Paper Evaluation)

Project Reports

Institute of Paper Science and Technology
Central Files

PROJECT REPORT FORM

Copies to: Files

Nr. Steele

Dr. Forman

Nr. Kottwitz

PROJECT NO. 1102-13

COOPERATOR Institute

REPORT NO. One

DATE February 8, 1950

NOTE BOOK 607

PAGE 72 TO 78

SIGNED F. Kottwitz

E. Madison

THE EFFECT OF BASIS WEIGHT ON THE PHYSICAL PROPERTIES OF HANDSHEETS

Mr. Madison

INTRODUCTION

The problems encountered in paper evaluation and pulp testing by use of handsheet physical evaluation procedures often give rise to insurmountable difficulties in the correct interpretation of experimental data. Even with careful control of methods and procedures, there always remains connected with an operation or test some degree of residual variability. Paper testing is not different in this respect, and the problem must be considered. It is the purpose of this work to study certain aspects of data interpretation. The study is particularly devoted to an examination of the dependence of various strength and physical properties on sheet weight, mass, or substance, and the methods of correcting these data for sheet weight variations.

EXPERIMENTAL PROCEDURE

Two unbleached kraft pulps which have been designated as pulp A and pulp B were beaten in a 1.5 lb. Valley laboratory beater according to the usual evaluation procedures (Institute Method 403) using a 6,500 g. bedplate loading. From these pulps regular British

handsheets of nominal even dry weights 1.05, 1.20, 1.35 and 1.50 grams were made. These were prepared, conditioned, and tested for caliper, basis weight (24x36-480), apparent density, bursting strength, tearing strength, Schopper tensile strength, and stretch according to Institute Methods.

Designation

Identification

Pulp A

Thilmany Unbleached Iraft

Pulp B

Union Bag Unbleached Kraft

RESULTS

Strength and physical characteristics of the handsheets prepared from Pulps A and B have been tabulated in Tables I and II, respectively. These data are the arithmetic average of tests made. For complete data and test conditions refer to code office reports—file nos. 137092-137095 and 139101-139104.

TREATMENT OF DATA (Discussion)

In the interpretation of burst and tear data, the usual procedure is to express results in terms of an equivalent 100 lb. ream. That is, to divide the strength property value by the basis weight being used and multiply this result by 100. This calculated result is sometimes referred to as relative bursting strength, relative tearing strength, bursting strength pts./100 lb./ tear factor, etc.

Stretch, which is determined to the point of final repture, is generally calculated as percentage of original test specimen length. Caliper, is usually expressed directly in thousandths of an inch, and apparent density as the quotient of basis weight in 1b. and caliper in thousandths. The use of these and similar expressions constitutes at least a tacit implication that strength, or physical properties are directly proportional to the weight or mass of the sheet tested. The full significance of this implication which is elementary, but also basic, is illustrated in Figure 1. where the tensile strength data expressed in 1b./in., taken from Tables I and II, are plotted as functions of the air dry handsheet weights. Thus, there are five distinct sets of data, each of which shows the dependence of tensile exrength on handsheet weight. From these plots it is evident that linear relationships fit the data of each pulp reasonably well. It is further evident that for only one of the relationships are the tensile Strengths directly preportional to the handsheet weight. The basis weights in lb., 24x36-480 ream for each point of the five plots are shown in Tables I and II. For each point tabulated in Tables I and II and plotted in Figure 1, the corresponding tensile strength in 1b./in./100 lb. ream has been calculated by the usual direct proportionality method. These calculated values are listed in Tables I and II. The same solutions can, of course, be arrived at by graphic methods. The graphic solution is obtained by connecting the plotted point (sheet weight vs. tensile in 1b./in.) to the axis origin and extending this line to find the point of intersection with the vertical 100 lb. basis weight line.

TABLE I

STRENGTH AND PHYSICAL CHARACTERISTICS OF VARIABLE WEIGHT STANDARD PRESSED BRITISH HANDSHEETS

	Tear Fac to r		2.42	2.72		1.29	1.37	1.43		1.31	14.1	1.7		8.0	1,13	1.18
	Elmendorf Tear, g./sheet		81 22	116	· <u></u>	43	% & S	3 8		₹2	វីឧដ	t		£3	\$	52
	Schopper Stretch,		1.8	7. 2.4 4.		2.7	2.9	3.1		3.3	, m,	٠ ٠		2.5	2.7	2.9
	Schopper Tensile /in. 1b./in.100 1b.		5.54 6.0	45.0 0.0		80.08	83.2	88.3		85.7	100	r. \$		71.3	: : : :	6° 18
	Schop 16./1n.	Hegler	15.5	18.7 21.6	Hecler	27.0	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	42.1	HOGLOK	28.8	8 0	47.5	Heeler	8,00	36.5	41.2
(Falp 4)	Mullen Burst pt./100 lb.	cc. Schopper-Riegler	24 24		co. Schooder-Rieeler		13.6		oc. Schopper-Riegler		185		cc Schopper-		136	
	Mul Pt.	850 cc	23.3	29.7 32.2	700 ca	46.0	¥ 82	67.0	535.99	62.7	58	92.0	410 cc	43.1	28.00	66.2
	Apparent Density		8 6 8 7	დ დ გ.ტ.		11.6	11.6	11.9	•	11.2	12.0	12.1		12.8	12.7	13,1
	Caliper, in.		0.0038	0.0050		0.0030	0.0032	0,0000		0.0030	0.0036	0.0040		0.0026	0.0034	0.0037
	Basis Weight, 24x36-480, 1b.		33.5	42.6 48.0		33.4	43.0	47.6	••	33.6	, 64 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.	£.84		33.4	70.7 43.0	48.5
	Weight of Sheet, E.		1.136	1,626		1,134	1.295	1,615		1,141	1.467	1,638		1,131	1,466	1,645

Project 1102-13 Page 5 February 8, 1950

TABLE II

STHENGTH AND PHYSICAL CHARACTERISTICS OF VARIABLE WEIGHT STANDARD PRESSED BRITISH HANDSHEETS

	Tear Factor	-	2.14	2.14	2,10	2,14
	Schopper Elmendorf Stretch, Tear, \$ \$./sheet		72	82	92	102
	Schopper Stretch,		0.4	0.4	7.4	7.7
	Schopper Elmendorf Schopper Tensile Stretch, Tear, 1b./in. 1b./in./100 lb. % & /sheet		2.49	65.9	0.89	4.70
		seler.	21.8	25.3	29.8	32.1
(Pulp B)	Mullem Buret pt. pt./100 lb.	565 co. Schopper-Riegler	122	128	130	129
		565 co.	41,1	19.3	56.8	4.19
	Apparent Deneity	•	4.6	8.6	10.4	10.3
	Caliper, in.		0.0036	0.0039	0,0042	9400.0
	Weight of Basis Weight, Sheet, 24x36-480, Caliper, g. ib.		33.7	38.4	43.8	9.24
	Weight of Sheet, &.		1,142	1,303	1,484	1,615

The state of the s			1° ~;	F	, -	i, .	, ,		ער אבי		}	,		,
201. 40 3. 40 3. 40 3. 40 3. 40 3. 40 3. 40 3. 40 3. 40 3. 40 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	3	<u> </u>	*	\$ 1	<u> </u>	2	2 - ,	9	8	\$	8	9	6 ,	g.,
2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		-		- ; -					_	,	;	- t	, /	0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	; -		1.7		:		1		+		- 1	/,	0.
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	₁	-		ens.		- 4		: : :-,		1 3	<u>;</u>	- 1	//	
P B, 765 SR P B, 765 SR P A, 630 SR S O S S S S S S S S S S S S S S S S S S	-	, ,	- -	100		<u> </u>					:	1 1 - 1	1/	3. V: N
9 8 7.65 SA 700	, ,	i -	1	2 2 3	1		1	+= -	E			,	Will	0
2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		, ,] - " ;	2 3		,		<u> </u>] -	1	;	M	٠. د
20 A, 630 SH 50 A, 630 SH 50 A, 630 SH		\	+ + -	2 2 2	t t 1 1	,		· · ·	<u> </u>		1	///	! k	ď
8 8 7.5 5.8 P. S.	· • • •			2 8	-1,	₃	i - ' -	1	-		; -	111		
P B, 125.58 P B, 125.58 S O A, 630 5H	v			Yam				1	-	1	- /;	14-1		0.7
8 9 7.5 5.8 P 8 7.5 5.8 P 8 7.5 5.5 S.8 P 8 7.5 S.		. :-		1540	3	; - '-				, "	dolby	j 4		
9 8 7.65 SA 700		, -;-	: -	-	*			1			* 1	þ		۲,
8 9 7.5 5.8 P 8 7.5 5.8 P 8 7.5 5.5 S.8 P 8 7.5 S.	; ,	<u></u>	-	- leng		-'-		,		1.1	/_	7.		1
9 8 7.65 SA 700	•	1 - 14	1	4	<u> </u>	1.11		,	1-1	4 B	* .			
2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	}		-	ļ	<u>i</u>	+		; ; 	J. 1/	£ }	' - <i>f</i>	\i_i		16
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	, ,		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1		, ,	, ,		$: $ \setminus	. /	•		Ì
2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		i'		1.	1 2 2	-		1.1			. \			1
20 A, 630 SH 50 A, 630 SH 50 A, 630 SH	•	,	-	<u>;</u>		,		1 11 -	1-	1,	\			N
9 8 7.65 SA 700		;						1. 3		_1 		,		6
2 0 A, 250 SA 2 0 A, 250 SA 3 0 A, 250 SA 3 0 A, 250 SA		1 ; + , 1 +				1	1 /	<u>, </u>			,\ :	*		2
P B, 165.58 P P 165.58 P P 165.58	, ,	1	-		1 2 7 7		1	} ., 7	1	1,	,	1		, k
P B, 125.58 P B, 125.58 S O A, 630 5H				₹	1		1	; · · · /		.; \	}	‡ '1	- 1	3.
P B, 765 SR P B, 765 SR P A, 630 SR S O S S S S S S S S S S S S S S S S S S			-	10		17.		· · · · · · · · · · · · · · · · · ·		/.	· - '	•		2.6
9 8 7.65 SA 700				535		1	, ,	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	;		<i>t</i>	1	,	
8 8 7.5 5.8 P. S.	•	·	·	£ 3	1/2			July :	* *	M	•	•	ļ	2.2
45.00 H. 20		- ; - - 59	90	12/	10, -	6	; - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	in B		1 9		,	: 	
3211 084- FXXZ 01 031 -	y				9,3			25.2		. es.		1		0
2411 084-FXXZ 01 001		, -	-1	J	2 3			3		/ <u>\$</u>		-,		ے ۔ ج
2411 084 FEXES 01 000 -		, 1	A Park	{ _	" se			r	- [:	1			
		 	: ====================================	<u>.</u>		u/ 08	4 - FX&Z 1	- 200 رہ کیا ہے۔	? == ₁ -	<u>-</u> - '		-•	-	*
									:		,			3.
		•		,	1	1	,							4

ALL DRY Handsneet weight, g

Semi-graphical methods can also be used to evaluate the slope (m) and b (y intercept) constants. This has been done not only for tensile strength data but also other physical characteristics of the five pulps used in this study. See Figures 2 - 7 and Table III. For convenience of presentation, the discussion will be confined primarily to tensile strength. The principles involved, however, as shown in Figures 2-7 are applicable to the other properties. As previously pointed out, the assumption of direct proportionality is likely to be incorrect. .Before considering the second assumption involved, linear extrapolation, it should be noted that the weight tensile strength (lb./in.) relationship may correctly be considered as linear, but not necessarily as a direct proportionality. Therefore, in order to correctly determine the lb./in./100 lb. tensile strengths from the data plotted in Figure 1, the linear relationships should be extrapolated, as shown, to the 100 lb. basis weight line and the tensile strength taken at the point of intersection. In general, as shown in Table IV, the tensile strength (lb./ in./100 lb.) values thereby obtained for the five pulps do not agree with the calculated values of Tables I and II.

