

Inaticuse of Paper Solence mid Proturiony Censed Pite

PROJECT REPORT FORM

Copies to: Files
Mr. Steal
Dr. Norman
Kr. Kottritz
Mr. Madison

8. Madison

INTRODUCTION

The problems encountered in paper evaluation and pulp testing by use of handsheet physical evaluation procedures often give rise to insurmountable difficulties in the correct interpretation of expertmental data. Even wt careful control of methods and procedures, there always remains connected w th" an operation or test some legree of residual variability. Paper testing is not different in this respect, and the problem mast be considered. It is the purpose of this work to study certain aspects of data interpretation. The study is particularly devoted to an examination of the dependence of various strength and physical properties on sheet weight, mass, or substance, and the methods of correcting these data for sheet weight variations.

EXPRRIMTAYAN PROCEDURE

Two unbleached kraft pulps which have been designated as palp A and pulp B were beaten in a 1.5 ib. Valley laboratory beater according to the usual evaluation procedures (Institute Method 403) using a $6,500 \mathrm{~g}$. bedplate loading. From these pulps regular British
handsheets of nominal oven dry voigite $1.05,1.20,1.35$ and 1.50 grams vere made. These were prepared, conditioned, and tested for cellper, basis velght ($24 \times 36-480$), apparent density, barsting strangth, tearing strength, Schopper tensile strength, and stretch according to Institute Methods.

Debignation	Identification
Polp A	Ihil many Unbleached Iraft
Pulp B	Union Bag Unbleached Yraft

besults

Strength and physical characteristics of the handshoets prepared from Paips A and B havo been tablatated in Tables I and II, respectively. These data are the arithetic average of tests made. Por complete data and test conditions refer to code office roportefil. nos. 137092-137095 and 139101-139104.
trrafkchet of data
(Discussion)

In the interpretation of burst and tear data, the usual procedure is to express results in terms of an equivalent 100 lb . ream. That 18 , to divide the strength property value by the basis woight being used and multiply this result by 100 . Thia calculated result is sometimes referred to as relative barsting strength, relative tearing strength, bureting strength pts. $/ 100 \mathrm{lb} . \mathrm{f}_{\mathrm{i}}$ tear factor, etc.

Stretch, which is determined to the point of final repture, is generally calculated as percentage of original test specimen length. Caliper, is usually expressed directiy in thousand the of an ineh, and apparent density as the quotient of basis veigat in lb . and caliper in thousandths. The use of these and similar expressions constitater at least a tacit implication that atrength, or physical properties are directly proportional to the weight or mass of the sheet tested. The full significance of this implication which is elementary, but also basic, is illustrated in Figure 1. where the tensile strength data expressed in lb./in., taken from fables I and II, are plotted as fanctions of the air dry handsheet veights. Thren, there are five distinct sets of dats, each of which shove the dependence of teneile eitrongth on handeheet velght. From these plote it is ofldent that linear ralationehips fit the data of each palp reasonably wall. It is farther ovident that for only one of the relationshipe are the tensile strengthe directiy proportional to the hasdsheet veight. The basis waights in $1 \mathrm{lb} ., 24 \times 36-480$ ream for each point of the five plots are show in Tables I and II. For each point tabulated in Tables I and II and plotted in Fgure I, the corresponding tensile strength in lb./in./100 lb. ream has been calcolated by the usual direct proportionality method. These calculated values are listed in Tables I and II. The same solutions can, of courso, be arrived at by graphle methods. The graphic solution is obtained by connecting the plotted point (sheet weight Vs. tensile in $1 \mathrm{~b} . / \mathrm{in}$.$) to the ands origin and artending this line to$ find the point of intersection with the vertical 100 lb . basis veight line.
TABLE I
STR WNGTH AND PHYSICAL CHABACTHRISTICS OF VARIABLE WEIGHT STANDARD PRESSKD BRITISH EANDSHMETS
(Pulp 4)

TABLE II
STHENGTH AND PHYSICAL CHARACTERISTICS OF VARIABLE VEIGHT STANDARD PRESSED BRI TISE HANDSHBETS

Semi-graphical methods can also be used to evaluate the slope (m) and b (y intercept) constants. This has been done not only for tensile strength data but also other physical characteristics of the five palps used in this study. See Figires $2-7$ and Pable III. For convenience of presentation, the discussion will be confined primarily to tonsile strength. The principles involved, however, an shown in Figures 2-7 are applicable to the other properties. As previously pointed out, the assumption of direct proportionality is likely to be ineorrect. Before considering the second assumption involved, linear extrapoiation, it should be noted that the weight tensile strength (lb./in.) relationship may correctly be considered as linear, but not necessarily as a direct proportionality. Therofore, in order to correctly determine the lb./in./100 1b. tensile strengthe from the data plotted in Figure 1 , the linear relationships should be extrapolated, as show, to the 100 lb . basis veight line and the tensile strength taken at the point of intersection. In general, as shown in Table IT, the tensile strength (ib./ in./ 100 lb.) values thereby obtalned for the five pulps do not agree with the calculated values of Tables I and II.

The reason for this lack of agreement is clear from the elementary geometry of Pigure 1 . These plots of tensile strength weight relationships are of the algebraic form $y=a x+b$ rather than $y=m x$. As a further checi on this point, etrength and physical characteristic data from published work of tro separate sources $(1,2)$ have been fitted

[^0]Project 1102-13
Page 8
February 8, 1950

TABLE III
Pulps A and B
TABULATIOL OF CONSTAFTS a ABD b
(Data fron Figures 2-7)

Strength or
Physical
Property

	m				
Burst	20.53	43.06	58.3	45.84	45.44
Apparent Density	-0.4165	0.556	1.193	0.864	2.36
Mear	$188.6,70.25$	55.7	55.7	47.83	63.02
Tensile	12.64	36.10	37.75	36.10	22.21
Stretch	0.178	0.71	0.489	0.777	0.645
Callper	.00366	.00206	.00193	.00237	.00206

Burst
Apparent Density Tear
Tensil.
Stretch
Caliper

		b		
-0.12	-2.8	-3.8	-8.7	-10.76
+9.29	+4.89	+10.13	+11.66	+6.7
-77.4	-20.6	-20.6	-21.4	-00.1
+1.03	-16.3	-14.4	-17.0	-3.5
+1.6	+1.86	+2.65	+1.61	+3.23
.00037	+.00066	+.00077	-.00007	+.00123

TABLB IV

Tensile Strength, 1b./in./100 1b.

Identification
Pulp A, 850 S.R.
Pulp A, 700 S.R.
Pulp A, 510 S.R.
Pulp A, 410 S.R.
Pulp B, 565 S.B.

Prom Pigure 1
From Tables I and II
$\begin{array}{llll}46.4 & 44.3 & 43.9 & 45.0\end{array}$
106.0
113.7
105.3
72.9
$\begin{array}{llll}80.8 & 79.8 & 83.2 & 88.3\end{array}$
$\begin{array}{llll}85.7 & 81.1 & 94.2 & 98.3\end{array}$
$\begin{array}{llll}71.3 & 77.8 & 84.5 & 84.9\end{array}$
$\begin{array}{llll}64.7 & 65.9 & 68.0 & 67.4\end{array}$

to linear relationships of the form $y=a x+b$ and the conetants m and b computed. See Tables $1 A$ to $11 A$ and Figaro iA of the appendix. These data were selected as nearly as possible to represent the same weight range wich is covered in Tables I and II.

The use of linear extrapolation to obtain tensile strength in $1 \mathrm{~b} . / \mathrm{in} . / 100 \mathrm{lb}$. is, in the strictest sense , open te criticism. For example, if the data given (Tables I and II) were more axtensive so as to include sheet veights equivalant to 100 lb . basis veight, the relationship over this wide range of values might then deviate considerably fromilinearity. Hovever, oven in such a case, a portion of the data embodying veight ranges ainlar to those of rables I and II might reasonably vell be linearly related. It shoold therofore alvays be clearly understood that such a use of linear extrapolation is merely a convenient method of correcting for minor veight variations, and not a prediction of strength or physicel characteristics of a 100 lb . basis veight sheet. It should be further understood that in most work there would be but one point of each plot shown in Figure 2. With only one point the algebralc form $y=m x+b$ can, of course, not be applied for lack of date to evaluate constants m and b. Therefore, there are three alternative solutions to the general problem of weight variation correction. In the first case where the data consist of two or more points, the form $y=m x+b$ should be used and the constants calculated. In the second case, where only one point is available, constants II and bay be selected fron a backiog of data. The third case arises when, with only
one point, values for constants mand can not be determined. …Then the algebraic form $y=a x$ essuming $(0,0)$ as a second point, aust be used. It should, hovever, be reailzed, as previousis stated, that this is merely an approximation. Also, and this is most inportant, in such an instance a basis welght figure such as nominal basis weight or average basis weight will probably give more accurate results than conversion to $p t . / 100 \mathrm{lb}$. That 1 s , the use of a direct proportionality relationship where not $s t r i c t l y$ apolicable, introdaces errors of magnitude proportional to the degree of extrapolation involved.

