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1 Introduction

A manipulator system with a large workspace volume and
a large payload, such as the proposed long-reach manipulator
for nuclear waste remediation or the Space Shurtie Manipulator
Arm, has greater link flexibility than do typical industrial ro-
bots and teleoperators. If link flexibility is significant, control
of the end-effector’s position must cope with the nonminimum-
phase, noncoliocated, and flexible-structure control problems.
The flexible manipulator system should be able to follow a
given end-point trajectory to be used as a practical robotic
manipulator in spite of its flexibility. This paper proposes an
efficient time-domain inverse dynamic method that enables a
flexible manipulator to follow a given end-point trajectory
accurately without overshoot and residual vibration.

The regulating feedback control is one of the typicai methods
used to suppress the structural vibration of a manipulator. By
using joint-and-strain feedback, Hastings and Book [1] dem-
onstrated that structural vibration could be damped success-
fuily. Even though the feedback control dampened the
structural vibration, their experiments showed reverse action,
overshoot, and flexible vibration to a step-position command.
For a step-position command, these vibration phenomena are
inevitable with the feedback control scheme because the feed-
back control signal contains high-frequency components that
excite natural frequencies of the system. Instead of a step
command, a smooth trajectory should be used as the end-point
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A Time-Domain Inverse Dynamic

Control of a Single-Link

Flexible Manipulator’

A manipulator system with a large workspace volume and high payload capacity
has greater link flexibility than do typical industrial robots and teleoperarors. [f link
Sflexibility is significant, position control of the manipulator’s end-effector exhibits
nonminimum-phase, noncollocated, and flexible-structure system control problems.
This paper addresses inverse dynamic rajectory planning issues of a single-link

The inverse dynamic equation of a single-link flexible manip-

ularor was solved in the time-domain. By dividing the inverse system equation into
its causal part and anticausal pari, the inverse dvnamic method calculates the feed-
Sforward rorque and the trajecrories of all state variables that do not excite structural
vibrations for a given end-poini trajectory. Through simulation and experiment with
a single-link manipulator, the effectiveness of the inverse dynamic method in pro-
ducing fast and vibration-free motion has been demonstraied.

reference command of a tracking control. However, the desired
trajectories of flexible-mode variables are necessary to produce
the desired output trajectories such as joint angle and strain.
In the absence of realistic desired flexible-mode values, it has
been common to assign a zero value to each desired flexible-
mode variable to suppress vibration. In other words, joint -
commands are given to the flexible manipulator to follow the
trajectory like a rigid manipulator. Even though the feedback
tracking control reduces the vibration, such unrealistic com-
mands are not always successful.

To avoid the aforementioned trajectory generation problem,
De Luca and Siciliano [2] suggested a joint-based inversion
control scheme. This method showed good tracking resuits for
a certain joint trajectory, but it could not be extended to an
end-point trajectory following control because of nonmini-
mum-phase system characteristics. Qosting and Dickerson [3]
proposed a calculation method for the torque to follow a
smooth trajectory with a simple lumped-parameter model of
a two-link flexible manipulator.

To make the end-point of a flexible manipuiator follow a
given trajectory, Bayo [4] proposed a new approach. For a
given end-point acceleration profile, the required torque was
calculated by solving the inverse dynamic equation in the fre-
quency-domain with the inverse fast Fourier transform. Bayo
pointed out that the inverse dynamic system, where the end-
point acceleration is the input and the joint torque is the output,
is a noncausai system because the output (torque) must begin
befare the input (end-point acceleration) begins. In spite of
the excellent results reported, this method has a drawback. It
requires extensive computation for the transformation of the
dynamic modei and the input trajectory from the time-domain
to the frequency-domain. It aiso requires the inverse trans-
formation of the output back to the time-domain. To reduce
this computational burden. Bavo and Moulin [5] introduced
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the convolution integral method to solve the inverse dynamic
equation.

