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SUMMARY

Motivated by different e-commerce applications such as allocating virtual machines to

servers and online ad placement, we study new models that aim to capture unstudied ten-

sions faced by decision-makers. In online/sequential models, future information is often

unavailable to decision-makers—e.g., the exact demand of a product for next week. Some-

times, these unknowns have regularity, and decision-makers can fit random models. Other

times, decision-makers must be prepared for any possible outcome. In practice, several so-

lutions are based on classical models that do not fully consider these unknowns. One reason

for this is our present technical limitations. Exploring new models with adequate sources of

uncertainty could be beneficial for both the theory and the practice of decision-making. For

example, cloud companies such as Amazon WS face highly unpredictable demands of re-

sources. New management planning that considers these tensions have improved capacity

and cut costs for the cloud providers. As a result, cloud companies can now offer new ser-

vices at lower prices benefiting thousands of users. In this thesis, we study three different

models, each motivated by an application in cloud computing and online advertising.

From a technical standpoint, we apply either worst-case analysis with limited information

from the system or adaptive analysis with stochastic results learned after making an irrevo-

cable decision. A central aspect of this work is dynamic benchmarks as opposed to static

or offline ones. Static and offline viewpoints are too conservative and have limited inter-

pretation in some dynamic settings. A dynamic criterion, such as the value of an optimal

sequential policy, allows comparisons with the best that one could do in dynamic scenarios.

Another aspect of this work is multi-objective criteria in dynamic settings, where two or

more competing goals must be satisfied under an uncertain future. We tackle the challenges

introduced by these new perspectives with fresh theoretical analyses, drawing inspiration

from linear and nonlinear optimization and stochastic processes.

xiii



CHAPTER 1

INTRODUCTION

The rise of new problems in e-commerce has spurred revitalized interest in cost-effective

resource allocation. In the last couple of decades, companies such as Amazon, Google, Mi-

crosoft, and Meta (ex Facebook Inc.) have discovered the benefits of applying cutting-edge

academic developments in practical scenarios. As a result, tech companies have grown their

R&D departments steadily, hiring research scientists with specialized skills. For example,

Revelio Labs reported that Google employs the highest number of people with a Ph.D. in

STEM—at least 3000 of them having a Ph.D. in Computer Science. The runner-ups in the

list are Intel, Apple, and Microsoft [1].

In numbers, Amazon WS, Amazon’s public cloud computing subsidiary, has increased

its revenue from approximately 3 billion USD in 2013 to more than 62 billion USD in

2021 [2]. Likewise, Microsoft Azure, the second-largest public cloud provider, reported

about 50 billion USD in revenue in 2021 [3]. One of the reasons for the success of cloud

enterprises has been the introduction of virtualization in the early 2000s, which triggered

a rapid economy of scale. Recently, with never-ending improvements, such as the op-

timization of operative systems’ kernels [4], more energy-efficient integrated chips and

customized airflow [5], and new virtualization technologies such as containers [6], costs

and energy consumption have decreased even further for cloud providers. Thus cloud com-

puting has become an example of the success of integrated advancements coming from

multiple areas of knowledge.

Another example of success is online advertising. Meta reported that roughly 98% of the
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company’s revenue comes from online ad placement—this was approximately 84 billion

USD for 2020. The following year, 2021, Meta’s revenue increased to 114 billion USD [7].

In the 90s, when the internet was in its infancy, every user visiting a webpage would ob-

serve the same ads or banners. With the increasing use of personalized ads, auction-based

algorithms, and new classes of contracts such as pay-per-click, platforms started offering

better online experiences for both the advertisers and the users visiting webpages. Underly-

ing these advancements in cloud computing and online advertising, we can find fascinating

resource allocation models such as knapsack, bin packing, and bipartite matching, to name

a few.

Every mathematical model is an approximation of a real-world problem. Limited by our

current technology and present-day ingenuity, we simplify further these models to make

them tractable. For instance, one simplification is the reduction of random settings to aver-

aged models, which gives us fewer variables and numbers to work with but a less expressive

model. The loss of expressiveness—and possibly applicability—by simplifications is the

price paid for tractability. The field of operations research has come a long way since its

modern inception during World War II. For example, now we can solve linear models with

millions of variables in a matter of seconds [15]. Likewise, modeling perspectives have

become more complex. However, more complex models are good as long as they pre-

serve tractability. Applying models that do not consider basic behaviors of the real-world

problem leaves a lot to fix for practitioners and decision-makers (DM). Depending on the

risk aversion of DMs, some might be willing to go through post-processing steps to try

to remediate mistakes. On the other hand, the risk-averse DMs will often underutilize re-

sources to avoid losses. A better understanding of the sources of uncertainty and how to

react appropriately to them can help DMs reduce costs and improve the services for final

end-users. In this work, we aim to formulate new models for resource allocation, motivated

by applications in cloud computing and online advertising. These models extend some of

the ideas present in classical models but consider unstudied sources of uncertainty faced by

2



practitioners. We seek to provide solutions to the motivating application that are simple to

analyze and implement.

In the next section, we formalize the research questions posed by this thesis. These ques-

tions are later on answered by our proposed models.

1.1 Research Problems and Objectives

This thesis aims to shed light into the following fundamental questions:

1. How can we allocate resources while satisfying a baseline requirement under a highly

unpredictable environment? Uncertainty is at the core of many sequential problems,

and most of the time, we have to make decisions without knowing future data or

outcomes. Frequently, DMs agree to give end-users a minimum quality of service,

which most of the time translates into a hard baseline requirement. For instance,

cloud users buy resources and expect to find them whenever they connect to the

cloud. On the other side, DMs have their own goals, which often compete with the

baseline requirements. For example, it is common for cloud providers to aim for

high utilization of resources; however, this goal competes with the baseline require-

ments for cloud users. Indeed, just meeting baseline requirements can lead to poor

utilization of the resources, and just concentrating on utilization may deprive users

of computational resources. We propose a model for this question in Chapter 2. See

also the next section for a summary of that chapter.

2. How should we face the allocation of resources when the source of uncertainty is

revealed after an irrevocable decision? For example, it is hard to preempt the exact

resources users need in cloud computing before they start using their resources. In

another example, it is hard to know which user will click on an ad in online adver-

tising. Unfortunately, many models ignore the effects of the uncertainty and leave

3



the practitioners to deal with it. We tackle this question with dynamic models that

consider by design that sources of uncertainty are revealed after making irrevocable

decisions. This introduces new burdens, such as observing outcomes predicted by

the model but undesirables for the DM. We provide in this thesis solutions that can

recourse under any possible outcome while staying close to an optimal target solu-

tion. Moreover, from a complexity standpoint, these solutions are easy to compute

and implement.

3. How should we benchmark algorithms in online/sequential environments? Bench-

marking a solution is essential to communicate its quality. Competitive analysis [13]

has been the gold standard for benchmarking algorithms for a long time. In this set-

ting, we often compare the output value of an algorithm against the optimal output of

a (possibly nonexistent) algorithm. In several settings, this metric is uninformative

(e.g., see Chapter 3 for an example). Therefore, we require more precise metrics

depending on the model. We explore in this thesis different metrics for different

models, and we justify our choice in each case. Sometimes, this choice is based on

community standards, while in other cases, this choice will be based on the tightest

value that gives some meaningful information about our model.

1.2 Contributions of the Thesis

We answer these questions by studying different models for cloud computing and online

advertising applications. Despite the straightforward application of the models, each of

them is presented as general as possible to make them suitable beyond the motivational

application. The following is a summary of the contributions of this thesis:
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1.2.1 Dynamic Resource Allocation in the Cloud

In Chapter 2, we develop an online algorithm for allocating a resource in shared systems

while satisfying a baseline requirement. In past years, multiple companies have started

offering public cloud services at a low cost, e.g., Amazon WS and Microsoft Azure. Con-

sequently, common end-users now have easy access to high-end computing technology.

Sharing resources efficiently, such as CPU and bandwidth, between different users and tak-

ing advantage of economies of scale make this business model viable. Each cloud user

has different demand patterns and requirements. The offered service often comes with

a service-level agreement (SLA) that specifies the amount of resources a user is entitled

to. Usually, providers would like to operate resources at high utilization while satisfying

all the SLAs. Yet, these goals compete with each other. Just meeting SLAs can lead to

poor utilization, and just concentrating on utilization may deprive users of computational

resources.

Contributions

We propose a discrete-time online model for a single shared resource that considers the fol-

lowing: (1) We digress from known stochastic models to adversarial users’ demand model,

i.e., we make no assumption over the demands. (2) We consider limited feedback from

the system—common in many cloud settings—indicating users with non-empty backlogs,

namely, the active users. (3) We introduce the notion of SLA satisfaction, which occurs

when work done for a user in any window of time is at least the work done by her SLA.

We introduce an algorithm with provable near-optimal resource utilization and approximate

SLA satisfaction, for each user. We base our algorithm on multiplicative updates. Since we

are unable to see the lengths of users’ backlogs, we pretend that active users have gigantic

backlogs. From here, we extract a multiplicative update rule that boosts active users; how-

ever, active users who are assigned less than their SLA are boosted slightly more than the
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rest. We provide regret-like guarantees against any dynamic offline solution—rather than

static solutions often found in regret analysis. We use our algorithm’s dynamic to construct

dual feasible solutions of a dynamic work-maximization LP. For SLA satisfaction, using

the boosted update, we show that users with a backlog recover their SLA requirements in

a few steps. Finally, we present extensive empirical studies of our algorithm on synthetic

data and real data from production services in Microsoft’s cloud.

The results of this chapter appeared in the INFORMS Journal of Operations Research [139].

This was joint work with M. Singh, A. Toriello and I. Menache (Microsoft Research). A

preliminary version of this article was a runner-up for the 2019 ICS Student Paper Prize.

1.2.2 Adaptive Bin Packing with Overflow

In Chapter 3, we examine a general stochastic bin packing problem. In the standard online

bin packing formulation, n items with sizes in [0, 1] arrive in an online fashion, and we aim

to pack the items into the fewest possible unit-capacity bins. Applications appear in virtual

machine (VM) allocation, scheduling problems, and others. In many cases, the items’ sizes

are uncertain and modeled via probability distributions, with most of the models assuming

that sizes are known upon arrival. Yet, in many practical cases, this is unrealistic. In

VM allocation into servers, the resources required by VMs are often uncertain and deviate

from their typical utilization. VMs with utilization higher than expected can destabilize

the server, affecting operating costs; however, we can only learn the resources used after

allocating the VM.

Contributions

We introduce an online bin packing problem that considers the following: (1) Arrivals are

adversarial distributions and the length of the item sequence is unknown to the decision-

maker. (2) In contrast to existing work in stochastic bin packing, when an item arrives,

the decision-maker only sees a distribution of its size. (3) The decision-maker learns the
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item’s actual size only after irrevocably placing it in a bin; hence, overflowing a bin is a

possibility. (4) An overflowed bin incurs in a large penalty and renders the bin unusable

from that point on—e.g. a server overload. The goal is to minimize the expected cost given

by the sum of the number of open bins and the overflow penalty.

We design an online algorithm that incurs an expected cost of at most a constant factor times

the cost incurred by the optimal packing policy when item sizes are an i.i.d. sequence. Our

algorithm keeps the number of overflowed bins bounded by a small fraction of the bins

used. This is appealing for risk-averse applications where overflowing bins might affect

largely the operating costs. Our proofs are based on careful modifications of decision trees

that transform any decision tree into the decision tree of our algorithm, by incurring in a

constant multiplicative loss. We also consider the sequential offline version of the packing

problem, where we know all the distributions in advance. We design a polynomial-time

approximation scheme policy with a small additional bin capacity. We also show that

computing the optimal cost is #P-hard.

The results of this chapter were published in the INFORMS Journal of Mathematics of

Operations Research [141]. This article was joint work with M. Singh and A. Toriello.

1.2.3 Robust Online Selection with Uncertain Offer Acceptance

In Chapter 4, we digress from cloud computing applications, and we move to a model mo-

tivated by online advertising. Effective online advertising has been crucial for companies

like Meta and Google. However, not only big companies benefit from displaying ads on-

line. Numerous small businesses now have access to global platforms and higher chances

to reach the right customers. It has been estimated that the click-through rates (CTR) are

relatively small, of the order of 1% [71]. That means that out of 100 online users who ob-

serve the same ad on a web page, only one will click on it on average. The current models

used to design algorithmic solutions for online advertising either ignore the effect of CTR
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or average it to the model’s objective. Studying models and implementing solutions that

take into account CTR and the impact of users ignoring ads could potentially increase the

revenue for the platforms and the service for the advertisers.

Contributions

We model this problem as a secretary problem, where candidates (the users) can reject the

offer (the ad). A sequence of competing candidates arrives online in random order. Upon

arrival, we can assess the quality of the candidate compared to previously observed ones,

and we either extend an offer to the candidate or move on to assess the next one, without the

possibility of recalling previously observed candidates. The candidate can accept the offer

with probability p and the process ends, or reject it, in which case we move on to assess the

next one. Suppose that we knew that a top k candidate is willing to accept an offer, then

we would like to maximize the probability of making an offer to one of such candidates. In

reality, we do not know k, thus we consider a robust objective that maximizes the minimum

of all these probability-based scenarios for all k. A robust objective of at least γ guarantees

a probability of success at least γ in any of these possible scenarios where a top k candidate

is willing to accept an offer.

We provide an optimal algorithm, which attains the optimal robust objective. The algorithm

solves a linear program (LP) and implements its optimal solution in the input sequence.

We use a Markov decision processes framework to deduce our LP, and this deduction is

generalizable to other online selection problems. We further our analysis by providing

closed-form bounds for the robust objective and near-optimal policies. We do this by using

an infinite LP, the limit of our LP when the number of candidates goes to infinite. Moreover,

in utility settings, we show that our algorithm is optimal among all algorithms that can

make decisions based on the rank of the values and attains a fraction of at least the robust

objective of the optimal offline value.
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Part of this chapter is in the preprint [140]. This is joint work with M. Singh and A. Toriello.
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CHAPTER 2

DYNAMIC RESOURCE ALLOCATION IN THE CLOUD WITH

NEAR-OPTIMAL EFFICIENCY

Cloud computing has motivated renewed interest in resource allocation problems with new

consumption models. A common goal is to share a resource, such as CPU or I/O band-

width, among distinct users with different demand patterns as well as different quality of

service requirements. To ensure these service requirements, cloud offerings often come

with a service level agreement (SLA) between the provider and the users. An SLA speci-

fies the amount of a resource a user is entitled to utilize. In many cloud settings, providers

would like to operate resources at high utilization while simultaneously respecting individ-

ual SLAs. There is typically a tradeoff between these two objectives; for example, utiliza-

tion can be increased by shifting away resources from idle users to “scavenger” workload,

but with the risk of the former then becoming active again. We study this fundamental

tradeoff by formulating a resource allocation model that captures basic properties of cloud

computing systems, including SLAs, highly limited feedback about the state of the system,

and variable and unpredictable input sequences. Our main result is a simple and practical

algorithm that achieves near-optimal performance on the above two objectives. First, we

guarantee nearly optimal utilization of the resource even if compared to the omniscient

offline dynamic optimum. Second, we simultaneously satisfy all individual SLAs up to a

small error. The main algorithmic tool is a multiplicative weight update algorithm, and a

primal-dual argument to obtain its guarantees. We also provide numerical validation on

real data to demonstrate the performance of our algorithm in practical applications.

The content of this chapter appeared in the INFORMS Journal of Operations Research,
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2021 [139]. It was joint work with M. Singh, A. Toriello, and I. Menache. This work was

also supported by the U.S. National Science Foundation via grants CMMI 1552479, AF

1910423 and AF 1717947.

2.1 Introduction

Cloud computing has motivated renewed interest in resource allocation, manifested in new

consumption models (e.g., AWS spot pricing), as well as the design of resource-sharing

platforms [99, 170]. These platforms need to support a heterogenous set of users, also

called tenants, that share the same physical computing resource, e.g., CPU, memory, I/O

bandwidth. Providers such as Amazon, Microsoft and Google offer cloud services with

the goal of benefiting from economies of scale. However, the inefficient use of resources –

over-provisioning on the one hand or congestion on the other – could result in a low return

on investment or in loss of customer goodwill, respectively. Hence, resource allocation

algorithms are key for efficiently utilizing cloud resources.

To ensure quality of service, cloud offerings often come with a service level agreement

(SLA) between the provider and the users. An SLA specifies the amount of resource the

user is entitled to consume. Perhaps the most common example is renting a virtual machine

(VM) that guarantees an explicit amount of CPU, memory, etc. Naturally, VMs that guar-

antee more resources are more expensive. In this context, a simple allocation policy is to

assign each user the resources specified by their SLAs. However, such an allocation can be

wasteful, as users may not need the resource at all times. In principle, a dynamic allocation

of resources can increase the total efficiency of the system. However, allocating resources

dynamically without carefully accounting for SLAs can lead to user dissatisfaction.

Recent scheduling proposals address these challenges through work-maximizing yet fair

schedulers [176, 82]. However, such schedulers do not have explicit SLA guarantees. On

the other hand, other works focus on enforcing SLAs [54, 104, 88], but do not explicitly

11



optimize the use of extra resources.

Our goal in this work is to understand the fundamental tradeoff between high utilization

of resources and SLA satisfaction of individual users. In particular, we design algorithms

that guarantee both near optimal utilization as well as the satisfaction of individual SLAs,

simultaneously. To that end, we formulate a basic model for online dynamic resource

allocation. We focus on a single divisible resource, such as CPU or I/O bandwidth, that has

to be shared among multiple users. Each user also has an SLA that specifies the fraction

of the resource it expects to obtain. The actual demand of the user is in general time-

varying, and may exceed the fraction specified in the SLA. As in many real systems, the

demand is not known in advance, but rather arrives in an online manner. Arriving demand is

either processed or queued up, depending on the resource availability. In many real-world

scenarios, it is difficult to measure the actual demand size (see, e.g., [133]). Accordingly,

we assume that the system (and the underlying algorithm) receives only a simple binary

feedback per user at any given time: whether the user queue is empty (the user’s work

arriving so far has been completed), or not. This is a plausible assumption in many systems,

because one can observe workload activity, yet anticipating how much of the resource a job

will require is more difficult. Additionally, it also models settings where demands are not

known in advance.

While online dynamic resource allocation problems have been studied in different contexts

and communities (see Section 2.1.3 for an overview), our work aims to address the novel

aspects arising in the cloud computing paradigm, particularly the presence of SLAs, the

highly limited feedback about the state of the system, and a desired robustness over arbi-

trary input sequences. For the algorithm design itself, we pay close attention to practicality;

our approach involves fairly simple computations that can be implemented with minimal

overhead of space or time. Our algorithm achieves nearly optimal utilization of the re-

source, as well as approximately satisfying the SLA of each individual user. We see two
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main use-cases for the algorithm:

• In enterprise settings (“private cloud”), different applications or organizations share

the same infrastructure. These often have SLAs, but providers would still like to

maximize the ROI by maximizing utilization [148].

• In public clouds, users buy VMs, which are offered at different “sizes” (which is

practically the SLA). In addition, the service providers offer “best-effort” alterna-

tives, such as Azure Batch (MS) or Spot instances (AWS). In our model, these ser-

vices can be modeled by giving an SLA of zero. Here, satisfying the VM SLAs

and achieving high utilization are both important; indeed, the provider is paid for

the best-effort workloads only if it completes these jobs. Our work can be viewed

as a principled way to accommodate such services, and even give VMs better ser-

vice than expected, an important consideration as public cloud offerings gradually

become commoditized.

2.1.1 The Model

We consider the problem of having multiple tenants or users sharing a single resource,

such as CPU, I/O or networking bandwidth. For simplicity, we assume that the total re-

source capacity is normalized to 1. We have N users sharing the resource, a finite but

possibly unknown discrete time horizon indexed t = 1, . . . , T , and an underlying queuing

system. For each user i, we are also given an expected share of resource β(i) ≥ 0 satisfying∑N
i=1 β(i) ≤ 1. The input is an online sequence of workloads L1, . . . , LT ∈ RN

+ , where

Lt(i) ≥ 0 corresponds to i’s workload arising at time t. The system maintains a queue

Qt(i), denoting i’s remaining work at time t. In our model, the decision maker does not

have direct access to the values of the queues or the workloads. This allows us to consider

settings where the job sizes are not known in advance and minimal information is available

about the underlying system, a regular occurrence in many cloud settings. At time t, the
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following happens:

1. Feedback: The decision maker observes which queues are non-empty (the set of

users i with Qt(i) > 0, the active users), and which are empty (Qt(i) = 0, the

inactive users).

2. Decision: The decision maker updates user resource allocations ht(i), satisfying∑
i ht(i) ≤ 1.

3. Update: The load Lt(i) for each i arrives and each user processes as much of the

work from the queue plus the arriving workload as possible. The work completed by

user i in step t is

wt(i) := min{ht(i), Lt(i) +Qt(i)}.

The queues at the end of the time step are updated accordingly,

Qt+1(i) = max{0, Lt(i) +Qt(i)− ht(i)}.

We assess the performance of any algorithm based on two measures.

1. Work Maximization. The algorithm should maximize the total work completed over

all users, and thus utilize the resource as much as possible.

2. SLA Satisfaction. The algorithm should (approximately) satisfy the SLAs in the

following manner. The work completed by user i up to any time 1 ≤ t ≤ T should

be no less than the work completed for this user up to t if it were given a constant

β(i) fraction of the resource over the whole horizon.

Achieving either of the criteria on their own is straightforward. A greedy strategy that

takes away resources from an idle user and gives them to any user whose queue is non-

empty is approximately work-maximizing (see Appendix 2.A.5 for details). On the other
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hand, to satisfy the SLAs, we give each user a static assignment of ht(i) := β(i) for all t.

Naturally, the two criteria compete with each other; the following examples illustrate why

these simple algorithms do not satisfy both simultaneously.
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Figure 2.1: Example of loads and work for 3 users. The blue dashed lines show each user’s
workload. The green areas represent the work done by the users. The red dashed lines
depict SLAs.

Example 1. We have a shared system with three users and corresponding SLAs β(1) =

0.5, β(2) = 0.2 and β(3) = 0.3. Loads are defined by

Lt(1) =


1 t = 1, . . . , T/3, 2T/3 + 1, . . . , T

0 t = T/3 + 1, . . . , 2T/3

, and Lt(2) = Lt(3) = 1− Lt(1).

We assume that T is divisible by 3. In Figure 2.1 we show the three users’ loads in blue

dashed lines and the corresponding SLAs in dotted red lines. The static solution given by

the SLAs, i.e. ht(i) = β(i) for all t, ensures a total of 5T/6 work done. However, the

dynamic policy shown in the green line, given by

t [0, T/3] [T/3 + 1, 2T/3] [2T/3 + 1, T ]

ht(1) 1 0 0.5

ht(2) 0 0.4 0.2

ht(3) 0 0.6 0.3

ensures T work is done (the green area). Moreover, it also ensures SLA satisfaction at all

times. An alternative policy is
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t [0, T/3] [T/3 + 1, 2T/3] [2T/3 + 1, T ]

ht(1) 1 0 0

ht(2) 0 1 0

ht(3) 0 0 1

which is also work maximizing. However, it does not ensure SLA satisfaction. Indeed, this

policy does not satisfy user 3’s SLA at any time in (T/3, 2T/3].

We remark that achieving both criteria is relatively simple if we allow the decision maker

to observe demand or even the queue length. This can be achieved by first allocating to

each user as much of the resource as necessary up to their SLA, and then distributing the

remaining resource arbitrarily among users with additional demand. The versatility of our

setting stems from the limited feedback in the form of binary information about idle and

busy users. In our cloud computing context, full demand information or even visible queue

lengths are unrealistic assumptions.

2.1.2 Results and Contributions

We design a simple and efficient online algorithm that achieves approximate work maxi-

mization as well as approximate SLA satisfaction even in the limited feedback model that

we consider. For work maximization, we analyze the performance by comparing our algo-

rithm to the optimal offline dynamic allocation that knows all the data up front. In contrast,

our online algorithm receives limited feedback even in an online setting. Thus, our aim is

to minimize the quantity

workh∗1,...,h
∗
T
−workalg =

T∑
t=1

∑
i

w∗t (i)−
T∑
t=1

∑
i

wt(i),

where workh∗1,...,h
∗
T

is the optimal offline work done by dynamic allocations h∗1, . . . ,h
∗
T ,

w∗t = (w∗t (1), . . . , w∗t (N)) is the work done at time t by these allocations, and workalg is the

work done by the algorithm with allocations h1, . . . ,hT and work wt = (wt(1), . . . , wt(N))
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at time t. The objective of the decision maker is to minimize this quantity by constructing a

sequence of good allocations that approach the best allocations in hindsight. Note that our

benchmark is dynamic, rather than the more common static offline optimum usually consid-

ered in regret minimization [16, 96, 155]. Similarly, for SLA satisfaction, our benchmark

is the total work done for a user if they were given β(i) resources for each time 1 ≤ t ≤ T .

We give a bi-criteria online algorithm that achieves nearly the same performance as the

benchmarks if the resources for the latter are slightly more constrained than that of the al-

gorithm. Algorithm 1, which we formally describe in Section 2.2, follows a multiplicative

weight approach. The idea is to boost the allocations of active users by a factor greater

than 1, with more emphasis on users with current allocation below their SLA. This intu-

ition translates into a simple update that ensures high utilization of the resource and SLA

satisfaction; formally:

Theorem 2.1. For any input parameter 0 < ε ≤ 1/10, SLAs β = (β(1), . . . , β(N))

satisfying β(i) ≥ 2 ε
N

, and online loads L1, . . . , LT ∈ RN
≥0, Algorithm 1 achieves the

following guarantees:

1. Approximate Work Maximization. Let h∗1, . . . ,h
∗
T ∈ [0, 1]N be an optimal offline

sequence of allocations such that
∑

i h
∗
t (i) = 1 for all 1 ≤ t ≤ T . Then

workalg ≥ (1− ε) workh∗1,...,h
∗
T
−O (Nε−2 log(N/ε)) .

2. Approximate SLA Satisfaction. There exists p̃ = p̃(N, ε) = O (N2ε−3 log(N/ε))

such that for any user i and time t, if we take h′1, . . . ,h
′
T ∈ [0, 1]N to be any sequence

of allocations with h′t(i) ≤ β(i), then

t∑
τ=1

wτ (i) ≥ (1− 2ε)
t∑

τ=1

w′τ (i)− β(i)p̃,
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where w′t is the work performed by the allocations h′1, . . . ,h
′
T .

The first part of Theorem 2.1 asserts that if T is known for the system, we can achieve

workoffline−workalg ≤ O(T 2/3 log T ) with ε = Θ
(
N1/3

T 1/3

)
. However, this choice of ε is

suboptimal for SLA satisfaction. We can achieve an improved bound for SLA satisfaction

(when t = T ) by picking ε = Θ
(
N1/3

T 1/4

)
. If T is unknown, we can use a standard doubling

trick, see for example [155]. Summarizing, we obtain the following result.

Corollary 2.1.1. For ε = Θ
(
N1/3

T 1/4

)
, Algorithm 1 guarantees

workh∗1,...,h
∗
T
−workalg ≤ O(N1/3T 3/4 +N1/3T 1/2 log(NT )) = O(N1/3T 3/4),

where h∗1, . . . ,h
∗
T are optimal offline dynamic allocations.

As T grows, Corollary 2.1.1 guarantees that the rate of work done by our algorithm workalg

T
,

approaches the rate of work done by the optimal dynamic solution
workh∗1,...,h

∗
T

T
. We empha-

size again that this is a stronger guarantee using the much more powerful optimal dynamic

solution as a benchmark, rather than the typical static allocation used in regret analysis for

online algorithms. Such a guarantee can be obtained in our model because the incomplete

work remains stored in the queues until we are able to finish it; this allows the algorithm to

catch up with the incomplete work.

The second result in Theorem 2.1 states that the work done by any individual user is com-

parable to the work done by their promised SLA. In other words, the user’s queue length

is not much larger than it would be under a static SLA allocation. By using ε = Θ
(
N1/3

T 1/4

)
we obtain the following result.

Corollary 2.1.2. Let ε = Θ
(
N1/3

T 1/4

)
. For a user i, QT (i) ≤ Q′T (i) +O(NT 3/4 log(NT )),

where Qt is the queue given by Algorithm 1 and Q′t is the queue induced by any dynamic

policy h′1, . . . ,h
′
T with h′t(i) ≤ β(i).

18



We remark that we need to bound the SLAs away from ε
N

; in Theorem 2.1 we use the

bound β(i) ≥ 2 ε
N

. This condition is necessary in our analysis to guarantee that there is

an over-provisioned (ht(i) > β(i)) user from which we can move allocation to an under-

provisioned user. See Theorem 2.5 for details and a more relaxed bound.

Corollary 2.1.1’s guarantee is near-optimal asymptotically in T in terms of work maximiza-

tion, as the following result shows. The proof of this result appears in Appendix 2.A.6.

Theorem 2.2. For any online deterministic algorithmA for our model, there is a sequence

of online loads L1, . . . , LT such that workh∗1,...,h
∗
T
−workA = Ω

(√
T
)

, where h∗1, . . . ,h
∗
T

are optimal offline dynamic allocations.

Our algorithm follows a mirror descent approach [24, 96]. Unable to see the lengths of the

queues, a (naive) approach is to pretend that active users have gigantic queues. From this

approach we extract a simple update rule that multiplicatively boosts active users; however,

active users who are under their SLA are boosted slightly more than other active users. If

inactive users are assigned more than ε of the resource, where ε is the algorithm parameter,

active users ramp up their allocation in few iterations. In the opposite case, at least 1− ε of

the resource is assigned to active users, and the slight boost to users below their SLA en-

sures a healthy re-balancing of the resource. We show that this efficient heuristic strategy is

enough to achieve approximate work maximization and SLA satisfaction. We remark that

the mirror descent interpretation is only used to provide intuition for the algorithm, and

our proofs follow a different path than the usual mirror descent analysis. Later, we detail a

slight modification that enjoys the same theoretical guarantees as Algorithm 1 but in prac-

tice exhibits more desirable behavior (see Algorithm 2). Intuitively, among active users,

the modified algorithm tries to keep allocations proportional to their SLAs. This behavior

is appealing; for example, a user A with twice the SLA of another user B would expect

in practice to perform at least twice as much work. Similarly, user B would expect to

receive no less than half of user A’s allocation. This second algorithm exhibits another in-
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teresting feature; it can be applied to over-committed regimes with
∑N

i=1 β(i) > 1, remain

work-maximizing, and satisfy a normalized version of SLA satisfaction (see Section 2.3.4).

The analysis of the algorithm relies on a primal-dual fitting approach. For work maximiza-

tion, we can write the offline dynamic optimal allocation as a solution to a linear program

and then construct feasible dual solutions with objective value close to the algorithm’s re-

source utilization. A crucial ingredient of the algorithm is the use of entropic projection on

the truncated simplex, which ensures every user gets at least a ε/N fraction of the resource

at all times. Intuitively, this means any user with a non-empty queue will recover their SLA

requirement in a few steps.

We do an extensive analysis of our algorithm on synthetic data as well as real data obtained

from CPU traces of a production service in Microsoft’s cloud. We aim to quantify the per-

formance of the algorithm on three objectives, (i) work maximization, (ii) SLA guarantee

and (iii) queue behaviour. While our theoretical results give guarantees for these objectives,

we show experimentally that the algorithm exceeds these guarantees. We benchmark the

algorithm against natural online algorithms, such as a static allocation as given by the SLA

guarantee, or the algorithm that aims to proportionally distribute the resource among active

clients (according to their SLA). We also benchmark against offline algorithms that know

all input data up front; our algorithm’s performance on various measures is comparable to

the offline algorithms.

This work is organized as follows. In Section 2.2, we present the preliminaries and the

basic version of the multiplicative weight algorithm. Section 2.3 contains the proof of

Theorem 2.1 in the bi-criteria form. We split the proof into two parts: work maximization

in Section 2.3.2 and SLA satisfaction in 2.3.3. In Section 2.3.4, we present the extension of

our algorithm and its guarantees. Finally, in Section 2.4 we present numerical experiments

that empirically validate our results, and conclude in Section 2.5.
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2.1.3 Related Work

There has been growing interest in resource allocation problems arising from cloud com-

puting applications, both from a practical as well as a theoretical standpoint [88, 99, 148,

104, 54, 133, 170, 134, 130]. The focus of many of these works has been to understand the

trade-offs between efficiency and ensuring guarantees to individual users.

On the more theoretical side, the cloud computing allocation problem has been modeled

as a stochastic allocation problem [126, 125, 124]. The underlying models draw inspira-

tion from a large body of work on stochastic network control, originating from the seminal

work of [165, 166], followed by additional related research, e.g., on uplink and downstream

scheduling in wireless networks [135, 136]. The analytical results in these papers charac-

terize the stability region of the arrival processes under certain stochastic assumptions (e.g.,

i.i.d. processes), and suggest algorithms that achieve maximal throughput. The main dis-

tinction between these works and ours is that we assume an adversarial input, i.e., we do

not make stationary distributional assumptions on the input. Another difference is that our

model centers on the notion of an SLA which is known to the algorithm. This allows us to

address the over-committed case (see Algorithm 2), which is especially relevant in cloud

settings.

Despite these modeling differences, there are some parallels worth mentioning. For ex-

ample, we design algorithms with rate of work workalg

T
approaching the optimal offline rate

of work; this translates to the average delay 1
T

∑T
t=1

∑N
i=1Qt(i) converging to the optimal

offline average delay. This result can be compared to the limiting behavior of the Markov

process in many of the stochastic network models. For example, [136] studies a system of

N users connecting to a server via ON/OFF channels. The paper presents an algorithm that

ensures bounded average delay lim supT
1
T
E
[∑T

t=1

∑N
i=1 Qi(t)

]
for any input within the

interior of the stability region; here Qi(t) is the i-th user’s backlog (queue length) at time

t. Much of the stochastic network literature assumes full knowledge of queue lengths, e.g.

21



the LCQ policy in [166], although there are studies that limit the information available to

the decision maker in a similar fashion to our model (see [118, 135, 124, 157]).

More broadly, the general problem of online resource allocation has been studied in both

stochastic and adversarial settings; we refer the reader to the books [13, 29, 163] on the

topic. Our work differs from the aforementioned lines of research by combining the three

following elements already present in the literature. First, as mentioned above, we digress

from the stochastic arrival model to the adversarial setting and worst-case analysis. This

makes our algorithm robust against unpredictable users’ demands. For instance, demands

in the morning could be totally different from demands in the afternoon or the morning of

the next day. We are able to provide a single strategy that adapts easily to any scenario.

Second, we provide simple online algorithms that perform well even under limited feed-

back, a typical situation in cloud systems in which we can only determine the utilization of

a resource after it has been allocated. Finally, we consider SLA satisfaction as a measure

of user contentment, and seek to satisfy it up to a small error.

There is now an extensive literature devoted to the pricing of cloud computing services. In

[123] the authors study a genetic model for generating a suitable pricing function in the

cloud market. In [81], pricing is studied via a revenue management formulation to address

resource provisioning decisions. See also [138, 156] for more pricing models. A closely

related topic is fairness in resource allocation [176, 82]. Although we do not directly

consider pricing, work maximization could be interpreted as a way to obtain extra revenue

by allocating unused resources to active users.

More recently, there has been work considering over-commitment in the cloud [49, 86, 55],

that is, selling resources beyond server capacity. One of the objectives of over-commitment

is to reduce the number of servers opened in order to minimize energy consumption. In our

basic model, we do not assume over-commitment, yet our algorithm can still be applied

to that setting (see Algorithm 2). Specifically, we obtain a normalized version of SLA
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satisfaction in the over-commitment setting, where the guarantees depend on how much

the system is over-committed (see Section 2.3.4).

A fundamental tool in our design is mirror descent algorithms [24]. These first-order it-

erative algorithms have been widely used in optimization [24], online optimization and

machine learning [96, 131, 155] to generate update policies under limited feedback. Simi-

larly, multiplicative weights algorithms have been widely studied in optimization [142, 16],

online convex optimization [96], online competitive analysis [35] and learning theory [76,

155]. Our results bear some resemblance to regret analysis, where typically the benchmark

is the optimal offline static policy [155, 96, 8, 33, 76]; the use of a dynamic benchmark (as

in our work) is scarcer in the literature, see e.g. [93, 132, 178, 177].

2.2 Algorithm

2.2.1 Preliminaries

For N ≥ 1, we identify the set of users with the set [N ] = {1, . . . , N}. For 0 < ε < 1, we

call an allocation h = (h(1), . . . , h(N)) ∈ [0, 1]N a (1− ε)-allocation if
∑

i h(i) ≤ 1− ε.

We assume N ≥ 2, that is, the system consists of at least two users.

For any t, we define the set of active users at that time as the set of users with non-empty

queue, and denote this set by At. Observe that ht(i) = wt(i) for all active users. Let

Bt = [N ]\At be the sets of users with empty queues at time t; we call these users inactive.

At andBt correspond to the feedback given to the decision maker. Also, letA1
t = {i ∈ At :

ht(i) < β(i)} be the set of active users with allocation below their SLA and A2
t = At \ A1

t

be the set of active users receiving at least their SLAs.

We assume without loss of generality that the allocations set by the decision maker always

add up to 1. We propose an algorithm that uses a multiplicative weight strategy to boost

a subset of users by multiplying their allocation by factor greater than one. Because the
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allocations do not sum to one after applying the update, we then project them onto the

simplex using the KL-divergence metric. Furthermore, to ensure no user gets an allocation

arbitrarily close to zero, we in fact project onto the truncated simplex,

∆ε = {x = (x(1), . . . , x(N)) : ‖x‖1 = 1, x(i) ≥ ε/N,∀i}.

To fix notation, let π∆ε(·) be the projection function onto ∆ε using Kullback–Leibler di-

vergence (KL-divergence for short), i.e., π∆ε(y) := argminx∈∆ε

∑
i x(i) log(x(i)/y(i)),

where y = (y(1), . . . , y(N)) ∈ RN
≥0. In Appendix 2.A.1, we show how to efficiently com-

pute this projection. The following proposition states some basic facts that are useful in our

analysis. The proof appears in Appendix 2.A.1.

Proposition 2.3. Let y ∈ RN
+ , x = π∆ε(y), and S = {i : x(i) = ε/N}. Then:

(a) If y(1) ≤ y(2) ≤ · · · ≤ y(N), then S = {1, . . . , k} for some k ≥ 0.

(b) x(i) = y(i)eµiC, where C =
(

1− ε
N
|S|∑

j 6∈S y(j)

)
, µi ≥ 0 for all i and µi = 0 for i /∈ S.

(c) x can be computed in O(N logN) time.

2.2.2 The Multiplicative Weight Algorithm

We propose an algorithm that follows a multiplicative weight strategy (see Algorithm 1).

We describe here the basic approach given by the mirror descent algorithm. In Section 2.3.4

we present an extension of the algorithm that in practice shows a better relation between

the allocations and the ratios between the SLAs.
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Algorithm 1: Multiplicative Weight Update Algorithm
Input: Parameters 0 < ε ≤ 1

10
, 0 < η < 1

3
.

1 Initialization: h1 any allocation over ∆ε and λ = ε2

8N
.

2 for t = 1, . . . , T do

3 Set allocation ht.

4 Read active and inactive users At and Bt. A1
t = {i ∈ At : ht(i) < β(i)},

A2
t = At \ A1

t .

5 Set gain function gt(i) =


1 + λ i ∈ A1

t

1 i ∈ A2
t

0 i ∈ Bt

.

6 Update allocation:

ĥt+1(i) = ht(i)e
ηgt(i).

ht+1 = π∆ε(ĥt+1).

Intuitively, the algorithm boosts active users at the expense of inactive ones, and boosts

users slightly more if they are currently under their SLA. The algorithm update rule comes

from a mirror descent approach applied to a Lagrangian relaxation of a work-maximization

linear function at time t. More formally, under the assumption that active users have a

huge queue, we aim to maximize the objective
∑

i∈At wt(i) subject to wt(i) ≥ β(i) for

i ∈ At. The update rule is obtained after applying a mirror descent with a KL-divergence

distance generating function over the simplex to the Lagrangian relaxation of the previous

problem (see [31, 24]). We restrict the projection to the truncated simplex so no user gets an

allocation too close to 0. We use this update rule solely to guide the algorithm’s decisions;

however, the proofs of work maximization and SLA satisfaction do not follow from the

standard analysis of mirror descent.
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2.3 Analysis

To give the analysis of the algorithm and prove Theorem 2.1, we prove the following

stronger guarantees about Algorithm 1. We compare its performance to the optimal of-

fline dynamic strategy that uses at most a 1 − 4ε fraction of the resources at each time

step.

Theorem 2.4. Given loads L1, . . . , LT , for any ε > 0 and η > 0 such that ε ≤ 1/10,

Algorithm 1 guarantees

workh∗1,...,h
∗
t
−workalg,t ≤ 8

N

ε2η
ln(N/ε),

for any time 1 ≤ t ≤ T , where h∗1, . . . ,h
∗
T is the optimal offline sequence of (1 − 4ε)-

allocations and workalg,t =
∑

i

∑t
τ=1 wτ (i) is the work done by Algorithm 1 until time

t.

The first guarantee of Theorem 2.1 regarding work maximization now follows simply from

Theorem 2.4. Given any offline dynamic policy h1, . . . ,hT such that
∑

i ht(i) = 1, we

define h̄t := (1− 4ε)ht, which satisfies the assumption of Theorem 2.4. Now we have

workalg ≥ workh̄1,...,h̄T −8
N

(ε/4)2η
ln(4N/ε)

≥ (1− 4ε) · workh1,...,hT −2000
N

ε2η
ln(N/ε),

where the first inequality follows from Theorem 2.4. To argue the second, let w1, . . . ,wT

and w1, . . . ,wT respectively denote the work performed by allocations h and h̄. Then

(1−4ε)w1, . . . , (1−4ε)wT are feasible work patterns that the allocations h1, . . . ,hT could

do, since in this setting we have 1 − 4ε capacity and the same workload. Therefore, (1 −

ε) workh1,...,hT ≤ workh1,...,hT
, because the users try to use their allocations at maximum.
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(Pε) max
N∑
i=1

T∑
t=1

wt(i) (Dε) min
N∑
i=1

T∑
t=1

Lt(i)γt(i)+(1−ε)
T∑
t=1

βt

s.t.

∀t, i ∑t
s=1ws(i) ≤

∑t
s=1 Ls(i)(2.1)

∀t ∑N
i=1wt(i) ≤ 1− ε (2.2)

∀t wt ≥ 0 (2.3)

s.t.

∀t, i γt(i) + βt ≥ 1 (2.4)

∀t γt ≥ γt+1 (2.5)

∀t βt, γt ≥ 0 (2.6)

Figure 2.2: The primal and dual LP formulation for the maximum work problem.

Similarly, for SLA satisfaction, we prove a stronger bi-criteria result that implies the SLA

guarantee in Theorem 2.1.

Theorem 2.5. Let 0 < ε ≤ 1/10 and 0 < η ≤ 1/3. Take any SLAs β(1), . . . , β(N) such

that β(i) ≥ eη(1+λ) ε
N

, where λ = ε2

8N
and let p̃ = 32N

2

ε3η
ln(N/ε). Then, for any user i and

time t ≤ T − p̃, if we take h′1, . . . ,h
′
T to be allocations such that h′t(i) = (1− 2ε) β(i), the

work done by Algorithm 1 for user i satisfies

t+p̃∑
τ=1

wτ (i) ≥
t∑

τ=1

w′τ (i),

where w′t is the work done by the allocations h′1, . . . ,h
′
T . Moreover,

∑t
τ=1wτ (i) ≥∑t

τ=1w
′
τ (i)− β(i)p̃.

2.3.1 The Offline Formulation

Before presenting the proof of Theorem 2.4, we state the offline LP formulation of the

maximum work problem for (1 − ε)-allocations. We denote by wt = (wt(1), . . . , wt(N))

the work done for each user at time t. Given loads L1, . . . , LT , the offline formulation and

its dual LP are given in Figure 2.2. As written, the dual LP includes a change of variable;

see Appendix 2.A.2 for details. Constraints (2.1) state that the work done for any user up

to time t by the allocation cannot exceed the user’s loads up to that time. Constraints (2.2)

limit the work performed at time t to at most a 1− ε fraction of the resource. The LP (Dε)
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will be of special importance in the analysis. Using our algorithm, we will construct a dual

feasible solution.

Observe that (Pε) is feasible and bounded since the feasible region is a non-empty poly-

tope. Let vPε be the optimal value of (Pε). The following proposition gives a simple

characterization of vPε; the proof appears in Appendix 2.A.2.

Proposition 2.6. vPε = min0≤t≤T
(∑t

s=1

∑
i Ls(i) + (1− ε)(T − t)

)
.

2.3.2 Work Maximization

In this section we prove Theorem 2.4. Our first Lemma characterizes the implications

of the update rule. The proof follows from a careful analysis of the dynamics using the

KL-divergence and appears in Appendix 2.A.2.

