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A manipulator system with a large workspace volume and high payload capa~ity 
has greater link flexibility than do typical industrial robots and teleoperators. N Imk 
flexibility is significant, position control of the manipulator's end-effector exhibits 
nonminimum-phase. noncollocated, and flexible-structure system control problems. 
This paper addresses inverse dynamic trajectory planning issues of a single-link 
flexible manipulator. The inverse dynamic equation of a single-link flexible manip­
ulator was solved in the time-domain. By dividing the inverse system equation into 
its causal part and anticausal part, the inverse dynamic method calculates che feed­
forward torque and the trajeccories of all state variables that do not excite scructural 
vibrations for a given end-point trajectory. Through simulation and experiment with 
a single-link manipulator, the effectiveness of the inverse dynamic method in pro­
ducing fast and vibration-free motion has been demonstrated. 

1 Introduction 
A manipulator system with a large workspace volume and 

a large payload, such as the proposed long-reach manipulator 
for nuclear waste remediation or the Space Shuttle Manipulator 
Arm, has greater link flexibility than do typical industrial ro­
bots and teleoperators. If link flexibility is significant, control 
of the end-effector' s position must cope with the nonminimum­
phase. noncollocated, and flexible-structure control problems. 
The flexible manipulator system should be able to follow a 
given end-point trajectory to be used as a practical robotic 
manipulator in spite of its flexibility. This paper proposes an 
efficient time-domain inverse dynamic method that enables a 
flexible manipulator to follow a given end-point trajectory 
accuratelv without overshoot and residual vibration. 

The regwating feedback control is one of the typical methods 
used to suppress the structural vibration of a manipulator. By 
using joint-and-strain feedback, Hastings and Book [1] dem­
onstrated that structural vibration could be damped success­
fully. Even though the feedback control dampened the 
structural vibration, their experiments showed reverse action, 
overshoot. and flexible vibration to a step-position command. 
For a step-position command, these vibration phenomena are 
inevitable with the feedback control scheme because the feed­
back control signal contains high-frequency components that 
excite natural frequencies of the system. Instead of a step 
command, a smooth trajectory should be used as the end-point 
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reference command of a tracking controL However. the desired 
trajectories of flexible-mode variables are necessary to prod~ce 
the desired output trajectories such as joint angle and stram. 
In the absence of realistic desired flexible-mode values. it has 
been common to assign a zero value to each desired flexible­
mode variable to suppress vibration. In other words. joint . 
commands are given to the flexible manipulator to follow the 
trajectory like a rigid manipulator. Even though the feedback 
tracking control reduces the vibration, such unrealistic com­
mands are not always successful. 

To avoid the aforementioned trajectory generation problem. 
De Luca and Siciliano [2] suggested a joint-based inversion 
control scheme. This method showed good tracking results for 
a certain joint trajectory, but it could not be extended to an 
end-point trajectory following control because of nonmini­
mum-phase system characteristics. Oosting and Dickerson [3] 
proposed a calculation method for the torque to follow a 
smooth trajectory with a simple lumped-parameter model of 
a two-link flexible manipulator. 

To make the end-point of a flexible manipulator follow a 
given trajectory, Bayo [4] proposed a new approach. For a 
given end-point acceleration profile, the required torque was 
calculated by solving the inverse dynamic equation in the fre­
quency-domain with the inverse fast Fourier transform. Bayo 
pointed out that the inverse dynamic system. where the end­
point acceleration is the input and the joint torque is the output, 
is a noncausal system because the output (torque) must begin 
before the input (end-point acceleration) begins. In spite of 
the excellent results reported, this method has a drawback. It 
requires extensive computation for the transformation of the 
dynamic model and the input trajectory from the time-domain 
to the frequency-domain. It also requires the inverse trans­
formation of the output back to the time-domain .. To reduce 
this computational burden. Bayo and Moulin [5] introduced 
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Fig. 2 The kinematic descriptions of flexible manipulator coordinates 

the convolution integral method to solve the inverse dynamic 
equation. 