The reason for this lack of agreement is clear from the elementary geometry of Figure 1. These plots of tensile strength weight relationships are of the algebraic form y = mx + b rather than y = mx.

As a further check on this point, strength and physical characteristic data from published work of two separate sources (1,2) have been fitted

¹ The Mechanical Properties of Paper as Affected by Its Substance by Julius Bekk published by G. H. Buhrmann's Papiergroothandel N. V. Amsterdam, 1947.

The Relation of Sheet Properties and Fiber Properties in Paper by R. H. Doughty, PTJ 1931, Vol. 93, TS162-167,172.

TABLE III

Pulps A and B

TABULATION OF CONSTANTS m AND b (Data from Figures 2-7)

Strength or Physical Property	850 S.R.	Pul. 700 S.R.	p Identific. A 535 S.R.	A 410 S.R.	B 565 S.R.
Burst Apparent Density Tear Temsile Stretch Caliper	20.53 -0.4165 188.6, 70.25 12.64 0.178 .00366	43.06 0.556 55.7 36.10 0.711 .00206	58.3 1.193 55.7 37.75 0.489 .00193	45.84 0.864 47.83 36.10 0.777 .00237	45.44 2.36 63.02 22.21 0.645 .00206
Burst Apparent Density Tear Temsile Stretch Caliper	-0.12 +9.29 -77.4 +1.03 +1.6	-2.8 +4.89 -20.6 -16.3 +1.86 +.00066	-3.8 +10.13 -20.6 -14.4 +2.65 +.00077	-8.7 +11.66 -21.4 -17.0 +1.61 00007	-10.76 +6.7 -00.1 -3.5 +3.23 +.00123

TABLE IV

Identification	Tensile Strength, lb./in./100 lb. From Figure 1 From Tables I and II					
Pulp A, 850 S.R. Pulp A, 700 S.R. Pulp A, 510 S.R. Pulp A, 410 S.R. Pulp B, 565 S.R.	44.9 106.0 113.7 105.3 72.9	46.4 44.3 43.9 45.0 80.8 79.8 83.2 88.3 85.7 81.1 94.2 98.3 71.3 77.8 84.5 84.9 64.7 65.9 68.0 67.4				

to linear relationships of the form y = mx + b and the constants m and b computed. See Tables 1A to 11A and Figure 1A of the appendix. These data were selected as nearly as possible to represent the same weight range which is covered in Tables I and II.

The use of linear extrapolation to obtain tensile strength in 1b./in./100 1b. is, in the strictest sense, open te criticism. For example, if the data given (Tables I and II) were more extensive so as to include sheet weights equivalent to 100 lb. basis weight, the relationship over this wide range of values might then deviate considerably from linearity. However, even in such a case, a portion of the data embodying weight ranges similar to those of Tables I and II might reasonably well be linearly related. It should therefore always be clearly understood that such a use of linear extrapolation is merely a convenient method of correcting for minor weight Variations, and not a prediction of strength or physical characteristics of a 100 lb. basis weight sheet. It should be further understood that in most work there would be but one point of each plot shown in Figure 1. With only one point the algebraic form y = mx + b can, of course, not be applied for lack of data to evaluate constants m and b. Therefore, there are three alternative solutions to the general problem of weight variation correction. In the first case where the data consist of two or more points, the form y = mx + b should be used and the constants calculated. In the second case, where only one point is available, constants m and b may be selected from a backlog of data. The third case arises when, with only

one point, values for constants m and b can not be determined. Then the algebraic form y = mx, assuming (0,0) as a second point, must be used. It should, however, be realized, as previously stated, that this is merely an approximation. Also, and this is most important, in such an instance a basis weight figure such as nominal basis weight or average basis weight will probably give more accurate results than conversion to pt./100 lb. That is, the use of a direct proportionality relationship where not strictly applicable, introduces errors of magnitude proportional to the degree of extrapolation involved.

SUMMARY AND CONCLUSIONS

Analysis of strength and physical characteristic data of different weight handsheets prepared from the same pulp showed the relationships to be of the general linear form y = mx + b rather than y = mx. It is, therefore, recommended that when data are to be corrected or reduced to a common weight basis, the basis chosen should be of approximately the same order of magnitude as the original data. That is, for a given set of data, the use of average basis weight or nominal basis weight is preferred to the commonly employed 100 lb. basis.

TABLE 1A

SCHOPPER TENSILE STRENGTH
(Data of J. Bekk1)

•	Bres	1.	Constants		
Paper Sample	BW 60 g.	BW 80 g.	△ 80–60	B	Ъ
A ₁	4.98	6.72	+1.74	+0.087	-0.24
A ₂	5.16	7.28	+2.12	+0.106	-1.20
A 3	4.74	6.80	+2.06	+0.103	-1.44
B ₁	4.08	5.84	+1.76	+0.08 8	-1.20
B ₂	4.14	5.84	+1.70	+0.085	-0.96
3 3	क्र •क्क	5.84	+1.40	+0.970	+0.24
c ₁ .	2.94	4.00	+1.06	+0.053	-0.24
c ₂	3.42	4.48	+1.06	+0.053	+0.24
c ₃	3.96	5.28	+1.32	0.00	0.00
\mathfrak{D}_{1}	2,22	3.12	+0.90	+0.045	-0.48
D ₂	2.34	3 .3 6	+1.02	+0.051	-0.72
D 3	2.76	3.68	+0,92	+0.046	0.00
E	3.96	5 .6 8	+1.72	+0.086	-1.20
R ₂	4.32	5.52	+1.20	+0.060	+0.72
13 3	4.14	5 .6 8	+1.54	+ 0.0 7 7	-0.48

Basis weight shown is in g./sq. m.

¹ The Mechanical Properties of Paper as Affected by its Substance, by Julius Bekk.

SCHOPPER STRETCH
(Data of J. Bekk)

	-	Stretch, \$	<u>, </u>	Consta	nts
Paper Sample	BW 60 g.	BW 80 g.	△60-80	n	Ъ
A ₁	3.7	3.8	+.1	+.005	3.4
A ₂	3.5	3.8	+.3	+0.015	2.6
A 3	3.9	4.1	+.2	+0.010	3.3
B 1	3.2	3.5	+.3	+0.015	2.3
B 2	3.1	3.4	+•3	+0.015	2.2
B 3	3.8	4.2	+.4	+0.010	2.6
. c ₁	2.9	3.1	+.2	+0.010	2.3
c ₂	2.7 .	2.8	+.1	+0.005	2.4
c ₃	3.0	3.3	+.3	+0.015	2.1
$\mathbf{p_1}$	3.9	4.3	+.4	+0.020	2.7
D ₂	3.0 .	2.9	1	-0.005	3.3
^D 3	2.9	2.9	0	0.00	2.9
E 1	3.3	3.6	+.3	+0.015	2,4
E ₂	3.8	3.9	+.1	+0.005	3.5
16 3	4.3	4.8	+.5	+0.025	2.8

TABLE 3A

BURSTING STRENGTH
(Data of J. Bekk)

	Bur	sting Strength.	kg./cm.2	Cons	stants			
Paper Sample	BW 60 g.	BW 80 g.	△ 60–80	B	Ъ			
A	3.90	5.44	1.54	+.077	-0.72			
A ₂	4.08	5.84	1.76	+,088	-1.20			
A 3	3.72	5.20	1.48	+.074	-0.72			
B 1	3.00	4.40	1.40	+.070	-1.20			
^B 2	3.18	4.32	1.14	+.057	-0.24			
B ₃	3.48	4.88	1.40	+.070	-0.72			
c _l .	1.98	2.88	0.90	+.045	-0.72			
c ₂	2.22	3.04	0.82	+.041	-0.24			
°3	2.40	3.20	0.80	+.040	0.00			
$\mathtt{p}_{\mathtt{l}}$	1.68	2.32	0.64	+.032	-0.24			
D ₂	1.38	2.00	0.62	+.031	-0.48			
D ₃	1.56	2.24	0.68	+.034	-0.48			
r ₁	2.52	3.92	1.40	+.070	-1.68			
E ₂	3.00	4.08	1.08	+.054	-0.24			
B 3 .	3.12	4.48	1.36	+.068	-0.96			

TABLE 4A

TEARING STRENGTH (Data of J. Bekk)

	Tearing	Tearing Strength, g. cm./cm. Constant				
Paper Sample	BW 60 g.	BW 80 g.	△ 60–80	n	ъ	
A ₁	1.32	1.77	+0.45	+.0225	-0.030	
A ₂	1.272	1.768	+0.496	+.0248	-0.216	
A ₃	1.326	1.776	+0.450	+.0225	-0.024	
$\mathtt{B}_{\mathtt{l}}$	1.020	1.504	+0.484	+.0242	-0.432	
B ₂	1.128	1.464	+0.336	+.0168	+0.120	
B ₃	1.050	1.600	+0.550	+.0275	-0.600	
c 1 · ·	0.978	1.424	+0.446	+.0223	-0.360	
c ₂	0.870	1.272	+0.402	+.0201	-0.336	
c ₃	0.762	1.104	+0.342	+.0171	-0.264	
D ₁	1.434	1.944	+0.510	+.0255	-0.096	
D_2	1.038	1.280	+0.242	+.0121	+0.312	
D ₃	0.900	1.064	+0.1 <i>6</i> 4	+.0082	+0.408	
5 1	1.002	1.464	+0.462	+.0231	-0.384	
E 2	1.128	1.528	+0.400	+.0200	-0.072	
E 3	1.128	1.552	+0.424	+.0212	-0.144	

TABLE 5A

SCHOPPER FOLD
(Data of J. Bekk)