SUMMAY AXD COHCLUSIORS

Analysis of trength and phyaical characteristic data of different weight handsheets prepared fron the same pulp showed the relationships to be of the general linear form $y=m x+b$ rather than $y=m x$. It is, therefore, recomended that vhen data are to be corrected or reduced to a common woight basis, the basis chosen should be of approximately the same order of magnitade as the original data. That is, for a given set of data, the use of average basis weight or nominal besis weight is preferred to the comonly employed 100 ib . besis.

PABLE 1A

SCHOPPKR TENSILX SEREHGIT (Date of J. Bektrl)

Paper Sample	Breaking Length, Xm ,			Constants	
	BY 60 g .	BY 80 g .	$\triangle 80-60$	I	b
A_{1}	4.98	6.72	+1.74	+0.087	-0.24
A_{2}	5.16	7.28	+2.12	+0.106	-1.20
${ }^{4}$	4.74	6.80	+2.06	+0.103	-1.44
B_{1}	4.08	5.84	+1.76	+0.088	-1.20
B_{2}	4.14	5.84	$+1.70$	+0.085	-0.96
B_{3}	4.44	5.84	+1.40	+0.070	+0.24
c_{1}.	2.94	$4.00{ }^{\circ}$	+1.06	+0.053	-0.24
c_{2}	3.42	4.48	+1.06	+0.053	+0.24
c_{3}	3.96	5.28	+1.32	0.00	0.00
D_{1}	2.22	3.12	+0.90	+0.045	-0.48
D_{2}	2.34	3.36	+1.02	+0.051	-0.72
D_{3}	2.76	3.68	+0.92	+0.046	0.00
s_{1}	3.96	5.68	+1.72	+0.086	-1.20
B_{2}	4.32	5.52	+1.20	+0.060	+0.72
B_{3}	4.14	5.68	+1.54	+0.077	-0.48

Basis veight shown 18 in g./sq. m.
1 The Mechanical Properties of Papor as Affected by its Sobstance, by Julins Berk.

SCEOPPER STRBTCH
(Data of J. Belk)

Paper Sample	Stretch, \%			Constants	
	BV60 g.	BY 80 g .	$\triangle 60-60$	n	b
Δ_{1}	3.7	3.8	+. 1	+.005	3.4
Δ_{2}	3.5	3.8	+. 3	+0.015	2.6
A_{3}	3.9	4.1	+. 2	+0.010	3.3
B_{1}	3.2	3.5	+. 3	+0.015	2.3
B_{2}	3.1	3.4	+. 3	+0.015	2.2
B_{3}	3.8	4.2	+. 4	+0.010	2.6
c_{1}	2.9	3.1.	+. 2	+0.010	2.3
C_{2}	2.7	2.8	+. 1	+0.005	2.4
c_{3}	3.0	3.3	+. 3	+0.015	2.1
D_{1}	3.9	4.3	+. 4	+0.020	2.7
D_{2}	3.0	2.9	-. 1	-0.005	3.3
D_{3}	2.9	2.9	0	0.00	2.9
5_{1}	3.3	3.6	+. 3	+0.015	2.4
r_{2}	3.8	3.9	+. 1	+0.005	3.5
B_{3}	4.3	4.8	+. 5	+0.025	2.8

fabli 3a

BURS虹IG STRTHTATH
(Data of J. Bekk)

Peper Semple	Bursting Strength, kge/cm ${ }^{2}$			Constants	
	BT 60 g .	BY 80 g .	460-80		
Δ_{1}	3.90	5.44	1.54	+. 077	-0.72
A_{2}	4.08	5.84	1.76	+.088	-1.20
4_{3}	3.72	5.20	1.48	+. 074	-0.72
B_{1}	3.00	4.40	1.40	+. 070	-1.20
B_{2}	3.18	4.32	1.14	+. 057	-0.24
B_{3}	3.48	4.88	1.40	+. 070	-0.72
c_{1}	1.98	2.88	0.90	+. 045	-0.72
c_{2}	2.22	3.04	0.82	+. 041	-0.24
C_{3}	2.40	3.20	0.80	+.040	0.00
D_{1}	1.68	2.32	0.64	+. 032	-0.24
D_{2}	1.38	2.00	0.62	+. 031	-0.48
D_{3}	1.56	2.24	0.68	+. 034	-0.48
H_{1}	2.52	3.92	1.40	+. 070	-1.68
s_{2}	3.00	4.08	1.08	+. 054	-0.24
B_{3}	3.12	4.48	1.36	+. 068	-0.96

Project 1102-13
Page 20
February 8, 1950

TABLE 4A
traring Stringit
(Data of J. Beik)

Paper Sample

A_{1}	1.32	1.77	+0.45	+. 0225	-0.030
A_{2}	1.272	1.768	+0.496	+.0248	-0.216
A_{3}	1.326	1.776	+0.450	+. 0225	-0.024
B_{1}	1.020	1.504	$+0.484$	+. 0242	-0.432
B_{2}	1.128	1.464	+0.336	+. 0168	+0.120
B_{3}	1.050	1.600	+0.550	+. 0275	-0.600
c_{1}	0.978	1.424	+0.446	+. 0223	-0.360
c_{2}	0.870	1.272	+0.402	+. 0201	-0.336
c_{3}	0.762	1.104	+0.342	+. 0171	-0.264
D_{1}	1.434	1.944	+0.510	+. 0255	-0.096
D_{2}	1.038	1.280	+0.242	+. 0121	+0.312
D_{3}	0.900	1.064	+0.164	+. 0082	+0.408
s_{1}	1.002	1.464	+0.462	+. 0231	-0.384
\mathbf{B}_{2}	1.128	1.528	+0.400	+. 0200	-0.072
\mathbf{I}_{3}	1.128	1.552	+0.424	+. 0212	-0.144

TABLE 5A
SGEOPPRR POLD
(Data of J. Bekk)

Paper Sample	Schopper Fold, f of double folds			Constants	
	BV 60 g .	BW 80 g .	$\Delta 60-80$	\%	b
A_{1}	2719	3504	+785	+39.25	+360
A_{2}	3209	4757	+1548	77.40	-1435
A_{3}	3427	4362	+935	46.75	+622
B_{1}	2175	3526	+1351	67.55	-1878
B_{2}	2959	4200	+1241	62.05	-764
B_{3}	3676	4212 .	$+436$	21.80	+2368
c_{1}	298	711	+413	20.65	-941
c_{2}	498	816	+318	15.90	-456
c_{3}	515	1531	+1016	50.80	-2533
D_{1}	74	327	+253	12.65	-685
D_{2}	36	64	+28	1.40	-48
D_{3}	49	50	$+1$. 05	$+46$
\mathbf{r}_{1}	455	775	+320	16.00	-505
B_{2}	1172	1329	+157	7.85	+701
s_{3}	1615	3917	+2302	115.10	-5291

tabis 6a-
 CIRCU_AR TRBSILR SFRISGGTH
 (Data of J. Belck)

Paper Sample	Circular Tensile Strongth, kg,			Constants	
	BY 60 g .	BV 80 g .	-60-80	m	\checkmark
Λ_{1}	24.48	33.68	9,20	+0.460	-3.12
A_{2}	28.68	40.40	11.72	+0.586	-6.48
A_{3}	24.72	33.84	9.12	+0.456	-2.64
B_{1}	22.08	31.28	9.20	+0.460	-5.52
B_{2}	23.58	31.20	7.62	+0.381	+0.72
B_{3}	25.08	37.92	12.84	+0.642	-13.44
c_{1}	17.22	$23.52 \cdots$	6.30	+0.315	-1.68
c_{2}	19.50	27.20	7.70	+0.385	-3.60
C_{3}	22.02	30.24	8.22	+0.411	-2.64
D_{1}	13.80	19.68	5.88	+0.294	-3.84
D_{2}	12.72	18.24	5.52	+0.27.6	-3.84
D_{3}	15.48	20.88	5.40	+0.270	-0.72
\mathbf{B}_{1}	22.08	32.72	10.64	+0.532	-9.84
\mathbf{r}_{2}	22.20	29.84	7.64	+0.382	-0.72
\mathbf{E}_{3}	22.80	32.32	9.52	+0.476	-5.76

Project 1102-13
 Page 23
 February 8, 1950

TABLE 7A

HRNDIFG BESISTARCS (Data of J. Bakk)

