2.12). Since d and p are linearly dependent, this represents a particle

movement in the direction of propagation — a longitudinal or P-wave.

• p · d = 0 yields with Equation 2.16, c = cT (see Equation 2.12). Now the

direction of motion is normal to the direction of propagation, and the wave is

called a transverse wave. If a two dimensional plane of propagation is considered

(for example, the (x1, x2)-plane), a wave with an in-plane displacement (in the

(x1, x2)-plane) is called an SV-wave (vertically polarized), while a wave with out-

of-plane displacement (in the x3-direction) is called an SH-wave (horizontally

polarized).

In a homogeneous, isotropic material, transverse and longitudinal wave speeds are

independent of frequency — they are nondispersive.

2.1.2.1 Reflections of P and SV-waves

The wave types derived so far propagate independently in an infinite media. As

soon as a finite media in the direction of propagation is considered, reflections and

coupling will occur. An incident P-wave (SV-wave), which is reflected at a stress free

boundary (σ22 = 0 and σ21 = 0) normally consists of both, a P-wave (SV-wave) and

a SV-wave (P-wave). Figure 2.1 shows the reflections of an incident P and SV-wave.

The effect of a single incident wave-type producing two different waves (after reflection

from a boundary) is called mode conversion. The displacement field of a harmonic

wave in the (x1, x2)-plane (propagating in infinite media, plane-strain case) can be

expressed as

u(n) = And
(n)eikn(x1p

(n)
1 +x2p

(n)
2 −cnt), (2.17)

where n denotes the wave (longitudinal or transverse), kn = ω
cn

is called the wavenum-

ber of wave n and the respective wave speeds are cn. Using these definitions, and

noting that the angular frequency ω is equal for the incident and reflected waves, it

6



PP
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x1
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θ0

θ1

θ2

(a) Reflection of a P-wave

P

SV SV

x1

x2

θ0

θ1

θ2

(b) Reflection of a SV-wave

Figure 2.1: Wave reflections.

is possible to determine the relationship between the angle of the incident and the

angles of the reflected waves (see Table 2.1).

Table 2.1: Angle relations for reflection on a stressfree surface

incident θ0 reflected P θ1 reflected SV θ2

P θ1 = θ0 sin θ2 = (cT/cL) sin θ0

SV sin θ1 = (cL/cT) sin θ0 θ2 = θ0

Exceptions of mode conversion are the normal incidence with θ0 = 0 — in this case,

the waves are reflected as themselves, and if the angle θ0 is greater than a critical

angle,

θcr = arcsin
cT

cL

; (2.18)

then only a SV-wave is reflected. The P-wave portion of the reflected signal degen-

erates into a surface wave, travelling along the surface and decreasing in amplitude

with increasing depth.

2.1.2.2 Guided waves

Guided waves are waves that travel in a body (waveguide) with at least one finite

and one infinite dimension. So far only single reflections have been considered, but in

a wave guide multiple reflections at the surface (as shown in Figure 2.2) are possible.

7



As a result of mode conversion at the upper and lower boundaries, many propagating

waves are reflected back and forth, resulting in an interference pattern across the body

thickness that guides the waves in a certain direction. To investigate wave motion in

x1

x2

2h
PP SVSV

Figure 2.2: Waveguide.

an elastic wave guide, potentials in the form

ϕ = Φ(x2)e
i(kx1−ωt), ψ3 = Ψ(x2)e

i(kx1−ωt), (2.19)

are assumed. The direction of propagation p is in the x1-direction. Assuming plane

strain and stress-free boundaries at x2 = ±h, one can obtain the Rayleigh-Lamb

frequency equations (see Achenbach [1] for more details)

tan(qh)

tan(ph)
= − 4k2pq

(q2 − k2)2
(2.20)

tan(qh)

tan(ph)
= −(q2 − k2)2

4k2pq
, (2.21)

where

p2 =
ω2

c2
L

− k2, q2 =
ω2

c2
T

− k2, (2.22)

and 2h is the plate thickness. Equation 2.20 represents the symmetric Lamb modes,

while Equation 2.21 provides the antisymmetric Lamb modes. (Anti)symmetric is

understood to be that the displacement is (anti)symmetric to the x1-axis and a Lamb

mode is an amplitude distribution over the plate thickness that oscillates with the

angular frequency ω and travels with the corresponding phase velocity c = ω
k

obtained

from an (ω, k) solution pair of the Rayleigh-Lamb spectrum (Equations 2.20 and

2.21). Note that Lamb waves are dispersive, i.e. the propagation velocity of a Lamb

mode is dependent on its oscillation frequency. The Rayleigh-Lamb equations can

only be solved numerically and Figure 2.3 shows a solution (dispersion curves) of the

8



Rayleigh-Lamb spectrum in the slowness-frequency domain. The symmetric Lamb

modes are named s0, s1, . . . and the antisymmetric a0, a1, . . . starting with the mode

that has the lowest angular frequency ω for a given k. The dispersion curves are

100
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0
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Figure 2.3: Theoretical solution in slowness-frequency domain (dispersion curves).

obtained by finding first a numerical solution in the (ω, k)-domain or (f, k)-domain

respectively and then differentiating f numerically (partially with respect to k) for

each of the different modes to attain the group velocity

cg(f) =
2π∂f

∂k
. (2.23)

Group velocity as defined in Equation 2.23 describes the velocity of propagating

energy and has therefore a physical meaning. In contrast, points of constant phase

propagate with the phase velocity c = ω
k
. However, for nondispersive media, group

and phase velocity are equal.

The energy slowness sle can then be obtained by the relationship

sle(f) =
1

cg(f)
. (2.24)

9



The expected arrival time for a specific mode at frequency f is found by

t(f) =
sle(f)

d
; (2.25)

where d is the propagation distance source-receiver.

2.2 Signal Processing

What are the advantages of applying signal processing techniques to transient

signals? It is certainly true that signal processing creates no new information — all

the information is inherent in the transient signal itself. However, signal processing

can provide a different view of the same information, often enabling a more accurate

(and robust) interpretation.

In 1807, Fourier presented his work on the propagation of heat that included the

idea that any continuous or discontinuous function of a variable can be expressed

as the sum of trigonometric functions — today called the Fourier series. These re-

sults have proven to be extremely valuable, as will be demonstrated in the following

sections.

2.2.1 Fourier series

The Fourier series of a T-periodic function s(t) is

Ss(t) =
∞

∑

k=−∞

cke
ikωt (2.26)

with the coefficients ck computed by

ck =
1

T

T
∫

0

s(t)e−ikωtdt (2.27)

where ω = 2π
T

is called the fundamental frequency.

While Equation 2.27 is used to break down the original signal s(t) into its spectral

components; i.e. into components of different frequencies ωk = kω, k ∈ Z, Equa-

tion 2.26 combines the different spectral components into an infinite series that rep-

resents the original signal. Clearly, the resulting Fourier series Ss(t) is also T-periodic
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and composed of sines and cosines with frequency ω and their harmonics1.

For computer implementation, the discretized version of the Fourier series (DFS)

s̃[n] =
1

N

N−1
∑

k=0

S̃[k]e
−i2πkn

N (2.28)

can be derived [21], where

S̃[k] =
N−1
∑

n=0

s̃[n]e
i2πkn

N (2.29)

are the coefficients of the DFS and N is the sequence length. Note that in the discrete

case, it is sufficient to have at most N different frequency components to completely

synthesize the original sequence s[n] by the DFS Synthesis Equation 2.28; this is in

contrast to an infinite number required in the continuous case.

Since the DFS is not “aware” of the sampling frequency of the sequence s[n], the

index k for S̃[k] has to be converted from the normalized frequency f = k
N

∈ [0, 1] to

the real frequency f . The corresponding frequency for a given S̃[k] is

f =
k

N
fs (2.30)

with fs being the sampling frequency of the sequence s[n]. One should keep in mind

that whenever continuous signals are discretized, frequencies with f ≤ fs

2
= fN , where

fN is the Nyquist frequency, can only be unambiguously identified if the signal itself

is limited to a frequency band below the Nyquist frequency. Otherwise aliasing can

occur for higher frequencies; i.e. it is possible that a higher frequency appears as a

lower frequency in the sampled domain, thus creating spurious information.

As previously stated, the Fourier series applies only to periodic functions. But

what happens if the function s(t) is not periodic? The Fourier transform brings relief.

2.2.2 Fourier transform

In contrast to the periodic Fourier series, the Fourier transform represents the

limiting case of the series for T → ∞. It allows for the representation of an aperiodic

function s(t) by the Fourier integral

s(t) =
1

2π

∞
∫

−∞

eiωtS(ω)dω, (2.31)

1since e
it = cos t + isin t

11



where the coefficients S(ω) are defined as

S(ω) =

∞
∫

−∞

e−iωts(t)dt (2.32)

and S(ω) is called the Fourier transform of s(t). While the Fourier series represents a

signal in terms of a fundamental angular frequency ω0 and its harmonics, the Fourier

transform uses a continuous angular frequency variable ω, which is related to the

frequency f by

ω = 2πf. (2.33)

As for the Fourier series, there also exists a Fourier transform that operates on

sequences. The corresponding equations are

s[n] =

2π
∫

0

S(ω)eiωndω (2.34)

for synthesis and

S(ω) =
1

2π

∞
∑

n=−∞

s[n]e−iωn (2.35)

for analysis.

The Fourier transform S(w) of an input sequence s[n] is thus a continuous function.

It can be shown [21] that the DFS coefficients S̃[k] of the sequence s̃[n] are samples

of the Fourier transform of s[n]. From this point of view, the discrete Fourier series

is also called the discrete Fourier transform (DFT).

The frequency for a given S(ω) is calculated by Equation 2.33. If the signal length

is a power of 2, the calculation time of the DFT can be lowered significantly by the fast

Fourier transform algorithm proposed by Cooley and Tukey (see for example [21]).

Since the Fourier transform and the DFT are usually complex valued (where |S(ω)|,
|S̃[k]| are the magnitudes and atan

(

=(S(ω))
<(S(ω))

)

, atan
(

=(S̃[k])

<(S̃[k])

)

the phase angles for a

frequency), they are frequently presented (visualized) by the energy density spectrum

which represents the energy distribution in the frequency domain and is calculated

by

Ed = |S(ω)|2. (2.36)
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Its discrete counterpart is

Ẽd[k] =
1

N
S̃[k]S̃[k], (2.37)

where S̃[k] is the conjugate complex of S̃[k].

2.2.3 Time frequency representations (TFRs)

Unfortunately, a transient (time domain) signal, together with its Fourier trans-

formed spectrum, still does not provide enough information for applications that

require an understanding of how a signal’s frequency changes as a function of time.

Note that Fourier methods are limited to stationary signals – signals that have the

same frequency content for all times. In contrast, nonstationary signals require signal

processing methods that can quantitatively resolve changes in frequency content, as

a function of time. To remedy this deficiency, an amazingly large number of TFRs

have been developed that are capable of analyzing nonstationary signals. Many of

these TFRs are subsumed in the general framework of Cohen’s class [8, 7]. The

spectrogram, subject of this research, also belongs to this important class.