Asada and Ma (6] derived an inverse dynamic equation by
using assumed mode functions for a general n-link case. The
transfer function of a flexible manipulator between the input
(torque) and the output (end-point position) is nonminimum-
phase, i.e., it has positive real zeros. These zeros become po-
sitive poles of the inverse dynamic system transfer function.
The positive poles cause the inverse system 10 be unstable if
the inverse system output is restricted to causal solutions. Asada
and Ma showed nonlinear effects using rigid motion torque
without solving the inverse dynamic equation compietely.

Kwon and Book [7] introduced a new inverse dynamic
method that considerably relieves the caiculation burden. The
required torque was calculated in the time-domain, and the
desired trajectories of all states were obtained for a given end-
point trajectory. These trajectories are used as the reference
commands for feedback tracking control.

The generation of trajectories for ail states considering flex-
ible dynamics is one of the main advantages of this time-
domain inverse dynamic method. The frequency-domain in-
verse dynamic method is based on the Fourier transform and
its inverse with a single-input, single-output transfer function.
Therefore, it provides only a torque corresponding to a desired
end-point trajectory from one transfer function. The torque
profile is used for feedforward open-loop control. To add a
feedback loop, the joint-angle and strain trajectories consid-
ering the flexible dynamics are essential. The time-domain
inverse dynamic method of this paper caiculates the torque
profile and desired reference trajectories including flexible co-
ordinates for feedback tracking control from the same inte-
gration. As another advantage, this time-domain method can
generate the torque protile for nonzero initial conditions (IC)
and nonzero final conditions in the desired trajectory {8, 9].
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In the frequency-domain method, the ICs are always assumed
to be zeros. It is not easy to adapt to a nonzero IC trajectory.

This paper presents the time-domain inverse dynamic method
with the detailed interpretation of this method in the frequency-
domain. First, a single-link manipulator is described and mod-
eled by using the assumed mode method. Second, the inverse
dynamic equation is derived from the dynamic equation of the
system in a state space form. Third, the time-domain inverse
dynamic method is explained in the frequency-domain. Next,
this inverse dynamic method is impiemented through simu-
lations on the single-link flexible manipuiator. Resuits are com-
pared with the output of other typical control methods. Finaily,
a tracking controller has been designed that combines the in-
verse dvnamic feedforward control and the joint-feedback con-
trol, and its experimental results are presented and discussed.

2 Modeling

A single-link flexible manipuiator having planar motion is
described as shown in Fig. 1. Thelink is 47 in long; it is modeled
with the rotational inertia, /b, and the unit length mass, Ry A.
The rotating inertia of the servomotor, the tachometer, and
the clamping hub are modeled as the hub inertia, /4. The
payload is modeled as the end mass, Me, and the rotational
inertia, Je. Although structural damping exists in the flexible
link, it is ignored in modeling.

To derive the equations of motion of the manipulator, we
describe. the position of a point on the beam with virtual rigid-
body motion and deflection with respect to the rigid-body
coordinate by using a Bernoulli-Euler beam model. The virtual
rigid-body motion is represented by the motion of the moving
coordinate attached to the beam. The deflection is described
by a finite series of assumed modes.

In the assumed mode method, different mode shape func-
tions have to be used depending on the choice of the rigid body
coordinate. Several authors {1, 10] have used the rigid-body
coordinate that is attached at the base [(a) of Fig. 2] with the
clamped-free boundary condition mode functions. Other au-
thors {11] defined the rigid-body coordinate to pass through
the center of mass of the beam and used the pinned-free mode
functions {(b) of Fig. 2]. Others [6] let the rigid-body coordinate
pass through the end-point and used the pinned-pinned mode
functions {(c) of Fig. 2]. All these definitions of the rigid-body
coordinate are valid if appropriate mode functions satisfy the
geometric boundary conditions. In this paper, the rigid-body
mode coordinate that passes through the end-point of the beam
is selected [(c) of Fig. 2], and the mode functions of pinned-
pinned boundary conditions are used to describe the deflection
of the beam.

To obtain an accurate model with a smail number of modes,
more accurate boundary conditions were considered reflecting
the joint hub-inertia and the end-mass in addition to the geo-
metric pinned-pinned boundary condition for the mode-shape
functions. For the inverse dynamic model, the first two mode
functions are used, and four modes are used for the manip-
ulator plant model in simuiation. Because of the selection of
the rigid-body coordinate, the end-point position of the beam
can be expressed by the rigid-body-mode variable alone. This
simple representation of the end-point position ailows easy
derivation of the inverse dynamics equation.