Paper Sample	Bonding Resistance $\mathrm{g} / 5 \mathrm{~cm}$			Constants	
	BY 60 g .	B17 80 g	$\triangle 60-80$	m	b
Δ_{1}	3.4	8.7	5.3	+. 265	-12.5
Δ_{2}	3.8	8.3	4.5	+. 225	-9.7
Δ_{3}	3.7	8.0	4.3	+. 215	-12.2
B_{1}	2.8	6.8	4.0	+. 200	-9.2
B_{2}	3.1	6.2	3.1	+. 155	-6.2
B_{3}	2.9	6.3	3.4	+. 170	-7.3
c_{1}	3.3	7.0	3.7	+. 185	-7.8
c_{2}	3.2	7.0	3.8	+. 190	-8.2
c_{3}	3.2	- 5.7	2.5	+. 125	-4.3
D_{1}	3.9	8.1	4.2	+. 210	-8.7
D_{2}	3.7	7.7	4.0	+. 200	-8.3
D_{3}	3.7	7.8	4.1	+. 205	-8.6
\mathbf{I}_{1}	3.5	8.7	5.2	+. 260	-12.1
E_{2}	4.1	8.3	4.2	+. 210	-8.5
H_{3}	3.0	7.5	4.5	+. 225	-10.5

TABLE 8A

TETSILIB STRBEGTH - YEIGHY DAqA*

Ultimate
qensile
Strength,
ib./sq.in.
Sample 39 - Vet Pressed at 30 1b. per sq , in.

0.018	23.3	0.244	1240
0.012	34.3	0.254	1180
0.014	39.5	0.255	1300
0.028	68.6	0.268	1240
0.036	88.8	0.267	1230
0.050	123.1	0.268	1100
0.066	160.0	0.261	1020
0.105	260.0	0.266	910

Sample 40 go - Vet Pressed at 125 10. per soc in.

0.040	28.2	0.387	
0.020	28.9	0.381	1980
0.010	26.8	0.379	2400
0.072	50.3	0.392	2530
0.036	51.5	0.400	2270
0.018	51.6	0.397	2310
0.144	100.0	0.395	2400
0.072	99.0	0.402	1730
0.036	101.0	0.398	2050
0.288	199.0	0.374	2180
0.140	194.0	0.383	1430
0.070	191.0	0.380	1880
0.550	369.0	0.393	2030
0.275	385.0	0.391	1210
0.137	394.0	0.392	1390
			1530

[^1]
PABIE 9A

CONVERSION OF PABLE 10A DATA*

$\begin{aligned} & \text { Basis Velght, } \\ & 24 \times 36-500 \\ & \text { ream, } \\ & \text { lb. } \end{aligned}$	Solid Fraction	$\begin{gathered} \text { Caliper, } \\ \text { in. } \end{gathered}$	$\begin{aligned} & \text { Tensile } \\ & \text { Strength, } \\ & \text { ib./in. } \end{aligned}$
Sample 39			
23.3	0.244	. 00408	5.06
34.3	0.254	. 00577	6.81
39.5	0.255	. 00662	8.62
68.6	0.268	. 01094	$13.5 ?$
88.8	0.267	. 01420	17.48
Samie 40			
28.9	0.381	. 00324	7.78
51.5	0.400	. 00550	12.72
99.0	0.402	. 01052	21.60
194.0	0.383	. 02163	40.70

*Calizer, in. . $0000427 \frac{\text { Basis Meighte ib. }}{\text { Solid Fraction }}$
Tansile Strength, ib./in. $=\frac{1 b, / \log \text { in. }}{\text { caliper }}$

Project 1102-13
 Page 26

February 8, 1950

TABLIE 10A

tensile Streygqi - iright data

(froa Figare LA).

Tengile Strength 1 b /in.

```
```

BM 60 g. BM 80 g. 60-80

```
```

BM 60 g. BM 80 g. 60-80
7.7 10.0 +2.3
7.7 10.0 +2.3
9.4 11.8 +2.4

```
9.4 11.8 +2.4
```