2.2.4 Short-time Fourier transform (STFT)

The STFT

Sstft(ω, t) =
1

2π

∞
∫

−∞

e−iωτs(τ)h(τ − t)dt, (2.38)

where h(t) is a window function, is based on the Fourier transform. Instead of con-

sidering a transform of the entire signal at once, the signal is chopped into a series of

small overlapping pieces, and each of these pieces is windowed and then individually

Fourier transformed. Its energy density spectrum

Ed(ω, t) = |Sstft(ω, t)|2 (2.39)

is called a spectrogram.

2.2.5 Heisenberg uncertainty principle

So far it seems as if TFRs can perfectly represent the time-frequency behavior of

a transient signal. In theory, it appears that one measurement is enough to develop
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a representation that can quantify changes in the frequency content of a signal as a

function of time. Unfortunately, TFRs like the spectrogram suffer from what is known

as the Heisenberg uncertainty2, meaning (in the case of signal processing) that it is

not possible to have a perfect resolution in time and frequency simultaneously.

Stating the uncertainty principle in equation form requires a set of preliminary

definitions. The square norm ‖s(t)‖ of a function s(t) is defined as

‖s(t)‖ =





∞
∫

−∞

|s(t)|2dt





1
2

. (2.40)

The normalized function sn(t) is then given by

sn(t) =
s(t)

‖s(t)‖ . (2.41)

Since the square norm of a normalized function is equal to one, the squared magnitude

is regarded as a probability density function enabling one to calculate the mean time

of a function s(t) by

E[t] =

∞
∫

−∞

t|sn(t)|2dt (2.42)

and the mean angular frequency by

E[ω] =

∞
∫

−∞

ω|Sn(ω)|2dω, (2.43)

where Sn(ω) is the normalized Fourier transform of the function s(t). The variances

for t and ω are then

σ2
t =

∞
∫

−∞

(t − E[t])2|sn(t)|2dt (2.44)

and

σ2
ω =

∞
∫

−∞

(ω − E[ω])2|Sn(ω)|2dω. (2.45)

The uncertainty principle limits the possible resolutions by the inequality

σ2
t σ

2
ω ≥ 1

4
. (2.46)

Therefore, the standard deviation in time and frequency cannot be varied indepen-

dently, but they are related to each other.

2In fact the term uncertainty is misleading. There is no element of chance or probability as far
as signal processing is concerned; instead it is a completely deterministic phenomenon.
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2.3 Image Processing

The distinction between signal and image processing techniques used in this re-

search is not well–defined. Since the conventional reassignment method uses specific

signal information to relocate time–frequency particles, it rather belongs to the class

of signal processing techniques. Differential reassignment is both, depending on the

point of view — it is an alternate formulation of the same reassignment signal pro-

cessing method, and thus could be categorized accordingly. On the other hand,

differential reassignment can be viewed as PDE-based processing of images. In this

research, differential reassignment is viewed as an image processing technique, since

it is not limited to images obtained from a time domain signal. In fact, all examples

in Chapter 3 will use arbitrary images to demonstrate differential reassignment.

2.3.1 Reassignment

The representation of a TFR (like the spectrogram) is unsatisfactory in certain

applications because a TFR cannot simultaneously have perfect resolution in both

time and frequency (due to the Heisenberg uncertainty principle).

It is possible to improve the time-frequency resolution of a spectrogram with an

algorithm that is referred to as reassignment. In the following sections, two formula-

tions of the reassignment method are presented.

2.3.1.1 Conventional Reassignment

The basic idea, called the modified moving window method, was first proposed by

Kodera et al. [10]. It remained somewhat unnoticed until an efficient computation

method called reassignment was developed by Auger and Flandrin [4].

In reassignment, values are moved away from their point of computation to their

center of gravity, thus localizing the diffuse information of the time–frequency repre-

sentation. The reassignment method is not restricted to a specific TFR, but it can

be applied to any time–frequency shift invariant distribution of Cohen’s class. This
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class of TFRs can be written according to [8, 4, 17] as

T (x, t, ω) =

∞
∫

−∞

∞
∫

−∞

φtf(u, Ω)WV (x, t − u, ω − Ω)du
dΩ

2π
, (2.47)

where

WV (x, t, ω) =

∞
∫

−∞

x(t +
τ

2
)x(t − τ

2
)e−iωτdτ (2.48)

is the Wigner–Ville distribution and φtf is called the kernel of the transformation. In

the case of the spectrogram, the kernel amounts to

φtf(u, Ω) = WV (h, u, Ω), (2.49)

where h(t) is a normalized window.

Equation 2.47 is thus a weighting of the Wigner–Ville distribution by the ker-

nel function φtf in a small neighborhood of (t, ω). The size of the neighborhood is

determined by the support of φtf .

The center of gravity for a specific point in the frequency–time domain is calculated

by

t̂(x, t, ω) = t −
∫∫

u · φtf(u, Ω)WV (x, t − u, ω − Ω)dudΩ
2π

∫∫

φtf(u, Ω)WV (x, t − u, ω − Ω)dudΩ
2π

(2.50)

and

ω̂(x, t, ω) = ω −
∫∫

Ω · φtf(u, Ω)WV (x, t − u, ω − Ω)dudΩ
2π

∫∫

φtf(u, Ω)WV (x, t − u, ω − Ω)dudΩ
2π

. (2.51)

Auger and Flandrin [4] show that the reassigned coordinates t̂ and ω̂ for the spectro-

gram can also be calculated by

t̂ = t −<
(

STFTT h(x, t, ω) · STFTh(x, t, ω)

|STFTh(x, t, ω)|2

)

(2.52)

and

ω̂ = ω −=
(

STFTDh(x, t, ω) · STFTh(x, t, ω)

|STFTh(x, t, ω)|2

)

(2.53)

for the STFT, where STFTh(x, t, ω) is the short time Fourier transform of the signal

x using a normalized window function h(t); STFTT h(x, t, ω) and STFTDh(x, t, ω)

are the short time Fourier transforms with t · h(t), dh(t)
dt

as their respective window

functions.
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The reassignment algorithm relocates each time-frequency point from the coor-

dinates (t, ω) to a new, reassigned position (t̂(t, ω), ω̂(t, ω)). This relocation can be

expressed by the displacement vector field

r(t, ω) =





t̂(t, ω) − t

ω̂(t, ω) − ω



 (2.54)

defined by Equations 2.52 and 2.53.

If several points of the spectrogram are moved to the same point in the reassigned

representation, their amplitudes are added up, thus conserving the energy. Calculat-

ing the reassignment of a spectrogram produces a much more distinct time-frequency

resolution when compared to a non-reassigned spectrogram.

2.3.1.2 Differential Reassignment

As discussed in the previous section, conventional reassignment relocates time-

frequency points away from their original (un-reassigned) location to their center of

gravity. This action can be expressed as a displacement vector field, see Equation 2.54.

Rather than using a displacement vector field, differential reassignment uses a velocity

vector field that describes the motion of time-frequency particles. This approach can

be viewed as PDE-based image processing of the spectrogram, and is based on a link

between the reassignment vector field, see Equation 2.54, and a scalar potential.

First, let the STFT be denoted by F (t, ω). Then, by using the complex variable

z = ω + it and its complex conjugate z∗, the STFT F (t, ω) can be rewritten as

Bargmann factorization

F (t, ω) = F(z, z∗)e
−|z|2

4 . (2.55)

Based on this factorization, Chassande-Motin et al. [3] deduce that

v(t, ω) = ∇ log |F | − 2





={∂z∗ logF}
<{∂z∗ logF}



 (2.56)

is the desired velocity field, holding over the set R
2 \ {(t, ω)|F (t, ω) = 0}. An inter-

pretation of this result is that given Equation 2.55, the Bargmann factorization of

the STFT, its reassignment vector field can be decomposed into two terms. The first
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term is the gradient of the scalar potential log |F |, and the second term is a measure

of the nonanalyticity of F .

The use of a Gaussian window of unit variance, whose isocontours are circles in a

Wigner representation, leads to the Cauchy equations ∂z∗F = 0, and thus to

v(t, ω) = ∇ log |F |. (2.57)

The reassignment vector field is then identical to the gradient of the scalar potential,

log |F |, for this case. As a result, the reassignment vectors will indicate the direction of

steepest ascend of the STFT modulus. Additionally for this case, the phase is entirely

determined by the modulus, and vice–versa. This means that the corresponding

spectrogram — defined as the squared modulus of the STFT — carries as much

information as the complex–valued STFT itself.

What happens if a window besides a Gaussian window of unit variance is used? In

the case of an arbitrary window, the reassignment vectors follow the steepest descent

direction of − log |F |, modified by

G(t, ω) = 2





={∂z∗logF}
<{∂z∗logF}



 . (2.58)

When a Gaussian window of arbitrary variance σ,

h(t) =
1

4
√

π
√

σ
e−

t2

2σ2 , (2.59)

is chosen, then the additional term (2.58) can be written analytically

G(t, ω) = −(σ − 1

σ
)r̃





t
σ

σω



 , (2.60)

where r̃ denotes the reassignment vector obtained with a unit variance Gaussian

window. Note that G(t, ω) vanishes when a Gaussian window of unit variance σ = 1

is used.

Because Equation 2.56 is a link between the reassignment vector field of Equa-

tion 2.54 and a scalar potential log |F |, it makes sense to look at the system which

is governed by this scalar potential. From this perspective, the reassignment vector

field is the velocity field that controls the motion of each time-frequency contribution

F (t, ω) considered as a particle, with (t, ω) as its starting (un-reassigned) position.
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Differential Reassignment is then defined by the motion equations

t(0) = t0

ω(0) = ω0

dt(s)

ds
= t̂(t(s), ω(s)) − t(s)

dω(s)

ds
= ω̂(t(s), ω(s)) − ω(s).

(2.61)

In the unit variance Gaussian case, each particle converges to some maximum of

log |F |, thus localizing diffuse information by forming peaks and ridges.

2.3.2 Diffusion

The two following subsections present the mathematical background of both iso-

tropic and anisotropic diffusion. As will be described in more detail, the anisotropic

diffusion preserves edges, while isotropic diffusion does not.

2.3.2.1 Linear isotropic diffusion

The isotropic diffusion equation is identical to the heat equation, thus representing

both the diffusion of mass and the flow of heat. In fact, an image subject to diffusion

can be viewed as a heat profile subject to heat flow. In the spectrogram case, this

heat profile is the energy density spectrum. Isotropic diffusion then follows the 2D

linear partial differential heat equation,

∂I(x, y, t)

∂t
=

∂2I(x, y, t)

∂x2
+

∂2I(x, y, t)

∂y2
. (2.62)

As the PDE is first order in time, only the initial temperature distribution and

boundary conditions have to be specified. In this research, the STFT modulus serves

as the initial distribution, while zero Neumann boundary conditions ensure that heat

is not diffused across image boundaries.