	Schopper 1	Schopper Fold. # of double folds Constants				
Paper Sample	BW 60 g.	BW 80 g.	∆ 60 – 80	12	ð	
A	2719	3504	+785	+39.25	+360	
A 2	3209	4757	+1548	77.40	-1435	
A 3	3427	4362	+935	46.75	+622	
B 1	2175	3526	+1351	67.55	-1878	
B ₂	2959	4200	+1241	62.05	-764	
3 ₃ .	3676	4112	+436	21.80	+2368	
c ₁	298	711	+413	20.65	-941	
c ₂	498	816	+318	15.90	-456	
c ₃	515	1531	+1016	50.80	-2533	
D ₁	74	327	+253	12.65	- 685	
D_2	36	64 -	+28	1.40	-4 8	
D ₃	49	50	+ 1	.05	+46	
r	455	775	+320	16.00	-505	
E 2	1172	1329	+157	7.85	+701	
2 3	1615	3917	+2302	115.10	-5291	

CIRCULAR TENSILE STRENGTH
(Data of J. Bekk)

	Circular	Tensile Strengt	h. kg.	Constants		
Paper Sample	BW 60 g.	BW 80 g.	Δ60-80	m.	ď	
4 1	24.48	33.68	9,20	+0.460	-3.12	
A ₂	28.68	40.40	11.72	+0.586	-6.48	
A 3	24.72	33.84	9.12	+0.456	-2.64	
B_1	22.08	31.28	9.20	+0.460	-5.52	
B ₂	23.58	31.20	7.62	+0.381	+0.72	
B 3	25.08	37.92	12.84	+0.642	-13.44	
c_1	17.22	23.52	6.30	+0.315	-1.68	
¢ ₂	19.50	27.20	7.70	+0.385	-3.60	
¢ ₃	22.02	30.24	8,22	+0.411	-2.64	
\mathfrak{D}_{1}	13.80	19.68	5.88	+0.294	-3.84	
D ₂	12.72	18.24	5.52	+0.276	-3.84	
p_3	15.48	20.88	5.40	+0.270	-0.72	
r 1	22.08	32.72	10.64	+0.532	-9.84	
1 2	22,20	29.84	7.64	+0.382	-0.72	
E 3	22.80	32.32	9.52	+0.476	-5.76	

TABLE 7A
BENDING RESISTANCE
(Data of J. Bekk)

	Rending	Bending Resistance, g./5 cm.				
Paper Sample	BV 60 g.	BW 80 g.	∆ 60-80	m COUR	t <u>ants</u> b	
A	3.4	8.7	5.3	+.265	-12.5	
A ₂	3.8	8.3	4.5	+.225	-9.7	
A 3	3.7	8.0	4.3	+.215	-12.2	
B 1	2.8	6.8	4.0	+.200	-9.2	
B ₂	3.1	6.2	3.1	+.155	-6.2	
B ₃	2.9	6.3	3.4	+.170	-7.3	
c_1	3.3	7.0	3.7	+.185	-7.8	
c ₂	3.2	7.0	3.8	+.190	-8.2	
c ₃	3.2	. 5.7	2.5	+.125	4.3	
\mathfrak{p}_{1}	3.9	8.1	4.2	+.210	-8.7	
D_2	3.7	7.7	4.0	+.200	-8.3	
D ₃	3.7	7.8	4.1	+.205	-8.6	
r 1	3.5	8.7	5.2	+.260	-12.1	
E 2	4.1	8.3	4.2	+.210	-8.5	
E 3	3.0	7.5	4.5	+.225	-10.5	

TABLE 8A

Æ.

TENSILE STRENGTH - WEIGHT DATA*

Consistency during Formation,	Basis Weight, 24x36-500 ream, lb.	Solid Fraction	Ultimate Tensile Strength, lb./sq.in.
	Sample 39 - Wet Press	ed at 30 lb. per	sq. in.
0.018 0.012 0.014 0.028 0.036 0.050 0.066 0.105	23.3 34.3 39.5 68.6 88.8 123.1 160.0 260.0	0.244 0.254 0.255 0.268 0.267 0.268 0.261	1240 1180 1300 1240 1230 1100 1020 910
	Sample 40 g Wet Pr	essed at 125 lb.	per sq. in.
0.040 0.020 0.010 0.072 0.036 0.018 0.144 0.072 0.036 0.288 0.140 0.070 0.550 0.275	28.2 28.9 26.8 50.3 51.5 51.6 100.0 99.0 101.0 199.0 194.0 191.0 369.0 385.0 394.0	0.387 0.381 0.379 0.392 0.400 0.397 0.395 0.402 0.398 0.374 0.383 0.380 0.393	1980 2400 2530 2270 2310 2400 1730 2050 2180 1430 1880 2030 1210 1390 1530

^{*} Data taken from published work;

"The Relation of Sheet Properties and Fiber Properties in Paper" by
R. H. Doughty. PTJ. 1931, Vol. 93, TS162-167,172.

TABLE 9A
CONVERSION OF TABLE 10A DATA*

Basis Weight, 24x36500			Tensile
ream,	Solid	Caliper,	Strength,
16.	Fraction	in.	lb./in.
	Samp]	le 39	
23.3	0.244	.00408	5.06
34.3	0.254	.00577	6.81
39.5	0.255	.00662	8.62
68.6	0.268	.01094	13.57
88.8	0.267	.01420	17.48
	*	ha~	
	Sample	AV Ra.	
28.9	0.381	.00324	7.78
51.5	0.400	.00550	12,72
99.0	0.402	.01052	21.60
194.0	0.383	.02163	40.70
	-2-2	رن کیاں۔	~∪. /∪

* Caliper, in. = .0000427 Basis Weight, 1b. Solid Fraction

Tensile Strength, lb./in. = $\frac{lb./sq. in.}{caliper}$

Project 1102-13 Page 26 Pebruary 8, 1950

TABLE 10A

TENSILE STRENGTH - WEIGHT DATA (from Figure 1A)-

Tensile St	rength. 1b./ir	<u>la</u>	Содя	tant
BW 60 g.	BW 80 g.	60-80	m	Ъ
7.7 9.4	10.0 11.8	+2.3 +2.4	0.115 0.120	+0.8 +2.2

TABLE 11A

PULP SAMPLE IDENTIFICATION (Data of J. Bekk)

Pulp		Identification
A B C D	Bleached Bleached Unbleache	ed sulfite
Pulp Sample	Beating Time, min.	Schopper-Riegler Freeness, °
A 1 2 3 1 3 1	40 56 67 16 19.5 25 13 16 25 10 30 60 3 5.5	34.0 43.3 52.5 36.2 45.3 55.1 34.0 45.0 53.5 79.9 86.8 91.0 - 35.5 44.7 56.1

PROJECT REPORT FORM

CC: Files

Dr . Forman

Mr. MacLauria

Mr. Kottwits

Mr. Madison

PROJECT NO. V1102-13

COOPERATOR Institute

REPORT NO. 2

DATE May 4, 1950

NOTE BOOK 507

PAGE 72 TO 78

SIGNED FRANK TOTAGE

The Medison

APPARENT DENSITY OF HANDSHEETS

INTRODUCTION

A study of apparent density and its relationship to handsheet strength characteristics has been made. Special attention was given to the consideration of using this physical property as a basis for comparison of strength characteristics, and as such to supplement or replace the commonly employed freeness and beating time references. This report represents findings based upon further interpretation of data cited in Project Report One dated February 8, 1950. Project 1102-13, and embodies additional data obtained from an extension of the original work.

EXPERIMENTAL PROCEDURE

See aforementioned Project Report One.

DISCUSSION OF RESULTS

For complete presentation of data, see Project Report One, pages 4 and 5, and the Appendix of this report.

In the ordinary papersaking and pulp evaluation procedures, changes in apparent density are controlled, produced, or arise primarily as a consequence of beating and/or wet pressing. The latter will be considered first because it

represents the simpler of the separate cases. When wet sheets are subjected to compression of various degrees, as was done in this work, the relationship of bursting or tensile strength to apparent density will be of the general form of Figure 1, and the tearing strength versus apparent density plot will follow the pattern of Figure 2. Refer to Appendix A for details.

These relationships can usually be algebraically represented by the form $y=b \times 10^{BK}$ and as such will plot as straight lines on semi-legarithmic graph paper. The exact curve shape of each property will of course be characteristic of the particular pulp, and not entirely free from the influence of beating degree or refining. This may or may not be of practical significance, depending upon the particular case, e.g. from a study of R. H. Doughty's work with unprocessed pulp, the apparent density versus tensile strength relationship does not follow the above form but is noted to be linear as shown in Figure 3.

1. The Relation of Sheet Properties and Fiber Properties in Paper, R. H. Doughty, PTJ 1931. Vol. 93, TS162-167, 172.

It should also be noted as a matter of interest, that based upon this work, the use of fundamental engineering properties were suggested for paper evaluation methods and in particular, it was advocated that "solid fraction" which is analogous to apparent density, be employed as a reference in conjunction with ultimate tensile strength expressed in 15./sq. in. When this is done, the "solid fraction" and ultimate tensile strength are algebraically related by the form y= bx and therefore plot as a straight line on leg.-log. graph paper. For more complete reference to this work, see Appendix B.

When handsheets made from pulp beaten or refined to various degrees are subjected to constant wet pressing conditions as done in this study, the changes in bursting strength and apparent density with freeness follow the general patterns indicated in Figures 4 and 5. From interelationships of these properties, the

plot of bursting strength versus apparent density is found to be of the general form shown in Figure 6. For details, see Appendix C.

It is immediately evident that this curve (Figure 6) is not of simple form and probably involves algebraic terms of degree higher than-the-third. However, as is frequently the case, subdivision can be used to produce geometric sections which may be satisfactorily represented by less complicated expressions. e.g., Section WB! of Figure 6 which corresponds to the apparent density region of section AB of Figure 5 may be represented by the expression you b x 10 mx and is therefore linear in x and leg y. Saction B'C' of Figure 6, if included as a portion of the same plot should introduce but small departures from the same expression. However, any attempt to include section CtD! of Figure 6 corresponding to the apparent density section OD of Figure 5 leads to considerable departure from the original expression, for although C'D' may also be linear in x and legy. that portion of Figure 6 is here involved where the slepe is considerably different and therefore involves a separate expression. In the event that the bursting strength-freeness curve does not exhibit a maximum or still more important section CD Figure 5 is not present, the situation is naturally less complicated and quite similar to that if the variable pressing phase of this work which has already been mentioned. A consideration of tensile strength in place of bursting strength follows in general the same pattern, but deviations from the algebraic expressions may be somewhat hess pronounced. The same is true of tearing strength and here the deviations may be so small as to be hardly noticeable. (Examples are shown in Figures, Appendix C).

In instances where the degree of beating or refining and wet pressing are variable, the use of apparent density as a reference with bursting, tensile, or tearing strength has not been checked experimentally but will presumably give rise to relationships of different degrees of algebraic and geometric complexity.

Page 5 Project 1102-13 Report No. 2

These however will quite probably be no more involved than the plot of Figure 6, and in certain instances, may be somewhat simpler.