By using Lagrange’s equations of motion, the dynamic equa-
tion of a flexible manipulator is obtained with generalized
coordinates. The detailed derivation is given in reference {7].

(M1g+[Dlq + [Klg=1B]r.

The dynamic equation can be divided into a rigid body part
and a flexible part as follows:
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where

q,= {q'z (flexible mode coordinate).

In the partitioned matrices, the subscript r denotes rigid and
Jdenotes flexibie; the mixture, 7, denotes coefficients of flex-
ible coordinates in the rigid-body-mode equations.

For a state space form, we obtain the following dynamic
Eq. (2). Hereafter, this dynamic equation is referred to as the
direct dynamic equation to distinguish it from the inverse dy-
namic equation derived in Section 3.

_ 0o I 0
X= [ X+ [ }r;
M~'K M™'D MTBI .y
Y=[CIX+[Flr,
where
X= (g I dr' d.flr
1

={go qus .-, dOy q.h .

3 Inverse Dynamic Equations

From the direct dynamic equations, the inverse dynamic
equation is derived, which represents the relationship between
the desired acceleration of the rigid mode (equivalent to the
tip acceleration) as input and the torgue as output. Equation
(1) can be written in two parts:

(M 1Gr+ Mg+ [Drr)gs+ Diylqp= B, 17; (3)

MG+ Mg+ DY @+ IDylgp+ (Kpylgr=[B/r.  (4)
From Egq. (3), torque is expressed as

r={B,1"" ((Mlgr+ IM,flgs+ (Dr)g,+ Dylar). 5

Substitution of Eq. (5) into Eq. (4) gives the following relations
between the flexibie coordinate grand the rigid body coordinate

qr.
IMigs+ (Dilqs+ [Kidar=[Bn1g-+ (Brldr (6)

where
IM;1= (M- [BAIB,] ' [M1},

D)= {[Dy] - (BAIB:1 "' (D)),
[Kil= Ky,
(Bn1= (IBAIB,1™ 1Dl - [D,17),

[Brl= {IB/IB,] ' M1 -1M,,]).
From Eq. (4), the acceleration of the flexible coordinate is
expressed as

Gp= = M)~ MV G~ My}~ ' (D17,
~ My} "' [Dylay— M) "' [Kyplgr+ My BT, (D)
By substituting Eq. (7) into Eq. (3), we obtain
r=[Calgr+ [Calgs+ (Fulg,+ [Fnldn 8
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Fig. 3 Point-te-point mation of a flexibie manipulator

where
[Gl=[[B.]- M 1M1~ "B/} ),

[Ca]=IGH ~ M 1M1 Kgrl),
(Cal =G Dyl - M1 [My1™ ' IDf1},
[Fal={GH[Dy] - Myl iMpy]™ 1[Drf]T_l,

[Fi2) = [GU M} - IMf )My M7,

If Egs. (6) and (8) are represented in a state space form, the
inverse dynamic equations will be written in the following
simpie form. Let

Xi=14qp g7 and g;-= (g, ¢-}7.

y 0 1 0 0 .
Xi— [M—IK'_ M—lD'_:]Xi'*_ [Mi—lB“ M~lB,2] qih
r=[Cy, CalXi+[Fn, Fal Gins
Xi=[Ai]Xi+[_Bi]éin

r=[G1X:+ [FI]QM'- )]

Since matrix A; has positive real eigenvalues (which came
from the positive zeros of the transfer function of the direct
dynamic system) as well as negarive real eigenvalues, integra-
tion of Eq. (9) will diverge in a causai sense. However, if the
solution range of the equation is expanded to include noncausal
solutions, a unigue stable solution can be obtained by inte-
grating this differential equation.