Asada and Ma [6] derived an inverse dynamic equation by 
using assumed mode functions for a general n-link case. The 
transfer function of a flexible manipulator between the input 
(torque) and the output (end-point position) is nonminimum­
phase, i.e., it has positive real zeros. These zeros become po­
sitive poles of the inverse dynamic system transfer function. 
The positive poles cause the inverse system to be unstable if 
the inverse system output is restricted to causal solutions. Asada 
and Ma showed nonlinear effects using rigid motion torque 
without solving the inversl! dynamic equation completely. 

Kwon and Book [7] introduced a new inverse dynamic 
method that considerably relieves the calculation burden. The 
required torque was calculated in the time-domain, and the 
desired trajectories of all 'states were obtained for a given end­
point trajectory. These trajectories are used as the reference 
commands for feedback tracking control. 

The generation of trajectories for all states considering flex­
ible dynamics is one of the main advantages of this time­
domain inverse dynamic method. The frequency-domain in­
verse dynamic method is based on the Fourier transform and 
its inverse with a single-input. single-output transfer function. 
Therefore. it provides only a torque corresponding to a desired 
end-point trajectory from one transfer function. The torque 
profile is used for feedforward open-loop control. To add a 
feedback loop, the joint-angle and strain trajectories consid­
ering the flexible dynamiCS are essential. The time-domain 
inverse dynamic method of this paper calculates the torque 
profile and desired reference trajectories including flexible co­
ordinates for feedback tracking control from the same inte­
gration. As another advantage, this time-domain method can 
generate the torque profile for nonzero initial conditions (Ie) 
and nonzero final conditions in the desired trajectory [8, 9). 
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In the frequency-domain method, the ICs are always assumed 
to be zeros. It is not easy to adapt to a nonzero IC trajectory. 

This paper presents the time-domain inverse dynamic method 
with the detailed interpretation of this method in the frequency­
domain. First. a single-link manipulator is described and mod­
ded by using the assumed mode method. Second. the inverse 
dynamic equation is derived from the dynamic equation of the 
system in a state space form. Third, the time-domain inverse 
dynamic method is explained in the frequency-domain. Next, 
this inverse dynamic method is implemented through simu­
lations on the single-link flexible manipulator. Results are com­
pared with the OUtput of other typical control methods. Finally, 
a tracking controller has been designed that combines the in­
verse dynamic feedforward control and the joint-feedback con­
trol, and its experimental results are presented and discussed. 

2 Modeling 

A single-link flexible manipulator having planar motion is 
described as shown in Fig. 1. The link is 47 in long; it is modeled 
with the rotational inertia, lb. and the unit length mass, RoA. 
The rotating inertia of the servomotor, the tachometer, and 
the clamping hub are modeled as the hub inertia, lh. The 
payload is modeled as the end mass, Me, and the rotational 
inertia, Je. Although structural damping exists in the flexible 
link, it is ignored in modeling_ 

To derive the equations of motion of the manipulator. we 
describe the position of a point on the beam with virtual rigid­
body motion and deflection with respect to the rigid-body 
coordinate by using a Bernoulli-Euler beam model. The virtual 
rigid-body motion is represented by the motion of the moving 
coordinate attached to the beam. The deflection is described 
by a finite series of assumed modes_ 

In the assumed mode method, different mode shape func­
tions have to be used depending on the choice of the rigid body 
coordinate. Several authors [1, 10] have used the rigid-body 
coordinate that is attached at the base [(a) of Fig. 21 with the 
clamped-free boundary condition mode functions. Other au­
thors [11] defined the rigid-body coordinate to pass through 
the center of mass of the beam and used the pinned-free mode 
functions [(b) of Fig. 2]. Others [6] let the rigid-body coordinate 
pass through the end-point and used the pinned-pinned mode 
functions (c) of Fig. 2J. All these definitions of the rigid-body 
coordinate are valid if appropriate mode functions satisfy the 
geometric boundary conditions. In this paper, the rigid-body 
mode coordinate that passes through the end-point of the beam 
is selected [(c) of Fig. 2), and the mode functions of pinned­
pinned boundary conditions are used to describe the deflection 
of the beam. 

To obtain an accurate model with a small number of modes, 
more accurate boundary conditions were considered reflecting 
the joint hub-inertia and the end-mass in addition to the geo­
metric pinned-pinned boundary condition for the mode-shape 
functions. For the inverse dynamic model, the first two mode 
functions are used. and four modes are used for the manip­
ulator plant model in simulation. Because of the selection of 
the rigid-body coordinate, the end-point position of the beam 
can be expressed by the rigid-body-mode variable alone. This 
simple representation of the end-point position allows easy 
derivation of the inverse dynamics equation. 