7.7	10.0	+2.3
9.4	11.8	+2.4

```
\(\frac{\text { Constant }}{\mathrm{m}}\)

\section*{TABLE 114}

\section*{PUIP SAMPJR IDETAIPICAMIOK \\ (Data of J. Belk)}
\begin{tabular}{|c|c|c|}
\hline Puip & \multicolumn{2}{|r|}{Identification} \\
\hline \(\Delta\) & \multicolumn{2}{|c|}{Unbleached kraft} \\
\hline B
C
- & \multicolumn{2}{|c|}{Unbleached sulfite Bleached gulfite} \\
\hline D & \multicolumn{2}{|c|}{Bleached ilnen-ras} \\
\hline E & \multicolumn{2}{|r|}{Unbleached ryéstraw, alkeline chlorine process} \\
\hline Pulp Sample & Beating Time, min. & Schopper-Biegler Mreeness, \({ }^{\circ}\) \\
\hline \(4_{1}\) & 40 & 34.0 \\
\hline \(\mathrm{A}_{2}\) & 56
67 . & 43.3
52.3 \\
\hline \({ }^{\text {A }}\) & 67
16 & 52.5
36.2 \\
\hline \(\mathrm{B}_{2}\) & 19.5 & 45.3 \\
\hline \({ }^{\text {B }}\) & 25 & 55.1 \\
\hline \({ }^{C} 1\) & 13 & 34.0 \\
\hline \(\mathrm{C}_{2}\) & 16 & 45.0 \\
\hline \({ }^{\text {c }}\) & 25 & 53.5 \\
\hline \(\mathrm{D}_{1}\)
\(\mathrm{D}_{2}\) & 10 & 79.9 \\
\hline D
\(\mathrm{D}_{3}\) & 30
60 & 86.8 \\
\hline \({ }_{5}\) & 3 & 91.0
35.5 \\
\hline \(\mathbf{w}_{2}\) & E. 5 & 44.7 \\
\hline \(\mathrm{E}_{3}\) & 1.5 & 56.1 \\
\hline
\end{tabular}

PROJECT REPORT FORM
C: H1es
Br. Porman
Mr. Macisemela
Kr. Kottwits
Mr. Madison


\section*{}

\section*{I FPTODUCPIO.}

4 stady of apparent denaity ard its ralationghip to handsheot otrang th characteristics has been made. Special atteation vas given to the consideration of using thi phrical property as a basis for conparison of strength character Istics, and as such to mpplement or roplace the commonly eplofed freeness and beating the roferanes. Whi repert represents findings based upon further tinterpretation of data eited in Preject Repert One dated Fobrary 8, 1950, Project 1102-13, and embodiea additional data obtained fran an extension of the original vork.

\section*{FPPTRIKIROA PROCEDURT}

See aforenentioned Project Report One.

DIScUSSION OF RESUTS

For conplete presentation of data, ee Project Report One, pages 4 and 5, and the Appendix of this report.

In the ordinary papernaking and pulp ovaluation procedures, changes in apparent density are controlled, produced, or arise primarily an a consequence of beating and/or wot pressing. The latter will be considared first because it
represents the simplor of the separate cases. When vet oheets are subjected to coupression of variens degreoe, as done in this var, the relationship of boreting or tensil etreasth to appareat danaity vill be of the ceineral form of Figtre 1, and the tearing etreagth rarevs apparent density plot all follow the pattern of Figure 2: Rofor to Appendix 4 for details.


Apparent Demaity
Figare 1.


Appareat Density
Fugre 2.
 and as such will plot as straight lines on eal-Iogarithnic graph paper. The exact curve chape of each propert will of conrse be charactoristic of the particular pulp, and not antiraly free from the inflame of beatiag degree or refining. This may or may not be of practical significance, depending upon the particular case, e.g. from a stady of R. H. Doughti' work' with unprocessed pulp, the apparent density Tersus tensile strength ralationship does not follow the above form but is noted to be Inear as shown in Figure 3.

Figre3.

1. The Relation of Sheot Properti es and Fiber Prepertiea in Paper, R. H. Doughty, PES 1931. Tol. 93. TS1 62-167. 172.

It ahould also be noted as a matter of interest, that based upon this work, the use of fundemental engineering propertion vere sugsested for paper ovaluation mothods and in particular, it was adrocated that "solid fraction" mich is analogous to appareat density, be enployed an a rofereace in conjunction vith ultinate tenaile strength expreseed in lb./eq. In. When this is dane, the "solid fraction" and ultinate tensile strang th are algobraically related by the form \(y=x^{2}\) and therefore plot an a traight line on log.-log. graph papor. For nore complete reference to this vori, see Appendix B.

When bandsheets made from pulp beaten or refined to varions dogrees are aubjected to constant vet pressiag conditions as done in this otudy, the changes in bureting etregth and apparent dentity with freeness follow the genoral pattoras indicated in Figares 4 and 5. Froainioralationahips of these properties, the


plot of bersting atragth verous apparent density is found to be of the general form shom in Figure 6. For details, see Appendix C.


It is imediately ovident that this curve (Pigare 6) is not of cimple fora and promably involves algebralc terre of degree highor than-the third. Hoar ever, as is frequently the case, sobdivision can be used to produce geometric sections hich may be satisfactorily represent od by lese complicated expressions, oog., Section \(\mathcal{N B}^{\prime}\) of Pigare 6 miah corresponds to the apparent density region of eoction \(A B\) of Pigure 5 may be represent ed by the expression \(j=b \times 10^{\text {ma }}\) and is ther ofore inear in \(x\) and log J. 8oetion Blal of Pigure 6, if included as a portion of the sene plot should introduce bot saell departurse from the samo expression. However, any attempt to include section ClD of Pighre 6 correspondligg to the appareat density section \(O D\) of Pignre 5 leads to consid orable departure from the ofiginal expression, for al though C'D' an also be linear in \(x\) add 195 y . that portion of figure 6 is here involved nare the slepe is coasiderably different and therofore involves a separate eipression. In the event that the bursting streagth-freeness curve does not axilbit a maximum or still more important seotion CD Pigure 5 is not present, the situation in natarally less complicated and quite similar to that if the variable pressing phaee of this vork which has already been mentioned. A consideration of tensile strencth in place of barsting strangth follows in genoral the same pattern, but deviations fron the algebraic expressions may be somevhat bess pronounced. The same is true of tearing strength and here the doviations may be so sall as to be hardly noticeable. (kasples are shown in Higures, Appendix C).

In instances were the degree of beating or refining and vet presaing are variable, the use of apparent density as a referace with barating, tensile, or tearing streagth ham not bean checked experimentally but will presumably givo rise to relationghipe of difforent degrees of algebraic and geonetric complexity.

Those however vill quite probably be no more involved than the plot of Pigure 6 , and in cortain inētances, way be somenhait sinplar.

It should, as a matter of record, be here noted that the subject of sheet caliper has received critian attention \({ }^{2}\). Fron the cited royt it was concluded that roughness of the sheet surface should be given consider aticn in order to arrive at a more correct expression for sheet density. The anthorst present gethode for determining what has boen termed "corrected apparent specific gravity" wich thes recomend for use whore a more axact figare of density is desired. Detemination of "corrected apparent specific gratity", hoverer, is sonenhat laborious and therefore probably not feasible for ordinary evaluation vork were its ne vould constitete a questionable contrikution.

\footnotetext{
2
On the Basis Yelght, Thickness and Apparent Sppeific Gravity of Papor, by C. Gustafason and Lars Hordman, Pappers-Och Iravaratidekrift For Findland, p. 353 H: 0 19, 1949 .
}

\section*{APPEDDIX A}

\section*{TARIAKHE PRESSIMG STUDI}

\section*{}

Frecress - Constant

cance 41
VABIABLIE PRESSING STUDY
(Pulp B -Onion Bag Unbleached Kraft)
(565 cc. Schopper-Riogier Freenesa)



(This pulp was beaten in a 1.5 lb . Valleg laboratory beater, forned in to handehoete, and
tested according to Institute Mothode axcept as indicated above.)
Average basis velegt of handsheets \(38.916 ., 24 \times 36-480\) rman.



\section*{\(\triangle P P E D I X E\)}

\title{
 \\ 
}
...............R. B. Douedty
Tech. Aesoc. Papers 14, Mo. 1, 243-8(1951)
- ABSTRICI =