Since isotropic diffusion follows the heat equation, edges, which represent a sudden

change in profile, are diffused — this is an undesirable feature for this research. While

noise should be diffused, edges should be preserved, enabling the formation of sharp

ridges. This demand necessitates the consideration of anisotropic diffusion.
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2.3.2.2 Nonlinear anisotropic diffusion

Nonlinear anisotropic diffusion was introduced by Perona and Malik [22]. This dif-

fusion process encourages intraregion smoothing and inhibits interregion smoothing,

thus preserving edges. Mathematically, the 2D process is defined as

∂I(x, y, t)

∂t
= ∇ · [c(x, y, t) · ∇I(x, y, t)]. (2.63)

In this research, I(x, y, t) is the squared STFT modulus. The diffusion function

c(x, y, t) is a monotonically decreasing function of the image gradient magnitude

c(x, y, t) = f(|∇I(x, y, t)|). (2.64)

This allows for locally adaptive diffusion strengths: edges are selectively smoothed or

enhanced based on an evaluation of the diffusion function. Although any monotoni-

cally decreasing continuous function of ∇I would suffice as a diffusion function, the

two functions

c1(x, y, t) = e−(
|∇I(x,y,t)|

κ
)2 (2.65)

c2(x, y, t) =
1

1 + ( |∇I(x,y,t)|
κ

)1+α
, α > 0 (2.66)

have been proposed by [22] and are shown in Figure 2.4(a).

The parameter κ is referred to as the diffusion constant or the flow constant.

Obviously, the behavior of the diffusion process depends on κ. To clarify the effect of

κ, and the diffusion function, on the diffusion process, it is helpful to define the flow

function

Φ(x, y, t) = c(x, y, t) · ∇I(x, y, t). (2.67)

Equation (2.63) can then be rewritten as

∂I(x, y, t)

∂t
= ∇ · Φ(x, y, t). (2.68)

This formulation will also be useful for developing a discrete implementation of the

diffusion filter. The flow functions, Φ1 and Φ2, corresponding to the diffusion func-

tions, c1 and c2, are plotted in Figure 2.4(b).

Notice that flow increases with the gradient to the point where |∇I(x, y, t)| ' κ,

then decreases to zero. This behavior implies that the diffusion process maintains
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Figure 2.4: Diffusion and flow functions.

homogeneous regions, where |∇I(x, y, t)| ¿ κ, since little flow is generated. Similarly,

edges are preserved because the flow is small in regions where |∇I(x, y, t)| À κ.

The greatest flow is produced when the image gradient magnitude is close to the

value of κ — by choosing κ to correspond to gradient magnitudes produced by noise,

the diffusion process can be used to reduce noise in images. Assuming an image

contains no discontinuities, object edges can be enhanced by choosing a value of κ

slightly less than the gradient magnitude of the edges.
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CHAPTER 3

Derivation of the algorithm

One goal of this thesis is to improve the differential reassignment algorithm, pro-

posed by Chassande-Matin et. al. [6, 3], for spectrogram reassignment. This chapter

describes how the implementation of the improved algorithm’s components – reas-

signment and diffusion – are individually derived and implemented using MATLAB.

The first section deals with differential reassignment. Three different versions

have been developed and coded. The first one is a direct implementation of the

differential reassignment velocity vector field, Equation 2.57. The second version

uses different trajectories and velocities to move energy towards the maxima of the

differential reassignment scalar potential field, log I0. This approach leads to an ef-

fective computational algorithm, as well as an advantageous localization evolution

with time. Unfortunately, due to the use of different trajectories, this version lacks

the well-established mathematical foundation provided by differential reassignment

theory. The third version uses different velocities, but does follow differential reas-

signment trajectories, and is thus consistent with the theory. Examples are used to

demonstrate the correct implementation, and to allow for comparison of the different

versions.

The implementation of nonlinear anisotropic diffusion is elucidated, and its capa-

bilities being demonstrated by an example in the second section.

The third section describes the combination of differential reassignment with

anisotropic diffusion.

The final section presents the applied noise removal method, and an example is

used to demonstrate the efficiency of the proposed approach.
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3.1 Differential reassignment algorithm

The theoretical background of the differential reassignment algorithm was pro-

vided by Section 2.3.1.2. Several approaches to implement the differential flow Equa-

tion 2.61 of time-frequency particles have been considered in this research. In the

following subsections, three alternative strategies are presented. The first version

exactly follows the differential reassignment vector field Equation 2.57, the second

uses different trajectories and velocities, and the third uses the same trajectories, but

different velocities.

All alternatives, and thus this research, use Equation 2.57 in a fundamentally

different way than proposed by Chassande–Mottin et. al [3]. It is essential for the

reader to understand the basic differences in its interpretation and usage.

Chassande–Mottin and co–workers derived Equation 2.57 based on the STFT.

Their variable, F , denotes the complex–valued STFT. Equation 2.57 is exclusively

valid for STFT’s obtained with a unit variance Gaussian window, whose isocontours

are circles in a Wigner representation. Modification terms are needed if any other

window is used. Chassande-Mottin et al. are concerned with deriving the continuous

time trajectory of a time-frequency particle.

This research uses the idea of a logarithmic scalar potential to manipulate images.

The STFT, denoted F in Equation 2.57 becomes the abstract, two dimensional matrix

I of positive real cell values — an image. Equation 2.57 is valid if the distance between

image cells in both dimensions are equal — for convenience, 4x = 4y = 1. Scaling

terms are needed if unequal cell distances are used. This research is concerned with

image evolution through iterative addition and subtraction of cell values. Hence, this

study takes a grid-based Eulerian approach, rather than a particle-based Langrangian.

Derivation of the individual algorithms is performed using arbitrary images. Once

the algorithm is developed, Chapter 4 applies the combined algorithm to spectro-

grams. It is important to understand that the algorithm treats these spectrograms as

an abstract two-dimensional matrix of positive real cell values with 4x = 4y = 1.
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3.1.1 First version

3.1.1.1 Implementation

The partial differential equation which describes the movement of energy particles

is based on the transport equation

It + vxIx + vyIy = 0. (3.1)

The particle velocity v is given by the reassignment vector Equation 2.57, plugging

this equation into Equation 3.1 yields

∂I

∂t
+

∂ log |I0|
∂x

· ∂I

∂x
+

∂ log |I0|
∂y

· ∂I

∂y
= 0. (3.2)

The initial image I0 is assumed to be non-negative, which is in particular true for all

spectrograms, so the modulus in Equation 3.2 can be omitted. Hence, the PDE

∂I

∂t
+

∂ log I0

∂x
· ∂I

∂x
+

∂ log I0

∂y
· ∂I

∂y
= 0 (3.3)

describes the numerical reassignment flow of Equation 2.61. To implement this partial

differential equation, its first derivatives have to be approximated.

There are a number of ways to produce numerical algorithms for differentiation,

such as invoking the limit process used in the analytical definition. Given the func-

tion f(x), its first derivative can be two-point approximated either by the forward

difference

f ′(x) ' f(x + h) − f(x)

h
(3.4)

or by the backward difference

f ′(x) ' f(x) − f(x − h)

h
(3.5)

or by the central difference

f ′(x) ' f(x + h) − f(x − h)

2h
. (3.6)

For the first derivatives appearing in Equation 3.3, a central difference approxi-

mation following Equation 3.6 is only suitable for derivatives of the scalar potential

log I0. This is because the symmetric two-point central difference approximation
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uses only the two adjacent points — the central point, for which the derivative is

computed, is left out of the computation. The goal of the reassignment algorithm

is to produce steep ridges, consequentially sharp edges occur. A central difference

(essentially an average of a forward and backward difference) would smooth out these

sudden changes in the first derivative. Furthermore, ridges having a width of a sin-

gle cell would have no impact on the first derivative on top of the ridge (calculated

perpendicular to the ridge) because the ridge itself is then ignored by the two-point

central approximation. Hence, either the forward (Equation 3.4) or backward (Equa-

tion 3.5) difference must be used for first derivative approximation. This raises the

obvious problem of a correct choice between the two alternatives, and leads to the

use of an upwind method to compute the derivatives of the actual image surface.

Because reassignment vectors always point toward the maxima of the STFT mod-

ulus, it is known that information — mass, time-frequency particles — only travel

“up the hill” of the scalar potential. This knowledge of the direction of information

travel can be used to decide whether a forward or backward difference is more ap-

propriate. It only makes sense, and it is necessary for stability, to compute the first

derivative exclusively in the direction of information flow. If the flow is from left to

right, then the backward difference has to be used; if it is from right to left, only the

forward difference yields satisfactory results. This makes sure that only the scalar

potential on the side of information flow into the point of interest is used for the

approximation, not the potential on the other side.

To make a decision in favor for one of the two possible approximations, the velocity

vector field v has to be considered. With D+ indicating the forward difference (Equa-

tion 3.4) and D− indicating the backward difference (Equation 3.5), the following two

cases are possible, presented for the x-direction:

• vx < 0. This corresponds to a wave travelling to the left, hence the forward

difference D+ has to be chosen.

• vx ≥ 0. This corresponds to a wave travelling to the right, hence the backward

difference D− has to be chosen.

These derivative approximations can be used to implement the energy particle
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movement PDE, Equation 3.3. Since this research concerns a two-dimensional scalar

equation, dimensional splitting can be applied. Movement of energy particles is calcu-

lated alternating between x- and y-dimensions, using the Donor-Cell Upwind Method

for Advection, compare LeVeque [16].

3.1.1.2 Demonstration

This section presents a two-dimensional example using the algorithm described in

the previous section. A quadratic image with a resolution of 100x100 cells is chosen.

The analytic, initial image follows the Gaussian function

I(x, y) =
1

π4
√

σ
· e−

(x−50)2

2σ2 +
1

π4
√

σ
· e−

(y−50)2

2σ2 (3.7)

with standard deviation σ = 10 and is shown in Figure 3.1. Figure 3.2 plots the

scalar potential function log I(x, y) calculated from the initial image. The sequence

of Figures 3.3(a) to 3.3(f) shows the evolution of the image after 500, 1, 000, 2, 000,

5, 000, 10, 000 and 100, 000 iterations, respectively.
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Figure 3.1: Image.

First, consider Figure 3.2. Recall that reassignment vectors point up the gradient

of this function, which remains constant with time, they do not follow the steepest
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Figure 3.2: Scalar potential function.

ascend of the actual image. Note that the scalar potential surface amplifies derivatives

in low energy regions. Hence, reassignment vector magnitude is far greater in low mass

regions than in high mass regions. Thus, mass that is further away from a ridge moves

faster towards the ridge than mass that is closer to the ridge.