By using Lagrange's equations of motion, the dYnamic equa­
tion of a t1exible manipulator is obtained with generalized 
coordinates. The detailed derivation is given in reference [7]. 

[,\:f]q+ [D]q + [Klq= [BlT. 

The dynamic equation can be divided into a rigid body part 
and a flexible part as follows: 

Transactlan. af the ASME 



+ = r, (1) [0 0] [qr"/ rBrJ 
o Kff CJ.rJ LBf 

where 

q r = qo (rigid-body coordinate) and 

qr= [~IJ (flexible mode coordinate). 

In the partitioned matrices, the subscript r denotes rigid and 
j denotes flexible; the mixture, rj, denotes coefficients of flex­
ible coordinates in the rigid-body-mode equations. 

For a state space form, we obtain the following dynamic 
Eq. (2). Hereafter, this dynamic equation is referred to as the 
direct dynamic equation to distinguish it from the inverse dy­
namic equation derived in Section 3. 

(2) 

where 

X= [q" qf' q" qf)T 

= [qo, qlo •.. , qo, qlo •. . JT. 

3 Inverse Dynamic Equations 
From the direct dynamic equations. the inverse dynamic 

equation is derived. which represents the relationship between 
the desired acceleration of the rigid mode (equivalent to the 
tip acceleration) as input and the torque as output. Equation 
(1) can be written in two parts: 

[M"]iir+ [Mrf]qf+ [D"]qf+ [Drflqf= [Brlr; (3) 

[Mrffqr+ [Mff]qf+ [D~ff qr+ [Dff}qf+ [Kff}qf= [Bf}r. (4) 

From Eq. (3), torque is expressed as 

r= [Brr I [[M"}qr+ [Mrf]qf+ [Drr}qr+ [Drf}qf j. (5) 

Substitution of Eq. (5) into Eq. (4) gives the following relations 
between the flexible coordinate qfand the rigid body coordinate 
qr' 

where 
[MMr: [D;]Qf+ [K;]qf= [Bn ]qr+ [BiZ}qr (6) 

[Mi} = [ [Mff] - [Bf)[Br] -I [Mrf} ], 

[Di) = [[Dff)- [Bf)[Br} -1[D~f)l, 

[Ki] = [Kff ), 

[Bi!} = ([Bf][Br}-I[D"]- [Dr[]T], 

[Bd = ([Bf)[Brr I[Mrr)-lMr[fJ. 

From Eq. (4), the acceleration of the flexible coordinate is 
expressed as 

iif = - [M[f}-I[Mrf{qr- [Mi[l-I[D~f}T qr 

- [Mff]-I[Dff]qr [Mff}-I[Kff]qf+ [M1rl-
i [B[]r. (7) 

By substituting Eq. (7) into Eq. (3), we obtain 

r= [CiIlqf+ [Ci2 ]qf+ [Fil]qr+ [F,"2lq" (8) 
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where 

Fig. 3 Point·to-point motion of a flexible manipulator 

[Gl = [[Brl- [Mrf)[Mff) -1[Bf } )-1, 

[Cil ] = [G) ( - [Mr[)[Mffl-I[Kff) j, 

[Cal = [G] {[Dr[} - [Mrf)[Mff } - I [Dff] j, 

[Fill = [G] ([Drr ) - [Mrf}[Mffl-l[Drf]T), 

[Fizl = [G){ [M"l- [Mrf][Mlfrl[Mrffl. 

If Eqs. (6) and (8) are represented in a state space form. the 
inverse dynamic equations will be written in the following 
simple form. Let 

. Xi= (qr. qf)T and qir= [q" qrlT. 

r= [Cil> CiZ]Xi+ [Fi ;, F.:l] qir; 

Xi= [A;]Xi+ [B;]qjr> 

r= [Ci ]Xi + [Fi ]qi ... (9) 
Since matrix Ai has positive real eigenvalues (which came 

from the positive zeros of the transfer function of the direct 
dynamic system) as well as negative real eigenvalues, integra­
tion of Eq. (9) will diverge in a causal sense. However, if the 
solution range of the equation is expanded to include noncausal 
solutions. a unique stable solution can be obtained by inte­
grating this differential equation. 