The first result of the lemma shows the behavior of active users’ allocations when the

system is under-utilized (≤ 1 − ε). In this case, all the active users receive a multiplica-

tive boost in their allocation. The second result shows a more general behavior (see also

Lemma 2.10). In this case, active users with allocation below their SLA do not decrease

their allocations while the other active users might decrease their allocation, but in this

case, the multiplicative penalization will be less severe.

Lemma 2.7. Let c = εη
4N

. Then Algorithm 1 satisfies the following:

1. Suppose
∑

i∈At ht(i) ≤ 1− ε. If i ∈ At, then ht+1(i) ≥ ht(i)(1 + c).

2. In general, Algorithm 1 satisfies ht+1(i) ≥ ht(i) for i ∈ A1
t and ht+1(i) ≥ ht(i)(1−

εc) for i ∈ A2
t .

Proof of Theorem 2.4. Given loadsL1, . . . , LT ∈ RN
+ , consider the following {0, 1}-matrix

M of dimension N × T that encodes the information about the status of queues obtained
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while running Algorithm 1

Mi,t =


0 i’s queue is empty at t, Qt(i) = 0,

1 i’s queue is not empty at t, Qt(i) > 0.

Let s̃ = ln(N/ε)
εc

, where c is defined in Lemma 2.7. Now, pick s? to be the maximum

non-negative integer s (including 0) such that

s∑
t=1

∑
i

Lt(i) ≤
s+s̃∑
t=1

∑
i

wt(i) (2.7)

Claim 2.8. Consider any block of time [r, r + s̃] where r > s?; then there exists a user i

such that Mi,r′ = 1 for all r′ ∈ [r, r + s̃].

Proof. Suppose not. Then we claim that s = r satisfies condition (2.7). Consider any user

i and let r′i ∈ [r, r + s̃] be such that Mi,r′i = 0. Then work done by the user i up to time

r + s̃ is at least
r+s̃∑
t=1

wt(i) ≥
r′i∑
t=1

wt(i) =

r′i∑
t=1

Lt(i) ≥
r∑
t=1

Lt(i).

Now summing over all i, we get the desired contradiction.

We now prove the following claim that shows that the algorithm ensures that, on average,

the total resource utilization after s? is close to 1 − 4ε. The proof of the Claim relies on

Lemma 2.7 and appears in Appendix 2.A.2.

Claim 2.9. Let B = [r, r + s̃) with r > s? be a consecutive block of s̃ timesteps and let

B′ = {t ∈ B :
∑

j∈At ht(j) ≤ 1 − ε} be the time steps in B with low utilization. Then

|B′| ≤ 4εs̃ and therefore,
∑T

t=s?+1

∑
iwt(i) ≥ (1− 4ε)(T − s?)− s̃.
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Now, consider the following feasible dual solution of (D4ε): γt(i) = 1, βt = 0 for all users

i and t = 1, . . . , s?, and γt(i) = 0, βt = 1 for all users i and t = s? + 1, . . . , T . Observe

that
∑T

t=1 βt = T − s?. For optimal (1− 4ε)-allocations h∗1 . . . ,h
∗
T we obtain

workh∗1,...,h
∗
T
≤ vdual(γ1, . . . , γT , β1, . . . βT ) (weak duality)

=
s?∑
t=1

∑
i

Lt(i) + (1− 4ε)(T − s?)

≤
s?+s̃∑
t=1

∑
i

wt(i) + (1− 4ε)(T − s?) (choice of s?)

≤
s?∑
t=1

∑
i

wt(i) + s̃+
T∑

t=s?+1

∑
i

wt(i) + s̃ (Claim 2.9)

= workalg +8
N

ε2η
ln(N/ε).

where we have used
∑s?+s̃

t=s?+1wt(i) ≤ s̃ and the definition of s̃.

2.3.3 SLA Satisfaction

In this section, we prove Theorem 2.5. Recall that λ = ε2

8N
and A1

t = {i ∈ At : ht(i) <

β(i)} is the set of active users receiving less than their SLAs and A2
t = At \A1

t is the set of

active user receiving at least their SLA. Analogous to Lemma 2.7, we have the following

lemma, whose proof appears in Appendix 2.A.2.

Lemma 2.10. Assume ε ≤ 1/10, η ≤ 1/3 and β(i) ≥ 2 ε
N

for all users. Then for any

i ∈ A1
t , Algorithm 1 guarantees ht+1(i) ≥ ht(i)(1 + c′), where c′ = εηλ

2N
.

Proof of Theorem 2.5. Let p̃ =
⌈

ln(N/ε)
ln(1+c′)

⌉
, where c′ is defined in Lemma 2.10. Now, we

proceed by induction on t to prove that
∑t+p̃

τ=1wτ (i) ≥
∑t

τ=1w
′
τ (i), where w′t is the work

done by the allocations h′1, . . . ,h
′
T . Clearly, the case t = 0 is direct.

Take t ≥ 1 and suppose the result is true for t − 1. If there exists r ∈ [t, t + p̃] such that
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user i’s queue is empty, then

t+p̃∑
τ=1

wτ (i) ≥
r∑

τ=1

wτ (i) =
r∑

τ=1

Lτ (i) ≥
t∑

τ=1

w′τ (i).

Therefore, assume that for all τ ∈ [t, t + p̃] we have that user i’s queue is non-empty. By

the induction hypothesis
t−1+p̃∑
τ=1

wt(i) ≥
t−1∑
τ=1

w′τ (i).

In order to complete the proof, we need to prove that wt+p̃(i) ≥ w′t(i). We proceed as

follows. Suppose that for all τ ≥ t we have wτ (i) < (1 − ε)β(i). By Lemma 2.10, at

each time τ ∈ [t, t+ p̃] the allocation of user i increases multiplicatively by a rate (1 + c′).

Therefore,

wt+p̃(i) ≥
ε

N
(1 + c′)p̃ ≥ 1 ≥ β(i),

a contradiction. From the previous analysis we obtain the existence of τ ? ∈ [t, t + p̃]

such that wτ?(i) ≥ (1 − ε)β(i). By using Lemmas 2.7 and 2.10, we can show that the

allocation hτ (i) will never go below (1 − εc)(1 − ε)β(i) for all τ ≥ τ ?. In particular

wt+p̃(i) ≥ (1− εc)(1− ε)β(i) ≥ (1− 2ε)β(i) ≥ w′t(i).

2.3.4 Extension to Proportionality and Over-commitment

In the previous subsections, we have introduced the first version of the multiplicative

weights algorithm. We explained how we deduced our algorithm using mirror descent

and proved its theoretical guarantees. Even though Algorithm 1 guarantees individual SLA

satisfaction, this simple policy can lead to undesirable results that do not respect the ratio

between allocations. If one user has an SLA twice the size of another, it would be rea-

sonable for the former to expect allocations at least twice as big as the latter’s if both are

consistently busy. Likewise, the second user would expect allocations no less than half

of the first user’s. In other words, both users should expect shares that respect the ratio
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between their SLAs.

To illustrate this unsatisfactory behavior in Algorithm 1, we run it with three users having

SLAs β(1) = 0.5, β(2) = 0.3 and β(3) = 0.2. We set η ≤ 1/3 and ε ≤ 1/10. For

simplicity, the initial allocation will be uniform. In our example, user 1 is always idle. User

2 consistently demands 1 unit of resource. User 3 begins idle and remains so until user

2’s allocation reaches 1 − ε. This takes roughly 1
ηε

time steps; call this time t0. Starting

at time t0, user 3 demands unit loads every time step for the rest of the horizon. Initially,

the allocations are uniformly 1/3 for everyone. Between time 1 and t0, user 2’s allocation

increases until it hits 1 − ε, since they are the only active user. After t0, user 3 becomes

active, and has an allocation below their SLA. Therefore, the algorithm redistributes allo-

cation from user 2 to 3 until user 3’s allocation hits 0.2. After this, allocations remain stable

at approximately ht(1) = ε
3
, ht(2) = 0.8 − ε

3
and ht(3) = 0.2. User 2 receives about 4

times the allocation of user 3 if ε is small enough. However, a better allocation for user 2

and 3 is β(2)
β(2)+β(3)

= 3
5

and β(3)
β(2)+β(3)

= 2
5

respectively. These allocations reflect the ratio

β(2)
β(3)

between active users.

Given this, we propose a slight modification of Algorithm 1, shown in Algorithm 2. As

before, the plan is always to benefit active users. However, this time, we boost active users

slightly more if they fall behind their “proportional SLA” among active users. Intuitively,

if there are n < N active users for a long period of time, the allocation of these active users

should converge to their proportional share.
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Algorithm 2: Extended Multiplicative Weight Update Algorithm
Input: Parameters 0 < ε ≤ 1/10, 0 < η < 1/3.

1 Initialization: h1 any allocation over ∆ε and λ = ε2

8N
.

2 for t = 1, . . . , T do

3 Set allocation ht.

4 Read active and inactive users At and Bt.

A1
t =

{
i ∈ At : ht(i) < (1− ε) β(i)∑

j∈At β(j)

}
, A2

t = At \ A1
t .

5 Set gain function gt(i) =


1 + λ i ∈ A1

t

1 i ∈ A2
t

0 i ∈ Bt

.

6 Update allocation: ĥt+1(i) = ht(i)e
ηgt(i),∀i and ht+1 = π∆ε(ĥt+1)

For technical reasons, the set A1
t , the active users with allocation below their proportional

share among active users at time t, has to be defined as

{
i ∈ At : ht(i) < (1− ε) β(i)∑

j∈At β(j)

}
.

The reason behind this choice is to ensure that if A1
t 6= ∅ and the resource is nearly fully

utilized, i.e.,
∑

i∈At ht(i) ≥ 1− ε, then there is a different active user j 6= i from which we

can move allocation to i. This is fundamental in the proof of Theorem 2.12 below.

In terms of work maximization and SLA satisfaction, Algorithm 2 provides exactly the

same guarantees as Algorithm 1.

Theorem 2.11. Given loads L1, . . . , LT , for any ε > 0 and η > 0 such that ε ≤ 1/10,

Algorithm 2 guarantees

workh∗1,...,h
∗
t
−workalg,t ≤ 8

N

ε2η
ln(N/ε),
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for any time 1 ≤ t ≤ T , where h∗1, . . . ,h
∗
T is an optimal offline sequence of (1 − 4ε)-

allocations and workalg,t =
∑

i

∑t
τ=1wτ (i) is the overall work done by Algorithm 2 until

time t.

The proof of Theorem 2.11 is exactly the same as the proof of Theorem 2.4. To see this,

observe that the proof of Theorem 2.4 only uses the fact that the allocations of every active

user get a multiplicative boost whenever the usage is below 1−ε. The last statement is true

since Lemma 2.7 also holds in this case.

For SLA satisfaction, we have the following stronger statement.

Theorem 2.12. Let 0 < ε ≤ 1/10, 0 < η ≤ 1/3, λ = ε2

8N
and p̃ = 32N

2

ε3η
ln(N/ε). Take

any SLAs β(1), . . . , β(N) such that β(i)∑
k β(k)

≥ eη(1+λ)

1−ε
ε
N

. Then, for any user i and time t, if

we take h′1, . . . ,h
′
T to be the allocations such that h′t(i) = (1− 2ε) β(i)∑

k β(k)
, the work done

by Algorithm 1 for user i satisfies

t+p̃∑
τ=1

wτ (i) ≥
t∑

τ=1

w′τ (i),

where w′t is the work done by the allocations h′1, . . . ,h
′
T . Moreover, we have

∑t
τ=1wτ (i) ≥∑t

τ=1w
′
τ (i)− β(i)∑

k β(k)
p̃.

The proof of this result is similar to the proof of Theorem 2.5. A subtle difference is that

the analogue of Lemma 2.10 holds if we add the hypothesis
∑

i∈At ht(i) > 1− ε. We skip

the proof for brevity.

Lemma 2.13. Assume ε ≤ 1/10, η ≤ 1/3 and β(i)∑
k β(k)

≥ eη(1+λ)

1−ε
ε
N

for all users. In

Algorithm 2, if
∑

k∈At ht(k) > 1− ε then for any i ∈ A1
t we have ht+1(i) ≥ (1 + c′)ht(i),

where c′ = εηλ
2N

.

Lemma 2.7 and 2.13 ensure that any active user gets a multiplicative boost of at least
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(1 + c′). Therefore, any user that is active p̃ consecutive times will have an allocation of

at least (1 − 2ε) β(i)∑
k β(k)

. Then, by following the same inductive proof of Theorem 2.5, we

obtain Theorem 2.12.

If the resource is not over-committed,
∑

k β(k) ≤ 1, this result implies that Algorithm 2 en-

sures for each user i an amount of work comparable with β(i)∑
k β(k)

≥ β(i); that is, we obtain

the standard SLA satisfaction guarantee. In the over-commitment regime,
∑N

i=1 β(i) > 1,

we do retain some performance guarantees. The update according to almost-normalized

SLAs in Algorithm 2 still works and Theorem 2.11’s work maximization guarantee still

applies, as its proof does not rely on the SLAs. On the other hand, Theorem 2.12 states that

individually, each user does work comparable to their normalized SLA. If the level of over-

commitment is not large, each user is still guaranteed service “almost” at their SLA; for

example, if the resource is over-committed by 10%, each user receives service comparable

to 1.1−1 ≈ 91% of their SLA.

Another interesting byproduct of the work maximization guarantee is the following result.

Corollary 2.13.1. Under the assumptions of Theorem 2.5, suppose there is a time 1 ≤ τ ≤

T with
∑τ

t=1

∑
iw
′
τ (i) =

∑τ
t=1

∑
i Lt(i); i.e. the optimal offline (1−4ε)-allocation is able

to finish all work up until τ . Then, the sum of queue lengths at time τ induced by Algorithm

2 is at most 8 N
ε2η

ln(N/ε). In particular, at time τ each user’s queue length is at most this

value.

In practical settings, it is commonplace to assume an arrival rate is lower than the work

processing rate. In stochastic settings, stationary states cannot be achieved without this

assumption; see, e.g., [165]. In our context, this can be reinterpreted as having times within

the operating horizon where the optimal offline solution is able to finish all work arriving

up until that time. At these particular times, the corollary guarantees that Algorithm 2’s

queue lengths are constant. In other words, the algorithm does not starve individual users
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to achieve work maximization and keeps their queues short, an appealing property in cloud

systems.

2.4 Experiments

In this section, we empirically test Algorithm 2 against a family of offline and online al-

gorithms. We aim to measure the performance on both synthetic data as well as real CPU

traces from a production service in Microsoft’s cloud. We quantify the performance on the

following three criteria.

• Work maximization. We compare the overall work done by Algorithm 2 against

various benchmark algorithms.

• SLA guarantee. We examine the extent to which our algorithm achieves the cu-

mulative work of the static SLA policy for each user. We do so by measuring the

cumulative work over plausible time windows.

• Queue length. We compare the 2-norm of the individual queues over time. We use

this metric as a proxy for the system latency, which is not captured by our theoretical

results.

We consider the following online algorithms, against which we benchmark our algorithm.

• Static SLA Policy (Static). Each user gets their SLA as a constant, static allocation.

We call this algorithm Static.

• Proportional Online (PO). In each iteration, every active user will get their SLA

normalized by the sum of SLAs of active users (just their SLA if there are no ac-

tive users). This simple algorithm seems suitable for a practical implementation;

however, its performance can be arbitrarily bad in terms of work maximization. The

formal description appears in Algorithm 4 in Appendix 2.A.7. We call this Algorithm
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PO.

• Online Work Maximizing (OWM). This algorithm divides users into three cate-

gories: A,B and I (active users with allocation, actives users without allocation and

inactive users). At each iteration, the resource is divided uniformly among users in

A. If a user in A becomes inactive, they are moved to I . If a user in I becomes

active, they are moved to B. When A becomes empty, we move all users from B to

A. In Appendix 2.A.5 we prove that this method is work maximizing. However, this

greedy strategy is not guaranteed to satisfy SLA constraints for general input loads.

We call this algorithm OWM.

We also consider the following offline algorithms, against which we benchmark our algo-

rithm.

* Optimal 1-allocations (PG). The optimal offline solution to the work maximization

problem. This solution is computed using Algorithm 3, which we call Proportional

Greedy (PG). This algorithm can be considered as the offline counterpart of Propor-

tional Online.

* Optimal (1 − ε)-allocation (restPG). Offline solution to the work maximization

problem with resource restricted to 1− ε, where ε is the parameter of Algorithm 2.

2.4.1 Synthetic Experiment

Description of the Experiment

In this experiment, we consider a synthetically generated input sequence, which we use

to examine how online algorithms adapt to different conditions. Specifically, our system

consists of three users with SLAs of β(1) = 0.2, β(2) = 0.3 and β(3) = 0.5. We consider

a time horizon of T = 3,000,000. The load input sequence is divided into six periods:

Pi =
[

(i−1)T
6

, iT
6

)
for i = 1, . . . , 6. In each period, only two users demand new resources.
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During the first 3 periods, the random demand has a mean proportional to the users’ SLA.

In the following 3 periods, the random demand changes to a distribution with uniform mean

among users demanding resources. Specifically:

• During P1, only users 2 and 3 demand the following loads. At the beginning of P1,

i.e., t = 1, user 2 demands a large load ofL1(2) ∼ T
6
·Gamma

(
2000, 1

2000
· β(2)
β(2)+β(3)

)
and L1(3) = 0. During the rest of period P1, Lt(2) = 0 and the other load will be

Lt(3) ∼ Gamma
(

2000, 1
2000
· β(3)
β(2)+β(3)

)
. User 1 demands nothing during this entire

period. Similar loads are set for period P2 and P3.

• Similarly, during P4 users 2 and 3 demand Lt(i) ∼ Gamma
(
2000, 1

2000
· 1

2

)
for

i = 2, 3. During P5 users 1 and 2 demand Lt(i) ∼ Gamma
(
2000, 1

2000
· 1

2

)
for

i = 1, 2. During P6 users 1 and 3 demand Lt(i) ∼ Gamma
(
2000, 1

2000
· 1

2

)
for

i = 1, 3.

The expectation of a Gamma(k, θ) random variable is given by kθ and the variance is given

by kθ2 (see e.g. [73]). For example, in period P1 user 2’s expected load is T
6

β(2)
β(2)+β(3)

, with

variance 1
2000

(
β(2)

β(2)+β(3)

)2

. Similarly, user 3’s expected total load is T
6

β(3)
β(2)+β(3)

. Thus, the

expected overall load is T/6, exactly the length of the period. A brief summary of Gamma

distribution’s properties is given in Appendix 2.A.8.

We instantiate Algorithm 2 with η = 1
3
, ε = 0.02 and T = 3,000,000.

Results

Work maximization. In Figure 2.3 we present the cumulative work difference between

PG and Algorithm 2 (solid blue line with star), restPG and Algorithm 2 (red dashed line

with triangle), PO and Algorithm 2 (solid magenta line), Static and Algorithm 2 (solid

green line with small circle) and OWM and Algorithm 2 (solid cyan line with large circle).

Intuitively, one positive unit of difference implies the corresponding algorithm is ahead of
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Algorithm 2 by one unit of time.

First, we consider the comparison to online algorithms Static, PO and OWM. Algorithm 2

outperforms Static significantly, by roughly 700,000 units of time. During the first half of

the experiment PO shows good performance, but in the second half of the experiment (when

the load distribution changes), Algorithm 2 outperforms PO. This shows that Algorithm 2

can adapt to changing input sequences that PO cannot adapt to. Finally, OWM surpasses

Algorithm 2 during the whole experiment, with a performance similar to PG; this is an

expected result since OWM is work maximizing.

With respect to offline algorithms, PG outperforms Algorithm 2 by roughly 10,000 time

units. On the other hand, Algorithm 2 surpasses restPG by approximately 20,000 units.

This shows that Algorithm 2 indeed performs better than the offline optimum with a slightly

reduced amount of resources, as guaranteed by the theoretical results.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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−40000
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20000
Work difference comparison

PO - Alg

Static - Alg

OWM - Alg

OPT - Alg

(1− ε)OPT - Alg

Figure 2.3: Difference between algorithms’ work. Alg is short for Algorithm 2. Observe
that the differences “OPT - Alg” “and “OWM - Alg” slightly overlap.

SLA satisfaction. Among online algorithms, Static and PO satisfy SLA restrictions by de-

sign, but as seen earlier they are not competitive in terms of work maximization. We focus

on the comparison between OWM and Algorithm 2 as far as SLA satisfaction is concerned.

Although OWM performs extremely well in work maximization, this comes at a significant

price in SLA satisfaction. In Figure 2.4 we depict empirically this behavior by plotting the
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instantaneous work done by users 2 and 3 by OWM and Algorithm 2 during period P1.

We empirically observe that Algorithm 2 approximately satisfies user 3’s SLA, but OWM

does not allocate the user any resources. Such an extreme behavior arises because OWM is

geared towards work maximization rather than SLA satisfaction.
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Figure 2.4: Instantaneous work for user 2 and 3 during period P1. User 3 does not receive
any allocation in OWM until user 2 finishes all of their work.

Queue lengths. In Figure 2.5 we present the 2-norm of queues induced by Algorithm 2

(solid blue), Static (solid magenta with star), PO (solid cyan with large circle) and OWM

(solid black with triangle). Once again, we can interpret one unit of norm as one unit of

latency. Experimentally, we observe that Static shows the worst performance with a final

2-norm of 524,000 units. Algorithm 2 ends with a 2-norm of 10,000 units, PO with 26,970

units, and OWM with 381 units. As remarked above, even though OWM induces very

small queues, this comes at the cost of not satisfying SLA requirements.
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Figure 2.5: 2-norm of queues.

Summary. Among all online algorithms, Algorithm 2 is able to best balance work maxi-

mization and SLA satisfaction. In particular, Algorithm 2 is only slightly worse in terms of

work maximization compared to OWM; this is expected since Algorithm 2 always reserves

a small fraction of the resource for each user, regardless of activity. Furthermore, our re-

sults show that the actual total work done by Algorithm 2 is much better than the theoretical

guarantee of Theorem 2.11, as it substantially outperforms (1 − ε)OPT (restPG). Finally,

we observe small queues throughout the entire horizon, which is key for maintaining rea-

sonable latencies.

2.4.2 Experiment with Real Data

We next describe the results of our computational study using real world data. For these

experiments, we obtained CPU traces of a production service on Azure, Microsoft’s public

cloud. The data consists of demand traces of six different users over a time window of

approximately ten days.

To show Algorithm 2’s robustness with respect to (short-term) real data, we also consider

the following measurement:

• Instantaneous SLA. We focus on a modified SLA satisfaction criterion because of

the relatively short horizon (about 14, 000 minutes); we assess Algorithm 2’s perfor-
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mance in the following way. For a user i and any time t, we compare the cumulative

work done by user i in Algorithm 2 during a time window [t, t + τ) versus the cu-

mulative work done by the same user i under a Static SLA Policy during the time

window [t, t + τ). In order to have a meaningful comparison, at time t, we run the

Static SLA Policy with the queues of Algorithm 2 at time t. The motivating question

is, what happens if at time t and the next τ time steps we run the static policy instead

of Algorithm 2? For this experiment, we used τ = 500 minutes.

The data set consists of demand traces of six users of exactly 14,628 minutes (approxi-

mately ten days). Each user is assigned their normalized average workload as SLA. (Since

the data is proprietary, we cannot disclose actual SLAs.) For the purpose of the experiment,

we run Algorithm 2 with parameters ε = 0.01 and η = 1
3
.

Results

Work maximization. We depict in Figure 2.6 the following differences: cumulative work

done until time t by optimal 1-allocations (PG) and Algorithm 2, (1 − ε)-allocations

(restPG) and Algorithm 2, PO and Algorithm 2, Static and Algorithm 2, and OWM and

Algorithm 2. In a similar fashion to the previous experiment, one positive unit can be inter-

preted as Algorithm 2 being one unit (minute) of work behind, and one negative unit means

Algorithm 2 is ahead by a minute.

We observe that Algorithm 2 outperforms all online benchmarks. Against Static, the fi-

nal difference is 105 units, with a maximum difference of 167 units. Against PO the final

difference is 25 units with a maximum difference of 37. Finally, against OWM, the final dif-

ference is 20 with a maximum difference of 21. Surprisingly, for this data set Algorithm 2

is able to surpass even OWM.

Regarding the offline algorithms, PG surpasses Algorithm 2 during the whole experiment

as expected, with a final difference of 14 units. On the other hand, Algorithm 2 outperforms
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restPG by 26 units by the end of the experiment.
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Figure 2.6: Difference of cumulative works.

Instantaneous SLA. In Table 2.1 we report statistics on the differences between the cu-

mulative work done in time windows [t, t + τ) by Static and Algorithm 2 for each user.

For each t and each user i, the exact formula is ri(t) =
∑t+τ−1

r=t w′r(i) −
∑t+τ−1

r=t wr(i),

where wr(i) is the work done by user i under Algorithm 2 and w′r(i) is the work done

by user i with Static (with queues at t given by Algorithm 2). The table shows the min,

max, average and standard deviation of {ri(t)}t when τ = 500 minutes. A positive unit

means Algorithm 2 is outperformed by Static during [t, t + τ) under the same initial con-

ditions by one unit of time. In general, we observe that all users show negative empirical

average difference. This result empirically suggests that Algorithm 2 ensures approximate

SLA satisfaction, even for small time windows. For instance, user 3 occasionally has a

high difference (46.4 units), mostly due to times t where Algorithm 2 allocates the user a

small amount of resource but a huge load is incoming during the window [t, t + τ). The

experiment tells us that averaging out these “bad” times ensures good performance under

the SLA criterion. Furthermore, we tested values of τ = 60, 500 and 1000 minutes; larger

windows improve the results, with lower maximum and average values.

Queue lengths. In Figure 2.7 we present the 2-norms of queues given by the online bench-

mark algorithms and Algorithm 2. As usual, we can interpret one unit as the respective
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Table 2.1: Statistics for the difference between the cumulative works of our algorithm and
static over time windows [t, t + τ). For each user i we present the min, max, average, and
standard deviation over the sequence of differences {ri(t)}t.

User min max mean std
User 1 -31.1 21.7 -4.6 13.8
User 2 -122.3 46.9 -31.2 49.2
User 3 -90.8 46.4 -7.2 29.5
User 4 -49.7 18.5 -0.8 12.9
User 5 -42.6 22.6 -5.85 14.0
User 6 -21.9 14.9 -0.6 6.4

algorithm’s latency, that is, lateness with respect to the overall users’ demand. Compared

against the online algorithms, we empirically observe the superiority of Algorithm 2, as

it has the smallest latency most of the time. Algorithm 2 ends with a 2-norm of roughly

44 units, average length of 22 and a maximum length of 92. PO ends with a 2-norm of

approximately 68, average length of 32 and a maximum length of 126. OWM ends with

a 2-norm of 68, average of 32 and maximum of 113. Finally, Static shows the worst be-

havior, with a final 2-norm of 103, average of 91 and maximum of 231. For this data set,

Algorithm 2 shows a remarkable performance, considering particularly that Algorithm 2

always reserves ε/N resource for each user.
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Figure 2.7: 2-norm of queues.

Summary. Algorithm 2 performs very well in terms of work maximization compared to

all other online algorithms, and exceeds the theoretical guarantees. Furthermore, SLA re-
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quirements are typically satisfied, even when measured over relatively short time windows.

Finally, as in the previous experiment, the algorithm maintains small queues compared to

other online algorithms.

2.5 Conclusion

We have proposed a new online model for dynamic resource allocation of a single divisible

resource in a shared system. Our framework captures basic properties of cloud systems,

including SLAs, limited system feedback and unpredictable (even adversarial) input se-

quences. We designed an algorithm that is near-optimal in terms of both work maximiza-

tion and SLA satisfaction (Theorems 2.1, 2.11 and 2.12). Furthermore, our second algo-

rithm, Algorithm 2, can be applied in an over-commitment regime with similar guarantees,

which could be of additional merit for some applications. We derived a simple expression

for the offline work maximization problem that allowed us to reinterpret the algorithm’s

dynamics as an approximate solution of the optimal (offline) work maximization LP. Nu-

merical experiments show that our algorithm is indeed able to achieve a desirable trade-off

between work maximization and SLA satisfaction. In particular, comparisons with offline

algorithms (PG and restPG) indicate that our algorithm is empirically work maximizing.

Further, unlike other plausible online algorithms, our algorithm is able to quickly adapt to

unexpected changes in demand and still approximately satisfy the underlying user SLAs.

Our model and results may be extended in various directions of interest to the operations

research and cloud computing communities.

A natural extension for single-resource systems is to model priority among users. Typi-

cally, users with higher priority should be given resources before their lower-priority coun-

terparts. A challenge in this setting is how to define the metric corresponding to work

maximization. One possibility is to have different weights for different users, correspond-

ing to their priority, and then to maximize the weighted total work while satisfying SLAs.
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Directly extending our algorithms to this case means a user’s multiplicative boost depends

on their priority. However, our analysis in this chapter does not apply, as we use the fact that

users’ work is interchangeable, whereas the identity of who performs the work is critical in

the prioritized case.

Another challenging extension is the management of multiple resources (e.g., CPU, I/O

bandwidth, memory), where different users or jobs may require the resources in different

proportions. This extension requires a fundamental redefinition of our model, where work

done for a user is a function of the multiple resources allocated, and may also depend on

a particular job’s characteristics. In many real-world scenarios, a job’s resource demands

are often complementary, e.g. RAM and CPU usage. This observation may motivate a

possible extension in which we still treat all users’ loads as one-dimensional quantities,

and the work performed by a user is a relatively simple function of their allocations, e.g., a

concave non-decreasing function.

2.A Appendix

2.A.1 Projecting on ∆ε

Proof of Proposition 2.3. Let y ∈ RN
+ . The projection of y on ∆ε corresponds to the

solution of the convex problem

(Q)

min
∑

i x(i) ln
(
x(i)
y(i)

)
∑

i x(i) = 1

x(i) ≥ ε/N

Its Lagrangian (see [31]) is

L(x, λ, µ) =
∑
i

x(i) ln

(
x(i)

y(i)

)
− λ

(∑
i

x(i)− 1

)
−
∑
i

µi

(
x(i)− ε

N

)
.
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Using the FO conditions:

∀i : x(i) = y(i)eµi+λ−1 = y(i)eµiC.

and the SO conditions:

µi ≥ 0, ∀i, and x(i) >
ε

N
=⇒ µi = 0.

Let S = {i : x(i) = ε/N} and T = [N ] \ S. Then, using
∑

i x(i) = 1 we obtain

eλ−1 =
1− ε

N
|S|∑

i∈T y(i)
.

This proves part (b). Now, suppose we have y(1) ≤ · · · ≤ y(N). If i, j ∈ T , then

x(i) = y(i)eλ−1 and x(j) = y(j)eλ−1 and then

x(i) ≤ x(j) ⇐⇒ y(i) ≤ y(j).

That is, in T the variables preserve their ordering.

If i ∈ S and j ∈ T , then y(i)eλ−1+µi = x(i) = ε
N
< x(j) = y(j)eλ−1, which implies

y(i) < y(j) using that µi ≥ 0. Now, let k = min{i ∈ T} which is a well-defined

number using constraint
∑N

i=1 x(i) = 1. We claim that for any j ≥ k, j ∈ T , that is, T

corresponds to the interval [k,N ]. By contradiction, suppose that j > k does not belong

to T , then y(j) < y(k) by previous calculus. However y(j) ≥ y(k) by the ordering of

y. A contradiction. With this, the algorithm to project is clear, we sort y and then we

test increasingly the possible set S = {1, . . . , k − 1} for k = 1, . . . , N and select the best

candidate. This proves (a).

We say that S is feasible if there is a feasible solution x such that S = {i : x(i) = ε/N}.

47



In the following paragraphs we prove that the first feasible solution found in this process is

the right one.

Observe that once S = {1, . . . , k} is feasible, then S ′ = {1, . . . , j} remains feasible for all

j ≥ k. Indeed, if S = {1, . . . , k} is feasible, then

1 =
ε

N
k +

∑
i∈T

x(i).

Now, increasing S to S ′ = {1, . . . , k + 1} means that we pick x(k + 1) > ε
N

and we

decrease it to ε
N

. Therefore, x(k + 2), . . . , x(N) must increase. Therefore, S ′ remains

feasible. The proof for general case j ≥ k follows by induction.

Now, we claim that if S = {1, . . . , k} is feasible, then S ′ = {1, . . . , k + 1} cannot have

better optimal value. Indeed, the difference between the objective S ′ and S is

k+1∑
i=1

ε

N
ln

ε

Ny(i)
+
(
1− ε

N
(k + 1)

)
ln

1− ε
N (k + 1)∑

i≥k+2 y(i)
−

k∑
i=1

ε

N
ln

ε

Ny(i)

−
(
1− ε

N
k
)
ln

1− ε
N k∑

i≥k+1 y(i)

=
ε

N
ln

ε

Ny(k + 1)
+
(
1− ε

N
(k + 1)

)
ln

1− ε
N (k + 1)∑

i≥k+2 y(i)
−
(
1− ε

N
k
)
ln

1− ε
N k∑

i≥k+1 y(i)

The function f(x) = x lnx is convex for x > 0. Now, pick x = ε
Ny(k+1)

, y =
1− ε

N
(k+1)∑

i≥k+2 y(i)

and λ = y(k+1)∑
i≥k+1 y(i)

. Then

λx+ (1− λ)y =
y(k + 1)∑
i≥k+1 y(i)

(
ε

Ny(k + 1)

)
+

∑
i≥k+2 y(i)∑
i≥k+1 y(i)

(
1− ε

N (k + 1)∑
i≥k+2 y(i)

)

=
1− ε

N k∑
i≥k+1 y(i).

Then, using the convexity of f we obtain the result. This implies that the first feasible

prefix S that we find is the optimal one. Therefore, by ordering y in O(N logN) time and

then running binary search we can find S in O(N logN) time. This finishes the proof of
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(c).

2.A.2 Missing Proofs From Section 2.3.1

Here we present dual stated in the offline formulation of the maximum work problem. We

have the LP

(Pε)

max
∑N

i=1

∑T
t=1wt(i)∑t

s=1 ws(i) ≤
∑t

s=1 Ls(i) ∀t, i (1)∑N
i=1 wt(i) ≤ 1− ε ∀t (2)

wt ≥ 0 ∀t

Using the variables αt(i) for constraint (1) and βt for constraint (2) we obtain the dual

(Dε)

min
∑N

i=1

∑T
t=1 αt(i)

∑t
s=1 Ls(i) + (1− ε)∑T

t=1 βt∑T
s=t αs(i) + βt ≥ 1 ∀t, i (1′)

α, β ≥ 0

Using the change of variable γt(i) =
∑T

s=t αs(i) we obtain the stated dual

(Dε)

min
∑N

i=1

∑T
t=1 Lt(i)γt(i) + (1− ε)∑T

t=1 βt

γt(i) + βt ≥ 1 ∀t, i (1′)

γt ≥ γt+1 ∀t (2′)

β, γ ≥ 0

Proof of Proposition 2.6. We prove each inequality separately. Let 0 ≤ t? ≤ T be such

that
∑t?

s=1

∑
i Ls(i)+(1−ε)(T−t?) = min0≤t≤T

∑t
s=1

∑
i Ls(i)+(1−ε)(T−t). Consider

the dual solution (β, γ) such that γt = 1, βt = 0 for t = 1, . . . , t? and γt = 0, βt = 1 for

t = t? + 1, . . . , T . Then, by weak duality,

vPε ≤ vdual(β, γ) =
t?∑
s=1

∑
i

Ls(i)+(1−ε)(T − t?) = min
0≤t≤T

t∑
s=1

∑
i

Ls(i)+(1−ε)(T − t).
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Now, consider the greedy algorithm that, in each iteration, gives enough allocation to the

users in order to complete their work starting with user 1, then user 2, and so on. We

restrict the algorithms’ allocations to (1 − ε)-allocations. We denote by workgreedy the

work done by this algorithm. As usual, we denote by wt the vector of work done at time

t. Let t? be the maximum non-negative t such that
∑

iwt(i) < 1 − ε. Observe that∑t?

s=1

∑
iws(i) =

∑t?

s=1

∑
i Ls(i). Then

min
0≤t≤T

t∑
s=1

∑
i

Ls(i)+(1−ε)(T − t) ≤
t?∑
s=1

∑
i

Ls(i)+(1−ε)(T − t?) = workgreedy ≤ vPε ,

since vPε is the optimal solution.

Remark 1. This max-min result shows that the greedy algorithm is optimal for solving

(Pε) and also shows how to compute the dual variables. Finally, solving (Pε) can be done

efficiently in O(NT ) by running the greedy algorithm.

2.A.3 Missing Proofs From Section 2.3.2

In what follows, we denote by St the users with allocation ε
N

at time t.

Proof of Lemma 2.7. 1. First, for i ∈ At we have

ht+1(i) =
ht(i)e

ηgt(i)eµi
(
1− ε

N
|St+1|

)∑
j∈St+1

ĥt+1(j)
≥ ht(i)

(
1− ε

N
|St+1|

)
e−η

∑
j∈St+1

ĥt+1(j)
.

We divide the analysis into two cases: Bt ∩ St+1 6= ∅ and Bt ⊆ St+1.
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For Bt ∩ St+1 6= ∅ we have

e−η
∑
j∈St+1

ĥt+1(j) ≤ eλη
∑

j∈St+1∩At

ht(j) + e−η
∑

j∈St+1∩Bt

ht(j)

= eλη
∑
j∈St+1

ht(j)− (eλη − e−η)
∑

j∈Bt∩St+1

ht(j)

≤ eλη
(

1− ε

N
|St+1|

)
− ε

N
(eλη − e−η) (since ht(i) ≥ ε

N
)

≤ (1 + 2λη)
(

1− ε

N
|St+1|

)
− ε

N

(
λη + η − η2

2

)
(using 1 + λη ≤ eλη ≤ 1 + 2λη, e−η ≤ 1− η + η2

2
)

≤ 1− ε

N
|St+1|+ 2λη − ε

N
η
(

1− η

2

)
≤ 1− ε

N
|St+1| −

εη

4N
. (η ≤ 1 and 2λ ≤ ε

4N
)

Therefore,

(
1− ε

N
|St+1|

)
e−η

∑
j∈St+1

ĥt+1(j)
≥ 1− ε

N
|St+1|

1− ε
N
|St+1| − εη

4N

≥ 1

1− εη
4N

≥ 1 +
εη

4N
,

using 1
1−x ≥ 1 + x when x ∈ (0, 1). Hence ht+1(i) ≥ ht(i)(1 + εη

4N
).

Now, if Bt ⊆ St+1, then St+1 ⊆ At. We have

e−η
∑

j∈St+1
ĥt+1(j)

1− ε
N
|St+1|

≤ (1− ε)eλη
1− ε

N
|St+1|

≤ (1− ε)eλη
1− ε+ ε

N

≤ (1− ε)(1 + 2λη)

1− ε+ ε
N

(eλη ≤ 1 + 2λη since 2λη < 1)

≤ 1− ε+ 3λη

1− ε+ ε
N

= 1−
ε
N

+ 3λη

1− ε+ ε
N

.
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Since
ε
N

+3λη

1−ε+ ε
N
≥ ε

N
we obtain

ht+1(i) ≥ ht(i)
1

1− ε
N

≥ ht(i)
(

1 +
ε

N

)
≥ ht(i)

(
1 +

εη

4N

)
.

2. The monotonicity of ht(i) with i ∈ A1
t is easy to see. Let us prove the second

statement:

e−η
∑

j∈St+1
ĥt+1(j)

1− ε
N
|St+1|

≤
eλη
∑

j∈St+1
ht(j)

1− ε
N
|St+1|

≤ eλη
(
1− ε

N
|St+1|

)
1− ε

N
|St+1|

≤ eλη

≤ 1 + 2λη = 1 + εc,

since λ = ε2

8N
. Then, for i ∈ A2

t ,

ht+1(i) ≥ ht(i)
eη(1− ε

N
|St+1|)∑

j∈St+1
ĥt+1(j)

≥ ht(i)
1

1 + εc
≥ ht(i)(1− εc).

Proof of Claim 2.9. Now, let [s? + 1, . . . , T ] and let us divide this interval into blocks of

length s̃ with a possible last piece of length of length at most s̃. Let L be one of these

blocks and let i be the user given by claim 2.8, that is, Mi,r = 1 for all r ∈ L. Consider

L′ = {t ∈ L :
∑

j∈At ht(j) < 1 − ε}. By using part 1 of Lemma 2.7, user i increases her

allocation multiplicatively in L′ by a factor of (1 + c). Observe that for t /∈ L′, user’s i

allocation can increase or decrease depending on ht(i). However, by Lemma by part 2 of

2.7, we know that ht(i) will not decrease by a huge amount. Let k′ = |L′|, then i increases

her allocation for k′ times and decreases it for at most s̃−k′ times. Therefore, k′ maximum
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value is such that
ε

N
(1 + c)k

′
(1− εc)s̃−k′ = 1

and therefore,

k′ ≤ ln(N/ε) + s̃ ln(1− εc)−1

ln((1 + c)/(1− εc))

≤ 1 + c

c(1 + ε)
ln(N/ε) +

ε(1 + c)

(1 + ε)(1− εc) s̃ (ln 1+c
1−εc ≥

c(1+ε)
1+c

, ln 1
1−εc ≤ εc

1−εc )

≤ ε(1 + c)

(1 + ε)
s̃+

ε(1 + c)

(1 + ε)(1− εc) s̃ (s̃ = ln(N/ε)
εc

)

= ε
1 + c

1 + ε

(
1 +

1

1− εc

)
s̃

≤ 3εs̃. (for N ≥ 2 and ε ≤ 1
10

)

Hence, L′ is at most a fraction of s̃ and with this

∑
t∈L

∑
i

wt(i) ≥ (1− ε)(s̃− k′) ≥ (1− ε) (1− 3ε) s̃ ≥ (1− 4ε)|L|.

Summing over all blocks we conclude the desired result.

2.A.4 Missing Proof From Section 2.3.3

Proof of Lemma 2.10. If A1
t = ∅, the result is vacuously true. Suppose that A1

t 6= ∅. First,

we prove that under the assumption of Lemma 2.10, we have A
1

t ∩ St+1 6= ∅. For j ∈ St+1

we have

ε

N
= ht+1(j)

=
ĥt+1(j)eµi(1− ε

N
|St+1|)∑

k∈St+1
ĥt+1(k)

≥ ht(j)(1− ε
N
|St+1|)∑

k∈St+1
ht(k)eη(1+λ)

, (since µi ≥ 0)
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This implies ht(j) ≤ ε
N
eη(1+λ) < β(j). Since

∑
j ht(j) = 1, i ∈ A1

t and
∑

j β(j) = 1 we

must have that there is a user j 6= i with allocation ht(j) ≥ β(j). Clearly, j /∈ St+1 and

j /∈ A1
t . Therefore, A

1

t ∩ St+1 6= ∅.

Following the proof of Lemma 2.7, for i ∈ A1
t , we have

e−η(1+λ)
∑
j∈St+1

ĥt+1(j) ≤
∑

j∈St+1∩A1
t

ht(j) + e−ηλ
∑

j∈St+1∩A
1
t

ht(j)

=
∑
j∈St+1

ht(j)− (1− e−λη)
∑

j∈St+1∩A
1
t

ht(j)

≤ 1− ε

N
|St+1| −

ε

N
(1− e−λη) (since St+1 ∩ A1

t 6= ∅)

≤ 1− ε

N
|St+1| −

ελη

2N
. (1− e−x ≥ x

2
for x ∈ [0, 1])

Therefore,

ht+1(i) ≥ ht(i)
1− ε

N
|St+1|

1− ε
N
|St+1| − ελη

2N

≥ ht(i)

(
1 +

ελη

2N

)
.

2.A.5 Greedy Online Algorithm

In this section, we prove that the following greedy allocation strategy is almost optimal

in work maximization. The algorithm divides the users into 3 categories: A non-empty

queue users with non-zero allocation, B non-empty queue users with zero allocation and I

empty queue users with zero allocation. At time t, a user i ∈ A is left in A if she still has

non-empty queue, otherwise we will move her to I; a user i ∈ I will be moved to B if her

queue is becomes non-empty, otherwise she will remain in I; finally, if all users from A

are moved to I , then we will move all B to A, otherwise we will left B untouched. In any

case, we will distribute uniformly among the users that remain in A.

Users move from A to I , I to B and B to A. Let wt be the work done by the algorithm and
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let w′t be the optimal offline work.

Theorem 2.14. For any loads L1, . . . , LT ∈ RN
≥0, and any ε > 0, this greedy Algorithm

guarantees
T∑
t=1

∑
i

wt(i) + 2
N2

ε
≥

T∑
t=1

∑
i

w′t(i)

where w′t is the work done by the optimal offline sequence of (1− 2ε/N)-allocations.

Proof. Let t? be the maximum t ≥ 0 such that
∑t+N2

s=1

∑
iws(i) ≥

∑t
s=1

∑
i Ls(i). By

claim 2.8 we know that each interval [r, r + N2/ε), with r > t?, has a user with no-

empty queue. As in claim 2.9 we divide the interval [t? + 1, T ] into blocks of length

N2/ε with a last block of length at most N2/ε. Pick any of these blocks, say L, and let

L′ = {t ∈ L :
∑

iwt(i) < 1}. It is easy to see that |L′| ≤ 2N and therefore, summing

over all block, we have
∑

t≥t?+1

∑
iwt(i) +N2/ε ≥ (T − t?)(1− 2ε/N). The conclusion

follows applying weak duality to (P2ε/N).