It should, as a matter of record, be here noted that the subject of sheet caliper has received critical attention. From the cited work it was concluded that roughness of the sheet surface should be given consideration in order to arrive at a more correct expression for sheet density. The authors present methods for determining what has been termed corrected apparent specific gravity which they recommend for use where a more exact figure of density is desired. Determination of corrected apparent specific gravity, however, is somewhat laborious and therefore probably not feasible for ordinary evaluation work where its use would constitute a questionable contribution.

On the Basis Veight, Thickness and Apparent Specific Gravity of Paper, by C. Gustafsson and Lars Nordman, Pappers-Och Travarutidskrift For Findland, p.353 N:o 19, 1949.

APPENDIX A

VARIABLE PRESSING STUDY
UNION RAG UNRURACHED KRAFT PULP

Presness - Constant

TABLE AL

(Pulp B -Union Bag Unbleached Kraft) (565 cc. Schopper-Riegler Freeness) VARIABLE PRESSING STUDY

Wet Pressing	Conditions	Basis							Elmendorf Test	ri L
ł	Time, min.	Weight, 24x36—480 1b.	Caliper, in.	Apparent Denaity	Mul Pt.	Mullen Burst pt. pt./36.9 lb.	Schopp 1b./in.	Schopper Tensile g/glabelb./in. lb/hn/36.9 lb. sheet 38.9	g/ sheet	8/ahe 38.9
	0	₹.5	9900*0	5.6	1.14	42.2	20.0	20.2	120	12
	5.5	38.5	0.0050	7-7	2° 114	9° ††	23.1	23.3	103	10
	5.5	38.2	7400°0	8.1	43.3	₹.2	22.8	23.2	26	6
	5.5	38.9	0.0043	0.6	6.74	1.6 ⁴	25.5	25.5	85	₩
	5.5	39°C	0.0041	9.5	49.5	मं*6म	25.8	25.7	85	₩
	5.5	39.6	0 1 00°0	7.6	71.6	20.7	28.3	27.5	82	80
	5.5 + 5	39.3	0,00,00	8.6	#* 2 <u>2</u>	51.8	27.1	26.9	11	7

(This pulp was beaten in a 1.5 lb. Valley laboratory beater, formed into handsheets, and tested according to Institute Methods except as indicated above.

Average basis weight of handsheets 38.9 lb., 24 x 36-450 rees.

APPENDIX B

. REFERENCE: A QUALITATIVE STUDY OF THE THESILE

STREEGH - SOLID FRACTION RELATION

.....R. H. Doughty

Tech. Assoc. Papers 14, No. 1, 243-5(1931)

- ABSTRACT -

Results are presented in support of the hypothesis that the properties of the paper sheet and the properties of fiber making up the sheet may be related through a knowledge of sheet structure. The data collected show especially the dependence of sheet strength on solid fraction, which is increased by wet pressing and the changes in this relation caused by various processings of the pulp. The importance of solid fraction in controlling tensile strength and of fiber properties in controlling solid fraction, are emphasised.

The effects observed are explainable by the theory that the fibers are bound in the sheet by forces principally chemical in nature, and that beating results in an increased availability of these binding forces. In addition, it is suggested that in addition to increased availability, there is also an increased efficiency of utilization of these bonds resulting from decrease in particle size on beating, and consequently greater shrinkage of sheets of beaten stuff on drying. Data are presented.

TABLE B-1 (Work of R. H. Doughty)

ON.	Ontino	ì	.	19859982 19859982 19859982 19859982 19859982 19859982 19859982 19859982 19859982 19859982 19859982 19859982 19859982 1985982 1985982 1985982 1985982 198598 198598 198598 198598 198598 19859 198598 19859 198598 19859 198598 198598 198598 198598 198598 198598 198598 198598 198598 198598 198598 198598 198598 198598 198598 198598 198598 198598 19859 198598 198598 198598 198598 198598 198598 198598 198598 1985	200 200 200 200 200 200 200 200 200 200	~ .	
CHED !		SE.	<u> </u>	14444444444444444444444444444444444444			
TEST SHEETS OF UNBLEACHED AND	Bants	18 3	4.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	1827 1827 1827 1827 1827 1821 1821 1821	28.2 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26		
'S OF	*	ì		A 25 25 25 25 25 25 25 25 25 25 25 25 25	\$\$1		
T SHEET	C September 1	during formation			0.000 0.000		•
		Semple	ģ		M 0		
ATA FO	Ultimate Ichaile		2350 2350 2350 2350 2350 2350 2350 2350	2180 2380 10190 10190	10.00 mm m		
CTH D	•		286774874		120 120 120 120 120 120 120 120 120 120	184 194 194 195 195 195 195 195 195 195 195 195 195	
STREN CE SUL	Bank verght.	7 (S	24 25 25 25 25 25 25 25 25 25 25 25 25 25	30 40 2 60 40 2 20 - 10 8	22777777777777777777777777777777777777	2002 2002 2002 2002 2002 2002 2002 200	
CNSILE SPRU	žį	14	, , , , , , , , ,	¥2628 • • • • • • • • • • • • • • • • • • •	#252848424852588888888888888888888888888		
AND TI	. 1	.8 :	_		2	•	
	O.	during formation	0.05		0.052	.	٠
CTION, UNPR	∪ .	Sample formati			404	9.04	•
LID FRACTION, UNPRO	Ultimate Continue Con	No.		1220 1210 1280 1740 1740 2790 4430 4430 4910 6430			•
T. SOLID FRACTION, UNPRO	Ultimate Calling tensile aler	the Sample 15.	1346 1350 1250 1250 1250 1050 910		40₽		•
WEIGHT, SOLID FRACTION, UNPRO	Baus Ultimate C	Solut strength frac lbs./ Sample tion sq. in. No.	1346 1350 1250 1250 1250 1050 910	2.22.22.22.22.22.22.22.22.22.22.22.22.2	1300 +066 1550 1650 1650 1310 2110 2110 2140 1310 420 420 480 480 6420 6420 6420 6420 6420 6190 6190 6190 6190	5	
BASIS WEIGHT, SOLID FRACTION, UNPRO	Wet Baus Ultimate C	ture (24x36 Nobil strength lbs./ -500) frac lbs./ Sample aq. in, pounds tion aq. in. No.	30 23.3 0.344 1240 406- 34.3 254 1130 406- 35.5 275 1130 66.6 267 1230 1231 2363 1100 1261 1020 1261 1020 1260 1260 1260	22.5 20.8 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20.6	203 1300 40h 2218 1550 2218 1550 2245 2245 2350 2315 2350 2315 2350 2350 2350 2350 2350 2350 2350 235	107	
BASIS WEIGHT, SOLID FRACTION, UNPRO	Con. Wet Baus Ultimate C	ture (24x36 Nobil strength lbs./ -500) frac lbs./ Sample aq. in, pounds tion aq. in. No.	0.018 JO 21.3 0.244 1246 40e. 0.018 JO 21.3 0.244 11360 40e. 0.028 6.86 2.267 12360 2.050 123.1 2.88 1190 2.050 2.	22.5 20.8 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20.6	37.4 . 203 1300 406 39.7 . 218 1300 406 37.5 . 218 1650 37.5 . 24 186 41.3 . 226 2196 42.7 . 33.7 34.6 42.7 . 33.7 34.6 42.7 . 33.8 46.0 39.4 . 44.6 6300 42.0 . 47.6 6420 42.0 . 47.6 6420 42.0 . 47.6 6420 42.0 . 47.6 6420 43.0 . 47.6	107	Park special to the second sec

¹ Pulp samples 39, 404 to f inclusive, and 40g were from three separate digestions numbered 3433, 3444, and 3476, respectively.