To analyze the inverse system to a flexible manipulator, let 
us define several terms. A causal system is a system in which 
the output (impulse response) always occurs after an input 
(impulse) is given. An anticausal system, however. always has 
the output (backward impulse response) before an input (im­
pulse) is given. A noncausal system has the combined output 
of a causal system and an anticausal system. To grasp the 
meanings of the previous definitions. the physical phenomena 
of the actual motion of a flexible manipulator are described 
in Fig. 3. If a cenain torque profile is applied to the manip­
ulator. there is a unique motion of the end-point. On the other 
hand, if the same unique motion of the end-point is given as 
a desired motion, the same torque profile should be obtained 
by using the inverse dynamic equations. In most cases, to make 
the end-point follow a cenain trajectory profile, we have to 
preshape (prebend) the flexible manipulator as shown by po­
sition 2 of Fig. 3. Therefore, the required torque, which is 
necessary to preshape it, must be applied from position 1 to 
2 of Fig. 3 before the end-point stans to move. The torque 
(output of the inverse system) acts before the tip motion (input 
of the inverse system). This means that the inverse system has 
anticausal characteristics. When the flexible manipulator stops, 

JUNE 1994, Vol. 116/195 



some torque should be applied to release the tlexible deHection 
from position 4 to 5 of Fig. 3 after the end-point Stoos. This 
means that the inverse system has causal system characteristics. 
too. Thus. such an inverse system can be cailed a noncausal 
system. which is composed of a causal system and an anticausal 
system. 

With this intuitive motivation. the inverse dynamic system 
can be divided into its causal and anticausai parts by using the 
following similarity transformation: 

[n: similarity transtormauon matrix 

Xi =[1lP,. 

= [Tc' TaeHP,., Puc I T, (10) 

whereX;= I qr, Ill] r. The Te's basis vectors are the eIgenvectors 
that have negative eigenvalues. and Tue is made of the eigen­
vectors of positive eigenvalues. 

[11 1.4;[11 = [A;e A~J; 
(P,., [Aie 0 J [Pel l'- B;c] . ) . J' = . .,.. qir. 
r....Pac 0 Aiae poe) Biae 

(ie! = [C!c] r Pc ( .,.. r 1/2 Fil iii" 
(rae) C;ot: (Pac) L 1/2 F,.j 

(11) 

Such a coordinate change decouples the inverse system into 
tWO subsvstems as shown in Eq. (11). The new variable Pc 
represents the coordinates of the causal system. and the Pac 
represents that of the anticausal system. Even though [F;] is 
not required to be divided equally in causal and anticausal 
equations. it was divided equally to make the causal and an­
ticausai systems' time-response symmetric. 

For a given end-point trajectory, the causal part of the torque 
is obtained by integrating the causal part of the inverse dynamic 
equations forward in time. starting from the initial time of the 
trajectory. The anticausal system equations must be integrated 
backward in time. starting from the iinal time of the trajectory. 
The meanings of the forward and backward integrations are 
interpreted in detail in the frequency-<iomain in Section 4. The 
total torque. which is the outPUt oi Eq. lin. is obtained by 
adding the outputs of the causal and anticausal systems. In 
Section 6. Fig. 7 shows the calculated torque proiiles for a 
certain desired trajectory. 

As additional outputs of this inverse dynamic method. the 
reference trajectories of all flexible-mode coordinates have 
been calculated from the rigid-body-mode trajectory. As can 
be expected from Eqs. (2) and (11), the space of the full-state 
vector X of the direct dynamic system can be divided into three 
subspaces: the rigid-body coordinate subspace q;" the causal 
part t1exible coordinate subspace Pco and the anticausal part 
tlexible coordinate subspace Poe. These subspaces are linearly 
independent and orthogonal to each other. The reiations of 
these spaces are illustrated in Fig. 4. and are described by Eq. 
(12). in which only two tlexible modes are considered. 

