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ABSTRACT
Students learning a new task with an unfamiliar
interface must learn the task, the interface, and a task-
to-device mapping which enables them to develop an
efficient process for achieving goals with that software.
To characterize student process and learning, we have
used two methods which rely on log file data rather than
the more typical interview-based data.  The first method
creates a graphic snapshot of process, and the second
method creates a transition diagram of process.  Both
techniques are presented with examples of their use.
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INTRODUCTION
The goal of many of the software development projects
in the Highly Interactive Computing Environments
(HiCE) Research Group at the University of Michigan
is to teach students a process which can lead to
successful performance of an unfamiliar, software-based
task (e.g., multimedia composition, programming).  We
take the user's process with software to be the actions
taken by students in the software interface and the order
in which the actions are taken.  Successful software
leads students from their initial, naive process to a more
efficient process.  Evaluating the success of our
software requires us to characterize user process and to
measure change in student process.

We view the task of evaluating how students learn to
use software to be an instance of the general problem of
evaluating software usability.  We can characterize the
student's problem in terms of a general user's
development of process.  A user's process with software
(i.e., the actions taken and the order in which they are
taken) is dependent on three factors (based on Kieras
and Polson [11]):

• The user's task representation,
• The user's device (interface) representation,

and
• The correspondence between the user's goals

and the methods available in the software,
called the task-to-device mapping.

When users begin to use software with an unfamiliar
interface, they must construct a device representation
and a task-to-device mapping.  If the users are also
novice to the task (e.g., students when they first begin
to program), they must also learn a task representation.
As users develop this knowledge, we expect their
process to change.  For example, users will most
probably reorder their task goals and subgoals over time
to correspond to a more efficient use of the available
methods in the software.  The evidence for the reordered
task goals will be different orderings of user actions.  If
the observed user's process does not change (e.g.,
become more efficient), we have reason to call into
question the usability of the software (e.g., the interface
may be too complex for the user to construct either the
device representation or the task-to-device mapping) or
the user's understanding of the task (e.g., perhaps
additional support for understanding the domain is
needed.)  Thus, characterizing process and process
change can provide valuable clues to the user's
developing understanding.

Typically, an evaluation of user process would involve
think-aloud protocols or interviews – some method
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which involves querying the user to determine task
understanding, interface understanding, and the task-to-
device mapping [3].  A comparison over time should
show a change in the user's process in terms of mapping
and order of actions.  However, protocols are labor-
intensive (and thus difficult to do for a whole classroom
of students) and intrusive (e.g., classroom structure does
not easily permit a student thinking aloud while
working).  A method of characterizing process that
would be more amenable to the realities of educational
software would be to log user actions in the interface
and analyze these data, which we call log file data
(sometimes also called event trace records [2]).  Log
file data do not provide insight into task and interface
representations, but they can provide valuable clues in
terms of the observable performance.  Specifically, we
can address two kinds of questions about individual
users and about classes of users:

1. Is a user developing a more efficient process
over time during use of the software?

2. Are some users learning an efficient process
while others are not?

In other words, log file analysis methods can alert the
developer to problems: If a user or group of users do not
seem to be improving in use of the software.  The
methods described here do not identify what the
problem is.  The usability of the software can be
questioned if a problem exists, since it may be that the
designer did not create methods which could be easily
understood and mapped to task goals and subgoals.
However, the problem might also be due to the user's
lack of understanding of the task, as is often the case
with students learning the task with the software.

This paper presents two methods for characterizing
process and process change through analysis of log file
data in three sections.  The next section discusses some
of the log file analysis methods described in the
literature and presents our methods.  The following two
sections present use of these methods in two pieces of
educational software.  We use the first software
environment, GPCeditor, to explore a graphical method
which we use for comparing process for a single student
over time.  We use the second environment, Emile, to
explore a method useful for comparing between
students.  The final section of the paper summarizes and
highlights some of the open questions of log file
analysis methods.

METHODS OF LOG FILE ANALYSES
Collecting log file data to address usability concerns is
a data collection method that is growing in popularity
(e.g., as noted in the INTERCHI'93 panel on the subject
[14]).  There are two main approaches to automated
analyses of log file data: counting of key variables and
characterization of process.

A relatively simple strategy for analyzing log file data
is to simply count key variables in the log data.
Several of the speakers at the INTERCHI'93 panel on

software tools for usability mentioned using
spreadsheets for implementing this strategy [14].  Card,
Moran, and Newell also use this strategy [3] to test their
predictions of usability.  A detailed example is provided
in Shute and Glaser [12] where they gathered 30
variables on various uses of their educational simulation
software (e.g., the number of experiments run, the
number of notebook entries made) to measure the
usefulness of their software.  The counting method can
provide useful information on a user's process, but does
not provide a method of representing the overall
process, the choice of actions over time.

