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SUMMARY 

 

 

Condition assessment and safety verification of existing bridges and decisions as 

to whether bridge posting is required are addressed through analysis, load testing, or a 

combination of methods.   Bridge rating through structural analysis is by far the most 

common procedure for rating existing bridges. The American Association of State 

Highway and Transportation Officials (AASHTO) Manual for Bridge Evaluation (MBE), 

First Edition permits bridge capacity ratings to be determined through allowable stress 

rating (ASR), load factor rating (LFR) or load and resistance factor rating (LRFR); the 

latter method is keyed to the AASHTO LRFD Bridge Design Specifications, which is 

reliability-based and has been required for the design of new bridges built with federal 

findings since October, 2007. A survey of current bridge rating practices in the United 

States has revealed that these three methods may lead to different ratings and posting 

limits for the same bridge, a situation that carries serious implications with regard to the 

safety of the public and the economic well-being of communities that may be affected by 

bridge postings or closures.  

To address this issue, a research program has been conducted with the overall 

objective of providing recommendations for improving the process by which the 

condition of existing bridge structures is assessed.  This research required a coordinated 

program of load testing and finite element analysis of selected bridges in the State of 

Georgia to gain perspectives on the behavior of older bridges under various load 
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conditions.  Structural system reliability assessments of these bridges were conducted and 

bridge fragilities were developed for purposes of comparison with component reliability 

benchmarks for new bridges.  A reliability-based bridge rating framework was developed, 

along with a series of recommended improvements to the current bridge rating methods, 

which facilitate the incorporation of various in situ conditions of existing bridges into the 

bridge rating process at both  component and system levels.  This framework permits 

bridge ratings to be conducted at three levels of increasing complexity to achieve the 

performance objectives, expressed in the terms of reliability, that are embedded in the 

LRFR option of the AASHTO Manual of Bridge Evaluation.  This research was 

sponsored by the Georgia Department of Transportation, and has led to a set of 

Recommended Guidelines for Condition Assessment and Evaluation of Existing Bridges 

in Georgia. 
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CHAPTER 1 

INTRODUCTION 
 
 
 
 
 

1.1 BACKGROUND  

Bridge structures in the State of Georgia are at risk from aging, leading to 

structural deterioration from service demands from increasing traffic and heavier loads, 

from aggressive environmental attack and other physical mechanisms, and from deferred 

maintenance.   Condition assessment and evaluation of existing bridges may be prompted 

by changes in traffic patterns; concern about faulty building materials or construction 

methods; discovery of a design/construction error after the structure is in service; concern 

about deterioration discovered during routine inspection; and damage following extreme 

load events.  A condition assessment may be conducted to develop a bridge load rating, 

confirm an existing load rating, increase a load rating for future traffic, or determine 

whether the bridge must be posted in the interest of public safety.   The Bridge Inventory 

Management System in the State of Georgia lists 8,9881 bridges, which are monitored by 

the Georgia Department of Transportation (GDOT).   While rating calculations have yet 

to be performed on 1,587 of these bridges, it has been determined that approximately 

1,982 (or 22%) of them require posting.  Posting or other restrictive actions may have a 

severe economic impact on the state economy, which depends on the trucking industry 

for distribution of resources and manufactured goods. The economics of upgrading or 

posting a bridge makes it imperative that condition assessment criteria and methods 

                                                 
1 As of August 1, 2009 
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(either by analysis or by testing) be tied in a rational and quantitative fashion to public 

safety, functional requirements and economics.   

   Condition assessment and safety verification of existing bridges, and decisions as 

to whether posting is required are addressed through analysis, load testing, or a 

combination of methods.   Of these, bridge rating by structural analysis is by far the most 

common (and most economical) method.  Load testing may be indicated when analysis 

produces an unsatisfactory result, when the analysis cannot be completed due to lack of 

design documentation or information, or when structural deterioration of the bridge 

renders the traditional analysis methods questionable or inapplicable.  Until recently, the 

customary rating process used in most states has been described in the American 

Association of State Highway and Transportation Officials (AASHTO) Manual for 

Condition Evaluation of Bridges, Second Edition, which allows ratings to be determined 

through either allowable stress methods (ASR) or load factor methods (LFR).  In recent 

years, the State of Georgia has utilized the LF method for the majority of those bridges in 

the state that have been rated.  A third (and more recent) rating procedure found in the 

Manual for Condition Evaluation and Load and Resistance Factor Rating (LRFR) of 

Highway Bridges is keyed to the AASHTO Load and Resistance Factor Design (LRFD) 

method, which is defined in the AASHTO LRFD Bridge Design Specification, Fourth 

Edition.  The LRFR method is being introduced in bridge maintenance, and some states 

are beginning to use it to determine bridge ratings. The AASHTO Manual for Bridge 

Evaluation (MBE), First Edition (2008) has included all three methods. These three 

competing rating methods may lead to different rated capacities and posting limits for the 

same bridge, a situation that cannot be justified from a professional engineering 
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viewpoint and has potentially serious implications with regard to the safety of the public 

and the economic well-being of businesses and individuals who may be affected by 

bridge postings or closures.  Moreover, analytical methods with a fixed format are 

designed to be applicable to the entire highway bridge population.  While they may be 

conservative for many bridges, they also may fail to properly consider all the risks facing 

a particular bridge, since the condition rating and capacity rating in the current rating 

practice is relatively weak.    The cost and social impact of failing to meet a performance 

objective when evaluating an existing bridge, especially in terms of posting unnecessarily 

or failing to post when necessary, can be very large.  Accordingly, the economics of 

upgrading or posting a bridge makes it imperative to determine condition assessment 

criteria and methods (either by analysis or by testing) that are tied in a rational and 

quantitative fashion to public safety and functional objectives.   

 The Georgia Department of Transportation has a need for condition assessment 

tools that can be used with confidence to determine whether or not to post certain existing 

bridge structures.  To address this need, the Georgia Institute of Technology has 

conducted a multi-year research program, sponsored by the GDOT, aimed at making 

improvements to the process by which the condition of existing bridge structures in the 

State of Georgia is assessed.  The research reported in this dissertation provides the 

technical basis for improving bridge rating practices in Georgia.   

1.2 RESEARCH OBJECTIVES AND SCOPE 

The research in this dissertation is aimed at developing a practical reliability-

based analysis framework for assessing bridge load-carrying capacity and for developing 
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rational inspection/maintenance strategies and policies. To accomplish this objective, the 

following research tasks have been conducted:  

• Critically appraise current bridge condition assessment procedures. 

• Summarize and assemble applicable structural reliability analysis tools to 

support condition assessment of bridge systems. 

• Select, test and perform in-depth analysis of sample bridges that are 

representative of bridges that are of most concern to the GDOT. 

• Develop a reliability-based bridge capacity assessment framework which 

provides practical tools for incorporating available in situ data into reliability 

based rating analysis. 

 

The scope of this dissertation is limited to bridges on the state primary and 

secondary system, including reinforced concrete tee, prestressed and steel girder 

bridges, which are subjected primarily to permanent gravity loads and vehicular 

loads.  Interstate, wood or historical bridges and railway bridges are excluded.      

1.3 OUTLINE OF THE THESIS  

This thesis is organized into eight chapters. 

Chapter 2 reviews the reliability bases for current bridge condition evaluation and 

AASHTO guidelines on bridge assessment, and summarizes the results of a survey of 

state DOTs conducted to investigate the engineering practices on bridge rating 

nationwide.  In addition, documents used for bridge rating in the United Kingdom, 

Australia, and Canada were obtained to gain an international perspective on the subject.   
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Chapter 3 presents a general framework for bridge safety evaluation that directly 

addresses the deficiencies in current practice noted in Chapter 2.  This framework has 

three levels of assessment of increasing complexity. In the first level, the deterministic 

member-based format of the AASHTO LRFR method is kept, and the correlation 

between visual condition rating and the capacity evaluation is established.  The second 

level allows for the incorporation of site-specific data obtained from material tests, 

diagnostic load test and from in-depth structural analysis in rating calculations.  In the 

third level, bridge system reliability is evaluated by incorporating proof load test results 

and routine inspection records regarding bridge performance history. This framework 

highlights the learning process in rating a given bridge and provides clear incentives to 

obtain quantitative in situ measurements in routine bridge inspections. 

Four bridges typical of bridges of concern in rating and posting are summarized in 

Chapter 4 and the load testing and finite element analysis of these bridges is described.   

Finite element models of these bridges were developed to assist the design of the load tests 

and in the interpretation of the results. The bridge test results, in turn, were used to validate 

and improve the finite element modeling.  

Chapter 5 presents the level-one assessment which is basically consistent with the 

current AASHTO LRFR method, but with one significant adjustment: a new method is 

introduced to correlate visually-based bridge condition ratings from routine periodic 

inspections with structural capacity.   A revised set of values of φc tied to the AASHTO 

LRFR rating equations are developed to be consistent with the structural reliability-based 

philosophy embodied in the AASHTO LRFR and to incorporate recent developments in 
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bridge resistance degradation modeling and comprehensive databases of bridge condition 

rating history. 

In the level-two assessment in Chapter 6, bridge resistance models at the 

component level can be “customized” for an individual bridge by incorporating available 

site-specific knowledge.   This level of analysis reflects the fact that each bridge is unique 

in its as-built condition, and provides bridge engineers with an option to account for this 

uniqueness to achieve a better evaluation of the bridge performance when such effort is 

believed to be warranted.  Tools are provided for incorporating the structural component 

knowledge gained from in-situ material tests, diagnostic load tests, and improved 

mechanical models for structural component analysis into the bridge safety evaluation 

process. 

Chapter 7 presents the level-three assessment, which focuses on bridge safety at 

the system rather than component level and provides additional perspective on the 

(unknown) level of conservatism furnished by the current generation of reliability-based 

condition evaluation and rating procedures which are member-based. The possibilities of 

incorporating proof load test results and successful service performance history into the 

bridge rating framework are explored.  

Finally, Chapter 8 summarizes the major research findings and conclusions, and 

outlines future research needs. 
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CHAPTER 2 

REVIEW OF CONDITION EVALUATION PRACTICES FOR 
EXISTING BRIDGES 

 
 
 
 
 
 

This chapter reviews current rating procedures for performing condition 

assessments of existing bridge structures.  The review emphasizes current practices in the 

United States, but practices in several other industrialized countries are also summarized 

to provide additional context.  This review is aimed at achieving a general perspective on 

technical issues associated with condition assessment methodologies used for bridges and 

other civil infrastructure applications.   

2.1 RELIABILITY -BASED BRIDGE CONDITION ASSESSMENT FRAMEWORK  

Uncertainties arise from variations in loads, material properties, dimensions, 

natural and manmade hazard, insufficient knowledge, and human errors in design and 

construction [Ellingwood, et al, 1980; 1982; Ellingwood and Galambos, 1982].  The 

uncertain nature of the data makes structural reliability theory a logical and powerful tool 

for performing quantitative performance assessments of existing structures. Moreover, 

probability-based limit states analysis provides a clear link between theoretical research 

and in-service experience, and also provides a theoretical basis for utilizing in situ data in 

the bridge evaluation process.  Recent advances in bridge design and rating in the United 

States and elsewhere have a reliability basis. 

 The starting point for a quantitative evaluation of structural reliability is the 

description of the limit state of concern (flexural failure, instability, etc) by an expression 
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relating the resistance and load variables described above, derived from principles of 

structural mechanics.  This expression, denoted the limit state function, is given by, 

        0),,()( 21 == mXXXGXG L                                              (2-1) 

in which X = (X1, X2, …, Xm) = vector of random resistance and load variables.  The limit 

state is defined, by convention, as when G(X)<0.  Thus, the limit state probability is, 

                ∫= mmxf dxdxdxxxxfP LL 2121 ),,(                                     (2-2) 

in which )(xf x = joint probability density function of X and the domain of the multi-fold 

integration is that region of x where G(X) < 0.  The limit state probability, Pf, is the 

quantitative metric of structural performance that is consistent with the uncertainties in 

structural resistance and loads.  

  Modern probability-based limit states design approaches, including the AASHTO 

LRFD Bridge Design Specifications [2007], have adopted the reliability index, β, as a 

measure of reliability instead of Pf.  For typical structural engineering situations, the 

reliability index is in the range of 2 to 4.5.  The reliability index is related, in a first-order 

sense, to the limit state probability by Pf = Φ (-β) for well-behaved limit state functions 

that are typical of those found in bridge design and condition assessment. 

 The target reliability index of 3.5 in the AASHTO LRFD Specifications for new 

bridge structures was  determined by calibration to a spectrum of traditional bridge 

design situations (vintage 1985 and earlier) involving steel, reinforced and pre-stressed 

concrete construction.  Gravity load situations were considered in this calibration 

exercise.  A group of experts from the material specification committees participated in 

assessing the results of this calibration, and selecting target reliabilities.  This target index 

of 3.5 was adoped directly in LRFR for capacity checking at the design load level. For 
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AASHTO legal load or State legal loads, the target index was chosen to be 2.5 by 

judgment [Moses, 2001; Minervino, et al, 2004].  In the latter case, the implied 

acceptable annual failure rate of an existing bridge would be at least an order of 

magnitude higher than a newly constructed bridge.  The design load checking and legal 

load checking are comparable to inventory and operating level checking, which are 

discussed later in section 2.2.1.     

When an existing bridge structure is evaluated, the knowledge gained from 

additional in situ data about the existing bridge or its components through field 

inspection, load testing, material tests, or traffic surveys, if available, could be applied to 

refine the probabilistic models of related random variables.  Inspection, therefore, should 

lead to an improvement in the prior estimate of failure probability discussed above. The 

theoretical basis for incorporating additional information is provided by Bayes theorem 

[Ang and Tang, 2007]. The updated (posterior) failure probability of an existing 

bridge, '
fP , can be expressed as [Madsen, 1987; Ellingwood, 1996]: 

                      
][

]∩0)([
]|0)(['

HP

HXGP
HXGPPf

<=<=                                  (2-3) 

in which, H is an event describing the available site-specific knowledge, such as the 

result of a bridge inspection or a proof load test. It is clear that strong stochastic 

dependence between the events ]0<)([ XG and ]H[  will produce a tighter updated 

distribution, giving more confidence about the estimated random vectorX . If little is 

learned by the inspection or condition assessment, the correlation is weak; the prior and 

posterior estimates of the reliability will be nearly the same. 
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It should be emphasized that current condition assessment procedures for bridges 

do not utilize the valuable information regarding in situ condition that is reflected by the 

updating process summarized in Eq (2.3).  The proposed methodology in Chapter 4 will 

remedy this deficiency in current practice.  

The structural reliability theory framework described above provides a conceptual 

platform for the codified limit state bridge design and evaluation. The probabilistic 

models of the major random variables involved in the bridge reliability analysis will be 

discussed next. 

2.2 CURRENT AASHTO  GUIDELINES FOR BRIDGE EVALUATION  

2.2.1 Bridge Rating by ASR, LFR and LRFR  

Until 1970, the sole design philosophy embedded within AASHTO Standard 

Specifications for Highway Bridges was Allowable Stress Design (ASD). The allowable 

stress is established as a fraction of the load carrying capacity of a structural element 

(usually the yield or fracture strength in tension or point of instability in compression), 

and the structural action (stress in tension, bending or compression) from the applied 

loads may not exceed this allowable limit. Detailed procedures for rating existing bridges 

based on the ASD method first appeared in 1970 in the AASHTO Manual for 

Maintenance Inspection of Bridges.   

Beginning in the early 1970's, as the design of reinforced concrete and steel 

structures was reformulated in terms of "ultimate strength" for concrete and "plastic" 

design for steel, the load analysis formerly used in ASD was modified as well, with 

adjustments to the load factors to reflect the relative uncertainty and predictability of 

different loads, such as vehicle loads, wind and earthquake effects.  The new design 



 11 

philosophy was referred to as Load Factor Design (LFD) and was incorporated in the 

Manual for Condition Evaluation of Bridges (MCE), which was published by AASHTO 

in 1994 to replace the earlier Manual for Maintenance Inspection of Bridges. Although 

the 1994 manual contains some guidance for allowable stress rating (ASR), it clearly 

emphasized the load factor rating (LFR) method.  Many State DOTs continue to use the 

1994 Manual, with 1995, 1996, 1998 and 2000 interim revisions, in their bridge rating 

work1. 

In 1994, the AASHTO Bridge Subcommittee voted to adopt the AASHTO LRFD 

Bridge Design Specifications and in 1998 designated LRFD as the primary design 

method for highway bridges. The LRFD Bridge Design Specifications (the latest edition 

is dated 2010) represented the first effort by AASHTO to integrate modern principles of 

structural reliability and the probabilistic and statistical models of loads and resistance 

into the design of highway bridges.  LRFD introduced the reliability-based limit states 

design philosophy to achieve a more uniform and controllable safety levels for each 

applicable limit state. To extend this philosophy to the evaluation of existing bridges, 

AASHTO released the 2003 Guide Manual for Condition Evaluation and Load and 

Resistance Factor Rating (LRFR) of Highway Bridges, which presents the first bridge 

load rating method in the United States to have a structural reliability basis. 