A peak lies at the intersection of the two ridges, so the top of both ridges is not

flat, but ascends toward the central peak. Hence, mass that is already located on top

of a ridge keeps on moving toward that peak. Figure 3.4 plots the derivative of the

scalar potential function, i.e. Figure 3.2, along a ridge. As can be easily seen, mass

on either side of the center is moved toward it, but unfortunately the velocities differ

along the ridge. Mass that is located about 13 cells away from the center approaches

it fastest. Consequently, at this distance from the center, mass on top of a ridge

travels toward the center faster than it is being “resupplied” from the far ridge ends.

This explains the inevitable formation and deepening of dips in these ridge regions,

which are not present in the original image. The formation of dips can be followed

by examining the sequence of Figures 3.3(a) to 3.3(f).

Image evolution will eventually approach its steady state. The ridges disappear

as their energy has been relocated to the central peak. This steady state is consistent
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Figure 3.3: Image evolution of the first differential reassignment version.
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Figure 3.4: Energy travel velocity along a ridge.

with the scalar potential Figure 3.2. Close observation reveals that all trajectories

finally end in the image center, after following the potential’s steepest ascent.

Of course, this image evolution is highly unsatisfactory; information should be

localized along smooth ridges. At certain evolution stages, such as the stage of Fig-

ures 3.3(c) or 3.3(d), the reassigned image might be considered acceptable if dip and

peak formation is tolerated. However, later stages, including the steady state, are not

acceptable.

Depending on their individual shape, different ridges of the same image are reas-

signed with different speeds. Thus, ridges that were already created in early iterations

have to remain in a satisfactory, stable steady state, to allow information localization

in other image regions.

Essentially, unsatisfactory image evolution results from inhomogeneous mass move-

ment along a ridge. Countering this movement should lead to a satisfactory, stable

steady state. To achieve this, an opposing force is introduced. In the steady state,

undesired mass movement will be balanced out by this opposing force. Nonlinear

anisotropic diffusion is capable of providing this opposition force.
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3.1.2 Second version

3.1.2.1 Implementation

The second version (developed in this research) uses different trajectories and ve-

locities from those predicted by differential reassignment theory. Since energy move-

ment still converges towards the maxima of the scalar potential function log I0, energy

is localized as desired. However, this process is no longer “differential reassignment,”

since it is not based upon differential reassignment theory.

Instead of following the transport Equation 3.1, image evolution follows

∂

∂t
I + v = 0, (3.8)

where v is the reassignment velocity vector field, based on Equation 2.57. Thus, en-

ergy particles are still moved toward the maxima of the scalar potential log I0. How-

ever, since the reassignment transport Equation 3.1 is replaced with Equation 3.8,

the trajectories of energy travel are not necessarily identical to the differential reas-

signment trajectories. The algorithm is comprised of five steps, which are described

next.

In the first step, mass flow from neighboring cells into the actual cell is computed

according to the reassignment vector field. In the one-dimensional case, each cell

has two neighbors, so two flows must be computed. The flow from the left neighbor

into the cell is labelled Φwest, while the flow from the right neighbor into the cell

is labelled Φeast. In the two-dimensional case, the flow from either four or eight

neighboring cells can be computed, depending on if the four diagonally adjacent cells

are considered neighbors or not. In this research, neighborship is defined as only

vertically or horizontally adjacent, following the 4-neighborhood scheme. The four

flows from neighboring cells into the actual cell are labelled Φwest, Φeast, Φnorth, and

Φsouth, corresponding to the left, right, upper, and lower neighbors, respectively. The

flow follows the reassignment vector Equation 2.57. Hence,

Φwest =
logI0(x, y) − logI0(x − h, y)

h
(3.9)

and

Φnorth =
logI0(x, y) − logI0(x, y − h)

h
(3.10)
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are the horizontal and vertical backward differences of logI, respectively. On the

other hand,

Φeast =
logI0(x, y) − logI0(x + h, y)

h
(3.11)

and

Φsouth =
logI0(x, y) − logI0(x, y + h)

h
(3.12)

are the respective negative (inverse direction, since positive flow is defined into the

actual cell) horizontal and vertical forward differences of logI0. Note that since the

vector field is constant throughout the entire algorithm, this first step can be com-

puted before the iterations start.

In the second step, all image cells containing a zero are detected, and the flow out

of these cells into their neighbors is set to zero. While the algorithm presented in the

previous Section 3.1.1 lets low energy image cells slowly approach, but not reach zero,

later stages of this algorithm set these cells exactly to zero. This avoids the declining

step size problem. A zero cell represents a global minimum of zero mass, so mass

cannot flow out of the cell. Because a flow Φi is only dependent on the gradient of

the scalar potential function, the flow out of a zero cell must be actively set to zero.

Let (x0, y0) denote a zero cell, then all flows out of the zero cell are eliminated by

Φi(x0, y0) = max(Φi(x0, y0), 0). (3.13)

To avoid mass creation, these flows have to be eliminated in the neighboring cells,

too. Since flows out of a zero cell are incoming for its neighbors, their corresponding

flows are set to zero by

Φwest(x0 + h, y0) = min(Φwest(x0 + h, y0), 0)

Φeast(x0 − h, y0) = min(Φeast(x0 − h, y0), 0)

Φnorth(x0, y0 + h) = min(Φnorth(x0, y0 + h), 0)

Φsouth(x0, y0 − h) = min(Φsouth(x0, y0 − h), 0).

(3.14)

It may not be intuitively clear why mass flow into a zero cell is possible and must

be allowed for the algorithm to function properly. The reason is that reassignment

vectors follow the steepest ascent of the scalar potential function Equation 2.57 (based

on the initial image), they do not point up the actual image surface. It may well
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happen that with ongoing iterations, the image evolves in such a way that mass travels

“down the hill” of the actual image surface, while still travelling “up the hill” of the

scalar potential function. In short, mass flow into a zero cell must be allowed, and

mass flow out of a zero cell must be prohibited. Section 3.1.2.2 contains an example

illustrating the phenomenon of mass flow into zero cells.

In the third step, the optimal step size is determined. The optimal step size is

the largest step size that is smaller or equal to the largest allowable step size, that

still does not produce negative image cells. Let n be the iteration number and 4t

the step size, then

In+1 = In + 4t · Iflow, (3.15)

where

Iflow = Φwest + Φeast + Φnorth + Φsouth (3.16)

is a matrix representing the movement of energy particles due to the flow between

neighboring cells. Note that the conservation constraints

∑

x

∑

y

(

Φwest + Φeast
)

=
∑

x

∑

y

(

Φnorth + Φsouth
)

= 0, (3.17)

and therefore
∑

x

∑

y

Iflow = 0, (3.18)

are satisfied. Equation 3.17 states that neither the horizontal nor the vertical flow

creates or destroys mass, both are independently conservative. Accordingly, the sum

Iflow of both flow directions — and with it the algorithm — must be conservative,

too, as expressed by Equation 3.18. Let 4tmax denote the largest allowable step size,

and consider the element-wise quotients

Iq(x, y) =
In(x, y)

4tmax · Iflow(x, y)
, (3.19)

where

Iq(x0, y0) = 0 (3.20)

for zero mass, zero flow cells. These quotients are the quotients of every single (non-

negative) image value divided by the amount that would be added to it in the actual

iteration step, according to Equation 3.15, assuming maximum step size. These

quotients can be used to determine the optimal step size, as
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• Iq(x, y) = 0 resembles a zero mass cell (by definition due to Equation 3.20).

Since the flow is also zero, there is nothing to worry about.

• Iq(x, y) > 0 indicates that mass is added to this cell (both the actual cell value

and the flow added to it are positive). Again, there is nothing to worry about.

• Iq(x, y) < −1 indicates a cell that loses mass, but stays positive (the actual

positive cell value is greater than the absolute value of the negative flow added

to it). Once again, there is nothing to worry about.

• Iq(x, y) = −1 resembles a cell that will be set to zero in this iteration step (the

actual cell value is positive, the added flow has the same absolute value, but

negative sign). Since this boundary case is allowed, there is nothing to worry

about.

• −1 < Iq(x, y) < 0 indicates a cell that will become negative (the actual positive

cell value is less than the absolute value of the negative flow added to it). This

condition is not allowed, since each cell has to have a non-negative value at all

times.

The goal is to find the optimal scaling factor 0 < α ≤ 1 that is multiplied by the

largest allowable step size 4tmax to yield the optimal step size

4topt = α · 4tmax. (3.21)

Let

N = {Iq(x, y)| − 1 < Iq(x, y) < 0} (3.22)

be the set of all quotients Iq belonging to image cells that would become negative if

the largest allowable step size 4tmax is used. The optimal scaling factor is then given

by

α = |minN|. (3.23)

This choice of α ensures that the iteration does not produce negative-valued image

cells. If

N = ∅, (3.24)
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then the optimal step size equals the largest allowable step size, corresponding to

α = 1. (3.25)

Note that if and only if α < 1, at least one nonzero cell will become a zero cell

after completion of the iteration step. This is because α shortens the step size just

enough to let the most “critical” cell(s) become zero. If this reassignment algorithm

is superimposed by a diffusion algorithm, then the scaling factor α must be kept in

mind to adjust the diffusion step size accordingly.

In the forth and final step, the actual iteration

In+1 = In + 4topt · Iflow (3.26)

is performed, its continuous time equivalent being

∂

∂t
I(x, y, t) ≈ Φwest + Φeast + Φnorth + Φsouth. (3.27)

As will be demonstrated in Section 3.1.2.2, the algorithm converges to a final,

reassigned, stable steady state. This encourages stopping the iterative algorithm as

soon as the steady state, or a state satisfactorily close to it, is reached.

Further, it is recognized that in images with large, low mass regions, most early

iteration steps have a tiny step size, and serve primarily to create new zero cells in

these regions. Thus, the algorithm can be accelerated by setting all low mass image

cells below a certain limit δ to zero,

I(x, y) = 0 ∀ I(x, y) ≤ δ. (3.28)

Of course, mass is being destroyed by this action, constituting an obvious violation

of the conservation requirement. However, if the limit δ is chosen to be small enough,

the loss of mass might well be tolerable. A very small δ is even necessary, since

machine precision does not scale zero cells exactly to zero, but usually leaves them

with tiny values.

Furthermore, the δ parameter is important for noise removal purposes. Section 3.4

describes its usage, defining a lower boundary for the parameter.
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3.1.2.2 Demonstration

This subsection demonstrates the correct implementation and effectiveness of

the algorithm described in Section 3.1.2. The algorithm is first applied in its one-

dimensional form, and then in its two-dimensional form.

Select an array of eight cells as the one-dimensional example. The maximum step

size is 4tmax = 2. Table 3.1 and Figures 3.5(a) to 3.5(f) show the original array

together with the reassigned array and all intermediate iteration steps, along with

the step sizes.