To analyze the inverse system to a flexible manipuilator, let
us define several terms. A causal system is a system in which
the output (impulse response) always occurs after an input
(impulse) is given. An anticausal system, however, always has
the output (backward impulse response) before an input (im-
pulse) is given. A noncausal system has the combined output
of a causal system and an anticausal system. To grasp the
meanings of the previous definitions, the physical phenomena
of the actual motion of a flexible manipulator are described
in Fig. 3. If a certain torque profile is applied to the manip-
ulator, there is a unique motion of the end-point. On the other
hand, if the same unique motion of the end-point is given as
a desired motion, the same torque profile shouid be obtained
by using the inverse dynamic equations. In most cases, to make
the end-point follow a certain trajectory profiie, we have to
preshape (prebend) the flexible manipulator as shown by po-
sition 2 of Fig. 3. Therefore, the required torque, which is
necessary to preshape it, must be applied from position 1 to0
2 of Fig. 3 before the end-point starts to move. The torque
{output of the inverse system) acts before the tip motion (input
of the inverse system). This means that the inverse system has
anticausal characteristics. When the flexible manipulator stops,
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some torque should be applied to reiease the tlexible deflection
from position 4 to 3 of Fig. 3 after the end-point stops. This
means that the inverse system has causat system characteristics,
i00. Thus, such an inverse system can be cailed a noncausai
system, which is composed of a causai system and an anticausal

system.
With this intuitive motivation. the inverse dynamic svstem

can be divided into its causal and anticausai parts by using the
following similarity transtormation:

[T]: similarity transrormation matrix
"‘\,i = lTlP i

={Te, Tac]{Pm P, i" (10)

where X;= {4y, qy) T, The T.'s basis vectors are the eigenvectors
that have negative eigenvalues, and 7. is made of the eigen-
vectors of positive eigenvaiues.

. I _ A!'C 0 .
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T=Te+ Toee
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Such a coordinate change decoupies the inverse system into
two subsystems as shown in Eq. (11). The new variable P,
represents the coordinates of the causal system, and the P,
represents that of the anticausal system. Even though [F] is
not required to be divided equaily in causal and anticausai
equations, it was divided equally to make the causal and an-
ticausal systems’ time-response symmetric.

For a given end-point trajectory, the causal part of the torque
is obtained by integrating the causal part of the inverse dynamic
equations forward in time. starting from the initial time or the
trajectory. The anticausal system equations must be integrated
backward in time, starting from the final time of the trajectory.
The meanings of the forward and backward integrations are
interpreted in detail in the frequency-domain in Section 4. The
total torque, which is the output of Eq. (11), is obtained by
adding the outputs of the causal and anticausal systems. In
Section 6, Fig. 7 shows the caiculated torque protiles for a
certain desired trajectory.

As additional outputs of this inverse dynamic method. the
reference trajectories of all flexible-mode coordinates have
been caiculated from the rigid-body-mode trajectory. As can
be expected from Eas. (2) and (11), the space of the fuil-siate
vector X of the direct dynamic system can be divided into three
subspaces: the rigid-body coordinate subspace g, the causal
part tlexible coordinate subspace P, and the anticausal part
flexible coordinate subspace P,.. These subspaces are linearly
independent and orthogonai to each other. The reiations or
these spaces are illustrated in Fig. 4, and are described by Eq.
(12), in which only two flexible modes are considered.

Where X' = (q" g1y df2, drv dflv q,l!i "’ gir= CQra er T’
and /Yi= [q_fl: qﬂ: ‘.Zfl) ‘;],!'ZIT‘= {ﬂpfv
107 [Jooo007
00 1000
X= 00 Gir + 0100 X.=H.qr+He X,
01 0000 ' c
00 0010
oo Looot]
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From the given end-point trajectory, the rigid body coordinate
trajectory g;, is obtained. The flexible coordinate trajectories
of P, and P, are then caiculated from the integration of Eq.
(11). Then, the trajectories of all original states X can be
obtained by Eq. (12). These trajectory values can be used as
reference commands for feedback tracking controi.