Where X= lq" q[l. Q(2, q" q[I, q.r.d', q;r= Iq" el,l', 
andX;= lqrh '1.".., qllo q.r:1]T=[l1Pi , 

1 01 
- o 0 0 ol 

o 0 I 0 001 
o 0 o 100 

J'( = o 1 
qir+ X,=H,qir+H.rX o 0 00 

o 0 o 0 1 OJ 
o 0 000 1 
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= H,(lir T H.r!l1Pi= H4ir+H.rTcPc+ H.rTacPoC' (12) 

From the given end-point trajectory, the rigid body coordinate 
trajectory qir is obtained. The flexible coordinate trajectories 
of Pc and Pac are then calculated from the integration of Eq. 
(11). Then. the trajectories of all original states X can be 
obtained by Eq. (12). These trajectory values can be used as 
reference commands for feedback tracking control. 

The generation of complete state trajectories is one sub­
stantial advantage of this time-domain inverse dynamic method 
over the other methods [2. 4, 121. From the calculated state 
trajectories. the desired output trajectories can be obtained. 
such as joint angie, joint veiocitY, and suains as well as the 
inverse dynamic torque. Because the output trajectories were 
obtained considering the flexible dynamics. we no longer have 
to give reference commands for the flexible manipulator to 
follow the trajectory like a' rigid manipulator by specifying 
that the desired strain be zero. 

4 Interpretation of the Inverse Dynamic Method in the 
Frequency-Domain 

This section explains the separation of the inverse dynamic 
system into the causal and anticausai parts by using the two­
sided Lapiace transform and interprets the integration of causal 
and anticausai equations with the convolution integral. For 
simplicity, we will change the variable name qi, of the inverse 
dynamic Eq. (9) to qa' 

.Y, = [A;lXi + [B;]qa. 

(13) 

Since the inverse system is noncausai. (XI (I) is nonzero for 
both t<t.(=O) and t>t" while the end-point, qa(l), moves 
only for O!ftStrj, the two-sided Laplace transform should be 
used to obtain the transfer function of the inverse system. 

The two-sided Laplace transform L21 I is defined over some 
Strip of convergence as follows [13]: 

X;(s) = Lz{X;(t) I 

= j'" e-"Xi(t)dt, 
-00 

(14) 

where a<Re(s)<t3. 
Accordingiy. the inverse two-sided Laplace transform is de­

fined by 
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1 IC

+
jOO 

=-. tIXj(s)dt for a<c<i3. 
211") e-joo 

(15) 

The strip of convergence depends on the exponential conver­
gence rate of the time response of the function Xii tl. 

Define the inverse system transfer function between the input 
(the rigid-body coordinate trajectory qa) and the outPUt (the 
joint torque 1') as 

H(s)= T(S) for a<Re(s)<!3. (16) 
qa(s) 

Since H(s) has the same order denominator and numerator. 
it is separated into a strictly anticausal function H, (s), a strictly 
causal function H2 (s), and a constant K. This constant ensures 
that H, (s) and H2 (s) have a higher-order denominator than 
numerator to satisfy the condition of Jordan's Lemma [14]. 

H(s) =H, (s) +H2 (s) +K. (17) 

Since the impulse response h (t) of the transfer function 
H(s) depends on the choice of the strip of convergence, the 
shaded region of Fig. 5 between the largest negative pole. aI, 
and the smallest positive pole, b" has been chosen among 
several candidate strips of convergence such as Re(s) < a2, a2 
< Re (s) < a" a, < Re (s) < b" •..• Among them, only the 
shaded region provides a bounded stable time response for the 
inverse Laplace transform. Because the particular strip of con­
vergence is chosen, H(s) is separated into H, (s), which has 
only positive poles corresponding to the eigenvalues of anti­
causal pan system matrix Aan and H2 (s), which has only 
negative poles corresponding to the eigenvalues of the causal 
part system matrix Ac. These explanations justify why the 
inverse system matrix Ai can be separated into Aan having only 
positive eigenvalues and A" having only negative eigenvalues. 

The inverse Laplace transform of Eq. (17) is calculated along 
line AB in the strip 0, < Re(s) < b, [13J. Using the theorem 
on integration over large semicircles and Jordan's Lemma [14], 
the previous complex-plane contour integral along line AB of 
Fig. 5 is calculated as follows. 