Table 3.1: Demonstration of 1-D differential reassignment

iteration step size cell 1 cell 2 cell 3 cell 4 cell 5 cell 6 cell 7 cell 8

0 - 1 2 4 0 5 3 4 2
1 1.4 0 2 5 0 5.7 1.9 5.4 1
2 1.4 0 1.5 5.5 0 6.4 0.6 7 0
3 0.9 0 1.3 5.7 0 6.7 0 7.3 0
4 0.6 0 0 7 0 6.7 0 7.3 0
5 2 0 0 7 0 6.7 0 7.3 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that the sum of array values remains 21 throughout the algorithm, confirming

its conservative nature. A closer look at the different iteration steps reveals that until

the fourth iteration step, the step size is smaller than the maximum step size, and each

iteration produces a new zero cell. The original array consists of two “mountains,”

the left with a single peak, and the right with two peaks of different heights. The left

“mountain” has an initial total mass of 1+2+4 = 7 units, which is entirely reassigned

to a single peak. The right “mountain” has an initial total mass of 5+3+4+2 = 14

units, which is unequally reassigned to two peaks of different height. The entire mass

content of cell 8 is reassigned to the right peak of cell 7. Since cell 6 lies in between

the two peaks, its mass content is entirely, but unequally reassigned to the peaks on

either side. Also note that the final, reassigned state is a stable steady state. As

soon as it is reached in the fourth iteration step, the step size is set to its maximum,

but the reassigned state does not change with subsequent iterations. In addition,

note that since four different cells have to become zero, cells for the entire mass to
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Figure 3.5: 1-D example of the second differential reassignment version.
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be allocated to the three peaks, and since the steady state is reached in the fourth

iteration step, the number of iterations is minimum.

The image shown in Figure 3.1 is again used as a two-dimensional example. The

scalar potential function is displayed in Figure 3.2. The algorithm uses a maximum

step size of 4tmax = 5. For acceleration purposes, cell values below δ = 10−3 are

set to zero. The sequence of Figures 3.6(a) to 3.6(f) show the evolution of the image

after 200, 500, 1, 000, 1, 200, 1, 500 and 300, 000 iterations, respectively.

Compare this image evolution to the image evolution obtained with the first ver-

sion, depicted in Figures 3.3(a) to 3.3(f). In this second version, ridges are much

more pressed together, thus creating much steeper ridge edges than provided for by

the first version. This is an advantage, because anisotropic diffusion will be super-

imposed to this reassignment movement. Steep ridge edges make it easier for the

diffusion algorithm to only diffuse energy along ridges, while preserving the edges.

However, the second version intensifies dip formation along ridges. In a combined

algorithm, the diffusion part will be responsible to counter this undesired evolution.

Luckily, steep ridge edges support the necessary diffusion performance to oppose dip

formation along ridges. Again, intermediate evolution stages, such as Figures 3.6(b)

or 3.6(c), can be considered satisfactory if dip formation is tolerated. Especially Fig-

ure 3.6(c) also provides narrower ridges, and thus a better energy localization than is

obtained using the first version.

The image sequence of Figures 3.6(a) to 3.6(f) also illustrates the phenomenon

of energy movement “down the hill” of the actual image surface. Dip formation,

caused by inhomogeneous movement of energy along a ridge toward the central peak,

eventually leads to Figure 3.6(d). From here on, the dips have become so deep that

the ridges themselves start to disappear. This process begins with the creation of a

first “zero cell” in the middle of a ridge. Recall that energy travel follows the steepest

ascent of the constant scalar potential function, it does not follow the steepest ascent

of the actual image. Thus, along a ridge, movement is always toward the center, a

fact that can be obtained from Figures 3.2 and 3.4. This means that along the far

ridge ends, energy moves “down the hill into the dip” of the actual image surface, a

condition already addressed in Section 3.1.2. Note that eventually, energy from the
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Figure 3.6: Image evolution of the second differential reassignment version.
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far ridge ends has to reach the image center, according to the steepest ascent of the

scalar potential function. Inevitably, this energy has to cross the “zero cells” which

now divide the two ridge fractions, illustrating why energy flow into zero cells had

to be allowed in Section 3.1.2. Technically, those cells depicted as “zero cells” in this

paragraph are not real zero cells. Because energy flow into zero cells was allowed,

these cells form a chain of very low energy cells delivering energy from the ridge ends

to the image center, as can be seen in Figure 3.6(e).

3.1.3 Third version

3.1.3.1 Implementation

So far, two alternate forms to implement differential reassignment have been devel-

oped. The first algorithm (presented in Section 3.1.1) is the direct implementation of

the mathematical representation of differential reassignment. The second algorithm

(presented in Section 3.1.2) changes both trajectories and velocity of energy travel.

Strictly speaking, this algorithm no longer represents differential reassignment, so it

lacks the mathematical foundation present in differential reassignment theory.

This third version follows the reassignment vector field Equation 2.57, and thus

guarantees that energy is moved along differential reassignment trajectories. Hence,

this algorithm works on the well-established mathematical foundation provided by

differential reassignment theory. It introduces a design parameter, Θ, which manip-

ulates the velocity of energy travel along differential reassignment trajectories. A

performance improvement can be achieved by exploiting the degree of freedom pro-

vided by Θ. In the following, Θ is introduced theoretically.

An implementation of differential reassignment discretizes the transport equation,

Equation 3.1.

Equal scaling of v in both dimensions ensures that energy movement still follows

the same trajectories, but with different velocities. This is expressed by

It + Θvx · Ix + Θvy · Iy = 0, (3.29)

where Θ = Θ(x, y) is a constant matrix scaling v, introducing a degree of freedom.
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Hence, differential reassignment now occurs with the new velocities

v̄x = Θvx (3.30)

v̄y = Θvy. (3.31)

Because the transport equation is a two-dimensional scalar equation, dimensional

splitting

It + v̄xIx = 0 (3.32)

It + v̄yIy = 0 (3.33)

can be applied in order to use the Donor-Cell Upwind Method for Advection, compare

LeVeque [16]. The image is then updated with the following procedure, formulated

for x-direction movement. First, energy loss is subtracted from donor cells

Ĩn+1(x, y) = In(x, y) − |v̄x(x, y)| · 4t · 4x · In(x, y). (3.34)

Then, if a cell receives energy from its left neighbor, so if v̄x(x − 1, y) > 0, then this

energy is added to the actual cell by

În+1(x, y) = Ĩn+1(x, y) + |v̄x(x − 1, y)| · 4t · 4x · In(x − 1, y). (3.35)

Otherwise,

În+1(x, y) = Ĩn+1(x, y). (3.36)

Finally, if a cell receives energy from its right neighbor, so if v̄x(x + 1, y) < 0, then

this energy is added to the actual cell by

In+1(x, y) = În(x, y) + |v̄x(x + 1, y)| · 4t · 4x · In(x + 1, y). (3.37)

Otherwise,

In+1(x, y) = În+1(x, y). (3.38)

Using of this scheme ensures that no energy is created or destroyed, the resulting

algorithm is fully conservative. The algorithm alternates between x-dimension and y-

dimension energy movement. The equations governing y-dimension energy movement

are analogous to those for the x-dimension.
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As 4x = 4y = 1, for stability, the step size has to hold the inequality

4t ≤ 1

2 · max(v̄x(·, ·), v̄y(·, ·)) . (3.39)

Good results have been obtained with the design parameter

Θ(x, y) = 1 − I0(x, y)

max(I0(·, ·)) . (3.40)

This choice ensures that Θ helps to further attenuate reassignment flow in high energy

regions, namely along ridges.

Even better results have been achieved setting the design parameter to

Θ(x, y) = e
−

I0(x,y)

max(I0(·,·)) . (3.41)

This choice has the same effect as the previous one, but uses the exponential function

to reach the desired attenuation.

Note that the choice

Θ(x, y) = 1 ∀ (x, y) (3.42)

leads back to the original first version.

It is interesting to note the following. The differential reassignment vector field

v depends on an image gradient. It is dependent upon the constant scalar potential

log I0. The log-function attenuates the gradient in high energy regions, and ampli-

fies it in low energy regions. Using Equation 3.40, the manipulated vector field v̄

additionally depends on the initial image surface. Velocities in high energy regions

are further attenuated, and velocities in low energy regions are further amplified, this

time dependent on the constant initial image surface.

3.1.3.2 Demonstration

Once again, the two-dimensional image shown in Figure 3.1 is used for demon-

stration purposes — its scalar potential is presented in Figure 3.2. First, the design

parameter Θ is chosen according to Equation 3.41. The sequence of Figures 3.7(a)

to 3.7(f) shows image evolution after 500, 1, 000, 2, 000, 5, 000, 10, 000 and 100, 000

iterations, respectively. Comparison with the image evolution of the two earlier ver-

sions reveals that this version constitutes a good trade-off. Ridges are more localized

41



0
50

100

0

50

100
0

0.2

0.4

0.6

0.8

xy

I (
x,

y)

(a) 500 Iterations

0
50

100

0

50

100
0

0.2

0.4

0.6

0.8

xy

I (
x,

y)

(b) 1,000 Iterations

0
50

100

0

50

100
0

0.2

0.4

0.6

0.8

xy

I (
x,

y)

(c) 2,000 Iterations

0
50

100

0

50

100
0

0.5

1

1.5

xy

I (
x,

y)

(d) 5,000 Iterations

0
50

100

0

50

100
0

0.5

1

1.5

2

xy

I (
x,

y)

(e) 10,000 Iterations

0
50

100

0

50

100
0

2

4

6

xy

I (
x,

y)

(f) 100,000 Iterations

Figure 3.7: Image evolution of the third differential reassignment version (1).
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as in the first version, and dip formation is weaker as in the second version. The in-

termediate evolution stage shown in Figure 3.7(c) is especially satisfactory. However,

at the intersection of the two ridges, energy is not as well localized as in the previous

versions.

Now, consider the choice of the design parameter Θ according to Equation 3.42.

The sequence of Figures 3.8(a) to 3.8(f) shows image evolution after 500, 1, 000, 2, 000,

5, 000, 10, 000 and 100, 000 iterations, respectively. Comparing this image evolution

to all previous image evolutions shows that by using this latest version: ridges as

well as ridge intersections are well localized; ridge edges are therefore steep; and

dip formation is comparatively weak. Hence, this particular version will be used in

Chapter 4 for the differential reassignment portion of the combined algorithm.
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Figure 3.8: Image evolution of the third differential reassignment version (2).
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3.2 Diffusion algorithm

As was demonstrated in Section 3.1.2.2, differential reassignment alone produces

dips along reassigned ridges that were not present in the original image. It was also

shown that these dips are the result of an ascent toward a peak that is located on

a ridge. Since it cannot be assumed that any ridge will be perfectly flat on its top,

dip (and with it peak) formation is generally very likely to occur. Notice that the

ridge edges, especially in Figures 3.6(a) and 3.6(b), are very sharp compared to the

smooth contours on top of the ridges. Thus, dip formation can be countered by an

anisotropic diffusion algorithm which preserves the edges, but levels out the top of

ridges.