The generation of complete state trajectories is one sub-
stantial advantage of this time-domain inverse dynamic method
over the other methods {2, 4, 12]. From the calculated state
trajectories, the desired output trajectories can be obtained.
such as joint angle, joint velocity, and strains as well as the
inverse dynamic torque. Because the output trajectories were
obtained considering the flexible dynamics, we no longer have
to give reference commands for the flexible manipulator to
follow the trajectory like a rigid manipuiator by specifying
that the desired strain be zero.

4 Interpretation of the Inverse Dynamic Method in the
Frequency-Domain

This section explains the separation of the inverse dynamic
system into the causal and anticausai parts by using the two-
sided Laplace transform and interprets the integration of causai
and anticausal eguations with the convoiution integrai. For
simplicity, we will change the variable name g;. of the inverse
dynamic Eg. (9) to q,.

Y= [A1X; + [Bilga

7= {C)Xi+ [Filda (13)
Since the inverse system is noncausal, (X; (¢) is nonzero for
both t<1{=0) and >, while the end-point, g,(¢), moves
only for 0=<z=1,), the two-sided Laplace transform should be
used to obtain the transfer function of the inverse system.
The two-sided Laplace transtorm L,{ } is defined over some
stnp of convergence as foilows [13]:

Xi(s) =L { Xi(D) )

A

= j e~ "X (t)at,

(14)

where a<Re(s) < 8.
Accordingly, the inverse two-sided Laplace transform is de-
fined by

Transactions of the ASME



Xi() =Ly '"{Xi(s))

1 ¢+ joo
=—_S &Xi(s)dt for a<c<B. (15)
27U c—jo
The strip of convergence depends on the exponential conver-
gence rate of the time response of the function X;(r).
Define the inverse system transfer function between the input
(the rigid-body coordinate trajectory g,) and the outpur (the
joint torque 7) as

7(s)
qef(s)

Since H(s) has the same order denominator and numerator,
it is separated into a strictly anticausal function H, (s), a strictly
causal function A, (s), and a constant X. This constant ensures
that H,(s) and H,(s) have a higher-order denominator than
numerator to satisfy the condition of Jordan’s Lemma [14].

H(s)=H(s) + H:(5) +K. a7

Since the impuilse response A(z) of the transfer function
H({s) depends on the choice of the strip of convergence, the
shaded region of Fig. 5 between the largest negative pole, a/,
and the smallest positive pole, b,, has been chosen among
several candidate strips of convergence such as Re(s) < a1, a»
< Re(s) <a, ay <Re(s) <b),....Among them, only the
shaded region provides a bounded stable time response for the
inverse Laplace transform. Because the particular strip of con-

H(s)= for a<Re(s) < 8. (16)

" vergence is chosen, H(s) is separated into H,(s), which has

only positive poles corresponding to the eigenvalues of anti-
causal part system matrix A,, and H,(s), which has only
negative poles corresponding to the eigenvalues of the causal
part system matrix A.. These explanations justify why the
inverse system matrix A4; can be separated into 4, having only
positive eigenvalues and 4., having only negative eigenvalues.

The inverse Laplace transform of Eq. (17) is calculated along
line AB in the strip a; < Re(s) < &, [13]. Using the theorem
on integration over large semicircles and Jordan’s Lemma [14],
the previous complex-plane contour integral along line AB of
Fig. 5 is calcuiated as follows.

For <0, h(t)=-—l—, §D e&'H(s)ds
27 J apca

C+ joo
L S EH, (s)ds +8 (1)K
2nj

c~jo
= — T residue of €"H,(s) +6(NK
=N, (1) +6(1)K. (18)

1
For (>0, h(t) == e'H(s)ds
27j J appa

=L S " S, (s)ds+6(1)K

1
27 ey
=z residue of e"H,(s) +6(NK
=h(t)+8(1)K. (19) .

The inverse Laplace transform of Eq. (18) and Eq. (19) gives
the impulse response function 4(z), which has an anticausal
part, h..(f), and a causal part, A.(z).

Next, the total torque calculation adding the causal part of
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Fig. 5 Contour integrais in compiex plane

the torque and the anticausal part of the torque will be inter-
preted with the convolution integral:

1) =L3 ' (H(s)g.(s)}

=S h(n)qq(t—n)dy, (20)

where g,(1) is defined for 0<r=<1;, and 0 otherwise.