Remark 1. Against the best 1-allocations we can optimize ε and obtain ε =
√
N3/T .

This greedy strategy will be O(
√
NT ) far from the optimal dynamic work. Observe that

this matches the lower bound in Theorem 2.15.

2.A.6 Lower Bound

Theorem 2.15. For any online deterministic algorithmA setting at each time 1-allocations,

with an underlying queuing system, and with the same limited feedback as Algorithm 1,

there exists a sequence of online loadsL1, . . . , LT such that workh∗1,...,h
∗
T
−workA = Ω

(√
T
)

,

where h∗1, . . . ,h
∗
T are the optimal offline dynamic 1-allocations.

Proof. We consider the case with N = 2 users, the general case reduces to N = 2 by

loading jobs only to two users. Let A be an online algorithm for allocating a divisible
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resource for 2 users and with underlying queuing system and limited feedback. Without

loss of generality, we can assume that the allocations sets by A always add up to 1 at every

time step.

We will construct a sequence of loads Lt = (Lt(1), Lt(2)) that at every time will add up to

1. This will ensure that the overall work done by the optimal offline dynamic policy will

be T . On the other hand, we will show that this sequence of loads will lead to large queue

length for at least one of the users. The main ingredient is to use the fact the algorithm

receives limited feedback about the state of the system, i.e., which users have empty queue.

In particular, this implies that if there are two distinct set of load vectors Lt and L′t for some

interval t ∈ [r, s] such that the queues remain non-empty on both these sequences, then the

resource allocation to the users in the two load sequences must be identical.

We will divide the time window [1, T ] into phases. Each phase will begin with a configura-

tion of queues, say Q = (Q(1), Q(2)), where one of the queues is empty and the other one

nonempty. We set q = Q(1)+Q(2) and we denote by qi the q at phase i. We define q0 = 0.

We will prove that at the end of each phase i ≥ 1, qi+1 ≥ qi + 1
4

with all qi+1 cumulated in

one queue and the other queue empty.

Initially, the algorithm has a fixed deterministic allocation h1 = (h1(1), h1(2)). If h1(1) ≤

h1(2), then we load L1 = (0, 1). Otherwise, we load L1 = (1, 0). In any case, we have

q1 ≥ 1
2

and all q1 in one queue.

Now, we will describe how the general phases work. For the sake of simplicity, we will

describe the phase starting at time t = 1. We have queue configuration Q = (Q(1), Q(2))

with q > 0. By the initial phase, we can assume q ≥ 1/2. Moreover, we can assume that

only one of the queues is nonempty, this point will be clear after we describe how the phase

works and it is clearly true for phase 1. Phase i with q = qi will last at most 2q + 2 time

steps.
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Suppose thatQ(1) = 0 andQ(2) > 0. If h1(1) = 1, then we load L1 = (0, 1) and the phase

ends with q increased by 1 and user 1’s queue empty. Therefore, we can assume h1(1) < 1.

Our first load will be L1 = (h1(1) + ε, h2(2) − ε) with 0 < ε < 1
4

small enough and such

that both queues are nonempty. The following loads will be Lt = ht, the allocation of A at

time t. Observe that the first load will ensure that both users see nonempty queues until the

end of the phase. Moreover, user 1 always has exactly ε remaining in her queue.

• If there is a time τ ? ∈ [1, 2q + 1] such that hτ?(1) ≥ 1/2, then we change the load

at time τ ? for L′τ? = (0, 1). This will increment q by at least 1/2− ε ≥ 1/4 and the

phase ends. Observe that Qτ?+1(1) = 0.

• We can assume now that for the loads Lt = ht we always have ht(1) < 1/2 for all t ∈

[2, 2q + 1]. We change the loads to L′t = (1, 0) until time τ ? in which user 2 empties

her queue. Recall that the feedback of the algorithm is only the set of empty queues

at every time step. Thus the behavior ofA under Lt and L′t will be the same until time

τ ?. Now, we change loadLτ? byL′τ? = (1−hτ?(2)+Qτ?(2)−ε′, hτ?(2)−Qτ?(2)+ε′)

with 0 < ε′ < 1/4 small enough. This will ensure that queue 2 will be exactly ε′.

Now, in an extra step, we load Lτ?+1 = (1, 0). Again, we have q increased by at least

1/4 and this ends the phase. Observe that Qτ?+2(2) = 0.

The analysis is similar for Q(1) > 0 and Q(2) = 0. Observe that at the end of each phase,

only one queue is nonempty and the other one is empty. In any case, we have the desired

increment. With this, we can set the following recurrence, q0 = 0, qi−1+ 1
4
≤ qi ∀i ≥ 1.

We deduce that qi ≥ i/4. Now, let m be the number of phases. By construction, each

phase last at most 2qi + 2. Then T ≤ ∑m
i=1(2qi + 2) ≤ 40q2

m, where we have used

4qm ≥ 4qi ≥ i ≥ 1. From here we deduce that qm ≥
√
T/40.

Now, the work done by the algorithm and the unfulfilled work in the queues must add up the

overall load. Then qm + workA = T = workh∗1,...,h
∗
T

from which we obtain the result.
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2.A.7 Additional Algorithms

Algorithm 3: Proportional Greedy
Input: Sequence of loads (Lt)

T
t=1 and SLAs β(1), . . . , β(N).

1 for t = 1, . . . , T do

2 wt(i)← 0, ∀i ∈ [N ].

3 Rem← 1.

4 Rem(i)← Qt−1(i) + Lt(i), ∀i ∈ [N ].

5 repeat

6 A← {i : Rem(i) > 0}.

7 Σ←∑
i∈At β(i).

8 i∗ ← argmink∈A Rem(k).

9 if Rem(i) < β(i)
Σ

Rem then

10 wt(i
∗)← wt(i

∗) + Rem(i∗).

11 Rem← Rem− Rem(i∗).

12 Rem(i∗)← 0.

13 else

14 for k ∈ A do

15 wt(k)← wt(k) + β(k)
Σ

Rem.

16 Rem(k)← Rem(k)− β(k)
Σ

Rem.

17 Rem← 0.

18 until Rem = 0 or {i : Rem(i) > 0} = ∅;

58



Algorithm 4: Online Proportional
Input: Sequence of loads (Lt)

T
t=1 and SLAs β(1), . . . , β(N).

1 Initial distribution h1 = (β(1), . . . , β(N)),

2 for t = 1, . . . , T do

3 Set ht and obtain At = {i : Qt(i) 6= 0},

4 Update ht+1(i) = β(i)∑
j∈A β(j)

5 If A = ∅, then ht+1 = h1.

2.A.8 Gamma Distribution

Recall that a Gamma distribution ([73]) is characterized by two parameters: the shape

k > 0 and the scale θ > 0. The PDF of a Gamma(k, θ) is given by 1
Γ(k)θk

xk−1e−x/θ

where Γ(k) =
∫∞

0
uk−1e−udu is the standard Gamma function. See Figure 2.8 for PDFs of

different Gamma distribution for various choices of k and θ.

Figure 2.8: PDF of different Gamma distributions.

Proposition 2.16. Let X ∼ Gamma(k, θ). Then, E[X] = kθ and Var(X) = kθ2.
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CHAPTER 3

ADAPTIVE BIN PACKING WITH OVERFLOW

Motivated by the allocation of virtual machines to servers in the cloud [90], this chapter

considers the online problem of packing items with random sizes into unit-capacity bins.

Items arrive sequentially, but upon arrival an item’s actual size is unknown; only its prob-

abilistic information is available to the decision maker. Without knowing this size, the

decision maker must irrevocably pack the item into an available bin or place it in a new bin.

Once packed in a bin, the decision maker observes the item’s actual size, and overflowing

the bin is a possibility. An overflow incurs a large penalty cost and the corresponding bin

is unusable for the rest of the process. In practical terms, this overflow models delayed

services, failure of servers, and/or loss of end-user goodwill. The objective is to minimize

the total expected cost given by the sum of the number of opened bins and the overflow

penalty cost. We present an online algorithm with expected cost at most a constant factor

times the cost incurred by the optimal packing policy when item sizes are drawn from an

i.i.d. sequence of unknown length. We give a similar result when item size distributions

are exponential with arbitrary rates. We also study the offline model, where distributions

are known in advance but must be packed sequentially. We construct a soft-capacity PTAS

for this problem, and show that the complexity of computing the optimal offline cost is

#P-hard. Finally, we provide an empirical study of our online algorithm’s performance.

The content of this chapter appears in the INFORMS Journal of Mathematics of Operations

Research, 2022 [141]. This work was partially supported by the U.S. National Science

Foundation via grants CMMI 1552479, AF 1910423 and AF 1717947.
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3.1 Introduction

Bin Packing is one of the oldest problems in combinatorial optimization, and has been

studied by multiple communities in a variety of forms. In the classical online formulation,

n items with sizes in [0, 1] arrive in an online fashion, and the objective is to pack the items

into the fewest possible number of unit-capacity bins. The model has wide applicability in

areas including cargo shipping [174], assigning virtual machines to servers [173], a variety

of scheduling problems [44, 80, 171], and so on. In many of these applications, the items’

sizes may be uncertain, with this uncertainty often modeled via probability distributions.

In much of the stochastic bin packing literature, an item’s size is observed before it must be

packed, e.g. [90, 159]. Nevertheless, in many applications this assumption is unrealistic.

For instance, in bandwidth allocation, connection requests are often bursty and deviate

from their typical utilization. If the utilization of the request is higher than expected, it can

jeopardize the stability of other connections sharing the same channel. Moreover, the only

way to observe the actual traffic required by the connection is to first allocate the request

and then observe the traffic pattern.

Motivated by these considerations, we introduce an online adaptive bin packing problem

that takes into account the following ingredients:

1. Arrivals are adversarial distributions and the length of the item sequence is unknown to

the decision maker.

2. In contrast to existing work in the online and/or stochastic bin packing literature, when

an item arrives, the decision maker only observes a probability distribution of its size.

3. The decision maker observes the item’s actual size only after irrevocably placing it in a

bin; therefore, overflowing a bin is possible.

4. An overflowed bin incurs a penalty and renders the bin unusable from that point on. The
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objective is to minimize the expected cost given by the sum of the number of open bins

and overflow penalty.

3.1.1 Motivating Applications

The online adaptive bin packing problem captures the uncertainty introduced by the online

nature of the problem, and also the uncertainty introduced by learning the size of an item

after it is packed in a bin. While the variant of the bin packing problem we consider is

general and widely applicable, the following examples give some concrete applications:

Bandwidth Allocation. An operator is in charge of assigning sequentially arriving inde-

pendent connection requests. The operator can open new fixed-capacity connections (bins)

of unit cost or try to use one of the available connections to pack the incoming request.

Traffic on a connection may be bursty, requiring more than the available bandwidth. In this

case, the connection suffers from the overflow of the channel, which could represent a mon-

etary penalty or extra work involved in reassigning the request(s) to other connection(s).

See also [109].

Freight Shipping. A dispatcher in a fulfillment center is in charge of packing items into

trucks for delivery. Truckloads must comply with a maximum weight limit, and our model

applies when the dispatcher assigns items into trucks before their final weighing. An over-

weight truck incurs a penalty representing additional labor or possible fines. See also [111,

112, 137].

Cloud Computing. A controller is in charge of assigning virtual machines (VM) to servers.

The controller has statistical knowledge of the amount of resource a VM will utilize (CPU,

RAM, I/O bandwidth, energy, etc.), learned via historical data. The actual resource usage

is observed once the VM runs in a server. Excessive consumption of a resource by the VM

could compromise the stability of the server and negatively affect other VM’s sharing the

same infrastructure. See also [90].
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Operation Room Scheduling. In hospitals, an administrator is in charge of assigning in-

coming surgeries to different operation rooms. There may be a statistical estimation of a

procedure’s duration, but the real time spent in the room is only learned once the operation

has finished. Over-allocating a room could incur economic penalties and loss of patients’

good will. See also [62, 66].

3.1.2 The Model

We consider the problem of sequentially packing items arriving in an online fashion into

homogeneous bins of unit capacity. The input consists of a sequence of n nonnegative

independent random variables X1, . . . , Xn, observed sequentially one at a time. Similar

to the bin packing literature, we refer to items interchangeably either by their index i or

their corresponding random variable Xi. At iteration i, random variable Xi arrives and

we observe its distribution but not its outcome. We decide irrevocably to pack Xi into an

available bin with nonnegative remaining capacity (if any), or to place Xi in a new bin and

pay a unit cost. Once packed, we observe the outcome of the random variable Xi = xi,

and the chosen bin’s capacity is reduced by this amount. A bin overflows when the sizes

of items packed in it sum to more than one; when this happens, we incur an additional cost

C ≥ 1 and the overflowed bin becomes unavailable for future iterations.

We measure the performance of an algorithm P based on the expected overall cost incurred

and denote it cost(P). Because of the online nature of the problem, we cannot expect

to compute the optimal cost for an arbitrary sequence of distributions. Even if we knew

all distributions in advance, computing the minimum-cost packing is still computationally

challenging; the deterministic version reduces to the NP-hard offline bin packing problem.

To quantify the quality of an online algorithm, we compare the expected cost incurred by

the algorithm against the expected cost incurred by an optimal adaptive packing policy that

knows all distributions in advance. This benchmark knows all size distributions in advance

but not their outcomes, and must pack the items sequentially in the same order as the online
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algorithm1. This measure of quality differs from the traditional online competitive ratio,

cf. [13, 29]. In the latter, we would compare our online algorithm against a more powerful

optimal offline algorithm that knows all item sizes in advance, or only knows distributions

but can pack the items in an adaptive order. We provide two examples showing that against

either benchmark, any sequential policy is a factor Ω(C) more expensive than the optimal

solution.

Example 1. Consider n i.i.d. random variables, where Xi = 1 with probability 1/C,

and Xi = 1/n with the remaining probability. We expect n/C random variables to realize

to 1. Therefore, the expected cost of an offline solution that observes the sizes is at most

n/C+1. In contrast, the cost incurred by any online algorithm (or even an offline algorithm

that observes distributions but not sizes) is at least n. Therefore, when measured against

the most powerful benchmark, no online algorithm can have a bounded competitive ratio.

The next example shows a similar result for a benchmark that can pack items adaptively.

Example 2. Consider the following sequence of random variables: Xi = 2−i with prob-

ability 1 − 2/C and Xi = 1 − 2−i with the remaining probability. If the items are packed

in the order X1, X2, . . . , Xn, the expected optimal cost is n, because at each time step it is

better to open a new bin than to use one of the available bins. At time i > 1, if we pack

item i into a previously opened bin with remaining capacity 1−x, the expected cost of this

action is C P(Xi > 1 − x) ≥ C · (2/C) · 1{x≥2−i} ≥ 2, which is larger than the cost of

packing item i in a new bin. On the other hand, the optimal expected cost of packing the

items in the order Xn, Xn−1, . . . , X1 is at most 2n/C + 1. Consider the policy that packs

items into the same bin until its usage exceeds 1/2, at which point it opens a new bin. This

policy does not overflow any bin, and the expected number of used bins is at most the ex-

pected number of items with size 1/2 or greater, plus one additional bin to accommodate

the items placed in the last bin. This example implies that no online algorithm can have a
1See Section 3.3 for a more detailed description of policies.
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bounded competitive ratio against an adversary that can adaptively choose the order of the

items, even if the adversary’s item order is fixed beforehand. These two negative results

motivate us to use a more refined benchmark that knows distributions but not outcomes in

advance, and must pack items in the same order as our algorithm. In addition, we show

that computing the cost of this optimal offline policy is #P-hard (Theorem 3.5).

It is worth mentioning that simple greedy strategies based only on a bin’s used capacity

can perform poorly compared to the optimal offline policy. One such strategy is the Greedy

Algorithm that compares the instantaneous expected cost of packing the incoming item

in an available bin, C · P(Xi overflows bin), versus the unit cost of opening a new bin,

selecting the cheapest available choice. This strategy performs poorly in general, even for

i.i.d. input sequences.

Example 3. Consider n i.i.d. items, withXi ∼ Bernoulli(1/C). The optimal policy incurs

an expected cost of at most n/C + 1: This corresponds to the policy that stops utilizing a

bin after observing an item of size 1. On the other hand, Greedy incurs an expected cost

of at least n/2, since it will keep trying to pack items in a bin until breaking it. Intuitively,

in a sequence of Bernoulli trials the expected time to observe two items of size 1 is 2C;

therefore, every 2C items (in expectation), Greedy pays a penalty, incurring an expected

cost of roughly n/2.

Another simple choice for a heuristic packing policy is a Threshold Algorithm, which es-

tablishes a threshold α ∈ (0, 1) such that a bin filled to more than α of its capacity is not

used again. Notice that for any α ∈ (0, 1), the optimal policy and the threshold policy

incur roughly the same cost for the i.i.d. input Xi ∼ Bernoulli(1/C). We now argue that

these policies can perform poorly if the threshold α is not adaptively chosen based on the

distribution.

Example 4. Assume that α ≤ 1/2 (the case α > 1/2 is handled similarly) and consider
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the i.i.d. input

Xi =


0 w.p. 1− 1/C

α w.p. 1/2C

1− α/2 w.p. 1/2C.

The optimal policy incurs an expected cost of at most n/C + 1, since the policy that stops

using a bin upon observing a positive outcome incurs at most this cost. On the other hand,

the Threshold Algorithm incurs an expected cost of at least n/24− C; we sketch an argu-

ment here to obtain this bound, ignoring the −C term for the sake of clarity: The expected

number of positive outcomes is n/C. A bin is overflowed by the Threshold Algorithm when

an item of size α is followed by another of size 1−α/2 (regardless of the number of items

of size 0 in between). Focusing solely on the positive outcomes, the number of expected

disjoint triplets of the form (1−α/2, α, 1−α/2) is at least a fraction (1/8)×(1/3) = 1/24

of these positive outcomes, from which the bound follows.

We include a brief discussion of threshold policies for i.i.d. input sequences in Appendix 3.C.

If the common distribution of the input sequence is finite, a threshold policy can be com-

puted as a function of the distribution, with expected cost a constant factor of the optimal

expected cost.

Until now, we have presented examples in which the optimal policies do not break any bin.

To not give the false impression that optimal policies do not risk breaking bins, we present

the following example.

Example 5. Consider n i.i.d. items, where Xi = 1 with probability 1/C2 and Xi = 1/n

with the remaining probability. The optimal policy has expected cost no more than n/C+1,

far less than the policy that does not break any bins, which incurs an expected cost of n.

In deterministic bin packing problems, one of the most useful bounds for the number of
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used bins is the sum of the item sizes. It is known that this value is at least half the number

of bins used by any greedy algorithm [48]. In our stochastic setting, the expected sum of

item sizes could be far from the number of bins used. Indeed, for the random variables

considered in Example 1, we have
∑n

i=1 E[Xi] = (n− 1)/C + 1, while the expected cost

of any policy is at least n for this input sequence.

3.1.3 Results and Contributions

We propose a heuristic algorithm called Budgeted Greedy and denoted ALG (Algorithm 5).

Budgeted Greedy uses a risk budget in each bin as a way to control the risk of overflowing

the bins. If we consider packing item i in bin j, this action’s risk is equal to the probability

of overflowing the bin; Budgeted Greedy maintains a bin’s risk below its risk budget. At

every step, similar to the bin’s capacity, when an item is packed in a bin, the bin’s risk

budget is reduced by the probability of the current item overflowing the bin. If no currently

opened bin has enough risk budget left, then a new bin is opened. Observe that the risk of

packing item i into any available bin depends on the realized sizes of items 1, . . . , i−1 and

these items’ assignments.

The risk as defined above can be calculated for any policy. While there are instances where

the optimal policy incurs a large risk for certain bins it opens, our first structural result

shows that any policy can be converted to one with budgeted risk with at most a constant

factor loss.

Theorem 3.1. Let X1, . . . , Xn be an arbitrary sequence of independent nonnegative ran-

dom variables (not necessarily identically distributed). For any γ > 0 and for any policy

P that sequentially packs X1, . . . , Xn, there exists a risk-budgeted policy P ′ packing the
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same items, such that no bin surpasses the risk budget γ/C, and with expected cost

cost(P ′) ≤ (1 + 2/γ) cost(P).2

Theorem 3.1 is obtained by updating policy P’s decision tree whenever the risk budget is

violated by opening a new bin. The extra cost of the new opened bins is paid by a delicate

charging argument. Notice that as γ →∞, we recover the original cost of the policy.

While the cost of any policy involves two terms, the expected number of open bins and the

expected penalty for overflowed bins, we show (Lemma 3.9) that for a budgeted policy, the

cost of overflowed bins is at most a constant factor of the number of opened bins in expec-

tation, with the constant depending on the budget γ/C. This allows us to exclusively focus

on the number of bins opened by the budgeted policy. A consequence of these structural

results is the following.

Theorem 3.2. If the input sequenceX1, . . . , Xn is i.i.d., for any γ, the Budgeted Greedy al-

gorithm with this γ minimizes the expected number of opened bins among all risk-budgeted

policies with the same γ. In particular, for γ =
√

2 we obtain cost(ALG) ≤ (3 +

2
√

2) cost(OPT), where OPT denotes the optimal policy that knows n in advance.

In many bin packing models, it is possible to construct an explicit lower bound for the cost

of the optimal benchmark (e.g. the expected sum of the item sizes). In our setting, even

though these bounds still hold, they can be a factor of C away from cost(OPT), even for

i.i.d. input sequences (see Example 5). We therefore take a different approach for the i.i.d.

case; we transform policies into the policy induced by Budgeted Greedy, incurring only

small, multiplicative losses.

This i.i.d. model can be interpreted in the following manner. Suppose there is a probability

2If there are items Xi with P(Xi > 1) > γ/C, these are packed individually. Bins not containing these
items have risk bounded by γ/C. See Section 3.4.
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distribution over the nonnegative real numbers. There are n item sizes independently drawn

from this distribution, x1, . . . , xn. For each i = 1, . . . , n, we are asked to pack the i-th item

without observing its size. This is indeed a model for basic allocation systems where only

a population distribution is known about the item’s size, which is a typical occurrence in

practical applications if more granular information is not available.

As a consequence of Theorem 3.2, we can also show the existence of instance-dependent

threshold policies with similar guarantees as Budgeted Greedy.

Corollary 3.2.1. If the input sequence X1, . . . , Xn is i.i.d. with finite support, there is

a threshold α ∈ [0, 1] that depends on the common distribution of the Xi, such that

the threshold policy Pα, which stops using bins when their capacity exceeds α, satisfies

cost(Pα) ≤ (3 + 2
√

2) cost(OPT) + 1, where OPT denotes the optimal policy that knows

n in advance.

The proof is based on the theory of discounted Markov decision processes (see [146]). We

need the finiteness of the support of the distribution to show the existence of a fixed point,

which is crucial for the Bellman recursion in the discounted setting. The proof of this

corollary appears in the Appendix 3.C.

As a second contribution, we show that for arbitrary exponential distributions, i.e. a se-

quence of random variables X1, . . . , Xn with P(Xi > x) = e−λix, Budgeted Greedy in-

curs a cost that is at most a factor O(logC) times the benchmark cost. Moreover, if the

exponential random variables are sufficiently small, this factor can be reduced to a constant.

Theorem 3.3. If each Xi is exponentially distributed with rate λi > 0, Budgeted Greedy

satisfies

cost(ALG) ≤ O(logC) cost(OPT).

Furthermore, if λi ≥ 2 logC for all i = 1, . . . , n, cost(ALG) ≤ O(1) cost(OPT).
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We show that Budgeted Greedy opens bin i + 1 if it either packs at least Ω(1/ logC) in

bin i, or the risk in bin i is bounded by a small constant, which we obtain via an auxil-

iary non-convex maximization problem. With this, Budgeted Greedy’s cost is bounded by

O(logC)
∑

iE[Xi] ≤ O(logC) cost(OPT). When the exponential random variables are

small enough, Budgeted Greedy opens bin i + 1 if a constant amount of mass in bin i is

packed, thereby reducing the logC factor to a constant. We also give a Ω
(√

logC
)

lower

bound for Budgeted Greedy’s competitive ratio in the case of exponentially distributed

sizes.

Offline Model Although our motivation for studying the bin packing model is an online

application, the offline sequential version of the problem is interesting in its own right, as

it interpolates the online setting and the completely offline setting, where items are packed

in an arbitrary order. In the offline sequential version of the problem, an ordered list of

random variables is given to the decision maker, and the objective is to design a sequential

policy to minimize expected cost, in time polynomial in the number of items and possibly

logC. As in the online model, right after the decision maker packs a random variable (item)

into a bin, the actual size is revealed to her. The optimal offline expected cost computed

here corresponds to the benchmark we consider in the online setting.

In this offline framework, we present two main contributions. Following the resource aug-

mentation literature [79, 119], the first contribution states that there is a polynomial-time

approximation scheme (PTAS) for computing a policy when the capacity of the bins is

extended by ε.

Theorem 3.4. For any 0 < ε ≤ (
√

15−3)/
√

6, there is an algorithm running inO
(
n2(6/ε)5/ε10

)
time that computes a polynomial-size policy P packing items into bins of size 1 + ε, and

incurring an expected cost of at most (1 + ε) cost(OPT), where OPT is the optimal policy

packing items into bins with unit capacity.
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The algorithm uses a discretization of possible item sizes similar to [119]. This allows us to

find an optimal policy for discretized outcomes via dynamic programming in polynomial

time. The cost of this policy is almost the original optimal cost. We recover a policy for

the original items by a tracking argument simulating the discretized policy in parallel. The

policy follows the discretized policy’s decision to pack items in a bin j as long as the error

between the sizes in j and its discrete version remains small. When this fails, the policy

opens a new copy of j and keeps following the discretized policy as before. This tracking

is enough to guarantee similar cost between the two policies.

Our second result for the offline model relates the complexity of computing the optimal

value to counting problems. Specifically, we show that computing the optimal offline cost

is #P-hard—hence, the optimal online benchmark is also #P-hard to compute.

Theorem 3.5. It is #P-hard to minimize cost(P).

The proof of this result is divided into two parts. First, we show that counting solutions

of symmetric logic formulas in 4CNF3 is #P-hard (Theorem 3.46). From a symmetric

4CNF formula we construct a stochastic input of the stochastic bin packing problem, where

minP cost(P) allows us to count the solutions of the 4CNF formula. The proof resembles

the reduction from the Partition problem to the Bin Packing problem. Intuitively, random-

ized items model outcomes of variables in the 4CNF formula, one item for each positive

and negative literal. The main step in the proof is to correlate the outcomes of the pos-

itive/negative literals corresponding to the same variable. The proof of Theorem 3.5 is

deferred to Appendix 3.B.

The rest of the chapter is organized as follows. We follow this introduction with a brief

literature review. In Section 3.3, we present the Budgeted Greedy algorithm and introduce

the necessary notation for the rest of the chapter. Section 3.4 focuses on the i.i.d. case,

3Logic formula in conjunctive normal form with 4 literals in each clause.
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including the proofs of Theorem 3.1 and Theorem 3.2. In Section 3.5 we turn to expo-

nentially distributed item sizes, with the proof of Theorem 3.3 and the construction of the

corresponding lower bound. Section 3.6 discusses the offline case, including the proof of

Theorem 3.4. In Section 3.7 we present a numerical study of our algorithms, comparing it

with natural benchmarks.

3.2 Related Work

In the classic one-dimensional bin packing problem, n items with sizes x1, . . . , xn in [0, 1]

must be packed in the fewest unit-capacity bins without splitting any item into two or

more bins. This is a well-studied NP-complete problem spanning more than sixty years of

work [57, 80, 84, 101, 103, 106, 151]. For excellent surveys see [42, 48]. In the online ver-

sion, the list of items L = (x1, . . . , xn) is revealed online one item at a time. In round t, we

observe item xt and must irrevocably decide whether to pack it in an open bin with enough

remaining space or to open a new unit-capacity bin at unit cost, without knowledge of future

arrivals. It is standard to measure an online algorithm’s performance via its (asymptotic)

competitive ratio [13, 29, 48] lim sup|L|→∞ costalg(L)/ costOPT(L), where costalg(L) is the

cost incurred by the online algorithm with input L, and costOPT(L) is the cost incurred by

the optimal offline solution that knows L in advance. The best known competitive ratio is

1.57829 [20], and the best current lower bound is 1.5403 [21]; see also [172, 175]. Our

model subsumes the deterministic case, and therefore inherits the aforementioned lower

bound.

In several real-world applications, exact item sizes are unknown to the decision maker at

the time of insertion [61, 171]. This uncertainty is typically modeled via probability dis-

tributions of the items’ sizes. Several online and offline bin packing models introducing

stochastic components have been studied. These include, for instance, models where item

sizes are drawn from know distributions and observed before packing [45, 53, 91, 149,
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159, 158], or chance-constrained models where all sizes are revealed to the decision maker

after committing to a packing [85, 119, 109]. These stochastic models have revealed con-

nections with balls-into-bins problems [159], sums of squares [53], queuing theory [47],

Poisson approximation [119], etc. For the online case, common to all these models is the

assumption that the item size is observed before packing it. Nevertheless, observing the

item’s size before deciding where to pack it is unrealistic in many scenarios. For instance,

in cloud computing, before running a job in a cluster, we may have some statistical knowl-

edge of the amount of resource the job will utilize. However, the only way to observe the

real utilization is to start the job in the cluster. In this work, we propose a new model vari-

ant where items’ size distributions are revealed in an online fashion, but each outcome is

observed only after packing the item. We therefore relax the strict capacity constraint by

allowing each bin to overflow at most once, at the expense of a penalty.

Our model also shares similarities with adaptive combinatorial optimization, particularly

stochastic knapsack models introduced in [63]. Recent treatment began with the work of

Dean, Goemans, and Vondrák [59] from an approximation algorithms viewpoint; how-

ever, their work focuses primarily on the power of adaptivity in the stochastic knapsack

as opposed to the design of adaptive policies. Since then, a large body of work has stud-

ied the adaptive knapsack model (and more general problems) from several perspectives:

information-relaxation in MDP [22], improved approximations via policy analysis [25,

119], improved approximations via linear programming [89, 122] and new linear programs

using MDP relaxations [26, 27, 28]. In these models, overflowing the knapsack stops the

packing of items but does not directly penalize the decision maker. Conversely, in the so-

called blackjack knapsack problem, overflowing the knapsack results in zero value for the

decision maker [79, 117]. This could be interpreted as a penalty similar to the one incurred

by the decision maker in our model. Most of these works assume complete knowledge of

the input distributions, and online treatments are scarcer in the literature. Here we highlight

work in online generalized assignment [12] and stochastic bipartite matching [87, 129].
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A related area of work is the extensible bin packing problem [46, 60]. Roughly speaking,

a fixed number of bins are given and a set of items must be packed into them. The cost

of bin B corresponds to max
{∑

i∈B xi, 1
}

, a fixed unit cost and a linear excess cost. The

objective is to design packings with small overall cost; even though we do not allow bins

to be utilized after overflowing, we could interpret our model as a nonlinear version of a

stochastic extensible bin packing problem. Such models capture situations in which a fixed

cost is incurred to complete a task with finite resources (e.g. workers) but the resources can

be “stretched” with some additional linear cost (e.g. overtime pay). For a generalization

to different costs and bin capacities, see [116]. For a stochastic approach similar to our

posterior observability, see [152].

3.3 The Algorithm

3.3.1 Preliminaries

The problem’s input consists of n independent nonnegative random variables X1, . . . , Xn.

The (possible) bins to utilize are denoted by B1, B2, . . . , Bn. A state s for round i ∈ [n+1]

is a sequence (x1, 1 → j1)(x2, 2 → j2) · · · (xi−1, i − 1 → ji−1), where xk is an outcome

of Xk for all k < i. The pair (xk, k → j) represents round k, and refers to packing Xk in

bin j and observing outcome Xk = xk. A state for round i represents the path followed

by a decision maker packing items X1, . . . , Xn sequentially into bins and the outcomes

for each of these decisions until round i − 1. States have a natural recursive structure:

s = s′(xi−1, i − 1 → ji−1), where s′ is the state for round i − 1. The initial state s0 is the

empty state. Bin Bj is open by state s if some (xk, k → j) appears in s. The items packed

into bin Bj by state s are Bj(s) = {k : (xk, k → j) appears in s}. The number of bins

opened by state s is |{j : (xk, k → j) appears in s}|. The usage of bin Bj at the beginning

of round i in state s is

Si−1
j (s) =

∑
k≤i−1

(xk,k→j)∈s

xk,
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the sum of sizes of items packed in bin j. A binBj is broken or overflowed in s if Si−1
j (s) >

1. In our model, we stop using bins that overflow. A state s for round i is feasible if any

overflowed bin by round k is never used again after k, for any k < i. The state space is the

set of all feasible states, denoted S. The set of all feasible states for round i ≤ n is denoted

by Si.

A policy P is a function P : Sn → [n] such that for a feasible state s ∈ Sn for round i,

P(s) = j indicates that item i is packed into bin j; we write this as i→ j when the policy

and state are clear from the context. The policy is feasible if s′ = s(xi, i → P(s)) is a

feasible state for any feasible s ∈ Sn for round i and outcome xi of Xi. From now on,

we only consider feasible policies. A state s′ ∈ S is reachable by the policy if s′ = s0

or s′ = s(xi, i → P(s)) with s reachable, s for round i and xi an outcome of Xi. For

a reachable state s for round i ∈ [n], we say that P opens bin j if P(s) = j and Bj

is not open in s. We say that the policy overflows bin Bj at state s if Bj overflows for

s′ = s(xi, i→ P(s)) but Bj is not overflowed in s. We set the cost of a policy as

cost(P) = E[NP ] + C E[OP ],

where NP is the number of bins opened and OP is the number of bins broken by reachable

states for round n + 1. The randomness is over the items’ outcomes. Notice that non-

reachable states in S are unimportant for cost(P), hence we can always assume P(s) = n

for non-reachable s ∈ Sn. A policy specifies the actions to apply in any epoch of the

sequential decision-making problem. Note that our states are typically considered histories

in the Markov decision processes literature [146]. We use our description of states to keep

close track of policies’ actions in the subsequent analysis.

Any policy P has a natural (n + 1)-level decision tree representation TP , which we call

the policy tree. The root, denoted r, is at level 1 and represents item X1 and state s0. A
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node at level i ∈ [n] is labeled with P(i, s) where s is the state of the system obtained by

following the path from the root to the current node. There is a unique arc going out of the

node for every possible outcome of Xi directed to a unique node in level i + 1. Nodes at

level n+ 1 are leaves denoting that the computation has ended. Nodes in levels i ∈ [n] are

called internal nodes. To compute the cost(P) using the policy-tree TP , we add two labels

to the tree:

• For an internal node u, `u = 1 if P opens a new bin in node u; 0 otherwise. For leaves

we define `u = 0.

• For arcs a = (u, v), we define ca = C if the outcome of the random variable belonging to

the level where u is located overflows the bin chosen by the policy at node u; 0 otherwise.

We refer to this tree as cost-labeled tree TP with cost vectors (`, c), or simply cost-labeled

tree TP if the costs are clear from the context. The tree structure gives us a recursive way

of computing the cost of the policy. Let TP(u) be the cost-labeled sub-tree of TP rooted at

node u; then

cost`,c(TP(u)) =


`u + EXi [c(u,uXi )

+ cost`,c(TP(uXi))] if u is at level i = 1, . . . , n

0 if u is at level n+ 1

,

where uXi is the node at level i + 1 connected to u. Thus, cost(P) = cost`,c(TP(r)).

We define OPT = argminP cost(P) as the optimal policy for sequentially packing items

X1, . . . , Xn. This policy might not exist in cases where the number of states is uncount-

able, for example, when X1, . . . , Xn have continuous distributions. In this case, the policy

tree has uncountably many edges emanating from nodes, corresponding to all possible re-

alizations of Xi. Nevertheless, a ε-optimal policy is guaranteed to exist, i.e. a policy P that

ensures cost(P) ≤ infP cost(P) + ε. We abuse notation by calling OPT the optimal policy

(or an arbitrarily good approximation if it does not exist).
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Note that we defined only deterministic policies, since the action P(s) is deterministic. If

P(s) were a probability distribution over [n], then we would have a randomized policy.

A standard result from Markov decision processes theory ensures that any randomized

policy has a deterministic counterpart incurring the same cost; hence, we only focus on

deterministic policies. For more details see [143, 146].

The following proposition characterizes the expected number of bins overflowed by a pol-

icy. The proof appears in Appendix 3.A.

Proposition 3.6. Let X1, . . . , Xn be nonnegative independent random variables, and let P

be any policy that sequentially packs these items. The expected number of bins overflowed

by the policy P is

E[OP ] =
n∑
j=1

E
X1,...,Xn

[
n∑
i=1

PXi(Xi + Si−1
j > 1)1P{i→j}

]
,

where Si−1
j is the usage of bin j at the beginning of iteration i and 1P{i→j} is the indicator

random variable of the event in which P packs item Xi into bin j.

If we interpret PXi(Xi + Si−1
j > 1) as the risk that Xi overflows bin j if packed there, the

result says that the number of overflowed bins is the expected aggregation of these risks.

We define the risk of a bin j as Risk(Bj) =
∑n

i=1 PXi(Xi + Si−1
j > 1)1{i→j}. Then

E[OP ] =
∑n

j=1 E[Risk(Bj)]. A policy P is risk-budgeted or simply budgeted with risk

budget r > 0 if no bin incurs a risk larger than r, Risk(Bj) ≤ r for j ∈ [n].

A deterministic online algorithm induces a policy, with non-reachable states simply mapped

to ∅. Since online algorithms are not aware of the number of items n, we label the j-th bin

opened by an online algorithm as Bj in this case. The cost of an online algorithm is natu-

rally defined as the cost of the corresponding induced policy.

We use the notation z(B) =
∑

i∈B zi for a vector z = (z1, . . . , zn). If X = (X1, . . . , Xn)
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is the vector of random variables andB = Bj , thenX(B) = Snj is the usage of binBj . The

following propositions are probabilistic analogues of the well-known size lower bound for

deterministic bin packing. We use them in Sections 3.5 and 3.6. The proofs are deferred to

Appendix 3.A.

Proposition 3.7. For any sequence of nonnegative i.i.d. random variables X1, . . . , Xn, for

any bin B = Bj and any policy P , we have

E

[∑
i∈B

E[Xi ∧ 1]

]
= E

[∑
i∈B

(Xi ∧ 1)

]
≤ 2P(P opens bin B),

where Xi ∧ 1 = min{Xi, 1}.

When all items sizes are aggregated, we can improve the factor of 2 as follows.

Proposition 3.8. For any sequence of nonnegative i.i.d. random variables X1, . . . , Xn, for

any policy, we have

E

[
n∑
i=1

(Xi ∧ 1)

]
≤ cost(P).

3.3.2 The Budgeted Algorithm

In the Budgeted Greedy algorithm, we keep a risk budget for each bin that is initialized as

γ/C, where γ ≥ 1 is an algorithm parameter. We pack items in a bin as long as the usage

of the bin is at most 1 and its risk budget has not run out. More formally, when opening a

bin, say bin j at round i, we initialize its risk of overflow at ri−1
j = 0. At round i, when item

Xi arrives, we find a bin j such that ri−1
j + pi(S

i−1
j ) ≤ γ/C, where ri−1

j is the accumulated

risk of overflowing the bin until i−1, Si−1
j is the usage of the bin j until the previous round

and pi(Si−1
j ) = PXi(Xi + Si−1

j > 1) is the risk that Xi overflows bin j. If that bin j exists,

we pack the incoming item into bin j, breaking ties arbitrarily, and we update the risk of

overflow as rij = ri−1
j + pi(S

i−1
j ) and rij′ = ri−1

j′ for any j′ 6= j. Such a bin may not exist,
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in which case we open a new bin k with rik = pi(0). Strictly speaking, Budgeted Greedy

is not a budgeted policy with risk budget γ/C unless all items satisfy P(Xi > 1) ≤ γ/C;

items with P(Xi > 1) > γ/C are packed into individual bins. In Algorithm 5, we formally

present the description of Budgeted Greedy.

Algorithm 5: BUDGETED-GREEDY(γ,X1, . . . , Xn)

1 Initialize: I = ∅.

2 for i = 1 . . . , n do

3 if ∃j ∈ I such that ri−1
j + pi(S

i−1
j ) ≤ γ/C then

4 Sij = Si−1
j +Xi.

5 rij = ri−1
j + pi(S

i−1
j ).

6 else

7 Define rij = pi(0) for j such that j = inf{j ≥ 0 : j /∈ I}.

8 Sij = Xi.

9 Update I = I ∪ {j}.

10 end

11 for j′ 6= j do

12 Sij′ = Si−1
j′ .

13 rij′ = ri−1
j′ .

14 end

15 end

Lemma 3.9. Let γ ≥ 1 and assume that for all i, P(Xi > 1) ≤ γ/C. For any bin j,

Algorithm 5 guarantees

P(ALG breaks bin j) ≤ γ

C
P(ALG opens bin j).
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Proof. Proof. Using Proposition 3.6,

P(ALG breaks bin j) = E

[(
n∑
i=1

P(Xi + Si−1
j > 1)1ALG

{t→j}

)
1{ALG opens bin j}

]

= E
[
Risk(Bj)1{ALG opens bin j}

]
≤ γ

C
P(ALG opens bin j),

since once the bin has been opened, its risk never goes beyond γ/C.

As a result, we have the following corollary, which implies that we only need to bound the

expected number of bins opened by Budgeted Greedy in our analysis.

Corollary 3.9.1. Under the same assumptions as Lemma 3.9, cost(ALG) ≤ (1+γ)E[NALG].

3.4 A Policy-Tree Analysis for I.I.D. Random Variables

In this section we prove Theorem 3.1 for general input distributions in Theorem 3.10. We

use this result to prove Theorem 3.2, which gives the Budgeted Greedy guarantee for the

i.i.d. case. Theorem 3.10 states that any policy can be converted into a budgeted version,

where a risk budget is never surpassed for any bin. This transformation can be carried out

while only incurring a small multiplicative loss. The proof relies on a charging scheme in

the cost paid by overflowing bins. Starting with the original policy tree, we increase the

cost paid by overflowing bins by an amount δ > 0. The overall cost of the tree increases

multiplicatively by at most (1 + δ/C). We show that this additional δ allows us to pay for

new bins whenever the risk of the bin goes beyond γ/C, for an appropriate choice of δ and

γ.

Theorem 3.10. LetX1, . . . , Xn be an arbitrary sequence of independent, nonnegative ran-

dom variables that are not necessarily identical. Fix γ > 0. For any policy P that sequen-

tially packs items X1, . . . , Xn, there exists a policy P ′ for the same items such that:
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• P ′ packs items with P(Xi > 1) > γ/C into individual bins, and bins not containing

these items never exceed the risk budget γ/C.

• P ′ satisfies cost(P ′) ≤ (1 + 2/γ) cost(P).

In particular, if all items satisfy P(Xi > 1) ≤ γ/C, P ′ is a risk-budgeted policy with risk

budget γ/C.

Proof. Proof. The proof follows two phases. In the first and longest phase, we show that

we can modify the policy P in such a way that the risk of each bin exceeds γ/C at most

once. In the second phase, we show that the item surpassing the risk budget in each bin can

be packed into an individual bin. At the end, no item with P(Xi > 1) ≤ γ/C can exceed

the risk γ/C.

In the rest of the proof we utilize the tree representation of the policy. Let δ = C/γ > 0.

We proceed as follows:

1. In the cost labeled tree TP , increase the cost of overflowing the bins from C to C + 2δ.

That is, ĉ(u,v) = C + 2δ if c(u,v) = C and 0 otherwise for any arc (u, v) in TP . Then,

cost`,ĉ(TP(r)) ≤
(

1 + 2
δ

C

)
cost`,c(TP(r)) =

(
1 + 2

δ

C

)
cost(P).

2. Starting at the root of this new cost-labeled tree, find a node u at level i = 1, . . . , nwhere

the policy P decides to open a new bin, say bin j. In each of the branches starting at

node u and directed to some leaf, find the sequence of nodes u1 = u, u2, . . . , uk where

the policy packs items into bin j and node uk corresponds to the first node in the branch

where the risk budget γ/C is surpassed for bin j. Define uk as a leaf if in the branch the

risk budget is not surpassed for bin j. Let i1 = i, i2, . . . , ik be the items packed into bin
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j in this branch; that is, node u` is at level i`. Then, we have

k−1∑
m=1

PXim
(Xim + Sim−1

j > 1) ≤ γ

C
, and

k∑
m=1

PXim
(Xim + Sim−1

j > 1) >
γ

C

if node uk is not a leaf. Here Sim−1
j represents the usage of bin j at node im.