 At the present time, the ASR, LFR and LRFR methods of bridge rating are all 

included in AASHTO Manual for Bridge Evaluation (MBE), First Edition, 2008 and are 

                                                 
1 Wang, N., Ellingwood, B.R., Zureick, A. and O’Malley, C. (2009). “Condition assessment of existing 
bridge structures: Report of Task 1 – Appraisal of state-of-the-art of bridge condition assessment.” Report 
of Project GDOT No. RP05-01, Georgia Department of Transportation, Atlanta, GA (ftp://ftp.dot. 
state.ga.us/DOTFTP/Anonymous-Public/Research_Projects/) 05/2010. 
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current use by State DOTs.  A summary of these procedures and a critical appraisal of 

their relative merits are presented in this section.  

Allowable Stress Rating (ASR) and Load Factor Rating (LFR) 

The rating factors in both ASR and LFR are determined by [AASHTO MCE, 

1994]: 

)1(

-

2

1

ILA

DAC
RF

+
=                                                                    (2-4) 

 
in which RF is the rating factor for the live load carrying capacity (expressed as a 

multiple of the design live load effect (from a rating vehicle) that can be carried by the 

bridge), C is the capacity of the structural member, D and L are, respectively, the dead 

and live load effect on the member, I is the impact factor to be used with the live load 

effect, 1A  is the factor on dead load, and 2A  is the factor on live load. The Rating Factor 

(RF) determined from Eq (2-4) is used to compute the rating of the bridge in tons as 

[AASHTO MCE, 1994]: 

                 WRFRT ×= )(                                                    (2-5) 

where RT  is the bridge member rating in tons, and W  is the nominal weight (tons) of the 

rating truck used in determining the live load effect (L).     

Both ASR and LFR methods rate bridges at two levels: Inventory and Operating. 

The Inventory rating level generally corresponds to the customary design level of 

allowable stress or strength, but reflects the existing bridge and material conditions with 

regard to structural deterioration. Load ratings based on the Inventory level allow a 

comparison of the estimated capacity of an existing bridge with the capacity for a new 

bridge, and therefore result in a live load which can safely carried by the existing bridge 
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structure for an indefinite period of time.  In contrast, load ratings based on the Operating 

rating level generally describe the maximum permissible live load to which a structure 

may be subjected during a limited period of time. Allowing an unlimited number of 

vehicles to use the bridge at the Operating level may shorten the life of the bridge 

[AASHTO MCE, 1994].  Rating at the Operating level generally is the basis for decisions 

regarding traffic restriction and load posting.   

Although the rating factor format for ASR and LFR is the same, the load factors 

( 1A , 2A ) and the calculation of the capacity (C) used in Equation (2.1) are different.   In 

ASR, A1 = A2 =1.0 for both Inventory and Operating level rating; C depends on the rating 

level desired, with the higher value of C used for Operating level.  In the LFR procedure, 

A1 = 1.3, while A2  equals 2.17 for Inventory rating and equals 1.3 for Operating level 

rating; the nominal capacity C is the same regardless of the rating level desired.  

Load and Resistance Factor Rating (LRFR) Procedure 
 
The general LRFR rating equation is (AASHTO LRFR, 2003): 
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in which C is the structural capacity, nR is the nominal member resistance, DC is the 

dead-load effect of structural components and attachments, DW is the dead-load effect of 

wearing surfaces and utilities, P is the permanent loading other than dead loads (post-

tensioning for example), LL is the live-load effect, IM is the dynamic load allowance, 

DCγ  is the load factor applied to the weight of structural components and attachments, 

DWγ  is the load factor for wearing surfaces and utilities, Pγ   is the load factor for 
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permanent loads other than dead loads, and Lγ  is the live-load factor. The resistance 

factor (φ ) accounts for the general uncertainties in the resistance of a bridge member in a 

satisfactory condition and is the same as that used in LRFD bridge design. The condition 

factor ( Cφ ) accounts for increasing uncertainties in bridge member resistance once its 

condition deteriorates, and takes a value of  0.85 for members in poor condition, 0.95 for 

members in fair condition, and 1.0 for members in good condition. The system factor 

( Sφ ) accounts for the level of redundancy in the structure.  Bridges that are less redundant 

or non-redundant are assigned a lower system factor and therefore have lower rated 

capacities.  

The LRFR method supports bridge evaluation for three general limit states that 

were introduced in the LRFD Bridge Specification: the strength-limit state (flexural or 

shear capacity), the service-limit state (deflections and rotations) and the fatigue limit 

state. The strength limit state is fundamental for public safety and is the main determining 

factor for bridge posting, closure and repairing.  Service and fatigue limit states are 

applied selectively to bridges. 

In the LRFR method, bridges are evaluated in a three-step approach for each limit 

state, as shown in Figure 2.1: design load rating (HL93), legal load rating 

(AASHTO/state legal trucks), and permit load rating (overweight trucks).  An initial 

check first is performed using the HL-93 design load (Figure 2.2) using the dimensions 

and properties corresponding to the present in situ condition of a bridge. The bridge is 

rated using the same live and dead load factors as those used in the LRFD Bridge Design 

Specifications, which were calibrated to ensure a safety index of 3.5   (discussed 

subsequently in section 2.1.2 of this chapter).  This check measures the performance of 



 15 

the existing bridge in comparison to the expected performance of a new bridge, and  

serves as an initial screening check; a bridge resulting in a RF at this level larger than 1.0 

requires no further analysis for any legal loads that result in member forces lower than 

the HL-93 design load.  For example, the HL-93 load is designed to represent the 

member forces caused by the AASHTO legal loads through a single load case.  Therefore 

any State legal loads that are equal to or less than the AASHTO legal load are covered by 

a HL-93 design load analysis.  On the other hand, if a state has legal loads that surpass 

the AASHTO legal loads, those states must verify that HL-93 load case incorporates 

those legal loads. 

If the bridge fails to pass the HL-93 design load check, a follow-up evaluation is 

performed using the AASHTO/State legal trucks (illustrated for the State of Georgia in 

Figure 2.3). The live load factor used at this level is calibrated to a safety index of 2.5 and 

varies in accordance with local truck traffic conditions at the bridge site (ADTT).  The 

safety criteria, in comparison with the 3.5 in the previous step, are less conservative and 

reflect the substantial cost impact of strengthening an existing bridge or restricting traffic, 

as well as the shorter future service period expected compared to the 75 years that is 

typical for the design of a new bridge [Nowak, 1999; Moses, 2001]. The ratings 

determined using the legal loads are generally used as the basis for determining whether 

to post or strengthen the bridge. 

In certain cases, a permit load rating may be performed to check the safety (and 

serviceability) of the bridge for vehicles above the legally established weight limit. This 

procedure is only necessary when an overweight vehicle is to use a bridge, and it is only 

allowed for bridges that yield RF ≥1 at the previous legal load rating levels.  The permit 
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live load factors were derived to account for the possibility of the simultaneous presence 

of one or more non-permit heavy trucks on the bridge when the permit vehicle crosses the 

span, as well as the site-specific traffic conditions described by the ADTT.  

 

 

 

 

Figure 2.1 Loads and Resistance Factor Rating Procedure [AASHTO LRFR, 2005] 
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A comparison of the ratings used in the LRFR method (Eq.2.6) with those in the 

LFR/ASR method (Eq.2.4) shows three key improvements. First, LRFR attempts to 

reflect the in situ bridge resistance systematically and objectively through the use of the 

system factor (Sφ ) and the condition factor (Cφ ). In the LFR/ASR methods, the condition 

of the bridge, its redundancy, and any deterioration at the time of evaluation must be 

factored into the estimation of the capacity term (C) in a completely subjective manner. 

Second, the LRFR method considers dead load from factory-made members, cast-in-

place members and wearing surfaces separately, with each assigned an independent dead 

load factor to account for the different degrees of variability in these components of dead 

load (discussed subsequently in section 2.1.2 of this chapter).  In the LFR/ASR methods, 

all permanent loads are combined in calculating the dead load effect (D), to which an 

overall dead load factor is applied; adjustments that might be indicated by available in 

situ dead load measurements are difficult to handle in the rating process.  Third, the 

LRFR method has provided a set of live load factors that ranges from 1.4 to 1.8, 

depending on the bridge’s in situ traffic condition indicated by ADTT, for rating 

calculations at the legal load level.  This improvement allows site-specific traffic data to 

be incorporated into the load rating process, which is a major advantage from applying 

probability-based structural reliability theory in existing bridge condition assessment and 

offers an important enhancement of the LRFR method over the traditional stress-based 

rating approaches. 

The LRFR method further simplifies the bridge rating process by requiring the 

use of the HL-93 design load as the starting point in the rating and as a screening check 

for all other AASHTO/State legal loads.  The HL-93 live load envelopes all types of legal 
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loads in the United States and provides a uniform reliability check for various span 

lengths with just this one load model.   Otherwise, to achieve a uniform reliability for 

highway bridges using LRFR, rating calculations have to be applied to all three 

AASHTO legal loads individually, with each controlling short, medium, or long spans 

respectively [NCHRP 12-28, 2001; Minervino, et al, 2004].  In contrast, the HS-20 

design load checking used in the ASR/LFR process does not envelope current trucks on 

the highway system and the ratings determined with this vehicle do not provide uniform 

reliability for bridges of varying span lengths.  Finally, permit vehicles that are 

significantly heavier than the AASHTO/State legal loads may have very different 

configurations.  While the LRFR method provides procedures and live load factors 

specific to permit vehicles ratings for bridges that have been demonstrated to have 

adequate capacity for AAASHTO/State legal loads, the LFR/ASR methods provide no 

guidance on permit checking.  

Despite these improvements, the LRFR procedure has not been widely adopted 

for rating or posting bridges in the United States.  A survey of State Departments of 

Transportation on bridge evaluation practices (presented in section 2.3) has revealed a 

number of issues and concerns with the LRFR method.  Addressing these issues will 

facilitate the adoption of the LRFR, in a modified form, and provide an improved bridge 

rating methodology.  Such improvements are the subject of the current research program, 

and are presented in Chapter 3, following the survey.  
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Figure 2.2 LRFD Design Live Loads (HL-93) 

 

 
 
2.2.2 Probability Models and Supporting Data for Reliability-based Bridge Rating 
 

As noted previously, the LRFD option in the AASHTO Manual for Bridge 

Evaluation [2003] is the first bridge load rating method in the United States to be based 

on modern principles of structural reliability and limit states design.   The essential 

ingredients of a reliability-based design and evaluation include probabilistic models of 

the structural resistance and loads and a method for analyzing the reliabilities (or, 

conversely, the limit state probabilities) that are relevant to each bridge limit state.  This 

section provides a brief summary of such methods and tools, as they have been applied to 

developing the AASHTO LRFD Bridge Specifications and the MBE and are expected to 
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be relevant to the current research program to develop improved bridge rating methods.   

Details are available in the archival literature [Nowak, 1999; Moses, 2001].  

Structural Resistance Models 
 
 The capacity of a bridge depends on the strength of its components and 

connections. The strength, R, is a random variable having uncertainties that fall into three 

categories [Ravindra and Galambos 1978; Moses, et al, 1987; Tabsh et al, 1992]: material 

properties, M, including material strength, modulus of elasticity, cracking stress and 

chemical composition; fabrication, F, including geometry, dimensions and section 

modulus; and structural modeling, P, reflecting assumptions and approximate analysis 

methods. The mean and coefficient of variation for M, F and P are usually determined by 

material tests, simulations, observations of existing structures and engineering judgment.  

 

 

 
 

Figure 2.3 State of Georgia Legal Loads 
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 In the development of the ASHTO LRFD Bridge Design Specifications [Nowak, 

1999], R  was determined as the product of the nominal resistance nR and the three above-

mentioned parameters, M, F and P: 

                                                    nMFPRR =                                                    (2-7) 

As a product of random variables that are assumed to be statistically independent, the 

resistance is modeled by a lognormal distribution with mean, Rµ , and coefficient of 

variation (COV), RV , computed as follows: 

                                              
2/122 )( PFMR

PFMnR

VVVV

R

++=

= µµµµ
                             (2-8) 

 
in which Mµ , Fµ  and Pµ  are the means of M, F and P  and MV , FV  and PV  are the 

COVs of M, F and P, respectively. The statistical parameters of R  used in the 

development of the LRFD Specifications for different types of structural components 

(steel girders, composite and non-composite, reinforced concrete T beams and pre-

stressed concrete AASHTO-Type girders) in different failure modes (bending and shear) 

are presented in Table 2.1.  

Dead Load Model 
 

Dead load is the weight of structural members, nonstructural components and 

attachments, and traffic wearing surfaces.  Because of the different degrees of variability, 

one must consider the components of bridge dead load from factory-made members (steel 

and pre-cast concrete), cast-in-place members (T-beams, slabs), and wearing surfaces 

(asphalt) separately.   Generally speaking, dead loads can be predicted more accurately 

than live loads, as long as accurate records have been kept and the as-built condition 

agrees with the available drawings.  In the study by Moses and Verma [1987], the bias 
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(defined as the ratio of the mean to nominal load) and COV of bridge dead loads were 

taken to be 1.0 and 0.10 respectively. Later in the AASHTO LRFD calibration [Nowak 

1999], the dead load was divided into four components and each component was modeled 

with a normal distribution.  Finally, Ghosn [2000] used 1.0 and 0.09 for the dead load 

bias and COV respectively in his study. These components of dead load are listed in 

Table 2.2 along with their statistical parameters; the “miscellaneous” category is the dead 

load portion from railings and luminaries.  

Live Load Model 
 

Bridge live load is produced by vehicles moving on the bridge. Variability in live 

load arises from uncertainties in vehicle weight, vehicle position, average daily truck 

traffic (ADTT), calculations of live load effect (including distribution of live load to 

supporting girders), and the likelihood of several heavy vehicles being on the bridge at 

the same time [Moses and Verma, 1987]. Traditionally, the static and the dynamic effects 

of the live load are considered separately and assumed to be statistically independent 

[Nowak, 1993; 1999]. 

Based on weigh-in-motion (WIM) data, Moses and Verma [1987] identified 

several variables to provide a simplified model for determining the maximum expected 

single truck load effect: 

         mHIgaWM 95.=               (2-9)  

 
in which M is the predicted maximum dynamic live load effect; a  is a constant which 

relates M to a reference loading model (taken as an AASHTO/legal rating vehicle); 95.W is 

the 95th percentile characteristic value of 75-year maximum truck weight, assumed to be 

a random variable to reflect the possible errors (epistemic uncertainty) in load estimation 
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and site-to-site differences; the variable m  reflects the influence of the dominant vehicle 

type and configuration at a site; the variable H  reflects the overload events due to the 

multiple vehicle presence, such as side by side or following vehicles, and also reflects the 

probability that truck weight exceeds the 95th percentile in combination with closely 

spaced vehicles; variable I is the dynamic impact allowance and variable g  is girder 

distribution factor. Except for the constant a, all of the variables in Eq. (2-9) are random 

variables with statistics based on studies and data collected on a number of sites. 

 
 

Table 2.1 Statistical Parameters of Component Resistance [Nowak, 1999] 
 

Type of Structure FM        P       R 
 λFM VFM λP VP λR VR 

Non-composite steel girders       
Moment (compact) 1.10 0.08 1.02 0.06 1.12 0.10 
Moment (non-com.) 1.09 0.08 1.03 0.06 1.12 0.10 
Shear 1.12 0.08 1.02 0.07 1.14 0.11 

Composite steel girders       
Moment  1.07 0.08 1.05 0.06 1.12 0.10 
Shear 1.12 0.08 1.02 0.07 1.14 0.11 

Reinforced concrete       
Moment  1.12 0.12 1.02 0.06 1.14 0.13 
Shear w/ steel 1.13 0.12 1.08 0.10 1.20 0.16 
Shear w/o steel 1.17 0.14 1.20 0.10 1.40 0.17 

Prestressed concrete       
Moment  1.04 0.05 1.01 0.06 1.05 0.08 
Shear w/ steel 1.07 0.10 1.08 0.10 1.15 0.14 

 
 
 
 

Table 2.2 Statistical Parameters of Dead Load [Nowak, 1999] 
 
Component Bias Factor C.O.V 
Factory-made members 1.03 0.08 
Cast-in-place members 1.05 0.10 
Asphalt 3.5 inch* 0.25 
Miscellaneous 1.05 0.10 

     * mean thickness 
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  The live load model used to calibrate the AASHTO LRFD Bridge Design 

Specifications is based on the weigh-in-motion data of 10,000 trucks taken at a site in 

Ontario in 1975, which included axle weights, gross weight and axle spacing for each 

vehicle [Nowak, 1999].  These 10,000 data points were assumed to define the upper 20% 

of the truck traffic at the site over a period of about two weeks.  By finding the maximum 

bending moment and shear forces for each Ontario truck on different spans ranging from 

10 ft (3 m) to 200 ft (60 m), the cumulative distribution functions (CDFs) of live load 

effect for various span lengths were obtained.  Bridges with both simple spans and two 

continuous equal spans were considered.  These CDFs were then extrapolated to a full 

lifetime (75 years) consisting of some 75 million truck load events and the 75-year 

maximum live load was fitted by a normal distribution. 