Section 2.3.2.2 described the theoretical background of the anisotropic diffusion

algorithm which is used in this research. The following subsections outline the imple-

mentation of the diffusion algorithm, and demonstrate its characteristics by the use

of an example.

3.2.1 Implementation

Although not obvious from Equation 2.63, the discrete implementation of nonlin-

ear anisotropic diffusion is fairly straightforward. The algorithm is first derived in its

one–dimensional form, which is then extended to two dimensional images.

In only one dimension x, the gradient and divergence expressions in Equation 2.63

reduce to derivatives,

∂

∂t
I(x, t) =

∂

∂x

(

c(x, t) · ∂

∂x
I(x, t)

)

. (3.43)

Substituting discrete approximations for the derivatives,

∂

∂t
I(x, t) ≈ 1

4x

{

c(x, t) · 1

4x

[

I

(

x +
4x

2
, t

)

− I

(

x − 4x

2
, t

)]}

(3.44)

is obtained, which can be further approximated by

∂

∂t
I(x, t) ≈ 1

(4x)2

[

c

(

x +
4x

2
, t

)

· (I(x + 4x, t) − I(x, t))

]

− 1

(4x)2

[

c

(

x − 4x

2
, t

)

· (I(x, t) − I(x −4x, t))

]

.

(3.45)
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Introduction of the flow functions

Ψwest(x,4x, t) =
1

(4x)2

[

−c

(

x − 4x

2
, t

)

· (I(x, t) − I(x −4x, t))

]

Ψeast(x,4x, t) =
1

(4x)2

[

c

(

x +
4x

2
, t

)

· (I(x + 4x, t) − I(x, t))

]

,

(3.46)

reduces Equation 3.45 to

∂

∂t
I(x, t) ≈ Ψwest(x,4x, t) + Ψeast(x,4x, t). (3.47)

To calculate the flow functions in Equation 3.46, the terms c
(

x − 4x

2
, t

)

and c
(

x + 4x

2
, t

)

have to be computed. This can be done easily by substituting the discrete approxi-

mation of the gradient into Equation 2.64, yielding

c

(

x − 4x

2
, t

)

= f

(

1

4x
|I(x, t) − I(x −4x, t)|

)

c

(

x +
4x

2
, t

)

= f

(

1

4x
|I(x + 4x, t) − I(x, t)|

)

.

(3.48)

Equation 3.47 indicates that, for each iteration, the value of each cell in a 1D array

changes according to the flow contributed from its nearest neighbors. Positive flow

directions is defined as flow into the actual cell. An expression for the discrete im-

plementation of 1D diffusion can be derived by determining the cell values after each

iteration,

In+1(x) = In(x) + 4t ·
(

Ψwest + Ψeast
)

. (3.49)

This iteration scheme is stable as long as 0 ≤ 4t ≤ 1
3
.

The 1D discrete formulation of the diffusion process is easily extended to the 2D

case by

∂

∂t
I(x, y, t) =

∂

∂x

(

c(x, y, t) · ∂

∂x
I(x, y, t)

)

+
∂

∂y

(

c(x, y, t) · ∂

∂y
I(x, y, t)

)

, (3.50)

and the approximation

∂

∂t
I(x, y, t) ≈ 1

(4x)2

[

c

(

x +
4x

2
, y, t

)

· (I(x + 4x, y, t) − I(x, y, t))

]

− 1

(4x)2

[

c

(

x − 4x

2
, y, t

)

· (I(x, y, t) − I(x −4x, y, t))

]

+
1

(4y)2

[

c

(

x, y +
4y

2
, t

)

· (I(x, y + 4y, t) − I(x, y, t))

]

− 1

(4y)2

[

c

(

x, y − 4y

2
, t

)

· (I(x, y, t) − I(x, y −4y, t))

]

.

(3.51)
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Definition of the flow functions

Ψwest =
1

(4x)2

[

−c

(

x − 4x

2
, y, t

)

· (I(x, y, t) − I(x −4x, y, t))

]

Ψeast =
1

(4x)2

[

c

(

x +
4x

2
, y, t

)

· (I(x + 4x, y, t) − I(x, y, t))

]

Ψnorth =
1

(4y)2

[

−c

(

x, y − 4y

2
, t

)

· (I(x, y, t) − I(x, y −4y, t))

]

Ψsouth =
1

(4y)2

[

c

(

x, y +
4y

2
, t

)

· (I(x, y + 4y, t) − I(x, y, t))

]

(3.52)

reduces Equation 3.51 to

∂

∂t
I(x, y, t) ≈ Ψwest + Ψeast + Ψnorth + Ψsouth. (3.53)

An expression for the discrete implementation of 2D diffusion is, analogous to the 1D

expression, given by

In+1(x, y) = In(x, y) + 4t ·
(

Ψwest + Ψeast + Ψnorth + Ψsouth
)

. (3.54)

The 2D diffusion process consists of updating each cell in an image by an amount

equal to the flow contributed by its four nearest neighbors, with positive flow direction

into the actual cell. This scheme is stable as long as 0 ≤ 4t ≤ 0.2.

Note that both 1–D and 2–D diffusion algorithms are conservative, mass is only

moved around image cells, it is not created or destroyed.

3.2.2 Demonstration

As was described in Section 2.3.2.2, nonlinear anisotropic diffusion is capable

of diffusing noise while preserving edges. Section 3.1.2.2 revealed that differential

reassignment produces ridges having sharp edges, which suffer from undesired dips in

certain regions close to a peak.

To demonstrate the correct implementation and capability of the anisotropic dif-

fusion algorithm, a two–dimensional image with a resolution of 100x100 was chosen.

This image is zero except for the central horizontal and vertical lines, which follow

I(x, 50) = 3 +
1

2
cos

( π

10
· x

)

I(50, y) = 3 +
1

2
cos

( π

10
· y

)

.
(3.55)
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On top of that, random noise with a maximum magnitude of 1 was added. The

resulting image is shown in Figure 3.9 and serves as initial image for demonstration

purposes. It consists of two ridges with dips, and is in addition to that suspect to

random noise.

The anisotropic diffusion algorithm uses κ = 0.5 and a step size of 4t = 0.2 as

parameters. After 200 iterations, the image presented in Figure 3.10 is obtained. Note

that anisotropic diffusion has an excellent performance with regard to three different

aspects. First, noise is diffused. Second, sharp edges are preserved. Third, dips on

the ridges are smoothed out. Note also that the mass of 2, 738 units is preserved

throughout the algorithm. The resulting image would be a highly satisfactory result

of a combined algorithm, as the flat ridges are exactly located.

If an isotropic diffusion algorithm with the same step size was used, the highly

unsatisfactory image of Figure 3.11 would have been obtained after 200 iterations.

Notice the apparent similarity between this image and Figure 3.1. The shape of
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Figure 3.9: Starting image for the demonstration of diffusion algorithms.

Figure 3.11 is also obtained if a plain cross of perfectly flat ridges is used as original

image for the isotropic diffusion algorithm. But this plain cross of perfectly flat ridges

is the desired result of the combined algorithm, if in turn Figure 3.11 was taken as

48



0

50

100

0

50

100
0

0.5

1

1.5

2

2.5

xy

I (
x,

y)

Figure 3.10: Demonstration of nonlinear anisotropic diffusion.
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Figure 3.11: Demonstration of isotropic diffusion.
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initial image. Thus, an alternative interpretation of the goal of this research is to find

an image J based on an image I, such that isotropic diffusion of J leads back to I. Of

course, a unique inverse operation of isotropic diffusion cannot exist, since diffusion

increases the entropy of the image. For example, isotropic diffusion of a plain cross of

perfectly flat ridges and of Figure 3.9 both lead to optically identical images, namely

Figure 3.11. But of the two ’inverse operations’, only the flat ridge cross is a desirable

result of a combined algorithm.

3.3 Combined algorithm

Reassignment and diffusion algorithms are now combined in order to improve

reassignment performance. While the theoretical background of both algorithms is

elucidated in Sections 2.3.1.2 and 2.3.2.2, and the individual algorithms are developed

in Sections 3.1 and 3.2, this section describes their combination.

The combined algorithm simply consists of the carefully weighted addition of

reassignment and diffusion movements. To balance reassignment with diffusion, a

weighting factor

β =
4treassignment

4tdiffusion

(3.56)

is introduced, reflecting the relation between reassignment and diffusion step sizes.

Finding a suitable value for β involves an iterative trial-and-error approach. If the

reassignment part is too strong, β has to be increased. If the image is diffused too

much, then β has to be reduced.

Image evolution is then expressed by a single partial differential equation. In

Chapter 3.1, three different versions of differential reassignment are presented. The

resulting PDE depends on the reassignment version that is incorporated into the

combined algorithm. If the first reassignment version is used, the PDE governing

energy movement is

∂I

∂t
+

∂ log I0

∂x
· ∂I

∂x
+

∂ log I0

∂y
· ∂I

∂y
− β ·

[

∂

∂x

(

c1 ·
∂I

∂x

)

+
∂

∂y

(

c1 ·
∂I

∂y

)]

= 0. (3.57)

For the second version, the PDE reduces to

∂I

∂t
+

∂ log I0

∂x
+

∂ log I0

∂y
− β ·

[

∂

∂x

(

c1 ·
∂I

∂x

)

+
∂

∂y

(

c1 ·
∂I

∂y

)]

= 0. (3.58)
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The third version leads to

∂I

∂t
+Θ·∂ log I0

∂x
·∂I

∂x
+Θ·∂ log I0

∂y
·∂I

∂y
−β·

[

∂

∂x

(

c1 ·
∂I

∂x

)

+
∂

∂y

(

c1 ·
∂I

∂y

)]

= 0. (3.59)

Due to the observations made in Section 3.1, only the third version is used in

subsequent chapters. In particular, the choice of Θ according to Equation 3.42 has

proven to be most advantageous. This choice of Θ, together with the diffusion function

c1 according to Equation 2.65, is plugged into Equation 3.59 to yield the PDE

∂I

∂t
+ e

− I0

max(I0) · ∂ log I0

∂x
· ∂I

∂x
+ e

− I0

max(I0) · ∂ log I0

∂y
· ∂I

∂y

−β ·
[

∂

∂x

(

e−( 1
κ
·| ∂I

∂x
|)

2

· ∂I

∂x

)

+
∂

∂y

(

e−( 1
κ
·| ∂I

∂y
|)

2

· ∂I

∂y

)]

= 0. (3.60)

With the un-reassigned spectrogram as initial condition and Neumann boundary con-

ditions, this PDE fully describes the image evolution of the final algorithm.

Demonstration of the combined algorithm is delayed to Section 4.2.2, where the

algorithm is applied to reassign experimentally measured spectrograms.

3.4 Noise treatment

So far, only smooth, noise-free images have been considered. By averaging data

from multiple experiments, a spectrogram with a high signal-to-noise ratio (SNR) is

obtained. However, a high SNR cannot always be guaranteed, making noise removal

considerations a necessity.