Consider the following modifications to the cost-labeled tree TP : We start with the same

tree as P but in the subtree rooted at u, bin j is utilized only in nodes u1, . . . , uk for the

different branches. Any future utilization of bin j after passing through node uk is

moved to a new bin j′. Now, we update the cost labels as follows. For all the branches,

we reduce the cost of C + 2δ appearing in the arcs going out from nodes u1, . . . , uk to

C + δ. We label the first node appearing after node uk where the bin j′ is opened with

a 1. We reduce the labels of arcs going out of nodes using bin j′ if they do not overflow

the bin j′ anymore (bin j′ has smaller usage than bin j). Formally, for any branch and

nodes u1, . . . , uk defined as before,

c′(a,b) =


C+δ
C+2δ

ĉ(a,b) a = um for some branch starting at u

ĉa,b otherwise
,

and for nodes,

`′a =


1 a is the first node packed into bin j′ in the subtree TP(uk)

`a otherwise
.

We denote this new policy by P ′. Figure 3.1 displays the modification process.

We now argue that the changes applied to the cost-labeled tree TP to transform it into

TP ′ do not increase the cost function cost`,ĉ(TP). Since we only modified labels in the

subtree TP(u) it is enough to study the cost change in this specific subtree for bins j and
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TP r

0 0

C + 2δ 0

C + 2δ 0

C + 2δ 0

v

u1

u2

uk

a

`u1
=1

i1→j

`u2
=0

i2→j

`uk
=0

ik→j

`a=0
i→j

C + 2δ 0

v

TP′
r

0 0

C + δ 0

C + δ 0

C + 2δ 0

v

u1

u2

uk

a

`′u1
=1

i1→j

`′u2
=0

i2→j

`′uk
=0

ik→j

`′a=1

i→j′

C + 2δ 0

v

Figure 3.1: Policy tree modification. On the left, we display the original tree with aug-
mented cost from C to C + 2δ. On the right, we show the modified labels after opening a
new bin in node uk. Observe that we only decrease the costs of arcs related to bin j going
out of nodes u1, . . . , uk in all branches starting at node u.

bin j′.

Lemma 3.11. cost`,ĉ(TP(u)) ≥ cost`′,c′(TP ′(u)).

The proof of this lemma appears in Appendix 3.A. With this result we have

cost`,ĉ(TP(r))− cost`′,c′(TP ′(r))

=E [E [cost`,ĉ(TP(u))− cost`′,c′(TP ′(u)) | Reach node u]] ≥ 0

3. Now, starting from policy P ′ and cost-labeled tree TP ′ with labels `′ in the nodes and c′

in the arcs, repeat step 2 until every bin exceeds the risk budget γ/C at most once.

With the previous method, we construct a policy, which we still call P ′ for simplicity, in

addition to its policy tree TP ′ and labels `′ and c′. This policy exceeds each bin’s risk budget

at most once. Note that labels c′ take values in {0, C + δ, C + 2δ}; we modify the label of

arc (a, b) to min{c′(a,b), C + δ} thus labels take values only in {0, C + δ}. This does not
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increases the cost of the policy tree.

For the second phase, we further modify P ′: If the policy tries to exceed some bin’s risk

budget, we open a new bin for that item, unless there is only one item packed in the bin,

in which case we move to modify another bin. Using the notation of the first phase, this

means that whenever the policy reaches node uk in some branch starting at u, instead of

packing the item in node uk into bin j, it opens a new bin j′′ for it. We call this new policy

P ′′. We modify the cost labels accordingly to accommodate this new cost. We label all

nodes uk in the subtree TP ′(u) that are not leaves (i.e. the risk goes beyond γ/C at uk) with

+1 (the cost to open a new bin). All arcs going out of paths u1, . . . , uk are relabeled from

C + δ to C. Formally, we define the new labels

c′′(a,b) =


C
C+δ

c′(a,b) a = um for some branch starting at u

c′(a,b) otherwise

and for nodes

`′′a =


1 a = uk and a is not a leaf

`′a otherwise
.

Using the same argument as in Lemma 3.11, we can show that

cost`′′,c′′(TP ′′(u)) ≤ costc′,`′(TP ′(u)).

We repeat this procedure as many times as necessary, and we obtain a policy P ′′ that satis-

fies

cost(P ′′) ≤ cost(P ′) ≤
(

1 + 2
δ

C

)
cost(P).

For ease of reading, we present the proof in an iterative manner; the proof’s steps can be

followed to obtain the result for finite and countably infinite policy trees. We now sketch
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how to generalize the proof for uncountable policy trees, focusing on the first phase of the

proof. We note that the proof of Lemma 3.11 is general and does not require any iterative

argument. Recursively,

cost`,c(TP(r)) = E
X1,...,Xi−1

[
i−1∑
k=1

`Uk +
i−1∑
k=1

c(Uk,Uk+1) + cost`,c(TP(Ui))

]

for any i = 1, . . . , n, where Ui is the (random) node at level i. Starting at the root, we apply

Lemma 3.11 to all nodes at level i where a bin is opened. Therefore, we have

cost`,ĉ(TP(u)) ≥ cost`′,c′(TP ′(u))

for all nodes u at level i. Using the previous equation,

cost`,ĉ(TP(r))− cost`′,c′(TP(r)) = E
X1,...,Xi−1

[cost`,ĉ(TP(Ui))− cost`′,c′(TP ′(Ui))] ≥ 0.

Doing this for all levels i = 1, . . . , n, we conclude the first phase of the proof. The second

phase is completely analogous and omitted for brevity.

Theorem 3.10 is a general result that does not depend on item size distributions. In the

following, we use it to analyze the performance of Budgeted Greedy.

I.I.D. Input When the input is an i.i.d. sequence of nonnegative random variables, Bud-

geted Greedy induces a policy tree that packs one bin at a time: When a bin is opened, the

policy never again uses previously opened bins. This simple fact is crucial in the proof of

our next result. The next lemma shows that among all budgeted policies, Budgeted Greedy

opens the minimum expected number of bins when the input is an i.i.d. sequence of ran-

dom variables. Intuitively, if we ignore the penalty paid by overflowing bins and all items

are i.i.d., the optimal way to minimize the expected number of opened bins is by packing

as many items as possible in each bin, as long as the risk budget is satisfied. This can of
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course be done sequentially, one bin at a time, which is what Budgeted Greedy does.

Lemma 3.12. Suppose X1, . . . , Xn are nonnegative i.i.d. random variables. Then,

E[NALG] = min
P budgeted with
risk budget γ/C

E[NP ].

That is, among all risk-budgeted policies with budget γ/C, Budgeted Greedy (Algorithm 5)

opens the minimum expected number of bins.

Proof. Proof. Consider any policy P for packing items such that the risk budget of each

bin γ/C is never surpassed. Consider its tree representation TP . We modify the policy tree

so only one bin is utilized at a time. For this, we exhibit a sequence of operations ensuring

that, whenever bin j is opened, bins 1, . . . , j − 1 are never utilized again. In the tree, this

is equivalent to saying that any branch starting from the root directed to any leaf has labels

1 → j1, 2 → j2, . . . , n → jn where 1 = j1 ≤ j2 ≤ · · · ≤ jn, where we recall that i → j

means the policy packs item i into bin j.

Claim 3.13. Let j = 1, . . . , n be any bin opened by the policy. Suppose that node u in level

k is labeled k → j′, where j′ 6= j. Furthermore, suppose that at node u, bin j is open, its

usage does not exceed 1, and its risk budget can accommodate k. Then u can be relabeled

k → j without increasing the expected number of bins opened by the policy.

Before proving this claim, we show how to use it to conclude the result. Starting at the root

r of the policy tree TP , find the closest node u to the root where we have the label k → j,

j 6= 1, but the usage of bin 1 is no more than 1 and its risk budget can accommodate k. Use

the claim to relabel this node k → 1 without increasing the expected number of open bins.

Repeat this process until there are no nodes u in this category. After this process has been

finished, all branches starting at the root have the form 1→ 1, 2→ 1, . . . , i→ 1, i + 1→
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2, . . . and from i + 1 onward, bin 1 is overflowed or does not have enough risk budget to

receive any additional item. We repeat this process with bin 2, 3, . . .. After this process has

been carried out, the resulting policy is the one induced by Budgeted Greedy.

We prove the claim by backward induction on the level of node u in the policy tree. Fix

an opened bin j = 1, . . . , n and pick any node u at level n with label n → j′, j′ 6= j,

and suppose bin j is open and satisfies the hypothesis – its usage is one or less, and it has

enough risk budget to receive item Xn. Re-labeling this node n → j does not worsen the

number of bins opened since the cost of bin j has already been paid at some previous node.

Recall that we are only taking into account the cost paid by opening bins and not the cost

of breaking bins.

Suppose the result holds for all levels k + 1, k + 2, . . . , n. Pick a node u at level k with

label k → j′, j′ 6= j, and such that bin j is open and satisfies the hypothesis. If all its

children are labeled k + 1 → j then relabel all its children with k + 1 → j′ and relabel u

with k → j. The cost remains the same after this operation since the distribution of Xk is

the same as Xk+1. Now, suppose that some child of u, say v, is labeled k + 1 → m with

m 6= j. Since at node u bin j still has usage not exceeding one and sufficient risk budget

left, at node v bin j still satisfies this condition. Therefore, by induction, we can relabel v

with k + 1 → j without increasing the cost. We can repeat this for any children of u until

all of its children have been labeled k + 1 → j. We conclude by swapping the label of u

with the label of its children as in the previous case.

Theorem 3.14. For γ =
√

2 and i.i.d. nonnegative random variables X1, . . . , Xn, we have

cost(ALG) ≤ (3 + 2
√

2) cost(OPT).

Proof. If P(X1 > 1) >
√

2/C, cost(ALG) = n(1 + C P(X1 > 1)). On the other hand,

cost(OPT) ≥ nC P(X1 > 1) since each item incurs at least this expected cost. Therefore,
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cost(ALG) ≤ 2 cost(OPT).

Now assume P(X1 > 1) ≤
√

2/C. Using Theorem 3.10 and Lemma 3.12, we have

cost(ALG) ≤ (1 + γ)E[NP ] ≤ (1 + γ) cost(OPT∗) ≤ (1 + γ)

(
1 +

2

γ

)
cost(OPT),

where OPT∗ is the (γ/C)-budgeted version of OPT. The expression (1 + γ)(1 + 2/γ) is

minimized at γ =
√

2, which gives the desired result.

3.5 Exponential Random Variables

In this section, we show that Budgeted Greedy incurs an expected cost at most O(logC)

times the optimal expected cost when the item sizes are exponentially distributed. That is,

for any Xi in the input sequence,

P(Xi > x) = e−λix, (3.1)

for any x ≥ 0, where λi > 0 is the rate. Recall that E[Xi] = 1/λi.

The proof is divided into two parts: First, similarly to deterministic bin packing, we show

that E [
∑n

i=1 min{Xi, 1}] is a lower bound for cost(P), for any policy P . In the next

step, we show that the probability that Algorithm 5 opens bin k ≥ 2 is related to the

amount of mass packed into bin k−1. Roughly speaking, we show that the probability that

Algorithm 5 opens bin k ≥ 2 is at most O(logC) times the expected mass packed into bin

k−1. Moreover, in Subsection 3.5.2 we show that, when the rates governing the item sizes

are sufficiently large, λi ≥ 2 logC, the amount of mass packed into bin k − 1 is at least a

constant, thereby improving the algorithm’s approximation factor to a constant. Finally, we

show that our analysis of Algorithm 5 for exponential random variables is almost tight by

exhibiting an input sequence that forces Budgeted Greedy to incur a cost Ω(
√

logC) times

the optimal cost.
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3.5.1 Arbitrary Exponential Random Variables

Here we show that cost(ALG) ≤ O(logC) cost(OPT) when the input is an arbitrary se-

quence of exponential random variables. Using Proposition 3.6, we can assume P(Xi >

1) ≤ 1/C for all i = 1, . . . , n at the expense of an extra multiplicative loss of 2 in the cost

incurred. This assumption translates into λi ≥ logC for all i.

The next result shows that the probability that Algorithm 5 opens a bin, besides the first

bin, is related to the amount of mass packed in the previous bin.

Proposition 3.15. Suppose γ = 2. Then, for any k ≥ 2, Budgeted Greedy guarantees

P(ALG opens bin Bk) ≤5 logC E

 ∑
i∈Bk−1

Xi ∧ 1


+

(
1

3
+ 8
√

5

√
logC

C

)
P(ALG opens bin Bk−1).

Proof. Since the item sizes are continuous random variables, we have P(ALG opens bin Bk) =

P(X(Bk) > 0). Now, we have

P(ALG opens bin Bk) ≤ P

(
X(Bk−1) >

1

5 logC

)
+P

(
X(Bk−1) ≤ 1

5 logC
,X(Bk) > 0

)
.

We bound each term separately. To bound the first term we use Markov’s inequality:

P

(
X(Bk−1) >

1

5 logC

)
= P

(
X(Bk−1) ∧ 1 >

1

5 logC

)
≤ 5 logC E[X(Bk−1) ∧ 1].

For the second term, we proceed as follows. Let E be the event “all items packed in Bk−1
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have rate λi ≥ 2 logC.” Then

P

(
X(Bk−1) ≤ 1

5 logC
,X(Bk) > 0

)
≤P

(
X(Bk−1) ≤ 1

5 logC
,X(Bk) > 0, E

)
+ P

(
X(Bk−1) ≤ 1

5 logC
| E
)
P(X(Bk−1) > 0),

since E, the event that some item in Bk−1 has rate ≤ 2 logC, is contained in the event

“Algorithm 5 opens bin Bk−1.”

Claim 3.16. P
(
X(Bk−1) ≤ 1

5 logC
| E
)
≤ 1− e−2/5 ≤ 1/3.

Proof. If Xi1 , . . . , Xim are all the large items with rates λip ≤ 2 logC, then, the events

Mp = {Xip is the first large item packed into Bk−1}

satisfy E =
⋃m
p=1Mp. Then,

P

(
X(Bk−1) ≤ 1

5 logC
| E
)

=
m∑
p=1

P

(
X(Bk−1) ≤ 1

5 logC
| E,Mp

)
P(Mp | E)

≤
m∑
p=1

P

(
Xip ≤

1

5 logC

)
P(Mp | E)

=
m∑
p=1

(1− e−λip/5 logC)P(Mp | E) (Using (3.1))

≤ (1− e−2/5)
m∑
p=1

P(Mp | E). (Using λip ≥ 2 logC)

The proof follows because the events Mp are disjoint and form E.

Claim 3.17. P
(
X(Bk−1) ≤ 1

5 logC
, X(Bk) > 0, E

)
≤ 20

√
logC/C P(X(Bk−1) > 0).

Proof. In this case, bin Bk has been opened even though Bk−1 still has available space.

That means that the element that opens bin Bk surpasses the budget of Bk−1. From here
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we obtain,

2

C
< Risk(Bk−1) + P(Xt > 1−X(Bk−1)) ≤ Risk(Bk−1) +

e1/5

C
,

whereXt is the first item packed intoBk and we use λt ≥ logC and (3.1), thus P(Xt > 1−

X(Bk−1)) ≤ e1/5/C. Let Fβ be the event “
∑

i∈Bk−1
E[Xi] > β”; by Markov’s inequality,

P(Fβ) ≤ 1

β
E

 ∑
i∈Bk−1

E[Xi]


≤ C

C − 1

1

β
E

 ∑
i∈Bk−1

E[Xi ∧ 1]

 (E[Xi ∧ 1] = (1− e−λi)E[Xi])

≤ 2
C

C − 1

1

β
P(X(Bk−1) > 0). (Proposition 3.7)

Thus,

P

(
X(Bk−1) ≤ 1

5 logC
,X(Bk) > 0, E

)
≤ P

(
X(Bk−1) ≤ 1

5 logC
,Risk(Bk−1) >

2− e1/5

C
,E

)
≤ 2C

β(C − 1)
P(X(Bk−1) > 0)

+ P

(
X(Bk−1) ≤ 1

5 logC
,Risk(Bk−1) >

2− e1/5

C
,F β, E

)
≤ 2C

β(C − 1)
P(X(Bk−1) > 0)

+
C

2− e1/5
E

[
Risk(Bk−1) | X(Bk−1) ≤ 1

5 logC
,E, F β

]
.

Claim 3.18. E
[
Risk(Bk−1) | X(Bk−1)≤ 1

5 logC
, E, F β

]
≤10βC−2logC P(X(Bk−1)>0).

Proof. Given X(Bk−1) ≤ 1/5 logC, the event E, the event F β and the event X(Bk−1) >

0, the value Risk(Bk−1) =
∑n

i=1 P(Xi+S
i−1
k−1 > 1)1ALG

{i→k−1} ≤
∑n

i=1 e
−λi(1−1/5 logC)1ALG

{i→k−1}
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can be upper bounded by the non-convex problem:

max
x1,...,xn

{
n∑
i=1

e−xi(1−1/5 logC) :
n∑
i=1

1/xi ≤ β, xi ≥ 2 logC, ∀i = 1, . . . , n

}
≤ 10β

logC

C2
.

The inequality follows because the maximum of a convex function is attained in the bound-

ary of the feasible set. Indeed, the maximum is attained by setting the maximum vari-

ables to the bound 2 logC—which are at most 2β logC—and the rest of the variables to

+∞.

Therefore, by upper bounding 10/(2− e1/5) by 20 and C/(C − 1) by 2, we obtain

P

(
X(Bk−1) ≤ 1

5 logC
,X(Bk) > 0, E

)
≤
(

4

β
+ 20β

logC

C

)
P(X(Bk−1) > 0).

The right-hand side is minimized at β =
√
C/5 logC.

Putting Claims 3.16 and 3.17 together we obtain

P(X(Bk) > 0) ≤ 5 logC E

 ∑
i∈Bk−1

Xi ∧ 1

+

(
1

3
+ 8
√

5

√
logC

C

)
P(X(Bk−1) > 0).

Proposition 3.19. Let X1, . . . , Xn be arbitrary exponential random variables with λi ≥

logC. Algorithm 5 with γ = 2 guarantees

cost(ALG) ≤ 15 logC

2/3− 8
√

5 logC/C
cost(OPT) +

3

2/3− 8
√

5 logC/C
,

where OPT is the optimal policy that knows n and the rates of all the sizes X1, . . . , Xn in

advance.
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Proof. Using Proposition 3.15 we obtain

E[NALG] = 1 +
∑
k≥2

P(X(Bk > 0))

≤ 1 + 5 logC
∑
k≥2

E

 ∑
i∈BALG

k−1

Xi ∧ 1

+

(
1

3
+ 8
√
5

√
logC

C

)∑
k≥2

P(X(Bk−1) > 0)

≤ 1 + 5 logC
∑
k≥1

E

 ∑
i∈BALG

k

Xi ∧ 1

+

(
1

3
+ 8
√
5

√
logC

C

)
E[NALG]

= 1 + 5 logC E

[∑
i

Xi ∧ 1

]
+

(
1

3
+ 8
√
5

√
logC

C

)
E[NALG].

For any policy P we have E [
∑n

i=1Xi ∧ 1] ≤ cost(P), using Proposition 3.8. Then,

E[NALG] ≤ 5 logC

2/3− 8
√

5 logC/C
E[NP ] +

1

2/3− 8
√

5 logC/C

The conclusion follows from here using cost(ALG) ≤ 3E[NALG] (Corollary 3.9.1).

3.5.2 Small Exponential Random Variables

We next show that cost(ALG) ≤ O(1) cost(OPT) whenever the item sizes are independent

exponential random variables with rates satisfying λi ≥ 2 logC. In this case, E [
∑

iXi ∧ 1]

is a better approximation for E[NALG] than in the general case. The following results shows

that we can improve Proposition 3.15 by a logarithmic factor.

Proposition 3.20. Let γ = 1. For k ≥ 2,

P(ALG opens bin k) ≤ 4E

 ∑
i∈Bk−1

Xi ∧ 1

+ 8

√
logC

C1/4
P(ALG opens bin k − 1).
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Proof. We have

P(ALG opens bin Bk+1) = P(X(Bk+1) > 0)

≤ P(X(Bk) > 1/4) + P(X(Bk+1) > 0, X(Bk) ≤ 1/4)

≤ P(X(Bk) ∧ 1 > 1/4) + P(X(Bk+1) > 0, X(Bk) ≤ 1/4)

≤ 4E [X(Bk) ∧ 1] + P(X(Bk+1) > 0, X(Bk) ≤ 1/4).

We only focus on bounding the second term in the rest of the proof. Algorithm 5 opens

bin Bk+1 (X(Bk+1) > 0) if there are no available bins (∀i ≤ k, X(Bi) ≥ 1) or there is an

item that does not fit because of the budget. The first case cannot happen when the event

X(Bk) ≤ 1/4 happens so we are only left with the budget case. In particular, for bin k, we

open bin Bk+1 because for some item Xt we have

1

C
< Risk(Bk) + P(Xt +X(Bk) > 1) ≤ Risk(Bk) + P(Xt > 3/4) ≤ Risk(Bk) +

1

C3/2

where we used the information from the event X(Bk+1) ≤ 1/4. Therefore,

P(X(Bk+1) > 0, X(Bk) ≤ 1/4) ≤ P(Risk(Bk) > 1/C − 1/C3/2, 0 < X(Bk) < 1/4)

≤ C3/2

C1/2 − 1
E[Risk(Bk) | X(Bk) < 1/4, X(Bk) > 0]P(X(Bk) > 0).

Now, as in the previous proof, let Fβ =
{∑

i∈Bk E[Xi] > β
}

; by Markov’s inequality and

Proposition 3.7,

P (Fβ) ≤ 2C2

β(C2 − 1)
P(X(Bk) > 0).

Claim 3.21. E[Risk(Bk)1{X(Bk)<1/4} | X(Bk) < 1/4, X(Bk) > 0, F β] ≤ 2β logC
C3/2 .
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Proof. Given X(Bk) < 1/4, X(Bk) > 0, F β , the risk

Risk(Bk) =
n∑
i=1

P(Xi + Si−1
k > 1)1{i→k} ≤

n∑
i=1

e−3λi/41{i→k}

is bounded by the non-convex problem,

max
x1,...,xn

{
n∑
i=1

e−3xi/4 :
n∑
i=1

1

xi
≤ β, xi ≥ 2 logC, ∀i = 1, . . . , n

}
≤ 2β logC

C3/2
,

which we bound as before.

With this claim,

E[Risk(Bk) | X(Bk) < 1/4, X(Bk) > 0] ≤ 1

C
P(Fβ) +

2β logC

C3/2
P(F β)

≤ 2C

β(C2 − 1)
+

2β logC

C3/2
,

since Risk(Bk) ≤ 1/C. Thus,

P(X(Bk+1) > 0, X(Bk) ≤ 1/4) ≤ C3/2

C1/2 − 1

(
2C

β(C2 − 1)
+

2β logC

C3/2

)
P(X(Bk) > 0).

Now, optimizing over β with β = C5/4
√
C2−1

√
logC

we obtain

P(X(Bk+1) > 0, X(Bk) ≤ 1/4) ≤ 8

√
logC

C1/4
P(X(Bk) > 0).

Proposition 3.22. Suppose λi ≥ 2 logC for all i = 1, . . . , n. For γ = 1, Algorithm 5

guarantees

cost(ALG) ≤ 8

1− 8
√

logC/C1/4
cost(OPT) +

2

1− 8
√

logC/C1/4
,
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where OPT is the optimal policy that knows n and all item size rates in advance.

Proof. Using Proposition 3.20 we have

E[NALG] =
n∑
k=1

P(ALG opens bin k)

≤ 1 +
n∑
k=2

4E

 ∑
i∈Bk−1

Xi ∧ 1

+ 8

√
logC

C1/4
P(ALG opens bin k − 1)

≤ 1 + 4E

[
n∑
i=1

Xi ∧ 1

]
+ 8

√
logC

C1/4
E[NALG].

Using Proposition 3.8,

E[NALG] ≤ 4

1− 8
√

logC/C1/4
cost(P) +

1

1− 8
√

logC/C1/4

for any policy P . The result follows by using cost(ALG) ≤ 2E[NALG] and optimizing over

P .

3.5.3 A Lower Bound for the Algorithm with Exponential Random Variables

In this subsection, we present a hard input of exponential random variables for Budgeted

Greedy. The sequence contains two kind of independent exponential random variables,

those with rates µ = β logC, β ≥ 2 and those with rates λ = (1+ε) logC, with ε ∈ (0, 1).

This sequence has n1 items with rate λ and n2 = kn1 items with rate µ, presented to

Algorithm 5 as,

Xµ
1,1 · · ·Xµ

1,kX
λ
1X

µ
1,1 · · ·Xµ

2,kX
λ
2 · · · Xµ

n1,1
· · ·Xµ

n1,k
Xλ
n1
,

where Xµ
i,j ∼ exp(µ) and Xλ

i ∼ exp(λ) for all i, j. With the choices of β = 6n1 logC
ε

and

k = 3εµ = 18n1(logC)2, we show that Budgeted Greedy incurs an expected cost of at

least 1
2
n1. For the same choices of β and k and optimizing over the choice of ε, we show
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that cost(OPT) ≤ O
(
1/
√

logC
)
n1. This choice of ε is independent of n1, which allows

us to scale the result for any input size.

We prove each bound separately; the main results are stated here.

Proposition 3.23. Let ε > 0 and set β = 6ε−1n1 logC and k = 3εµ. Then, running

Budgeted Greedy with γ = 1 on the input described above yields

cost(ALG) ≥ 1

2
n1.

Proposition 3.24. Using the same parameters as in the previous proposition, for any ε > 0

such that ε logC ≥ 4, we have

cost(OPT) ≤ 48n1

(
k

β logC
+

1

ε logC

)
= 48n1

(
3ε+

1

ε logC

)
.

The result now follows by taking ε = 1/
√

3 logC. The proofs are in Appendix 3.A.

3.6 Offline Sequential Adaptive Bin Packing

In this section, we move to the offline sequential model, where random variables are known

in advance and the packing occurs sequentially in the fixed order 1, . . . , n. We present

the proof of Theorem 3.4 that guarantees a soft-capacity polynomial time approximation

scheme (PTAS) for the offline problem.

3.6.1 Approximation of a Sequential Policy

Consider X1, . . . , Xn independent random variables with bounded support [0, 1 + ε]. We

can reduce the general case to this case by moving all the probability mass of the corre-

sponding random variable in [1+ε,∞) to the point 1+ε. We aim to show a polynomial time
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approximation scheme with resource augmentation. In particular, we consider a policy op-

erating on bins with size or capacity c ≥ 1; a bin overflows if the total size of items packed

into it exceeds c. We use the notation costc(P , Z) to denote the expected cost incurred by

a policy P packing items Z = (Z1, . . . , Zn) into bins of capacity c.

Theorem 3.25. There is a policy that can be computed in O
(
n2/ε5/ε10

)
time packing

items X1, . . . , Xn sequentially into bins of size 1 + 6ε, and incurring expected cost of at

most (1 + 4ε) cost1(OPT, X), where OPT is an optimal policy with respect to bins of unit

size.

To prove Theorem 3.25, we proceed as follows in the remainder of the section:

1. First, we discretize the input random variablesX1, . . . , Xn into random variables X̂1, . . . , X̂n

with support in {0, ε5, . . . , d2/ε5eε5}. This allows us to compute an optimal policy in

polynomial time via dynamic programming.

2. We then show that for any policy P for X1, . . . , Xn, we can construct a policy P̂ for

X̂1, . . . , X̂n such that

cost1+4ε

(
P̂ , X̂

)
≤ (1 + ε) cost1(P , X).

3. Next, we show how to obtain a policy P for X1, . . . , Xn from a policy P̂ for items

X̂1, . . . , X̂n, such that

cost1+6ε(P , X) ≤ (1 + ε) cost1+4ε

(
P̂ , X̂

)
.

4. Finally, we show that we can compute the optimal policy P̂ for discretized items X̂1, . . . , X̂n

in O
(
n2/ε5/ε10

)
time. The policy P follows immediately from here.
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3.6.2 Discretization Process

We perform the discretization in two steps, similarly to the discretization in [119]. In

the first step, we discretize the small outcomes of X1, . . . , Xn, meaning that values not

exceeding ε4 now behave as a scaled Bernoulli random variable with scaling factor ε4, and

the appropriate success probability such that this discretization preserves the expectation

of the original random variable. In the second step, we discretize the large outcomes by

rounding up all values to multiples of ε5.

This discretization allows us to construct a state space based on the number of bins at level

kε5, k = 1, . . . , d2/ε5e. The number of states is roughly O(n2/ε5), which is polynomial in

n.

Step 1 of discretization Let qi = E[Xi | Xi ≤ ε4]. Then, the first discretization is

X ′i =


0 if Xi ≤ ε4, w.p. 1− qi/ε4

ε4 if Xi ≤ ε4, w.p. qi/ε4

Xi if Xi > ε4.

Note that we have |Xi −X ′i| ≤ ε4 almost surely, E[X ′i | X ′i ≤ ε4] = E[Xi | Xi ≤ ε4] and

E[Xi] = E[X ′i].

Step 2 of discretization Now consider

X̂i = 1{X′i≤ε4}X
′
i + 1{X′i>ε4}dX

′
i/ε

5eε5.

Clearly, X ′i ≤ X̂i, since the large outcomes are rounded up. Moreover, if b > ε4, then

db/ε5eε5 ≤ (b/ε5 + 1) ε5 = b+ ε5 ≤ (1 + ε)b. Hence, X ′i ≤ X̂i ≤ (1 + ε)X ′i.
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3.6.3 From Regular Policy to Discretized Policy

In this subsection we show the following result:

Theorem 3.26. For any policy P that sequentially packs itemsX1, . . . , Xn into bins of unit

size, there exists a policy P̂ packing items X̂1, . . . , X̂n into bins of size 1 + 4ε such that

cost1+4ε

(
P̂ , X̂

)
≤ (1 + ε) cost1 (P , X) .

To prove the theorem, we first introduce an intermediate policyP ′ that packs itemsX ′1, . . . , X
′
n

and satisfying

cost1+2ε(P ′, X ′) ≤ (1 + ε) cost1(P , X).

Policy P̂ is obtained from policy P ′ by adding additional capacity to the bins.

We assume that P is a deterministic function of the capacity of the bins and the current

element to be packed. Let us construct a policy P ′ for items X ′1, . . . , X
′
n with bin capacity

1 + 2ε that simulates and follows policy P in the following way. Upon arrival of item X ′i,

policy P ′ does what P would have done at this point in time to item Xi. We couple Xi and

X ′i, so Xi = X ′i if Xi > ε4 and otherwise we have the Bernoulli behavior in X ′i. We pass

the outcome of X ′i to P ′ and the outcome of Xi to P . (Strictly speaking, P ′ receives the

outcome of X ′i and from it, the policy samplesXi coupled with X ′i and passes this outcome

to P .) For each bin Bj that policy P opens, policy P ′ opens a bin B′j,1 and packs items

in B′j,1 as policy P would do in bin Bj as long as |X(B′j,1) −X ′(B′j,1)| ≤ ε holds. If this

difference is violated, policy P ′ opens a new bin B′j,2 and continues following P as long as

|X(B′j,2)−X ′(B′j,2)| ≤ ε holds, and so on.

Notice that P ′ is undefined if some B′j,k breaks but Bj is not broken by policy P . Fortu-

nately, this event cannot occur, as the following proposition guarantees.
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Proposition 3.27. If P overflows B′j,k for some k, then P must have overflown Bj . In

particular, at most one of the B′j,k is overflowed by P ′.

Proof. Let B′j,k,t be the items packed into bin B′j,k up to time t. Suppose that X ′(B′j,k,t) >

1 + 2ε (B′j,k is overflowed at time t). Notice that X ′t ≤ 1 + ε, therefore B′j,k was opened

before t and

|X ′(B′j,k,t−1)−X(B′j,k,t−1)| ≤ ε

otherwise P ′ would not have tried to pack Xt into B′j,k. Now, since |X ′t − Xt| ≤ ε4 we

have

X(Bj) ≥ X(B′j,k,t)

= X(B′j,k,t−1) +Xt ≥ X ′(Bj,k,t−1)− ε+X ′t − ε4

= X ′(B′j,k,t)− ε− ε4

> 1 + ε− ε4

> 1.

For the second part, we notice that once B′j,k is overflowed, then Bj is overflowed as well

and so P does not pack any item in Bj . Then, after B′j,k no more bins B′j,k+1, . . . are

open.

Let OP ′,j be the number of bins B′j,k that policy P ′ breaks; we just showed that OP ′,j ≤

1P{X(Bj)>1}. Then, OP ′ =
∑n

j=1OP ′,j , the number of bins overflowed by P ′, satisfies the

following equality.

Proposition 3.28. E[OP ′ ] ≤ E[OP ].

Proof. By the previous proposition, at most one of the B′j,1, . . . , B
′
j,n breaks, and when it

does then Bj must have been broken as well.

101



Next, we show that the number of bins opened by P ′ is not much larger than the number

of bins opened by P . Let NP ′,j be the number of bins B′j,1, B
′
j,2, . . . that policy P ′ uses, i.e.

the number of copies of bin Bj used by policy P . Let NP ′ be the number of bins opened

by policy P ′, NP ′ =
∑n

j=1NP ′,j .

Consider the family of events E ′j,k = {|X(B′j,k)−X ′(B′j,k)| > ε} for k ≥ 1 and for k = 0

define E ′j,0 = {P ′ opens bin B′j,1} = {P opens Bj}. Notice then, for ` ≥ 1,

{NP ′,j ≥ `} ⊆ E ′j,0 ∩ E ′j,1 ∩ · · · ∩ E ′j,`−1. (3.2)

Proposition 3.29. For any k ≥ 1,

P(E ′j,k | E ′j,k−1, . . . , E ′j,1, E ′j,0) ≤ 6ε2 P(P ′ opens B′j,k | E ′j,k−1, . . . , E ′j,1, E ′j,0).

Proof. Using Chebychev’s inequality,

P(E ′j,k | E ′j,k−1, . . . , E ′j,1, E ′j,0)

≤ 1

ε2
E
[(
X(B′j,k)−X ′(B′j,k)

)2 | E ′j,k−1, . . . , E ′j,1, E ′j,0
]

=
1

ε2
E

( n∑
i=1

(Xi −X ′i)1P
′
{i→(j,k)}

)2

| E ′j,k−1, . . . , E ′j,1, E ′j,0


=

1

ε2

n∑
i=1

E
[
(Xi −X ′i)21P

′
{i→(j,k)} | E ′j,k−1, . . . , E ′j,1, E ′j,0

]
+

2

ε2

∑
i<`

E
[
(Xi −X ′i)(X` −X ′`)1P

′
{i→(j,k),`→(j,k)} | E ′j,k−1, . . . , E ′j,1, E ′j,0

]
.

Claim 3.30. For i < `, E
[
(Xi −X ′i)(X` −X ′`)1P

′
{i→(j,k),`→(j,k)} | E ′j,k−1, . . . , E ′j,1

]
= 0.

Proof. If P(i → (j, k), ` → (j, k) | E ′j,k−1, . . . , E ′j,1, E ′j,0) = 0 the result is clearly true,
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while in the opposite case

E [(Xi −X ′i)(X` −X ′`)1P
′
{i→(j,k),`→(j,k)} | E ′j,k−1, . . . , E ′j,1, E ′j,0

]
= E

[
(Xi −X ′i)(X` −X ′`) | i→ (j, k), `→ (j, k), E ′j,k−1, . . . , E ′j,1, E ′j,0

]
×P(i→ (j, k), `→ (j, k) | E ′j,k−1, . . . , E ′j,1, E ′j,0)

= E[X` −X ′`]E
[
Xi −X ′i | i→ (j, k), `→ (j, k), E ′j,k−1, . . . , E ′j,1, E ′j,0

]
×P(i→ (j, k), `→ (j, k) | E ′j,k−1, . . . , E ′j,1, E ′j,0)

= E
[
E[X` −X ′`](Xi −X ′i)1P

′
{i→(j,k),`→(j,k)} | E ′j,k−1, . . . , E ′j,1, E ′j,0

]
= 0,

the last result since E[X`] = E[X ′`]. Note that from the second to the third equality, we

utilized the fact that given that ` is packed intoB′j,k, the outcome ofX`−X ′` is independent

of previous E ′j,m, m < k.

Claim 3.31. For any i,

E
[
(Xi −X ′i)21P

′
{i→(j,k)} | E ′j,k−1, . . . , E ′j,1, E ′j,0

]
≤ 2ε4 E

[
E[Xi]1

P ′
{i→(j,k)} | E ′j,k−1, . . . , E ′j,1, E ′j,0

]
.

Proof. We have |Xi −X ′i| ≤ ε4, so

E
[
(Xi −X ′i)21P

′
{i→(j,k)} | E ′j,k−1, . . . , E ′j,1, E ′j,0

]
≤ ε4 E

[
|Xi −X ′i|1P

′
{i→(j,k)} | E ′j,k−1, . . . , E ′j,1, E ′j,0

]
≤ ε4 E

[
(Xi +X ′i)1

P ′
{i→(j,k)} | E ′j,k−1, . . . , E ′j,1, E ′j,0

]
.

The sizes of Xi and X ′i are independent of the policy P ′ packing i into bin B′j,k. Further-

more, if X ′i is packed into bin B′j,k, its size does not depend on previous events E ′j,`, ` < k.
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Therefore,

E
[
X ′i1

P ′
{i→(j,k)} | E ′j,k−1, . . . , E ′j,1, E ′j,0

]
= E[X ′i]P(P ′ packs i into (j, k) | E ′j,k−1, . . . , E ′j,1, E ′j,0)

= E
[
E[Xi]1

P ′
{i→(j,k)} | E ′j,k−1, . . . , E ′j,1, E ′j,0

]

since E[X ′i] = E[Xi]. Similarly,

E
[
Xi1

P ′
{i→(j,k)} | E ′j,k−1, . . . , E ′j,1, E ′j,0

]
= E

[
E[Xi]1

P ′
{i→(j,k)} | E ′j,k−1, . . . , E ′j,1, E ′j,0

]
.

Putting these two claims together in the previous inequality gives us

P(E ′j,k | E ′j,k−1, . . . , E ′j,1, E ′j,0) ≤ 1

ε2

n∑
i=1

2ε4 E
[
E[Xi]1

P ′
{i→(j,k)} | E ′j,k−1, . . . , E ′j,1, E ′j,0

]

≤ 2ε2 E

∑
i∈B′j,k

E[Xi] | E ′j,k−1, . . . , E ′j,1, E ′j,0


≤ 6ε2 P(P ′ opens B′j,k | E ′j,k−1, . . . , E ′j,1, E ′j,0).

In the last inequality, we used Proposition 3.7, Xi ≤ 1+ε for all i, and the bins B′j,k having

capacity 1 + 2ε.

Recall that NP ′,j is the number of bins B′j,1, . . . that policy P ′ uses. We have,

Proposition 3.32. For any j = 1, . . . , n,

E[NP ′,j] ≤ (1 + ε)P(P opens Bj).
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Proof. Using the inclusion (3.2) and the previous proposition,

P(NP ′,j ≥ `) ≤ P(E ′j,`−1, . . . , E ′j,1, E ′j,0)

= P(E ′j,`−1 | E ′j,`−2, . . . , E ′j,1, E ′j,0) · · ·P(E ′j,1 | E ′j,0)P(E ′j,0)

≤ (6ε2)`−1 P(P opens Bj).

Thus,

E[NP ′,j] =
∑
`≥1

P(NP ′,j ≥ `)

≤
∑
`≥1

(6ε2)`−1 P(P opens Bj)

=
1

(1− 6ε2)
P(P opens Bj)

≤ (1 + ε)P(P opens Bj).

For the last inequality we require ε ≤ (
√

15− 3)/
√

6 ≈ 0.1454.

Corollary 3.32.1. E[NP ′ ] ≤ (1 + ε)E[NP ].

Lemma 3.33. cost1+2ε(P ′, X ′) ≤ (1 + ε) cost1(P , X).

Proof. This follows from cost1+2ε(P ′, X ′) = E[NP ′ ] +C E[OP ′ ] and the previous results.

Proof of Theorem 3.26. Let P̂ be the policy constructed from P ′ in the following manner.

We simulate policy P ′ in parallel. To pack item X̂i, P̂ imitates what P ′ does to item X ′i.

Random variables X̂i and X ′i (and also Xi) are assumed to be coupled in the standard

manner. The outcome of X̂i goes to P̂ and the outcome of X ′i goes to P ′.

105



We denote by B̂j,k the bins opened by P̂ . Since X̂i ≤ (1 + ε)X ′i,

X̂(B) ≤ (1 + ε)X ′(B)

for any set of items B. Therefore, if X̂(B̂j,k) > 1 + 4ε, then X ′(B′j,k) > 1 + 2ε and so bin

B′j,k must have been broken by P ′. Then,

cost1+4ε

(
P̂ , X̂

)
≤ cost1+2ε(P ′, X ′)

and we obtain the desired result.

3.6.4 From Discretized Policy to Regular Policy with Resource Augmentation

The main result of this section is the following.

Theorem 3.34. For any policy P̂ that sequentially packs items X̂1, . . . , X̂n into bins of size

1 + 4ε, there exists a policy P that sequentially packs items X1, . . . , Xn into bins of size

1 + 6ε such that

cost1+6ε(P , X) ≤ (1 + ε) cost1+4ε

(
P̂ , X̂

)
.

Given a policy P̂ for the discretized items X̂1, . . . , X̂n, we recover a policy P for items

X1, . . . , Xn with an extra 2ε in the bins’ capacities. We couple the variables X̂i with X ′i

and Xi. Policy P simulates policy P̂ in the following manner. For each bin B̂j that policy

P̂ opens, P opens a binBj,1 and packs items inBj,1 as policy P̂ would do in bin B̂j , as long

as |X(Bj,1)−X ′(Bj,1)| ≤ ε holds. (Note that the comparison is between random variables

X and X ′.) If this difference is violated, policy P opens a new bin Bj,2, and continues

following P̂ as long as |X(Bj,2)−X ′(Bj,2)| ≤ ε holds, and so on.

As before, we need to show that policy P is well defined, in the sense that bin Bj,k is not

broken if B̂j has not been broken.
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Proposition 3.35. If P overflows bin Bj,k for some k, then P̂ must have overflowed bin B̂j .

Moreover, at most one of the bins Bj,1, Bj,2, . . . can be overflowed.

Proof. Let Bj,k,t be the items packed into bin Bj,k by policy P up to time t. Suppose that

at time t policy P breaks bin Bj,k; then X(Bj,k,t) > 1 + 6ε. Now,

X̂(B̂j) ≥ X̂(Bj,k,t)

≥ X ′(Bj,k,t)

= X ′(Bj,k,t−1) +X ′t

≥ (X(Bj,k,t−1)− ε) +
(
Xt − ε4

)
> 1 + 5ε− ε4

> 1 + 4ε.

Therefore, P̂ must have overflowed bin B̂j .

As a consequence we have the following result.

Proposition 3.36. E [OP ] ≤ E
[
OP̂
]
.

For k ≥ 1, consider the family of events Ej,k = {|X(Bj,k)−X ′(Bj,k)| > ε} and for k = 0

define Ej,0 = {P opens bin Bj,1} = {P̂ opens bin B̂j}. Then,

Proposition 3.37. For any k ≥ 1,

P(Ej,k | Ej,k−1, . . . , Ej,1, Ej,0) ≤ (6ε2)P(P opens Bj,k | Ej,k−1, . . . , Ej,1, Ej,0).

Proof. The proof is identical to Proposition 3.29.
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Let NP,j be the number of bins Bj,1, Bj,2, . . . that policy P opens. Then, NP =
∑n

j=1NP,j

is the number of bins used by policy P . Following the proof strategy used for Proposi-

tion 3.32, we obtain the following proposition.

Proposition 3.38. E [NP,j] ≤ (1 + ε)P(P̂ opens B̂j).

Corollary 3.38.1. E[NP ] ≤ (1 + ε)E[NP̂ ].

Proof of Theorem 3.34. The proof is direct from the previous results.

3.6.5 Computing an Optimal Discretized Policy via Dynamic Programming

We can write a dynamic program (DP) that computes minP̂ cost1+4ε

(
P̂ , X̂

)
, solved by

backward induction inO
(
n2/ε5/ε10

)
time. The states are pairs (t, S), where t = 1, . . . , n+

1 and S = (k0, k1, . . . , kr) is a vector of non-negative integers such that k0 +k1 + · · ·+kr ≤

t− 1. Here kj represents the number of bins currently at capacity j · ε5, j = 1, . . . , d2/ε5e.

The number of states (t, S) is at most O(n2/ε5). Then, the DP recursion becomes

v(t, S) = min

{
1 + E

X̂t

[
v(t+ 1, S + eX̂t/ε5)

]
,

C P(kj + X̂t > 1 + 4ε) + E
X̂t

[
v(t+ 1, S + ej+X̂t/ε5 − ej)

]
: 0 < jε5 ≤ 1 + 4ε, kj ≥ 1

}
,

with the boundary condition v(n+ 1, S) = 0 for any S. Here, ej is the canonical vector in

Rr+1 with a 1 in the j-th coordinate and 0 elsewhere. The recursion for v(t, S) includes the

two possible choices for a decision maker: Pack the item into a new bin and incur a cost of

1 or use one of the previously opened and available bins.