						•																AP I	IN	II	۴,	Pa	ge ·	4	
	•	-			HH		1111		1111						41111	::::::	Ш		****		H	###	###						
		###	Ш		- 1	Ш		;;;;	#	##	Ħ			H	###		###			###		###		##	****		***	****	##
							***		#	1111				##	#		***				***	****	##	##			***		
				=									75**		ij		ш					***	***	===					1
		Ш			╚	1	Ш		###			=				ш	ш		Ш			###		###			##	****	****
		Ш	Ш		==				****	***			<i>;;;;</i> ;	##		77	***		###		***	#							
									1	##	##	${\mathbb H}$					***		####			##	###	###	****	****		Ш	
	8000								-	472				#	拼					-				***				Ш	
						Ш				44						199	1		Ш				###	###			ш	шш	##
										===					₩				Ш			\Box	\pm					1111	
				===				4	1444							###	ш		##			ш		##	Ш			1111	=
					E											414	444						****				Ш	1111	\Box
-	-				三													###									##		1
			===	<u> </u>	1	1==												****	Ш								****	 	
	2,000					 	-							=	1		#		#				#						****
		===			1:=:		<u> </u>										****		###			##	##	11.	${\mathbb H}$	*****		- 4	
						 		===			==:								###			1	##:	***	#			117	===
		===		==	-==							===			===	*****	###	****	###			+##	##		H			111	
		\equiv		=					ij									#					###		##		===	;	===
ci.				1		1			===		==						Ħ				**/#	\pm		#	===			===	Ш
8				ŧΞ	<u> </u>	1==										;;;;			Ш										##
œ.	7,000				-	=												Ш	##										***
ESSER	•					 						7.27	===				###	₩	Ш	ш		#		${\mathbb H}$					***
																			ш				Ш	H	\blacksquare			Ħ	+ -
<u>.</u>		E ::	===	 ==	F	∤ ::=					<u> </u>		<u> </u>						Ш			ш		\equiv					
KEUFFEL		===:	::::	E		ļ	===		===		===	==	I							Ø.		##		==			ш	===	
ũ			-:	===	1	<u> </u>	E		===	==	===	===											$rac{1}{4}$					===	##
×		====			ļ			! ===			===	===	==	=							###	1		#			===		
	6,000		=:=		-	1			==			===	===	=					-:	₩		I	Ħ	1		Ш			
	•	=:::		::::	-:::	1	===						===	====			===	===	ΩŒ									:::::::	
					-	=													/			-					===	1	+++
		==	EE		==			===						==				==7	111	1::::	****		****	11.1			##		##
			F.313	1::=	EE									==			1,11	= I	-111			H					\blacksquare		##
		====			<u> </u>	! ::::	-			=	==	==	=	=								***	***	***				##	###
		Ē.::		1==	<u> </u>		<u> </u>	<u> </u>			===		1					H			###			$\boxplus \pm$			***		Ш
	5,000				-	-		1						ऻ		Ш		###		III									
	-	E:::	::=	 				1			<u> </u>	HΞΞ	<u> </u>	!					ш	ш	₩			##					##
					-	-1	-			=		==	<u> </u>	<u> </u>				1111				#	Ш		1			Ш	\blacksquare
N _		===	==:				E							<u> </u>		1	4					ш	Ш	###	ш		\blacksquare	#	###
. \$				==	1	-				!		===	==	FΞ			1	Ш					***	###	Ш			##	Ш
į /		::::		1::::	1					:=:		===	==				\$::	=	==	 		-	• • •						
ž 💝		:::::			==	4::::	 	1=:=				===	1=	1==		::::#	***	17:1	11111	144		***	1-11	###			1111	•	1111
lines accented	\$000			1	-	1	!	1		===					-	- 1	#						1::1	+++					
= `	-				-							ᆵ	1	1	1	¥#	Ш	Ш	!:::: :	###	Ш								##
ولا ۽ گ						-	1=	1::::		===			<u> </u>	1		* :-				!!!!		##	Hiil	Ш	Ш				$\Pi \coprod$
H inch. 51 · 10 in Diss /A		E	-					1::::	=				1	ļ::::		+++		1:::	1111	****			!!!!	Щ.	Ш		ш		
₹. 3			1				-	1		==:					1	:::::		,	Ш					***	###	! !!!!	! 	Ш	Ш
# · · ·		= : : :							===				1=:		Æ												###	₩	₩₩
		E] -::	1:::::	1:::	: :::::		E	==	===	1==	1::::	1===	1:3	<u> </u>		\equiv	I							!!!!!		 	₩	###
1, 10 - 10 to th Engraving Ulfime#©	3,000	<u></u>	1		4:	1	1	1			1	1		17.		===						F	E				ш	Ш	Ш
- Ē		É:::	1::::	1				===	!	15:55	1:-:-	E	1:::	<i>X</i> :				╚	 			E			Ш	<u> </u>		Ш	ш≝
₽ <u>Š</u>		Ext	1		- ::	.]		1		:=:	1	1: :		1::-:		27:27	:::::	=::				====			11				
_: Š		E:::		1:-:	: : : :	: :::	1:::	1: ===		1::::	1::::	::::	1	1::	E :=	==		F==			===	-	=	Ш.	;;!::		ŧ:III	!!!!	Hi
9.1		::::		:::::	:::				:::::	::::	1::::	-::	4==	1:	<u> </u>	<u> </u>		<u> </u>	1===	1		=	::::	ļii.	###	 	!	!	###
~		7.111	1:::.		1			ļ	F:=	[===	ļ:	1	1	1	<u> </u>	===	<u> </u>	! ::::	<u> </u> ::::	 	! -		:::		!!!!	 	 	 	
2		F:::	1::::				7:=	1::::	F==	=		Ó	1==	-	 	1	=	t==		1	<u> </u>				1;;;;;	11111	###	₩	₩
	2,000	1	1	-::			1:::	+	===				-	E	1==		∷≕		 	+				###	###		###	Ш	₩
	-		: : :					t==	1:	t:=	7			1==	1===	100		₩	1	133	₩	===			Ш		Ш	Ш	шШ
		-				:1=:		1	<u> </u>		/	1==	1	1	1::::	===		₩	1	₩	 							Ш	Ш
		=::				===	::::	1	<u> </u>		1		1::=	ļ==		<u> </u>		ш	ш	1111		<u> </u>	₩	ш	1111	Ш	[]]]	H	Ш
		E	::::	: ===	-1:::		: :::	J	1:=::	7	1:::::	1==	1	1==	1===	t==							H	瞫	₩	₩	11:11	Ш	###
			1	: : : :	<u> </u>	-1	1	1==	<u> </u>	٧	1:	1		1=	<u> </u>	<u> </u>	<u> </u>	<u> </u>		##	<u> </u>	1		##	₩	₩	###	H	₩.
		==:			: 1:::		1	1==	F	1	1::::	=			Į==:			[<u> </u>	1	<u> </u>		Ш	ш	###	₩	##
	4000	<u> </u>	+	1::-	1:=	-1	1	1		1==			1=	1	-	1==			11:	4			1111				###	Ш	1111
		==					:1:::	1=:	ŧ :-		-	1==		1	1:=	=		₩	Ш		1111	П	Ш		Ш		###	ш	ш
		=					1	 =:	1			1	1==			—	! ::::::			ЩШ		₽₩	; ;;;;	!!!! !		! ;;;;i	1111		
			1:::	:::::			:1=:	-	ļ					1		[==						! ::!!	Ш		Ш	1111	###	Ш	111
		H:	1:::	: ::-		: :::	: ::::		1::::	==	1==		===	11===	1==	12:3	HIE	1111	HI			!					###	###	###
		==	1		: ==		1		. ===	-			##	4:=	1	\mathbb{H}^{\parallel}	H	###	###		1111	1111	11111	ш				###	###
		HE	1111	:::::	##	:1:::	: :::	:1::::	1:::	-	::::			#=		1 ;::li	ш	1111	##		###	₩							###
	0		<u>:tí!</u>]	##:	:.:;		-1	:1-!#		+	: 1:::			1	1::::	11:11	****	ينتنز			1111	1111	1111	1111	uu o			تتب	عبيته
		.0				./			. 2	E			•	J	cti		• `	•			• •	_				_		٠, '	
														F-	نقد	~												ĝ.	
												>0//	σ		//													. В.	

Figure 83. Log Salid Fraction 15. Log Tensile Strength.

Solid Fraction

APPENDIX C

VARIABLE WEIGHT STUDY
THILMANY USEL RACHED KRAFT PULP
Freeness - Variable

TABLE 0-1

VARIABLE WEIGHT STUDY
STRENGTH AND PHYSICAL CHARACTERISTICS OF STANDARD
PRESSED HANDSHERTS
(Pulp A -Thilmany Unbloached Kraft)

10.											. ميد		٠,	۰ صو	, · . •
Fear 6./ehe 40.7		8 85	121		8/8	14 8			25	SB	8	i	3;	£.	3
Elmendorf Tear, g./sheet		8 92 116	150		r a	⊀ & %			∄2	.	‡.		23	2 <u>5</u>	, <u>, , , , , , , , , , , , , , , , , , </u>
Schopper Tensile. 1b./in./40.7 1b.		18.0	18.3 4ve. 18.25		3 3	15.0 10.0 10.0		•	8. E		0.04	-	29.0	- r.	T.
16./1n	Hogler	2,011	ส	itegler	27.0	£2.		iterior	28.8	10	47.5	11egler	23.68		년 '이
Mullen Burst, pt./40.7 15.	oc. Schopper-Riegl	28.2	Aye. 28.6	700 'et. Schopper-Riegler	56.0	56.2	AVe. 56.9	oc. Schopper-R1	76.0	75.2	Ave. 16.511.5	co. Schopper-Riegler	20 20 12 31		AVe. 25.5
Mul.	920	288 2007	y X	82	0 kg	26. 14.0		222	7.27	.0°	92.0 ₩	릙	43.1 50.5	8 0 0	
Apparent Density		20 00 00 10 00 00 00 00 00 00 00 00 00 00	<u>د</u> ه		1.11	11.6 11.9			11.2	12.0	12,1		12.8	12.7	13.1
Caliper, in.		0.0038	8600°		0.0030	0.0037			0.0030	0.0036	0 1 00°0		0.0026	38 8	0.0037
Basis Weight, 24x36—480 1b.	,	33.5	O *9		33.4 38.2	43.0 47.6	-		33.6	43.3	¥8 • 3		33•4 38 2	(N	₹. ₹.
Hominal O.D. Wt.,		11.05	Ŗ		1.05	1.35			25.6	1.35	1•3		83	1.35	1.50

Average basis veight of handsheets 40.7 lb., 24x36-480

NEUFFEL & RESER CO., N. V. NO. 358-11 10 X 10 to the Vs. lath. 9th liams accepted, MARCHER 5. A.

-860)

: i

PROJECT REPORT FORM

CC: Files

Dr. Forman

Mr. MacLaurin

Mr. Kottwitz

Mr. Madison

PROJECT NO	V 1102-13	/
COOPERATOR	Institute	
REPORT NO	3	
DATE	June 26, 1956	0
NOTE BOOK	- 607	
PAGE	76 7	7
SIGNED	Nottest)	
7,	Kettvitt	

I. Madison

"EFFECT OF CALENDERING ON HANDSHEET PROPERTIES"

OBJECTIVE

Reports number one and two of this project covered the findings from a study of the influence of basis weight and wet pressing in the evaluation of handsheets. This report summarises a similar study of the influence of dry pressing (calendering).

RAY MATERIAL

Union Bag & Paper Corporation - unbleached kraft, 565 cc. Schopper-Riegler freeness.

The pulp was taken from the same lot cited in Reports one and two above.

EXPERIMENTAL

A series of British handsheets of nominal weights 1.05, 1.20, 1.35, and 1.50 g. ovendry were prepared according to Institute methods. These were trimmed to the largest possible square sheet and calendered (cold) on the pulping laboratory laminating machine. Sheets from each set of the weight series were calendered seperately: one light pressure pass (1LPP), one medium pressure pass (1MPP), and six medium pressure passes (6MPP). Equipment was not available for determining calender mip or roll pressures. Uncalendered sheets were used as a base line for comparison.

RESULTS

Results of the effect of various degrees of calendering are given in Table I. Within the range of calendering studied the following are indicated:

1. For sheets of basis weight 33.7 and 38.6 lb., 24x36-480 lb. ream, calendering produced a significant increase in tensile strength which passed through a maximum as the degree of calendering was increased.

For basis weights of 43.8 and 48.5 significant improvement of tensile strength was not obtained.

- 2. Slight improvement of tear factor was realized by light calendering. Heavier calendering produced a decrease in this property.
- 3. Both apparent density and low angle gless values were increased by increased calendaring.

TABLE I

EFFECT OF LABORATORY CALENDERING ON HANDSHEET TESTS

	Bursting Strength,	Strong th,	Tear	Apparent	Low Angle
Celendering	pt./100 15.	1b./in./100 1b.	Factor	Density	Gloss
	(Ba	ais Weight 33.7 1	b.)		
None	187	85.7	1.31	11.2	4
1LPP*:	1 5 8	93.2	1.31	12.0	Ļ
lmpp+	182	98.5	1.12	13.0	5 9
6MPP*	174	95.6	1.21	14.1	9
	(Be	usis Yeight 38.6 1	b.)		
None	190	g1.1	1.34	11.7	并
1LPP	187	96.2	1.42	12.7	
1MPP	189	90.6	1.20	12.7	5
6MPP	174	89.7	1.13	14.1	5 5 9
OMFF	714	03.1	+++)	****	,
	(Ba	sis Veight 43.8 1	b.)		
Hone	185	94.2	1.41	12.0	4
1LPP	198	94.1	1.45	12.6	5 6
1)(PP	186	97.9	1.45	13.2	6
6MPP	178	95.2	1.47	14.2	10
	(Be	sis Veight 48.5 1	b.)		•
None	190	98.3	1.53	12.1	4
1LPP	191	87.2	1.56	12.8	
1MPP	189	87.0	1.43	13.4	5 5
6) CP	189	80.7	1.44	13.9	ío
	,	,	- •		

^{* 1} light pressure pass

. . .

HOTE: Basis weight figures are in 1b. 24x36-450 ream.
Data from Code Office reports No. 137829 to 137844, inclusive.