For «0, h(t) =_1_. ~ FfW(s)ds 
27r) JABCA 

= -l: residue of tlH, (s) + {; (tlK 

=h~c(t) HU)K. (18) 

For 1>0. h(t) =-2
1 

. ~ tIH(s}ds 
1I"J JABDA 

= E residue of t IH2 (s) +o{ l)K 

(19) 

The inverse Laplace transform of Eq. (18) and Eq. (19) gives 
the impulse response function h «(), which has an anticausal 
part, hac (t), and a causal part, he (l) . 

Next, the total torque calculation adding the causal pan of 

Journal of Dynamic Systems, Measurement, and Control 

c 
, 
\ i a2 

\ 1 j 

\, ~ 
: 'J 

r'~, 
........... ~ ... 

11-=. ~~~ 
Fig. 5 Contour Integrals In complex plane 

the torque and the anticausal pan of the torque will be inter­
preted with the convolution integral: 

T(t) =L2" [H(s)qa(S) I 

= ["" h(rllqa(t-TJ)d1/, (20) 

where qa(t) is defined for OStStj, and 0 otherwise. 
Since h(t) =hac(t) + o(t)K for tsO; hac<t)=O for r>O, and 
sinceh(t)=he{t) + o(t)Kforl~O; hc(t) =0 for t<O, 

.0 r'"' 
7'(t) = \ huc (1/)Qa{t-1/)d1/+' h c(1/)qa(t-1/)d1/ 

. v-co tlo 

+ r o(1/)K qa(t-TJ)d1/ 
-00 

=T;C(tStj) +1'; (t~O)+K qQ(OStstj) 

= [7';c(t)+~ K qa(t)} + [1'; (t) +~ K qa(t)} 

(21) 

where1:c =0 for t>tr, T;c=O for t<O, qa=O for t<Oand t> t,. 
The torque Eq. (il) has the same form as Eq. (11). The 

convolution integral of T:c is equivalent to the backward in­
tegration of the anticausal subsystem equation from t r to - 00; 

the integral of r ~ is the same as the integration of the causal 
subsystem equation from 0 to 00. Thus, the total torque is 
composed of the anticausal part torque T~c, the causal pan 
torque T~, and the input feedforward term Kqa, which coincides 
with the term [Fi ]qa of the inverse dynamic equation. 

5 Trajectory Generation 
Theoretically; the inverse dynamic equation can give a torque 

profile r'or an arbitrary acceleration profile. However, as Bayo 
mentioned [12], it is important to apply an acceleration profile 
that does not excite the unmodeled dynamics of a manipulator. 
If the acceleration changes sharply, the calculated torque pro­
file may excite the unmodeled high-frequency modes of the 
flexible manipulator. Furthermore, the torque frequency may 
be beyond the actuator bandwidth. The maximum acceleration 
iimit also should be chosen properly to avoid saturation of the 
actuator and to use its full capacity for minimum traveling 
time. The minimum-traveling-time constraint makes the ac­
celeration profile close to a bang-bang type, which will result 
in unwanted high-frequency problems. Therefore, the accel­
eration profile has to be selected by compromising the profile 
smoothness and the use of the full actuator capacity. 

JUNE 1994, Vol. 1161197 



a) ':'.:celeratlon 
:::rl----------~~~~~------------~I 

...... "J)( cc::e1erot1onl 

i ' I ' 
;::+ i 

:ase. :=~ 

I 

."'jl'.' \ 
_:J~L_----------------~,"--------------~ 

C.? :.6 : a: ; 2 

-''''l'''e ( sec j 

.1 - :~'.I'''" 

/"\\ .of ,---
\ i , .,~ \ ~ JOt " f \ 

I 
~ .. r i "t , 

i 

\ ,,~ 

/ 

!'" :': " " 
., ,', g, 

" 
, ,. .~ s " 

., ":_1_, --.f_1 

Fig. 6 Desired end point trajectory: (s) acceleration, (b) velocity, (e) 
pOlitlon 

.. ·~I----------------~---------------

:::: .... 
- i 

t 

: i~ 0 

i -'et 

-' sf. 
1 

/~ 
l \ 

: \ 

/ \ 
j/~.~"~"-\ 

j ....... '- \" 
\ \", 

,/ . 