Given access to v(t+1, S ′) for any valid S ′, we can compute v(t, S) inO(1/ε10) time, since

we need to compute the corresponding expectations in time O(1/ε5). There are O(1/ε5)

of these terms inside the minimum operator, so we can compute v(t + 1, S ′) in O(1/ε10)
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time. Finally, given that there are O(n2/ε5) states, we obtain the stated running time.

3.7 Numerical Experiments

In this section, we empirically validate the Budgeted Greedy (BG) algorithm. We quantify

an algorithm’s performance via the ratio of its cost to the cost incurred by some reference

algorithm. When computationally possible, the reference algorithm is the optimal offline

sequential policy. Otherwise, the reference is BG itself. We compare BG against the online

benchmarks Full Greedy (FG), Fixed-Threshold (FT) and Fixed-Threshold Greedy (FTG).

• Full Greedy (FG) is the myopic policy that for each item i compares the instantaneous

cost of opening a new bin (unit cost) and the expected cost of packing the item in one of

the previously opened bins, C P(overflow). The policy selects the cheapest option.

• Fixed-Threshold (FT(α)) is the policy that has a threshold α ∈ (0, 1], and packs items

into a bin as long as its usage does not exceed α. Note that this policy uses one bin at a

time.

• Fixed-Threshold-Greedy (TG(α)) combines the myopic policy FG with a capacity

threshold α. The policy behaves as FG, but bins with usage greater than α are discarded.

Note that FG corresponds to TG(1).

We test BG on four kinds of instances, one i.i.d. sequence of random variables, and three ar-

bitrary exponential random variable input sequences. In all the instances we set the penalty

to C = 50 and input length to n = 105. We simulate each instance 1, 000 times and report

the sample mean.

• I.I.D. Sequence. In this experiment, we consider an i.i.d. input sequence with three-point
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support given by

Xi =


0 w.p. 1− 1/C

0.4 w.p. 1/2C

0.61 w.p. 1/2C.

With this input, we aim to compare BG against TG(α) with threshold α ≥ 0.4. For

α < 0.4, TG(α) is near-optimal, therefore we do not study this case because we already

include the optimal offline policy as a reference. Furthermore, it suffices to consider

the case α = 0.4, since TG(α) for α ∈ (0.4, 1) is exactly the same. For TG(1), we

recover FG. In addition, we test different values of γ for BG, denoted BG(γ). We test

γ = 1, 2 and the value γ =
√

2 which optimizes the γ in the proof of Theorem 3.2. In

this experiment we do not test FT, since it behaves exactly as TG for thresholds α < 1,

and FT(1) has an expected cost of at least n.

• Exponential Distributions. We consider input random variables X1, . . . , Xn that follow

exponential distributions, P(Xi > x) = e−λix. We perform three different experiments:

1. First, we consider an input sequence of exponential random variables with increasing

rates. The smallest rate starts at λ1 = logC and the largest rate is λn = 3 logC. In

general, we set λi =
(
1 + 2 i−1

n−1

)
logC for i = 1, . . . , n.

2. Second, we consider an input sequence with decreasing rates. The largest rate is

λ1 = 3 logC and the smallest rate is λn = logC. In this case, we have λi =(
3− 2 i−1

n−1

)
logC for i = 1, . . . , n.

3. Finally, we consider an input sequence divided into three sections, each section with

an i.i.d. sequence. The first section, for i = 1, . . . , bn/3c, considers the fixed rate

λi = logC. The second section, for i = bn/3c + 1, . . . , b2n/3c, considers the fixed

rate λi = 2 logC. The final section, for i = b2n/3c+1, . . . , n considers the fixed rate
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λi = logC.

Theorem 3.3 guarantees that BG has a constant multiplicative factor loss if the rates are

2 logC or greater. In these experiments, we empirically test the expected cost incurred

by BG when the rates are in [logC, 3 logC], where Theorem 3.3 can only guarantee a

multiplicative loss of O(logC). Moreover, this guarantee theoretically applies to large

C (see Section 3.5); here we test the algorithm on the relatively small penalty C = 50.

3.7.1 Results

I.I.D. Random Variables Figure 3.2 presents the ratio of the sample mean of the cost

incurred by the algorithms and the sample mean of the optimal offline sequential cost; this

latter quantity is roughly n/C. We empirically confirm that the expected cost of TG policies

is at least n/8; BG(γ) with γ = 1,
√

2, 2 exhibits better performance. As n grows, BG(1)

has a ratio of roughly 1.8, BG(2) one of roughly 2.75, and BG(
√

2) a ratio of roughly 1.9;

theoretically we can guarantee a ratio of
√

3 + 2
√

2 ≈ 4.5604.

Figure 3.2: Ratio to optimal expected cost incurred by the algorithms BG, FG and TG.
Note that BG(

√
2) overlaps with BG(1); the difference is roughly 0.1 units.

Exponential Random Variables Figures 3.3, 3.4 and 3.5 present the empirical results

of our experiments in the case of increasing rates, decreasing rates and block-input rates,
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respectively. In these experiments, we used BG(2) as a reference, because computing the

offline benchmark was too computationally expensive. We used γ = 2 because it has

a O(logC) approximation guarantee compared to the optimal offline expected cost (see

Proposition 3.15.) Smaller values of γ do not improve the performance of BG in a signif-

icant manner; as the results show, being greedy seems suited to exponential distributions.

On the other hand, larger values of γ make BG’s performance resemble FG.

Figure 3.3 displays the ratio of cost sample means between the benchmark algorithms and

BG(2) for increasing rates. We empirically observe that BG performs significantly bet-

ter against all FT policies. Similarly, BG performs better that most of TG policies, with

the exception of TG(0.5) and TG(1). Until approximately the 5, 000-th item, the ratio

TG(1)/BG(2) is the best among all greedy strategies, and afterwards the ratio TG(0.5)/BG(2)

becomes the best. Moreover, by the end of the sequence, FT(0.5) becomes better than

TG(1). During the whole input sequence, we empirically observe that BG(2) is able to

balance the behavior of TG(0.5) and TG(1), surpassing the performance of TG(1) in the

second half of the input sequence. For the entire sequence, the best performing algorithm’s

expected cost ratio is above 0.8, which means BG(2) is within 25% of the best algorithm

for all input sizes. Furthermore, around the 5, 000-th item BG performs the best among all

tested strategies.

Figure 3.4 displays the ratios of the tested algorithms and BG(2) for the decreasing rates

experiment. In this case, most of the TG/BG-curves and FT/BG-curves overlap, with the

exception of TG(1)/BG and FT(1)/BG. For almost the entire sequence, all plots lie above

0.4, indicating that BG’s expected cost is at most 2.5 times the best performing algorithm’s

cost for all input sizes. BG’s performance decreases until around the 5, 000-th item and

improves thereafter. As in the previous experiment, BG performs better for larger rates,

which coincides with our theoretical findings.

Figure 3.5 displays the ratios between the tested algorithms and BG(2) for the partitioned
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Figure 3.3: Ratio of cost incurred in the exponential case for increasing rates.

Figure 3.4: Ratio of cost incurred in the exponential case for decreasing rates.

input sequence. The best performing algorithm over the entire sequence is TG(1); this algo-

rithm’s plot and all others lie above 0.6, indicating BG is within 67% of the best performing

algorithm for any input size. During the first interval of the sequence, the ratios are roughly

constant; the main differentiation occurs with the transition to the second interval, where

TG(1) and TG(0.5) outperform BG. In the last interval, BG’s performance again improves.
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Figure 3.5: Ratio of cost incurred in the exponential case block input.

3.8 Concluding Remarks

In this chapter, we introduced the adaptive bin packing problem with overflow. We in-

troduced the notion of risk as a proxy for a capacity threshold, as typically used in de-

terministic settings. We showed that Budgeted Greedy incurs an expected cost at most a

constant factor times the optimal expected cost of an offline policy when the input is an

i.i.d. sequence of random variables. In the more general setting, we give similar results for

arbitrary exponential random variables.

We extended the discussion by studying the offline sequential adaptive bin packing prob-

lem, in which the decision maker knows the sequence of random variables in advance and

must pack them in this order. We devised a soft-capacity PTAS by utilizing a policy track-

ing argument, and showed that computing the cost of the optimal policy is #P-hard by

relating it to counting problems. This offline cost corresponds to the online benchmark.

Unfortunately, Budgeted Greedy does not guarantee a constant approximation factor for

general input sequences. Consider the input sequenceX1, X2, X3, . . . , Xn defined asX1 =
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1/n, X2i ∼ Bernoulli(1/C) and

X2i+1 =


1/n w.p. 1− 1/C2

1 w.p. 1/C2.

Budgeted Greedy incurs an expected cost of Θ(n), while the optimal offline policy incurs

an expected cost of at most n/C + 1.

This example motivates either seeking a general algorithm exhibiting a bounded competi-

tive ratio, or showing an impossibility result. In [12], the authors study the online gener-

alized assignment problem with a similar stochastic component as in our model. They are

able to show a 1−1/
√
k competitive ratio for general arriving distributions. However, they

assume large capacity, in the sense that no item takes up more than 1/k fraction from any

bin. It is not clear how to utilize their techniques in a bin packing setting, as they are able to

discard distributions that they deem unimportant. Moreover, in the bin packing problem a

large capacity assumption would immediately imply a policy with constant approximation

factor, by simply filling up the bins until some desired fraction of capacity.

3.A Appendix: Missing Proofs

3.A.1 Missing Proofs From Section 3.3

Proof of Proposition 3.6. For simplicity, we write 1{i→j} to denote 1P{i→j}. First, we show

that P(P breaks bin j) = E
[∑n

i=1 PXi(Xi + Si−1
j > 1)1{i→j}

]
. We have,

E

[
n∑
i=1

PXi(Xi + Si−1
j > 1)1{i→j}

]
=

n∑
i=1

E
[
PXi(Xi + Si−1

j > 1)1{i→j}
]
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Observe that Si−1
j =

∑
k≤i−1Xk1{k→j} and 1{i→j} only depend on the outcomes of the

r.v.’s X1, . . . , Xi−1. Therefore,

E
[
PXi(Xi + Si−1

j > 1)1{i→j}
]

= E
X1,...,Xi−1

[
PXi(Xi + Si−1

j > 1)1{i→j}
]

= E
X1,...,Xi−1

[
E
Xi

[
1{Xi+Si−1

j >1}

]
1{i→j}

]
= E

X1,...,Xi

[
1{Xi+Si−1

j >1}1{i→j}

]
.

Clearly, {Xi + Si−1
j > 1, i→ j} = {Xi breaks bin j}. Thus,

E
[
PXi(Xi + Si−1

j > 1)1{i→j}
]

= P(Xi breaks bin j),

hence,

E

[
n∑
i=1

PXi(Xi + Si−1
j > 1)1{i→j}

]
=

n∑
i=1

P(Xi breaks bin j) = P(P breaks bin j)

since the last sum uses the fact that bins are overflowed at most once; hence, the events

{Xi breaks bin j}i are disjoint.

Proof of Proposition 3.7. The proof follows from a result in [59], which we replicate here

for completeness. Let µi = E[Xi ∧ 1] be the normalized expected size of an item. Let Bt

be the (random) items that the policy packs into bin B by time t. We are interested in the

expectation of µ(B) =
∑

i∈B µi = µ(Bn). The random variables µ(Bt) are nondecreasing

in t; by the monotone convergence theorem,

E [µ(B)] = sup
t≥0

E[µ(Bt)].
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Now, the random variables Zt =
∑

i∈Bt(Xi ∧ 1)− µi form a martingale. Indeed,

E[Zt | Zt−1, t→ j] = Zt−1 + E[Xt ∧ 1]− µt = Zt−1;

then, for all t, E[Zt] = Z0 = 0 and so E[µ(Bt)] = E
[∑

i∈Bt Xi ∧ 1
]
≤ 2P(P opens bin B);

this last inequality holds because we break the bin at most once and we must have opened

the bin. Therefore

E [µ(B)] = sup
t≥0

E[µ(Bt)] ≤ 2P(P opens bin B).

Proof of Proposition 3.8. Note that by Proposition 3.7 we have

E

[
n∑
i=1

(Xi ∧ 1)

]
=

n∑
j=1

E

∑
i∈BPj

(Xi ∧ 1)

 =
n∑
j=1

E

∑
i∈BPj

E[Xi ∧ 1]

 = E

[
n∑
i=1

E[Xi ∧ 1]

]
.

We only need to show that
∑n

i=1 E[Xi ∧ 1] is a lower bound for cost(OPT). We can

compute cost(OPT) recursively via dynamic programming as follows. We define the states

as vectors S ∈ (R ∪ {∅})n where Sj ∈ R is the usage of j-th bin and Sj = ∅ means that

bin j is closed. We consider ∅ as an special symbol such that a + ∅ = a for any a ∈ R.

With this, the optimal cost can be computed via the following recursions:

vt(S) = inf

{
E
Xt

[vt+1(S +Xtej)] : j = 1, . . . , n, Sj ∈ [0, 1] ∪ {∅}
}
, ∀t = 1, . . . , n, ∀S

vn+1(S) =
n∑
j=1

1{Sj 6=∅} + C

n∑
j=1

1{Sj>1}, ∀S.

The second equation measures the overall cost accumulated at the end of processing the

sequence X1, . . . , Xn. The first equation takes actions that minimizes the mean cost of

sample paths. Note that items can only be packed into bins not opened (∅) or bins with
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usage ≤ 1. Using MDP theory, we can show v1(∅, . . . , ∅) = cost(OPT), which we skip

here for brevity.

Now, consider the functions ut(S) =
∑n

τ=tE[Xτ ∧ 1] +
∑n

j=1(Sj ∧ 1)1{Sj 6=∅} for any S.

We show by backward induction in t = n+ 1, . . . , 1 that ut(S) ≤ vt(S). For t = n+ 1 we

have

un+1(S) =
n∑
j=1

(Sj ∧ 1)1{Sj 6=∅} ≤
n∑
j=1

1{Sj 6=∅} ≤ vn+1(S).

Now, assume the result is true for t + 1 and let us show it for t. Let j = 1, . . . , n with

Sj ∈ [0, 1] ∪ {∅}, then

E
Xt

[vt+1(S +Xtej)] ≥ E
Xt

 n∑
τ=t+1

E[Xτ ∧ 1] +
n∑
k=1
k 6=j

(Sk ∧ 1)1{Sj 6=∅} + (Sj +Xt) ∧ 1


≥

n∑
τ=t+1

E[Xτ ∧ 1] + E
Xt

[Xt ∧ 1] = ut(S).

Taking minimum in j, we conclude vt(S) ≥ ut(S) for any S.

Now, for t = 1 we have cost(OPT) = v1(∅, . . . , ∅) ≥ u1(∅, . . . , ∅) =
∑n

t=1 E[Xt ∧ 1]

which finishes the proof.

3.A.2 Missing Proofs From Section 3.4

Proof of Lemma 3.11. We define

cost`,ĉ(TP(u))j = 1 + E

[
(C + 2δ)

n∑
i=1

1P{i→j}1
P
{Xi+Si−1

j >1} | Reach node u

]
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which is the original cost paid in TP when packing items into bin j after reaching node u

in the tree. We also define

cost`′,c′(TP ′(u))j =1 + E

[
(C + δ)

n∑
i=1

1P
′
{i→j}1

P ′
{Xi+Si−1

j >1}

+(C + 2δ)

(
n∑
i=1

1P
′
{i→j′}1

P ′
{Xi+Si−1

j′ >1}

)
+ 1P

′
{Open bin j′} | Reach node u

]

which is the new cost paid by TP ′ when packing items into bin j after reaching node u and

the new cost incurred by packing items into bin j′.

Therefore, the variation of the cost cost`,ĉ(TP(u))− cost`′,c′(TP ′(u)) is given by

cost`,ĉ(TP(u))− cost`′,c′(TP ′(u)) = (cost`,ĉ(TP(u))j − cost`′,c′(TP ′(u))j).

Now, we always have

1P{i→j} = 1P
′
{i→j} + 1P

′
{i→j′},

for all i = 1, . . . , n. Indeed, if we are in a branch not containing u, then P and P ′ behave

the same and there is no bin j′. If we are in a branch containing u, and if we pack i into

j, we either pack i into j before surpassing the risk budget in which case P and P ′ behave

the same or we do it after surpassing the risk budget in which case i goes to j′. With this

fact we have,

cost`,ĉ(TP(u)))− cost`′,c′(TP ′(u)) = (cost`,ĉ(TP(u))j − cost`′,c′(TP ′(u))j)

≥ E

[
δ

(
n∑
i=1

1P
′
{i→j}1

P ′
{Xi+Si−1

j >1}

)
− 1P

′
{Open bin j′} | Reach node u

]
,

in the last inequality we used the fact that the cost of breaking the bin j′ is smaller than the

cost of breaking j at that point of the computation. This is true since the usage of bin j′ is
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at most the usage of j at the same point of computation. Now, for i ≥ j,

E
[
1P
′
{i→j}1{Xi+Si−1

j >1} | Reach node u
]

= E
X1,...,Xi−1

[
E
Xi

[
1P
′
{i→j}1

P ′
{Xi+Si−1

j >1}

]
| Reach node u

]
= E

X1,...,Xi−1

[
1P
′
{i→j} E

Xi

[
1{Xi+Si−1

j >1}

]
| Reach node u

]
= E

X1,...,Xi−1

[
1P
′
{i→j}PXi(Xi + Si−1

j > 1) | Reach node u
]
.

This is because the event {Reach node u} is determined by the outcomes of X1, . . . , Xj−1.

While for i ≤ j − 1 we have

E
[
1P
′
{i→j}1{Xi+Si−1

j >1} | Reach node u
]

= 0

since bin j is opened at node u at level j. Thus,

cost`,ĉ(TP(u))− cost`′,c′(TP ′(u))

= E

[
δ

n∑
i=j

1P
′
{i→j}P(Xi + Si−1

j > 1)− 1{Open bin j′} | Reach node u

]

= E
[
Risk(Bj)− 1P

′
{Open bin j′} | Reach node u

]
≥
(
δ
γ

C
− 1
)

= 0. (Using γ = C
δ

.)

3.A.3 Missing Proofs From Section 3.5

Proof of Proposition 3.23. We show that (w.h.p.) Algorithm 5 packs each item Xλ
i indi-

vidually. This is achieved by showing that in between two Xλ
i and Xλ

i+1, there is enough

mass introduced by the elements Xµ
i,j , therefore not allowing the items Xλ

i to be packed

together.
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Now, let k = 3εµ = 3εβ logC. Then,

E

[
k∑
i=1

Xµ
i

]
=

k

β logC
= 3ε,

thus

P

(
k∑
i=1

Xµ
i ≤ 2ε

)
≤ P

(∣∣∣∣∣
k∑
i=1

Xµ
i − 3ε

∣∣∣∣∣ ≥ ε

)
≤ 1

ε2

k

(β logC)2
=

3

εβ logC
.

(Chebyshev inequality)

Pick β = 6(n1 logC)/ε and so,

P

(
∃j = 1, . . . , n1 :

k∑
i=1

Xµ
j,i ≤ 2ε

)
≤ n1 ·

3

εβ logC
=

1

2
.

That is, with probability at least 1/2, all blocks Xµ
j,1, . . . , X

µ
j,k add at least 2ε mass. Con-

sider the event

E =

{
∀j = 1, . . . , n1 :

k∑
i=1

Xµ
j,i > 2ε

}
.

then, we just proved that P(E) ≥ 1/2.

Claim 3.39. Given event E, Algorithm 5 with γ = 1 never packs Xλ
i and Xλ

i+1 together for

any i.

Proof. Suppose that Algorithm 5 packs Xλ
i and Xλ

i+1 together for some i. This means that

the algorithm had enough budget and space to allocate Xλ
i+1. Since P(Xλ

i+1 > 1 − x) =

e−λ(1−x) > e−µ(1−x) = P(Xµ
ij > 1 − x) for any x > 0, then Budgeted Greedy must have

packed all the Xµ
ij in between Xλ

i and Xλ
i+1. However, under event E, these items increase

the usage of the bin by at least 2ε. Then, the budget utilized by Xλ
i+1 is at least

P(Xλ
i+1 > 1− 2ε) = e−λ(1−2ε) > e−(1−ε2) logC >

1

C
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which is a contradiction to the risk budget of Budgeted Greedy.

Claim 3.40. Using the same choices of β and k as before, we have cost(ALG) ≥ n1/2.

Proof. By the previous result, under event E, no Xλ
i and Xλ

i+1 are packed together. There-

fore, at least n1 open bins are needed. Since E occurs w.p. ≥ 1/2 we conclude the desired

result.

Proof of Proposition 3.24. In order to show an upper bound for cost(OPT) it is enough

to exhibit a policy with cost bounded by the desired value. We consider the following

budgeted policy P with risk budget 2/C: Pack items with rate λ separately of items with

rate µ. We are going to show that P opens at most

n2

β logC
+

n1

ε logC
= n1

(
k

β logC
+

1

ε logC

)

bins in expectation (up to a constant). Since P is budgeted with budget 2/C we have

cost(OPT) ≤ cost(P) ≤ 3E[NP ] from which the result follows. In what follows we prove

the bound over the number of bins.

Let us analyze the policy P . Policy P opens two kind of bins; the first kind of bins only

contain items following exponentials distribution of rate λ; the second kind of bins only

contain items following exponential distribution of rate µ. We have NP = N1
P +N2

P where

N1
P is the number of bins of type 1 and N2

P is the number of bins of type 2. An equivalent

way to see this process is that policy P runs two copies of Algorithm 5, one for the rate

λ and one for the rate µ. Then, N1
P equals NALG over the sequence Xλ

1 , . . . , X
λ
n1

and N2
P

equals NALG over the sequence Xµ
1,1, . . . , X

µ
n1,k

.
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The following lemma is a general result that allows us to bound the number of bins used in

a nonnegative i.i.d. sequence of items under Algorithm 5. For the sake of clarity, the proof

has been moved to the end of this subsection.

Lemma 3.41. Suppose the r.v.’sX1, . . . , Xn form an i.i.d. sequence of items, then E[NALG] ≤

(2n− 1)/E[|B1|] where |B1| is the number of items packed in the first bin.

Claim 3.42. LetX1, . . . , Xn be n independent exponential r.v.’s with rate λ = (1+ε) logC,

with ε logC ≥ 4, then

E[|B1|] ≥
1

8
ε logC,

where |B1| is the number of items X1, . . . , Xn packed in the first bin by Algorithm 5 with

risk budget = 2/C.

Proof. Let ` = ε
4

logC ≥ 1. Then,

P(|B1| ≤ `) = P

(
|B1| ≤ `,X(B1) >

ε

2(1 + ε)

)
+ P

(
|B1| ≤ `,X(B1) ≤ ε

2(1 + ε)

)
≤ P

(∑̀
i=1

Xi >
ε

2(1 + ε)

)
+ P

(
|B1| ≤ `,X(B1) ≤ ε

2(1 + ε)

)
.

We bound each term separately. First, we have

P

(∑̀
i=1

Xi >
ε

2(1 + ε)

)
≤ 2(1 + ε)

ε
E

[∑̀
i=1

Xi

]
=

2(1 + ε)

ε
`

1

(1 + ε) logC
=

1

2
.

For the other term we have that |B1| ≤ `, given X(B1) ≤ ε
2(1+ε)

, only if B1 runs out of

budget. That is,

2

C
≤

`+1∑
i=1

P(Xi > 1− αi) ≤ (`+ 1)P

(
Xi > 1− ε

2(1 + ε)

)
≤
(ε

4
logC + 1

) 1

C1+ε/2
<

2

C

using the assumption ε logC ≥ 2. From here we obtain that P(|B1| ≤ `,X(B1) ≤
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ε
2(1+ε)

) = 0. Therefore,

P(|B1| ≤ `) ≤ 1

2
.

Then,

E[|B1|] ≥
1

2
` =

1

8
ε logC.

Claim 3.43. Let X1, . . . , Xm be m independent exponential r.v.’s with rate µ = β logC,

β ≥ 4, then

E[|B1|] ≥
1

8
β logC

where |B1| is the number of items X1, . . . , Xm packed in the first in by Algorithm 5 with

risk budget = 2/C.

Proof. Let ` = β
4

logC. Then,

P (|B1| ≤ `) = P(|B1| ≤ `,X(B1) > 1/2) + P(|B1| ≤ `,X(B1) ≤ 1/2)

≤ P

(∑̀
i=1

Xi >
1

2

)
+ P (|B1| ≤ `,X(B1) ≤ 1/2)

Now, given the eventX(B1) ≤ 1/2, the only way that |B1| ≤ ` is by running out of budget.

We have then

2

C
≤

`+1∑
i=1

P(Xi > 1− αi) ≤ (`+ 1)P(Xi > 1/2) ≤
(
β

4
logC + 1

)
1

Cβ/2
<

1

C

(β ≥ 4)

which cannot happen. Therefore, P(|B1| ≤ `,X(B1) ≤ 1/2) = 0 and then

P(|B1| ≤ `) ≤ 2E

[∑̀
i=1

Xi

]
= 2`

1

β logC
=

1

2
.
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Therefore,

E[|B1|] ≥
1

2
` =

β

8
logC.

Claim 3.44. The cost of P is cost(P) ≤ 3E[NP ] ≤ 48n1 (k/(β logC) + 1/(ε logC))

Proof. Putting all the results together we obtain

E[NP ] = E[N1
P ] + E[N2

P ]

≤ 2n1

E[|Bλ
1 |]

+
2n2

E[|Bµ
1 |]

(Proposition 3.41)

≤ 16
n1

ε logC
+ 16

n2

β logC

= 16n1

(
1

ε logC
+

k

β logC

)
.

Here we present the proof of Lemma 3.41.

Proof of Lemma 3.41. We use the following fictitious experiment. Consider n independent

copies of the random variables X1, . . . , Xn and run Algorithm 5 until its first bin is closed

or the sequence fits entirely on the first bin. We denote by B̃i the items packed in the first

bin in the i-th trial of this experiment. The process |B̃1|, . . . , |B̃n| is i.i.d..
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We have the following identities:

|B1| = |B̃1|

|B2| = min{n− |B1|, B̃2}
...

|Bn| = min{n− |B1| − · · · − |Bn−1|, B̃n}.

Observe that NALG = min
{
k :
∑k

i=1 |Bi| = n
}

is a stopping time for |B1|, . . . , |Bn| so

also is a stopping time for |B̃1|, . . . , |B̃n|. By Wald’s equation (see Theorem 3.45 below)

we have

E[NALG]E[|B̃1|] = E

[
NALG∑
i=1

|B̃i|
]
.

Additionally, we have E[|B̃1|] = E[|B1|] by construction. Now, until time NALG − 1 we

must have |B1| = |B̃1|, . . . , |BNALG−1| = |B̃NALG−1|, all of these values at least 1. Then,

NALG−1∑
i=1

|B̃i| =
NALG−1∑
i=1

|Bi| ≤ n− 1.

Therefore,

E[NALG]E[|B1|] = E

[
NALG−1∑
i=1

|Bi|+ |B̃NALG
|
]
≤ 2n− 1,

which concludes the proof.

Wald’s Equation

Theorem 3.45 (Wald’s equation). If X1, X2, . . . are i.i.d. random variables with finite

mean and N is a stopping time with E[N ] <∞, then

E

[
N∑
n=1

Xn

]
= E[N ]E[X1].
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Proof can be found in [150].

3.B Appendix: #P-Hardness of Computing Minimum Cost of the Optimal Policy

In this section, we provide the proof of Theorem 3.5, i.e., it is #P-hard to compute

minP cost(P). We proceed as follows. We consider symmetric logic formulas, that is,

φ(x) = φ(x) for any x, and we show that the problem #SYM-4SAT—the problem of

counting satisfying assignment of symmetric formulas in 4CNF—is #P-hard. Recall that

a formula is in conjunctive normal form (CNF) if it is a conjunction of one or more clauses.

When the clauses have k literals, we say that the formula is in kCNF.

Then, we provide a polynomial time reduction from symmetric formulas φ in 4CNF into

instances of the stochastic bin packing problem such that

min
P

cost(P) =
5

2
− 2

2n
− sφ

2n
,

where sφ denotes the satisfying assignments of φ, i.e., sφ = |{x = (x1, . . . , xn) : φ(x) =

1}|.

We now proceed to show the hardness of #SYM-4SAT.

Theorem 3.46. #SYM-4SAT is #P-hard.

Proof. We show a reduction from the #P-hard problem #2SAT [167]. We symmetrize a

formula φ by extending the assignments x = (x1, . . . , xn) in one variable, namely x0. Let

φ =
∧m
j=1Cj be a formula in 2CNF, i.e., each clause has the form Cj = (`1,j ∨ `2,j) where

`i,j ∈ {x1, . . . , xn, x1, . . . , xn} for i = 1, 2. Consider the formula

φ̃(x0,x) = (x0 ∧ φ(x)) ∨ (x0 ∧ φ(x)).
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Note that φ̃ is symmetric but not yet in CNF. Also, note that sφ̃ = |{(x0,x) : φ̃(x0,x) =

1}| = 2sφ. It remains to show that we can transform φ̃ into a symmetric 4CNF without

altering the number of solutions. Using De Morgan’s law, we rewrite the formula φ̃ as

φ̃(x0,x) = (x0 ∨ φ(x)) ∧ (x0 ∨ φ(x)) ∧ (φ(x) ∨ φ(x))

=

(
x0 ∨

m∧
j=1

Cj(x)

)
∧
(
x0 ∨

m∧
j=1

Cj(x)

)
∧
(

m∧
j=1

Cj(x) ∨
m∧
j=1

Cj(x)

)

=

(
m∧
j=1

(x0 ∨ Cj(x))

)
︸ ︷︷ ︸

(I)

∧
(

m∧
j=1

(x0 ∨ Cj(x))

)
︸ ︷︷ ︸

(II)

∧
(

m∧
j,k=1

Cj(x) ∨ Ck(x)

)
︸ ︷︷ ︸

(III)

.

The first two terms (I) and (II) are clearly 3CNF. We extend them into 4CNF by repeating

the variable x0 or x0 accordingly. The last term (III) is already in 4CNF. We remove clauses

that contain pairs ` ∨ ` since they are trivially satisfied.

Note that in the formula φ̃, each variable appears at most twice in each clause, either as

x ∨ x or x ∨ x. This is going to be utilized in the next proof.

Before going to the proof, and for the sake of explanation, we change the capacity of the

bins to a capacity B > 1, to be defined later. This can be easily adjusted to our setting

with capacity 1 by scaling down items sizes by the amount B. As we are going to see, it is

clearer to introduce items > 1 than their fractional rescaled version.

3.B.1 Reduction #SYM-4SAT to Stochastic Bin Packing

The reduction is similar to the reduction from PARTITION-PROBLEM to BIN-PACKING.

See [160] for an example. A similar reduction is used in [58] in the context of multidi-

mensional stochastic knapsack. Given a symmetric 4CNF φ with variables x1, . . . , xn and

clauses C1, . . . , Cm, we are going to construct a list of nonnegative random variables, that

will correspond to the input of the stochastic bin packing problem, that can be packed into
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two bins whenever the outcomes of these random variable satisfy the 4CNF formula while

in the opposite case, the number of bins requires is at least three.

We are going to utilize numbers with at most 4n + m digits in base 10. For convenience

we assume that all number have exactly 4n+m digits by filling the unused corresponding

significant digits with 0. Given a number with 4n + m digits in base 10, we split its

representation into four blocks. The first block corresponds to the digits it positions 10i ·

10n · 102n · 10m for i = 0, . . . , n − 1. We refer to the first block as the variable block and

their intra significant digits as the variables digits. For instance, by variable digit xi we

refer to the digit in location 10n−i · 10n · 102n · 10m.

The second block corresponds to digits at positions 10i ·102n ·10m for i = 0, . . . , n−1. We

refer to the second block as the mirror variable block and its intra digits as mirror variable

digits. By mirror digit xi we refer to the digit in location 10n−i · 102n · 10m.

The third block corresponds to digits in positions 10k · 10m for k = 0, . . . , 2n − 1. We

refer to this block as the equivalence block and we split its digits into pairs of digits that we

refer as equivalence digits. The positive equivalent digit xi refers to the digit in position

102n−2i+1 ·10m while the negative equivalence digit xi refers to the digit in position 102n−2i ·

10m.

The last block corresponds to the digits at position 10j for j = 0, . . . ,m − 1. We refer to

the this block as the clauses block and its intra digits as clauses digits. By clause digit Cj

we refer to the digit located at position 10m−j .

We set the capacity of the bins to be the number in base 10

B = 11 · · · 11︸ ︷︷ ︸
n 1’s

| 11 · · · 11︸ ︷︷ ︸
n 1’s

| 11 · · · 11︸ ︷︷ ︸
2n 1’s

| 44 · · · 44︸ ︷︷ ︸
m 4’s

.

We purposely separated the significant digits using the vertical bars “ | ” into the four afore-
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mentioned blocks.

For a formula φ in 4CNF we now present the reduction. For each variable i = 1, . . . , n we

construct the following four numbers ai, bi, ci and di in base 10. The first two number are

ai = 1 0 · · · 0︸ ︷︷ ︸
n−i

| 00 · · · 00︸ ︷︷ ︸
n

| 00 · · · 00︸ ︷︷ ︸
2i−2

01 00 · · · 00︸ ︷︷ ︸
2n−2i

| 00 · · · 00︸ ︷︷ ︸
m

bi = 1 0 · · · 0︸ ︷︷ ︸
n−i

| 00 · · · 00︸ ︷︷ ︸
n

| 00 · · · 00︸ ︷︷ ︸
2i−2

10 00 · · · 00︸ ︷︷ ︸
2n−2i

| 00 · · · 00︸ ︷︷ ︸
m

.

Number ai and bi have 4n − i + m + 1 digits. Both of them have a common digit 1 in

variable digit xi. Moreover, ai has another digit 1 in negative equivalent digit xi; and bi has

a digit 1 in positive equivalence digit xi.

The following two numbers are

ci = · · ·︸︷︷︸
no digits

| · · ·︸︷︷︸
no digits

1 0 · · · 0︸ ︷︷ ︸
n−i

| 00 · · · 00︸ ︷︷ ︸
2i−2

10 00 · · · 00︸ ︷︷ ︸
2n−2i

| 00 · · · 0ckii 00 · · · 00︸ ︷︷ ︸
m

di = · · ·︸︷︷︸
no digits

| · · ·︸︷︷︸
no digits

1 0 · · · 0︸ ︷︷ ︸
n−i

| 00 · · · 00︸ ︷︷ ︸
2i−2

01 00 · · · 00︸ ︷︷ ︸
2n−2i

| 00 · · · 000dkii · · · 00︸ ︷︷ ︸
m

.

Number ci and di have 3n− i+m+ 1 digits, and note that we keep the separation between

the blocks to emphasize where the nonzero digits appear. In other words, the variable block

is completely missing from ci and di. Now, both number ci and di have a common digit 1

in mirror variable digit xi (mirror numbers xi′ with i′ < i are also missing). The number

ci has digit ckii ∈ {1, 2} in all clauses digits Cki where literal xi appears; the number di has

digit dkii ∈ {1, 2} in all clauses digits where literal xi appears. The number ci has a digit 1

in positive equivalence digit xi; and di has a digit 1 in negative equivalence digit xi.

For each clause Cj , j = 1, . . . ,m, we introduce three numbers fj, gj and hj that are going

130



to serve as slacks:

fj = gj = hj = · · ·︸︷︷︸
no digits

| · · ·︸︷︷︸
no digits

| · · ·︸︷︷︸
no digits

| · · ·︸︷︷︸
no digits

1 0 · · · 0︸ ︷︷ ︸
m−j

.

The three numbers have a unique digit 1 at clause digit Cj and they completely miss the

variable, mirror variable and equivalence blocks.

Finally, we introduce a number needed for technical reasons:

h = · · ·︸︷︷︸
no digits

| · · ·︸︷︷︸
no digits

| 11 · · · 11︸ ︷︷ ︸
m

| 00 · · · 00︸ ︷︷ ︸
2n

.

A pictorial construction of the numbers appears in Figure 3.6.

Given these number, we construct an instance of the stochastic bin packing problem as

follows. We define the following independent random variables

Xi =


ai w.p. 1/2

bi w.p. 1/2

and X ′i =


ai w.p. 1/2

bi w.p. 1/2

.

Now the instance is given by the sequence

Lφ = (X1, X
′
1, X2, X

′
2, X3, X

′
3, . . . , Xn, X

′
n, c1, d1, c2, d2, . . . , cn, dn, h1, g1, . . . , hm, gm, h).

Intuitively, we aim to simulate the random evaluation of φ when the values of x1, . . . , xn

are chosen uniformly and independently of each other. Note that in this case,

Px∈R{0,1}n(φ(x) = 1) =
sφ
2n
.

Note that in instance Lφ, any policy incurs in a cost of at least 2 since X1 and X ′1 if packed

together incur in an expected cost of at least 2. This is because C > 2. As we did in
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x1 x2 x3 · · · xn y1 y2 y3 · · · yn x+
1 x−

1 x+
2 x−

2 · · · x+
n x−

n C1 C2 C3 · · · Cm

a1 1 0 0 · · · 0 0 0 0 · · · 0 0 1 0 0 · · · 0 0 0 0 0 · · · 0

b1 1 0 0 · · · 0 0 0 0 · · · 0 1 0 0 0 · · · 0 0 0 0 0 · · · 0

a2 1 0 · · · 0 0 0 0 · · · 0 0 0 0 1 · · · 0 0 0 0 0 · · · 0

b2 1 0 · · · 0 0 0 0 · · · 0 0 0 1 0 · · · 0 0 0 0 0 · · · 0

a3 1 · · · 0 0 0 0 · · · 0 0 0 0 0 · · · 0 0 0 0 0 · · · 0

b3 1 · · · 0 0 0 0 · · · 0 0 0 0 0 · · · 0 0 0 0 0 · · · 0
...

. . .
...

...
...

an 1 0 0 0 · · · 0 0 0 0 0 · · · 0 1 0 0 0 · · · 0

bn 1 0 0 0 · · · 0 0 0 0 0 · · · 1 0 0 0 0 · · · 0

c1 1 0 0 · · · 0 1 0 0 0 · · · 0 0 2 0 0 · · · 0

d1 1 0 0 · · · 0 0 1 0 0 · · · 0 0 0 1 1 · · · 0

c2 1 0 · · · 0 0 0 1 0 · · · 0 0 1 1 0 · · · 0

d2 1 0 · · · 0 0 0 0 1 · · · 0 0 0 0 0 · · · 0

c3 1 · · · 0 0 0 0 0 · · · 0 0 0 0 1 · · · 0

d3 1 · · · 0 0 0 0 0 · · · 0 0 1 2 0 · · · 0
...

. . .
...

...

cn 1 0 0 0 0 · · · 1 0 0 0 1 · · · 0

dn 1 0 0 0 0 · · · 0 1 0 0 0 · · · 2

f1 1 0 0 · · · 0

g1 1 0 0 · · · 0

h1 1 0 0 · · · 0

f2 1 0 · · · 0

g2 1 0 · · · 0

h2 1 0 · · · 0
...

. . .

fm 1

gm 1

hm 1

h 1 1 1 · · · 1

B 1 1 1 · · · 1 1 1 1 · · · 1 1 1 1 1 · · · 1 1 4 4 4 · · · 4

Figure 3.6: Construction of numbers via φ 4CNF. The table is purposely divided into four
blocks representing the digit blocks defined at the beginning of the subsection. The instance
showed corresponds partially to the 4CNF φ(x1, . . . , xn) = (x1 ∨ x1 ∨ x2 ∨ x3) ∧ (x1 ∨
x2 ∨ x3 ∨ x3) ∧ (x1 ∨ x3 ∨ x4 ∨ xn) ∧ · · · ∧ (xn−2 ∨ xn−1 ∨ xn ∨ xn), where clauses are
C1, C2, C3, . . . , Cm in the order they are displayed.

the main body of the article, we can assume that the policies are deterministic. Moreover,

we can assume that policies never break a bin since the expected cost of breaking a bin is

always greater than 1. This is because the probability of overflow always is either 0, 1/2 or

1 by construction of Lφ.

Theorem 3.47. For the instance Lφ we have

min
P

cost(P) =
5

2
− 2

2n
− 1

2n
Px∈{0,1}n(φ(x) = 1).
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Proposition 3.48. For the instance Lφ there is a policy with cost(P) ≤ 3. Moreover, for

any of such policies, there is a policy with same cost or better that packs items X1, . . . , Xn

into bin 1 and items X ′1, . . . , X
′
n into bin 2.

Proof. Consider the policy that packs item X1 into bin 1; item X ′1 into bin 2; the rest of the

items into bin 3. This policy is valid since

n∑
i=2

(Xi +X ′i) +
n∑
i=1

(ci + di) +
m∑
j=1

(hj + gj) + h ≤ B.

This proves the first part of the proposition.

For the second part, consider any policy P with cost at most 3 that does not break any bin.

We can assume, without loss of generality, that X1 is packed into bin 1 and X ′1 is packed

into bin 2. Now, starting at the root of the policy tree, find the first node u where Xi is

not packed in bin 1, say bin j ≥ 2. Note that up to that point, items X ′k must have been

packed in a different bin than bin 1. If both children of u are packed into bin 1, that is, X ′i

is packed into bin 1, then exchange the packing rule in node u by packing Xi into bin 1 and

in its children to pack item X ′i into bin j. This does not change the cost since Xi and X ′i

are identically distributed. Suppose now that some of the children of node u packs item X ′i

into bin j′ 6= 1, say children v. At this point, there is enough space in bin 1 to receive X ′i

since Xi was packed into bin j ≥ 2. In the subtree rooted at v, mark all nodes that pack

their corresponding item into bin 1. Exchange the packing rule from these node to pack

their items into bin j′ and change the policy to pack item X ′i in node v from bin j′ to bin 1.

This does not increase the cost of the policy. With this, we can modify the policy to pack

X ′i in both children of node u into bin 1 without increasing the expected cost. Now, like

in the previous case, we can pack item Xi into bin 1 and item X ′i into bin j ≥ 2. We can

repeat this procedure for all i and at the end of this, we can ensure that all X1, . . . , Xn are

packed into bin 1 and the cost of the policy does not increase. With a similar argument,
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we show that items X ′1, . . . , X
′
n can be packed into bin 2 without increasing the cost of the

policy. From the root, find the first node u′ where X ′i is not packed into bin 2, say bin j.

Note that j cannot be 1 since we already have that Xi has been packed into bin 1 and both

random variables share the same variable digit xi. Then, j ≥ 3. In the subtree rooted at u′

mark all items that are packed into bin 2. Repack those items into bin j and pack X ′i into

bin 2. This does not increase the cost of the policy since we have enough space in bin j to

receive any item in there if needed. Repeating this procedures for all i gives us the desired

result.

Consider the following three events: Let

E = {∀i = 1, . . . , n : Xi 6= X ′i},

then P(E) = 1/2n. Let

Ea = {∃i = 1, . . . , n : ∀k < i,Xk 6= X ′k, Xi = X ′i = ai}

and

Eb = {∃i = 1, . . . , n : ∀k < i,Xk 6= X ′k, Xi = X ′i = bi}.

Note that Ea and Eb are disjoint and Ea ∪ Eb = E . Intuitively, E is the good event where the

variables Xi and X ′i model opposite values in {ai, bi}. Also note that P(Ea) = P(Eb) =

(1− 1/2n)/2.

We denote by cost(P | A) the conditional expected cost of the policy P on the event A.

Proposition 3.49. For any policy P we have cost(P | Eb) ≥ 3.

Proof. Note that given Eb we have (assuming the collision occurs at i, Xi = X ′i = bi) we
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have

n∑
i=1

(Xi +X ′i + ci + di) +
m∑
j=1

(hj + gj) + h

≥ 22 · · · 22 | 22 · · · 22 | 22 · · · 22︸ ︷︷ ︸
2i−2

311 · · · 11 | 88 · · · 88 > 2B

where B is the bin’s capacity. Therefore, since we are assuming that P does not break

bins, then the policy must have packed all the items into at least 3 bins which concludes the

proof.

Proposition 3.50. For any policy P that packs items X1, . . . , Xn into bin 1 and items

X ′1, . . . , X
′
n into bin 2 and does not break any bin, we have cost(P | E) ≥ 3−Px∈R{0,1}n(φ(x) =

1).

Proof. Consider the following random assignment X = (x1, . . . , xn):

xi =


1 if Xi = ai

0 if Xi = bi

.

Note that X is uniformly distributed over {0, 1}n. Then, cost(P | E , φ(X) = 0) ≥ 3.

Indeed, if only 2 bins have been used after all items have been packed, this forces item

ci to be placed in bin 1 if Xi = ai and in bin 2 otherwise, while di is packed in the

opposite bin to ci. Since φ(X) = 0 = φ(X) by symmetry of φ, then, after packing items

c1, d1, . . . , cn, dn but before packing items f1, g1, h1, . . . , fm, gm, hm, there must be a Cj

digit in the utilization of bin 1 that is 0 and a Cj′ digit in the utilization of bin 2 that is also

0, j 6= j′. In particular, this implies that the usage of bin 2 at this point has a Cj-digit of 4.