Ieselts are presented in mpport of the aypotheais that the proper ties of the paper thect and the propertion of Iiber making ap the shoet may be related througt a mowl adge of sheot structure. the data collected show ospacially the dependence of she et strugth on solid fraction, wich is increased by vot pressing and the chages in this ralation oansed by various processings of the polp. The importance of solid fraction in controlling tensile streag th and of fiber properties in controlling solid fraction, are anphasis ed.

The offects obeerva are apladiable by the theory that the fibers are bound in the choet by forcen principally chancal in matorea and that beating resuits in an increased availability of these binding forces. In addition, it is sucented that in addition to increased avall ability, there 1s alse an increased officicacy of utilization of these bonds rescliting from decrease in particle sive on beating, and congequentiy greater shrinkage of sheets of beaten toff on drying. Data are presented.
( Moxk of R. H. Doughty)

KEUFFEL \& ESSEH CO.



APPERDII B, Page 4


Lag Tensits Strength.


Solid Fraction



\section*{APPETDII 6}

\section*{VARIARL MEGET 8TUDI}

WHILMATI UEET RACEED KRAFT PULP
Freenesa - Variabl

\section*{TABLE 0-1}








OBJICTITE
Reporta momer one and two of this project covered the findiags from a ctudy of the influence of basis weight and vet pressing in the ovaluation of hand aheets. This report sumarized a sigilar atudy of the influence of dry pressing (cal endering).

\section*{BAY MAPTRIAL}

Union Bag \& Paper Corporation - mbleached traft, 565 cc. Bchoppar-Blegler freenesi. The pulp vas takem from the same lot cited in Reports one and two above,

\section*{HPERIMEATAL}

A series of British handshe ets of nominal veights 1.05, 1.20, 1.35. and 1.50 g . ovend were prepared according to Institate methodse These vere trimed to the largest possible square sheet and calendered (cold) on the pulping laboratory laminating machine. Sheets from each set of the weight series vere calendered seperately: one light pressure pass (lLPP), one medim presonre pass (1MPP), and six medinn pressure passes (GMPP). Iquipment vas mot avail able for determining calender nip or roll pressures. Uncalendered sheets vere used as a base line for comparison.

\section*{RESUGS}

Resul te of the effect of various degrees of calendering are given in Table I. Yithin the range of calenderige studied the following are indicated:
1. For sheets of basis woight 33.7 and \(38.620 ., 24 \times 36-480 \mathrm{Ib}\). ream, cal enderiag prodaced a significant increase in tensile streat th mich passed through a maximun as the degree of cal end oriag vas increased.

For basis voights of 43.8 and 48.5 significant improvenent of tensil e atreng th was not obtalned.
2. Slight improvemant of tear factor vas realised by lich t cal endering. Heavier calendering prodnced a decrease in this proparty.
3. Both apparent density and 10 angle gloss values vere increased by increasod cal end erl ng.

\section*{TABIE I}

\section*{}


FONR: Basis velght figures are in ib. \(24 \times 36-480\) ream. Data from Code Office reports Ho. 137829 to 137844 , inclusive.

\author{
Copies to: Files \\ Wink \\ Gertz \\ Dearth \\ Reading Copy
}


COMPARISON OF LCW ANGIE GLOSSMETER AND MODIFIED BAUSCH AND LOMB GLOSSMETER

In obtaining the gloss readings for the samples used, it was found that there was an appreciable difference in the results from the two glossmeters. The Bausch and Lomb, which had been modified from the original instrument, showed much higher gloss readings on every sample excepting one.

Being an instrument of good resolution, the Low Angle Glossmeter had to have something to hold the samples flat, so that accurate readings could be taken. A Porous Bronze Plate connected to a vacum pump was used to hold the samples flat.

The readings were taken on hoth Glossmeters to the nearest half unit and are listed below in Table I. Most of the gloss readings for the Black and Yellow samples were over 100 as obtained on the \(B\) and \(L\) Glossmeter. These readings are shown in Table I as " \(100+\)."

\section*{TABLE I}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Samcle & & \multicolumn{4}{|l|}{Low Angle Glossmeter} & \multicolumn{2}{|l|}{Ave.} & \multicolumn{4}{|l|}{B and L Glossmeter} & Ave. \\
\hline 7 & 46.0 & 45.0 & 47.5 & 42.5 & 44.01 & 45.2 & 79.0 & 78.0 & 79.0 & 78.0 & 78.5 & 78.5 \\
\hline 5 & 50.0 & 60.0 & 60.0 & 61.5 & 62.0 & 60.7 & 76.5 & 76.0 & 75.5 & 76.5 & 75.0 & 76.1 \\
\hline . 4 & 75.0 & 75.5 & 75.0 & 78.0 & \(\because 7.0\) & 76.5 & 78.0 & 78.0 & 77.5 & 79.0 & 78.0 & 77.1 \\
\hline 1 & 75.0 & 76.5 & 75.5 & 73.0 & 77.0 & 75.8 & 98.0 & 99.0 & 97.5 & 97.5 & 97.0 & 97.8 \\
\hline 6 & 59.0 & 55.5 & 57.0 & 56.5 & 58.5 & 57.3 & 78.0 & 78.0 & 77.5 & 79.5 & \(7{ }^{2} .0\) & 78.0 \\
\hline 3 & 72.0 & 71.0 & 66.5 & 70.5 & 73.0 & 70.8 & 77.5 & 78.5 & 77.5 & 77.5 & 79.5 & 78.1 \\
\hline Creme & 69.0 & ? 1.5 & 69.5 & 71.0 & 70.0 & 70.2 & \(9^{2} \cdot 5\) & 100.0 & 99.5 & 100.0 & 99.0 & 99.4 \\
\hline Yellow & 92.5 & 82.0 & 84.0 & 79.5 & 82.5 & 82.1 & 100+ & 99.5 & 100.0 & 100+ & \(100+\) & 100+ \\
\hline Red & 81.5 & 34.0 & 79.5 & 77.0 & 79.0 & 80.2 & 98.5 & 97.5 & 98.0 & 98.0 & 99.5 & 98.1 \\
\hline Slue & 71.5 & 70.0 & 79.0 & 83.0 & 76.0 & 75.9 & 97.5 & 98.5 & 99.5 & 98.5 & 99.0 & 99.6 \\
\hline Black & \({ }^{2} 1.5\) & 75.0 & 77.0 & 77.5 & 74.5 & 77.1 & \(100+\) & \(100+\) & \(100+\) & \(100+\) & \(100+\) & \(100+\) \\
\hline Oreen & 72.5 & 7.0 & 76.0 & 58.5 & 70.0 & 71.6 & 99.0 & 99.5 & 99:0 & 100.0 & 99:5 & 39.2 \\
\hline
\end{tabular}
re/li/st


COAPARISON OF LON ANGLE CKOSSMETER AND MODIFIED BAUSCH AND LOMB GLOSSMETER

In order to compare the Low Angle Glossmeter and the Modified Bausch and loub Glossmeter more closely, more readings were taken from samples of a wider gloss range. With the exception of a few low gloss samples under one point on the Low Angle Glossmeter, the Bausch and Loab showed mach higher gloss readings than did the Low Angle Glossmeter. In regard to these low gloss samples, the Bausch and Lonb readings were still. higher than the Low Angle readings, but their differences were comparatively smaller than the higher gloss samples, as show in Table II.

The samples were read in both the "in" and "across" machine directions and read to the nearest half unit and are listed below in Tables I and II.
* Paper Evaluation Humidity Rocm


\[
\begin{aligned}
& \text { 20 }
\end{aligned}
\]


PROJECT REPORT FORM

\author{
Copies to: riles \\ Mr. Wink \\ Dr. Howells \\ Mr. Van Eperen \\ Mr. heine
}

2102-13


THE EFFECT OF RESTRAINED AND UNRESTRAINED DRYING ON THE PHYSICAL PROPERTIES OF HANDSHEETS PREPARED FROM THREE HANDHOLD PULPS

\section*{INTRODUCTION}

This study was undertaken to determine the effect of restrained (ring-dried) and unrestrained drying on the physical properties of handsheets; Three hardwood pulps (Institute File No. 68-70068/070) obtained from Dr. Ferdinand Kraft in a study for western Kraft Corporation were identified as:
\begin{tabular}{cl} 
Pulp Sample Code & Company Identification \\
1 & Sample 9 -Bleached, Mixed Hardwood (Experimental) \\
2 & Sample 10 -Commercial Pulp (Hardwood) \\
3 & Sample 12 - Commercial Pulp (Hardwood)
\end{tabular}

Additional data on species identifications and on standard beater evalualions for the three pulps can be found under Institute File No. 67-72588/58, \(68-70884 / 885\) and \(68-70886 / 887\) (the latter two to be completed in the near future) for Pulp Samples 1, 2 and 3, respectively.

The pulps were beaten to four levels and handsheets were prepared at each level. Half of these were dried under restraint on rings and the other half

Project 1l02-13
"floated" on sand so they could dry without external restraint. The freeness at each beating level, the shrinkage of the unrestrained sheets, and the basis weight, thickness, density, tensile breaking length, stretch, tensile energy absorption, tensile stiffness, opacity, specific scattering coefficient, in-plane tearing energy, air permeability, and hygroexpansivity of the handsheets dried with and without restraint are given in this report.

The purpose of this report is only to report the data; therefore, no attempt is made to analyze the relative merits of the two irying procedures or the reasons for any differences in the handsheet proferties. However. appropriate comments pointing out the differences in the properties of the handsheets dried with and without retraint are given.