Static and dynamic load effects were studied separately [Tabsh and Nowak, 

1991].  On the basis of a finite element study of bridges with various span lengths, it was 

found that the ratio of the mean value of the 75-year maximum live load (without 

dynamic impact) to nominal (HL-93) live load is dependent on the bridge span and its 

COV is about 12%.  The study also concluded that dynamic impact was dependent on 

three major factors: bridge dynamics, vehicle dynamics and road roughness; the mean 

value of the dynamic load factor does not exceed 0.15 for a single truck and 0.10 for two 

trucks side by side, and its COV is about 80%.  For the static and dynamic combined load 

effect, the mean of this 75-yr maximum live load with respect to the design load model 

(HL93 in Figure 2.1) fell in the range 1.0-1.2, depending on span length, and the COV 

was found to be about 0.18.2   

                                                 
2Imai and Frangopol (2001) found that the maximum bridge live load was best modeled by a Type I 
distribution of extreme values.   Bhattacharya et al. (2006) also found that the Type I distribution fits the 
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2.3 SURVEY OF BRIDGE RATING PRACTICES IN THE UNITED STATES 
 

2.3.1 Development of Survey of Bridge Rating Practices  
 
 As part of NCHRP Project 12-46 that developed the AASHTO LRFR Guide Manual 

[2003], a survey questionnaire had been mailed to State Bridge Engineers in May, 1997, 

asking for current practices and views on technical issues pertaining to the inspection, 

evaluation and load rating of bridges.  The responses to this questionnaire were valuable in 

developing the rating criteria in the AASHTO LRFR Guide Manual.  However, in the 

intervening years, the state of bridge evaluation practices in the United States has continued 

to evolve.   Accordingly, a follow-up questionnaire was prepared that requested additional 

information on a subset of topics covered in the older survey, with specific emphasis on 

bridge capacity evaluation practices that may have changed in the intervening years and 

would be of particular interest to the current research to develop improved bridge rating 

procedures and a set of Recommended Guidelines.  The questionnaire was sent out to all 

states in November, 2005, and after four months, forty one responses (Table 2.3) were 

received and reviewed. A copy of this survey questionnaire can be found in Appendix A 

to this report.  

 The synthesis of the survey responses in Section 2.3.2 is presented without 

identifying the state or the respondent.  These responses often were presented in sentence 

fragments; in that case, an attempt has been made to complete the view expressed in the 

comment with a minimum of editing.   The survey questions fall into several general 

categories:  when to load rate a bridge, when to update existing ratings, how to rate, when 

                                                                                                                                                 
experimental measurements of live load effect properly.  Finally, Galambos, Ellingwood et al (1982) used 
the Type I distribution to model the 50-year maximum live load for building structures. 
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to post, and other performance issues (connections, fatigue, and scour).  The following 

synthesis of the survey responses is organized around those categories. 

 

 

Table 2.3 Responding States 

 
 
  
 
 
2.3.2 Synthesis of Survey Response 

When to rate?  

In order to comply with FHWA regulations all states either perform a load rating 

analysis, or make a professional judgment as to the load capacity of their bridges.    Most 

states are working toward 100% load rating, and most of those responding reported to 

have rated between 80% and 100% of their bridges.  This intention is summarized by the 

response from a Western state: “Our goal is to rate all state owned bridges to determine 

the maintenance requirements and bridge load carrying capacities and to comply with the 

National Bridge Inventory System (NBIS).  Also modeling all bridges will help in 
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overload permit evaluations.”    Only five states have 60% or fewer of their bridges rated. 

One Western state is in the process of updating all of its ratings to include both Inventory 

and Operating and presently has over 90% rated at Inventory levels and approximately 

5% rated at Operating levels.   It is the policy of most states to rate all new bridges when 

they are designed or constructed.   Existing unrated bridge structures are being evaluated 

and rated, as circumstances and resources permit.  The rating of existing bridge structures 

in general begins with those for which design documents are available, and then 

continues to bridges without them.  The rating of bridges without plans is typically 

performed in one of four ways:  using plans from a similar bridge built at about the same 

time; by load testing the bridge; using results of load tests from a similar bridge structure; 

or by professional judgment. 

When to update ratings? 

As to when to update existing load ratings, the following is quoted from the 

response provided by a Midwestern state and is indicative of other responses: 

1. There is a physical change in the condition of a bridge or a structural member, 

e.g., physical alteration in the structure; new beam or new deck, rusting or 

spalling or damage occurred to the structural member(s) resulting in section loss; 

change in the wearing surface; change in the super-imposed dead loads; excessive 

deflection or settlement observed; occurrence of an accident; 

2. There is a request to re-evaluate the rating of a structure for a vehicle different 

than what was previously used such as  for single trip permit load ; 

3. There is a change from the method of analysis used for previous rating; 

4. Special circumstances dictate re-analysis of the structure. 
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5. There is a change of the rating method (e.g. switch from ASR to LFR), rating 

software or the truck weight regulations. 

A western state remarked that all their load ratings are being recalculated because: “the 

previous ratings were done by different individuals and are not consistent.” Some other 

states have specific policies on this issue such as revising load rating when “overlay 

changes more than 2 inches”, “steel section losses are more than 1/16 inches” or “primary 

member condition rating on the inspection report has changed by more than one point 

since last routine inspection if the initial rating was 5 or lower.”  

What method to use in rating? 

Thirty one (31) of the responding states reported that the LFR method is their 

primary rating method, but that they occasionally used the ASR method in cases where 

the LFR method does not appear to be applicable.  The remaining ten (10) states reported 

to use a combination of ASR, LRF, and LRFR depending on what specifications 

governed the design of the bridge. 

Nine (9) of the responding states reported that they were currently using LRFR on 

either all of their bridges or those bridges designed by AASHTO LRFD Bridge Design 

Specifications.  Five (5) states were in the process of evaluating the suitability of LRFR, 

and were planning a transitioning from LFR to LRFR.  Most of the remaining states cited 

either the lack of resources or readily available software as reasons for not making the 

transition, but noted that they would change to LRFR if mandated.  Several specifically 
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said they were waiting for VIRTIS3 to offer a version that incorporated the LRFR method 

before they considered switching from LFR.  

Several states which have considered transitioning to LRFR raised some 

significant questions and issues.  One Midwestern state suggested that “the proposed 

updates to the guidelines do not inspire confidence in the manual.”  A Western state 

responded “we are concerned with the high load factors; if we can not lower these factors 

through WIM (weight in motion) data, we may use older load rating methods on older 

bridges.”  Two other Western states simply stated “it was too uncomfortable with the 

LRFR method to use it” and “not fully confident in this document.”  The strongest 

opposition to transitioning to LRFR came from an Eastern state, which observed:  “Too 

much work for no value. Ratings for concrete and timber do not correlate to real world.  

For timber, LRFR requires a “fudge” factor to get reasonable results for posting.  For 

reinforced concrete bridges, the change from ASR to LFR resulted in a reduction of 

approximately 20% in posting values and changing from LFR to LRFR will result in 

another 15% to 20% reduction in the posting limits.  On the other hand, with LFR and 

LRFR, “posting values for steel bridges increase.”  This Eastern state also had serious 

questions as to the applicability of LRFR and its ability to perform its main function of 

providing a uniform reliability for all bridge structure types.  A similar concern was 

expressed by a Midwestern state, which also doubted whether LRFR was suited for all 

bridge types.  These apprehensions about the transition from the older methods to the 

LRFR method warrant further investigation.  A summary of an investigation aimed at 

examining the differences in ratings using these methods through illustrative rating 
                                                 

3 VIRTIS is a bridge rating software package, developed by Cambridge Systematics, Inc. 
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calculations performed for four sample bridges selected from the Georgia bridge 

inventory will be presented in Section 2.3.3. 

Most of the states using LFR employ the HS 20-44 vehicle for both Inventory and 

Operating ratings at the design load level. Some states use the full set of AASHTO Legal 

vehicles, HS-20, H-20, type 3, type 3-3, and type 3S2, for legal load ratings.  In some 

other states, the AASHTO vehicles are modified and designated as “state legal loads.”  

These modifications typically consist of a scaled-up load and/or a redistribution of the 

load between the cab and trailer.  There are also a few states with unique legal loads, such 

as logging trucks or other highly used regional vehicles.   

When to post? 

Answers to the survey question regarding the decision as to when to post a bridge 

had the widest variation of any of the answers.  Twenty (20) of the responding states 

reported that they post a bridge when its Legal loads exceed the Operating level rating. 

Georgia and four other states use the Operating rating as the posting limit for bridges on 

the state system and the Inventory rating for bridges on the local system. 

Some other states have more detailed policies regarding the posting limit, such as: 

“use Operating rating for bridges having a condition rating larger than 5, otherwise,  use 

Inventory level rating”;  “for fracture critical member use Inventory rating , for others use 

some value in between the Operating and Inventory levels based on engineer’s 

judgment”; “use Operating rating for concrete members and the average of the two for 

steel members ”; or, “post when the Operating rating is exceeded, or when the Inventory 

rating is exceeded and posting will have minimal economic effects”  One Eastern state 

specified that all structures need to be considered for posting if the structure’s Inventory 
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capacity rating is less than 30 tons for HS20 vehicle, 35 tons for 3S2 vehicle or 18 tons 

for the H20 vehicle, or when the gross tonnage of a “4 Axle” vehicle exceeds the 

structure’s Operating level capacity.”  In another Eastern state, a bridge will not be posted 

if “the bridge can carry H15 at Inventory level and HS20 and all state Legal loads at the 

Operating level.” Several states don’t have specific criteria for posting, but will consider 

it if the structure has a rating factor less than 1.0 at the Inventory level for HS-15 vehicles 

or if the structure shows signs of major deterioration. There is no consensus among the 

states as to whether to post a bridge at Operating level or Inventory level ratings.  

Engineering judgment sometimes is used either to post a bridge whose rating would not 

normally entail posting, or to not post a bridge that is calculated to require posting.   

 As to what percentage of the state bridge inventory has been posted, twenty (20) 

of the responding states reported posting fewer than 4% of their bridges, fourteen (14) 

reported that between 5 to 19% were posted, and the remaining seven (7) have posted 

over 20% of their bridges.  This survey question was poorly phrased, however, leading 

some states to report the total percentage of posted bridges while others reported the 

percentages of state and local bridges separately. The percentage of posted bridges on 

local roads is typically anywhere from 10 to 100 times the percentage of posted bridges 

on state roads. 

As to whether serviceability or fatigue limit states are considered when setting up 

the posting limits, twenty four (24) states, including Georgia, do not consider either; 

sixteen (16) consider serviceability, and the vast majority of states generally do not 

consider fatigue.   Those that consider serviceability do so only for steel or pre-stressed 

concrete girder bridges. 
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When to load test a bridge? 

Fourteen (14) out of 41 of the responding states, had performed some form of 

load testing for the purpose of load rating as a part of bridge evaluation practice.  Five (5) 

other states reported that they had once performed very few load tests for the reason of 

academic research only.  The remaining states have never used load testing as a tool for 

bridge condition assessment; one Eastern state remarked that the reason is “testing is too 

time consuming and expensive.”  

Most of the load tests have been performed on structures that were in good 

condition but required posting according to standard rating analysis, on special 

construction such as FRP bridges, on those bridges without available plans or design 

documentations, or on those with serious deterioration that prevented an accurate 

theoretical strength calculation.  One Western state noted that they performs test on 

bridges “deemed to be high risk, or fracture-critical.”   The benefit of load testing results 

is best summarized by the response from one Western state:  

1) To allow bridges to remain in service without traffic restriction 

 2) To avoid unnecessary repairs and needless replacement 

 3) To avoid repairs to bridges scheduled for replacement 

 4) To get more accurate load distribution factors, and  

5) To compare calculated stresses with actual stresses 

One other common use of load testing is in evaluation of overload permits.  Two of the 

states that perform load tests do so extensively to prevent having to perform costly 

repairs, replacement or posting due to “unreliable AASHTO rating factors.” 
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Only one Southern state among the fourteen states that performed load tests used 

the provisions in Chapter 8 of the AASHTO LRFR Guide Manual (2003) to guide their 

load testing practices, although there is one other state that “follows NCHRP, Nov 1998-

No.234, Manual for Bridge Rating through Load Testing, which is consistent with 

Chapter 8 of the LRFR Guide Manual.”  One Western state reported that the reason for 

not using the LRFR Guide Manual is that “we are not yet sufficiently comfortable with 

it.”  Two other western states, having performed load tests prior to the issuance of the 

Guide Manual, have also developed their own guidelines and testing procedures, which 

were reported to be in the process of being compared with the  LRFR Guide Manual.  

Some states perform and analyze the load tests themselves, while states that do not have 

their own guidelines usually leave the testing and interpretation entirely to the 

Universities to which they contract the work.  One Eastern State “uses the load test to 

determine live load distribution, which is then applied to LFR formula to update load 

rating factors.”  Another Western state has a load testing protocol that involves taking 

“strain transducer measurements when the structure is under various loads.  A model of 

the bridge is produced based on the strain transducer measurements. This model is then 

used to predict responses of the bridge to design loads and over-loads.”  

Other performance issues - connections, fatigue and scour 

Thirty seven (37) of the forty one (41) responding states do not assess the capacity 

of connections on a regular basis.  Connections are routinely inspected in most states; 

however, they are checked for adequate capacity only if engineers suspect that the 

connections may govern the load rating of a bridge.  For the four exceptions, one Eastern 

state stated that: “Our policy requires load rating of connections for all primary 
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components of a bridge unless the district Bridge Engineer concludes that the connections 

would not control the rating of the member.”  A Western state does consider connections, 

but only those on continuous bridges with a splice at the piers; an Eastern state considers 

all types of connections, while another Western state examines “all areas of the 

structure.” 

Most states normally do not compute the remaining fatigue life of a bridge unless 

fatigue cracking is found during inspections, with the typical reason being lack of 

sufficient truck volume data.   Four states are exceptions.   One Eastern state performs a 

100% hands-on inspection of fatigue sensitive members; however, one can avoid this by 

calculating the fatigue life of bridges with low traffic counts, and then perform 100% 

hands-on inspection if the member has a remaining fatigue life of less than 10 years;   

One Western state “computes remaining fatigue life based on an arms length inspection” 

and performs such analysis on a 1 to 10 year cycle where the interval is usually 3 years 

for fatigue prone members as determined by fatigue life;  Another Western state performs 

an in-depth inspection of all fracture critical members regardless of fatigue life, however, 

when the remaining fatigue life is finite or expired, the frequency of inspections 

increases.   Finally, one Northern state performs fatigue analysis on selected bridges. 

All states indicated that they perform some form of scour investigations on a 

regular basis.  Most investigate scour for bridges that cross wade-able waterways during 

the FHWA-mandated 2 year inspections and all other bridges during a special underwater 

or scour investigation every 4 to 5 years.  Two states report that they perform special 

scour investigations on any bridges identified as scour-susceptible following floods. 
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2.3.3 Comparison of Rating Methods through Sample Bridges  

 The survey of current bridge rating practices of State Departments of 

Transportation, summarized in Section 2.3.2, revealed considerable differences in current 

practices and concerns that the ASR, LFR and LRFR methods yielded substantially 

different ratings.  The AASHTO MBE allows three rating methods but does not provide 

guidance as to which method should be used for specific circumstances. It is apparent 

that such discrepancies would be a barrier in routine bridge rating practices. 

 To determine the extent to which such discrepancies might exist and to quantify 

the magnitude of the rating differences that might result from the use of ASR, LFR and 

LRFR methodologies for typical Georgia bridges, a rating analysis with these three 

methods was performed for four typical bridges that had been identified for subsequent 

load testing and advanced analysis. A detailed description of the engineering 

characteristics of these sample bridges are provided in Chapter 4. Tables 2.4 and 2.5 

present a summary of these rating results for flexure and for shear respectively [Wang, et 

al 2009].  

In general, rating results by ASR and LFR are reasonably close in all cases. The 

LRFR legal load ratings for the HS20 vehicle fall between the Inventory and the 

Operating level ratings computed by either the LRF or ASR method for both moment and 

shear for all four bridges. In other words, the LRFR legal level ratings generally are more 

conservative than the LFR/ASR Operating level ratings and more liberal than the 

LFR/ASR Inventory level ratings. These results for typical Georgia bridges are consistent 

with what was found in the Survey, 
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Table 2.4   Summary of Sample Bridge Flexural Rating for Interior Girders 

 

Rating Vehicle 
Bridge 
Type Method HS20 

  Inv      Opr 
H93 

 Inv     Opr 
ASR 0.70 1.25   
LFR 0.75 1.25   

Conc. T 
(Straight) 

LRFR 0.93 0.65 0.84 
ASR 1.36 2.17   
LFR 1.16 1.93   

Conc. T 
(Skewed) 

LRFR 1.77 1.27 1.65 
ASR     
LFR 1.54 2.57   

Prestressed 
Girder 

LRFR 1.95 1.34 1.73 
ASR 0.82 1.33   
LFR 0.71 1.18   Steel Girder 

LRFR 1.08 0.72 0.93 
 

 

 

Table 2.5   Summary of Sample Bridge Shear Rating for Interior Girders 

 

Rating Vehicle 
Bridge 
Type 

Method HS20 
  Inv      Opr 

H93 
 Inv     Opr 

ASR 0.41 0.75   
LFR 0.43 0.72   

Conc. T 
(Straight) 

LRFR 0.61 0.45 0.58 
ASR 0.94 1.44   
LFR 0.84 1.40   

Conc. T 
(Skewed) 

LRFR 1.05 0.83 1.08 
ASR     
LFR 1.43 2.39   

Prestressed 
Girder 

LRFR 1.47 1.05 1.36 
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2.4 BRIDGE EVALUATION IN FOREIGN COUNTRIES 

2.4.1 Bridge Rating in Canada 
  
 The provisions of Section 11 of the Ontario Highway Bridge Design Code 

(OHBDC), 3rd edition pertain to the evaluation and posting of existing bridges other than 

soil-steel structures4 and pedestrian bridges. Provisions are given for the condition 

inspection, analytical load rating procedure, load testing and calculation of posting limit 

for bridges. In contrast to the requirements in the United States, evaluation is not 

mandated for every highway bridges and is not required on a periodic basis in Canada. 