----. ~ausal "": 

;ntlcausal 

. -J.2 ),4 '\ a.6 :,5/ 
/ 

\. 
\ .... --. 

_---... M.i..------- _ ... 
End Pt. lot.10n \ ~. 

-2::·~'--------------------------~----~ 
'rl:::e ( sec ) 

Fig. 7 Calculation of torque with the inverse dynamic method 

Considering these trade-offs, the acceleration profile of Fig. 
6 was used. It is composed of four third-order polynomial 
pans and two constant acceleration pans. The parameter P is 
the ratio of the first pan polynomial acceleration time to the 
total traveling time of the end-point. If P=O, the profile will 
be the bang-bang type. If P = 0,25, the profile will be very 
smooth because it is connected with four polynomials without 
constant acceleration parts. For simulations and experiments, 
the P=0.2 case was 4sed. 

6 Simulation Results of the Inverse Dynamic Control 
This section presents simulation results to illustrate the per­

formance of the inverse dynamic method. First, the total torque 
profile is calculated from the causal pan and the anticausal 
pan of Eq. (11) for a given end-point acceleration profile. as 
shown in Fig. 7. Th~ desired trajectories of the outputs such 
as joint angie. joint velocity, and strains are generated and are 
shown in Fig. 8. Theoretically, torque should be obtained by 
integrating to infinity. It is not clear how to determine the 
finite integral interval Us> tf} even though the time will depend 
dominantly on the inverse-system zeros closest to the origin 
and the input profile. In this paper. the torque profile was 
truncated at the time it dropped below 0.5 percent of the 
maximum torque value in order to apply the torque of the 
finite durations. 

Second. the calculated torque was applied to the ideal flex­
ible-manipulator model from which the inverse dynamic model 
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Fig. 11 Tracking control scheme of the experiment 

was derived. As shown in Fig. 9, the end-point follows the 
desired trajectory exactly, and no undershoot, overshoot, or 
noticeable residual vibration occur. However, the strain plot 
shows some residual oscillations after the end-point stops. 
These oscillations are caused by numerical integration errors 
that result from the somewhat slow sampling frequency (150 
Hz) used in the simulation, which is the same as the sampling 
frequency of the experiment. When much higher sampling 
frequency was used, the residual vibration was almost unnot­
iceable. 

Next, the effectiveness of inverse dynamic trajectories, which 
considered flexible dynamics, is demonstrated by comparing 
the simulation results of several typical feedback control meth­
ods. Figure 10 (curve a) is the result of a collocated joint P D 
controller for a step-input command. As can be expected, the 
feedback of position error generates very high peak torque at 
the beginning, and it excites the system's natural frequencies. 
Therefore, it requires a relatively long settling time. The result 
shows also the reverse action and the overshoot of the end­
point position. 

As an alternative methOd, a tracking full-state feedback 
controller was tried with a nominal joint trajectory. The nom­
inal joint trajectory means that the trajectory is generated from 
the relation Ii = X.IL between the joint and the end-point po­
sition based on rigid-link assumption. Consequently, the de­
sired flexible coordinate values were set to zero: qr= 0, iIr= o. 
The feedback gain was selected by the LQ method. Even though 
the response (curve b) is better than that oi the step-input with 
jOint feedback, it still has overshoot and requires a relatively 
long settling time. This poor tracking response is due to the 
unrealistic commands of zero values to the flexible coordinates. 
If compatible reference commands of the flexible modes are 
used. such as obtained from the inverse dynamic method, we 
can obtain good tracking performance. Figure 10 (curve c) 
shows almost no tracking error (and lies on top of the desired 
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Fig. 12 Experimentll results of the tracking control combined with the 
in'lerle dynlmic feedforwlrd control and the joint feedback control: (a) 
joint angle, (b) strain at the base 

response). This comparison clearly demonstrates the advantage 
of complete state trajectory generation by using the inverse 
dynamic method. 