\section*{HANDSHEET PREPARATION}

\section*{PULP PREPARATION}

The dry-lap pulp was soaked in water for the required minimum of four hours, disintegrated and beaten in a Valley beater in accord with TAFPI Method T 200 ts-66. For each sample twenty-five grams of pulp (moisture-free basis) was withdrawn from the beater before beating and after beating intervals of 5,15 and 25 minutes. The pulp was cleared in the standard disintegrator for 15000 revolutions in tho lots of 12.5 grams each. The two lots were then recombined and mixed thoroughly. SHEET FORMING AND COUCHING

The handsheets were formed in a sheet machine as described in TAPPI Method T \(205 \mathrm{~m}-58\). As an aid to achieving optimum formation of the handsheet.s. the drain cock of the sheet machine was opened immediately after stiring.

It is known from past sturlies that the differential expansion characteristics of the couch material are fartially imparted to the handsheet. To eliminate this effect the handsheets, after forming, were covered first with two premoistened Whatman No. 1 filter papers and then with a dry blotter for couching. It is also known that the couch direction will impart a directionality to the handsheets. The handsheets were marked so that the couch direction could be identified for subsequent testing. Two sets of handsheets were prepared as described above, Set 1 to be dried under restraint in standard drying rings and Set 2 to be dried . without external restraint.

WET PRESSING

The handsheets of Set 1 were wet-pressed twice at 50 p.s.i., first for 5 minutes and then for 2 minutes. For each pressing the handsheets were pressed in a sandwich comprised of a dry blotter, the two couch filter papers, the handsheet, and a mirror-polished disc.

The handsheets of Set 2 were wet-presser once at 50 p.s.i. for 5 minutes. For this pressing the handsheets were pressed in a saniwich comprised of a dry blotter. the two premoistened couch filter papers, the handsheet, two premoistened filter papers, and a dry blotter.

DRYING

The handsheets of Set 1 were dried in standard drying rings at \(10 \mathbb{R} . \mathrm{H}\). and \(23^{\circ} \mathrm{C}\). Only the mirror-polished discs were left intact with the handsheets during drying.

The handsheets of Set 2 were placed on a level layer of Cttawa sand (screened to pass a 20 mesh and be retained on a 30 -mesh screen) in a rocm controlled at
\(98.5 \%\) R.H. and \(23^{\circ} \mathrm{C}\). The sand permitted the handsheets to shrink freely without adhering to the supporting surface. After allowing several days for the handsheets to come to equilibrium with this condition, the moisture content of several sheets was measured and found to be about \(50 \%\) on the airdry basis. The relative humidity of the room was then slowly lowered over a period of five days, after which the handsheets had a measured moisture content of about \(18 \%\) on the airdry basis. The handsheets developed some waviness during this drying. This waviness was effectively removed by fressing the handsheets at 1000 p.s.i. while at \(18 \%\) moisture content. For this pressing the handsheets were sandwiched between four whatman No. I filter Fafers which had been conditioned in the same environment. Following this pressing, the handsheets were conditioned to equilibrium in the 10 R R.H., \(23^{\circ} \mathrm{C}\). environment.

\section*{TESTING PROCEDURES}

Shrinkage was measured and the specimens for the remaining tests were cut in the \(10 \%\) R.H., \(23^{\circ} \mathrm{C}\). atmosphere. Except for the specimens intended for the measurement of hygroexpansivity, all specimens were then conditioned and tested in a \(50 \%\) R.H., \(23^{\circ} \mathrm{C}\). atmosphere. Where applicable, the tests were performed in accord with TAFPI Method T \(220 \mathrm{~m}-60\).

SHRINKAGE

The shrinkages of the Set 2 handsheets (those dried without restraint) were determined at \(10 \%\) R.H. and \(23^{\circ} \mathrm{C}\). with a steel rule (graduated to the nearest \(0.0]\) inch) using a magnification of about \(3 x\). The diameters. Farallel with and Ferfendicular to the direction of couching, were measured and the differences in dimension relative to the diameter of the sheet mold were computed as percent shrirkaces.

\section*{LOAD-ELONGATION CHARACTERISTICS}

Load-elongation relationships were obtained at a crosshead speed of \(2.54 \mathrm{~cm} . / \mathrm{min}\). for specimens 10 cm . Long and 2:54 cm . wide. The long dimension of the specimen was parallel with the couch direction of the handsheet. The tensile strength (comfuted as breaking length), stretch, tensile energy absorption and tensile stiffness were determined from the load-elongation relationships. The latter two properties were normalized for a sheet having a basis weight of \(60 \mathrm{~g} . / \mathrm{sq} . \mathrm{m}\). (ovendry) assuming a linear relationshif.

OPACITY AND SPECIFIC SCATTERING COEFFICIENT

The opacity and the reflectances required for determining the specific scattering coefficient were measured with a Bausch and Lomb Opacimeter in accord with TAPPI Method T \(425 \mathrm{~m}-60\). The opacity values were normalized for a sheet having a basis weight of \(60 \mathrm{~g} . / \mathrm{sq}\). m. using the Kubelka and Munk charts.

IN-PLANE TEAR

The in-plane tear was determined in accord with a procedure described by Van den Akker, Wink and Van Eperen, Tappi 50, no. 0:466-70(Sept. 1967). The total tearing angle was 12 degrees; the tearing distance, 5 cm ; and the initial distance between clamr.s, 5 cm . The direction of the line of tear was perpendicular to the couch direction of the handsheets. The in-plane tear results were normalized for a sheet having a basis weight of \(60 \mathrm{~g} . / \mathrm{sq}\). m. assuming a linear relationship.

AIR PEKVEABILITY

The air fermeability was measured with a Bendtsen instrument over a 10 sq . cm. area, using a pressure gradient across the specimen correspondinf to 150 mm . of water.


\section*{HYUROEXPANSIVITY}

The sfecimens used for the measurement of hydroexpansivity were transferred directly-from the \(10 \%\) R.H. environment to the test chamber of a Neenah expansimeter. Hygroexpansivity was determined for subsequent exposures to relative humidities of \(11.1,48.6,75.5,92.9,75.5,48.6\) and \(11.1 \%\). The tests were performed in a direction parallel with the couch direction of the handsheets.

TEST RESULTS

The average test results are given in Table \(I\). All of the results for each test are grouped for convenience in inspecting the effects of drying conditions and beating on any one property of the handsheets.

The hydroexpansivity results in Table I are summaries of the expansion for 3 relative humidity change from 11.1 to 92.9 .6 , and the contraction for a relative humidity change from 92.9 to 11.18 . The change in length that occurred at \(11.1 \%\) R.H. after exposure to \(92.9 \%\) R.H. is also given. The hygroexpansivity results for each step in relative humidity and for the individual specimens are given in Table II. A plot of the change in length as a function of relative humidity for the handsheets prepared from the unbaten pulp and the pulp teaten for 25 minutes is given in Figures 1. 2 and 3 for Fulf Samples 1. 2 and 3. respectively.

\section*{TABLE I}

PHYSICAL TEST' DATA FOR HANDSHEETS DRIED UNDER RESTRAINED AND UNRESTRAINED CONDITIONS
\begin{tabular}{|c|c|c|c|c|}
\hline Beating time, min. & 0 & 5 & 15 & 25 \\
\hline \multicolumn{5}{|l|}{Canadian standard freeness, cc.} \\
\hline Puly. Sample 1 & 540 & 470 & 345 & 200 \\
\hline Pulp Sample 2 & 555 & 470 & 435 & 280 \\
\hline Pulp Sample 3 & 565 & 475 & 430 & 330 \\
\hline \multicolumn{5}{|l|}{Basis weight, g./sq. m. (oven dry)} \\
\hline Pulp Sample 1, restrained drying & 59.3 & 60.5 & 59.1 & 60.1 \\
\hline unrestrained drying & 60.0 & 61.6 & 59.8 & 62.2 \\
\hline Pulp Sample 2, restrained drying & 61.0 & 60.6 & 60.0 & 61.0 \\
\hline unrestrained drying & 61.8 & 61.4 & 62.4 & 63.3 \\
\hline Pulp Sample 3, restrained drying & 60.0 & 60.3 & 61.5 & 61.1 \\