After packing items f1, g1, h1, . . . , fm, gm, hm, one of the bins must have a 4 in its C1-digit

of usage, say bin 1. Therefore, bin 2 has a usage with C1-digit 3 and item h cannot be

packed into bin 1. Since E is given, we have
∑n

i=1(Xi +X ′i) +
∑n

i=1(ci +di) +
∑m

j=1(fj +
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gj + hj) + h = 2B, then h can be packed into bin 2 only if all C1, . . . , Cm-digits are 3.

However, this contradicts the fact that Cj-digit in bin 2 is 4. Similarly, if the bin 2 has usage

with C1-digit of 4 after packing items f1, g1, h1, . . . , fm, gm, hm, we can obtain the same

contradiction. Therefore, cost(P | E , φ(X) = 0) ≥ 3.

Now,

cost(P | E) ≥ 3P(φ(X) = 0 | E) + 2P(φ(X) = 1 | E) = 3−P(φ(X) = 1 | E)

= 3−Px∈R{0,1}n(φ(x) = 1).

Lemma 3.51. For any policy P , cost(P) ≥ 5/2− 1/2n−1 −Px∈R{0,1}n(φ(x) = 1)/2n.

Proof. We can assume that the policy P packs items X1, . . . , Xn into bin 1 while items

X ′1, . . . , X
′
n into bin 2 (see Proposition 3.48). Then, utilizing Propositions 3.49 and 3.50

we obtain

cost(P) ≥
(
3−Px∈R{0,1}n(φ(x) = 1)

)
P(E) + 3P(Eb) + 2P(Ea)

=
5

2

(
1− 1

2n

)
+

1

2n
(
3−Px∈R{0,1}n(φ(x) = 1)

)
=

5

2
− 2

2n
− 1

2n
Px∈R{0,1}n(φ(x) = 1).

Lemma 3.52. There is a policy P such that cost(P) ≤ 5/2−1/2n−1−Px∈R{0,1}n(φ(x) =

1)/2n.

Proof. Consider the following policy. Start packing items X1, . . . , Xn into bin 1 and items

X ′1, . . . , X
′
n into bin 2. If there is a collisionXi = X ′i and the first of these isXi = X ′i = bi,
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then pack the rest of the items into bin 3; While if the first of these collisions is Xi = X ′i =

ai, then continue packing as follows. Pack ci′ where ai′ is packed and di′ where bi′ is packed

for i′ < i. Pack ci into bin 1 and di into bin 2. Pack the remaining ci′ into bin 1 and di′

into bin 2. Since i is the first time there is a collision, bin 2 has a 0 in its positive equivalent

digit xi and a 2 in its negative equivalent digit xi. Therefore it has enough space to receive

the items packed after di′ has been packed. Then only 2 bins are utilized.

If no collision happens, then pack ci where outcome ai is packed (bin 1 if Xi = ai or bin

2 if X ′i = ai) and pack di in the opposite bin (bin 2 if ci is in bin 1 bin 1 otherwise). Now,

utilize the slack items fj, gj, hj to complete bin 1 and then bin 2. Now, for h there are two

cases based on the value of φ on the satisfying assignment x given by

xi =


1 if Xi = ai

0 if Xi = bi

.

• If φ(x) = 1, then in bin 2, each Cj digit of the capacity used is at most 3. This is because

the Cj digit of the capacity used bin 1 is 4 by construction. Now, pack h into bin 2 and

finish the packing into 2 bins.

• If φ(x) = 0, we can retrace the proof of Proposition 3.50 to show that in this case, h

cannot fit nor in bin 1 nor in 2, therefore forcing a bin 3.

Putting all these case together, we obtain

cost(P) = cost(P | E)P(E) + cost(P | Ea)P(Ea) + cost(P | Eb)P(Eb)

=
(
3−Px∈R{0,1}n(φ(x) = 1)

) 1

2n
+

5

2

(
1− 1

2n

)
=

5

2
− 2

2n
− 1

2n
Px∈{0,1}n(φ(x) = 1).
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Putting together Lemma 3.51 and 3.52 we obtain the proof of Theorem 3.47.

3.C Appendix: Threshold Policies for I.I.D. Random Variables with Finite Support

In this section we discuss the problem of designing a threshold algorithm that incurs in a

constant factor loss whenever the input sequence is i.i.d. (with common distributionD) with

unknown time horizon n. A threshold algorithm observes the common random distribution

of the incoming streams and computes a number α ∈ [0, 1] such that bins are utilized as

long as their usage is at most α. If there are no such bins, then a new bin is opened upon an

arrival. Note that in the i.i.d. setting, for threshold policies of this kind, at most one bin is

kept active at a time.

We show that among all policies that keep at most one bin active at a time, threshold policies

are optimal up to an additive loss of one. This is under the assumption that the common

distribution D has finite support.

Theorem 3.53. Let D be any distribution with finite support in [0,∞). There exists α ∈

[0, 1] such that the threshold policy Pα with threshold α satisfies

cost(Pα) ≤ min
P has at most
one active bin

cost(P) + 1,

for any input sequence of i.i.d. random variables X1, . . . , Xn with common distribution D.

Note that policy Pα is computed only with the information given by the distribution D. An

online algorithm that has access to D computes the threshold α given in Theorem 3.53 and

implements the threshold policy. In the main body of the chapter we show that Budgeted

Greedy keeps at most one bin active at a time in the i.i.d. setting (Lemma 3.12). Therefore,

policies that keep at most one bin active at a time are within a constant factor of the optimal

offline sequential cost. Using these facts, we conclude that an algorithm implementing a
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threshold policy incurs an expected cost that is a constant factor of the optimum. This

factor is at most (3 + 2
√

2), since we utilized the guarantee given by Budgeted Greedy

(Theorem 3.2).

A major downside of Theorem 3.53 is that it does not give an efficient algorithm to com-

pute the threshold α. Indeed, for the proof of Theorem 3.53, we utilize the framework of

discounted reward Markov processes (see [146]), which can compute optimal stationary

policies in time depending on the size of the state space. For us, the state space is the usage

of the active bin, which can be exponentially large in the description ofD. Intuitively, since

we aim to compute a policy that does not depend on the time horizon n and we only have

one bin to use, the best we can do is to repeat the same process over and over.

3.C.1 Proof of Theorem 3.53

The proof is divided in a sequence of propositions. We briefly introduce the definitions

used in infinite-time horizon discounted Markov decision processes. We later show that

the optimal discounted cost induces a monotonic cost vector. From here, a threshold policy

can be deduced which is later used to design a finite-time threshold policy.

We assume that the distribution D has finite support in [0, 1] ∪ {1+} where the element 1+

denotes a fixed upper bound over the values in [0, 1] and any value that D could have taken

above 1 with positive probability is mapped to 1+. The state space, denoted S corresponds

to all possible values ≤ 1 that the bin can take as combinations of number in the support of

D in addition to the special state 1+. Note that S is a finite set.

Fix a discount factor γ ∈ (0, 1). In the infinite time-horizon discounted factor frame-

work, a policy corresponds to a sequence of functions (or distributions if randomized)

Π = (π1, π2, . . .) that dictates the behavior of the process. That is, πt : S → {0, 1} is

the decision made by the policy at round t, where 0 indicates keep using the current bin

while 1 indicates open a new bin, all this as a function of the state of the system. If πt is
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random, then πt : S → ∆({0, 1}), where ∆({0, 1}) is the probability simplex over {0, 1}.

We define the discounted cost of the policy Π at time t = 1, 2, . . . by

V Π
t (s) =


1 + C P(X > 1) + γE[V Π

t+1(X ∧ 1+)] πt(s) = 0

C P(X + s > 1) + γE[V Π
t+1((X + s) ∧ 1+)] πt(s) = 1

.

Let

c(s, a) =


C ·P(X + s > 1) a = 0

1 + C ·P(X > 1) a = 1

and T (s, 0) = (X + s) ∧ 1+; T (s, 1) = X ∧ 1+. We can write V Π
t (s) = c(s, π(s)) +

γE[V Π
t+1(T (s, π(s)))].

If πt are randomized then the previous values are replaced by expectations. The goal is to

find minΠ V
Π

1 (0). Markov Decision processes theory guarantees that this minimum is also

a minimum over the history dependent randomized policies—policies that record previous

outcomes. Moreover, the optimal policy for minΠ V
Π

1 (0) is also the optimal policy for

minΠ V
Π

1 (s) for any s ∈ S. The theory also guarantees that deterministic stationary policies

are optimal. That is, minΠ V
Π

1 (s) = minπ V
(π,π,...)

1 (s). From now on, we only consider

deterministic policies. By V π
t we refer to V Π

t where Π = (π, π, . . .). Note that V π
1 (s) =

V π
2 (s) = · · · and so we can identify the temporal cost vector (V π

t (s)) s∈S
t=1,2,...

by just the

vector V π = (V π(s))s∈S. The optimal vector V π satisfies the Bellman equation V = T γV ,

where

(T γV ) (s) = min{1 + C P(X > 1) + γE[V (X ∧ 1+)], C P(X + s > 1) + γE[V ((X + s) ∧ 1+)]}

= min
a=0,1

{c(s, a) + γE[V (T (s, a))]}.

Therefore, V π is the fixed point of the Bellman operator T γ . For a detailed presentation of

these results, see Chapter 6 in [146].
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Proposition 3.54. Consider the optimal solution V π of the discounted cost problem. Then

V π is a monotone function of s. That is, V π(s′) ≤ V π(s′′) for any 0 ≤ s′ ≤ s′′ ≤ 1+ .

Proof. By contradiction, suppose that for some s′ < s′′ we have V π(s′) > V π(s′′). Among

all such possible pairs s′ < s′′ choose the largest s′ ≤ 1, which exists because S is finite.

Define the new function π̂1 as π̂1(s) = π(s) if s 6= s′ and π̂1(s′) = π(s′′). For t ≥ 2 we

define π̂t = π. Now consider the policy Π̂ = (π̂1, π̂2, . . .). Then, using the definition of V Π̂
1

we can show that V Π̂(s) = V π(s) for s 6= s′. Now, let’s analyze the case s = s′. Observe

that

c(s′, π(s′′)) ≤ c(s′′, π(s′′))

since s′ < s′′ and the function c(·, a) is nondecreasing for any fixed a. Then, we have two

cases:
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• If π(s′′) = 0, then as s′ is the largest state where monotonicity does not hold, we have

V Π̂
1 (s′) = c(s′, π1(s′)) + γE[V Π̂

2 (T (s′, π1(s′)))]

= c(s′, 0) + γE[V
(π,...)

2 ((X + s′) ∧ 1+))] (π1(s′) = π(s′′) = 0)

≤ c(s′′, 0) + γE[V π((X + s′) ∧ 1+)]

(V (π,...)
2 = V π and monotonicity of c(·, 0))

= c(s′′, 0) + γP(X = 0)V π(s′) + γE[V ((X + s′) ∧ 1+) | X > 0]P(X > 0)

≤ c(s′′, 0) + γP(X = 0)V π(s′) + γE[V ((X + s′′) ∧ 1+) | X > 0]P(X > 0)

(As s′ is the largest value where monotonicity does not hold)

≤ c(s′′, 0) + γP(X = 0)(V π(s′)− V π(s′′)) + γE[V π((X + s′′) ∧ 1+)]

= V π(s′′) + γP(X = 0)(V π(s′)− V π(s′′))

= γP(X = 0)V π(s′) + (1− γP(X = 0))V π(s′′)

< γP(X = 0)V π(s′) + (1− γP(X = 0))V π(s′) (Since V π(s′) > V π(s′′))

= V π(s′).

• Similarly, if π(s′′) = 1, then,

V Π̂
1 (s′) = c(s′, π1(s′)) + γE[V Π̂

2 (T (s′, π1(s′)))]

= c(s′, 1) + γE[V π(X ∧ 1+)]

≤ c(s′′, 1) + γE[V π(X ∧ 1+)]

= V π(s′′)

< V π(s′).

In any case, V Π̂(s′) < V π(s′), which contradicts the optimality of π.

142



The following result states that the optimal policy of the discounted cost problem is a

threshold policy.

Proposition 3.55. For the optimal V π, there exists α ∈ [0, 1] such that the stationary policy

π̃(s) = 0 if s ≤ α; π̃(s) = 1 if s > α, holds π = π̃.

Proof. Let E = {s ∈ S : V π(s) < 1 + C P(X > 1) + γE[V π(X ∧ 1+)]} be the states

where the policy π decides to utilize the current bin. Note that 0 ∈ E, hence α = supE is

well-defined. Also, note that for s = 1+ we have

1 + C P(X > 1) + γE[V π(X ∧ 1+)] ≤ C P(X + 1+ > 1) + γE[V π((X + 1+) ∧ 1+)],

thus α < 1+. Using the monotonicity of V π, we have E = [0, α].

By definition of αwe have that for any s > α, V π(s) ≥ 1+C P(X > 1)+γE[V π(X∧1+)].

This immediately implies that for any s > α, V π(s) = 1+C P(X > 1)+γE[V π(X∧1+)].

Since V π(·) is monotone, then for any s ≤ α we have V π(s) = C P(X + s > 1) +

γE[V π((X + s) ∧ 1+)]. This shows that π is indeed π̃.

Note that in this discounted cost model we did not restrict the possible actions when the

usage of the bin goes beyond 1, i.e, in state 1+. The optimality and monotonicity of the

optimal value V π shows that the optimal policy never tries to utilize the overflowed bin

again and it will always choose to open a new bin.

We now return, to our model without discounted cost. We prove Theorem 3.53. We show

that, up to an additive factor of +1, the optimal policy that uses one bin at a time is a thresh-

old policy. We refer to policies in our model by letters P while policies in the discounted

model by Greek letters π and so on.
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Proof of Theorem 3.53. Note that policies in our model are always defined to open a new

bin at time 1. We modify this by assuming that at time 1 the bin is already given and we

will charge this additional cost of +1 separately.

For γ ∈ (0, 1) we denote by πγ the optimal threshold policy of the discounted cost problem

with discount factor γ. Note that π : S→ {0, 1} and the set of function from S to {0, 1} is

finite. As γ → 1, there is an optimal policy π that repeats infinitely often in the sequence

(πγ)γ . We take a subsequence of γk ∈ (0, 1), γk → 1 as k →∞, such that πk .
= πγk = π.

By the previous proposition, we can assume that πk is a threshold policy with threshold

α ∈ [0, 1]. Now, we recursively expand V π(s0) to obtain

V π(s0) = E
[
c(s0, π(s0)) + γkc(s1, π(s1)) + · · ·+ γn−1

k c(sn−1, π(sn)) + γnkV
π(sn)

]
where si = T (si−1, π(si−1)) is the i-th state obtained by the policy. By setting s0 = 0 and

using the monotonicity of V π, we obtain

n−1∑
i=0

γik E[c(si, π(si))] ≤ (1− γnk )V π(0). (3.3)

Let us define the policy Pα that only uses one bin at a time and follows the actions of π at

every time step. Then it is easy to see that

cost(Pα) = 1 +
n−1∑
i=0

E[c(s1, π(si))] = 1 + lim
k→∞

n∑
i=0

γik E[c(si, π(si))]

≤ 1 + lim
k→∞

(1− γnk )V π(0). (3.4)

Where in the last inequality we utilized inequality (3.3).

Next, by optimality of π, we have V π(0) ≤ V Π
1 (0) for any Π = (π1, π2, . . .). Let P̂ be

the optimal sequential packing policy of X1, X2, . . . , Xn that always keeps at most one bin

active at a time. For t = 1, . . . , n, consider the functions π̂t(s) = 0 if P(s) uses the current
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bin and π̂t(s) = 1 otherwise. Now, consider the policy Π̂ = (π̂1, . . . , π̂n, π̂1, . . . , π̂n, . . .)

that repeats cyclically the actions of P̂ . Then, as before we can expand the recursion and

write

V Π̂
1 (0) =

n−1∑
i=1

γik E[c(si, π̂i+1(si))] + γnk E[V Π̂
n+1(sn−1, π̂n(sn−1))]

=
n−1∑
i=0

γik E[c(si, π̂i+1(si))] + γnk E[V Π̂
1 (sn)]

≤
n−1∑
i=0

γik E[c(si, π̂i+1(si))] + γnk (V Π̂
1 (0) + 1)

where the last inequality can be shown by optimality of P . Then

(1− γnk )V Π̂
1 (0) ≤ γnk +

n−1∑
i=0

γik E[c(si, π̂i+1(si))]. (3.5)

Moreover,

cost(P̂) = 1 +
n−1∑
i=0

E[c(si, π̂i+1(si))], (3.6)

and then we obtain

cost(Pα) ≤ lim
k→∞

(1− γnk )V π(0) (By (3.4))

≤ lim
k→∞

(1− γnk )V Π̂
1 (0) (Optimality of π)

≤ 1 + lim
k→∞

n−1∑
i=0

γik E[c(si, πi+1(si))] + γnk (By (3.5))

= 1 +
n−1∑
i=0

E[c(si, πi+1(si))] + 1

= cost(P) + 1. (By (3.6))
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CHAPTER 4

ROBUST ONLINE SELECTION WITH UNCERTAIN OFFER ACCEPTANCE

Online advertising has motivated interest in online selection problems. Displaying ads

to the right users benefits both the platform (e.g., via pay-per-click) and the advertisers

(by increasing their reach). In practice, not all users click on displayed ads, while the

platform’s algorithm may miss the users most disposed to do so. This mismatch decreases

the platform’s revenue and the advertiser’s chances to reach the right customers. With this

motivation, we propose a secretary problem where a candidate may or may not accept an

offer according to a known probability p. Because we do not know the top candidate willing

to accept an offer, the goal is to maximize a robust objective defined as the minimum over

integers k of the probability of choosing one of the top k candidates, given that one of

these candidates will accept an offer. Using Markov decision process theory, we derive a

linear program for this max-min objective whose solution encodes an optimal policy. The

derivation may be of independent interest, as it is generalizable and can be used to obtain

linear programs for many online selection models. We further relax this linear program into

an infinite counterpart, which we use to provide bounds for the objective and closed-form

policies. For p ≥ p∗ ≈ 0.6, an optimal policy is a simple threshold rule that observes

the first p1/(1−p) fraction of candidates and subsequently makes offers to the best candidate

observed so far.

4.1 Introduction

The growth of online platforms has spurred renewed interest in online selection problems,

auctions and stopping problems [70, 121, 64, 11, 129]. Online advertising has particularly
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benefited from developments in these areas. As an example, in 2005 Google reported about

$6 billion in revenue from advertising, roughly 98% of the company’s total revenue at that

time; in 2020, Google’s revenue from advertising grew to almost $147 billion. Thanks in

part to the economic benefits of online advertisement, internet users can freely access a

significant amount of online content and many online services.

Targeting users is crucial for the success of online advertising. Studies suggest that targeted

campaigns can double click-through rates in ads [71] despite the fact that internet users

have acquired skills to navigate the web while ignoring ads [40, 67]. Therefore, it is natural

to expect that not every displayed ad will be clicked on by a user, even if the user likes

the product on the ad, whereas the platform and advertiser’s revenue depend on this event

[145]. An ignored ad misses the opportunity of being displayed to another user willing to

click on it and decreases the return on investment (ROI) for the advertiser, especially in

cases where the platform uses methods like pay-for-impression to charge the advertisers.

At the same time, the ignored ad uses the space of another, possibly more suitable ad for

that user. In this work, we take the perspective of a single ad, and we aim to understand the

right time to begin displaying the ad to users as a function of the ad’s probability of being

clicked.

Recent works have addressed this uncertainty from a full-information perspective [129,

87], where user’s valuations over the ads are known in hindsight. However, in many e-

commerce applications it is unrealistic to assume access to complete information, as users

may approach the platform sequentially. Platforms that depend at least partially on display

advertisement for revenue observe sequential user visits and need to irrevocably decide

when to display an ad. If a platform displays an ad too soon, it risks not being able to learn

users’ true preferences, while spending too much time learning preferences risks missing a

good opportunity to display an ad. Designing efficient policies for displaying ads to users is

key for large internet companies such as Google and Meta, as well as for small businesses
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advertising their products in these platforms.

We model the interaction between the platform and the users using a general online selec-

tion problem. We refer to it as the secretary problem with uncertain acceptance (SP-UA

for short). Using the terminology of candidate and decision maker, the general interaction

is as follows:

1. Similar to other secretary problems, a finite sequence of candidates of known length

arrives online, in a random order. In our motivating application, candidates represent

platform users.

2. Upon an arrival, the decision maker (DM) is able to assess the quality of a candidate

compared to previously observed candidates and has to irrevocably decide whether to

extend an offer to the candidate or move on to the next candidate. This captures the

online dilemma the platform faces: the decision of displaying an ad to a user is based

solely on information obtained up to this point.

3. When the DM extends an offer, the candidate accepts with a known probability p ∈

(0, 1], in which case the process ends, or turns down the offer, in which case the DM

moves on to the next candidate. This models the users, who can click on the ad or ignore

it.

4. The process continues until either a candidate accepts an offer or the DM has no more

candidates to assess.

A DM that knows in advance that at least one of the top k candidates is willing to accept

the offer would like to maximize the probability of making an offer to one of these can-

didates. In reality, the DM does not know k; hence, the best she can do is maximize the

minimum of all these scenario-based probabilities. We call the minimum of these scenario-

based probabilities the robust ratio and our max-min objective the optimal robust ratio (see
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Subsection 4.1.2 for a formal description). Suppose that the DM implements a policy that

guarantees a robust ratio γ ∈ (0, 1]. This implies the DM will succeed with probability at

least γ in obtaining a top k candidate, in any scenario where a top k candidate is willing to

accept the DM’s offer. This is an ex-ante guarantee when the DM knows the odds for each

possible scenario, but the policy is independent of k and offers the same guarantee for any

of these scenarios. Moreover, if the DM can assign a numerical valuation to the candidates,

a policy with robust ratio γ can guarantee a factor at least γ of the optimal offline value.

[164] also studies the SP-UA and considers the objective of maximizing the probability of

selecting the best candidate willing to accept the offer. Applying his policy to value settings

can also guarantee an approximation factor of the optimal offline cost; however, the policy

with the optimal robust ratio attains the largest approximation factor of the optimal offline

value among rank-based policies (see Proposition 4.5).

Contributions (1) We propose a framework and a robust metric to understand the in-

teraction between a DM and competing candidates, when candidates can reject the DM’s

offer. (2) We state a linear program (LP) that computes the optimal robust ratio and the

best strategy. We provide a general methodology to deduce our LP, and this technique is

generalizable to other online selection problems. (3) We provide bounds for the optimal

robust ratio as a function of the probability of acceptance p ∈ (0, 1]. (4) We present a

family of policies based on simple threshold rules; in particular, for p ≥ p∗ ≈ 0.594, the

optimal strategy is a simple threshold rule that skips the first p1/(1−p) fraction of candidates

and then makes offers to the best candidate observed so far. We remark that as p → 1 we

recover the guarantees of the standard secretary problem and its optimal threshold strategy.

(5) Finally, for the setting where candidates also have non-negative numerical values, we

show that our solution is the optimal approximation among rank-based algorithms of the

optimal offline value, where the benchmark knows the top candidate willing to accept the

offer. The optimal approximation factor equals the optimal robust ratio.
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In the remainder of the section, we discuss additional applications of SP-UA, give a formal

description of the problem, and summarize our technical contributions and results.

4.1.1 Additional Applications

SP-UA captures the inherent unpredictability in online selection, as other secretary prob-

lems do, but also the uncertainty introduced by the possibility of candidates turning down

offers. Although our main motivation is online advertisement, SP-UA is broadly applica-

ble; the following are additional concrete examples.

Data-driven selection problems When selling an item in an auction, buyers’ valuations

are typically unknown beforehand. Assuming valuations follow a common distribution,

the aim is to sell the item at the highest price possible; learning information about the

distribution is crucial for this purpose. In particular auction settings, the auctioneer may

be able to sequentially observe the valuations of potential buyers, and can decide in an

online manner whether to sell the item or continue observing valuations. Specifically, the

auctioneer decides to consider the valuation of a customer with probability p and otherwise

the auctioneer moves on to see the next buyer’s valuation. The auctioneer’s actions can be

interpreted as an exploration-exploitation process, which is often found in bandit problems

and online learning [37, 97, 77]. This setting is also closely related to data-driven online

selection and the prophet inequality problem [36, 105, 107]; some of our results also apply

in these models (see Section 4.6).

Human resource management As its name suggests, the original motivation for the sec-

retary problem is in hiring for a job vacancy. Glassdoor reported in 2015 that each job

posting receives on average 250 resumes. From this pool of resumes, only a small frac-

tion of candidates are called for an interview. Screening resumes can be a time-consuming

task that shift resources away from the day-to-day job in Human Resources. Since the ad-

vent of the internet, several elements of the hiring process can be partially or completely
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automated; for example, multiple vendors offer automated resume screening [147], and

machine learning algorithms can score and rank job applicants according to different crite-

ria. Of course, a highly ranked applicant may nevertheless turn down a job offer. Although

we consider the rank of a candidate as an absolute metric of their capacities, in reality,

resume screening may suffer from different sources of bias [153], but addressing this goes

beyond our scope. See also [161, 164, 169] for classical treatments. Similar applications

include apartment hunting [32, 52, 144], among others.

4.1.2 Problem Formulation

A problem instance is given by a fixed probability p ∈ (0, 1] and the number of candi-

dates n. These are ranked by a total order, 1 ≺ 2 ≺ · · · ≺ n, with 1 being the best

or highest-ranked candidate. The candidate sequence is given by a random permutation

π = (R1, . . . , Rn) of [n]
.
= {1, 2, . . . , n}, where any permutation is equally likely. At time

t, the DM observes the partial rank rt ∈ [t] of the t-th candidate in the sequence compared

to the previous t − 1 candidates. The DM either makes an offer to the t-th candidate or

moves on to the next candidate, without being able to make an offer to the t-th candidate

ever again. If the t-th candidate receives an offer from the DM, she accepts the offer with

probability p, in which case the process ends. Otherwise, if the candidate refuses the offer

(with probability 1 − p), the DM moves on to the next candidate and repeats the process

until she has exhausted the sequence. A candidate with rank in [k] is said to be a top k

candidate. The goal is to design a policy that maximizes the probability of extending an

offer to a highly ranked candidate that will accept the DM’s offer. To measure the quality

of a policy P , we use the robust ratio

γP = γP(p) = min
k=1,...,n

P(P selects a top k candidate, candidate accepts offer)
P(At least one of the top k candidates accepts offer)

. (4.1)
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The ratio inside the minimization operator equals the probability that the policy success-

fully selects a top k candidate given that some top k candidate will accept an offer. If we

consider the game where an adversary knows in advance if any of the top k candidates will

accept the offer, the robust ratio γP captures the scenario where the DM that follows pol-

icy P has the worst performance. When p = 1, the robust ratio γP equals the probability

of selecting the highest ranked candidate, thus we recover the standard secretary problem.

The goal is to find a policy that maximizes this robust ratio, γ∗n
.
= supP γP . We say that the

policy P is γ-robust if γ ≤ γP .

4.1.3 Technical Contributions

Recent works have studied secretary models using linear programming (LP) methods [34,

38, 50, 68]. We also give an LP formulation that computes the best robust ratio and the

optimal policy for our model. Whereas these recent approaches derive an LP formulation

using ad-hoc arguments, our first contribution is to provide a general framework to obtain

LP formulations that give optimal bounds and policies for different variants of the secre-

tary problem. The framework is based on Markov decision process (MDP) theory [14,

146]. This is surprising since early literature on secretary problem used MDP techniques,

e.g. [69, 120], though typically not LP formulations. In that sense, our results connect the

early algorithms based on MDP methods with the recent literature based on LP methods.

Specifically, we provide a mechanical way to obtain an LP using a simple MDP formu-

lation (Section 4.4). Using this framework, we present a structural result that completely

characterizes the space of policies for the SP-UA:

Theorem 4.1. Any policy P for the SP-UA can be represented as a vector in the set

POL =

{
(x,y) ≥ 0 : xt,s + yt,s =

1

t

t−1∑
σ=1

(yt−1,σ + (1− p)xt−1,σ) , ∀t > 1, s ∈ [t], x1,1 + y1,1 = 1

}
.

Conversely, any vector (x,y) ∈ POL represents a policy P . The policy P makes an
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offer to the first candidate with probability x1,1 and to the t-th candidate with probability

txt,s/
(∑t−1

σ=1 yt−1,σ + (1− p)xt−1,σ

)
if the t-th candidate has partial rank rt = s.

The variables xt,s represent the probability of reaching candidate t and making an offer to

that candidate when that candidate has partial rank s ∈ [t]. Likewise, the variables yt,s

represent the probability of reaching candidate t and moving on to the next candidate when

the t-th candidate’s partial rank is s ∈ [t]. We note that although the use of LP formu-

lations in MDP is a somewhat standard technique, see e.g. [146], the recent literature in

secretary problems and related online selection models does not appear to make an explicit

connection between LP’s used in analysis and the underlying MDP formulation.

Problems solved via MDP can typically be formulated as reward models, where each ac-

tion taken by the DM generates some immediate reward. Objectives in classical secretary

problems fit in this framework, as the reward (e.g. the probability of selecting the top can-

didate) depends only on the current state (the number t of observed candidates so far and

the current candidate’s partial rank rt = s), and on the DM’s action (make an offer or not);

see Section 4.4.1 for an example. Our robust objective, however, cannot be easily written

as a reward depending only on rt = s. Thus, we split the analysis into two stages. In the

first stage, we deal with the space of policies and formulate an MDP for our model with a

generic utility function. The feasible region of this MDP’s LP formulation corresponds to

POL and is independent of the utility function chosen; therefore, it characterizes all possi-

ble policies for the SP-UA. In the second stage, we use the structural result in Theorem 4.1

to obtain a linear program that finds the largest robust ratio.

Theorem 4.2. The best robust ratio γ∗n for the SP-UA equals the optimal value of the linear

program

153



(LP )n,p

max
x≥0

γ

s.t.

xt,s ≤
1

t

(
1− p

t−1∑
τ=1

τ∑
σ=1

xτ,σ

)
∀t ∈ [n], s ∈ [t]

γ ≤ p

1− (1− p)k
n∑
t=1

t∑
s=1

xt,sP(Rt ≤ k | rt = s) ∀k ∈ [n],

where P(Rt ≤ k | rt = s) =
∑k∧(n−t+s)

i=s

(
i−1
s−1

)(
n−i
t−s

)
/
(
n
t

)
is the probability the t-th candi-

date is ranked in the top k given that her partial rank is s.

Moreover, given an optimal solution (x∗, γ∗n) of (LP )n,p, the (randomized) policy P∗ that

at state (t, s) makes an offer with probability tx∗t,s/
(
1− p∑t−1

τ=1

∑τ
σ=1 x

∗
τ,σ

)
is γ∗n-robust.

We show that γP can be written as the minimum of n linear functions on the x variables

in POL, where these variables correspond to a policy’s probability of making an offer in

a given state. Thus our problem can be written as the maximum of a concave piecewise

linear function over POL, which we linearize with the variable γ. By projecting the feasible

region onto the (x, γ) variables we obtain (LP )n,p.

As a byproduct of our analysis via MDP, we show that γ∗n is non-increasing in n for fixed

p ∈ (0, 1] (Lemma 4.7), and thus limn→∞ γ
∗
n = γ∗∞ exists. We show that this limit corre-

sponds to the optimal value of an infinite version of (LP )n,p from Theorem 4.2, where n

tends to infinity and we replace sums at time t with integrals (see Section 4.5). This allows

us to show upper and lower bounds for γ∗n by analyzing γ∗∞. Our first result in this vein

gives upper bounds on γ∗∞.

Theorem 4.3. For any p ∈ (0, 1], γ∗∞(p) ≤ min
{
pp/(1−p), 1/β

}
, where 1/β ≈ 0.745 and

β is the (unique) solution of the equation
∫ 1

0
(y(1− log y) + β − 1)−1dy = 1.
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To show γ∗∞ ≤ pp/(1−p), we relax all constraints in the robust ratio except k = 1. This be-

comes the problem of maximizing the probability of hiring the top candidate, which has a

known asymptotic solution of p1/(1−p) [161]. For γ∗∞(p) ≤ 1/β, we show that any γ-robust

ordinal algorithm can be used to construct an algorithm for i.i.d. prophet inequality prob-

lems with a multiplicative loss of (1 + o(1))γ and an additional o(1) additive error. Using

a slight modification of the impossibility result by [98] for the i.i.d. prophet inequality, we

conclude that γ∗∞ cannot be larger than 1/β.

By constructing solutions of the infinite LP, we can provide lower bounds for γ∗n. For

1/k ≥ p > 1/(k+1) with integer k, the policy that skips the first 1/e fraction of candidates

and then makes an offer to any top k candidate afterwards obtains a robust ratio of at least

1/e. The following result gives improved bounds for γ∗∞(p).

Theorem 4.4. Let p∗ ≈ 0.594 be the solution of p(2−p)/(1−p) = (1−p)2. There is a solution

of the infinite LP for p ≥ p∗ that guarantees γ∗n ≥ γ∗∞(p) = pp/(1−p). For p ≤ p∗ we have

γ∗∞(p) ≥ (p∗)p
∗/(1−p∗) ≈ 0.466.

To prove this result, we use the following general procedure to construct feasible solutions

for the infinite LP. For any numbers 0 < t1 ≤ t2 ≤ · · · ≤ tk ≤ · · · ≤ 1, there is a

policy that makes offers to any candidate with partial rank rt ∈ [k] when a fraction tk of

the total number of candidates has been observed (Proposition 4.9). For p ≥ p∗, the policy

corresponding to t1 = p1/(1−p) and t2 = t3 = · · · = 1 has a robust ratio of at least pp/(1−p).

For p ≤ p∗, we show how to transform the solution for p∗ into a solution for p with an

objective value at least as good as the value γ∗∞(p∗) = (p∗)p
∗/(1−p∗).

Figure 4.1 depicts the various theoretical bounds we obtain. For reference, we also include

numerical results for γ∗n computed by solving (LP )n,p in Theorem 4.2 for n = 200 and with

p ranging from p = 10−2 to p = 1, with increments of 10−3. Since γ∗n is nonincreasing in

n, the numerical values obtained by solving (LP )n,p also provide an upper bound over γ∗∞.
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Figure 4.1: Bounds for γ∗∞ as a function of p. The solid line represents the theoretical
upper bound given in Theorem 4.3. The dashed-dotted line corresponds to the theoretical
lower bound given in Theorem 4.4. In dashed line we present numerical results by solving
(LP )n,p for n = 200 candidates.

We follow this introduction with a brief literature review. In Section 4.3 we present pre-

liminaries, including MDP notation and an alternative characterization of the robust ratio

in terms of utility functions. In Section 4.4 we present the MDP framework and use it to

prove Theorems 4.1 and 4.2. In Section 4.5 we introduce the infinite relaxation of (LP),

then prove Theorem 4.3 in Section 4.6. In Section 4.7 we prove Theorem 4.4. In Section 4.8

we present a numerical comparison between the policies obtained by solving (LP )n,p and

other benchmarks policies. We conclude in Section 4.9, and an appendix includes proofs

and analysis omitted from the main body of the chapter.

4.2 Related Work

Online advertising and online selection Online advertising has been extensively stud-

ied from the viewpoint of two-sided markets: advertisers and platform. There is extensive

work in auction mechanisms to select ads (e.g. second-price auctions, the VCG mecha-

nism, etc.), and the payment systems between platforms and advertisers (pay-per-click,

pay-for-impression, etc.) [65, 70, 78]; see also [41] for a review. On the other hand, works

relating the platform, advertisers, and web users have been studied mainly from a learning
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perspective, to improve ad targeting [65, 71, 97]. In this work, we also aim to display an

ad to a potentially interested user. Multiple online selection problems have been proposed

to display ads in online platforms, e.g., packing models [18, 114], secretary problems and

auctions [19], prophet models [11] and online models with ”buyback“ [17]. In our setting,

we add the possibility that a user ignores the ad; see e.g. [40, 67]. Failure to click on ads

has been considered in full-information models [87]; however, our setting considers only

partial information, where the rank of an incoming customer can only be assessed relative

to previously observed customers—a typical occurrence in many online applications. Our

model is also disaggregated and looks at each ad individually. Our goal is to understand

the right time to display an ad/make offers via the SP-UA and the robust ratio for each

individual ad.

Online algorithms and arrival models Online algorithms have been extensively stud-

ied for adversarial arrivals [29]. This worst-case viewpoint gives robust algorithms against

any input sequence, which tend to be conservative. Conversely, some models assume dis-

tributional information about the inputs [107, 113, 121]. The random order model lies in

between these two viewpoints, and perhaps the most studied example is the secretary prob-

lem [69, 83, 120]. Random order models have also been applied in Adword problems [64],

online LP’s [10] and online knapsacks [18, 108], among others.

Secretary problems Martin Gadner popularized the secretary problem in his 1960 Math-

ematical Games column; for a historical review, see [74] and also the classical survey by

[75]. For the classical secretary problem, the optimal strategy that observes the first n/e

candidates and thereafter selects the best candidate was computed by [120, 83]. The model

has been extensively studied in ordinal/ranked-based settings [120, 92, 168, 34] as well as

cardinal/value-based settings [23, 110].

A large body of work has been dedicated to augment the secretary problem. Variations

157



include cardinality constraints [34, 168, 110], knapsack constraints [18], and matroid con-

straints [162, 72, 115]. Model variants also incorporate different arrival processes, such as

Markov chains [100] and more general processes [68]. Closer to our problem are the data-

driven variations of the model [50, 51, 105], where samples from the arriving candidates

are provided to the decision maker. Our model can be interpreted as an online version of

sampling, where a candidate rejecting the decision maker’s offer is tantamount to a sample.

This also bears similarity to the exploration-exploitation paradigm often found in online

learning and bandit problems [37, 97, 77].

Uncertain availability in secretary problems The SP-UA is studied by [161] with the

goal of selecting the top candidate — k = 1 in (4.1) — who gives an asymptotic probability

of success of p1/(1−p). If the top candidate rejects the offer, this leads to zero value, which

is perhaps excessively pessimistic in scenarios where other competent candidates could

accept. [164] considers maximizing the probability of selecting the top candidate among

the candidates that will accept the offer. Although more realistic, this objective still gives

zero value when the top candidate that accepts is missed because she arrives early in the

sequence. In our approach, we make offers to candidates even if we have already missed

the top candidate that accepts the offer; this is also appealing in utility/value-based settings

(see Proposition 4.5). We also further the understanding of the model and our objective by

presenting closed-form solutions and bounds. See also [32, 144, 52].

Linear programs in secretary problems Early work in secretary problems mostly used

MDPs [120, 161, 164]. Linear programming formulations were introduced by [34], and

from there multiple formulations have been used to solve variants of the secretary problem

[38, 50, 68]. We use MDP to derive the polyhedron that encodes policies for the SP-UA.

The connection between linear programs and MDP has been explored in other online se-

lection and allocation problems, such as network revenue management [9], knapsack and

prophet problems [102], more general MDP models [56, 127, 146] and particularly in con-
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strained MDP’s [14, 94, 95]. To the best of our knowledge, these connections have not

been explored for secretary problems.

4.3 Preliminaries

To discuss our model, we use standard MDP notation for secretary problems [69, 75, 120].

An instance is characterized by the number of candidates n and the probability p ∈ (0, 1]

that an offer is accepted. For t ∈ [n] and s ∈ [t], a state of the system is a pair (t, s)

indicating that the candidate currently being evaluated is the t-th and the corresponding

partial rank is rt = s. To simplify notation, we add the states (n+1, s), s ∈ [n+1], and the

state Θ as absorbing states where no decisions can be made. For t < n, transitions from a

state (t, s) to a state (t+1, σ) are determined by the random permutation π = (R1, . . . , Rn).

We denote by St ∈ {(t, s)}s∈[t] the random variable indicating the state in the t-th stage. A

simple calculation shows

P(St+1 = (t+1, σ) | St = (t, s)) = P(rt+1 = σ | rt = s) = P(St+1 = (t+1, σ)) = 1/(t+1),

for t < n, s ∈ [t] and σ ∈ [t + 1]. In other words, partial ranks at each stage are inde-

pendent. For notational convenience, we assume the equality also holds for t = n. Let

A = {offer,pass} be the set of actions. For t ∈ [n], given a state (t, s) and an action

At = a ∈ A, the system transitions to a state St+1 with the following probabilities :

P((t,s),a),(τ,σ) = P(St+1 = (τ, σ) | St = (t, s), At = a) =



1−p
t+1

a = offer, τ = t+ 1, σ ∈ [τ ]

p a = offer, (τ, σ) = Θ

1
t+1

a = pass.

The randomness is over the permutation π and the random outcome of the t-th candidate’s

decision. We utilize states (n + 1, σ) as end states and the state Θ as the state indicating
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that an offer is accepted from the state St. A policy P : {(t, s) : t ∈ [n], s ∈ [t]} → A is a

function that observes a state (t, s) and decides to extend an offer (P(t, s) = offer) or move

to the next candidate (P(t, s) = pass). The policy specifies the actions of a decision maker

at any point in time. The initial state is S1 = (1, 1) and the computation (of a policy) is

a sequence of state and actions (1, 1), a1, (2, s2), a2, (3, s3), . . . where the states transitions

according to P((t,s),a),(t+1,σ) and at = P(t, st). Note that the computation always ends in a

state (n+ 1, σ) for some σ or the state Θ, either because the policy was able to go through

all candidates or because some candidate t accepted an offer.

We say that a policy reaches stage t or reaches the t-th stage if the computation of a policy

contains a state st = (t, s) for some s ∈ [t]. We also refer to stages as times.

A randomized policy is a function P : {(t, s) : t ∈ [n], s ∈ [t]} → ∆A where ∆A =

{(q, 1 − q) : q ∈ [0, 1]} is the probability simplex over A = {offer,pass} and P(st) =

(qt, 1 − qt) means that P selects the offer action with probability qt and otherwise selects

pass.

We could also define policies that remember previously visited states and at state (t, st)

make decisions based on the history, (1, s1), . . . , (t, st). However, MDP theory guarantees

that it suffices to consider Markovian policies, which make decisions based only on (t, st);

see [146].

We say that a policy P collects a candidate with rank k if the policy extends an offer to a

candidate that has rank k and the candidate accepts the offer. Thus our objective is to find

a policy that solves

γ∗n = max
P

min
k∈[n]

P(P collects a candidate with rank ≤ k)

1− (1− p)k

= max
P

min
k∈[n]

P(P collects a top k candidate | a top k candidate accepts).
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The following result is an alternative characterization of γ∗n based on utility functions. We

use this result to relate SP-UA to the i.i.d. prophet inequality problem; the proof appears

in Appendix 4.A.1. Consider a nonzero utility function U : [n] → R+ with U1 ≥ U2 ≥

· · · ≥ Un ≥ 0, and any rank0based algorithm ALG for the SP-UA, i.e., ALG only makes

decisions based on the relative ranking of the values observed. In the value setting, if ALG

collects a candidate with overall rank i, it obtains value Ui. We denote by U(ALG) the

value collected by such an algorithm.

Proposition 4.5. Let ALG be a γ-robust algorithm for SP-UA. For any U : [n] → R+

we have E[U(ALG)] ≥ γE[U(OPT)] where OPT is the maximum value obtained from

candidates that accept. Moreover,

γ∗n = max
ALG

min

{
E [U(ALG)]

E [U(OPT)]
: U : [n]→ R+, U 6= 0, U1 ≥ U2 ≥ · · · ≥ Un ≥ 0

}
.

4.4 The LP Formulation

In this section, we present the proofs of Theorems 4.1 and 4.2. Our framework is based

on MDP and can be used to derive similar LPs in the literature, e.g. [34, 38, 50]. As a

byproduct, we also show that γ∗n is a nonincreasing sequence in n (Lemma 4.7). For ease

of explanation, we first present the framework for the classical secretary problem, then we

sketch the approach for our model. Technical details are deferred to the appendix.

4.4.1 Warm-up: MDP to LP in the Classical Secretary Problem

We next show how to derive an LP for the classical secretary problem [34] using an MDP

framework. In this model, the goal is to maximize the probability of choosing the top

candidate, and there is no offer uncertainty.

Theorem 4.6 ([34]). The maximum probability of choosing the top-ranked candidate in the
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classical secretary problem is given by

max

{
n∑
t=1

t

n
xt : xt ≤

1

t

(
1−

t−1∑
τ=1

xτ

)
,∀t ∈ [n],x ≥ 0

}
.

We show this as follows:

1. First, we formulate the secretary problem as a Markov decision process, where we aim

to find the highest ranked candidate. Let v∗(t,s) be the maximum probability of selecting

the highest ranked candidate in t + 1, . . . , n given that the current state is (t, s). We

define v∗(n+1,s) = 0 for any s. The value v∗ is called the value function and it can be

computed via the optimality equations [146]

v∗(t,s) = max

{
P(Rt = 1 | rt = s),

1

t+ 1

t∑
σ=1

v∗(t+1,σ)

}
. (4.2)

The first term in the max operator corresponds to the expected value when the offer

action is chosen in state (t, s). The second corresponds to the expected value in stage

t + 1 when we decide to pass in (t, s). Note that P(Rt = 1 | rt = s) = t/n if

s = 1 and P(Rt = 1 | rt = s) = 0 otherwise. The optimality equations (4.2) can be

solved via backwards recursion, and v∗(1,1) ≈ 1/e (for large n). An optimal policy can be

obtained from the optimality equations by choosing at each state an action that attains

the maximum, breaking ties arbitrarily.