Since A1) =h,(t) + 6(t)K for t=0; h,(r)=0 for >0, and
since A(t)=h (1) + 8(1)K for 1=0; h.(1) =0 for t<0,

4] @
huc(ﬂ)q‘:(t—"’)dﬂ"'( hc("])Qa(r—'ﬂ)dﬂ

- vQ

€y

(t) =

+ S o(mK g.(t—n)dn

=re(t=tp) +1, (120)+K g0=1<t)
= {r;(m% K q,(t)} + {rﬁ(r) riK qa(t)}

A, - e

where 7. =0 for t>ty, 7,.=0for <0, g,=0 forr<0and t> t.

The torque Eq. (21) has the same form as Eq. (11). The
convolution integral of 7}, is equivalent to the backward in-
tegration of the anticausal subsystem equation from #rto —o;
the integral of 77 is the same as the integration of the causal
subsystem equation from 0 to o. Thus, the total torque is
composed of the anticausal part torque 7%, the causal part
torque T, and the input feedforward term Kq,, which coincides
with the term [F;]gq, of the inverse dynamic equation.

5 Trajectory Generation

Theoretically, the inverse dynamic equation can give a torque
profile for an arbitrary acceleration profile. However, as Bayo
mentioned [12], it is important to apply an acceleration profile
that does not excite the unmodeled dynamics of a manipulator.
If the acceleration changes sharply, the calculated torque pro-
file may excite the unmodeled high-frequency modes of the
flexible manipulator. Furthermore, the torque frequency may
be beyond the actuator bandwidth. The maximum acceleration
iimit also should be chosen properly to avoid saturation of the
actuator and 1o use its full capacity for minimum traveling
time. The minimum-traveling-time constraint makes the ac-
celeration profile ciose to a bang-bang type, which will resuit
in unwanted high-frequency problems. Therefore, the accel-
eration profile has to be selected by compromising the profile
smoothness and the use of the full actuator capacity.
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Fig. 7 Calculation of torque with the inverse dynamic method

Considering these trade-offs, the acceleration profile of Fig.
6 was used. It is composed of four third-order polynomial
parts and two constant acceleration parts. The parameter £ is
the ratio of the first part polynomial acceleration time to the
total traveling time of the end-point. If P=0, the profile will
be the bang-bang type. If P=0.25, the profile will be very
smooth because it is connected with four polynomials without
constant acceleration parts. For simulations and experiments,
the P=0.2 case was used.

6 Simuiation Resuits of the Inverée Dynamic Control

This section presents simulation resuits to illustrate the per-
formance of the inverse dynamic method. First, the total torque
profile is calculated from the causal part and the anticausal
part of Eq. (11) for a given end-point acceleration profile, as
shown in Fig. 7. The desired trajectories of the outputs such
as joint angie, joint velocity, and strains are generated and are
shown in Fig. 8. Theoretically, torque shouid be obtained by
integrating to infinity. It is not clear how to determine the
finite integral interval (f;, t;) even though the time will depend
dominantly on the inverse-system zeros closest to the origin
and the input profile. In this paper. the torque profile was
truncated at the time it dropped below 0.5 percent of the
maximum torque value in order to apply the torque of the
finite durations.

Second, the calculated torque was applied to the ideal flex-
ible-manipulator model from which the inverse dynamic model

198 / Vol. 116, JUNE 1994

C.85F

0.641

TJomt Angle (rad)