¹ medium pressure pass

⁶ med hum pressure passes

PROJECT REPORT FORM

Copies to: Files

Wink Gertz Dearth Reading Copy

PROJECT NO.—	1102-13	
COOPERATOR_	I.P.C.	
REPORT NO.	4.	
	eptember 2.	1958
NOTE BOOK	Calibratio	
PAGE 225	TO	226
SIGNED	RHE	2Vh
JUNEU-	R. Garte	7

L. Dearth

COMPARISON OF LOW ANGLE GLOSSMETER AND MODIFIED BAUSCH AND LOMB GLOSSMETER

In obtaining the gloss readings for the samples used, it was found that there was an appreciable difference in the results from the two glossmeters. The Bausch and Lomb, which had been modified from the original instrument, showed much higher gloss readings on every sample excepting one.

Being an instrument of good resolution, the Low Angle
Glossmeter had to have something to hold the samples flat, so that
accurate readings could be taken. A Porous Bronze Plate connected to a
vacuum pump was used to hold the samples flat.

The readings were taken on both Glossmeters to the nearest half unit and are listed below in Table I. Most of the gloss readings for the Black and Yellow samples were over 100 as obtained on the B and L Glossmeter. These readings are shown in Table I as "100+."

* Paper Evaluation Humidity Room

TABLE I

Sample		Low An	gle Glos	ssmeter		Ave.		B and I	Glossm	neter		Ave.
7 5 1 6 3 Creme Yellow Red Blue Black Green	44.0 50.0 76.0 77.0 59.0 77.0 69.0 82.5 71.5 71.5	46.0 60.0 76.5 76.5 71.0 71.5 82.0 84.0 70.0 75.0	47.5 60.0 75.0 76.5 57.0 66.5 69.5 79.0 79.0 76.0	42.5 61.5 78.0 56.5 70.5 71.0 79.5 77.0 83.0 77.5 68.5	44.0 62.0 77.0 77.0 58.5 70.0 82.5 76.0 76.0	45.2 60.7 76.5 75.8 57.3 70.2 82.1 80.2 75.9 77.1	79.0 76.5 78.0 98.0 78.0 77.5 98.5 100+ 98.5 100+ 99.0	78.0 76.0 78.0 99.0 78.5 100.0 99.5 97.5 98.5 100+	79.0 75.5 77.5 97.5 77.5 99.5 100.0 99.5 100+	78.0 76.5 78.0 97.5 73.5 77.5 100.0 100+ 98.0 98.5 100+ 100.0	78.5 75.0 78.0 97.0 79.5 99.0 100+ 98.5 99.0	78.5 76.1 77.9 97.8 78.0 78.1 99.4 100+ 98.6 100+ 99.2

rg/ld/st

PROJECT REPORT FORM

Copies to: Files Wink Gerts Dearth Reading Copy

PROJECT NO.	1/110	12-13	•	· · ·
COORTATO	in In	tituta	North S	s. ·
A SECTION AND ADDRESS OF	444	70 W 1995	1. 15 E	tier Qu
77.2	Ser	Section After	12. 19	258
VIOLET SOLE	の安全	II STAT	Boo	No.8
	229	对对于	第 、李俊	\$ 1.45
	111			k. K.
166.分均或	4 Cart	7211	***	ク
	He is	大小		
	7 A Y	1726	AZZ	· ,;
9	Pest	第 :原质数	A	

COMPARISON OF LOW ANGLE GLOSSMETER AND MODIFIED BAUSCH AND LOMB GLOSSMETER

In order to compare the Low Angle Glossmeter and the Modified Bausch and Lomb Glossmeter more closely, more readings were taken from samples of a wider gloss range. With the exception of a few low gloss samples under one point on the Low Angle Glossmeter, the Bausch and Lomb showed much higher gloss readings than did the Low Angle Glossmeter. In regard to these low gloss samples, the Bausch and Lomb readings were still higher than the Low Angle readings, but their differences were comparatively smaller than the higher gloss samples, as shown in Table II.

The samples were read in both the "in" and "across" machine directions and read to the nearest half unit and are listed below in Tables I and II.

* Paper Evaluation Humidity Room

Ķ, 1 11117 A second ٤ 1 44445 Ç a graps ľ <u>..</u> b 1 34565 E ja darud Ľ 44 MAR ŕ **}** ********* 27277 k a] 2222272222 } p 2277.42 P 4. 4241737777 77777 27267 กราชานุกร 1 7000000000 1 2222222222 1 2222222222 r fi coreur) 37767B Ballede Ballede 14 32-7913355 Ġ 77:27 17777 ŗ, 1 3 333555555 31 14 da 2: 324 il erdantiger. 1777 1 3.2322222 4 20000000 1 :::::: 14 127829222 認識 ------32232 712712 1 2232222 i sigasata aned di 77777 14 and and and and a 1 3d35434363 111111 * ******** 1 115 TERRETT 4 3156660000 11111 34 1722521345 Eere Harrennerge H A FARIL * - | 1.0525.5535.55535.55 - 555599 Vereil TH SENTENCERSERRESER 11775 77577 77 6296 a 6647499997988898 in 05557F00535503580

THE TAX THE COMME CONTRACT OF THE CONTRACT OF

THE STATE OF THE PARTY OF THE P

PROJECT REPORT FORM

Copies to: riles

Mr. Wink
Dr. Howells
Mr. Van Eperen
Mr. Weiner

PROJECT NO. 1102-13
COOPERATOR Institute
REPORT NO. SIX
DATE April 15, 1968
NOTE BOOK None
PAGETQ
SIGNED ROSPER N. Van Gorson
Roger H. Van Eperen

THE EFFECT OF RESTRAINED AND UNRESTRAINED DRYING ON THE PHYSICAL PROPERTIES OF HANDSHEETS PREPARED FROM THREE HARDWOOD PULPS

INTRODUCTION

This study was undertaken to determine the effect of restrained (ring-dried) and unrestrained drying on the physical properties of handsheets. Three hardwood pulps (Institute File No. 68-70068/070) obtained from Dr. Ferdinand Kraft in a study for Western Kraft Corporation were identified as:

Pulp Sample Code	Company Identification
1	Sample 9 - Bleached, Mixed Hardwood (Experimental)
2	Sample 10 - Commercial Pulp (Hardwood)
3	Sample 12 - Commercial Pulp (Hardwood)

Additional data on species identifications and on standard beater evaluations for the three pulps can be found under Institute File No. 67-72588/589, 68-70884/885 and 68-70886/887 (the latter two to be completed in the near future) for Pulp Samples 1, 2 and 3, respectively.

The pulps were beaten to four levels and handsheets were prepared at each level. Half of these were dried under restraint on rings and the other half

"floated" on sand so they could dry without external restraint. The freeness at each beating level, the shrinkage of the unrestrained sheets, and the basis weight, thickness, density, tensile breaking length, stretch, tensile energy absorption, tensile stiffness, opacity, specific scattering coefficient, in-plane tearing energy, air permeability, and hygroexpansivity of the handsheets dried with and without restraint are given in this report.

The purpose of this report is only to report the data; therefore, no attempt is made to analyze the relative merits of the two drying procedures or the reasons for any differences in the handsheet properties. However, appropriate comments pointing out the differences in the properties of the handsheets dried with and without retraint are given.

HANDSHEET PREPARATION

PULP PREPARATION

The dry-lap pulp was soaked in water for the required minimum of four hours, disintegrated and beaten in a Valley beater in accord with TAPPI Method T 200 ts-66. For each sample twenty-five grams of pulp (moisture-free basis) was withdrawn from the beater before beating and after beating intervals of 5, 15 and 25 minutes. The pulp was cleared in the standard disintegrator for 15000 revolutions in two lots of 12.5 grams each. The two lots were then recombined and mixed thoroughly.

SHEET FORMING AND COUCHING

The handsheets were formed in a sheet machine as described in TAPPI Method
T 205 m-58. As an aid to achieving optimum formation of the handsheets, the drain cock of the sheet machine was opened immediately after stirring.

It is known from past studies that the differential expansion characteristics of the couch material are partially imparted to the handsheet. To eliminate this effect the handsheets, after forming, were covered first with two premoistened Whatman No. 1 filter papers and then with a dry blotter for couching. It is also known that the couch direction will impart a directionality to the handsheets. The handsheets were marked so that the couch direction could be identified for subsequent testing. Two sets of handsheets were prepared as described above. Set 1 to be dried under restraint in standard drying rings and Set 2 to be dried without external restraint.

WET PRESSING

The handsheets of Set 1 were wet-pressed twice at 50 p.s.i., first for 5 minutes and then for 2 minutes. For each pressing the handsheets were pressed in a sandwich comprised of a dry blotter, the two couch filter papers, the handsheet, and a mirror-polished disc.

The handsheets of Set 2 were wet-pressed once at 50 p.s.i. for 5 minutes. For this pressing the handsheets were pressed in a sandwich comprised of a dry blotter, the two premoistened couch filter papers, the handsheet, two premoistened filter papers, and a dry blotter.

DRYING

The handsheets of Set 1 were dried in standard drying rings at 10% R.H. and 23°C. Only the mirror-polished discs were left intact with the handsheets during drying.

The handsheets of Set 2 were placed on a level layer of Cttawa sand (screened to pass a 20 mesh and be retained on a 30-mesh screen) in a room controlled at

98.5% R.H. and 23°C. The sand permitted the handsheets to shrink freely without adhering to the supporting surface. After allowing several days for the handsheets to come to equilibrium with this condition, the moisture content of several sheets was measured and found to be about 50% on the airdry basis. The relative humidity of the room was then slowly lowered over a period of five days, after which the handsheets had a measured moisture content of about 18% on the airdry basis. The handsheets developed some waviness during this drying. This waviness was effectively removed by pressing the handsheets at 1000 p.s.i. while at 18% moisture content. For this pressing the handsheets were sandwiched between four whatman No. 1 filter papers which had been conditioned in the same environment. Following this pressing, the handsheets were conditioned to equilibrium in the 10% R.H., 23°C. environment.

TESTING PROCEDURES

Shrinkage was measured and the specimens for the remaining tests were cut in the 10% R.H., 23°C. atmosphere. Except for the specimens intended for the measurement of hygroexpansivity, all specimens were then conditioned and tested in a 50% R.H., 23°C. atmosphere. Where applicable, the tests were performed in accord with TAPPI Method T 220 m-60.

SHRINKAGE

The shrinkages of the Set 2 handsheets (those dried without restraint) were determined at 10% R.H. and 23°C. with a steel rule (graduated to the nearest 0.01 inch) using a magnification of about 3%. The diameters, parallel with and perpendicular to the direction of couching, were measured and the differences in dimension relative to the diameter of the sheet mold were computed as percent shrinkages.

LOAD-ELONGATION CHARACTERISTICS

Load-elongation relationships were obtained at a crosshead speed of 2.54 cm./min. for specimens 10 cm. long and 2.54 cm. wide. The long dimension of the specimen was parallel with the couch direction of the handsheet. The tensile strength (computed as breaking length), stretch, tensile energy absorption and tensile stiffness were determined from the load-elongation relationships. The latter two properties were normalized for a sheet having a basis weight of 60 g./sq. m. (ovendry) assuming a linear relationship.