 The OHBDC is based on the limit state design philosophy and a target reliability 

index, β, of 3.5 is used for both design and evaluation. There is no explicit reduction of β 

in evaluation, although a few adjustments can be applied to reduce those load factors 

used for design when evaluation is performed. Provisions are provided for ultimate, 

service and fatigue limit states checking, and only the ultimate limit state is specified to 

be used for determining the load carrying capacity, stability and load posting of bridges; 

the exceptions are masonry abutments, masonry piers and masonry retaining walls, for 

which serviceability is the governing limit state.  Fatigue checks are performed only if the 

bridge owner wants to assess the remaining life of the bridge because of the observation 

of the physical evidence of fatigue-prone details or fatigue related defects.  The method 

of fatigue life assessment is the same as in the AASHTO LRFR Guide Manual.  

The rating process requires the use of three live load models, designated OHBEL 

levels 1, 2 and 3 respectively, with different gross magnitudes and configurations. These 

                                                 
4 Defined as a bridge comprised of bolted structural steel plates and engineered soil, designed and 
constructed so as to utilize structural interaction between the two materials.  The OHBDC devotes an entire 
chapter to this type of bridge, as it does for concrete and steel bridges. 
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three live load models appear to be similar to the three AASHTO legal loads.  The live 

load factors calibrated for bridge design are adopted in the capacity evaluation for most 

general cases, with some exceptions:  the live load may be reduced by 10% for bridges 

with inspection intervals less than 5 years;  the corresponding lane load equivalent used 

in evaluation is reduced as a function of in situ traffic volume or varies according to the 

road classes; live load factor may be reduced for multiple lane bridges with a certain level 

of redundancy, and the dead load factor can be reduced if the nominal dead load is 

carefully estimated.  These reductions are not applied in controlled vehicle rating, which 

is a procedure that is comparable to the AASHTO permit load checking, and is conducted 

for specific vehicles for which permission must be granted prior to their using the bridge. 

The OHBDC presents detailed provisions and curves for establishing posting 

limits according to the rating calculations performed for the three above-mentioned live 

load models.   The provision regarding posting concrete bridges is similar to that in the 

AASHTO LRFR Manual, that is, a concrete bridge need not to be posted if it has been 

carrying normal traffic without signs of excessive cracking or deformation.   

The OHBDC also states that a load test may be proposed as a part of the 

evaluation procedure when the analytical approach does not accurately reflect the actual 

behavior of the bridge. However, no detailed definitions and provisions are provided as to 

different types of load tests, loading patterns, instrumentation or interpretation of test 

results.  

2.4.2 Bridge Rating in the United Kingdom 

Document BD 21/01, Assessment of Highway Bridges and Structures, adopts a 

limit state format with appropriate partial safety factors for condition evaluation of most 
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highway bridges except for cast iron bridges and masonry arch bridges. It is stipulated 

that bridges built after 1965 should normally be evaluated for serviceability as well as for 

the ultimate limit states; bridges constructed before 1965 do not need to be assessed for 

service limit states. Requirements for fatigue endurance however are not included in the 

standard and the reason stated is that the past stress history of each structure, which could 

profoundly influence fatigue limit checking, cannot generally be determined to the 

accuracy level required for assessment. 

No reduction in target reliability index from the corresponding values for design 

is explicitly stated in BD21/01; however, several adjustments are made to the live load 

model that have the effect of reducing the level of conservatism in the evaluation of 

existing bridge structures.  In the UK, the bridge design live load model consists of a 

uniform distributed load (UDL) and a knife edge load (KEL) with the intensities of both 

components decreasing with bridge span lengths. The design load was derived by 

estimating the worst credible values of relevant loading parameters from available 

statistics.  Adjustments are suggested in the evaluation to scale down this design load 

model for bridge situations that are less onerous than the above worst case scenario, 

while maintaining a consistent reliability level for the whole network; detailed scaling 

curves for the live load adjustment factors are provides in the document.  Furthermore, in 

the absence of definite information about material characteristics in estimating the 

resistance of bridge component, the document assigns a set of values to materials which 

should be used in the initial assessment, mostly according to the construction period of 

the bridge.  Structures which cannot sustain the assessment live loading after the 

checking calculation, and which are not scheduled for immediate replacement or 
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strengthening should be reevaluated for the other three lower live load models for 

posting; posting provisions can be found in the document. 

Document BA 54/94, Load testing for bridge assessment, presents general 

instructions on load testing practices. The document states that the role of load testing 

primarily is to seek out the hidden reserves of strength, and the bridges most likely to be 

involved are those which contain features where such reserves may be found.  Load tests 

are broadly divided into the two categories - Proving load tests and Supplementary load 

tests - which are analogous to the AASHTO Proof load test and Diagnostic load test, 

respectively.  Because there is a risk of collapse during a proving test, or of damage to 

essential elements of the structure, such tests therefore are limited in the document only 

to those bridges which, on the basis of their analytical assessment, would have been 

closed to traffic or demolished. Bridges that previously have been subjected to proving 

tests need to be thoroughly inspected and reassessed at more frequent intervals.  The 

document also emphasizes that extreme care has to be taken to extrapolate the results of 

tests carried out with fairly low levels of loading to those likely to occur at the ultimate 

limit state.  

Instructions provided in BA 54/94 are rather general; detailed guidance on 

loading patterns and magnitude, testing procedures, and test results interpretations are not 

provided. Cautionary notes are provided concerning the effectiveness and the accuracy of 

load testing as a means of load capacity evaluation of existing bridges.  Concerns 

expressed include: whether a static test load can adequately represent the ultimate limit 

state loading condition; whether a bridge deck should be fully loaded or partially loaded, 

in view of the fact that the collapse mode of a partially loaded deck may be different from 
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that when the whole deck is loaded as was intended in the design; and whether the benefit 

of a test is warranted, considering the risk to personnel.    

2.4.3 Bridge Rating in Australia 

 Section 7 of the Australian Bridge Design Standard provides rating guidelines 

with a commentary. The concept of rating is based on the limit state design philosophy 

and both serviceability and ultimate limit states are considered. The ultimate action is 

defined as an action that has a 5% probability of being exceeded during the design life, 

which represents an average return interval of 2000 years; while the survivability action 

is defined as one having 5% probability being exceeded per year, corresponding to a 

return interval of 20 years.  

The rating for strength is carried out for all strength limit states, e.g. moment, 

shear, compression, at all potential critical sections, with the lowest rating factor 

determined being the rating factor for the bridge.  At the service limit state, a structure is 

checked for vibration and deflection. When a bridge is checked for the fatigue limit state, 

the cumulative fatigue damage at the critical details of the bridge must be carefully 

assessed, from which the nominal fatigue life of a bridge can be estimated. For the 

purpose of rating, the cumulative fatigue damage is defined as the sum of the damage in 

all previous years; the nominal fatigue life is considered having been reached when the 

cumulative damage sums to unity5, in which case, a program of inspection should be 

initiated to ensure that fatigue cracks are detected and suitably repaired before they 

endanger the bridge’s ability to carry its applied loads. 

                                                 
5 Cumulative damage is assessed using the Palmgren-Miner linear damage accumulation model. 
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A bridge may be rated at each limit state, to a general rating capacity or to 

specific loading cases, using the same partial factor checking format as specified in the 

Standard.    For the general rating case, which is comparable to the AASHTO design load 

level rating, the live load models and the corresponding load factors are the same as those 

used in the design of a new bridge.  For specific loading cases, the live load can either be 

a legal load vehicle or an exceptional load, the former case being comparable to the 

AASHTO legal load level rating, and the latter being comparable to permit load 

checking.  In all cases, the effects of the rating loads for the specific loading cases are 

determined using the gross weight and the configurations specific to the vehicles under 

consideration. Since the possibility of overloading at this step is unlikely, a reduced live 

load factor is permitted.  Where the rating for a bridge is less than required for current 

general access vehicles, consideration shall be given to applying a posted limit on the 

bridge. Detailed regulation on establishing the limits for specific vehicles however is not 

presented in the document. 

 Two types of nondestructive test are defined in the Australian Standard: static 

proof load test and static performance load test, which are comparable to the two types of 

AASHTO load tests.  The difference between the two types of test is in the magnitude of 

loading, and in the manner and the level of confidence in which the capacity of the bridge 

to carry the live load is determined from the test results. The Standard identifies the load 

test as an effective method of evaluating the performance and structural capacity of a 

bridge or bridge type. The document suggests that the proof test loading should be 

applied incrementally from a base load of 50% of the theoretical rated ultimate capacity 

in order to protect the bridge and the testing personnel, and the load response should be 
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continuously monitored to ensure that the bridge is behaving in an elastic manner. It also 

suggests that a numerical model of the structure should be developed prior to the test to 

assess the ultimate capacity, failure mode and the elastic limit under different loading 

configurations and to determine the maximum load needed for the test. The Standard 

provides some detailed formulas for updating ratings after a successful load test and also 

emphasizes that the adoption of the load testing results should only to apply to bridges of 

similar structural form, taking into consideration material properties and conditions. 

2.5 CRITICAL APPRAISAL OF CURRENT BRIDGE RATING PRACTICE   

Three different existing rating methods are currently utilized by state Departments 

of Transportation in the United States in their bridge rating work, as revealed in the 

survey responses. The ASR, LFR and LRFR methods are based on different design 

philosophies and therefore often produce different rating results and lead to different 

posting limits for the same structure; sometime the difference can be significant.  One 

weak point of the current practice is that no clear policy is provided in the AASHTO 

rating guidelines as to which method should be used for specific circumstances.  The 

LRFR method is relatively new; while having the most rational basis of the three, it still 

need to be tested and validated through research and practice for the bridge engineering 

community to develop confidence in its use. The large number of Inventory, Operating, 

and Legal loads clutters the analysis and rating process with many redundant 

calculations, especially in the ASR and LFR related procedures.  Consequently, this 

situation causes differences in interpretations and practices from different DOTs 

regarding what triggers posting and whether to use an Inventory or Operating rating to 
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post and in which circumstances. These issues should be better stipulated in rating 

guidelines for safe practice and for consistent and unambiguous implementation. 

None of the current AASHTO manuals provides clear guidance as to when to 

revise existing load ratings.  Therefore states DOTs normally make their decisions on 

revising a current rating based on judgment and on what has been observed during the 

field inspection.  Most bi-annual inspections are visual and any insight that might be 

obtained from such an inspection on existing safety or load-carrying capacity necessarily 

will be qualitative rather than quantitative in nature.  Either a way must be found to better 

quantify what a visual inspection reveals or a more sophisticated inspection strategy, 

including informative and non-invasive inspection technologies and optimal inspection 

intervals, should be encouraged, so that the decisions based on inspection data are well-

substantiated.        

The survey of the state Departments of Transportation also revealed that most 

states rely solely on analytical methods to evaluate the load-carrying capacity of existing 

bridges.  Load testing as an effective alternative has been largely ignored.  Due to the 

conservative nature of the analytical rating methods, this inevitably leads to some 

unnecessary bridge repairs, replacements or postings.   The fact that most state DOTs do 

not perform any kind of load testing likely can be traced to a lack of guidance on load test 

to address practical issues including: under what circumstances a load test will be a good 

option for bridge rating, and under what circumstances one should choose a diagnostic vs 

a proof load test, and further, how to design practical load test procedures.    Engineers 

should be provided general guidance as to whether a load test is worthwhile, considering 

the cost of a test, as well as specific instructions on field data acquisition and 
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interpretation.  The current load test guidelines in Section 8 of the AASHTO LRFR Guide 

Manual (2003) do not provide engineers with enough details to bridge the gap between 

the concept and practice of load testing.   

In the current bridge evaluation practice in the US, two major parameters used to 

describe a bridge’s present condition are the condition rating (on a scale of 1 to 10) and 

capacity rating (on a scale of 0 to 1). The condition rating is based on visual inspection 

data and measures deterioration level of a bridge. The capacity rating, on the other hand, 

is performed in practice according to inventory data to check whether a given bridge 

meets the current design standards.  One weak point of current practice is that the 

bridge’s capacity rating is computed based on its design documentation and is not 

properly coupled with the bridge’s deterioration state. Bridges are inspected periodically 

and the condition rating assigned by inspector on the basis of visual inspection identifies 

whether deterioration is occurring and, ideally, at what level. These inspection data 

clearly should be considered in computing the capacity rating and real time reliability of 

the bridge. 

2.6 CLOSURE  

In general, modern bridge rating procedures worldwide have adopted reliability 

principles as their basis. They have utilized the limit state philosophy to allow the safety 

checking to be performed in a deterministic manner without an explicit structural 

reliability assessment.  The reliability indices for design are typically 3.5 or higher over 

the lifetime of the bridge. However, they permit lower reliability indices in the context of 

specific evaluations of individual existing bridges, either by explicitly reducing the target 

safety index in the calibration leading to the load factors for evaluation, which are lower 
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than those used in bridge design, or by directly scaling down the live loads used in the 

assessment to reflect the lesser requirements for evaluation compared to the design level.  

The ultimate limit states are typically required as the governing limit states for 

safety checking for majority of the bridge types; serviceability and fatigue are not 

regularly mandated unless signs of distress or fatigue related defects are observed. Rating 

procedures and the assessment live load models vary the most from country to country, 

but for the most part, a check on design load is typically performed prior to the capacity 

estimation respect to actual vehicles; the latter, in general, is the basis for posting. The 

view towards load testing is different from country to country, which leads to different 

treatment of the provisions on this subject in different guidelines. Test protocols and 

details that are critical for a load test to be successful and informative may not be 

addressed.  The AASHTO MBE (2008) has the most comprehensive provisions on load 

testing of the condition assessment guidelines reviewed.  
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CHAPTER 3 

IMPROVED FRAMEWORK FOR BRIDGE RATING PRACTICE – A 
PROTOCOL WITH THREE LEVELS OF ASSESSMENT 

 
 
 

 
 
The LRFR option in the AASHTO Manual for Bridge Evaluation extends the limit 

state design philosophy to the bridge evaluation process in an attempt to achieve a 

uniform target level of safety for existing highway bridge systems.  However, the current 

capacity rating formulation in the MBE only supports capacity evaluation at one level of 

sophistication (considering individual members, with system effects addressed indirectly 

through a “girder distribution factor”) and treats existing bridges as “generic” structures 

when, in fact, they have individualized features that contribute to capacity.  The 

uncertainty models of load and resistance embedded in the LRFR rating format represent 

typical values for a large population of bridges involving different materials, construction 

practices and site-specific traffic conditions.  Although the LRFR live load model has 

been modified for some specific cases (average daily traffic, redundancy), the bridge 

resistance model can be better “customized” for an individual bridge by incorporating 

available site-specific knowledge to reflect the fact that each bridge is unique in its as-

built condition.  A rating procedure which does not incorporate in situ data properly may 

result in inaccurate ratings (and consequent unnecessary rehabilitation or posting costs) 

for otherwise well-maintained bridges, as indicated by many load tests (Nowak and 

Tharmabala, 1988; Bakht and Jaeger, 1990; Moses, et al, 1994; Fu and Tang, 1995; 

Faber, et al 2000; Barker, 2001; Bhattacharya, et al, 2005).  Advancing the current bridge 

evaluation practice requires better understanding of bridge system behavior, better 
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utilization of available in situ data as well as better modeling of the live load process and 

other time-dependent factors such as fatigue, corrosion and concrete aging.  This research 

develops an improved bridge evaluation framework that directly addresses the 

deficiencies in current practice noted in Chapter 2. 

The improved practical rating framework illustrated in Figure 3.1 has three levels 

of assessment of increasing complexity. In the first level, the deterministic format of the 

AASHTO LRFR method is retained, but the correlation between visually determined 

condition rating and the capacity evaluation is established, so that the bridge deterioration 

can be taken into account quantitatively in the load rating process.  If a bridge does not 

pass the first level checking, the second level assessment is optional. At this level, site-

specific data about individual structural properties obtained from material tests, 

diagnostic load test and from in-depth structural analysis can be incorporated in rating 

calculations. Information needed for this second level assessment usually doesn’t require 

significant cost investment and the checking format can still be presented in a 

deterministic manner.  Finally, if a bridge exhibits unsatisfactory capacity ratings after 

the first two levels of assessment and if a further comprehensive evaluation is believed to 

be warranted, the third level of assessment rates the bridge at system level by proof load 

testing or by using information about its past performance. The proof load test can either 

be conducted on the real structure in situ, or it can be done “virtually” through a finite 

element analysis that is sufficient to describe the load-carrying mechanisms affecting the 

bridge’s capacity and its load ratings.  This third level of assessment involves a structural 

system reliability analysis which inevitably requires some level of probabilistic modeling 

and therefore is not given in a deterministic format.   
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Figure 3.1 Improved Bridge Rating Framework 

 



50 

At the first level of the proposed rating framework, bridge condition rating as a 

measure of bridge’s deterioration status is factored into bridge capacity rating metric.  