|
o
o
a

-2.21

(@
Genarated Jaint Trajectory
40
130
=
~ 420
3
—— Joint Angle a 419
~~~~~~~~ End Point Pos.
[¢]

-1
3.0 02 04 06 08 1.0 1.2 1.4 1.6 1.8 20 2.2

time ( sec )

(o)

Generated Strain Trajectory

0.0000

Strain {in/in)

~0.0002;

~-0.0004!

-— Strain at base
- Strain at mig

00 02 0.4 06 0B 1.0 1.2 14 1.6 1.8 2.0 2.2

Time { sec )

Fig. 8 Trajectory generation by using the inverse dynamic method: (2
joint angle, (b} strain at base, and at midpoint

@

£nd Point Position

Displ. (in)

--------- Desired
~—— Simulation

02 04 06 08 10 1.2 1.4 1.6 1.8 2.0 22

Time (sec )

(o)

Strain

$.0008

C.C004

-3.0002¢

Stran {in/in)

—9.0002}

=0.0004F

0.0000 >—/

woneme Denired
——— Simulation

-0.0006

20 02 0.4 06 08 1.0 1.2 1.4 1.6 1.8 20 22

Time (sec )

Fig. 8 Simuistion of the open-ioop cantrol with the inverse dynamic
methoct: {2) end-point position, (b) strain at base.

Transactions of the ASME




Zag Point Position

Oegat {in)

i Desired
PO S ——  Step input (a
‘or ! ! — — Nomnal tra). (b}
/ R .+« Invarse m, traj. (C}
E—
-
20 02 04 g€ CB 3L 12 v4 tE CB 35 2

Time (sec }

Fig. 10 Comparison ot typical trajectaries for feedback control meth-
ods: (a) step-input for joint feedback, (b) nominal trajectory for fuil-state

fesdback, and (c) inverse dynamic trajectory for tull-state feedback.

i i
va | 1 {End BT Trajector
—= _§ Inverse ' o jeetbry
wd .4-—-———-—{ eneraticrn
——i Dynamics i !

—_———— éXea.XEv.Xep :

iy ! Plant
S—» Flexible
i IManipulator

v
—— 1

\{Friction —
Compen. _

Fig. 11 Tracking control scheme of the experiment

was derived. As shown in Fig. 9, the end-point follows the
desired trajectory exactly, and no undershoot, overshoot, or
noticeable residual vibration occur. However, the strain plot
shows some residual oscillations after the end-point stops.
These oscillations are caused by numerical integration errors
that result from the somewhat slow sampling frequency (150
Hz) used in the simulation, which is the same as the sampling
frequency of the experiment. When much higher sampling
frequency was used, the residual vibration was aimost unnot-
iceable.

Next, the effectiveness of inverse dynamic trajectories, which
considered flexible dynamics, is demonstrated by comparing
the simuiation results of several typical feedback control meth-
ods. Figure 10 (curve @) is the result of a coliocated joint P D
controller for a step-input command. As can be expected, the
feedback of position error generates very high peak torque at
the beginning, and it excites the system’s natural frequencies.
Therefore, it requires a relatively long settling time. The result
shows also the reverse action and the overshoot of the end-
point position.

As an alternative method, a tracking full-state feedback
controller was tried with a nominal joint trajectory. The nom-
inal joint trajectory means that the trajectory is generated from
the relation #= X,/L between the joint and the end-point po-
sition based on rigid-link assumption. Consequently, the de-
sired flexible coordinate values were set to zero: g;=0, g;=0.
The feedback gain was selected by the L.Q method. Even though
the response (curve b) is better than that of the step-input with
joint feedback, it still has overshoot and requires a relatively
long settling time. This poor tracking response is due to the
unrealistic commands of zero values to the flexibie coordinates.
If compatible reference commands of the flexible modes are
used, such as obtained from the inverse dynamic method, we
can obtain good tracking performance. Figure 10 (curve c)
shows almost no tracking error (and lies on top of the desired
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Fig.12 Experimental resuits of the tracking control combined with the
inverse dynamic feedforward control and the joint feedback control: (a)
joint angle, (b) strain at the base

response). This comparison clearly demonstrates the advantage
of complete state trajectory generation by using the inverse
dynamic method.

7 Experimental Resuits

Although the open-loop control with the inverse dynamic
method showed good simulation resuits with an in ideal model
in Fig. 9, it produced a large positioning error with the ex-
perimental manipulator due 1o the effects of the joint friction.
Therefore, a tracking controller was designed using the feed-
forward inverse dynamic method as shown in Fig. 11. A joint
feedback control loop was added to provide robustness to the
system, and a friction compensation loop was also added to
cancel the effect of the friction force. If feedback gain of X (s)
is very large, the joint-friction effect wiil be negligible, and
the tracking performance will depend on the accuracy of the
inverse system model [9]. Robustness issues with an inexact