7 Experimental Results 
Although the open-loop control with the inverse dynamic 

method showed good simulation results with an in ideal model 
in Fig. 9, it produced a large positioning error with the ex­
perimental manipulator due to the effects of the joint friction. 
Therefore, a tracking controller was designed using the feed­
forward inverse dynamic method as shown in Fig. 11. A joint 
feedback control loop was added to provide robustness to the 
system, and a friction compensation loop was also added to 
cancel the effect of the friction force. If feedback gain of K (s) 
is very large, the joint-friction effect will be negligible, and 
the tracking performance will depend on the accuracy of the 
inverse system model [9]. Robustness issues with an inexact 
model are out of the scope of this paper, because the inverse 
dynamic method assumes the model's pole zero locations are 
accurate enough. However, the number of modes required for 
the inverse dynamic model depends on the desired trajectory 
frequency content. The inverse system model should have 
enough modes [Q filter out the frequency content of the desired 
trajectory, which may excite the structural vibration. For the 
proposed acceleration profile, a two-mode model was enough 
to be used as an inverse dynamic model. Comparative studies 
have been conducted using various orders in the inverse dy­
namic model [15]. Tracking error dynamics is analyzed for an 
inexact inverse model and disturbance in reference [9]. 

The combined tracking control scheme of the inverse dy­
namic feedforward control and the feedback control was im­
plemented on the experimental single-link flexible manipulator. 
The manipulator used in the experiment is made of aluminum 
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'beam (3/16x I x 47-in.) and a D.I-Ib. end-mass. The natural 
frequencies of the experimental singie link system are 6.6. 16.6. 
41.8. and 81.9 Hz with a pinned-free boundary condition. 
including the hub-actuator rotational inertia and the end-mass. 
It is driven by an Inland de servomotor with a current amplifier. 
For a real-time control. a Micro VAX II was used with 12-bit 
AID and DI A boards. The off-line calculation of the trajectory 
and the torque profile was also performed by using the Micro 
VAX. 

By applying the precalculated torque. compensating the joint 
friction. and using the feedback of the tracking error at the 
joint. the excellent results of Fig. 12 were obtained. The flexible 
manipulator could stop without any overshoot or any residual 
vibration after it moved 4D in. (48.76 deg) within less than 0.8 
s. In the strain signal. a rough jerk exists that couid be elim­
inated by using a smoother acceleration profile. Unfortunately. 
becaUSe the end-point position sensor was not available. the 
end-point position could not be measured directly. However. 
the end-point tracking performance can be estimated from the 
joint-tracking and the strain tracking result. If the joint does 
not have anv overshoot or vibration and the strain does not 
show any residual vibration. the end-point can be presumed 
to stOP without any overshoot or vibration. 

In the experiment. only joint-angle and joint-velocity signals 
were used for feedback. The experimental results show that a 
simple joint feedback PD controller performs exceilent track­
ing if it is combined with the inverse dynamic feedforward 
control and if the joint trajectories are provided considering 
the flexible dynamics. In the experimental system. the struc­
tural damping ratio. was less than 0.02 for flexible vibration 
modes, and the hub joint has relatively large coulomb friction 
and proportional damping. The inverse dynamic method did 
not include the damping model. Only the joint friction has 
been compensated with the feed forward control based on the 
fiction model. The reasons why the results appear to show 
quite a bit of structural damping is that feedback control adds 
some active damping effect and the input torque did not excite 
structural vibration. 

8 Conclusion 
The proposed inverse dynamic method provides a simple 

way to generate the required torque profile and entire state 
trajectories in the time-domain for a flexible manipulator. In 
simulation. the use of the flexible coordinate trajectories gen­
erated bv inverse dynamics resulted in much better feedback 
tracking'performance than did nominal trajectory commands 
based on a rigid-link assumption. In laboratory experiments. 
feed forward control using the inverse dynamic method showed 
good tracking performance with a simple joint feedback con­
troller. The measured outputs showed very small tracking er-
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ror. no overshoot. and no oscillation, and they agreed well 
with the simulation results. The characteristics of the inverse, 
dynamic system of a flexible manipulator were newly inter­
preted with the use of causal and anticausai concepts. Based 
on these concepts, the time-domain inverse dynamic method 
was interpreted in the frequency-domain in detail by using the 
two-sided Laplace transform in the frequency-domain and the 
convolution integral. 

Although several successful results of this method are men­
tioned, this dynamic method is limited to linear systems. To 
be extended to a multilink flexible manipulator, this method 
should be incorporated with a nonlinear inversion technique. 
or use the dynamics of the manipulator linearized along the 
desired end-point trajectory. 
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