\hline unrestrained drying & 60.8 & 61.6 & 64.2 & 63.8 \\
\hline
\end{tabular}

Shrinkage of unrestrained handsheets upon drying to \(10 \%\) R.H., \(23^{\circ} \mathrm{C}\). \%

Pulp Sample 1. in couch direction across couch direction

Pulp Sample 2, in couch direction across couch direction

Pulp Sample 3, in couch direction across couch direction

Thickness, microns
Pulf Sample 1, restrained drying
unrestrained drying

Puly: Sample 2, restrained drying unrestrained drying

Pulf. Sample 3, restrained drying unrestrained drying
1.2
1.3
1.0
1.0
1.0
1.3

号
\begin{tabular}{rrrr}
132 & 114 & 104 & 96 \\
107 & 109 & 107 & 107 \\
117 & 104 & 96 & 91 \\
99 & 99 & 96 & 99 \\
107 & 99 & 94 & 89 \\
99 & 99 & 99 & 96
\end{tabular}

TABLE I (continued)
PHYSICAL TEST DATA FOR HANDSHEETS DRIED UNDER RESTRAINED AND UNRESTRAINED CONDITIONS

\section*{Beating time, min.}
\(\qquad\)

Density, g./cc.
Pulp Sample 1, restrained drying \(\begin{aligned} & \text { unrestrained drying }\end{aligned}\)
\begin{tabular}{llll}
0.45 & 0.53 & 0.57 & 0.62 \\
0.56 & 0.56 & 0.56 & 0.58 \\
& & & \\
0.52 & 0.58 & 0.62 & 0.67 \\
0.62 & 0.62 & 0.65 & 0.64 \\
& & & \\
0.56 & 0.61 & 0.65 & 0.69 \\
0.61 & 0.62 & 0.65 & 0.66
\end{tabular}

Tensile breaking length, m.
\begin{tabular}{llllll} 
Pulp Sample 1, restrained drying & 2270 & 4590 & 5770 & 7130 \\
& unrestrained drying & 2010 & 3700 & 4990 & 6080 \\
Pulp Sample 2, restrained drying & 1960 & 3430 & 5090 & 6480 \\
& unrestrained drying & 1860 & 3080 & 4380 & 5660 \\
Pulp Sample 3, restrained drying & 3440 & 5670 & 7260 & 8130 \\
& unrestrained drying & 3180 & 4820 & 6020 & 7090
\end{tabular}

Stretch, \%
\begin{tabular}{llllll} 
Pulp Sample 1, restrained drying & 1.0 & 2.2 & 2.6 & 3.2 \\
& unrestrained drying & 1.8 & 3.8 & 5.5 & 7.3 \\
& & 0.8 & 1.3 & 1.9 & 2.7 \\
Pulp Sample 2, restrained drying & 1.4 & 2.4 & 3.7 & 5.0 \\
& unrestrained drying & & 1.2 & 1.9 & 2.4 \\
Pulp Sample 3, & & 2.5 \\
& & 2.2 & 3.5 & 4.4 & 5.4
\end{tabular}

Tensile energy absorption, g. cm./sq. cm.
\begin{tabular}{lrrrrr} 
Pulp Sample 1, restrained drying & 9.5 & 43.8 & 65.7 & 98.5 \\
& unrestrained drying & 15.2 & 59.6 & 112 & 177 \\
Pulp Sample 2, restrained drying & 6.2 & 19.0 & 41.5 & 70.3 \\
& unrestrained drying & 10.0 & 30.5 & 65.2 & 116 \\
Pulp Sample 3, & restrained drying & 16.5 & 44.9 & 73.6 & 84.6 \\
& unrestrained drying & 27.8 & 67.4 & 103 & 146
\end{tabular}

\section*{PHYSICAL TEST DATA FOR HANDSHEETS DRIED UNDER RESTRAINED AND UNRESTRAINED CONDITIONS}

Beating time, min.

Tensile stiffness, kg./cm.
\begin{tabular}{llllll} 
Pulp Sample 1, restrained drying \\
unrestrained drying & 270 & 369 & 431 & 469 \\
& 170 & 220 & 245 & 261 \\
Pulp Sample 2, restrained drying & 251 & 347 & 415 & 462 \\
& unrestrained drying & 165 & 218 & 252 & 277 \\
Pulp Sample 3, restrained drying & 372 & 467 & 528 & 531 \\
unrestrained drying & 235 & 267 & 293 & 311
\end{tabular}

Opacity, \%
Pulp Sample 1, restrained drying unrestrained drying

Pulp Sample 2, restrained drying unrestrained drying

Pulp Sample 3, restrained drying unrestrained drying

Specific scattering coefficient, sq. cm./g.
Pulp Sample 1, restrained drying unrestrained drying

Pulp Sample 2, restrained drying unrestrained drying

Pulp Sample 3, restrained drying unrestrained drying

In-plane tear, g. cm. (for 5 cm . tearing length)
Pulp Sample 1, restrained drying unrestrained drying

Pulp Sample 2, restrained drying unrestrained drying

Pulp Sample 3, restrained drying
unrestrained drying
Pulp Sample 3, restrained drying \(\begin{gathered}\text { unrestrained drying }\end{gathered}\)
83.8
83.5
83.3
83.1
79.6
79.1
81.3
80.0
78.6
\(81.5 \quad 80.4\)
78.2
82.1
79.7
78.2
81.7
79.0
76.8
\(\begin{array}{lll}77.3 & 74.8 & 73.6\end{array}\) \(77.3 \quad 74.5\)
72.2
Pulp Sample 1, restrained drying
unrestrained drying \(\quad\)\begin{tabular}{l} 
Pulp Sample 2, restrained drying \\
unrestrained drying
\end{tabular}

117
219
283
108
229
328
107
162
214
\(94 \quad 164 \quad 219\)
217
284
308 207

\section*{294}

TABLE I (continued)
PHYSICAL TEST DATA FOR HANDSHEETS DRIED UNDER RESTRAINED AND UNRESTRAINED CONDITIONS

Beating time, min.
Bendtsen air permeability, ml./min.
\begin{tabular}{lllrrr} 
Pulp Sample 1, restrained drying & \(3190+\) & 2270 & 1030 & 226 \\
& unrestrained drying & 2410 & 1400 & 596 & 161 \\
Pulp Sample 2, restrained drying & 2440 & 1240 & 605 & 154 \\
& unrestrained drying & 1130 & 612 & 277 & 110 \\
Pulp Sample & 3, restrained drying & 2050 & 1040 & 377 & 151 \\
& unrestrained drying & 1050 & 592 & 223 & 84
\end{tabular}

Hygroexpansivity, \% expansion for relative humidity change of 11.1 to \(92.9 \%\)
\begin{tabular}{llllll} 
Pulp Sample 1, restrained drying & 0.321 & 0.330 & 0.365 & 0.400 \\
& unrestrained drying & 0.967 & 1.247 & 1.463 & 1.788 \\
Pulp Sample 2, restrained drying & 0.346 & 0.332 & 0.294 & 0.501 \\
& unrestrained drying & 0.936 & 1.117 & 1.220 & 1.454 \\
Pulp Sample 3, restrained drying & 0.359 & 0.417 & 0.451 & 0.452 \\
& unrestrained drying & 0.981 & 1.231 & 1.345 & 1.501
\end{tabular}

Hygroexpansivity, \& contraction for relative humidity change of 92.9 to \(11.1 \%\)
\begin{tabular}{llllll} 
Pulp Sample 1, restrained drying & 0.517 & 0.637 & 0.737 & 0.798 \\
& unrestrained drying & 0.751 & 1.072 & 1.307 & 1.691 \\
Pulp Sample 2, restrained drying & 0.599 & 0.667 & 0.692 & 0.822 \\
& unrestrained drying & 0.781 & 0.947 & 1.135 & 1.396 \\
Pulp Sample 3, restrained drying & 0.573 & 0.685 & 0.716 & 0.765 \\
& unrestrained drying & 0.821 & 1.044 & 1.230 & 1.432
\end{tabular}

Hygroexpansivity, \& expansion for relative humidity change of 11.1 to 92.9 to 11.18
\begin{tabular}{llrrrr} 
Pulp Sample 1, restrained drying & -0.196 & -0.307 & -0.372 & -0.398 \\
& unrestrained drying & 0.216 & 0.175 & 0.156 & 0.097 \\
Pulp Sample 2, restrained drying & -0.253 & -0.335 & -0.398 & -0.321 \\
& unrestrained drying & 0.155 & 0.170 & 0.085 & 0.058 \\
Pulp Sample 3, restrained drying & -0.214 & -0.268 & -0.265 & -0.313 \\
& unrestrained drying & 0.161 & 0.187 & 0.115 & 0.069
\end{tabular}

TABLE II
HYGROEXPANSIVITY, \%, OF HANDSHEETS UNDER RESTRAINED AND UNRESTRAINED DRYING CONDITIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Relative
Humidity, . Beating Time, min. Beating Time, min.} \\
\hline \% & 0 & -5 & 15 & 25 & 0 & 5 & 15 & 25 \\
\hline - & & & PULP & SAMPLE 1 & & & & \\
\hline & & Restrain & Drying & & & restraj & d Dryin & \\
\hline \multicolumn{9}{|l|}{11.1 to 48.6} \\
\hline Strip 1 & +0.099 & +0.116 & +0.178 & +0.180 & \(+0.272\) & +0.35? & +0.420 & +0.486 \\
\hline Strip 2 & +0.102 & +0.164 & +0.168 & +0.172 & \(+0.272\) & \(+0.370\) & +0.431 & +0.549 \\
\hline Strip 3 & +0.203 & +0.134 & +0.130 & +0.181 & & & & \\
\hline Average & +0.135 & +0.138 & +0.159 & +0.178 & +0.272 & +0.364 & +0.426 & +0.518 \\
\hline \multicolumn{9}{|l|}{} \\
\hline Strip 1 & +0.057 & +0.064 & +0.107 & +0.094 & +0.263 & +0.337 & +0.402 & +0.497 \\
\hline Strip 2 & +0.066 & +0.090 & +0.098 & +0.098 & +0.249 & +0.317 & +0.380 & +0.455 \\
\hline Strip 3 & +0.106 & +0.079 & +0.055 & +0.0¢1 & & & & \\
\hline Average & +0.076 & +0.078 & +0.087 & +0.094 & +0.256 & \(+0.327\) & +0.391 & +0.476 \\
\hline \multicolumn{9}{|l|}{75.5 to 92.9 (0) 7 (0.568 +0.636 +0.793} \\
\hline Strip 1 & +0.097 & +0.113 & +0.134 & +0.138 & \(+0.437\) & \(+0.568\) & +0.636 & +0.793 \\
\hline Strip 2 & +0.095 & +0.113 & +0.127 & +0.113 & +0.441 & +0.545 & +0.656 & +0.794 \\
\hline Strip 3 & \(+0.138\) & +0.115 & +0.095 & +0.132 & & & & \\
\hline Average & +0.110 & +0.114 & +0.119 & +0.128 & +0.439 & +0.556 & +0.646 & +0.794 \\
\hline & . & & & & & & & \\
\hline \multicolumn{9}{|l|}{92.9 to 75.5} \\
\hline Strip 1 & -0.146 & -0.198 & -0.211 & -0.229 & -0.241 & -0.348 & -0.441 & -0.571 \\
\hline Strip 2 & -0.135 & -0.170 & -0.195 & -0.210 & -0.258 & -0.392 & -0.481 & -0.638 \\
\hline Strip 3 & -0.167 & -0.204 & -0.244 & -0.260 & & & & \\
\hline Average & -0.149 & -0.187 & -0.217 & -0.233 & -0.250 & -0.370 & -0.461 & -0.604 \\
\hline \multicolumn{9}{|l|}{75.5 to 48.6} \\
\hline Strip 1 & -0.156 & -0.191 & -0.227 & -0.231 & -0.236 & -0.321 & -0.396 & -0.510 \\
\hline Strip 2 & -0.150 & -0.193 & -0.225 & -0.248 & -0.216 & -0.315 & -0.396 & -0.512 \\