2. Using a standard argument [127], it follows that v∗ = (v∗(t,s))t,s is an optimal solution of

the linear program (D) in Figure 4.2.

3. Taking the dual of (D), we obtain (P ) in Figure 4.2. Variables xt,s are associated with

constraints (4.3), yt,s with constraints (4.4). Take any solution (x,y) of the problem

(P ) and note that the objective does not depend on y. Incrementing y to tighten all

constraints does not alter the feasibility of the solution and the objective does not change;
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(D) min
v≥0

v(1,1) (P ) max
x,y≥0

n∑
t=1

t

n
xt,1

s.t.
v(t,s) ≥ P(Rt = 1 | rt = s) ∀t ≤ n,∀s

(4.3)

v(t,s) ≥
1

1 + t

t+1∑
σ=1

v(t+1,σ) ∀t, s

(4.4)

s.t.
x1,1 + y1,1 ≤ 1 (4.5)

xt,s + yt,s ≤
1

t

t−1∑
σ=1

yt−1,σ ∀t, s (4.6)

Figure 4.2: Linear program that finds value function v∗ and its dual.

thus we can assume that all constraints are tight in (P ). Here, xt,s is the probability that

a policy (determined by x,y) reaches the state (t, s) and makes an offer, while yt,s is the

probability that the same policy reaches state (t, s) but decides to pass.

4. Finally, projecting the feasible region of (P ) onto the variables (xt,1)t∈[n], e.g. via

Fourier-Motzkin elimination (see [154] for a definition), gives us Theorem 4.6. We

skip this for brevity.

The same framework can be applied to obtain the linear program for the secretary problem

with rehire [34] and the formulation for the (J,K)-secretary problem [34, 38]. It can also

be used to derive an alternative proof of the result by [161].

4.4.2 Framework for the SP-UA

Next, we sketch the proof of Theorem 4.1 and use it to derive Theorem 4.2. Technical

details are deferred to the appendix.

In the classical secretary problem, the objective is to maximize the probability of choosing

the top candidate, which we can write in the recursion of the value function v∗. For our

model, the objective γP corresponds to a multi-objective criteria, and it is not clear a priori

how to write the objective as a reward. We present a two-step approach: (1) First, we follow

the previous subsection’s argument to uncover the polyhedron of policies; (2) second, we

show that our objective function can be written in terms of variables in this polyhedron,
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and we maximize this objective in the polyhedron.

The Polyhedron of Policies via a Generic Utility Function

When we obtained the dual LP (P ) (Figure 4.2), anything related to the objective of the

MDP is moved to the objective value of the LP, while anything related to the actions of the

MDP remained in constraints (4.5)-(4.6). This suggests using a generic utility function to

uncover the space of policies. Consider any vector U : [n] → R+, and suppose that our

objective is to maximize the utility collected, where choosing a candidate of rank i means

obtaining Ui ≥ 0 value. Let v∗(t,s) be the maximum value collected in times t, t + 1, . . . , n

given that the current state is (t, s), where v∗(n+1,s) = 0. Then, the optimality equations

yield

v∗(t,s) = max

{
pUt(s) + (1− p) 1

t+ 1

t+1∑
σ=1

v∗(t+1,σ),
1

t+ 1

t+1∑
σ=1

v∗(t+1,σ)

}
, (4.7)

where Ut(s) =
∑n

i=1 UiP(Rt = i | rt = s). The term in the left side of the max operator

is the expected value obtained by an offer action, while the term in the right corresponds to

the expected value of the pass action. Using an approach similar to the one used in steps 2

and 3 from the previous subsection, we can deduce that

POL =

{
(x,y) ≥ 0 : x1,1 + y1,1 = 1, xt,s + yt,s =

1

t

t−1∑
σ=1

(yt−1,σ + (1− p)xt−1,σ) ,∀t > 1, s ∈ [t]

}

contains all policies (Theorem 4.1). A formal proof is presented in the appendix.

The Linear Program

Next, we consider Theorem 4.2. Given a policy P , we define xt,s to be the probability of

reaching state (t, s) and making an offer to the candidate, and yt,s to be the probability of
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reaching (t, s) and passing. Then (x,y) belongs to POL. Moreover,

P(P collects a top k candidate) = p

n∑
t=1

t∑
s=1

xt,sP(Rt ≤ k | rt = s). (4.8)

Conversely, any point (x,y) ∈ POL defines a policy P: At state (t, s), it extends an offer to

the t-th candidate with probability x1,1 if t = 1, or probability txt,s/
(∑t−1

σ=1 yt−1,σ + (1− p)xt−1,σ

)
if t > 1. Also, P satisfies (4.8). Thus,

γ∗n = max
P

min
k∈[n]

P(P collects a top k candidate)

1− (1− p)k

= max
(x,y)∈POL

min
k∈[n]

p
∑n

t=1

∑t
s=1 xt,sP(Rt ≤ k | rt = s)

1− (1− p)k

= max

{
γ : (x,y) ∈ POL, γ ≤ p

∑n
t=1

∑t
s=1 xt,sP(Rt ≤ k | rt = s)

1− (1− p)k ,∀k ∈ [n]

}
.

(4.9)

Projecting the feasible region of (4.9) as in step 4 onto the (x, γ)-variables gives us Theo-

rem 4.2. The details appear in Appendix 4.A.2.

Our MDP framework also allows us to show the following monotonicity result.

Lemma 4.7. For a fixed p ∈ (0, 1], we have γ∗n ≥ γ∗n+1 for any n ≥ 1.

We sketch the proof of this result here and defer the details to Appendix 4.A.3. The dual of

the LP (4.9) can be reformulated as

min
u:[n]→R+∑

i ui≥1

v(1,1)

(DLP) s.t. v(t,s) ≥ max

{
Ut(s) +

1− p
t+ 1

t=1∑
σ=1

v(t+1,σ),
1

t+ 1

t=1∑
σ=1

v(t+1,σ)

}
∀t ∈ [n], s ∈ [t]

v(n+1,s) = 0 ∀s ∈ [n+ 1],

where Ut(s) = p
∑n

j=1

(∑
k≥j uk/

(
1− (1− p)k

))
P(Rt = j | rt = s). The variables
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u1, . . . , un correspond to the constraints involving γ in the LP (4.9). Note that (DLP)

is the minimum value that an MDP can attain when the utility functions are given by

Ui = p
∑

k≥i uk/
(
1− (1− p)k

)
. Taking any weighting u : [n] → R+ with

∑
i ui ≥ 1,

we extend it to û : [n + 1] → R+ by setting ûn+1 = 0. We define accordingly Ûi =

p
∑

k≥i ûk/
(
1− (1− p)k

)
, and note that Ui = Ûi for i ≤ n and Ûn+1 = 0. Using a cou-

pling argument, from any policy for utilities Û with n + 1 candidates, we can construct a

policy for utilities U , with n candidates, where both policies collect the same utility. Thus,

the utility collected by the optimal policy for U upper bounds the utility collected by an

optimal policy for Û . The conclusion follows since γ∗n+1 is a lower bound for the latter

value.

Since γ∗n ∈ [0, 1] and (γ∗n)n is a monotone sequence in n, limn→∞ γ
∗
n must exist. In the next

section we show that the limit corresponds to the value of a continuous LP.

4.5 The Continuous LP

In this section we introduce the continuous linear program (CLP ), and we show that its

value γ∗∞ corresponds to the limit of γ∗n when n tends to infinity. We also state Proposi-

tion 4.9, which allows us to construct feasible solutions of (CLP ) using any set of times

0 < t1 ≤ t2 ≤ · · · ≤ 1. In the remainder of the section, finite model refers to the SP-UA

with n <∞ candidates, while the infinite model refers to SP-UA when n→∞.

We assume p ∈ (0, 1] fixed. The continuous LP (CLP ) is an infinite linear program with

variables given by a function α : [0, 1] ×N → [0, 1] and a scalar γ ≥ 0. Intuitively, if in

the finite model we interpret xt,s as weights and the sums of xt,s over t as Riemann sums,

then the limit of the finite model, the infinite model, should have a robust ratio computed

by the continuous LP (CLP ):

166



(CLP )p

sup
α:[0,1]×N→[0,1]

γ≥0

γ

s.t.
tα(t, s) ≤ 1− p

∫ t

0

∑
σ≥1

α(τ, σ) dτ ∀t ∈ [0, 1], s ≥ 1

(4.10)

γ ≤
p
∫ 1

0

∑
s≥1 α(t, s)

∑k
`=s

(
`−1
s−1

)
ts(1− t)`−s dt

(1− (1− p)k) ∀k ≥ 1

(4.11)

We denote by γ∗∞ = γ∗∞(p) the objective value of (CLP )p. The following result formalizes

the fact that the value of the continuous LP (CLP )p is in fact the robust ratio of the infinite

model. The proof is similar to other continuous approximations [38]; a small caveat in the

proof is the restriction of the finite LP to the top (log n)/p candidates, as they carry most

of the weight in the objective function. The proof is deferred to Appendix 4.A.4.

Lemma 4.8. Let γ∗n be the optimal robust ratio for n candidates and let γ∗∞ be the value of

the continuous LP (CLP )p. Then |γ∗n − γ∗∞| ≤ O ((log n)2/(p
√
n)).

The following proposition gives a recipe to find feasible solutions for (CLP )p. We use it

to construct lower bounds in the following sections.

Proposition 4.9. Consider 0 ≤ t1 ≤ t2 ≤ · · · ≤ 1 and consider the function α : [0, 1] ×

N→ [0, 1] defined such that for t ∈ [ti, ti+1)

α(t, s) =


Ti/t

i·p+1 s ≤ i

0 s > i,

where Ti = (t1 · · · ti)p. Then α satisfies Constraint (4.10).
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Proof. We verify that inequality (4.10) holds. We define t0 = 0 and T0 = 0. For t ∈

[ti, ti+1) we have

1− p
∫ t

0

∑
σ≥1

α(τ, σ) dτ = 1− p
(
j−1∑
j=0

∫ tj+1

tj

j
Tj
τ jp+1

dτ

)
− p

∫ t

ti

i
Ti

τ jp+1
dτ

= 1− p
i−1∑
j=0

j · Tj ·
1

−pj
(
t−jpj+1 − t−jpj

)
− pi · Ti ·

1

−ip
(
t−ip − tipi

)
= 1 +

i−1∑
j=0

Tj
(
t−jpj+1 − t−jpj

)
+ Ti

(
t−ip − tipi

)
= 1 +

(
i−1∑
j=0

Tj+1t
−(j+1)p
j+1 − Tjt−jpj

)
+ Ti

(
t−ip − t−ipi

)
(Since Tj+1t

−jp
j+1 = Tj+1t

−(j+1)p
j+1 )

= 1 + Tit
−ip
i − T0t

−p
0 + Ti

(
t−ip − t−ipi

)
= Tit

−ip ≥ tα(t, s)

for any s ≥ 1. This concludes the proof.

We use this result to show lower bounds for γ∗∞. For instance, if 1/k ≥ p > 1/(k + 1) for

some integer k, and we set t1 = 1/e and t2 = t3 = · · · = 1, we can show that γ∗∞(p) is

at least 1/e. Thus, in combination with Lemma 4.7, we have that γ∗n(p) ≥ 1/e for any n

and p > 0; we skip this analysis for brevity. In Section 4.7, we use Proposition 4.9 to show

exact solutions of γ∗∞ for large p.

4.6 Upper Bounds for the Continuous LP

We now consider upper bounds for (CLP ) and prove Theorem 4.3, which states that

γ∗∞(p) ≤ min
{
pp/(1−p), 1/β

}
, for any p ∈ (0, 1], where 1/β ≈ 0.745 and β is the unique

solution of
∫ 1

0
(y(1− log y) + β − 1)−1dy = 1 [107].

We show that γ∗∞ is bounded by each term in the minimum operator. For the first bound,
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we have

γ∗n = max
P

min
k∈[n]

P(P collects a top k candidate)

1− (1− p)k

≤ max
P

P(P collects the top candidate)

p
.

The probability of collecting the highest candidate in SP-UA is shown by [161] to be

p1/(1−p) + o(1), where o(1)→ 0 as n→∞. Thus, by Lemma 4.7, we have

γ∗∞(p) ≤ γ∗n(p) ≤ pp/(1−p) + o(1)/p.

Taking the limit n→∞, we conclude γ∗∞(p) ≤ pp/(1−p).

For the second bound, we use the following technical result; its proof is deferred to Ap-

pendix 4.A.5, but we give a short explanation here. A γ-robust algorithmA for the SP-UA,

in expectation, has pn candidates to choose from and (1 − p)n candidates from which the

algorithm can learn about candidate quality. We give an algorithm A′ that solves the i.i.d.

prophet inequality for any m ≈ pn i.i.d. random variables X1, . . . , Xm, for m large. The

algorithm A′ runs a utility version of A in n values sampled from the distribution X1 (see

the discussion before Proposition 4.5), guaranteeing at least a factor γ of the maximum of

m ≈ pn of these samples, which is the value of the prophet. A′ is the capped utility version

of A, where no more than m ≈ pn offers can be made. Using concentration bounds, we

show that the loss of these restrictions is minimal. [105] uses a similar argument, with the

difference that their sampling is a fixed fraction of the input and is done in advance, while

in our case the sampling is online and might deviate from the expectation, implying the

need for concentration bounds.

Lemma 4.10. Fix p ∈ (0, 1) and consider any algorithm A that is γ-robust for the SP-UA

for any n. Then there is an algorithm A′ for the i.i.d. prophet inequality problem that for
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any ε, δ > 0 satisfying

(1 + ε)p < 1, n ≥ 2

pε2
log

(
2

δ

)
, m = b(1 + ε)pnc,

ensures

E [Val(A′)] + δ ≥ γ(1− 4ε− δ)E
[
max
i≤m

Xi

]
,

for anyX1, . . . , Xm sequence of i.i.d. random variables with support in [0, 1], where Val(A′)

is the profit obtained byA′ from the sequence of valuesX1, . . . , Xm in the prophet problem.

A combination of results by [98] and [107] shows that for any m and for ε′ > 0 small

enough, there is an i.i.d. instance X1, . . . , Xm with support in [0, 1] such that

E

[
max
i≤m

Xi

]
≥ (am − ε′) sup {E[Xτ ] : τ ∈ Tm} ,

where Tm is the class of stopping times for X1, . . . , Xm, and am → β. Thus, using

Lemma 4.10, for any γ such that a γ-robust algorithm A exists for the SP-UA, we must

have

γ(1− 4ε− δ) ≤ 1

am − ε′
+

δ

E [maxi≤mXi]

for m = b(1 + ε)pnc; here we set δ = 2e−pn
2/2. A slight reformulation of [98]’s result

allows us to set ε′ = 1/m3 and E[maxi≤mXi] ≥ 1/m3 (see the discussion at the end of

Appendix 4.A.5). Thus, as n→∞ we have m→∞ and so δ/E[maxi≤mXi]→ 0. In the

limit we obtain γ(1 − 4ε) ≤ 1/β for any ε > 0 such that (1 + ε)p < 1. From here, the

upper bound γ ≤ 1/β follows.

An algorithm that solves (LP )n,p and implements the policy given by the solution is γ∗∞-

robust (Theorem 4.2 and the fact that γ∗n ≥ γ∗∞) for any n. Thus, by the previous analysis

and Lemma 4.7, we obtain γ∗∞ ≤ 1/β.
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4.7 Lower Bounds for the Continuous LP

In this section we consider lower bounds for (CLP ) and prove Theorem 4.4. We first give

optimal solutions for large values of p. For p ≥ p∗ ≈ 0.594, the optimal value of (CLP )p

is γ∗∞(p) = pp/(1−p). We then show that for p ≤ p∗, γ∗∞(p) ≥ (p∗)p
∗/(1−p∗) ≈ 0.466.

4.7.1 Exact Solution for Large p

We now show that for p ≥ p∗, γ∗∞(p) = pp/(1−p), where p∗ ≈ 0.594 is the solution of

(1−p)2 = p(2−p)/(1−p). Thanks to the upper bound γ∗∞(p) ≤ pp/(1−p) for any p ∈ (0, 1], it is

enough to exhibit feasible solutions (α, γ) of the continuous LP (CLP )p with γ ≥ pp/(1−p).

Let t1 = p1/(1−p), t2 = t3 = · · · = 1, and consider the function α defined by t1, t2, . . .

in Proposition 4.9. That is, for t ∈ [0, p1/(1−p)), α(t, s) = 0 for any s ≥ 1 and for t ∈

[p1/(1−p), 1] we have

α(t, s) =


pp/(1−p)/t1+p s = 1

0 s > 1.

Let γ .
= infk≥1 p

(
1− (1− p)k

)−1 ∫ 1

p1/(1−p)
pp/(1−p)

t1+p

∑k
`=1 t(1 − t)`−1dt. Then (α, γ) is fea-

sible for the continuous LP (CLP )p, and we aim to show that γ ≥ pp/(1−p) when p ≥ p∗.

The result follows by the following lemma.

Lemma 4.11. For any p ≥ p∗ and any ` ≥ 0,
∫ 1

p1/(1−p) (1− t)`t−p dt ≥ (1− p)`.
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We defer the proof of this lemma to Appendix 4.A.6. Now, we have

γ = inf
k≥1

p

1− (1− p)k
∫ 1

p1/1−p

pp/(1−p)

t1+p

k∑
`=1

t(1− t)`−1dt

= pp/(1−p) inf
k≥1

∑k
`=1

∫ 1

p1/(1−p) t
−p(1− t)`−1 dt∑k

`=1(1− p)`−1

≥ pp/(1−p) inf
k≥1

inf
`∈[k]

∫ 1

0

1

tp
(1− t)`−1

(1− p)`−1
dt ≥ pp/(1−p),

where we use the known inequality
∑m

`=1 a`/
∑m

`=1 b` ≥ min`∈[m] a`/b` for a`, b` > 0, for

any `, and the lemma. This shows that γ∗∞ ≥ pp/(1−p) for p ≥ p∗.

Remark 0. Our analysis is tight. For k = 2, constraint

p

1− (1− p)2

∫ 1

p1/(1−p)

pp/(1−p)

t1+p

k∑
`=1

t(1− t)`−1 dt ≥ pp/(1−p)

holds if and only if p ≥ p∗.

4.7.2 Lower Bound for Small p

We now argue that for p ≤ p∗, γ∗∞(p) ≥ (p∗)p
∗/(1−p∗). Let ε ∈ [0, 1) satisfy p = (1 −

ε)p∗. For the argument, we take the solution α∗ for (CLP )p∗ that we obtained in the last

subsection and we construct a feasible solution for (CLP )p with objective value at least

(p∗)p
∗/(1−p∗). For simplicity, we denote τ ∗ = (p∗)1/(1−p∗).

From the previous subsection, we know that the optimal solution α∗ of (CLP )p∗ has the

following form. For t ∈ [0, τ ∗), α∗(t, s) = 0 for any s, while for t ∈ [τ ∗, 1] we have

α∗(t, s) =


(p∗)p

∗/(1−p∗)/tp
∗+1 s = 1

0 s > 1.
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For (CLP )p, we construct a solution α as follows. Let α(t, s) = εs−1α∗(t, 1) for any

t ∈ [0, 1] and s ≥ 1; for example, α(t, 1) = α∗(t, 1). If we interpret α∗ as a policy, it only

makes offers to the highest candidate observed. By contrast, in (CLP )p the policy implied

by α makes offers to more candidates (after time τ ∗), with a probability geometrically

decreasing according to the relative ranking of the candidate.

Claim 4.12. The solution α satisfies constraints (4.10),

tα(t, s) ≤ 1− p
∫ t

0

∑
σ≥1

α(τ, σ)dτ,

for any t ∈ [0, 1], s ≥ 1.

Proof. Indeed,

1− p
∫ t

0

∑
σ≥1

α(τ, σ)dτ = 1− p∗(1− ε)
∫ t

0

∑
σ≥1

εσ−1α∗(τ, 1)dτ

= 1− p∗
∫ t

0

α∗(τ, 1)dτ (Since
∑

σ≥1 ε
σ−1 = 1/(1− ε))

= 1− p∗
∫ t

0

∑
σ≥1

α∗(τ, σ) dτ (Since α∗(τ, σ) = 0 for σ > 1)

≥ tα∗(t, 1). (By feasibility of α∗)

Since α(t, s) = εs−1α∗(t, 1) ≤ α∗(t, 1), we conclude that α satisfies (4.10) for any t and

s.

We now define γ = infk≥1 p
(
1− (1− p)k

)−1 ∫ 1

0

∑
s≥1 α(t, s)

∑k
`=s

(
`−1
s−1

)
ts(1 − t)`−sdt.

Using the claim, we know that (α, γ) is feasible for (CLP )p, and need to verify that

γ ≥ (p∗)p
∗/(1−p∗). Similar to the analysis in the previous section, the result follows by

the following claim.
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Claim 4.13. For any ` ≥ 0,
∫ 1

τ∗ (1− (1− ε)t)`t−p∗ dt ≥ (1− p)`.

Before proving the claim, we establish the bound:

γ = inf
k≥1

1∑k
`=1(1− p)`−1

∫ 1

0

k∑
s=1

εs−1α∗(s, 1)
k∑
`=s

(
`− 1

s− 1

)
ts(1− t)`−s dt

(Using definition of α)

= (p∗)p
∗/(1−p∗) inf

k≥1

1∑k
`=1(1− p)`−1

∫ 1

τ∗

1

tp∗+1

k∑
`=1

∑̀
s=1

εs−1

(
`− 1

s− 1

)
ts(1− t)`−s dt

(Using the definition of α∗ and changing order of summmation)

= (p∗)p
∗/(1−p∗) inf

k≥1

1∑k
`=1(1− p)`−1

∫ 1

τ∗

1

tp∗+1

k∑
`=1

(1− (1− ε)t)`−1 dt

(Using the binomial expansion)

= (p∗)p
∗/(1−p∗) inf

k≥1

∑k
`=1

∫ 1

τ∗ t
−p∗−1(1− (1− ε)t)`−1 dt∑k
`=1(1− p)`−1

≥ (p∗)p
∗/(1−p∗)

We again used the inequality
∑m

`=1 a`/
∑m

`=1 b` ≥ min`∈[m] a`/b` for a`, b` > 0, for any `,

and the claim.
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Proof of Claim 4.13. We have 1− (1− ε)t = (1− ε)(1− t) + ε. Therefore,

∫ 1

τ∗

1

tp∗
(1− (1− ε)t)`dt =

∫ 1

τ∗

1

tp∗
∑̀
j=0

(
`

j

)
(1− ε)`−j(1− t)`−jε`−jdt

(Binomial expansion)

=
∑̀
j=0

(
`

j

)
(1− ε)`−jεj

∫ 1

τ∗

1

tp∗
(1− t)`−j dt

≥
∑̀
j=0

(
`

j

)
(1− ε)`−jεj(1− p∗)`−j dt

(Using Lemma 4.11 for p∗)

= (ε+ (1− ε)(1− p∗))` (Using binomial expansion)

= (1− (1− ε)p∗)` = (1− p)`,

where we used p = (1− ε)p∗. From this inequality the claim follows.

4.8 Computational Experiments

In this section we aim to empirically test our policy; to do so, we focus on utility models.

Recall from Proposition 4.5 that a γ-robust policy ensures at least γ fraction of the optimal

offline utility, for any utility functions that is related to the ranking, i.e., Uj < Ui if and only

if i ≺ j. This is advantageous for practical scenarios, where a candidate’s “value” may be

unknown to the decision maker.

We evaluate the performance of two groups of solutions. The first group includes policies

that are computed without the knowledge of any utility function:

• Robust policy (Rob-Pol(n, p)), corresponds to the optimal policy obtained by solving

(LP )n,p.

• Tamaki’s policy (Tama-Pol(n, p)), that maximizes the probability of selecting success-
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fully the best candidate willing to accept an offer. To be precise, [164] studies two models

of availability: MODEL 1, where the availability of the candidate is known after an offer

has been made; and MODEL 2, where the availability of the candidate is known upon

the candidate’s arrival. MODEL 2 has higher values and it is computationally less expen-

sive to compute; we use this policy. Note that in SP-UA, the expected value obtained by

learning the availability of the candidate after making an offer is the same value obtained

in the model that learns the availability right upon arrival. Therefore, MODEL 2 is a

better model to compare our solutions than MODEL 1.

In the other group, we have policies that are computed with knowledge of the utility func-

tion.

• The expected optimal offline value (E[U(OPT(U, n, p))]), which knows the outcome of

the offers and the utility function. It can be computed via
∑n

i=1 Uip(1 − p)i−1. For

simplicity, we write OPT when the parameters are clear from the context.

• The optimal rank-based policy if the utility function is known in advance, (Util-Pol(U, n, p)),

computed by solving the optimality equation

v(t,s) = max

{
Ut(s) +

1− p
t+ 1

t+1∑
σ=1

v(t+1,σ),
1

t+ 1

t+1∑
σ=1

v(t+1,σ),

}
,

with boundary condition v(n+1,σ) = 0 for any σ. We write Util-Pol(n, p) when U is clear

from the context. We use a rank-based policy as opposed to a value-based policy for

computational efficiency.

Note that E[U(Rob-Pol)],E[U(Tama-Pol)] ≤ E[U(Util-Pol)] ≤ E[U(OPT)] and by Propo-

sition 4.5, E[U(Rob-Pol)] ≥ γ∗nE[U(A)] for any A of the aforementioned policies.

We consider the following decreasing utility functions:
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• Top k candidates are valuable (top-k). For k ∈ [n], we consider utility functions of the

form Ui = 1 + εi for i ∈ [k] and Ui = εi for i > k with ε = 1/n. Intuitively, we aim to

capture the notion of an elite set of candidates, where candidates outside the top k are not

nearly as appealing to the decision maker. For instance, renowned brands like to target

certain members of a population for their ads. We test k = 1, 2, 3, 4.

• Power law population. Ui = i−1/(1+δ) for i ≥ 1 and small δ > 0. Empirical studies have

shown that the distribution of individual performances in many areas follows a power law

or Pareto distribution [43]. If we select a random person from [n], the probability that

this individual has a performance score of at least t is proportional to t−(1+δ). We test

δ ∈ {10−2, 10−1, 2 · 10−1}.

We run experiments for n = 200 candidates and range the probability of acceptance p from

p = 10−2 to p = 9 · 10−1.

4.8.1 Results for Top-k Utility Function

In this subsection, we present the results for utility function that has largest values in the

top k candidates, where k = 1, 2, 3, 4. In Figure 4.3, we plot the ratio between the value

collected by A and E[U(OPT)], for A being Util-Pol,Rob-Pol and Tama-Pol.

Naturally, of all sequential policies, Util-Pol attains the largest approximation factor of

E[U(OPT)]. We observe empirically that Rob-Pol collects larger values than Tama-Pol

for smaller values of k. Interestingly, we observe in the four experiments that the approx-

imation factor for Rob-Pol is always better than Tama-Pol for small values of p. In other

words, robustness helps online selection problems when the probability of acceptance is

relatively low. In general, for this utility function, we observe in the experiments that

Rob-Pol collects at least 50% of the optimal offline value, except for the case k = 1. As

n increases (not shown in the figures), we observe that the approximation factors of all

three policies decrease; this is consistent with the fact that γ∗n, the optimal robust ratio, is
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Figure 4.3: Approximation factors for the top k utility function, for k = 1, 2, 3, 4.

decreasing in n.

4.8.2 Results for Power Law Utility Function

In this subsection, we present the result of our experiments for the power law utility func-

tion Ui = i−(1+δ) for δ = 10−2, 10−1 and 2 · 10−1. In Figure 4.4, we display the approxi-

mation factors of the three sequential policies.

Again, we note that Util-Pol collects the largest fraction of all sequential policies. We also

observe a similar behavior as in the case of the top-k utility function. For small values of p,

Rob-Pol empirically collects more value than Tama-Pol. As p increases, the largest valued

candidate is more willing to accept an offer; hence, [164]’s policy is able to capture that

candidate.

In general, our experiments suggests that Rob-Pol is better than Tama-Pol for smaller

values of p. This may be of interest in applications where the probability of acceptance

178



0.0 0.2 0.4 0.6 0.8 1.0

p

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
δ = 0.01

Util-Pol/OPT

Tama-Pol/OPT

Rob-Pol/OPT

0.0 0.2 0.4 0.6 0.8 1.0

p

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
δ = 0.1

Util-Pol/OPT

Tama-Pol/OPT

Rob-Pol/OPT

0.0 0.2 0.4 0.6 0.8 1.0

p

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
δ = 0.2

Util-Pol/OPT

Tama-Pol/OPT

Rob-Pol/OPT

Figure 4.4: Approximation factor for the power law utility function. The function has the
form Ui = i−(1+δ). Experiments are run for δ ∈ {10−2, 10−1, 2 · 10−1}.

is small, say 20% or less. For instance, some sources state that click-through rates (the

fraction of time that an ad is clicked on) are typically less than 1% [71]. Therefore, ad

display policies based on Rob-Pol may be more appropriate than other alternatives.

4.9 Concluding Remarks

We have studied the SP-UA, which models an online selection problem where candidates

can reject an offer. We introduced the robust ratio as a metric that tries to simultaneously

maximize the probability of successfully selecting one of the best k candidates given that

at least one of these will accept an offer, for all values of k. This objective captures the

worst-case scenario for an online policy against an offline adversary that knows in advance

which candidates will accept an offer. We also demonstrated a connection between this

robust ratio and online selection with utility functions. We presented a framework based

on MDP theory to derive a linear program that computes the optimal robust ratio and its

179



optimal policy. This framework can be generalized and used in other secretary problems

(Section 4.4.1), for instance, by augmenting the state space. Furthermore, using the MDP

framework, we were able to show that the robust ratio γ∗n is a decreasing function in n.

This enabled us to make connections between early works in secretary problems and recent

advances. To study our LP, we allow the number of candidates to go to infinity and obtain

a continuous LP. We provide bounds for this continuous LP, and optimal solutions for large

p.

We empirically observe that the robust ratio γ∗n(p) is convex and decreasing as a function of

p, and thus we expect the same behavior from γ∞(p), though this remains to be proved (see

Figure 4.1). Based on numerical values obtained by solving (LP )n,p, we conjecture that

limp→0 γ
∗
∞(p) = 1/β ≈ 0.745. This limit is also observed in a similar model [50], where a

fraction of the input is given in advance to the decision maker as a sample. In our model, if

we interpret the rejection from a candidate as a sample, then in the limit both models might

behave similarly. Numerical comparisons between our policies and benchmarks suggest

that our proposed policies perform especially well in situations where the probability of

acceptance is small, say less than 20%, as in the case of online advertisement.

A natural extension is the value-based model, where candidates reveal numerical values

instead of partial rankings. Our algorithms are rank-based and guarantee an expected value

at least a fraction γ∗n(p) of the optimal offline expected value (Proposition 4.5). Nonethe-

less, algorithms based on numerical values may attain higher expected values than the ones

guaranteed by our algorithm. In fact, a threshold algorithm based on sampling may perhaps

be enough to guarantee better values, although this this requires an instance-dependent ap-

proach. The policies we consider are instance-agnostic, can be computed once and used for

any input sequence of values. In this value-based model, we would like to consider other

arrivals processes. A popular arrival model is the adversarial arrival, where an adversary

constructs values and the arrival order in response to the DM’s algorithm. Unfortunately,
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a construction similar to the one in [128] for the online knapsack problem shows that it is

impossible to attain a finite competitive ratio in an adversarial regime.

Customers belonging to different demographic groups may have different willingness to

click on ads [39]. In this work, we considered a uniform probability of acceptance, and

our techniques do not apply directly in the case of different probabilities. In ad display,

one way to cope with different probabilities depending on customers’ demographic group

is the following. Upon observing a customer, a random variable (independent of the rank-

ing of the candidate) signals the group of the customer. The probability of acceptance of

a candidate depends on the candidate’s group. Assuming independence between the rank-

ings and the demographic group allows us to learn nothing about the global quality of the

candidates beyond what we can learn from the partial rank. Using the framework presented

in this work, with an augmented state space (time, partial rank, group type), we can write

an LP that solves this problem exactly. Nevertheless, understanding the robust ratio in this

new setting and providing a closed-form policy are still open questions.

Another interesting extension is the case of multiple selections. In practice, platforms can

display the same ad to more than one user, and some job posts require more than one

person for a position. In this setting, the robust ratio is less informative. If k is the number

of possible selections, one possible objective is to maximize the number of top k candidates

selected. We can apply the framework from this work to obtain an optimal LP. Although

there is an optimal solution, no simple closed-form strategies have been found even for

p = 1; see e.g. [34]).

4.A Appendix

4.A.1 Missing Proofs From Section 4.3

Proof of Proposition 4.5. Let ALG be a γ-robust algorithm. Fix any algorithm ALG and

any U1 ≥ · · · ≥ Un ≥ 0. Let ε > 0 and let Ûi = Ui + εi. Thus Ûi > Ûi+1 and so rank and
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utility are in one-to-one correspondence. Then

E[Û(ALG)]

E[Û(OPT)]
≥ min

x∈{Û1,...,Ûn}

P(Û(ALG) ≥ x)

P(Û(OPT) ≥ x)
= min

k≤n

P(ALG collects a top k candidate)

P(A top k candidate accepts)
≥ γ

where we used the fact that ALG is γ-robust. Notice that E[U(OPT )] ≤ E[Û(OPT )], and

also E[Û(ALG)] ≤ E[U(ALG)] + ε. Thus doing ε→ 0 we obtain

E[U(ALG)]

E[U(OPT)]
≥ γ (4.12)

for any nonzero vector U with U1 ≥ U2 ≥ · · · ≥ Un ≥ 0. This finishes the first part. For

the second part, let

γn = min
ALG

max

{
E[U(ALG)]

E[U(OPT)]
: U : [n]→ R+, U1 ≥ · · · ≥ Un

}
.

Note that the RHS of Inequality (4.12) is independent of U , thus minimizing in U in the

LHS and then maximizing in ALG on both sides we obtain γn ≥ γ∗n.

To show the reverse inequality, fix k ∈ [n] and let Û : [n]→ R+ given by Ûi = 1 for i ≤ k

and Ûi = 0 for i > k. Then,

P(ALG collects a top k candidate)

P(A top k candidate accepts)
=

E[Û(ALG)]

E[Û(OPT)]
≥ min

U :[n]→R+
U1≥···≥Un

E[U(ALG)]

E[U(OPT)]
.

This bound holds for any k, thus minimizing over k and then maximizing over ALG on

both sides, we obtain γ∗n ≥ γn, which finishes the second part.

4.A.2 Missing Proofs From Section 4.4

Here we present a detailed derivation of Theorem 4.1 and Theorem 4.2 by revisiting Sec-

tion 4.4.
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As stated in Section 4.4, we are going to proceed in two stages: (1) First, using a generic

utility function, we uncover the space of policies POL. (2) Second, we show that our

objective is a concave linear function of the variables of the space of policies that allows us

to optimize it over POL.

Stage 1: The Space of Policies

Let U : [n] → R+ be an arbitrary utility function and suppose that a DM makes decisions

based on partial rankings and her goal is to maximize the utility obtained, where she gets Ui

if she is able to collect a candidate of ranking i. Let v∗(t,s) be the optimal value obtained by

a DM in {t, t+ 1, . . . , n} if she is currently observing the t-th candidate and this candidate

has partial ranking rt = s, i.e., the current state of the system is st = (t, s). The function

v∗(t,s) is called the value function. We define v∗(n+1,σ) for any σ ∈ [n+1]. Then, by optimality

equations [146], we must have

v∗(t,s) = max

{
pUt(s) + (1− p) 1

t+ 1

t+1∑
σ=1

v∗(t+1,σ),
1

t+ 1

t+1∑
σ=1

v∗(t+1,σ)

}
(4.13)

where the first part in the max operator corresponds to the expected value obtained by

selecting the current candidate, while the second part in the operator corresponds to the

expected value collected by passing to the next candidate. Here Ut(s) =
∑n

i=1 UiP(Rt =

i | rt = s) is the expected value collected by the DM given that the current candidate has

partial ranking rt = s and accepts the offer. Although an optimal policy for this arbitrary

utility function can be computed via the optimality equations, we are more interested in all

the possible policies that can be obtained via these formulations. For this, we are going to

use linear programming. This has been used in MDP theory [146, 14] to study the space of

policies.

The following proposition shows that the solution of the optimality equations (4.13) solves

the LP (D) in Figure 4.5. We denote by v(D) the value of the LP (D).
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(D) min
v≥0

v(1,1) (P ) max
x,y≥0

n∑
t=1

t∑
s=1

Ut(s)xt,s

s.t.
v(t,s) ≥ pUt(s) +

1− p
t+ 1

t+1∑
σ=1

v(t+1,σ)

∀t ∈ [n], s ∈ [t] (4.14)

v(t,s) ≥
1

t+ 1

t+1∑
σ=1

v(t+1,σ)

∀t ∈ [n], s ∈ [t] (4.15)

s.t.
x1,1 + y1,1 ≤ 1 (4.16)

xt,s + yt,s ≤
1

t

(
t−1∑
σ=1

yt−1,σ + (1− p)xt−1,σ

)
∀t ∈ [n], s ∈ [t] (4.17)

Figure 4.5: Linear program that finds value function v∗ for SP-UA and its dual.

Proposition 4.14. Let v∗ = (v∗(t,s))t,s be a solution of (4.13), then v∗ is an optimal solution

of the problem of (D) in Figure 4.5.

Proof. Since v∗ satisfies the optimality equation (4.13) then it clearly satisfies constraints (4.14)

and (4.15). Thus, v∗ is feasible and so v∗(1,1) ≥ v(D).

To show the optimality of v∗, we show that any solution v of the LP is an upper bound

for the value function: v∗ ≤ v. To show this, we proceed by backward induction in t =

n+ 1, n, . . . , 1 and we prove that v∗(t,s) ≤ v(t,s) for any s ∈ [t].

We start with the case t = n+1. In this case v∗(n+1,s) = 0 for any s and since v(n+ 1, s) ≥ 0

for any s, then the result follows.

Suppose the result is true for t = τ + 1, . . . , n + 1 and let us show it for t = τ . Using

Constraints (4.14)-(4.15) we must have

v(τ,s) ≥ max

{
pUτ (s) + (1− p) 1

τ + 1

τ+1∑
σ=1

v(τ+1,σ),
1

τ + 1

τ+1∑
σ=1

v(τ+1,σ)

}

≥ max

{
pUτ (s) + (1− p) 1

τ + 1

τ+1∑
σ=1

v∗(τ+1,σ),
1

τ + 1

τ+1∑
σ=1

v∗(τ+1,σ)

}
(backward induction)

= v∗(τ,s)
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where the last line follows by the optimality equations (4.13). Thus, v(D) = v(1,1) ≥

v∗(1,1).

The dual of the LP (D) is depicted in Figure 4.5 and named (P). The crucial fact to notice

here is that the feasible region of (P) is oblivious of the utility function (or rewards) given

initially to the MDP. This suggest that the region

POL =

{
(x,y) ≥ 0 : x1,1 + y1,1 = 1, xt,s + yt,s =

1

t

t−1∑
σ=1

(yt−1,σ + (1− p)xt−1,σ) ,∀t ∈ [n], s ∈ [t]

}

codifies all possible policies. The following two propositions formalize this.

Proposition 4.15. For any policy P for the SP-UA, consider

xt,s = P(P reaches state (t, s), selects candidate)

and

yt,s = P(P reaches state (t, s), does not select candidate).

Then (x,y) belongs to POL.

Proof. Consider the event Dt = {t-th candidate turns down offer}. Then p = P(Dt).

Consider also the events

Ot = {P reaches t-th candidate and extends an offer}

and

Ot = {P reaches t-th candidate and does not extend offer}.
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ThenOt andOt are disjoint events andOt∪Ot equals the event of P reaching stage t. Thus

1Ot∩{St=(t,s)} + 1Ot∩{St=(t,s)} = 1{P reaches state St=(t,s)}. (4.18)

Note that xt,s = P(Ot ∩ {St = (t, s)}) and yt,s = P(Ot ∩ {St = (t, s)}). For t = 1, then

S1 = (1, 1) and {P reaches state S1 = (1, 1)} occurs with probability 1. Thus

x1,1 + y1,1 = 1.

For t > 1, by the dynamics of the system, the only way that P reaches state t is by reaching

stage t− 1 and not extending an offer to the t− 1 candidate or extending an offer but this

was turned down. Thus,

1{P reaches state St=(t,s)}

=
t−1∑
σ=1

1Ot−1∩{St−1=(t−1,σ)}∩{St=(t,s)} + 1Ot−1∩{St−1=(t−1,σ)}∩Dt−1∩{St=(t,s)} (4.19)

Note that

P(Ot−1 ∩ {St−1 = (t− 1, σ)} ∩ {St = (t, s)})

= P(Ot−1 ∩ {St−1 = (t− 1, σ)} | St = (t, s))P(St = (t, s))

= P(Ot−1 ∩ {St−1 = (t− 1, σ)})1

t

=
1

t
yt−1,σ.

Note that we use thatP’s action at stage t−1 only depends on St−1 and not what is observed
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in the future. Likewise we obtain

P(Ot−1 ∩ {St−1 = (t− 1, σ)} ∩Dt−1 ∩ {St = (t, s)})

= P(Dt−1)P(Ot−1 ∩ {St−1 = (t− 1, σ)} ∩ {St = (t, s)})

= (1− p)P(Ot−1 ∩ {St−1 = (t− 1, σ)} ∩ {St = (t, s)})

=
1− p
t

xt−1,σ.

Using the equality between (4.18) and (4.19) and taking expectation, we obtain

xt,s + yt,s =
t−1∑
σ=1

1

t
yt−1,σ +

1− p
t

xt−1,σ

which shows that (x,y) ∈ POL.

Conversely

Proposition 4.16. Let (x,y) be a point in POL. Consider the (randomized) policy P that

in state (t, s) makes an offer to the candidate t with probability x1,1 if t = 1 and

txt,s∑t−1
σ=1 yt−1,σ + (1− p)xt−1,σ

,

if t > 1. ThenP is a policy for SP-UA such that xt,s = P(P reaches state (t, s), selects candidate)

and yt,s = P(P reaches state (t, s), does not select candidate) for any t ∈ [n] and s ∈ [t].

Proof. We use the same events Ot, Ot and Dt as defined in the previous proof. Thus, we

need to show that xt,s = P(Ot ∩ {St = (t, s)}) and yt,s = P(Ot ∩ {St = (t, s)}) are the

right marginal probabilities. For this, its is enough to show that

P(Ot | St = (t, s)) = txt,s and P(Ot | St = (t, s)) = tyt,s
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for any t ∈ [n] and for any s ∈ [t]. We prove this by induction in t ∈ [n]. For t = 1, the

result is true by definition of the acceptance probability and the fact that x1,1 + y1,1 = 1.

Let us assume the result is true for t− 1 and let us show it for t. First we have

P(Ot | St = (t, s)) = P(Reach t,P(St) = offer | St = (t, s))

= P(Reach t | St = (t, s))P(P(St) = offer | St = (t, s))

= P(Reach t | St = (t, s)) · txt,s(∑t−1
σ=1 yt−1,σ + (1− p)xt−1,s

)
Now, we have

P(Reach t | St = (t, s))

= P((Ot−1 ∩Dt−1) ∪Ot−1 | St = (t, s))

= (1− p)
t−1∑
σ=1

P(Ot−1 | St−1 = (t− 1, σ), St = (t, s))P(St−1 = (t− 1, σ) | St = (t, s))

+
t−1∑
σ=1

P(Ot−1 | St−1 = (t− 1, σ), St = (t, s))P(St−1 = (t− 1, σ) | St = (t, s))

= (1− p)
t−1∑
σ=1

P(Ot−1 | St−1 = (t− 1, σ))
1

t− 1

+
t−1∑
σ=1

P(Ot−1 | St−1 = (t− 1, σ))
1

t− 1

(P only makes decisions at stage t− 1 based on St−1)

= (1− p)
t−1∑
σ=1

xt−1,σ + yt−1,σ (induction)

Note that we used

P(St−1 = (t− 1, σ) | St = (t, s)) =
P(St = (t, s) | St−1 = (t− 1, σ))P(St−1 = (t− 1, σ))

P(St = (t, s))

=
1

t− 1
.
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Thus, the induction holds for P(Ot | St = (t, s)) = txt,s. Similarly, for

P(Ot | St = (t, s)) = P(Reach t,P(St) = pass | St = (t, s))

= P(Reach t | St = (t, s))P(P(St) = pass | St = (t, s))

=

(
t−1∑
σ=1

yt−1,σ + (1− p)xt−1,σ

)(
1− txt,s(∑t−1

σ=1 yt−1,σ + (1− p)xt−1,s

))

= tyt,s

where we used the fact that (x,y) ∈ POL.