A more complex strategy is to use the log file data to
characterize user process.  The key example is Hammer
and Rouse's [9] use of Markov analysis (a common
analysis technique found in most finite mathematics
texts, e.g. [10]) to characterize keystroke data in use of
an editor.  They expected to find differences in process
for different classes of users working on different tasks.
Unfortunately, they instead found that the individual
differences swamped all group differences.  They
suggest that their focus on low-level actions (e.g.,
typing one character, deleting one character) led to this
problem, and that a focus at a higher-level, that is, a
more task-specific level (e.g., correct spelling errors,
adding new material), might have resulted in more
significant differences.

Our approach is just this: To define high-level groups of
actions and to use transitions between groups to
characterize user process.  We have an advantage that
Hammer and Rouse did not have in their 1979 of text
editors – the software that we are evaluating has a
graphical user interface.  Such an interface has an
implied hierarchy of actions.  For our applications, a
menu operation is higher-level than clicking on an
object to select it, and selecting an object is higher-
level than dragging a window.  While the interface
hierarchy is not always consistent (for example, we
sometimes classify a menu action as low-level), it
provides a starting place for classifying the task-
specificity of an interface action.

In the following two sections, we provide examples of
two methods for using high-level groups to characterize
process in analysis of log file data.

• In the first method, a graphic process pattern is
computed which depicts the transition between
high-level and low-level states over time,
which can be visually compared to another
process.  This method is particularly useful
when a mixture of high and low-level states are
desired in an analysis.  Because the
comparison is visual, this method is most
appropriate for exploring change for a single
user over time.

• In the second method, Markov analysis is used
to create transition diagrams that describe the
observed probability of one high-level state
following another.  This method can be used
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when all of the actions of interest in the
analysis can be classified into high-level states.
These diagrams can be compared across
students using various quantitative methods.

The example of the first method will be a positive
example, describing a user whose process becomes
more efficient.  The example of the second method will
contrast a student's process that has become efficient
with another student whose process has not.

GPCEDITOR AND PROCESS PATTERNS
The GPCeditor (GoalPlanCode editor) is a Pascal
programming environment which has been used by high
school students for several years at a local high school
[6,13].  Students using the GPCeditor do not type code
directly.  Rather they decompose  the programming
problem by defining goals (statements of program
purpose) and plans (program segments for achieving a
goal) and by relating these in a hierarchy.  As the
program components are decomposed, they can be
composed into a complete program, and tested (run).
The GPCeditor automatically collects log file data as
the user works through the program.

In our analysis of the GPCeditor log file data, we
defined three high-level states and three low-level
states.  The high-level states are defined in our model of
process for the GPCeditor (see [13] for more on this
model), and the low-level states were seen as key
stepping stones in this process.

• Decomposition is a high-level state
corresponding to creation or deletion actions of
either goals or plans.  Decomposition actions
are all menu-based actions.

• Composition is a high-level state corresponding
to assembly actions (e.g., inserting or removing
a plan into a linear order).  Composition
actions are menu-based actions.

• Run is a high-level state corresponding to
testing actions (e.g., running the program,
tracing the program).  Run actions are menu-
based actions.

• New day is a low-level state corresponding to
starting the GPCeditor.

• Data objects is a low-level state corresponding
to creation and specification of data objects.
Data objects are manipulated in a modal
window, so data object actions are button-
based actions.

• Undo is a low-level state corresponding to
correcting previous actions.

We used an analysis tool called the Event Recorder
[4,5] to draw process patterns based on these six states.
The Event Recorder was developed by Berger and his
colleagues to study patterns of student-teacher
interactions in the classroom and to study navigation
behavior in a hypermedia database.  To prepare the data
for the Event Recorder, we wrote a small program
which recoded the original GPCeditor log files in terms
of a time stamped series of these six events.  The Event

Recorder graphed each event at discrete vertical
positions with time on the horizontal axis (see Figure 1
for an example).  In our experience, this method is most
appropriate when analyzing a mixture of both high and
low-level states because the low-level states serve as
contrast in the graph.  A graph with all high-level states
is difficult to read and interpret.  (Recall that Hammer
and Rouse found that studying all low-level states
resulted in too great of individual variance.)

Figure 1: Process patterns for a student using
the GPCeditor

Figure 1 shows the process patterns for a typical student
during the first hour of work on two programs using the
GPCeditor.  The programs during this segment of the
class ranged from 10 to 20 lines of code and usually
took the students approximately two hours to complete.