Statistical data on bridge condition rating history taken from the National Bridge 

Inventory (NBI) is analyzed, and quantitative models of material degradation and bridge 

degradation developed in other research studies are incorporated, leading to a quantitative 

correlation between the condition rating history of a large bridge population and the 

bridge degradation modeled stochastically.   Using statistics presented by this correlation 

the bridge condition rating is incorporated in bridge capacity rating process through a 

simple condition factor with values that are consistent with the reliability requirement 

embedded in AASHTO LRFR.   

The second level of assessment is designed to consider the uniqueness of each 

existing bridge and to incorporate its in situ information at the component level in the 

bridge rating framework. For example, material strengths in situ may be vastly different 

from the standardized or nominal values assumed in design and current rating practices 

due to strength gain of concrete on one hand and deterioration due to aggressive attack 

from physical or chemical mechanisms on the other.  In situ load distributions in the 

bridge structure observed from diagnostic load test or a simplified FE analysis are often 

significantly different from the girder distribution factors specified in the code.  

Occasionally, certain bridge components might have a load carrying mechanism that can 

not be appropriately modeled by traditional code provisions.  Proper consideration of 

these factors is likely to contribute to a more realistic capacity rating of existing bridges 

and practical guidance for doing so is required.  The second level of rating analysis 

clearly highlights the learning process of a given bridge through field inspections and 
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provides incentives to obtain quantitative in situ measurements through modern non-

destructive evaluation (NDE) techniques, such as Carpenter hammer sounding, Schmidt 

rebound hammer and ultrasonic pulse velocity. 

In the third-level evaluation, a bridge is evaluated at its system level in situations 

where the first two level of analysis produce low ratings, or analysis is difficult to 

perform due to deterioration or lack of documentation. Bridge system reliability can be 

estimated by incorporating results from a properly conducted proof load test or 

information regarding performance collected in past routine periodic bridge inspections. 

The feasibility of using finite element modeling, validated through either systematic field 

inspection supported by NDE technologies or through diagnostic load tests, to conduct 

“virtual” proof load tests of bridge systems, is investigated in this research.   An 

examination of the role and limitations of proof load testing is performed using FE 

models that have been validated by diagnostic load tests on several bridges believed to be 

representative of those bridges of the most concern of GDOT.  Additionally, satisfactory 

bridge performance history provides information comparable to what is learned from a 

proof load test could also be favorable to the bridge capacity evaluation.  This 

information is currently neglected in the load rating process and will be incorporated in 

the third-level assessment of the proposed evaluation framework.   
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CHAPTER 4 

SELECTION, TESTING AND FINITE ELEMENT MODELING OF 
THE SAMPLE BRIDGES 

 
 
 
 

In order to accomplish the study objectives stated in Chapters 1, four bridges that 

are representative of older bridges typically of concern with regard to rating or posting 

were identified from an examination of the Georgia bridge inventory.   These four 

bridges subsequently were used in an integrated program of analysis and load testing to 

support the recommended improvements to the bridge rating process in the Chapter 3 

framework. 

4.1 SELECTED SAMPLE BRIDGES FOR TESTING AND ANALYSIS  

The Georgia Bridge Management System database was examined carefully to 

determine general characteristics of bridges that would be candidates for posting.  Of the 

approximately 2,000 Georgia bridges that require posting, 77% fall into one of three 

categories: 

• Reinforced concrete T-beam bridges, representing 21%; 

• Steel girder bridges, representing 53%; and  

• Pre-stressed concrete I-girder bridges, representing 3%.  

Figure 4.1 shows the primary structural types of bridges constructed over each decade 

from the 1940’s to the present.  Figure 4.2 identifies the number of bridges from each 

category that have been posted as unfit for some or all of the state legal load vehicles.  Of 

those posted pre-stressed bridges, 57% were constructed after 1980; in contrast, only 2%  



53 

 
Figure 4.1   Bridge Categories Identified by Decade of Construction 

 

 

 
Figure 4.2   Posted Bridges Identified by Decade of Construction 
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of the posted reinforced concrete bridges and 10% of the posted steel girder bridges were 

constructed after 1980. Seventy-six percent of the bridges that are candidates for 

strengthening/posting in Georgia were constructed in the two decades following 1945, 

were designed for H-15 loading and had simple spans, with lengths of 40 to 70 ft. 

Following a review of the existing documentation on these bridges, site visits 

aimed at determining their suitability and testing feasibility, and discussions with State 

bridge maintenance engineering staff, four bridges were finally identified for diagnostic 

load testing, further in-depth finite element analysis and reliability assessment [O’Malley, 

et al, 2009]. 

• Reinforced concrete bridge – straight (Bridge ID: 129-0045)  

• Reinforced concrete bridge – skewed (Bridge ID: 015-0108) 

• Pre-stressed concrete girder bridge (Bridge ID: 223-0034), and 

• Steel girder bridge (Bridge ID: 085-0018) 

These bridges and their structural characteristics are summarized in the following 

paragraphs.    

 
4.1.1 Reinforced Concrete Bridge – Straight (ID: 129-0045) 
 

This bridge carries SR 156 over Oothkalooga Creek, was designed using the 

AASHTO 1953 specification for H-15 loading, and was built in 1957.  It is located one 

mile west of Calhoun, GA in Gordon County.  SR 156 is a two-lane road.  The bridge has 

eight spans, seven of which are 40 ft (12.19 m) and one (over the channel) 45 ft (13.7 m).  

The girders are 18 ½ in x 24 ¾ in (46.99 cm x 62.87 cm), except for the long span which 

is 31 ¾ in, and are spaced 7.2 ft (2.19 m) apart.  The bridge has a deck width of 32.3 ft 

(9.85 m) and a road way width of 25.7 ft (7.83 m).  The bridge carries an ADTT of 458.  
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The concrete deck has a condition rating of 5, the supporting reinforced concrete T-beam 

superstructure is rated at 7, and the concrete bent and pier substructure are rated at 6.  The 

latest inspection report indicates that all caps have minor hairline cracking, and that 

several areas of exposed cap reinforcement are present.  All beams are reported to show 

signs of typical flexural cracking.  The entire deck has moderate surface deterioration, 

scaling, and cracking.  It has also been repaired in several notably bad sections.   The 

bridge has not been posted, but was scheduled for replacement in 20081.  

 

 

  

Figure 4.3 Straight T-Beam Bridge (ID: 129-0045, Gordon County) 

  
 

4.1.2 Reinforced Concrete Bridge – Skewed (ID: 015-0108) 
 

This 12-span structure over a long flood plain and a creek carries Old Alabama 

Rd. over Pumpkinvine Creek 3.7 miles south of Cartersville, GA in Bartow County.   The 

two-lane bridge structure has a skew of 30 degrees and an ADTT of 709, was designed 

using the AASHTO 1977 specifications for HS-20 loading and dates to 1979.  The eleven 

                                                 
1 This bridge was demolished later on. Concrete samples were obtained; in situ concrete strength was 
measured. The in situ strength then is used to update the bridge rating in the second level evaluation 
presented in Chapter 6 
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spans over the flood plain are carried by 40-ft (12.19 m) reinforced concrete T-beams.  

The 70-ft (21.34 m) span over the channel is supported by AASHTO type II pre-stressed 

concrete girders.  The current bridge ratings for substructure, superstructure, and deck are 

6, 6, and 7 respectively, and the bridge is posted for three truck loads: H (21 tons), 

Tandem (19 tons), and Log (24 tons). There is minor cracking and spalling in a number 

of the bents and abutments, as well as in the T-beams, but none is in need of immediate 

repair.  

 

 

 

Figure 4.4 Skew T-Beam Bridge (ID: 015-0108, Bartow County) 

 

4.1.3 Pre-stressed Concrete Girder Bridge (ID: 223-0034) 

This bridge carries State Route 120 over Little Pumpkinvine Ceek approximately 

5 miles south of Dallas in Paulding County GA.  It was designed using the AASHTO 

1989 for HS-20 loading specifications and was constructed in 1992.  The main structural 

system consists of pre-stressed concrete I-Beams arranged in four simply supported spans.   

The bridge is 216 ft (65.8 m) long and is comprised of two 40-ft (12.2-m)  Type II pre-

stressed I-girder spans and two 68-ft (20.7-m) Type III prestressed I-girder spans.  The 
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centerline of the bridge is essentially perpendicular to the girder supports.  The bridge has 

a deck width of 43¼ ft (13.2 m) and a roadway width of 40 ft (12.2 m).  The 68-ft (20.7-

m) spans are comprised of five type III I girders that are composite with the 9⅛ in (232 

mm) thick slab (Figure 4.5).  The bridge is in good condition, with substructure, 

superstructure and deck condition numbers of 7, 8 and 7, respectively.  It is not posted.  

The ADT is 6550. 

 

 

 

Figure 4.5 Pre-Stress Bridges (ID:  223-0034, Paulding County) 

 

 
4.1.4 Steel Girder Bridge (ID: 085-0018) 

This bridge carries SR 136 over the Etowah River 5.7 miles east of Dawsonville, 

Georgia, in Dawson County.  It was designed using the AASHTO 1961 specification, 

with interim revisions through 1963 for H-15 loading, and was constructed in 1965.  The 

bridge is 196 ft ( 59.7 m) long and its four 49 ft (12.2 m) spans are supported by four 

steel girders spaced at 8 ft on centers; the two facia girders are W33x118, while the two 

interior girders are W33x130,   with a full-depth diaphragm located at mid-span.  The 
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two-lane bridge has a (non-composite) concrete deck, with overall width of 32 ft (9.75 m) 

and a roadway width of 26 ft (7.92 m).   The centerline of the bridge is perpendicular to 

the girder supports.  The bridge was last inspected on June 30, 2005, and at that time the 

deck and substructure both were assigned a condition assessment rating of 6.  That 

inspection report indicates that there is spalling, aggregate exposure, and transverse 

cracking in the deck in all spans.  The bridge was determined to require posting, and has 

been posted for a 21-ton H load, 25-ton HS load, 23-ton Tandem load, 32-ton 3-S-2 load, 

and 27-ton Log load.  The piles have minor pitting and the beams have minor deflections.  

The bridge carries an ADTT of 280. 

 

 

Figure 4.6 Steel Girder Bridge (ID:  085-0018, Dawson County) 
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4.2 DEVELOPMENT OF FINITE ELEMENT MODEL OF SELECTED BRIDGES  

Three-dimensional (3D) nonlinear finite element models (FEMs) of the 

superstructures of each of the four bridges were developed from design and construction 

documents obtained from the Georgia Department of Transportation.  The purpose of 

these FE models was threefold.  First, they provided a basis for comparison with the 

simplified analytical evaluation procedure currently used by GDOT for bridge rating and 

for identifying issues that might not be apparent with the existing component-based 

deterministic rating format presented in bridge evaluation manuals.  Improving bridge 

rating guidelines requires an understanding of bridge system behavior subjected to 

extreme load events which may well exceed the load level applied in the diagnostic tests.  

Second, they were used to assist in designing the diagnostic load tests of the four bridges.  

Finally, once validated through the diagnostic load tests (described subsequently), they 

were used to conduct “virtual” proof load tests of other bridges of interest in the Georgia 

Bridge Inventory.  These ‘virtual” load tests, along with the system reliability analysis 

described in Chapter 7, are an essential ingredient of the technical support of the 

improved rating protocol introduced in Chapter 3.   

All FE models of the sample bridges were developed using the ABAQUS 

commercial FE package [Simulia, 2006].  Prior to the conduct of the load tests, these FE 

analyses were performed using anticipated vehicle weights and arrangements to assist in 

designing test instrumentation, to identify test vehicle locations, and to anticipate and 

guard against potential bridge vulnerabilities that might become apparent during the 

diagnostic load tests.  Following the load tests, FE analyses again were performed using 

the actual test vehicle weights and wheel locations measured during the tests, and 
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predicted responses were compared with test measurements to determine the accuracy 

with which FEA can predict bridge behavior.   

In the FE analyses of all four bridges, the failure mechanism in the concrete was 

assumed to be either cracking in tension or crushing in compression.  In the absence of 

information on the in situ strengths of steel and concrete, the strengths specified on the 

construction documents were assumed in bridge modeling and assessment. Of course, 

this assumption introduces uncertainty in the comparison of model predicted structural 

behavior and test measurements, as described subsequently.  The stress-strain curve 

proposed by Todeschini [1964] was utilized to model concrete behavior under 

compression; in tension, the stiffness and strength reductions caused by cracking were 

taken into account by the smeared crack technique [Kupfer, 1973; Hillerborg, 1976], in 

which crack initiation is based on strength criteria and crack propagation is based on 

fracture mechanics-based energy criteria. Deformed bar reinforcement and prestressing 

strands both were assumed to have uniaxial elastic-plastic stress-strain behavior. All four 

sample bridges were simply supported by the pier caps or abutments; these supports were 

modeled by pin-roller boundary conditions.  

For the reinforced and prestressed concrete bridges, the concrete deck, girders and 

transverse diaphragms were modeled using 3D continuum solid elements.   Steel 

reinforcement was modeled using a distributed approach, in which the reinforcing bars 

were smeared into membrane layers and embedded in the concrete at appropriate 

locations. The pre-stressing strands in the girders were modeled individually using truss 

elements embedded in the solid concrete elements. The pre-stress in strands was 

replicated by applying an initial stress condition to the truss elements so that when the 
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bridge reaches self-equilibrium under such condition, the strands have the effective pre-

stress indicated in the design documents. The compatibilities between rebars/pre-stressing 

strands and concrete were enforced.  Shear reinforcement was ignored in the FE model of 

the bridge superstructure.  For the steel girder bridge (Bridge ID 085-0018), each girder is 

modeled using beam elements for the flanges and shell elements for the web.   

The FE model of the reinforced concrete T-beam span (bridge ID 129-0045) as 

shown in Figure 4.7 had 420,928 degrees of freedom.  The FE modeling of other bridges 

was at a similar level of resolution.  The research character of this investigation dictated 

this level of resolution; such a level would not be required for routine bridge condition 

assessment by analysis. More details of the FEMs can be found in O’Malley, et al [2009]. 

 

 
 

Figure 4.7: FEM of the Gordon County Bridge (ID: 129-0045) 
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4.3 VALIDATION OF FINITE ELEMENT MODELS OF THE SELECTED BRIDGES 

THROUGH DIAGNOSTIC LOAD TESTS  
 
The load tests were performed by GDOT employees, following the test protocols 

instituted by the principal investigators and under their supervision.  Each bridge was 

tested using up to four DOT trucks; the truck wheel loads were measured prior to each 

day’s testing.  Details of the testing program, including the bridge selection, 

instrumentation, testing process and the post-test assessment of the measurements, can be 

found elsewhere [O’Malley, et al, 2009]. A summary of the results of the analysis and 

load test conducted on the RC T-beam Bridge with straight approach (ID 129-0045) is 

presented in Figures 4.8 and 4.9.  Figure 4.8 shows the test arrangement of the trucks on 

the bridge. The truck weight is summarized in Table 4.1. Figure 4.9 compares 

displacements at midspan predicted by the FE analysis and the displacements measured 

by potentiometers at the same locations.   

When the RC T-beam Bridge with straight approach (ID 129-0045) was fully 

loaded by four DOT trucks, totaling 223 kips (1,068 kN) as in Table 4.1, the bending 

moment at mid-span of the bridge was 2.25 times the bending moment under the H-15 

design load configuration. The maximum measured deflection of the beams at the mid-

span under such loading was 0.28 inches (7 mm). The span/800 deflection limit for 

concrete T-beam bridge stipulated in AASHTO Standard Specifications [1992] (section 

8.9.3.1) is 0.6 inches (15 mm). Clearly, the 1953 AASHTO specification that was in effect 

at the time this bridge was designed incorporated a significant margin of safety.  

Notwithstanding its age and design load, there is no evidence from this assessment that 

this bridge was structurally deficient when evaluated according to modern bridge design 

and rating criteria.  Similar observations were made for the other bridges analyzed in this 
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study.  The implications of these observations will be examined in detail later in Chapter 

7.  

The comparisons between predicted and observed maximum girder deflections 

under load from four trucks for all four bridges tested are summarized in Table 4.2.  The 

results indelicate good agreement was achieved for all four bridges.   The discrepancies 

were invariably within 20% and, in the majority of cases, were substantially less.  Such 

differences can be attributed to various uncertainties associated with experimental data 

collection under field conditions and the many assumptions made in the FE analyses, 

including magnitude and homogeneity of in situ material properties and idealized 

boundary conditions.  In view of these factors, results of the FE analyses of the four test 

bridges are considered sufficient to describe and quantify the load-carrying mechanisms 

that affect the bridge capacity and its load ratings.   