OPACITY AND SPECIFIC SCATTERING COEFFICIENT

The opacity and the reflectances required for determining the specific scattering coefficient were measured with a Bausch and Lomb Opacimeter in accord with TAPPI Method T 425 m-60. The opacity values were normalized for a sheet having a basis weight of 60 g./sq. m. using the Kubelka and Munk charts.

IN-PLANE TEAR

The in-plane tear was determined in accord with a procedure described by Van den Akker, Wink and Van Eperen, Tappi 50, no. 9:466-70(Sept. 1967). The total tearing angle was 12 degrees; the tearing distance, 5 cm.; and the initial distance between clamps, 5 cm. The direction of the line of tear was perpendicular to the couch direction of the handsheets. The in-plane tear results were normalized for a sheet having a basis weight of 60 g./sq. m. assuming a linear relationship.

AIR PERMEABILITY

The air permeability was measured with a Bendtsen instrument over a 10 sq. cm. area, using a pressure gradient across the specimen corresponding to 150 mm. of water.

HYGROEXPANSIVITY

The specimens used for the measurement of hydroexpansivity were transferred directly from the 10% R.H. environment to the test chamber of a Neenah expansimeter. Hygroexpansivity was determined for subsequent exposures to relative humidities of 11.1, 48.6, 75.5, 92.9, 75.5, 48.6 and 11.1%. The tests were performed in a direction parallel with the couch direction of the handsheets.

TEST RESULTS

The average test results are given in Table I. All of the results for each test are grouped for convenience in inspecting the effects of drying conditions and beating on any one property of the handsheets.

The hydroexpansivity results in Table I are summaries of the expansion for a relative humidity change from 11.1 to 92.9%, and the contraction for a relative humidity change from 92.9 to 11.1%. The change in length that occurred at 11.1% R.H. after exposure to 92.9% R.H. is also given. The hygroexpansivity results for each step in relative humidity and for the individual specimens are given in Table II. A plot of the change in length as a function of relative humidity for the handsheets prepared from the unbeaten pulp and the pulp beaten for 25 minutes is given in Figures 1, 2 and 3 for Pulp Samples 1, 2 and 3, respectively.

TABLE I

PHYSICAL TEST DATA FOR HANDSHEETS DRIED UNDER RESTRAINED AND UNRESTRAINED CONDITIONS

Beating time, min.		5	15	_25
Canadian standard freeness.cc. Pul: Sample 1 Pulp Sample 2 Pulp Sample 3	540	470	345	200
	555	470	435	280
	565	475	430	330
Basis weight, g./sq. m. (oven dry)				
Pulp Sample 1, restrained drying unrestrained drying	59.3	60.5	59.1	60.1
	60.0	61.6	59.8	62.2
Pulp Sample 2, restrained drying unrestrained drying	61.0	60.6	60.0	61.0
	61.8	61.4	62.4	63.3
Pulp Sample 3, restrained drying unrestrained drying	60.0	60.3	61.5	61.1
	60.8	61.6	64.2	63.8
Shrinkage of unrestrained handsheets upon drying to 10% R.H., 23°C., %				
Pulp Sample 1, in couch direction across couch direction	1.2 1.3	2.3	3.4 3.2	4.8 4.5
Pulp Sample 2, in couch direction across couch direction	1.0	1.5 1.5	2.1 1.9	3.2 3.1
Pulp Sample 3, in couch direction across couch direction	1.0	1.9	2.6 2.6	3.2 3.1
Thickness, microns				
Pulp Sample 1, restrained drying unrestrained drying	132	114	104	96
	107	109	107	107
Pulp Sample 2, restrained drying unrestrained drying	117	1 04	96	91
	99	99	96	99
Pulp Sample 3, restrained drying unrestrained drying	107	99	94	89
	99	99	99	96

TABLE I (continued)

PHYSICAL TEST DATA FOR HANDSHEETS DRIED UNDER RESTRAINED AND UNRESTRAINED CONDITIONS

Beating time, min.	0		15	25
Density, g./cc.				
Pulp Sample 1, restrained drying unrestrained drying	0.45	0.53	0.57	0.62
	0.56	0.56	0.56	0.58
Pulp Sample 2, restrained drying unrestrained drying	0.52	0.58	0.62	0.67
	0.62	0.62	0.65	0.64
Pulp Sample 3, restrained drying unrestrained drying	0.56	0.61	0.65	0.69
	0.61	0.62	0.65	0.66
Tensile breaking length, m.				
Pulp Sample 1, restrained drying unrestrained drying	2270	4590	5770	7130
	2010	3700	4990	6080
Pulp Sample 2, restrained drying unrestrained drying	1960	3430	5090	6480
	1860	3080	4380	5660
Pulp Sample 3, restrained drying unrestrained drying	3440	5670	7260	8130
	3180	4820	6020	7090
Stretch, %				
Pulp Sample 1, restrained drying unrestrained drying	1.0	2.2	2.6	3.2
	1.8	3.8	5.5	7.3
Pulp Sample 2, restrained drying unrestrained drying	0.8 1.4	1.3	1.9 3.7	2.7 5.0
Pulp Sample 3, restrained drying unrestrained drying	1.2	1.9	2.4	2.5
	2.2	3.5	4.4	5.4
Tensile energy absorption, g. cm./sq. cm.				
Pulp Sample 1, restrained drying unrestrained drying	9.5	43.8	65.7	98.5
	15.2	59.6	112	177
Pulp Sample 2, restrained drying unrestrained drying	6.2	19.0	41.5	70.3
	10.0	30.5	65.2	116
Pulp Sample 3, restrained drying unrestrained drying	16.5	44.9	73.6	84.6
	27.8	67.4	103	146

TABLE I (continued)

PHYSICAL TEST DATA FOR HANDSHEETS DRIED UNDER RESTRAINED AND UNRESTRAINED CONDITIONS

Beating time, min.	0	5	15	25
Tensile stiffness, kg./cm.			,	
Pulp Sample 1, restrained drying unrestrained drying	270	369	431	469
	170	220	245	261
Pulp Sample 2, restrained drying unrestrained drying	251	347	415	462
	165	218	252	277
Pulp Sample 3, restrained drying unrestrained drying	372	467	528	531
	235	267	293	311
Opacity, %				
Pulp Sample 1, restrained drying unrestrained drying	83.8	81.3	80.0	78.6
	83.5	81.5	80.4	78.2
Pulp Sample 2, restrained drying unrestrained drying	83.3	82.1	79.7	78.2
	83.1	81.7	79.0	76.8
Pulp Sample 3, restrained drying unrestrained drying	79.6	77.3	74.8	73.6
	79.1	77.3	74.5	72.2
Specific scattering coefficient, sq. cm./g.				
Pulp Sample 1, restrained drying unrestrained drying	530	445	433	389
	518	453	431	379
Pulp Sample 2, restrained drying unrestrained drying	523	477	427	390
	508	459	410	365
Pulp Sample 3, restrained drying unrestrained drying	427	375	340	321
	408	370	330	301
In-plane tear, g. cm. (for 5 cm. tearing lengt	h)			
Pulp Sample 1, restrained drying unrestrained drying	117	219	283	329
	108	229	328	440
Pulp Sample 2, restrained drying unrestrained drying	107	162	214	247
	94	164	219	286
Pulp Sample 3, restrained drying unrestrained drying	217	284	308	31
	207	294	329	37

TABLE I (continued)

PHYSICAL TEST DATA FOR HANDSHEETS DRIED UNDER

RESTRAINED AND UNRESTRAINED CONDITIONS

Beating time, min.		 5	15	_ 25
Bendtsen air permeability, ml./min.	•			
Pulp Sample 1, restrained drying unrestrained drying	3190+	2270	1030	226
	2410	1400	596	161
Pulp Sample 2, restrained drying unrestrained drying	2440	1240	605	154
	1130	612	277	110
Pulp Sample 3, restrained drying unrestrained drying	2050	1040	377	151
	1050	592	223	84
Hygroexpansivity, % expansion for relative humidity change of 11.1 to 92.9%				
Pulp Sample 1, restrained drying unrestrained drying	0.321	0.330	0.365	0.400
	0.967	1.247	1.463	1.788
Pulp Sample 2, restrained drying unrestrained drying	0.346	0.332	0.294	0.501
	0.936	1.117	1.220	1.454
Pulp Sample 3, restrained drying unrestrained drying	0.359	0.417	0.451	0.452
	0.981	1.231	1.345	1.501
Hygroexpansivity, % contraction for relative humidity change of 92.9 to 11.1%			•	
Pulp Sample 1, restrained drying unrestrained drying	0.517	0.637	0.737	0.798
	0.751	1.072	1.307	1.691
Pulp Sample 2, restrained drying unrestrained drying	0.599	0.667	0.692	0.822
	0.781	0.947	1.135	1.396
Pulp Sample 3, restrained drying unrestrained drying	0.573	0.685	0.716	0.765
	0.821	1.044	1.230	1.432
Hygroexpansivity, \$ expansion for relative humidity change of 11.1 to 92.9 to 11.1%				·
Pulp Sample 1, restrained drying unrestrained drying	-0.196 0.216	-0.307 0.175	-	-0.398 0.097
Pulp Sample 2, restrained drying unrestrained drying	-0.253	-0.335	-0.398	-0.321
	0.155	0.170	0.085	0.058
Pulp Sample 3, restrained drying unrestrained drying	-0.214	-0.268	-0.265	-0.313
	0.161	0.187	0.115	0.069