• The first process pattern was taken from the
fourth program undertaken by the student.  This
pattern shows frequent spikes down to the Run
state.  The student typically performs
Decomposition actions, then Data object
actions, then Composition actions, and finally
Runs the program, before beginning again with
Decomposition actions.  This pattern is broken
up with frequent use of Undo.  This is a fairly
inefficient process due to frequent tests of the
program and frequent use of undo.  (However,
frequent tests of a program are good for a
beginning student from a pedagogical point of
view.)
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• The second process pattern was taken from the
ninth program undertaken by the student.  This
pattern features frequent repetitions of the
Decomposition-Data-Composition cycle, but
the student does not actually run the program
until near the end of the hour (at which time
the program did run correctly).  Further, there is
less use of undo.  This is a process in which the
student can create more complex programs in
less time due to the efficient ordering and
selection of software methods.  (This pattern of
postponed execution did become the prevalent
pattern over time for students using the
GPCeditor.)

Process patterns provide snapshot views of process
which can be used to compare students over time.
While this is not a quantitative method, it provides a
level of insight into user actions and the ordering of
these actions in a process which is not possible with
simple counts of actions.  As seen in Figure 1, it is
possible to identify growing efficiency in user's process
over time.

EMILE AND PROCESS TRANSITION DIAGRAMS
Emile is a programming environment used by high
school students to create simulations and
demonstrations of physics concepts using graphical
elements (e.g., buttons and text fields) as well as text
program elements [8].  Like GPCeditor, Emile provides
goals and program components which can be arranged
in a hierarchy using decomposition  actions.  These
components can be assembled into a complete program
using composition actions, then tested using debugging
actions.  Unlike GPCeditor, Emile also provides
prompts for student articulations, such as plans at the
beginning of the day and a journal for summarizing the

day's activities.  Emile creates log files that record user
actions.

Five high-level states were defined for analysis of
Emile's log files, in order to use Markov analysis and
avoid the Hammer and Rouse problem of low-level
states causing high individual variance.  All of the
states were defined in terms of menu actions.  In
defining these high-level states, the low-level Undo
action was not considered, and the New Day and Data
Objects states were subsumed into high-level states.

• Initial Review is the default state at the
beginning of a session and is also the state
corresponding to initial review actions such as
creating a plan or creating a project
description.

• Decomposition is the state for actions that
create goals or program components (e.g., a
button, a field) and arrange them into
hierarchies (e.g., collecting program
components into groups, identifying a goal for a
group).

• Composition is the state for actions that
assemble the program into a whole (e.g.,
placing a button, referencing a field from a text
program).  In Emile, data object actions are
considered to be part of the Composition state.

• Debugging is the state for actions that test the
program.

• Final Review is the state for actions that
naturally come at the end of a session or a
project (e.g., creating a journal entry, storing
components to a component library for later
reuse).

Decomposition

Initial Review
Composition

DebuggingFinal Review

Transitions at start 
of the day.

Transitions at end 
of the day

Transitions predicted 
by process model

Figure 2: Expected transition diagram
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Decomposition

Initial Review
Composition

DebuggingFinal Review

p=0.50

p=0.25

p=0.89

p=0.10
p=0.27

p=0.10

p=0.52

p=0.38

p=0.02

p=0.01
p=0.07

p=0.50

p=0.25

p=0.63

p=0.01

p=0.50

Figure 3: Student M's transition diagram

Decomposition

Initial Review
Composition

DebuggingFinal Review

p=0.17

p=0.17

p=0.64

p=0.03
p=0.24

p=0.05

p=0.65

p=0.30

p=0.01

p=0.04
p=0.29

p=0.38

p=0.17

p=0.60

p=0.02

p=0.38

p=0.33

p=0.12

p=0.12

p=0.17

p=0.12

Figure 4: Student C's transition diagram

We analyzed Emile's log files using Hawk (Hypercard
AWK), a text analysis tool based on an Awk-like
programming language and implemented in a
HyperCard environment (for more on Hawk, see [7]; for
more on Awk, see [1]).  We used Hawk to recode the
Emile log files in terms of these five states, then to
compute a transition diagram for each student's process
on each program.  While it should be possible to mix
high-level and low-level states in a transition diagram,
we avoided this to reduce individual variance.

Figure 2 describes the transition diagram that we
considered efficient for use of Emile.  There are 17 arcs
in this diagram.

• The dark lines indicate transitions anticipated
by the programming task.  As seen in the
GPCeditor process patterns, Decomposition
actions are often followed by Composition
actions which are often followed by Debugging
actions (with some movement between these
actions to correct bugs).  After a Debugging
action, the user might create a new component
with a Decomposition action.