 
 

 

 
 

Figure 4.8:  Schematic of Concrete Reinforced T-Beam Bridge 



64 

Table 4.1 Truck Weight (lb) Details for RC T-Beam Bridge (ID: 129-0045) Test 
 
 

 
Load on 
axle 1 

Load on 
axle 2 

Load on 
axle 3 

Overall truck 
weight 

Truck 1 18,400 19,100 19,000 56,500 

Truck 2 19,100 17,400 17,100 53,600 

Truck 3 19,500 19,300 19,000 57,800 

Truck 4 17,800 18,700 18,600 55,100 

 
 
 
 
 
Table 4.2 Comparison of the Maximum Deflections Measured in the Test and 

Predicted by FE Analysis 
 

Bridge ID Measurement FEM 

RC bridge – straight 
approach 

129-0045 0.28 0.26 

RC bridge – skewed 
approach 

015-0108 0.14 0.16 

PC bridge 223-0034 0.20 0.22 

Steel girder bridge 085-0018 0.36 0.43 

 
 
 
 
 

4.4 CLOSURE  

This Chapter has summarized the load testing and analysis phase of the study to 

examine current bridge rating procedures and to improve them using reliability –based 
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methods.  Four bridges that are typical of bridges of concern in rating and posting were 

selected for load testing and analysis.  Finite element models of these bridges were 

developed to assist the design of the load tests and in the interpretation of the results. The 

bridge test results, in turn, were used to validate and improve the finite element modeling.  

The measured deflections in all cases were in good agreement with those predicted by the 

FE model.  All four bridges remained well within the elastic range when loaded to an 

intensity that is well above their design load. The maximum deflections measured during 

the load tests were on the order of 25% - 50% of the span/800 limit on deflection stipulated 

in the AASHTO design specifications.  Experience with these load tests suggests that 

basing performance assessment of an existing bridge on global response measurements, 

such as displacement, as opposed to local responses, such as strain, minimizes the 

likelihood of errors in test interpretation and misjudgments of safety that may be prompted 

by spurious local non-homogeneous or material behavior.  It was also observed that 

redundancy in measurements, through multiple gauges at a single location and gauges at 

multiple locations in a single element, is essential to achieve accurate conclusions from the 

condition assessment and should be utilized whenever practical. 

In Chapters 6 and 7, this combined analytical and experimental approach will be 

used to develop an improved bridge rating framework in which in situ material testing, 

condition data, and history of successful service life performance are properly integrated 

through system reliability analysis into an improved capacity rating metric.   
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             (a) Loaded with Truck  1                          (b) Loaded with Truck 1 & 2 

 
(c) Loaded with Truck  1, 2 & 3                   (d) Loaded with Truck 1, 2, 3 & 4 

 
 

Figure 4.9:  RC T-Beam Bridge Girder Displacements Due to Truck Loadings 
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CHAPTER 5 

LEVEL-ONE AASESSMENT: CORRELATION BETWEEN 
CONDITION RATING AND CAPACITY RATING 

 
 
 
 
 
 
5.1 INTRODUCTION  

A bridge subjected to environmental attack and excessive traffic loads may 

experience changes in resistance, and its capacity rating should reflect these changes.  

Currently, in the AASHTO Manual for Bridge Evaluation, the physical condition of a 

bridge is reflected in the capacity rating equation (eq. 6-1; eq 6A.4.2.1-1 in the MBE) 

through a condition factor φc., where condition ratings from 1-9 that are assigned during 

routine inspections according to National Bridge Inspection Standard (1996) (as 

summarized in Table 5.1) are categorized into three qualitative descriptions of bridge 

condition – good, fair and poor -  and these qualitative descriptions are then connected to 

the resistance calculation in the capacity rating through the condition factor, φc , as 

summarized in Table 5.2 (AASHTO LRFR Table 6-2 ). 

The current categorization of bridge condition above is purely empirical and the 

development of the φc values is not theoretically supported by structural reliability 

analysis.  This chapter introduces a new method to correlate bridge condition ratings with 

capacity ratings, taking into account both the underlying physics of bridge deterioration 

phenomena and bridge conditional rating history data from routine inspections.   A 

revised set of values of φc that are tied to the rating equations have been developed to be 

consistent with the structural reliability-based evaluation philosophy embodied in the 

AASHTO MBE (LRFR option) and to incorporate recent developments in bridge 
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resistance degradation modeling and comprehensive databases of bridge condition rating 

history. 

Four steps are taken.    First, a state-of-the-art bridge degradation model that 

describes the physical process of bridge deterioration in a stochastic fashion is selected.    

Second, the average bridge condition rating history model that illustrates the condition 

rating as function of bridge service age is established.  Third, the bridge condition rating 

history is linked to the statistical models of bridge resistance by mapping the condition 

rating history model in step two onto the bridge degradation model in step one.   Finally, 

a reliability-based optimization technique is used to identify a set of φc values that 

express this correlation in a deterministic manner in the rating formula to satisfy the 

reliability requirement embodied in AASHTO LRFR.    These steps are illustrated in the 

following sections, in which condition factors are developed for reinforced concrete 

bridges.  The methodology introduced can be applied to other types of bridges as well. 

5.2 STOCHASTIC BRIDGE DETERIORATION PROCESS 

Quantitative models of deterioration of reinforced concrete structures have been 

developed in many research studies [Albrecht and Naeemi, 1984; Mori and Ellingwood, 

1993; McCuen and Albrecht, 1995; Thoft-Christensen, 1998; Enright and Frangopol, 

1998]. These models can be incorporated in a real-time bridge reliability assessment.  

The uncertainties in resistance of an existing bridge are at least equal to those of a newly 

designed bridge.  Once the bridge begins to deteriorate, its mean resistance usually 

decreases and the uncertainty in resistance generally increases. Time-dependent structural 

resistance can be modeled as [Mori and Ellingwood, 1993]:  

)()( 0 tgRtR =                     (5-1) 
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in which t is elapsed time, R0 is the resistance variable of a newly-constructed bridge and 

g(t) is the degradation rate.  The mean and COV of random variable g(t) can be expressed 

for many common deterioration mechanisms [Enright and Frangopol, 1998], in first 

approximation, as linear functions of time, as in eq (5-2):   
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in which k1 and k2 are constants and T0 is the mean time required to initiate corrosion.   

Bridges are exposed to many environmental stressors. The extent and the rate of strength 

loss, g(t), depends on the aggressiveness of the environment and the properties of 

construction materials. Chemicals, moisture, and cycle of extreme temperature are the 

most common environmental factors that influence the strength of the structure.   

For concrete bridges subjected to environmental attack, the strength degradation 

mechanism can be classified as affecting either the concrete or the steel reinforcement, or 

both.  Concrete deteriorates because of internal pressures which are caused primarily by 

chemical reactions in the cement (sulfate attack), by chemical reactions between the 

cement and the aggregates (alkali-silica reaction), or by freeze-thaw cycles.  Reinforcing 

steel deteriorates primarily because of corrosion. In addition, the corrosion products 

cause internal pressure that can lead to cracking and spalling of the concrete (Val and 

Melchers, 1997).  Enright and Frangopol [2000] found that most damage of RC bridges is 

caused by water leakage through transverse joints in the deck and the corrosion is most 

frequent damage mode. Corrosion of reinforced concrete is a two-stage process 

consisting initiation (carbonation penetration or chloride ion ingress) and propagation 

(metal loss).   
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Table 5.1   NBIS Instruction for Superstructure Condition Rating 
 

Condition 
Rating Description 

9 EXCELLENT CONDITION 

8 VERY GOOD CONDITION – No problems noted 

7 GOOD CONDITION – Some minor problems 

6 
SATISFACTORY CONDITION – Structural elements show some minor 
deterioration 

5 
FAIR CONDITION – All primary structural elements are sound but may have 
minor Section loss, cracking, spalling or scour 

4 POOR CONDITION – Advanced section loss, deterioration, spalling or scour 

3 
SERIOUS CONDITION – Loss of section, deterioration, spalling or scour have 
seriously affected primary structural components.  Local failures are 
possible.  Fatigue cracks in steel or shear cracks in concrete. 

2 

CRITICAL CONDITION – Advanced deterioration of primary structural 
elements.  Fatigue cracks in steel or shear cracks in concrete may be present or 
scour may have removed substructure support.  Unless closely monitored, it may 
be necessary to close the bridge until corrective action is taken. 

1 

IMMINENT FAILURE CONDITION – Major deterioration or section loss 
present in critical structural components or obvious vertical or horizontal 
movement affection structure stability.  Bridge is closed to traffic but corrective 
action may put back in light service. 

0 FAILED CONDITION – out of service.  Beyond repair 

 
 

 
 
 

Table 5.2   Condition Factor, φc  (AASHTO LRFR, 2005, Table 6-2) 
 

Structural Condition of Member (Condition Rating) φc 
Good or satisfactory ( >= 6) 1.00 

Fair (= 5) 0.95 
Poor ( <= 4) 0.85 
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Corrosion initiates after an initiation time (T0), at which time the steel 

reinforcement becomes depassivated due to carbonation or chloride ion ingress 

(Novokshchenov 1989; Whiting et al. 1993) and the chloride content in the concrete at 

the depth of the steel reinforcement reaches a critical concentration. The corrosion 

initiation time can be expressed as [Thoft-Christensen et al, 1977] 

   2
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where X = concrete cover (cm); Dc = chloride diffusion coefficient (cm2/year); Co 

=equilibrium chloride concentration at the concrete surface ( in percent of weight of 

concrete); and Ccr = critical chloride concentration at which corrosion begins (in percent 

of weight of concrete).  The corrosion initiation time is dependent on four random 

variables(X, Dc, Co, Ccr). The main descriptors of these random variables can vary 

considerably for different bridges.  

Once corrosion has initiated, the cross-sectional area of reinforcement decreases 

with time at a rate that is dependent on the number of reinforcement bars actively 

corroding and the diameter of the individual bars. For the general case where the steel 

reinforcement is composed of bars of various diameters, which begin corrosion at 

different times, the time-variant area of steel, A(t), is [Mori and Ellingwood, 1994; Thoft-

Christensen et al. 1997; Enright and Frangopol 1998a]: 
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and Dj (t) = diameter of bar j at time t; n = number of bars; Djo = initial diameter of bar j; 

rcorr = corrosion rate; t = elapsed time, and TIj = corrosion initiation time for bar j. For 

rectangular nonprestressed members in which the strength of compression steel is 

neglected, the nominal flexure resistance Mn of a concrete beam is given by [LRFD 

1994]:  
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where fy = specified yield strength of reinforcing bars; d = distance from the extreme 

compression fiber to the centroid of the  non-prestressed tensile reinforcement; f’ c = 

specified compressive strength of concrete at 28 days; and b = width of the compression 

face of the member. 

To investigate the corrosion initiation time and strength degradation function for 

typical RC bridges and to define the coefficients in eq 5-2, Enright and Frangopol [2000] 

performed Monte Carlo simulations using eqs 5-3 through 5-6 and the statistics of key 

initial resistance and corrosion random variables listed in Table 5.3.  The mean and 

coefficient of variation of the resistance random variables are based on the information 

presented in MacGregor et al [1983]. Values for the corrosion random variables are based 

on probabilistic corrosion studies summarized in Enright [1998]. Those studies found that 

the corrosion initiation time T0 is lognormally distributed and is increasing with the depth 

of the concrete cover.  The mean of the degradation function, E[g(t)] , decreased with 

time while its cov V[g(t)]  increased, as shown in Figure 5.1.  For reinforced concrete 

bridges subjected to environmental attack with medium rate of corrosion, the mean value 

of T0 is approximately 10 years and coefficients k1 and k2 in eq (5-2) equal to 0.0031 and 

0.0027, respectively; substituting these parameters into eqs 5-2 yields the time-dependent 
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relations presented in Figure 5.2.   In other words, the mean of the resistance R(t) will 

reduce to 80% of its original valve and the COV of g(t) alone will increase to 13%, after 

a 75 year period of exposure.  These statistics must be factored into the time-dependent 

reliability analysis of the reinforced concrete bridge. 

 

 

 
Figure 5.1 Mean and COV of g(t) of Time-variant Bending Resistance with 

Different Corrosion Rate rcorr    (Enright and Frangopol, 2000) 
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Table 5.3 Random Variable for MC Simulation 
                   (Enright and Frangopol, 2000) 

 

Variable 
(units) Description Mean 

Coefficient 
of variation 

fy (Mpa) Steel reinforcement yield strength 310.5 0.12 
f’ c (Mpa) Concrete compression strength 19.0 0.18 
DM (mm) Initial diameter of flexure reinforcement 35.8 0.02 
dM (mm) Initial depth of flexure reinforcement 68.73 0.03 
XM1 (mm) Cove depth of flexure steel, layer 1 5.08 0.05 
XM2 (mm) Cove depth of flexure steel, layer 2 12.70 0.05 

Dc (cm2/yr) Diffusion coefficient 1.29 0.10 
Co (wt % conc.) Surface chloride concentration 0.20 0.10 
Ccr (wt % conc.) Critical chloride concentration 0.025 0.10 

rcorr (mm/yr) Corrosion Rate 0.15 0.30 
 
 
 
 

 
 

Figure 5.2 Time-dependent Mean and Coefficient of Variation of  
Bridge Degradation Function g(t) 
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5.3 SYNTHESIS OF THE CONDITIONAL RATING DATA FROM NBI 

Bridge condition ratings (see Table 5.1) for individual components are assigned 

following inspections which usually are conducted once every two years.  If such 

condition ratings for a bridge are available for a relatively long period of time, the data 

can be used to establish a deterioration model for that bridge.  National Bridge Inspection 

Standard (NBIS) coding guide identifies the specific bridge elements that must be 

inspected and provides instructions on how to conduct an inspection. Although state 

transportation agencies are not required to make their bridge inspection programs 

identical to that describe in the coding guide, they are required to have databases that can 

easily be converted to NBIS format for reporting to FHWA so that data from various 

states can be combined to form the National Bridge Inventory (NBI). 

In a review of the NBI database, Bolukbasi, et al (2004) found that the average 

condition rating history of non-interstate RC bridges often can be modeled by a 3rd order 

polynomial, as shown in Figure 5.3: 

C (T) =8.662-0.146T + 0.003T2 - 3.09E5T3                    (5-7) 

where C(T) is the condition rating of the bridge at age, T, in years. This model yields a 

condition number 4 in 70 years.  Jiang and Sinha (1989) developed a similar polynomial 

model with slightly different coefficients, which indicated 71 years to a condition state 4.  

Weyers et al (1989) computed an average condition rate deterioration rate which 

indicates 65 years to condition state 4 and 78 years to condition state 5.   These models 

are consistent with one another, and the model raised in the study by Bolukbasi, et al 

(2004) is adopted in this study.   The condition rating assigned during routine inspections 

varies from inspector to inspector, and thus is a random variable that might affect time-
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dependent reliability analysis.  A study on the accuracy of inspection documentation 

[Phares et al, 2004] has revealed that the distribution of condition ratings is normal.   

 

Figure 5.3 Average Condition Rating as Function of Time for Non-interstate 
Highway Bridges (Bolukbasi et al, 2004) 

 

 

5.4 CORRELATION BETWEEN CONDITION RATING AND RESISTANCE MODEL  

 The correlation between condition rating C(T) and the statistical descriptors of 

degradation g(t) is developed by mapping the average condition rating history of non-

interstate concrete bridges, as shown in Figure 5.3, onto the 75-year stochastic resistance 

degradation model with medium degradation rate in Figure 5.2, leading to the rating-

dependent mean and COV of function g(t) shown in Figure 5.4 by the solid lines.  When 
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flexural resistance is considered, Ro is described by a lognormal distribution with mean of 

1.14 times the nominal flexural strength Rn and COV of 13%, respectively (Nowak, 1999).  

The dashed lines in Figure 5.4 show the mean, E[R/Rn], and COV, V[R/Rn], of the 

resistance modal as a function of condition rating.  By mapping the resistance with an 

average degradation rate on the mean condition rating history, the proposed statistical 

descriptions of resistance as a function of condition rating are finally independent of 

corrosion rate.  

 

Figure 5.4 Time-dependent Mean and COV of Bridge Flexural Capacity 
 

 

5.5 CALIBRATION FOR THE CONDITION FACTOR , φc 

Using the statistics in Figure 5.4 along with the load models used in the AASHTO 

LRFD (Nowak, 1999), the bridge condition rating values can be included in the 
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estimation of time-dependent failure probability and reliability index of a given bridge.  

To further facilitate the bridge rating practices which utilize a deterministic format, a set 

of φc-values necessary to achieve the target reliability requirements consistent with the 

AASHTO LRFR method was obtained by minimizing the mean-square error between the 

target βT and the reliability achieved by the use of specific values of φc, as illustrated in 

Figure 5.5.  The difference in target reliability (βT), 3.5 at the inventory level vs 2.5 at the 

operating level, is reflected in difference in the live load factor used for these levels, 

therefore does not affect the calibration of φc.  The optimal condition factors determined 

from this analysis are presented in Table 5.4.  

 

 
 

Figure 5.5   Optimal Condition Factors for Different Condition Ratings 
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5.6 CLOSURE 

This chapter illustrated a methodology for incorporating qualitative measures of 

bridge condition into a quantitative reliability-based evaluation of bridge load rating. 

Correlation between condition rating and capacity rating was established through a set of 

condition factors with sound reliability basis. The development of φc was illustrated for 

reinforced concrete bridges, but the methodology could easily be applied to other types of 

bridges if supporting time-dependent deterioration statistics for those bridges similar to 

those presented in Figure 5.3 become available.  The AASHTO LRFR deterministic 

rating format (eq 2-6), together with the revised values of condition factor φc developed 

in this chapter, should be incorporated in the first-level assessment of the proposed rating 

framework.  