As demonstrated in Section 3.2.2, nonlinear anisotropic diffusion is capable of

diffusing noise when its parameter κ approximately matches the highest noise magni-

tude. On the other hand, to ensure energy diffusion along a ridge, κ should approxi-

mately resemble the highest derivative magnitudes occurring along a ridge. How can

those two requirements be met at the same time?

Superimposing reassignment with two anisotropic diffusion algorithms having in-

dividual parameters κ1 and κ2, where one algorithm diffuses noise, and the other

ridge tops, is not a good idea. This is because the constant differential reassignment

vector field is calculated based on the initial image, subject to noise. Noise produces
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a lot of small, local maxima. Since reassignment vectors all point toward local max-

ima, the resulting vector field obviously favors spurious peaks and does not lead to a

satisfactory image evolution.

Chassande-Mottin remarked in [6] that all attempts to smooth out a noisy re-

assignment vector field had failed. Accepting this, an alternative way to solve the

problem of noise is needed. If the reassignment vector field cannot be smoothed out,

the only logical solution is to obtain a smooth vector field in the first place. Thus,

noise has to be removed from the image before it serves as a basis for vector field

computation. The noise removal algorithm developed in this research consists of two

parts.

First, an anisotropic diffusion algorithm with a diffusion parameter κ slightly

above the maximum noise magnitude is applied to the image. Noise is being diffused

stronger than the information content of the image. Once the scalar potential log I of

the image is sufficiently smooth in medium to high mass regions, diffusion iterations

stop.

Second, image cells below a tiny threshold δ are set to zero. The reason for this is

that the scalar potential logI, the basis for reassignment vector field computation, is

highly sensitive to even tiny derivatives in low energy regions. Even thorough diffusion

of noise in areas with (almost) zero energy content still leaves tiny derivatives, which

are then amplified by the scalar potential function, resulting in undesired peak and

ridge formation. If δ is chosen appropriately, the low energy content of those cells

capable of forming spurious peaks is destroyed beforehand. Since those high entropy

regions have very little information content left (information that was only slightly

present has been most certainly diffused), a destruction of their energy content is

justified. Usually, the destructed mass only accounts for a small fraction of the

total image energy. Exact energy conservation can still be achieved by scaling the

image such that the tiny destroyed energy fraction is distributed across the image,

proportional to its cell values.

Noise diffusion still leaves tiny surface variations in medium to high mass regions.

Due to its logarithmic nature, the scalar potential function is fortunately compara-

tively insensitive to tiny irregularities in these regions. Reassignment vectors may be
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bent a little, but anisotropic diffusion smoothes out the top of a ridge anyway. Hence,

small directional errors are smeared out, especially those occurring on, or close to, a

ridge top.

Finally, the effectiveness of the noise removal algorithm is demonstrated. For this

purpose, the image of Figure 3.1 is again chosen, but this time random noise with a

maximal magnitude of 0.025 is added. The resulting image is shown in Figure 3.4.

Noise removal with κ = 0.028 (slightly above the noise magnitude) leads after 20

iterations with maximum step size 4t = 0.2 back to an image which is optically

indistinguishable from Figure 3.1. Also, the resulting scalar potential field is optically

indistinguishable from Figure 3.2. Even subsequent iterations show no noticeable

differences to the evolution of the noise-free starting image. Consequentially, noise

has been successfully removed without altering the information content significantly.
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Figure 3.12: Noisy initial image.
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CHAPTER 4

Application of the algorithm

So far, this research has only considered synthetically generated images. The

current chapter applies the algorithm developed in Chapter 3 to experimentally mea-

sured spectrograms. The first section briefly introduces the experimental and signal

processing steps required to obtain such a spectrogram. Then, both conventional

and modified differential reassignment algorithms are applied to an experimentally

measured spectrogram, and are compared to each other.

4.1 Experimental background

This section briefly outlines the necessary steps taken to obtain an experimentally

measured spectrogram. More details on the experimental procedure are available

in [5, 15].

Basic components needed to perform the experiments include the specimen itself,

a source system, a detection system, and additional instrumentation to analyze the

data.

Two different specimens are considered in this research. Both are plane, polished

aluminum 3003 plates with dimensions 305 mm x 610 mm x 0.99 mm. One plate

lacks any kind of defects and is referred to as “perfect.” The other plate contains a

notch of depth 0.5+0.1
−0.1 mm and width 1.6+0.2

−0.2 mm, and is referred to as “notched.”

The notched plate is shown in Figure 4.1.

A Q-switched, Nd:YAG pulse laser serves as an ultrasonic source. A laser is used

because it provides a non-contact point source, exciting a broad frequency bandwidth.

However, a laser source is not suitable for in-situ measurements; ongoing research [15]

is developing a procedure that uses a contact piezoelectric element as a source.
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Figure 4.1: Sketch of the specimen.

A dual probe heterodyne interferometer serves as the detection system. After

emission by the source, the laser beam is split in two. The object beam is reflected

off the specimen surface, where Lamb waves cause an internal frequency shift in the

beam (Doppler effect). The other beam serves as reference. Both beams finally hit the

photodiodes of the detection system, converting light intensity into voltage signals.

The instrumentation takes the output voltage from the detection system and de-

modulates it to an absolute frequency shift. The demodulated signal is then low-pass

filtered and discretized using an oscilloscope with a sampling frequency of 100 MHz.

Here, multiple measurements are averaged to increase the signal-to-noise-ratio (SNR)

of the measured signal. The oscilloscope is then connected to a personal computer.

Now, the signal processing techniques described in Chapter 2 are applied to the

discretized time domain signal. The time domain signal is first high-pass filtered with

a third order Butterworth filter having a cutoff frequency of 200 kHz. The energy

density spectrum of a STFT finally yields a spectrogram which consists of several

mode dispersion curves, characterizing the Lamb waves on the specimen’s surface

(see Section 2.1).
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Figure 4.2: Dimensions of experimental setup.

The measurement data used in this research is from experiments conducted by

Benz [5], and Benz’s experimental setup is depicted in Figure 4.2. This study examines

a set of measurements which Benz obtained using the distances listed in Table 4.1.

Table 4.1: Measurement distances

d0[mm] d1[mm] d2[mm] d3[mm] d4[mm]
30 70 30 100 130

4.2 Reassignment of spectrograms

This section applies both conventional and modified differential reassignment tech-

niques (discussed in Chapters 2 and 3) to experimentally measured spectrograms.

First, conventional reassignment is used to localize the dispersion curves of a mea-

sured perfect plate signal. Then, the modified differential reassignment algorithm is

applied to the same measurement data. This allows for an easy comparison between

the two alternative methods.

The experimentally measured time domain signal is shown in Figure 4.3 before and

after high-pass filtering. The noise spike at time t = 0 is due to the electromagnetic

discharge of the Nd:YAG source laser. This spike is spurious and is windowed out

of the time domain signal before processing. Note that the time domain signal is

very complicated and it is very difficult to quantitatively interpret or to resolve the
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Figure 4.3: Time waveform before (top) and after (bottom) 200 kHz high-pass filter-
ing.

contribution of individual modes.

The high-pass filtered time domain signal is used to calculate the un-reassigned

spectrogram, and is shown in Figure 4.4 together with the theoretical mode solutions.

Refer to Figure 2.3 to identify the theoretical modes in Figure 4.4 and following fig-

ures. A 385-pt. Hanning window is used to calculate the STFT. Due to the uncer-

tainty principle, dispersion curves are ill-defined. Further note that the spectrogram

has been converted to the slowness-frequency domain. This is done to normalize the

signal with respect to propagation distance. For any given propagation distance d

and time t, energy slowness is defined as

sle =
t

d
. (4.1)

This transformation is linear in time. Hence, from an image processing point of view,
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the image as such does not change, what does change is the associated vertical axis.

Thus, transforming from the time-frequency to the slowness-frequency domain does

not affect the accuracy of any potential image processing techniques. However, this

transformation allows for comparison of signals with different propagation distances

to each other, and to the same theoretical mode lines.

Reassignment techniques are applied to localize the ill-defined dispersion curves

in the following subsections.
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Figure 4.4: un-reassigned spectrogram.
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4.2.1 Conventional reassignment

Conventional reassignment is described in Section 2.3.1.1 and is now applied to

obtain a reassigned version of the experimentally measured spectrogram shown in

Figure 4.4. The conventionally reassigned spectrogram is plotted in Figure 4.5. Spu-

rious components, which are introduced by the reassignment algorithm, are clearly

visible. In Figure 4.5, the lowest contour line corresponds to an energy square root

of 0.001. As the energy of most spurious components is lower than the energy that

is located on top of the theoretical dispersion curves, a threshold is applied to the

image, and all values below the threshold are then set to zero. The reassigned spec-

trograms shown in Figures 4.6, 4.7 and 4.8 have been obtained with threshold values

of 0.003, 0.01 and 0.03, respectively. In Figure 4.6, a significant amount of spurious

components has been eliminated, although many spurious peaks still remain. Even

more spurious components are eliminated in the reassigned spectrogram of Figure 4.7,

without a significant loss of dispersion curve information. Applying a comparatively

high threshold, as is done in Figure 4.8, eliminates most spurious components, but un-

fortunately, it also eliminates some “good” energy that corresponds to the theoretical

dispersion curves segments — this is especially true for the higher frequencies. Thus,

a more efficient procedure is needed; one that eliminates the spurious components,

yet keeps the energy associated with the theoretical dispersion curves. It should be

noted that applying a threshold violates the energy conservation requirement.

Figure 4.9 offers a zoomed-in view of the slowness-frequency region [1-2 MHz, 3-4

sle]. Ridges are far from smooth, spurious peaks are visible, and noise is generally

present.
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Figure 4.5: conventionally reassigned spectrogram.

60



0 2 4 6 8

200

250

300

350

400

450

500

550

600

frequency [MHz]

sl
ow

ne
ss

 [µ
s/

m
]

Figure 4.6: conventionally reassigned spectrogram, threshold 0.003.
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Figure 4.7: conventionally reassigned spectrogram, threshold 0.1.
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Figure 4.8: conventionally reassigned spectrogram, threshold 0.3.
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Figure 4.9: zoomed-in view on conventionally reassigned spectrogram.
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4.2.2 Modified differential reassignment

The theoretical background of differential reassignment is discussed in Section 2.3.1.2.

Chapter 3 derives a modified version of the differential reassignment algorithm, which

is now applied to reassign the experimentally measured spectrogram shown in Fig-

ure 4.4. The parameters used in the modified differential reassignment algorithm are

β = 5 · 10−4, κ = 1.3, and 4t = 0.0158.

Figures 4.10, 4.11, 4.12, and 4.13 show image evolution stages at t=0.0316, t=0.0791,

t=0.1582, and t=0.4745, corresponding to 4, 000, 10, 000, 20, 000, and 60, 000 itera-

tions, respectively.