• The dotted lines indicate transitions expected
after starting a new session.  After starting
Emile (perhaps creating a plan), students are

expected to continue their programs where
they left off.

• The dashed lines indicate transitions expected
at the end of a session.  Wherever students are
in their programming task, students at the end
of the day are asked to make a journal entry
before ending (perhaps also saving components
to their library).

Figure 3 and 4 are the transition diagrams for two
students working on their fourth programs in Emile.
Each arc is notated with the observed probability of
that transition occurring.  For example, the arc from
Initial Review to Decomposition in Figure 3 annotated
with "p=0.25" means that one out of every four Initial
Review actions was followed by a Decomposition
action.

• Figure 3 shows student M's transition diagram.
This diagram is quite close to the expected
diagram.  There is an additional transition here
from Final Review to Decomposition which is
unusual:  It means that he sometimes did a
Final Review action (e.g., created a journal
entry), then returned to a Decomposition
action.  Some arcs are missing, such as from
Decomposition or Composition to Final
Review.  This only means that the student was
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always Debugging before ending the session in
Final Review.  There are 16 arcs in this
diagram.

• Figure 4 shows student C's transition diagram.
Here, there are several more arcs than are
expected.  For example, the student has a
transition from Initial Review to Final Review,
suggesting that the student created a journal
entry immediately after starting the program.
There are also arcs from Final Review to both
Decomposition and Composition which are
unexpected.  In total, there are 21 arcs in this
diagram.

In general, we found that the number of transition
diagram arcs was a reasonable indication of the fit
between the student's transition diagram and the
expected process.  Clearly, counting arcs is simplistic
and does not consider the observed probabilities at all,
but the arc counts have highlighted important
differences in groups of students.  Hammer and Rouse
used yet another method for quantifying transition
diagram methods which involved computing a statistic
indicating whether different chains of actions might
indeed be from the same process [9].  We chose the
count of transition diagram arcs as a simpler method
that provided insight into our data.

Table 1 summarizes the number of transition diagram
arcs for five students at the same level of experience
(the fourth program in a study of Emile).  Note that
students B, M, and S are all at a relatively low number
of transition diagrams arcs (15, 16, and 14,
respectively), while students C and L are at a
relatively high number of arcs (21 each), compared
with the expected number of 17 transition diagram arcs.
This is a case where the inefficient process used by
students C and L may be due to a lack of task
knowledge rather than a bad device design.  In testing
at the end of the study, students C and L also had the
least understanding of programming and physics.  Thus,
their inability to create an efficient task-to-device
mapping could be due to a lack of task knowledge
rather than a design problem.

SUMMARY
This paper has presented two methods for analyzing log
file data in order to characterize process and process
change, as opposed to use of interview-based methods.
We see the exploration of user process and process
change as providing critical clues about the user's
learning of task, device (interface), and task-to-device
mapping.  Both methods are based on the definition of
high-level states which allow for meaningful depictions
of user process.  The first method creates process
patterns describing the transitions between both high-
level and low-level states in a graphic, snapshot view.
The second method uses Markov analysis to define
transition diagrams which can be quantified and
compared across students.  Using automated and

unobtrusive log file analyses provided us with two
critical pieces of information:

• Evidence of student process learning and a
characterization of how the process was
changing.

• Evidence for differences in how different
groups of students were learning software
process.

Some of the many open questions about these methods
and log file analysis methods in general include:

• What is a methodology for selecting states and
actions of interest for log file analyses?  We
identified states based on our expected process
models, and we favored actions corresponding
to menu items and button presses before others.
A more rigorous methodology is required to
create general techniques.

• What is the difference between low-level and
high-level states for log file analyses?
Hammer and Rouse said that their states were
too low-level, so we emphasized high-level
states and found useful information.  A clear
definition of low-level and high-level states
with an empirical exploration of where each is
useful in log-file-based usability analysis is
called for in order to explore this hierarchy of
process states.

• What are the tradeoffs between log file
analyses and interview-based analyses for
characterizing process?  We explored log file
analyses out of necessity, because of the
difficulties of using interviews and think-aloud
protocols in a classroom.  Our experience
suggest that log file analysis is a more
powerful technique for characterizing process
than is currently reflected in the literature.  A
more careful analysis is needed to determine
the strengths and weaknesses of log file
analyses as compared to other analysis
techniques for characterizing process.

This research has been supported in part by NSF
Contract MDR-9010362.



Page 7

Student B C L M S
Number of arcs 15 21 21 16 14
Table 1: Number of transition diagram arcs for each student on Project 4
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