 
 
 

Table 5.4 Proposed Condition Factors  
 

Structural Condition Rating (SI&A Item 59) φc 

≥8 1.00 
7 0.95 
6 0.85 
5 0.75 
≤4 0.70 
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CHAPTER 6 

LEVEL-TWO ASSESSMENT: BRIDGE RATING USING 
COMPONENT-LEVEL INFORMATION 

 
 

 

The level-one assessment introduced in Chapter 5 utilizing the deterministic 

format in AASHTO LRFR incorporates only limited quantitative in situ knowledge and 

therefore could produce overly conservative ratings for many well-maintained older 

bridges [Nowak and Tharmabala, 1988; Bakht and Jaeger, 1990; Moses, et al, 1994; Fu 

and Tang, 1995; Faber, et al 2000; Barker, 2001; Bhattacharya, et al, 2005].   The models 

of uncertainty in load and resistance (discussed in section 2.2.3) used in calibrating the 

LRFR rating equation (eq. 2.6) represent typical values for a large bridge population 

involving different materials, construction practices and site-specific environmental and 

traffic conditions.  Although AASHTO has modified the live load model in LRFR rating 

to account for differences in site-specific average daily truck traffic, the resistance model 

also should be “customized” for an individual bridge by incorporating available site-

specific knowledge to reflect the fact that each bridge is unique in its as-built condition. 

   The second level assessment in this Chapter provides bridge engineers with an 

option to include additional site-specific information in the bridge rating process to 

achieve a better evaluation of bridge capacity, when such effort is believed to be 

warranted.  Knowledge gained from diagnostic load tests, from validated finite element 

analysis or from in-situ material tests can be used to revise the LRFR estimates (Chapter 

5).  An investment in the level-two assessment often can be justified, particularly for 

bridges that carry heavy traffic or have level-one rating factors in the range of 0.7-1.0.   
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6.1 RATING USING IN SITU MATERIAL STRENGTH  

 Section 4.1.1 summarized the load test of Bridge ID 129-0045, a reinforced 

concrete T-beam bridge that was designed according to the AASHTO 1953 Design 

Specification for H-15 loading, and was constructed in 1957.  The specified 28-day 

compression strength of the concrete was 2,500 psi (17.2 MPa), while the yield strength 

of the reinforcement was 40 ksi (276 MPa). This bridge was load-tested in September, 

2006.  Subsequent to the conduct of the load test, the bridge was demolished in May, 

2008, providing an opportunity to secure drilled cores to determine the statistical 

properties of the in situ strength of the 51-year old concrete in the bridge.   

Four-inch diameter drilled cores were taken from the slab of the bridge prior to its 

demolition.  Seven (7) cores were taken from the slab at seven different locations along 

both the length and width of the bridge.   Cores also were taken from three of the girders 

which were in good condition after demolition; these were cut into 8-in (203 mm) lengths 

and the jagged ends were smoothed and capped, resulting in a total of fourteen (14) girder 

test cylinders.   Tests of these 4 x 8 in (102 x 203 mm) cylinders conformed to ASTM 

Standard C42, and the results are presented in Table 6.1. An analysis of these data 

indicated no statistically significant difference in the concrete compression strength in the 

girders and slab, and the data were therefore combined for further analysis.   The mean 

(average) compression strength of the concrete is 4,820 psi (33 MPa) and the coefficient 

of variation is 12%, which is representative of good-quality concrete [Bartlett and 

MacGregor, 1996].  The mean strength is 1.93 times the specified compression strength 

of the concrete.  This increase in compression strength over a period of more than 50 
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years is typical of the increases found for good-quality concrete of this vintage by other 

investigators [Washa and Wendt, 1975].  

If these results are typical of well-maintained older concrete bridges, the in situ 

concrete strength is likely to be substantially higher than the 28-day strength that is 

customarily specified for bridge design and also is used in condition evaluation.  

Accordingly, the rating criteria should provide the Bridge Engineer with incentives to use 

the best possible information from in situ material strength testing whenever feasible 

when performing a bridge rating [Ellingwood et al 2009].  It is customary to base the 

specified compression strength of concrete on the 10-percent exclusion limit of a normal 

distribution of cylinder strengths [ACI Standard 318-05].  Using Bridge ID 129-0045 as 

an example, the 75% lower confidence interval on the 10-percent exclusion limit of 

compression strength, fc,  for the sample of 21 tests can be expressed as, 

XkV)(1fc −=         (6-1) 

in which X  = sample mean, V = sample coefficient of variation, and k equals 1.520 

(Ellingwood, et al, 2009) to obtain the 75% lower confidence interval on the 10th 

percentile value of the distribution, based on 21 samples.  Substituting the statistics in 

Table 6.1, one would obtain fc = (1-1.520 × 0.12) × 4,820 = 3,941 psi (27.17 MPa), a 

value that is 58% higher than the 2,500 psi (17.2 MPa) that otherwise would be used in 

the rating calculations.   

In the FE modeling of this bridge that preceded these strength tests, the concrete 

compression strength was set at 2,500 psi (17.2 MPa), which was the only information 

available before the material test.   In order to determine the impact of using the actual 

concrete strength on the rating process, the finite element model was revised to account 
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for the increased concrete compression strength (and the corresponding increase in 

stiffness) into the analysis of the bridge.  Only a modest enhancement in the estimated 

bridge capacity in flexure was obtained, but a 34% increase was achieved in the shear 

capacity ratings for the girders using the results of Table 6.1.  

 

 

Table 6.1 Compression Tests of Cores from RC Bridge (ID: 129-0045) 

Source Number Average 
(psi) 

Standard 
deviation (psi) 

Coefficient of 
variation 

Girder 14 4,880 603 0.12 

Slab 7 4.698 573 0.12 

Overall 21 4,820 586 0.12 

 

 

 

6.2 RATING USING REALISTIC LOAD DISTRIBUTIONS  

Girder distribution factors (GDFs) are used to distribute the traffic loads to the 

individual girders so that bridge design and evaluation can be performed on an individual 

member rather than a system basis.  The GDFs are an important ingredient of bridge 

capacity evaluation.  The GDFs are different in the AASHTO ASD and LF rating 

methods from those in the LRFR rating method; these differences are one reason for the 

complaints received in the survey (discussed in section 2.3) regarding the inconsistency 

in the bridge ratings obtained from these three methods.  These differences were 

examined using finite element models developed for the four typical Georgia bridges 
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(summarized Chapter 4).  Bridge responses captured by FE analysis (validated by the 

load tests, as discussed in section 4.3) were used to assess the in situ GDFs .   

The GDFs for girder moment and girder shear are different.  A comparison of the 

moment distribution factors from the different methods for the four tested bridges is 

tabulated in Table 6.2.  The GDFs obtained from the FE models are substantially less 

than those calculated using any of the existing methods; accordingly, the load ratings 

calculated with the GDFs obtained by the FE models would substantially exceed the load 

ratings that are obtained by the existing methods in the AASHTO MBE.  For the straight-

approach reinforced concrete girder bridge, for example (first line in Table 6.2), the FE 

analysis of this bridge indicates that when load is placed on the bridge to maximize the 

moment in one of the interior girders, only about 41% of the applied load actually went 

into that interior girder.  The girder distribution factor in the current LFR method 

however would require up to 60% of live load to be apportioned to that girder, while with 

LRFR, the percentage would be 69%.   While the LFR procedure results in a rating factor 

of 0.75 for the HS-20 design load checking at Inventory level, the rating of this bridge 

using load distribution factor obtained from FE analysis for the same vehicle is 1.10, 

representing an increase of 47% [Wang et al, 2009; Ellingwood, et al, 2009].  Similar 

results were observed for the other three bridges considered in this dissertation.  

6.3 RATING OF DEEP REINFORCED CONCRETE BRIDGE COMPONENTS  

Out of the 2000 Georgia bridges that require posting according to the AASHTO 

MBE, more than 800 are governed by deficient shear ratings of their reinforced concrete 

pier caps.   The posting of the steel girder bridge illustrated in Figure 4.6 (Bridge ID 085-

0018) is based on the assessed shear capacity of its center pier cap.  Accordingly, prior to 
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conducting the load tests, a series of independent FE analyses of the reinforced concrete 

pier cap for this bridge was undertaken.  This pier cap behaves as a “deep beam,” in that 

its shear span is relatively short (its shear span/effective depth ratio, a/d, is approximately 

1.0).  In contrast, the shear capacity equations in the traditional bridge rating procedure 

(similar to those in ACI Standard 318, 2005,) are known to be valid for beams in which 

a/d is greater than approximately 3, but may underestimate the actual shear capacity of 

deep reinforced concrete beams, in some cases significantly (Hawkins et al, 2005).  

 

 

Table 6.2 Comparison of the Moment Distribution Factors for Interior Girders 

Bridge Type LFR/ASR LRFR FEM 

Concrete T 0.597 0.69 0.407 

Concrete Skew T 0.757 0.73 0.482 

Pre-stressed 0.818 0.85 0.521 

Steel Girder 0.725 0.72 0.513 

 

 

 

The Strut-and-Tie (S&T) model has been proposed recently as an alternative 

method for evaluating the shear capacity of reinforced concrete beams with short shear 

spans [e.g., Tang and Tan, 2004].  To determine whether an S&T analysis might enhance 

the rating of Bridge ID 085-0018, an independent rating analysis was performed.  First, 

the current GDOT rating of the bridge and its current posted limits was confirmed by an 



86 

independent analysis.  Next, the capacity of the pier cap in shear was assessed using both 

S&T and FE analyses.  In the FE model, the shear capacity was assumed to be reached 

when yielding initiates in the steel reinforcement acting as the tie of the S&T mechanism 

over the support (see Figure 6.1) or the concrete compression strut crushes.   The stress 

contours in Figure 6.1, obtained from the FE analysis of the pier cap, clearly show the 

development of arch action, which the S & T model captures.   Table 6.3 compares the 

posting limits for this bridge for five GA/State Legal loads (cf Figure 2.3).  The S & T 

shear strength model leads to ratings that range from 24% (HS-20) to 30% (Tandem) over 

the current method.  In turn, the S & T shear strength estimates are less than the FE 

results, suggesting that the current posting limits for this bridge, which are based on 

traditional shear capacity calculations, are unduly conservative.  Had the S & T model 

been used to determine the shear strength of the pier cap, the posted limits would have 

increased to 34 tons for HS20, 33 tons for Tandem and 44 tons for 3S2, as tabulated in 

Table 6.3. 

 To determine whether or not this conservatism is unique to this particular bridge, 

an analysis was performed of pile caps at two additional bridges identified through the 

Georgia DOT database – Bridge ID 083-0016 (built in 1966 for H-15 load; ADTT: 130) 

and ID 097-0032 (built in 1962 for HS-15; ADTT: 120) – where a/d is smaller than 1.5 

and the shear capacity of the pile cap also governs posting.  Table 6.4, developed using 

an HS-20 rating vehicle, reveals that the current rating procedure appears to result in 

excessively conservative posted loads for these two bridges as well.  The ratings are 

particularly conservative when the point on the pier cap that supports the girder is close 

to the supporting piles, leading to a short shear span.  Accordingly, the strut-and-tie 
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model appears to be more appropriate for assessing the shear capacity of existing bridge 

sub-structures for rating purposes.   

 

 

 

 

Figure 6.1 Development of Arch Action in Deep Beam 

 

 

 

Table 6.3 Shear Ratings (tons) for RC Bridge (ID 085-0018) 

Method H20 HS20 Tandem 3S2 Log 

GDOT Method1 22 25 24 32 28 

Strut and tie 30 34 33 44 38 

Finite element 40 45 43 58 49 

 

 

 

                                                 
1 The posted loads reported in this line of the table are taken from the GDOT database. 
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Table 6.4 Shear Ratings (tons) for HS20 Vehicle 

Bridge ID 
Method 

085-0018 083-0016 097-0032 

GDOT Method18 25 24 23 

Strut and Tie 34 28 32 

Finite Element 45 34 40 

 

 

6.4 CLOSURE 

This chapter explored the possibility for improving bridge load ratings by 

factoring site-specific knowledge (directly or indirectly obtained from in situ testing or 

inspection) into the bridge rating process.  Three examples illustrated in the above 

sections indicate a significant gain in load ratings in level-two assessment.  This level of 

analysis provides an incentive to obtain quantitative in situ measurements through 

modern non-destructive evaluation (NDE) techniques. 

Material strengths in situ may be vastly different from the standardized or 

nominal values assumed in design. In situ material sample tests can be used to update 

load rating calculations. Concrete compression strength gain in a typical straight T-beam 

bridge leads to a 34% increase in the shear capacity rating of that bridge.  For some other 

bridges, however, material strength might decrease due to aggressive attack from 

physical or chemical mechanisms. Material tests in these situations can help the bridge 

engineer obtain more realistic evaluations and reduce the likelihood of an unsafe rating.  

Decisions as to whether or not to conduct in situ material tests should be based on reliable 
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bridge inspection data, bridge economics and engineering judgment.  Test procedure 

should be consistent with ASTM standards, and in situ sampling and interpolation of test 

results should have a reliability basis [Ellingwood et al, 2009]. 

The load tests and supporting analysis herein indicated that analytical approaches 

to bridge evaluation utilizing current girder distribution factors yield a conservative 

measure of actual load-carrying capacity. This conservatism is the result of assumptions 

made in the analysis regarding load sharing, composite action, support conditions and 

secondary member behavior.   In view of the economic consequences of posting, it is 

apparent that if the customary rating practice suggests that a bridge is a candidate for 

posting, a more accurate structural analysis model should be employed to verify whether 

more accurate GDFs might change that decision.    

The load-carrying mechanism in pier caps and other structural components  that 

have short shear spans and behave as deep beams is better modeled by the strut and tie 

method than by the traditional ACI Standard 318 model.  The use of this method is 

permitted by the LRFR option in the AASHTO MBE, and bridge engineers should be urged 

to adopt it.  The rated capacity of the pier cap increases by up to 59% in the typical steel 

girder bridge examined when the S&T model is used.  Investigations of similar bridge pier 

caps indicated that the level of conservatism is dependent on the dimensions of individual 

pier caps and the placement of the girders that they support.   
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CHAPTER 7 

LEVEL THREE ASSESSMENTS: BRIDGE SYSTEM RELIABILITY 
 
 

 

As part of the effort to develop the AASHTO LRFD Bridge Design Specifications, 

extensive databases were developed to describe the strength of individual bridge girders 

and vehicle live loads probabilistically [Nowak, 1999; Moses, 2001].  As noted 

previously, that research focused on the capacity of individual bridge girders; system 

effects were included only indirectly and approximately through new girder distribution 

factors that were developed in the course of the project.  This approach was also adopted 

by AASHTO in the bridge rating methods found in the Manual of Bridge Evaluation that 

currently is in use. While component-based design of a new bridge provides adequate 

safety at reasonable cost, component-based evaluation of an existing bridge for rating 

purposes may be overly conservative and result in unnecessary repair or posting.  In 

particular, it is preferable to perform load capacity ratings through a system-level analysis 

if decisions regarding bridge posting or road closure are at issue.   

The level-three assessment introduced in this Chapter investigates bridge safety at 

the system level and presents an additional perspective on the (unknown) level of 

conservatism furnished by the current generation of reliability-based condition evaluation 

and rating procedures. This level of analysis could also provide an understanding of 

bridge system behavior when subjected to extreme load events which may have 

implications for the use of such methods in permit ratings for extreme vehicle loads. 

In this Chapter, bridge ratings are examined through a bridge system reliability 

analysis, and the possibilities of incorporating proof load tests and successful service 
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performance history into the rating analysis are explored.  In order to determine the 

additional level of conservatism (if any) that arises from system behavior, finite element-

based system reliability analyses of all four study bridges were conducted.   These 

analyses allow the characteristic values of the variables used in the condition evaluation 

to be changed on the basis of the outcomes of a proof load test or service-proving load.   

7.1 VIRTUAL PROOF LOAD TESTS OF SAMPLE BRIDGES  

A properly conducted proof load test can be an effective way to evaluate the 

structural performance of a bridge as a system and to update the bridge load capacity 

assessment in situations where the analytical approach at the first and second levels 

produces low ratings, or structural analysis is difficult to perform due to deterioration or 

lack of documentation (Saraf and Nowak 1998).  However, a proof load test represents a 

significant investment in terms of capital, time, and personnel, and the tradeoff between 

the information gain and the risk of damaging the bridge during the test must be 

considered. Therefore, proof tests are rarely conducted by the State DOTs for rating 

purposes (Wang, 2009).   

One of the key conclusions from the bridge modeling and tests in Chapter 4, in 

which bridge response measurements obtained from the load tests of the four bridges 

were compared with the results of finite element analyses of those bridges using 

ABAQUS [Simulia, 2006], was that finite element modeling is sufficiently accurate that it 

can be used to conduct “virtual” load tests of the majority of similar bridges.  These 

virtual load tests can provide the basis for developing recommendations for bridge ratings 

using structural reliability principles. As noted in the introductory section above, such 

recommendations require the bridge to be modeled as a structural system in order to 
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properly identify the performance limit states on which such recommendations are to be 

based.  