model are out of the scope of this paper, because the inverse
dynamic method assumes the model’s pole zero locations are
accurate enough. However, the number of modes required for
the inverse dynamic model depends on the desired trajectory
frequency content. The inverse system model should have
enough modes to fiiter out the frequency content of the desired
trajectory, which may excite the structural vibration. For the
proposed acceleration profile, a two-mode model was enough
to be used as an inverse dynamic model. Comparative studies
have been conducted using various orders in the inverse dy-
namic model {15]. Tracking error dynamics is analyzed for an
inexact inverse model and disturbance in reference [9].

The combined tracking control scheme of the inverse dy-
namic feedforward control and the feedback control was im-
plemented on the experimental single-link flexible manipulator.
The manipuiator used in the experiment is made of aluminum
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beam (3/16 x 1 x47-in.) and a 0.1-lb, end-mass. The natural
frequencies of the experimental singie link system are 6.6, 16.6.
41.8, and 81.9 Hz with a pinned-free boundary condition,
inctuding the hub-actuator rotational inertia and the end-mass.
It is driven by an Inland dc servomotor with a current amplifier.
For a real-time control, a Micro VAX II was used with 12-bit
AsDand D/A boards. The off-line calculation of the trajectory
and the torque profile was also performed by using the Micro
VAX.

By applying the precalculated torque, compensating the joint
friction, and using the feedback of the tracking error at the
joint, the exceilent results of Fig. 12 were obtained. The flexible

_ manipulator could stop without any overshoot or any residual
vibration after it moved 40 in. (48.76 deg) within less than 0.8
s. In the strain signal, a rough jerk exists that couid be elim-
inated by using a smoother acceleration profile. Unfortunately,
because the end-point position sensor was not avaiiable, the
end-point position could not be measured directly. However,
the end-point tracking performance can be estimated from the
joint-tracking and the strain tracking result. If the joint does
not have any overshoot or vibration and the strain does not
show any residual vibration, the end-point can be presumed
to stop without any overshoot or vibration.

In the experiment, only joint-angle and joint-velocity signals
were used for feedback. The experimental resuits show that a
simple joint feedback PD controller performs excellent track-
ing if it is combined with the inverse dynamic feedforward
control and if the joint trajectories are provided considering
the flexible dynamics. In the experimental system, the struc-
tural damping ratio.was less than 0.02 for flexible vibration
modes, and the hub joint has relatively large coulomb friction
and proportional damping. The inverse dynamic method did
not include the damping model. Only the joint friction has
been compensated with the feedforward controi based on the
fiction model. The reasons why the resuits appear to show
quite a bit of structural damping is that feedback control adds
some active damping etfect and the input torgue did not excite’
structural vibration.

8 Conclusion

The proposed inverse dynamic method provides a simple
way to generate the required torque profile and entire state
trajectories in the time-domain for a flexible manijpulator. In
simulation. the use of the flexible coordinate trajectories gen-
erated by inverse dynamics resuited in much better tfeedback
tracking performance than did nominal trajectory commands
based on a rigid-link assumption. In laboratory experiments,
feedforward control using the inverse dynamic method showed
good tracking performance with a simple joint feedback con-

troiler. The measured outputs showed very small tracking er-
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ror, no overshioot, and no oscillation, and they agreed well
with the simulation resuits. The characteristics of the inverse,
dynamic system of a flexible manipuiator were newly inter-
preted with the use of causal and anticausal concepts. Based
on these concepts, the time-domain inverse dynamic method
was interpreted in the frequency-domain in detail by using the
two-sided Laplace transform in the frequency-domain and the
convolution integral.

Although several successtul results of this method are men-
tioned, this dynamic method is limited to linear systems. To
be extended to a muitilink flexible manipuiator, this method
should be incorporated with a nonlinear inversion technique,
or use the dynamics of the manipulator linearized along the
desired end-point trajectory.
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