Stage 2: The robust objective

Proposition 4.17. Let P be any policy for SP-UA and let (x,y) ∈ POL be its correspond-

ing vector as in Proposition 4.15. Then, for any k ∈ [n],

P(P collects a top k candidate) =
n∑
t=1

t∑
s=1

pxt,sP(Rt ≤ k | rt = s).

Proof. We use the same events as in the proof of Proposition 4.15. Then,

P(P collects a top k candidate) =
n∑
t=1

t∑
s=1

P(Ot ∩Dt ∩ {St = (t, s)} ∩ {Rt ≤ k})

=
n∑
t=1

t∑
s=1

pxt,sP(Rt ≤ k | Ot ∩Dt ∩ {St = (t, s)})

=
n∑
t=1

t∑
s=1

pxt,sP(Rt ≤ k | rt = s)

Note that Rt only depends on St and St = (t, s) is equivalent to rt = s.

We are ready to prove of Theorem 4.2.

Theorem 4.18 (Theorem 4.2 restated). The largest robust ratio γ∗n corresponds to the op-
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timal value of the LP

(LP )n,p

max
x≥0

γ

s.t.

xt,s ≤
1

t

(
1− p

t−1∑
τ=1

τ∑
σ=1

xτ,σ

)
∀t ∈ [n], s ∈ [t]

γ ≤ p

1− (1− p)k
n∑
t=1

t∑
s=1

xt,sP(Rt ≤ k | rt = s) ∀k ∈ [n],

Moreover, given an optimal solution (x∗, γ∗n) of (LP )n,p, the (randomized) policy P∗ that

at state (t, s) makes an offer with probability tx∗t,s/
(
1− p∑t−1

τ=1

∑τ
σ=1 x

∗
τ,σ

)
is γ∗n-robust.

Proof. We have

γ∗n = max
P

min
k∈[n]

P(P collects a candidate with rank ≤ k)

1− (1− p)k

= max
(x,y)∈POL

min
k∈[n]

p
∑n

t=1

∑t
s=1 xt,sP(Rt ≤ k | rt = s)

1− (1− p)k

(Propositions 4.15, 4.16 and 4.17)

Now note that the function γ : (x,y) 7→ mink∈[n]
p
∑n
t=1

∑t
s=1 xt,sP(Rt≤k|rt=s)

1−(1−p)k is constant

in y. Thus any point (x,y) satisfying Constraints (4.16)-(4.17) has an equivalent point in

(x′,y′) ∈ POL with x′ = x, y′ ≥ y so all constraints tighten and the objective of γ is the

same for both points. Thus, γ∗n equals the optimal value of the LP (P ′):
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(P ′)

max
x≥0

γ

s.t.

x1,1 + y1,1 ≤ 1

xt,s + yt,s ≤
1

t

(
t−1∑
σ=1

yt−1,σ + (1− p)xt−1,σ

)
∀t ∈ [n], s ∈ [t]

γ ≤ p
∑n

t=1

∑t
s=1 xt,sP(Rt ≤ k | rt = s)

1− (1− p)k ∀k ∈ [n]

where we linearized the objective with the variable γ. By projecting the feasible region of

(P ′) onto the variables (x, γ) we obtain (LP )n,p. This is a routine procedure that can be

carried out using Fourier-Motzkin [154] but we skip it here for brevity.

For the second part, we can take an optimal solution (x∗, γ∗n) and its corresponding point

(x∗,y∗) ∈ POL. A routine calculation shows that 1− p∑τ<t

∑τ
σ=1 x

∗
τ,σ =

∑t−1
σ=1 y

∗
t−1,σ +

(1− p)x∗t−1,σ. Thus by Proposition 4.16 we obtain the optimal policy.

4.A.3 Missing Proofs From Section 4.4: γ∗n is Decreasing in n

Proof of Lemma 4.7. We know that γ∗n equals the value

min
u:[n]→R+∑

i ui≥1

v(1,1)

(DLP) s.t.

v(t,s) = max

{
pUt(s) +

1− p
t+ 1

t=1∑
σ=1

v(t+1,σ),
1

t+ 1

t=1∑
σ=1

v(t+1,σ)

}
∀t ∈ [n], s ∈ [t]

v(n+1,s) = 0 ∀s ∈ [n+ 1]

where Ut(s) =
∑n

i=1
uk

1−(1−p)k P(Rt ∈ [k] | rt = s) =
∑n

j=1

∑
k≥j

(
uk

1−(1−p)k

)
P(Rt =

j | rt = s). Thus the utility collected by the policy if it collects a candidate with rank

i is Ui =
∑

k≥i
uk

1−(1−p)k . Let u : [n] → [0, 1] such that
∑n

i=1 ui = 1 and extend u to

û : [n+ 1]→ [0, 1] by ûn+1 = 0 and define Ût(s) accordingly. Consider the optimal policy
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that solves the program

v̂(t,s) = max

{
pÛt(s) +

1− p
t+ 1

t+1∑
σ=1

v̂(t+1σ),
1

t+ 1

t+1∑
σ=1

v̂(t+1,σ)

}
,∀t ∈ [n+ 1], s ∈ [t]

with the boundary condition v̂(n+2,s) = 0 for all s ∈ [n + 2]. Call this policy P̂ . Note that

when policy P̂ collects a candidate with rank i, then it gets a utility of

Ûi =
∑
k≥i

ûk
1− (1− p)k =

∑
k≥i

uk
1− (1− p)k = Ui,

for i ≤ n and Ûn+1 = 0. By the choice of P̂ , the expected utility collected by P is

val(P̂) = v̂(1,1). We can obtain a policy P for n elements out of P̂ by simulating an

entry of n + 1 elements as follows. Policy P randomly selects a time t∗ ∈ [n + 1] and its

availability b: we set b = 0 (unavailable) with probability 1− p and b = 1 (available) with

probability p. Now, on a input of length n, the policy P will squeeze an item of rank n+ 1

in position t∗ and it will run the policy P̂ in this input, simulating appropriately the new

partial ranks. That is, before stage t∗ policy P behaves exactly as P̂ in the original input

of P . When the policy leaves the stage t∗ − 1 to transition to stage t∗, then the policy P

simulates the simulated candidate t∗ (with real rank n+ 1) that P̂ would have received and

does the following: ignores the candidate and moves to stage t∗ if the simulated candidate is

unavailable (b = 0) or if P̂((t∗, t∗)) = pass, while if P̂((t∗, t∗)) = offer and the simulated

candidate accepts (b = 1) then the policy P accepts any candidate from that point on.

Coupling the input of length n+ 1 for P̂ and the input of length n with the random stage t∗

for P , we can see that the utilities collected by P and P̂ coincide, i.e., U(P) =
̂̂P = v̂(1,1).

Thus the optimal utility v(1,1) collected by a policy for n candidates and utilities given by

U : [n] → R+, holds v(1,1) ≥ v̂(1,1). Since v̂(1,1) ≥ γ∗n+1, by minimizing over u we obtain

γ∗n ≥ γ∗n+1.
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4.A.4 Missing Proofs From Section 4.5

In this subsection we show that |γ∗n − γ∗∞| ≤ O((log n)2/
√
n) for fixed p (Lemma 4.8).

The proof is similar to other infinite approximation of finite models and we require some

preliminary results before showing the result. First, we introduce two relaxations, one for

(LP ) and one for (CLP ). We show that the relaxations have values close to their non-

relaxed versions. After these preliminaries have been introduced we present the proof of

Lemma 4.8.

Consider the relaxation of (LP )n,p to the top q candidate constraints:

γ∗n,q = max
x≥0

γ

(LP )n,p,q xt,s ≤
1

t

(
1− p

∑
τ<t

τ∑
s′=1

xτ,s′

)
∀t, s (4.20)

γ ≤ p

(1− (1− p)k)
n∑
t=1

t∑
s=1

xt,sP(Rt ∈ [k] | rt = s) ∀k ∈ [q]

(4.21)

Note that γ∗n ≤ γ∗n,q since (LP )n,p,q is a relaxation of (LP )n,p. The following result gives a

bound on γ∗n compared to γ∗n,q.

Proposition 4.19. For any q ∈ [n], γ∗n ≥ (1− (1− p)q) γ∗n,q.

Proof. Let (x, γ∗n,q) be an optimal solution of (LP )n,p,q. Let

fk =
p

1− (1− p)k
n∑
t=1

t∑
s=1

xt,sP(Rt ∈ [k] | rt = s).

Then γ∗n,q = mink=1,...,q fi. It is enough to show that fi ≥
(

1−(1−p)q
1−(1−p)n

)
fq for i ≥ q because

γ∗n ≥ mini=1,...,n fi ≥
(

1−(1−p)q
1−(1−p)n

)
mini=1,...,q fi ≥ (1− (1− p)q) γ∗n,q.
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For any j we have

fj+1 =
p

1− (1− p)j+1

n∑
t=1

t∑
s=1

xt,sP(Rt ∈ [j + 1] | rt = s) ≥
(

1− (1− p)j
1− (1− p)j+1

)
fj.

Thus, iterating this for j > q we get fj ≥
(

1−(1−p)q
1−(1−p)j

)
fq and we obtain the desired result.

Likewise we consider the relaxation of (CLP )p to the top q candidates:

γ∗∞,q = max
α∈[0,∞)[0,1]×N

γ≥0

γ

(CLP )p,q α(t, s) ≤ 1

t

1− p
∫ t

0

∑
σ≥1

α(τ, σ) dτ

 ∀t ∈ [0, 1], s ≥ 1

(4.22)

γ ≤ p

(1− (1− p)k)

∫ 1

0

∑
s≥1

α(t, s)

k∑
`=s

(
`− 1

s− 1

)
ts(1− t)`−s dt ∀k ∈ [q]

(4.23)

We have γ∗∞,q ≥ γ∗∞ and we have the approximate converse

Proposition 4.20. For any q ≥ 1, γ∗∞ ≥ (1− (1− p)q) γ∗∞,q.

Proof. Let (α, γ∞,q) be a feasible solution of (CLP )p,q. Let

fk =
p

1− (1− p)k
∫ 1

0

∑
s≥1

α(t, s)
k∑
`=s

(
`− 1

s− 1

)
ts(1− t)`−s dt

Assume that γ∞,q ≤ mink≤q fk. As in the previous proof, we aim to show that fi ≥
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(1− (1− p)q) fq for i ≥ q, since this will imply γ∗∞ ≥ (1− (1−p)q)γ∞,q for any (α, γ∞,q)

feasible for (CLP )p,q.

Now, for any j we have

fj+1 =
p

1− (1− p)j+1

∫ 1

0

∑
s≥1

α(t, s)

j+1∑
`=s

(
`− 1

s− 1

)
ts(1− t)`−s dt

≥ p

1− (1− p)j+1

∫ 1

0

∑
s≥1

α(t, s)

j∑
`=s

(
`− 1

s− 1

)
ts(1− t)`−s dt

=

(
1− (1− p)j

1− (1− p)j+1

)
fj.

Iterating the inequality until reaching q we deduce that for any j ≥ q we have fj ≥(
1−(1−p)q
1−(1−p)j

)
fq. From here the result follows.

Remark 0. If we set q = (log n)/p, both results imply that γ∗n ≥ (1− 1/n) γ∗n,q and

γ∗∞ ≥ (1− 1/n) γ∗∞,q. Thus we lose at most 1/n by restricting the analysis to the top q

candidates.

Proposition 4.21. There is n0 such that for n ≥ n0, for any t such that
√
n log n ≤ t ≤

n−√n log n, ` ≤ log(n)/p and ` ≥ s it holds that for any τ ∈ [t/n, (t+ 1)/n] we have

1− 10

p
√
n
≤

(
`−1
s−1

)(
n−`
t−s

)
/
(
n
t

)(
`−1
s−1

)
τ s(1− τ)`−s

≤ 1 +
10

p
√
n
.

Proof. We only need to show that

1− 10

p
√
n
≤

(
n−`
t−s

)
/
(
n
t

)
τ s(1− τ)`−s

≤ 1 +
10

p
√
n
.
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We have

(
n−`
t−s
)(

n
t

)
=

t!

(t− s)!
1

n!

(n− `)!(n− t)!
(n− t− (`− s))!

=

(
t · (t− 1) · · · (t− s+ 1)

n · (n− 1) · · · (n− s+ 1)

)(
(n− t)(n− t− 1) · · · (n− t− (`− s) + 1)

(n− s)(n− s− 1) · · · (n− s− (`− s) + 1)

)

=

(
t

n

)s(
1− t

n

)`−s
︸ ︷︷ ︸

A

 1 ·
(
1− 1

t

)
· · ·
(
1− (s−1)

t

)
1 ·
(
1− 1

n

)
· · ·
(
1− (s−1)

n

)


︸ ︷︷ ︸
B

 1 ·
(
1− 1

n−t

)
· · ·
(
1− (`−s)−1

n−t

)
(
1− s

n

)
·
(
1− (s+1)

n

)
· · ·
(
1− (s+(`−s)−1)

n

)


︸ ︷︷ ︸
C

We bound terms A,B and C separately. Since s ≤ ` and we are assuming that ` ≤

(log n)/p and t ≥ √n log n for n large, then we will implicitly use that s, ` ≤ min{t/2, n/2}.

Claim 4.22. We have

(
1− 4

(p
√
n)

)
τ s(1− τ)`−s ≤ A =

(
t

n

)s
(1− t/n)`−s ≤

(
1 +

4

(p
√
n)

)
τ s(1− τ)`−s.

Proof. For the upper bound we have

(
t

n

)s(
1− t

n

)`−s
≤ τ s

(
1− τ +

1

n

)`−s
(τ ∈ [t/n, (t+ 1)/n])

= τ s(1− τ)`−s
(

1 +
1

(1− τ)n

)`−s
≤ τ s(1− τ)`−se(`−s)/((1−τ)n)

≤ τ s(1− τ)`−se`/(n−t−1)

≤ τ s(1− τ)`−s
(

1 + 2
`

n− t− 1

)
(Using ex ≤ 1 + 2x for x ∈ [0, 1])

The upper bound now follows by using the information over ` and t and that (1 + 2`/(n− t− 1)) ≤

1 + 2(log n)p−1(
√
n log n− 1)−1 ≤ 1 + 4/(p

√
n) for n large.
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For the lower bound we have

(
t

n

)s(
1− t

n

)`−s
≥
(
τ − 1

n

)s
(1− τ)`−s

= τ s(1− τ)`−s
(

1− 1

τn

)s
≥ τ s(1− τ)`−se−

s
τn−1

≥ τ s(1− τ)`−s (1− s/(τn− 1))

Since s/(τn− 1) ≤ log(n)/(p(t− 1)) ≤ 2/(p
√
n) for n large, the lower bound follows.

Claim 4.23. 1− 2s2/t ≤ B ≤ 1 + 2s2/n

Proof. For the upper bound we upper bound the denominator

1 ·
(
1− 1

t

)
· · ·
(

1− (s−1)
t

)
1 ·
(
1− 1

n

)
· · ·
(

1− (s−1)
n

)
 ≤ 1

1 ·
(
1− 1

n

)
· · ·
(

1− (s−1)
n

)
≤ e

∑s−1
k=1 k/(n−k)

≤ es
2/n (Function x 7→ x/(n− x) is increasing)

≤ 1 + 2
s2

n

For the lower bound we lower bound the numerator:

1 ·
(
1− 1

t

)
· · ·
(

1− (s−1)
t

)
1 ·
(
1− 1

n

)
· · ·
(

1− (s−1)
n

)
 ≥ 1 ·

(
1− 1

t

)
· · ·
(

1− (s− 1)

t

)

≥ e−
∑s−1
k=1 k/(t−k)

(Using 1− k/t = (1 + k/(t− k))−1 ≥ e−k/(t−k))

≥ 1− s2

t− s ≥ 1− 2
s2

t
.
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Claim 4.24. 1− 2`2/(n− t) ≤ C ≤ 1 + 2`2/n

Proof. Similar to the previous claim, we bound denominator for an upper bound and nu-

merator for a lower bound.

 1 ·
(
1− 1

n−t

)
· · ·
(

1− (`−s)−1
n−t

)
(
1− s

n

)
·
(

1− (s+1)
n

)
· · ·
(

1− (s+(`−s)−1)
n

)
 ≤ 1(

1− s
n

)
·
(

1− (s+1)
n

)
· · ·
(

1− (s+(`−s)−1)
n

)
≤ e

∑`−s−1
k=0 (k+s)/(n−k) ≤ 1 + 2

`2

n
,

and

 1 ·
(
1− 1

n−t

)
· · ·
(

1− (`−s)−1
n−t

)
(
1− s

n

)
·
(

1− (s+1)
n

)
· · ·
(

1− (s+(`−s)−1)
n

)
 ≥ 1 ·

(
1− 1

n− t

)
· · ·
(

1− (`− s)− 1

n− t

)

≥ e−
∑`−s−1
k=0 k/(n−t−k) ≥ 1− 2

`2

n− t .

We can now upper bound ABC as

ABC ≤ τ s(1− τ)`−s
(

1 +
4

p
√
n

)(
1 + 2

s2

n

)(
1 + 2

`2

n

)
≤ τ s(1− τ)`−s

(
1 +

4

p
√
n

)(
1 + 2

(log n)2

p2n

)2

(Using t ≤ n−√n log n and s ≤ ` ≤ (log n)/p)

≤ τ s(1− τ)`−s
(

1 +
4

p
√
n

)(
1 + 6

(log n)2

p2n

)
(Using (1 + x)2 ≤ 1 + 3x if x ∈ [0, 1])

≤ τ s(1− τ)`−s
(

1 +
10

p
√
n

)
.
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Recall that we are assuming p constant and n large, thus the dominating term is 1/
√
n.

Similarly, we can lower bound ABC as

ABC ≥ τ s(1− τ)`−s
(

1− 4

p
√
n

)(
1− 2

s2

t

)(
1− 2

`2

n− t

)
≥ τ s(1− τ)`−s

(
1− 4

p
√
n

)(
1− 2

(log n)2

p2t

)(
1− 2

(log n)2

p2(n− t)

)
≥ τ s(1− τ)`−s

(
1− 4

p
√
n

)(
1− 2

(log n)

p2
√
n

)2

≥ τ s(1− τ)`−s
(

1− 10

p
√
n

)
.

Proof of Lemma 4.8. We are going to show |γ∗n − γ∗∞| ≤ O((log n)2/
√
n). Since we can

only guarantee good approximation of the binomial terms in Proposition 4.21 for ` ≤

(log n)/p, we need to restrict our analysis to γ∗n,q and γ∗∞,q for q = (log n)/p. This is enough

since these values are withing 1/n of γ∗n and γ∗∞ respectively due to Propositions 4.19

and 4.20 (see Remark 2).

Before proceeding, we give two technical results that allow us to control an error for values

of t not considered by Proposition 4.21. The deduction is a routine calculation and it is

skipped for brevity.

Claim 4.25. For any x feasible for Constraints (4.20) and such that xt,s = 0 for s > q, we

have for k ≤ q

•
∑√n logn

t=1

∑t
s=1 xt,sP(Rt ∈ [k] | rt = s) ≤ 10(log n)2/(p

√
n).

•
∑n

t=n−
√
n logn

∑t
s=1 xt,sP(Rt ∈ [k] | rt = s) ≤ 10(log n)2/(p

√
n).

Claim 4.26. For any α feasible for Constraints (4.22), we have for k ≤ q

•
∫ 1

1−(logn)/
√
n

∑k
s=1 α(τ, s)

∑k
`=s

(
`−1
s−1

)
τ s(1− τ)`−sdτ ≤ (log n)2/(p

√
n).
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•
∫ (logn)/

√
n

0

∑k
s=1 α(τ, s)

∑k
`=s

(
`−1
s−1

)
τ s(1− τ)`−sdτ ≤ (log n)2/(p

√
n).

First, we show that γ∗n,q ≥ γ∗∞− 40(log n)2/(p
√
n). Let (α, γ) be a feasible solution of the

continuous LP (CLP )p. We construct a solution of the (LP )n,p,q as follows. Define

xt,s =
t− (1− p)

t

∫ t/n

(t−1)/n

α(τ, s) dτ ∀t ∈ [n],∀s ∈ [t],

and γn,q = mink≤q
p

1−(1−p)k
∑n

t=1

∑t
s=1 xt,sP(Rt ∈ [k] | rt = s). Let us show that

(x, γn,q) is feasible for (LP )n,q, i.e., it satisfies Constraints (4.20)-(4.21). First, for τ ∈

[(t− 1)/n, t/n] we have

τα(τ, s) + p

∫ τ

(t−1)/n

α(τ ′, s) dτ ′ ≤ 1− p
∫ τ

0

∑
σ≥1

α(τ ′, σ) dτ ′ + p

∫ τ

(t−1)/n

α(τ ′, s) dτ ′

≤ 1− p
∫ (t−1)/n

0

∑
σ≥1

α(τ ′, σ) dτ ′ ≤ 1− p
t−1∑
τ ′=1

τ ′∑
σ=1

xτ ′,σ.

We now integrate in [(t− 1)/n, t/n] on both sides of the inequality. After integration, the

RHS equals
(
1− p∑t

τ=1

∑τ
σ=1 xτ,σ

)
/n. On the LHS we obtain,

∫ t/n

(t−1)/n

(
τα(τ, s) + p

∫ τ

(t−1)/n

α(τ ′, s)dτ ′
)

dτ =
t

n

∫ t/n

(t−1)/n

α(τ, s)dτ

− (1− p)
∫ t/n

(t−1)/n

(
t

n
− τ
)
α(τ, s)dτ

≥ (t− (1− p))
n

∫ t/n

(t−1)/n

α(τ, s)dτ

(Using t/n− τ ≤ 1/n)

=
t

n
xt,s.

Thus Constraints (4.20) hold. By definition of γn,q, Constraints (4.21) also hold.
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Now, note that for t ≥ √n log n we have

xt,s ≥
(

1− 1√
n log n

)∫ t/n

(t−1)/n

α(τ, s)dτ.

Then,

γn,q = min
k≤q

p

1− (1− p)k
n∑
t=1

t∑
s=1

xt,s

k∧(n−t+s)∑
`=s

(
`−1
s−1

)(
n−`
t−s
)(

n
t

) (Definition of P(Rt ∈ [k] | rt = s))

≥ min
k≤q

p

1− (1− p)k
n−
√
n logn∑

t=
√
n logn

t∑
s=1

∫ t/n

(t−1)/n
α(τ, s) dτ

k∧(n−t+s)∑
`=s

(
`−1
s−1

)(
n−`
t−s
)(

n
t

) (
1− 1√

n log n

)

≥ min
k≤q

p

1− (1− p)k
n−
√
n logn∑

t=
√
n logn

k∑
s=1

∫ t/n

(t−1)/n
α(τ, s)

k∑
`=s

(
`− 1

s− 1

)
τ s(1− τ)`−s dτ

(
1− 20

p
√
n

)
(Since n− t+ s ≥ √n log n ≥ k and t ≤ k and using Proposition 4.21)

= min
k≤q

p

1− (1− p)k
n−
√
n logn∑

t=
√
n logn

∫ t/n

(t−1)/n

k∑
`=1

∑̀
s=1

α(τ, s)

(
`− 1

s− 1

)
τ s(1− τ)`−s dτ

(
1− 20

p
√
n

)

≥ min
k≤q

(
p

1− (1− p)k
∫ 1

0

k∑
`=1

∑̀
s=1

α(τ, s)

(
`− 1

s− 1

)
τ s(1− τ)`−s dτ − 2

(log n)2

p
√
n

)(
1− 20

p
√
n

)
(Claim 4.26)

≥
(
γ − 2

(log n)2

p
√
n

)(
1− 10

p
√
n

)
≥ γ − 20

p
√
n
− 2

log n√
n
.

Optimizing over γ, γn,q and using Proposition 4.19 gives us γ∗n,q ≥ γ∗∞− 40log(n)/(p
√
n)

for n large.

Now we show that γ∗∞,q ≥ γ∗n,q−40(log n)2/(p
√
n). Let (x, γn,q) be a solution of (LP )n,p,q.

Let us construct a solution of (CLP )p,q. Note that we can assume xt,s = 0 for s > q as

(LP )n,p,q does not improve its objective function by allocating any mass to these variables.

Consider α defined as follows: for τ ∈ [0, 1] let

α(τ, s) =


nxt,s (1− log(n)/

√
n) t = dτne ≥ √n, s ≤ min{t, log n/p}

0 t = dτne < √n or s > min{t, log n/p}
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Let γ∞,q = mink≤q
p

1−(1−p)k
∫ 1

0

∑
s≥1 α(τ, s)

∑k
`=s

(
`−1
s−1

)
τ s(1 − τ)`−s dτ . We show first

that (α, γ∞,q) is feasible for (CLP )p,q, and for this it is enough to show that α holds Con-

straints (4.20). For τ < 1/
√
n we have α(τ, s) = 0 for any s, thus Constraint (4.22)

is satisfied in this case. Let us verify that for τ ≥ 1/
√
n the constraint also holds. Let

t = dτne and s ≥ 1. Then

τα(τ, s) + p

∫ τ

0

∑
σ≥1

α(τ ′, σ) dτ ′ ≤ τα(τ, s) + p

t−1∑
t′=1

∫ t′
n

t′−1
n

t′∑
s=1

α(τ ′, s) dτ ′

+ p

∫ τ

t−1
n

logn
p∑

σ=1

α(τ ′, σ) dτ ′

≤
(

1− log n√
n

)(
txt,s + p

t−1∑
t′=1

t′∑
s=1

xt′,s + p
log n

pt

)
(Since xt,s ≤ 1

t
always)

≤
(

1− log n√
n

)(
1 +

log n

t

)
≤
(

1− log n√
n

)(
1 +

log n√
n

)
. (t ≥ √n)
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The last term is < 1. Thus (α, γ∞,q) is feasible for (CLP )p,q. Now,

γ∞,q = min
k≤q

p

1− (1− p)k
∫ 1

0

∑
s≥1

α(τ, s)

k∑
`=s

(
`− 1

s− 1

)
τ s(1− τ)`−s dτ

≥ min
k≤q

p

1− (1− p)k
n−
√
n logn∑

t=
√
n logn

∫ t
n

t−1
n

∑
s≥1

α(τ, s)
k∑
`=s

(
`− 1

s− 1

)
τ s(1− τ)`−s dτ

≥ min
k≤q

p

1− (1− p)k
n−
√
n logn∑

t=
√
n logn

∫ t
n

t−1
n

∑
s≥1

α(τ, s)
k∑
`=s

(
`−1
s−1

)(
n−`
t−s
)(

n
t

) dτ

(
1− 10

p
√
n

)
(Proposition 4.21)

≥ min
k≤q

p

1− (1− p)k
n−
√
n logn∑

t=
√
n logn

t∑
s=1

xt,s

k∑
`=s

(
`−1
s−1

)(
n−`
t−s
)(

n
t

) dτ

(
1− log n√

n

)(
1− 10

p
√
n

)

≥
(
min
k≤q

p

1− (1− p)k
n∑
t=1

t∑
s=1

xt,s

k∑
`=s

(
`−1
s−1

)(
n−`
t−s
)(

n
t

) dτ − 20
(log n)2

p
√
n

)(
1− log n√

n

)(
1− 10

p
√
n

)
(Claim 4.25)

≥ γn,q − 40
(log n)2

p
√
n

.

Thus optimizing over γ∗∞,q, γ
∗
n,q we obtain the desired bound. Using Propositions 4.19

and 4.20 we can conclude that, for n large, γ∗∞ − 50(log n)2/(p
√
n) ≤ γ∗n ≤ γ∗∞ +

50(log n)2/(p
√
n).

4.A.5 Missing Proofs From Section 4.6

Proof of Lemma 4.10. The input of the i.i.d. prophet inequality problem corresponds to

a known distribution D with support in [0, 1]. The DM sequentially accesses at most m

samples from D and upon observing one of these values, she has to decide irrevocably if

to take it and stop the process or continue. We are going to use A to design a strategy for

the prophet problem. We assume that the samples from D are all distinct. Indeed, we can

add some small Gaussian noise to the distribution and consider a continuous distribution
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D′ instead.

Note that A runs on an input of size n where a fraction p of the candidates accept an

offer. We interpret pn ≈ m as the set of samples for the prophet inequality problem,

while the remaining (1 − p)n items are used as additional information for the algorithm.

By concentration bounds, we are going to argue that we only need to run A in at most

(1 + ε)pn positive samples.

Formally, we proceed as follows. Fix n and ε > 0 and consider the algorithm B that

receives an online input of n numbers x1, . . . , xn. The algorithm flips n coins with proba-

bility of heads p and marks item i as available if the corresponding coins that turn out heads.

Algorithm B feeds algorithm A with the partial rankings given by the ordering given by

x1, . . . , xn. IfA selects a candidate but the candidate is mark as unavailable, then B moves

to the next item. If A selects a candidate i and it is marked as available, then the process

ends with B collecting the value xi. Let us denote by Val(B, x1, . . . , xn) the value collected

by B in the online input x1, . . . , xn. Then we have the following claim.

Claim 4.27. EX1,...,Xn
S

[Val(B, X1, . . . , Xn)] ≥ γEX1,...,Xn
S

[maxi∈S Xi], where S is the ran-

dom set of items marked as available and X1, . . . , Xn are n i.i.d. random variables with

common distribution D.

Proof. Fix x1, . . . , xn points in the support of D. Then, a simple application of Proposi-

tion 4.5 shows

ES,π

[
Val(B, xπ(1), . . . , xπ(n))

]
ES [maxi∈S xi]

≥ γ

Note that we need to feed B with all permutations of x1, . . . , xn in order to obtain the

guarantee ofA. From here, we obtain ES,π [Val(B, xπ(1), . . . , xπ(n))] ≥ γES [maxi∈S xi]

and the conclusion follows by taking expectation in the variables X1 = x1, . . . , Xn =
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xn.

For ease of notation, we will refer by Val(·) to Val(·, X1, . . . , Xn). We modify slightly B.

Consider B′ that runs normally B if |S| ≤ (1 + ε)pn or simply return 0 value if |S| >

(1 + ε)pn. Then, we have

Claim 4.28. Let ε, δ > 0. For n ≥ 2 log (2/δ) /(pε2) we have EX1,...,Xn
S

[maxi/∈S Xi] ≥

(1− δ)E
[

max
i≤(1−ε)pn

Xi

]
and E [Val(B′)] + δ ≥ E [Val(B)].

Proof. Using standard Chernoff concentration bounds (see for instance [30]) we get the in-

equality PS (||S| − pn| ≥ εpn) ≤ 2e−pnε
2/2 = δ.Hence, for a number n ≥ 2 log (2/δ) /(pε2),

we can guarantee that

E
X1,...,Xn
S

[
max
i∈S

Xi

]
≥ (1− δ)E

[
max

i≤(1−ε)pn
Xi

]
.

For the second part we have E [Val(B)] ≤ δ + E [Val(B) | |S| ≤ (1 + ε)pn] = δ +

E [Val(B′)].

Claim 4.29. For any ε > 0 we have E

[
max

i≤(1−ε)pn
Xi

]
≥ (1− ε)2 E

[
max

i≤(1+ε)pn
Xi

]
.

Proof. Since P (maxi≤kXi ≤ x) = P(X1 ≤ x)k, then we have

E

[
max

i≤(1−ε)pn
Xi

]
E

[
max

i≤(1+ε)pn
Xi

] =

∫∞
0

(
1−P(X1 ≤ x)pn(1−ε)) dx∫∞

0
(1−P(X1 ≤ x)pn(1+ε)) dx

≥ inf
x≥0

1−P(X1 ≤ x)pn(1−ε)

1−P(X1 ≤ x)pn(1+ε)

≥ inf
v∈[0,1)

f(v)

where f(v) = (1− v1−ε)/(1− v1+ε). Now the conclusion follows by using the fact that

the function f is nonincreasing and that infv∈[0,1) f(v) = limv→1 f(v) = (1− ε)/(1 + ε) ≥
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(1− ε)2.

Putting together these two claims, we obtain an algorithm that checks at most (1 + ε)pn

items and guarantees

γ(1− ε)2(1− δ)E
[

max
i≤(1+ε)pn

Xi

]
≤ E [Val(B′)] + δ.

Now, fix ε > 0 small enough such that (1+ε)p < 1. We know that the set {b(1+ε)pnc}n≥1

contains all non-negative integers. Thus, for n ≥ 2 log (2/δ) /(pε2) algorithmB′ in an input

of length m = b(1 + ε)pnc guarantees

γ(1− ε)2(1− δ)E
[
max
i≤m

Xi

]
≤ E [Val(B′)] + δ.

for any distribution D with support in [0, 1]. This finishes the proof.

The next result uses notation from the work by Hill & Kertz. For the details we refer the

reader to the work [98]. The result states that there is a hard instance for the i.i.d. prophet in-

equality problem where E[maxi≤mXi] is away from 0 by a quantity at least 1/m3. The im-

portance of this reformulation of the result by Hill & Kertz is that e−Θ(n)/E[maxi≤mXi]→

0 which is what we needed to show that γ ≤ 1/β. Recall that β ≈ 1.341 is the unique so-

lution of the integral equation
∫ 1

0
(y(1− log y) + β − 1)−1dy = 1 [107].

Proposition 4.30 (Reformulation of Proposition 4.4 by [98]). Let am be the sequence con-

structed by Hill & Kertz, i.e, such that am → β and for any sequence of i.i.d. random

variables X1, . . . , Xm with support in [0, 1] we have

E

[
max
i≤m

Xi

]
≤ am sup {E[Xt] : t ∈ Tm} ,
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where Tm is the set of stopping rules for X̂1, . . . , X̂m. Then, for m large enough, there is a

sequence of random variables X̂1, . . . , X̂m such that

• E
[
maxi≤m X̂i

]
≥ 1/m3, and

• E
[
maxi≤m X̂i

]
≥ (am − 1/m3) sup

{
E[X̂t] : t ∈ Tm

}
.

Proof. In Proposition 4.4 [98], it is shown that that for any ε′ sufficiently small, there is a

random variable X̂ with p̂0 = P(X̂ = 0), p̂j = P(X̂ = Vj(X̂)) for j = 0, . . . ,m − 2,

P(X̂ = Vm−1(X̂)) = p̂m−1 − ε′ and P(X̂ = 1) = ε′ such that E[maxi≤m X̂i] ≥

(am− ε′) sup
{
E[X̂t] : t ∈ T̂m

}
, where X̂1, . . . , X̂m are m independent copies of X̂ . Here

Vj(X̂) = E[X̂ ∧ E[Vj−1(X̂)]] corresponds to the optimal value computed via dynamic

programming and one can show that sup
{
E[X̂t] : t ∈ T̂m

}
= Vm(X̂) (see Lemma 2.1

in [98]). We only need to show that we can choose ε′ = 1/m3. The probabilities p̂0, . . . , p̂m−1

are computed as follows: Let ŝj = (ηj,m(αm))1/m for j = 1, . . . , n−2 where αm ∈ (0, 1) is

the (unique) solution of ηm−1,m(αm) = 1, then p̂0 = ŝ0, p̂j = ŝj− ŝj−1 for j = 1, . . . , n−2

and p̂n−1 = 1 − ŝn−2. One can show that ŝm−2 = (1− 1/m)1/(m−1) (1− αm/m)1/(m−1)

and αm holds 1/(3e) ≤ αm ≤ 1/(e− 1) (see Proposition 3.6 in [98]). For m large we have

e−1/(m−1) ≤ ŝm−2 ≤ e−1/(3em2)

then p̂m−1 = 1− ŝm−2 ≥ 1− e−1/(m−1) ≥ 1/m2 for m large. Thus we can set ε′ = 1/m3

and p̂m−1−ε′ > 0 and the rest of the proof follows. Furthermore, E[maxi≤mXi] ≥ ε′ ·1 ≥

1/m3.

4.A.6 Missing Proofs From Section 4.7

Proof of Lemma 4.11. For p ≥ p∗ and ` = 0, 1, . . . , 4, we calculate tight lower bounds for

the expression in the letf-hand side of the inequality in the claim, and we show that these

lower bounds are at least one, with the lower bound attaining equality with 1 for ` = 1, 2.
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For ` ≥ 5 we can generalize the previous bounds and show a universal lower bound of at

least 1.

• For ` = 0, we have

∫ 1

p1/(1−p)

1

tp
dt =

1

1− p (1− p) = 1 = (1− p)0.

• For ` = 1, we have

∫ 1

p1/(1−p)

(1− t)
tp

dt = 1−
∫ 1

p1/(1−p)
t1−p dt = 1− 1

2− p
(
1− p(2−p)/(1−p)) .

The last value is at least 1−p if an only if p(2−p) ≥ 1−p(2−p)/(1−p) iff p(2−p)/(1−p) ≥ (1−

p)2. The last inequality holds iff p ≥ p∗ ≈ 0.594134 where p∗ is computed numerically

by solving (1− p)2 = p(2−p)/(1−p).

• For ` = 2, we use the approximation p1/(1−p) ≤ (1 + p)/(2e) that follows from the

concavity of the function p1/(1−p) and the first-order approximation of the function at

p = 1. With this we can lower bound the integral

∫ 1

p1/(1−p)

(1− t)2

tp
dt ≥

∫ 1

(1+p)/(2e)

(1− t)2

tp
dt

=

∫ 1−(1+p)/(2e)

0

u2(1− u)−p du (change of variable u = 1− t)

≥
∫ 1−(1+p)/(2e)

0

u2

(
1 + pu+ p(p+ 1)

u2

2

)
du

(Using the series (1− u)−p =
∑

k≥0

(−p
k

)
(−u)k)

=
1

3

(
1− 1 + p

2e

)3

+
p

4

(
1− 1 + p

2e

)4

+
p(p+ 1)

10

(
1− 1 + p

2e

)5

.

By solving the polynomial we see that the last expression is ≥ (1 − p)2 if and only if

p ≥ 0.585395, thus the inequality holds for p ≥ p∗.
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• For ` = 3, 4 we can use a similar approach to get

∫ 1

p1/(1−p)

(1− p)`
tp

dt ≥ 1

`+ 1

(
1− 1 + p

2e

)`+1

+
p

`+ 2

(
1− 1 + p

2e

)`+2

.

The last expression is ≥ (1− p)` for ` = 3, 4 if and only if p ≥ 0.559826.

• For ` ≥ 5, we have

∫ 1

p1/(1−p)

(1− t)`
tp

dt ≥ (1− (1 + p)/(2e))`+1

`+ 1
.

We aim to show that (1− (1 + p)/(2e))`+1/(`+ 1) ≥ (1 − p)`. This is equivalent to

show that
(

1−(1+p)/(2e)
1−p

)` (
1− 1+p

2e

)
≥ `+ 1.

Note that the function f(p) = (1− (1 + p)/(2e))/(1− p) is increasing since f ′(p) =

(1− 1/e)/(1− p)2 > 0. For p = (2e− 1)/(4e− 3) ≈ 0.56351 we have f(p) = 2−1/e.

Thus for p ≥ p∗ > p and ` = 5 we have f(p)5 (1− (1 + p)/(2e)) ≥ (2 − 1/e)5(1 −

1/e) ≥ 7.32 ≥ 6. By an inductive argument, we can show that f(p)` (1− (1 + p)/(2e)) ≥

`+ 1 for any ` ≥ 5 and this finishes the proof.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

Resource allocation has become highly prominent in the new era of e-commerce. This the-

sis explored multiple models that aim to address sources of uncertainty faced by practition-

ers/DMs. We explored unstudied tensions observed in practical applications and provided

new models. We hope these models will give managerial insight and become the starting

point for more complex and realistic models.

Each chapter summarizes model-specific questions, and we will not repeat those questions

here. However, on a broader level, there are further open questions:

• We understand better how to benchmark algorithms in sequential models. We learned

that this task depends strongly on the model and what we want to communicate from

it. In this work, most of the objectives were either linear (regret in Chapter 2 and cost

in Chapter 3), or completely multi-objective (robust ratio in Chapter 4). We can draw

a parallel between `1 norm for the linear costs and `∞ for the multi-objective metric.

Many possibilities appear between these two extremes. One of them is the `2 norm,

which can be interpreted as a deviation from a path. Exploring better benchmarks is

a neverending task, and it goes hand-by-hand with the model’s design.

• The models explored in this thesis tend to be either adversarial/robust or stochastic.

Unfortunately, nature is possibly less inclined to any of these extremes. So then,

the natural question is how to capture new, more realistic sources of uncertainty?

An approach found in the literature is distributionally robust optimization, which

combines both extremes. However, this approach poses other burdens, for example,
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the choice of a distance between distributions.

• Besides the model explored in Chapter 2, most of the models studied in this thesis

assume some mild knowledge from the input data. If enough historical data is avail-

able, this is potentially a realistic assumption. However, exploring the integration of

learning from the data and decision-making would be ideal. In particular, in robust

settings with multiple competing objectives, such as the model from Chapter 2.
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[67] X. Drèze and F.-X. Hussherr, “Internet advertising: Is anybody watching?” Journal
of interactive marketing, vol. 17, no. 4, pp. 8–23, 2003.

[68] P. Dütting, S. Lattanzi, R. Paes Leme, and S. Vassilvitskii, “Secretaries with ad-
vice,” in Proceedings of the 22nd ACM Conference on Economics and Computa-
tion, 2021, pp. 409–429.

[69] E. B. Dynkin, “The optimum choice of the instant for stopping a markov process,”
Soviet Mathematics, vol. 4, pp. 627–629, 1963.

[70] B. Edelman, M. Ostrovsky, and M. Schwarz, “Internet advertising and the general-
ized second-price auction: Selling billions of dollars worth of keywords,” American
economic review, vol. 97, no. 1, pp. 242–259, 2007.

[71] A. Farahat and M. C. Bailey, “How effective is targeted advertising?” In Proceed-
ings of the 21st international conference on World Wide Web, 2012, pp. 111–120.

[72] M. Feldman, O. Svensson, and R. Zenklusen, “A simple o (log log (rank))-competitive
algorithm for the matroid secretary problem,” in Proceedings of the twenty-sixth an-
nual ACM-SIAM symposium on Discrete algorithms, SIAM, 2014, pp. 1189–1201.

[73] W. Feller, “An introduction to probability theory and its applications,” 1957.

[74] T. S. Ferguson et al., “Who solved the secretary problem?” Statistical science,
vol. 4, no. 3, pp. 282–289, 1989.

[75] P. Freeman, “The secretary problem and its extensions: A review,” International
Statistical Review/Revue Internationale de Statistique, pp. 189–206, 1983.

217



[76] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learn-
ing and an application to boosting,” Journal of computer and system sciences,
vol. 55, no. 1, pp. 119–139, 1997.

[77] ——, “Adaptive game playing using multiplicative weights,” Games and Economic
Behavior, vol. 29, no. 1-2, pp. 79–103, 1999.

[78] K. Fridgeirsdottir and S. Najafi-Asadolahi, “Cost-per-impression pricing for dis-
play advertising,” Operations Research, vol. 66, no. 3, pp. 653–672, 2018.

[79] H. Fu, J. Li, and P. Xu, “A ptas for a class of stochastic dynamic programs,” in 45th
International Colloquium on Automata, Languages, and Programming (ICALP 2018),
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[80] M. R. Garey, R. L. Graham, D. S. Johnson, and A. C.-C. Yao, “Resource con-
strained scheduling as generalized bin packing,” Journal of Combinatorial Theory,
Series A, vol. 21, no. 3, pp. 257–298, 1976.

[81] A. Gera and C. H. Xia, “Learning curves and stochastic models for pricing and
provisioning cloud computing services,” Service Science, vol. 3, no. 1, pp. 99–109,
2011.

[82] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica,
“Dominant resource fairness: Fair allocation of multiple resource types.,” in Nsdi,
vol. 11, 2011, pp. 24–24.

[83] J. P. Gilbert and F. Mosteller, “Recognizing the maximum of a sequence,” Journal
of the American Statistical Association, pp. 35–73, 1966.

[84] P. C. Gilmore and R. E. Gomory, “A linear programming approach to the cutting-
stock problem,” Operations research, vol. 9, no. 6, pp. 849–859, 1961.

[85] A. Goel and P. Indyk, “Stochastic load balancing and related problems,” in 40th
Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039),
IEEE, 1999, pp. 579–586.

[86] A. Gordon, M. Hines, D. Da Silva, M. Ben-Yehuda, M. Silva, and G. Lizarraga,
“Ginkgo: Automated, application-driven memory overcommitment for cloud com-
puting,” Proc. RESoLVE, 2011.

[87] V. Goyal and R. Udwani, “Online matching with stochastic rewards: Optimal com-
petitive ratio via path based formulation,” in Proceedings of the 21st ACM Confer-
ence on Economics and Computation, 2020, pp. 791–791.

218



[88] R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan, “Altruistic schedul-
ing in multi-resource clusters.,” in OSDI, 2016, pp. 65–80.

[89] A. Gupta, R. Krishnaswamy, M. Molinaro, and R. Ravi, “Approximation algo-
rithms for correlated knapsacks and non-martingale bandits,” in 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science, IEEE, 2011, pp. 827–
836.

[90] V. Gupta and A. Radovanovic, “Lagrangian-based online stochastic bin packing,”
ACM SIGMETRICS Performance Evaluation Review, vol. 43, no. 1, pp. 467–468,
2015.
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