\hline Strip 3 & -0.164 & -0.190 & -0.227 & -0.240 & & & & \\
\hline Average & -0.157 & -0.191 & -0.226 & -0.240 & -0.226 & -0.318 & -0.396 & -0.511 \\
\hline
\end{tabular}
\begin{tabular}{lllllllll}
48.6 to 11.1 & & & & & & \\
Strip 1 & -0.205 & -0.256 & \(-0.287^{\circ}\) & -0.317 & -0.270 & -0.374 & -0.439 & -0.565 \\
Strip 2 & -0.207 & -0.250 & -0.280 & -0.319 & -0.280 & -0.393 & -0.461 & -0.588 \\
Strip 3 & -0.220 & -0.272 & -0.316 & -0.330 & & & & \\
Average & -0.211 & -0.259 & -0.294 & -0.325 & -0.275 & -0.384 & -0.450 & -0.5768
\end{tabular}

The plus sign preceding the hygroexpansivity values denotes expansion; the minus signt contraction.

Project 1102-13
Page 12

TABLE II (continued)
hygroexpansivity, \%, of handsheets under restrained and unkestrained drying conditions


PULP SAMPLE 2

Restrained Drying
21.1 to 48.6

Strip 1 Strip 2 Strip 3

Average 48.6 to 75.5

Strip 1
Strip 2
Strip 3
Average
75.5 to 92.9

Strip 1
Strip 2
Strip 3
Average
92.9 to 75.5

Strip 1
Strip 2
Strip 3
Average
75.5 to 48.6

Strip 1
Strip 2
Strip 3
Average
\[
\begin{array}{lll}
-0.193 & -0.199 & -0.219 \\
-0.177 & -0.193 & -0.219 \\
-0.177 & -0.216 & -0.208 \\
-0.182 & -0.203 & -0.215
\end{array}
\]
48.6 to 11.1

Strip 1
Strip 2
Strip 3
Average
\(\begin{array}{llll}-0.246 & -0.276 & -0.287 & -0.338\end{array}\)
\begin{tabular}{llll}
-0.248 & -0.268 & -0.280 & -0.333 \\
-0.238 & -0.258 & -0.285 & -0.323 \\
-0.253 & -0.303 & -0.297 & -0.357 \\
-0.246 & -0.276 & -0.287 & -0.338
\end{tabular}

TABLE II (continued)
hyGROexpansivity, ŋ, of hanisheets under restrained and unrestrained drying conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Relative } \\
\text { Humidity } \\
\underset{\sim}{2}
\end{gathered}
\]} & \multicolumn{4}{|c|}{Beating Tine, min.} & \multicolumn{4}{|c|}{Beating Time, min.} \\
\hline & 0 & \multicolumn{2}{|l|}{\(-5-15\)} & 25 & 0 & 5. & 15 & 25 \\
\hline \multicolumn{9}{|c|}{FULP SAMPLE 3} \\
\hline & \multicolumn{4}{|c|}{Restrained Drying} & \multicolumn{4}{|c|}{Unrestrained Drying} \\
\hline \multicolumn{9}{|l|}{21.1 to 48.6} \\
\hline Strip 1 & +0.087 & +0.170 & +0.180 & +0.170 & +0.367 & +0.489 & +0.437 & +0.553 \\
\hline Strip 2 & +0.190 & +0.178 & +0.231 & +0.217 & +0.327 & +0.376 & +0.457 & +0.441 \\
\hline Strip 3 & +0.179 & +0.187 & +0.195 & +0.199 & & & & \\
\hline Average & +0.152 & +0.178 & +0.202 & +0.195 & +0.347 & +0.432 & +0.447 & +0.497 \\
\hline
\end{tabular}
\begin{tabular}{lllllllll}
48.6 to 75.5 & & & & & & & \\
Strip 1 & +0.062 & +0.094 & +0.111 & +0.099 & +0.271 & +0.359 & +0.365 & +0.437 \\
Strip 2 & +0.107 & +0.103 & +0.107 & +0.114 & +0.256 & +0.311 & +0.369 & +0.380 \\
Strip 3 & +0.104 & +0.102 & +0.102 & +0.116 & & & & \\
Average & +0.091 & +0.100 & +0.107 & +0.110 & +0.264 & +0.335 & +0.367 & +0.408
\end{tabular}
\begin{tabular}{lllllllll}
75.5 to 92.9 & & & & & & & \\
Strip 1 & +0.103 & +0.146 & +0.142 & +0.148 & +0.339 & +0.425 & +0.468 & +0.556 \\
Strip 2 & +0.109 & +0.124 & +0.136 & +0.135 & +0.401 & +0.503 & +0.594 & +0.637 \\
Strip 3 & +0.136 & +0.147 & +0.147 & +0.159 & & & & \\
Average & +0.116 & +0.139 & +0.142 & +0.147 & +0.370 & +0.464 & +0.531 & +0.596
\end{tabular}
92.9 to 75.5

Strip 1
Strip 2
Strip 3
\(-0.154 \quad-0.204 \quad-0.204\)

Average
\(-0.188 \quad-0.217-0.217-0.246\)
\(\begin{array}{llll}-0.234 & -0.290 & -0.365 & -0.438 \\ -0.283 & -0.375 & -0.446 & -0.506\end{array}\)

Average
\(-0.162 \quad-0.198 \quad-0.200\)
\(-0.219\)
\(\begin{array}{llll}-0.258 & -0.332 & -0.406 & -0.472\end{array}\)
75.5 to 48.6

Strip 1
Strip 2
Strip 3
Average
\begin{tabular}{lll}
-0.158 & -0.217 & -0.227
\end{tabular}
\begin{tabular}{llllllll}
-0.177 & -0.203 & -0.211 & -0.223 & -0.254 & -0.321 & -0.380 & -0.427
\end{tabular}
\(-0.171-0.206 \quad-0.220 \quad-0.233\)
48.6 to 11.1
\begin{tabular}{lllllllll} 
Strip 1 & -0.234 & -0.283 & -0.299 & -0.311 & -0.303 & -0.374 & -0.431 & -0.531 \\
Strip 2 & -0.238 & -0.272 & -0.278 & -0.290 & -0.316 & -0.403 & -0.453 & -0.505 \\
Strip 3 & -0.249 & -0.289 & -0.312 & -0.328 & & & & \\
& & & & & & & & \\
Average & -0.240 & -0.281 & -0.296 & -0.313 & -0.310 & -0.388 & -0.442 & -0.518
\end{tabular}
rage 15



1.8

\section*{COMMENTS ON DIFFERENCES IN HANDSHEET PROPERTIES}

The following comments are given in the order in which the data appear in the report.
- 1. The basis weight of the sheets dried without restraint is somewhat higher than for the ring-dried sheets as a result of the shrinkage that occurred during drying of the former.
2. The shrinkage that occurred during drying of the sheets dried without restraint increased with beating; the amount of shrinkage was the same for measurements made in and across the couch direction.
3. The thickness and density of the sheets dried without restraint did not change very much with beating; the ring-dried sheets exhibited the more typical behavior, with the thickness descreasing and the density increasing with increased beating.
4. The tensile breaking length of both the ring-dried sheets and the sheets dried without restraint increased with beating, although the latter had a somewhat lower strength and increased at a somewhat lower rate.
5. The stretch of the sheets dried without restraint is about double that of the ring-dried sheets at all levels of beating. Stretch increased with beating.
6. The tensile energy absorptions reflect the changes in tensile breaking length and stretch.
7. The tensile stiffness of the sheets dried without restraint is about \(60 \%\) of that of the ring-dried sheets. Both increase with beating at about the same rate.
8. The specific scattering coefficients of the sheets dried without restraint is about \(5 \%\) lower than that of the ring-dried sheets.
... 9.-. The in-plane tearing energy of the sheets dried without restraint in creases at a greater rate with beating than that of the ring-dried sheets. It is at a lower level for the unbeaten sheets and at a higher level for the beaten sheets.
10. The air permeability of the sheets dried without restraint is much lower than that of the ring-dried sheets.
11. The hygroexpansivity of the sheets dried without restraint is about 3 to 4 times that of the ring-dried sheets for increases in relative humidity from 11 to 93\%, and less than 2 times for subsequent decreases in relative humidity to \(11 \%\). In both cases, the hygroexpansivity increases with beating.
12. The ring-dried sheets exhibit a net shrinkage at \(11 \%\) R.H. when exposed to a relative humidity cycle of 11 to 93 to \(11 \%\). The amount of shrinkage increases with beating. The sheets dried without restraint exhibit a net expansion when exposed to the same humidity cycle. The amount of expansion decreases without beating.
13. The observations in Item 12 for the sheets dried without restraint suggest that there was, in fact, no external restraint on the sheets during drying. A sheet dried under restraint would be expected to exhibit a net shrinkage at \(11 \%\) R.H. after relaxing at \(93 \%\) R.H. A sheet dried without restraint would be expected to have the same dimension at \(11 \%\) R.H. both before and after exposure to 938 R.H. The increase in dimension at \(118 \cdot R . H\). observed for the sheets dried without restraint is attributed to creep resulting from the small force ( 5 g. ) applied to the specimens during the hygroexpansivity measurement. This is consistent with the data where the greatest increase is noted for the weaker unbeaten sheets.
14. Much greater variability exists in the hygroexpansivity results of individual specimens for the ring-dried sheets than for the sheets dried without restraint. The variability, for the ring-dried sheets, is less after exposure to \(93 \%\) R.H. than before.```


[^0]:    The Mechanical Properties of Paper as Affected by Its Subatance by Jullus Bekls published by G. H. Buhraann's Papiergroothandel I. V. Amsterdam, 1947.
    2 The Relation of Sheet Properties and Piber Properties in Paper by R. H. Doughty, PMJ 1931, Vol. 93, TS162-167,172.

[^1]:    - Data taken from published work:
    "The Relation of Sheet Properties and Piber Properties in Paper" by
    B. H. Doughty. PTJ. 1931, 7o1. 93, TS162-167,172.