TABLE II

HYGROEXPANSIVITY, %, OF HANDSHEETS UNDER RESTRAINED AND UNRESTRAINED DRYING CONDITIONS

Relative Humidity,	Beating Time, min.				Beating Time, min.			
4	0	5	15	25		5	<u> </u>	25
			ס זוז ס	SAMPLE 1				
				ORM LIB I		- 	 	_
•	Restrained Drying					nrestrain	ed Drying	
11.1 to 48.6							. 0 1:00	10.100
Strip 1	+0.099	+0.116	+0.178	+0.180	+0.272	+0.357	+0.420	+0.486
Strip 2	+0.102	+0.164	+0.168	+0.172	+0.272	+0.370	+0.431	+0.549
Strip 3	+0.203	+0.134	+0.130	+0.181				
Average	+0.135	+0.138	+0.159	+0.178	+0.272	+0.364	+0.426	+0.518
48.6 to 75.5								
Strip 1	+0.057	+0.064	+0.107	+0.094	+0.263	+0.337	+0.402	+0.497
	+0.066	+0.090	+0.098	+0.098	+0.248	+0.317	+0.380	+0.455
Strip 2	+0.106	+0.079	+0.055	+0.091	101213	10.5_		
Strip 3	+0.100	+0.079	+0.055	+0.091		•		
Average	+0.076	+0.078	+0.087	+0.094	+0.256	+0.327	+0.391	+0.476
75.5 to 92.9								
Strip 1	+0.097	+0.113	+0.134	+0.138	+0.437	+0.568	+0.636	+0.793
Strip 2	+0.095	+0.113	+0.127	+0.113	+0.441	+0.545	+0.656	+0.794
Strip 3	+0.138	+0.115	+0.095	+0.132	101,12			
Average	+0.110	+0.114	+0.119	+0.128	+0.439	+0.556	+0.646	+0.794
	•			•				
92.9 to 75.5								
Strip 1	-0.146	-0.188	-0.211	-0.229	-0.241	-0.348	-0.441	-0.571
Strip 2	-0.135	-0.170	-0.195	-0.210	-0.258	-0.392	-0.481	-0.638
Strip 3	-0.167	-0.204	-0.244	-0.260	-			
Average	-0.149	-0.187	-0.217	-0.233	-0.250	-0.370	-0.461	-0.604
75.5 to 48.6	0.166	0 101	-0.227	-0.231	-0.236	-0.321	-0.396	-0.510
Strip 1	-0.156	-0.191			-0.216		- 651	-0.512
Strip 2	-0.150	-0.193	-0.225	-0.248	-0.210	-0.315	-0.396	-0.712
Strip 3	-0.164	-0.190	-0.227	-0.240				
Average	-0.157	-0.191	-0.226	-0.240	-0.226	-0.318	-0.396	-0.511
48.6 to 11.1								
Strip 1	-0.205	-0.256	-0.287	-0.317	-0.270	-0.374	-0.439	-0.565
Strip 2	-0.207	-0.250	-0.280	-0.319	-0.280	-0.393	-0.461	-0.588
Strip 3	-0.220	-0.272	-0.316	-0.339				
Average	-0.211	-0.259	-0.294	-0.325	-0.275	-0.384	-0.450	-0.57 6

The plus sign preceding the hygroexpansivity values denotes expansion; the minus sign contraction.

TABLE II (continued)

HYGROEXPANSIVITY, %. OF HANDSHEETS UNDER RESTRAINED AND UNRESTRAINED DRYING CONDITIONS

Humidity,		Beating Time, min.				Beating 7	Cime, min	
\$	0	5	_15	25	0	5	<u> 15</u>	25
			PULP	SAMPLE 2				
		Restrain	ed Drying			Unrestrai	ned Dryin	ß
11.1 to 48.6								
Strip 1	+0.158	+0.087	+0.107	+0.189	+0.284	+0.345	+0.385	+0.446
Strip 2	+0.134	+0.100	+0.100	+0.257	+0.307	+0.379	+0.393	+0.459
Strip 3	+0.120	+0.199	+0.120	+0.195				
Average	+0.137	+0.129	+0.109	+0.214	+0.296	+0.362	+0.389	+0.452
8.6 to 75.5								
Strip 1	+0.099	+0.068	+0.072	+0.117	+0.275	+0.328	+0.366	+0.427
Strip 2	+0.083	+0.068	+0.066	+0.151	+0.267	+0.317	+0.328	+0.402
Strip 3	+0.073	+0.102	+0.071	+0.114				
Average	+0.085	+0.079	+0.070	+0.127	+0.271	+0.322	+0.347	+0.414
75.5 to 92.9								
Strip 1	+0.132	+0.117	+0.121	+0.163	+0.399	+0.482	+0.554	+0.657
Strip 2	+0.118	+0.108	+0.108	+0.161	+0.339	+0.384	+0.414	+0.518
Strip 3	+0.121	+0.146	+0.117	+0.157				
Average	+0.124	+0.124	+0.115	+0.160	+0.369	+0.433	+0.484	+0.588
2.9 to 75.5								
Strip 1	-0.174	-0.188	-0.190	-0.229	-0.245	-0.306	-0.372	-0.469
Strip 2	-0.159	-0.168	-0.172	-0.200	-0.217	-0.258	-0.316	-0.406
Strip 3	-0.181	-0.208	-0.208	-0.248				
Average	-0.171	-0.138	-0.190	-0.226	-0.231	-0.282	-0.344	-0.438
5.5 to 48.6								
Strip 1	-0.193	-0.199	-0.219	-0.264	-0.250	-0.313	-0.370	-0.469
Strip 2	-0.177	-0.193	-0.219	-0.258	-0.252	-0.296	-0.369	-0.443
Strip 3	-0.177	-0.216	-0.208	-0.251	-			
Average	-0.182	-0.203	-0.215	-0.258	-0.251	-0.304	-0.370	-0.456
8.6 to 11.1								
Strip 1	-0.248	-0.268	-0.280	-0.333	-0.305	-0.362	-0.423	-0.518
Strip 2	-0.238	-0.258	-0.285	-0.323	-0.293	-0.360	-0.419	-0.486
Strip 3	-0.253	-0.303	-0.297	-0.357	,	-	-	
Average	-0.246	-0.276	-0.237	-0.338	-0.299	-0.361	-0.421	-0.502

TABLE II (continued)

HYGROEXPANSIVITY, %, OF HANDSHEETS UNDER RESTRAINED AND UNRESTRAINED DRYING CONDITIONS

	•			-	w. •			
Relative Humidity,	Beating Time, min.				Beating Time, min.			
<u> </u>	0	- 5	15	25	0	5	15	25
			PULP	SAMPLE 3				
		Restraine	ed Drying			<u>Inrestrai:</u>	ned Dryin	<u> </u>
11.1 to 48.6								
Strip 1	+0.087	+0.170	+0.180	+0.170	+0.367	+0.489	+0.437	+0.553
Strip 2	+0.190	+0.178	+0.231	+0.217	+0.327	+0.376	+0.457	+0.441
Strip 3	+0.179	+0.187	+0.195	+0.199				
Average	+0.152	+0.178	+0.202	+0.195	+0.347	+0.432	+0.447	+0.497
48.6 to 75.5								
Strip 1	+0.062	+0.094	+0.111	+0.099	+0.271	+0.359	+0.365	+0.437
Strip 2	+0.107	+0.103	+0.107	+0.114	+0.256	+0.311	+0.369	+0.380
Strip 3	+0.104	+0.102	+0.102	+0.116				
Average	+0.091	+0.100	+0.107	+0.110	+0.264	+0.335	+0.367	+0.408
75.5 to 92.9	.0.302	.0.347	10.340	10.349	10 330	10 has	+0.468	+0.556
Strip 1	+0.103	+0.146	+0.142	+0.148	+0.339 +0.401	+0.425 +0.503	+0.594	+0.637
Strip 2 Strip 3	+0.109 +0.136	+0.124 +0.147	+0.136 +0.147	+0.135 +0.159	70,401	+0.505	+0.55+	10.007
Average	+0.116	+0.139	+0.142	+0.147	+0.370	+0.464	+0.531	+0.596
92.9 to 75.5								- 1:00
Strip l	-0.154	-0.204	-0.204	-0.221	-0.234	-0.290	-0.365	-0.438
Strip 2	-0.144	-0.172	-0.178	-0.189	-0.283	-0.375	-0.446	-0.506
Strip 3	-0.188	-0.217	-0.217	-0.246				
Average	-0.162	-0.198	-0.200	-0.219	-0.258	-0.332	-0.406	-0.472
75.5 to 48.6								
Strip l	-0.158	-0.217	-0.227	-0.236	-0.252	-0.327	-0.384	-0.457
Strip 2	-0.177	-0.203	-0.211	-0.223	-0.254	-0.321	-0.380	-0.427
Strip 3	-0.177	-0.199	-0.223	-0.240			-	
Average	-0.171	-0.206	-0.220	-0.233	-0.253	-0.324	-0.382	-0.442
100 (4, 33, 3								
48.6 to 11.1	0 221	0.202	V 300	-0.311	-0.303	-0.374	-0.431	-0.531
Strip 1 Strip 2	-0.234 -0.238	-0.283 -0.272	-0.299 -0.278	-0.299	-0.316	-0.403	-0.453	-0.505
Strip 2 Strip 3	-0.238 -0.249	-0.272 -0.289	-0.278	-0.299	-0.710	-0.40)	-0.477	-0.,00
average	-0.240	-0.281	-0.296	-0.313	-0.310	-0.388	-0.442	-0.518

COMMENTS ON DIFFERENCES IN HANDSHEET PROPERTIES

The following comments are given in the order in which the data appear in the report.

- 1. The basis weight of the sheets dried without restraint is somewhat higher than for the ring-dried sheets as a result of the shrinkage that occurred during drying of the former.
- 2. The shrinkage that occurred during drying of the sheets dried without restraint increased with beating; the amount of shrinkage was the same for measurements made in and across the couch direction.
- 3. The thickness and density of the sheets dried without restraint did not change very much with beating; the ring-dried sheets exhibited the more typical behavior, with the thickness descreasing and the density increasing with increased beating.
- 4. The tensile breaking length of both the ring-dried sheets and the sheets dried without restraint increased with beating, although the latter had a somewhat lower strength and increased at a somewhat lower rate.
- 5. The stretch of the sheets dried without restraint is about double that of the ring-dried sheets at all levels of beating. Stretch increased with beating.
- 6. The tensile energy absorptions reflect the changes in tensile breaking length and stretch.
- 7. The tensile stiffness of the sheets dried without restraint is about 60% of that of the ring-dried sheets. Both increase with beating at about the same rate.

- 8. The specific scattering coefficients of the sheets dried without restraint is about 5% lower than that of the ring-dried sheets.
- 9. The in-plane tearing energy of the sheets dried without restraint increases at a greater rate with beating than that of the ring-dried sheets. It is
 at a lower level for the unbeaten sheets and at a higher level for the beaten sheets.
- 10. The air permeability of the sheets dried without restraint is much lower than that of the ring-dried sheets.
- 11. The hygroexpansivity of the sheets dried without restraint is about 3 to 4 times that of the ring-dried sheets for increases in relative humidity from 11 to 93%, and less than 2 times for subsequent decreases in relative humidity to 11%. In both cases, the hygroexpansivity increases with beating.
- 12. The ring-dried sheets exhibit a net shrinkage at 11% R.H. when exposed to a relative humidity cycle of 11 to 93 to 11%. The amount of shrinkage increases with beating. The sheets dried without restraint exhibit a net expansion when exposed to the same humidity cycle. The amount of expansion decreases without beating.
- 13. The observations in Item 12 for the sheets dried without restraint suggest that there was, in fact, no external restraint on the sheets during drying. A sheet dried under restraint would be expected to exhibit a net shrinkage at 11% R.H. after relaxing at 93% R.H. A sheet dried without restraint would be expected to have the same dimension at 11% R.H. both before and after exposure to 93% R.H. The increase in dimension at 11% R.H. observed for the sheets dried without restraint is attributed to creep resulting from the small force (5 g.) applied to the specimens during the hygroexpansivity measurement. This is consistent with the data where the greatest increase is noted for the weaker unbeaten sheets.

14. Much greater variability exists in the hygroexpansivity results of individual specimens for the ring-dried sheets than for the sheets dried without restraint. The variability, for the ring-dried sheets, is less after exposure to 93% R.H. than before.

د. د