This sequence of figures illustrates how the algorithm localizes dispersion curves

with time. Compare Figure 4.13 to Figure 4.7. Both algorithms localize about the

same dispersion curve information, but the differential version lacks spurious com-

ponents. Hence, with a comparable information content between conventional and

differential versions, the modified differential reassignment algorithm does increase

clarity. Now, compare Figures 4.13 and 4.8. In both cases, spurious components are

largely absent, although somewhat visible in the conventionally reassigned spectro-

gram. However, the differentially reassigned version includes significant energy that

corresponds to the theoretical dispersion curves (especially in the higher frequencies)

which do not appear in the conventionally reassigned spectrogram. Thus, with a com-

parable clarity between conventional and differential versions, the modified differential

reassignment algorithm does extract more information from the same spectrogram.
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Figure 4.10: reassigned spectrogram after 4, 000 iterations.
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Figure 4.11: reassigned spectrogram after 10, 000 iterations.
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Figure 4.12: reassigned spectrogram after 20, 000 iterations.
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Figure 4.13: reassigned spectrogram after 60, 000 iterations.

69



Furthermore, differentially reassigned dispersion curves are smoother than their

conventionally reassigned counterparts. This becomes even more obvious when con-

sidering the close-up views shown in Figures 4.9 and 4.14. Modified differential re-

assignment results in smoother ridges, as well as elimination of both spurious peaks

and noise. Note that anisotropic diffusion of Figure 4.9 does not yield a result which

is as localized as Figure 4.14.
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Figure 4.14: zoomed-in view on differentially reassigned spectrogram.

So far, all reassigned spectrograms were energy conservative. If energy conserva-

tion is not an issue, but a yes/no decision on measured information is desired, then a

threshold δ can be applied to Figure 4.13. All values below δ are set to zero, and all

values above δ are set to one. Figure 4.15 shows the obtained image for δ = 0.004.
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Figure 4.15: yes/no image on measured information.
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CHAPTER 5

Notch localization

Previous research by Hurlebaus et al. [14] formulates an autocorrelation-technique

to locate a notch in a plate. The autocorrelation procedure in [14] does not require,

nor was it developed with, a formal theoretical understanding of the scattering of a

Lamb wave by a notch. Later research by Benz [5, 13] refines the technique developed

in [14] both by exploiting a theoretical understanding of scattering, and by using the

reassigned spectrogram.

As was demonstrated in Section 4.2, the modified differential reassignment al-

gorithm achieves an increase in clarity of the reassigned spectrogram. Hence, this

chapter investigates the effects of an improved, reassigned spectrogram on notch lo-

calization performance. The first section outlines the notch localization technique

developed by [5, 13, 14], using the conventionally reassigned spectrogram. The sub-

sequent section presents the results that were obtained using the modified differential

reassignment technique developed in this research.

5.1 Localization using conventional reassignment

The notch localization procedure presented in [14] is based on the reflection off

the front edge of the notch. The measurement distances introduced in Figure 4.2

define notch location by its centerline. To consider the finite width of the notch, the

new distances

d′
0 = d0 −

ω

2
(5.1)

d′
3 = d3 −

ω

2
(5.2)

are introduced, defining notch location by its front edge.

72



Autocorrelation is used to localize the notch. Assume ∆d′
0 is the unknown distance

from probe 1 to the notch, compare Figure 4.2. By varying systematically ∆d′
0,

and thus the associated propagation distance d = d1 + 2∆d′
0, slowness-frequency

representations (SFRs) are calculated for each distance. Next, autocorrelate each

of these SFRs with the incident modes, i.e. with the SFR calculated with distance

d1. Obviously, this autocorrelation reaches its global maximum for a representation

calculated with ∆d′
0 = 0, as this corresponds to the correlation of two identical signals.

Reflections from both the notch and any plate edges will introduce additional, local

maxima in the correlation curve at certain ∆d′
0 > 0. These local maxima occur when

the reflected modes within the SFR coincide with the incident modes — which in

turn provides a measure of the receiver-notch distance. A ratio curve is obtained

by division of the autocorrelation of the notched plate by the autocorrelation of the

perfect plate. This emphasizes the local maxima caused by features that exist in the

notched plate but not in the perfect plate. Maxima due to reflections off the plate

edges are cancelled out, while those due to reflections off the notch are amplified.

Hurlebaus et al. [14] use an un-reassigned group-velocity frequency representation

to localize the notch, whereas Benz [5, 13] chooses a conventionally reassigned SFR.

He achieves a further improvement of localization clarity by limiting autocorrelation

to the frequency band from 0-2 MHz. This frequency limitation emphasizes the a0-

mode. Reflections do not convert the a0-mode through a wide frequency bandwidth,

making it the most significant mode for notch localization. Using his improvements,

Benz [5, 13] obtains the correlation curves shown in Figure 5.1 by varying ∆d′
0 between

0 and 120 mm with an increment step of 0.2 mm. The maximum of the ratio curve

locates the notch at ∆d′
0 = 29 mm, which is only 0.2 mm different from the actual

notch location at 29.2 mm.
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Figure 5.1: Correlation curves for conventional reassignment.
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5.2 Localization using modified differential reas-

signment

This section describes the effects of the modified differential reassignment algo-

rithm on notch localization performance. The SFRs of the notched and perfect plate

are reassigned using the algorithm derived in Chapter 3, with parameters β = 5 ·10−4

and κ = 5, computing 60, 000 iterations with 4t = 0.0158. These spectrograms sub-

stitute for the conventionally reassigned spectrograms Benz [5, 13] uses to localize the

notch.

Autocorrelation following the procedure described in Section 5.1 leads to the corre-

lation curves of the notched and perfect plate — both correlations curves are displayed

in Figure 5.2, using the logarithmic scale. Because modified differential reassignment
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Figure 5.2: Correlation curves for the notched and perfect plate.

eliminates spurious components, the autocorrelation curve of the perfect plate is al-

most zero for most of the assumed distances ∆d′
0 in Figure 5.2. A division of these
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two curves (notched/perfect) is shown in Figure 5.3 — this ratio curve provides poor

localization of the notch.

The reason for this is that small variations in the almost zero perfect plate auto-

correlation curve dominate the shape of the ratio curve so strongly that the notch at

∆d′
0 = 29.2 mm cannot be localized. Note that the almost zero perfect plate auto-

correlation curve causes the ratio curve in Figure 5.3 to have much larger values than

the ratio curve in Fig 5.1.
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Figure 5.3: Ratio curve.

To guarantee a more accurate accounting of the effect of the notch, the ratio

curve must be less sensitive to small variations in the reassigned SFR of the perfect

plate curve. This is achieved by introducing a threshold δ = 10−4. Whenever the

autocorrelation curve for the perfect plate is smaller than δ, the threshold value is

used instead to obtain the ratio curve. This scheme leads to the ratio curve shown in

Figure 5.4.
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Figure 5.4: Ratio curve with threshold δ.

The notch is localized at ∆d′
0 = 29.4 mm, which is again 0.2 mm different from the

actual notch location of 29.2 mm. More importantly, this curve is much sharper, and

its maximum value is much greater, demonstrating a more unequivocal set of results;

the localization results are more reliable if the ratio curve is a sharp impulse at the

exact notch location. Figure 5.4 has a sharp impulse very close to the actual notch

location, but also has smaller, spurious peaks in the vicinity of the notch. These

spurious peaks reduce localization performance, because it is not obvious if these

additional peaks localize additional notches, or not.

Consider Figure 4.13. For frequencies below approximately 330 kHz, the a0 mode

lies close to the vertical slowness axis. In this frequency region, the STFT introduces

spurious, horizontal ridges, which connect the slowness axis to the a0 mode. Note

that these spurious, horizontal ridges are an effect of the STFT, not of reassignment.

A wider window, having higher frequency and less time resolution, would introduce

vertical ridges at other locations instead. Hence, introduction of spurious ridges
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cannot be avoided by choosing another window type or length.

Recall from Section 4.2 that the time domain signal has been high-pass filtered

with a cutoff frequency of 200 kHz prior to calculating the STFT.
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Figure 5.5: Ratio curve for frequencies below 330 kHz, with threshold δ.

As a demonstration, consider an autocorrelation just for frequencies below 330

kHz — Figure 5.5 shows this ratio curve when limiting autocorrelation to frequencies

below 330 kHz. This ratio curve is inaccurate since there is a local minimum at the

actual notch location of ∆d′
0 = 29.2, and there are three spurious peaks close to the

actual notch location that correspond to the spurious peak locations in Figure 5.4.

Clearly, frequencies below 330 kHz should be excluded from an automated notch

localization.

Figure 5.6 shows the ratio curve obtained when limiting autocorrelation to the

frequency band 330 kHz – 2 MHz, together with the ratio curve of Figure 5.1.

Both reassignment methods lead to a very accurate notch localization, each be-

ing off by only 0.2 mm. However, this research obtains a peak which is much closer

78



0 10 20 30 40 50 60 70 80 90 100 110 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∆ d
0
’ [mm]

sc
al

ed
 r

at
io

 n
ot

ch
ed

 / 
pe

rf
ec

t

this research
previous research by Benz

Figure 5.6: Ratio curve for the frequency band 330 kHz - 2 MHz, with threshold δ.

to a sharp impulse. Thus, notch localization performance has been significantly in-

creased by using the modified differential reassignment algorithm, and by limiting

autocorrelation to the frequency band 330 kHz - 2 MHz.
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CHAPTER 6

Conclusion

This thesis develops a modification of differential reassignment. It derives a par-

tial differential equation (PDE) which fully describes image evolution due to energy

movement. Differential reassignment is then combined with anisotropic diffusion. Fi-

nally, travel velocity along reassignment trajectories is changed to allow for a more

favorable evolution with time.

A further contribution of this study is the application of the derived PDE to reas-

sign experimentally measured spectrograms for multi-mode guided waves. The mod-

ified differential reassignment technique enhances the clarity of reassigned slowness–

frequency–representations (SFR). Spurious components are eliminated, and mode dis-

persion curves are smoothed. These results constitute a qualitative way to measure

the increase in reassignment performance.

In a next step, this research uses improved, reassigned spectrograms for notch

localization. For this purpose, the reassigned SFRs of a notched and perfect plate

are autocorrelated. This research further refines the automated notch localization

technique by excluding low frequencies from the autocorrelation process. The results

achieved show an obvious improvement of notch localization performance. These

results constitute a more quantitative way to measure the increase in reassignment

performance.

This work makes a significant contribution by applying image processing method-

ologies to quantitative nondestructive evaluation. It clearly demonstrates the effec-

tiveness of applying image processing techniques to representations of experimentally

measured dispersion data. Image processing is not capable of creating new informa-

tion. However, it does provide means to view the same data in a different fashion,
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enabling extraction of formerly hidden information. By doing so, this thesis strength-

ens a link in the data processing chain to detect and localize notches in plate–like

structures.
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