7.1.1 Push-down Analysis 

To identify such performance limit states and to gain a realistic appraisal of the 

conservatism inherent in current bridge design and condition rating procedures, a series 

of static “pushdown” analyses of the four bridges identified in Chapter 4 was performed 

to determine their actual structural behavior when loaded well beyond their design limit.   

In a pushdown analysis, two rating vehicles are placed side by side on the bridge in a 

position that maximizes the response quantity of interest in the evaluation (maximum 

moment, shear, deflection, etc.).  The loads are then scaled upward statically and the 

performance of the bridge system is monitored.  The dead weight of the bridge structure 

is included in the analysis.  The response initially is elastic.  As the static load increases, 

however, elements of the bridge structure begin to yield, crack or buckle, and the 

generalized load-deflection behavior becomes nonlinear.  If the bridge structure is 

redundant and the structural element behaviors are ductile, substantial load redistribution 

may occur.  At some point, however, a small increment in static load leads to a large 

increment in displacement.  At that point, the bridge has reached its practical load-

carrying limit, and is at a state of incipient collapse.    

The static pushdown analyses initially were performed using the FE platform 

ABAQUS, with random material properties determined by their respective mean values 

to obtain a “best estimate” of bridge capacity.  In all four cases, two HS-20 vehicles were 

placed side by side on two adjacent lanes at a point so as to maximize the elastic moment 

in the girders.  These vehicle loads were scaled upward by a load factor until the point 
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was reached at which the load-deflection plot indicated the onset on nonlinearity in the 

bridge structural system. The dead load was held constant throughout the pushdown 

analyses.   An illustration of the static pushdown analysis of the reinforced concrete T-

beam Bridge ID 129-0045 is presented in Figure 7.1.  The point of initial flexural 

yielding occurs at a moment corresponding to approximately 4.31 times the two HS-20 

design loads, at a deflection of approximately 1.4 in (36 mm), which is equal to 

approximately 1/345 times the span.  The ultimate live load capacity of this bridge, 

defined as the point at which a small increase in load causes a large increment of 

displacement or the FE solution failed to converge, is approximately 4.8 times the applied 

HS20 loads.  It is interesting to note from Figure 7.1 that this 51-yr old bridge shows a 

considerable degree of ductility in behavior.  The level of load imposed during the 

diagnostic load test by the four fully loaded trucks is also shown in Figure 7.1; the 

diagnostic test load was approximately 1.3 times the two side-by-side HS20 loads (in 

terms of maximum moment).  Clearly, the capacity of this bridge is substantially in 

excess of what a girder-based calculation would indicate. 

Similar pushdown analyses performed on the other three bridges yielded the 

results summarized in Table 7.1.   The elastic ranges of all four bridges are in excess of 

four times the design load level, indicating the level of conservatism associated with 

traditional design and rating procedures.  The ultimate capacity, as shown in the 5th 

column of the table, is related to the number of the beams. The Skewed T-beam Bridge 

and the Prestressed Concrete Bridge both have five beams and clearly have more reserve 

capacity than the other two bridges which have four beams each.  
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Figure 7.1 Push-down Analysis of RC Bridge (ID 129-0045) 

 

 

7.1.2 Finite Element Analysis Based Bridge System Reliability  

To accelerate the FE-based reliability analysis, FE models of the four sample 

bridges were developed using the open-source platform, OpenSees (McKenna, et al, 

2007).  The more detailed ABAQUS models, which had been validated in the load tests, 

were employed to confirm the bridge structural behavior predicted by the OpenSees 

models as the system was loaded beyond its design limit.  Using the RC T-beam Bridge 

again as an example, Figure 7.1 illustrates the consistency achieved between the 

ABAQUS and the OpenSees models through a complete push-down analysis, in which 

the bridge is loaded well into the inelastic range.  Following this validation, the system 

performance of the sample bridges was characterized statistically by propagating the 
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uncertainties in material strengths, stiffnesses and geometry through the OpenSees FE 

models using a Latin Hypercube Sampling technique (Imam and Conover, 1980) to 

achieve efficient coverage of the sample space with a manageable number (40) of FE 

analyses. The random variables involved in these FE analyses are described by the 

statistics defined in the LRFD databases as mentioned previously (Chapter 2).  The limit 

state of performance was taken as the point at which the bridge system exits the elastic 

range, as identified from its load-deflection curve (cf Figure 7.1); that definition is 

believed to represent the limit of usability/repairability of the bridge, but does not 

represent life-threatening behavior if the structure possesses even a moderate amount of 

ductility (cf Figure 7.1). 

The flexural capacities so determined from this system reliability analysis were 

rank-ordered and plotted on lognormal probability paper, as illustrated in Figure 7.2 for 

the straight approach RC bridge (ID 129-0045).  The lognormal distribution provides a 

good fit to these data.  The mean and coefficient of variation in the system capacity of 

this bridge (at first yield) are 4.311 times the applied two HS-20 loads and 15%, 

respectively.  The variability is of the same order as the individual girder capacities 

(Nowak, 1999), but the larger mean is characteristic of the beneficial system effects in a 

system reliability assessment. Bridge system resistance distributions for other sample 

bridges are summarized in the last column of Table 7.1. When used in a reliability 

assessment with the same statistical load models used to develop the LRFD Bridge 

                                                 
1 Note that the mean value of bridge capacity obtained from the probability distribution of system capacity 
is virtually identical to the bridge system capacity estimated in 7.1.1 with a deterministic analysis with all 
parameters set equal to their mean values.    One of the tenets of modern fragility analysis holds that the 
mean response of an engineered system can be approximated by the response estimated by setting all 
parameters equal to their mean values.  Similar results have been found in seismic and wind fragility 
modeling of building structures.  Mathematically, the observation is tantamount to expanding the limit state 
in a Taylor Series about the means and truncating the terms of order higher than unity. 
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Specifications, one obtains a system reliability index of 3.51 for the RC T-beam Bridge, 

which is comparable to the safety level stipulated for a new bridge in AASHTO LRFD.  

The rating factor based on the system capacity [cf Eq (2.6)] for the HS-20 vehicle at 

Operating level is 1.74, presenting a 87% increase in rated load capacity comparing to 

that calculated at the component level as stipulated in the AASHTO MBE. The 

comparison of the ratings at system level and at the component level for other sample 

bridges is tabulated in Table 7.2.   It may be appropriate to factor in this additional 

conservatism in bridge evaluation on a case-by-case basis, depending on the 

consequences of the rating exercise.     

 

 

 
 

Figure 7.2 Lognormal Fit of System Resistance of the RC Bridge (ID: 129-0045)  
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Table 7.1 Analysis of Bridge Capacity, Determined as the Point of First Yield 

 
  

Bridge ID Type Design 
load 

Elastic 
Load 

factor on 
HS20 

Ultimate  
Load 

factor on 
HS20 

Elastic System 
Resistance 

Distributions 
(mean, cov) 

129-0045-0 
RC – T – straight – 

not posted 
H-15 4.31 4.80 LN(4.31, 0.146) 

015-0108-0 
RC – T – skewed - 

posted 
HS-15 4.50 5.34 LN (4.50, 0.150) 

223-0034-0 
Prestressed – 

straight – not posted 
HS-20 5.94 6.87 LN (5.94, 0.108) 

085-0018-0 
Steel girder – 

straight - posted 
H-15 5.37 5.71 LN (5.37, 0.111) 

 
 

 
 
 
 
 

Table 7.2 Load Rating at Component Level vs System Level  
(HS20 Operating Rating)  

  

Bridge ID Type Component 
level rating 

System 
Level Rating 

Percentage 
of increase 

129-0045-0 
RC – T – straight – 

not posted 
0.93 1.74 87% 

015-0108-0 
RC – T – skewed - 

posted 
2.00 2.61 31% 

223-0034-0 
Prestressed – 

straight – not posted 
1.72 2.94 71% 

085-0018-0 
Steel girder – 

straight - posted 
1.14 2.54 122% 
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7.2 RATING USING SERVICE -PROVEN LOAD HISTORY  

   Many older bridges have performed well in service without any indication of 

damage, but yet have been rated as structurally deficient without considering their 

satisfactory performance over the years under the ever-increasing traffic volume and 

truck weights. These bridges generally were designed for lower loads but for higher 

factors of safety and, if well maintained, may have reliability levels that are equal to or 

higher than those in modern construction. Surviving an extended service load history 

which is stochastic in nature provides evidence of structural reliability that may be 

comparable to what might be learned from a proof load test (Ellingwood, 1996; Stewart 

and Val., 1999).   Satisfactory service history should be considered, especially for old 

bridges, in designing in-service inspection programs and in making decisions for 

updating analytical ratings and load postings. The AASHTO MBE does not provide a 

mechanism for updating structural resistance for service-proven bridges. 

A proof test of a bridge enables the lower tail of the resistance distribution to be 

truncated at the level of the maximum load carried as shown in Figure 7.3.  In contrast, 

for a service-proven bridge, the magnitude of the maximum load carried by the bridge 

during its service history is unknown; however, it can be determined statistically using 

the weigh-in-motion data described earlier (e.g., Nowak, 1999).  For a structure surviving 

a sequence of random vehicle loads, the magnitude of which is described by the 

probability distribution function FQ(r) determined using weigh-in-motion data, the 

revised strength )('' rf R  can be written as (Ellingwood, 1996): 
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where fR(r) and FQ*(r) are the prior probability density function of resistance and the 

cumulative load distribution function of the maximum load to occur during the service 

period of interest, respectively.  This updated density can be used in a structural 

reliability assessment to determine the beneficial effect of successful service 

performance. 

To illustrate the benefit of prior successful bridge performance on rating, consider 

the concrete T beam bridge (ID: 129-0045), which gave 51 years of serviceable 

performance.  Prior to considering the benefit of successful bridge performance, the use 

of the mean and COV of bridge capacity presented by Nowak [1999] for new bridges in 

Eqs (2.1) and (2.2) leads to the prior safety index β = 2.54.  The updated distribution of 

resistance, as determined from Eq 7.1 by Monte Carlo simulation, is illustrated in Figure 

7.4.   As a result, with the updated resistance, the estimated bridge failure probability 

decreases and reliability index increases as the successfully service life of the bridge 

increases, as illustrated in Figure 7.5.  This increase in reliability translates to an increase 

in bridge capacity rating factors, as indicated in Figure 7.6.  Rating factors for this bridge 

with respect to HL-93 design loading at inventory level, prior to and after considering the 

51-year successful service life of this bridge, are summarized in Table 7.3.  These results 

indicate a 16% increase in flexural ratings and a 40% increase in shear ratings by 

considering the 51-year service load history.  Note that the rating in shear increases more 

than that in flexure.  The COV of the prior shear resistance is much larger than the COV 
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of prior resistance in flexure; knowledge of successful performance causes the effect of 

the larger COV on the updated reliability to be diminished. 

7.3 CLOSURE 

The level-three analysis discussed in this Chapter has presented a structural 

system reliability approach for bridge evaluation by proof load testing, which can be the 

basis for possible improvements to the component-based LRFR option in the AASHTO 

Manual of Bridge Evaluation.   By using a FE-based bridge system reliability analysis, 

ratings for the RC bridge ID: 129-0045 has increase by 86% percent comparing with the 

component level analysis.  Even just by considering this bridge’s 51-year successful 

service life alone, ratings have increased by 16% in flexural and 40% in shear. 

FE models for “virtual” proof load testing possess great potential in modern load 

ratings, particularly in investigating the conservatisms that appear to be inherent in 

traditional girder-based rating calculations and in avoiding the extensive cost and risk 

associated with “real” in situ proof load testing. The feasibility of using finite element 

analysis, validated through either systematic field inspection or through diagnostic load 

tests, to conduct “virtual” proof load tests of bridge systems and support the improvement 

of bridge evaluation practices, has been demonstrated in this Chapter.  
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Figure 7.3: Structural Reliability Models for Bridg e Proof Load Test 
 
 
 
 
 

 
 

Figure 7.4 Influence of Service Load on Updated Distribution of Structural 
Resistance for the RC Bridge (ID: 129-0045)  
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Figure 7.5 Updated Failure Probabilities and Reliability Indices 

for RC Bridge (ID: 129-0045) 
 
 

 
Figure 7.6 Updated Rating Factors Respect to HL-93 at Inventory Level 

for the RC Bridge (ID: 129-0045) 
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Table 7.3 Comparison of Rating Factors Computed Before and After Considering 
Service Load History for RC Bridge (ID: 129-0045) 

 
Rating Factor 

Flexure Shear 
 

Interior 
girder 

Exterior 
girder 

Interior 
girder 

Exterior 
girder 

Before updated by 
service load history 

0.75 0.65 0.45 0.46 

After updated by 
service load history 

0.87 0.81 0.63 0.64 
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CHAPTER 8 

SUMMARY, CONCLUSIONS AND FURTHER WORK 
 
 
 
 
 
 
8.1 SUMMARY  

The proposed bridge rating framework developed in this dissertation addresses 

condition assessment and evaluation by analysis, load test, or a combination of the two 

methods, depending on the circumstances.  Consistent with the AASHTO LRFD Bridge 

Design Specifications, they have a sound basis in structural engineering and structural 

reliability principles, allowing ratings to be updated as changing circumstances (traffic 

demands, additional data, material deterioration, and other factors) warrant.  The research 

included the following four major activities: review and critical appraisal of existing 

bridge rating procedures; bridge load testing; advanced bridge performance analysis 

using finite element modeling; and structural component and system reliability analysis 

to more closely couple the bridge rating to the in situ performance objectives.   

Bridges that are typical those of current concern in rating and posting were selected 

for load testing and analysis.  Finite element models of these bridges were developed to 

assist the design of the load tests and in the interpretation of the results. The bridge load test 

results, in turn, were used to validate and improve the finite element modeling.  The 

measured bridge girder deflections in all cases were in good agreement with those 

predicted by the FE model.  This validated analytical and experimental combined approach 

was then used to develop reliability-based framework to improve the current bridge rating 

process.   
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A three-level bridge rating framework was developed to provide bridge engineers 

with several rating options.  At the simplest level, the results of visual inspection are 

incorporated in a format similar to that in the AASHTO Manual of Bridge Evaluation.  The 

higher levels involve more in-depth rating analyses that facilitate a customized rating of an 

individual bridge by integrating in situ information into the capacity rating metric.  This 

study provides reliability-based methodologies and technical tools for performing ratings 

systematically. Such in situ information can be obtained from material testing, condition 

rating records, load tests, successful service life performance, and system reliability 

analysis.  The higher level ratings emphasize the importance of learning from inspections 

in rating a given bridge and provide clear incentives to obtain quantitative in situ 

measurements through field inspections, load tests and other modern non-destructive 

evaluation technology.   

8.2 RESEARCH CONCLUSIONS 

 Application of the proposed evaluation framework to existing steel, reinforced 

concrete or pre-stressed concrete bridges indicated that posting requirements based on 

current bridge evaluation practices, which do not incorporate available site-specific 

knowledge in any detail, can be unduly conservative from a structural reliability 

viewpoint.  The proposed improvements recognize the uniqueness of an individual bridge 

and take advantage of accessible in situ information to the extent feasible to produce 

bridge ratings that provide for public safety without undue economic impact on the 

community served.   

 The load tests and supporting analysis indicated that utilizing current girder 

distribution factors can yield conservative measures of actual load-carrying capacity. This 
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conservatism is the result of assumptions made in the analysis regarding load sharing, 

composite action, support conditions and nonlinear behavior, as well as the differences in 

material strengths.  In view of the economic consequences of posting, it is apparent that if 

the customary rating practice suggests that a bridge is a candidate for posting, a more 

accurate structural analysis model should be employed to verify whether more accurate 

GDFs might change that decision.    

The load-carrying mechanism in reinforced concrete pier caps that have short shear 

spans and behave as deep beams is better described by the strut and tie model than by the 

traditional ACI Standard 318 model.  The use of this new capacity calculation method is 

permitted by the LRFR option in the AASHTO MBE.  A preliminary investigation of 

similar bridge pier caps indicated that the level of conservatism is dependent on the 

dimensions of the individual pier caps and the placement of the girders that they support.   

Routine bi-annual inspections play an important role in bridge condition 

assessment by providing in situ data to support the real-time bridge reliability estimate 

and to assist the decision making regarding suitable maintenance. These inspections are 

mostly completed using visual inspection techniques, do not result in quantitative 

estimates of deterioration, and therefore are difficult to incorporate in a strength updating 

process based on modern structural reliability assessment methods.  This study provides a 

method for linking qualitative visual inspections to quantitative reliability-based load 

rating.  A new set of condition factors was developed to couple the rating procedure more 

closely to the results of bridge inspections 

A properly conducted proof load test as well as bridge’s successful service history 

can be effective way to assess the structural behavior of a bridge as a system and to 
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update the bridge load capacity at the system level, especially in situations where the 

analytical approach at the first and second levels produces questionable ratings, or 

structural analysis is difficult to perform due to deterioration or lack of documentation.   

FE analyses conducted as “virtual” proof load tests possess great potential in modern load 

rating, particularly in eliminating the conservatisms that appear to be inherent in 

traditional girder-based rating calculations and in avoiding the risk and cost associated to 

a “real” in situ proof load test. The feasibility of using finite element modeling, validated 

through either systematic field inspection or through diagnostic load tests, to conduct 

“virtual” proof load tests of bridge systems and support the improvement of bridge 

evaluation practices, has been demonstrated in the study. 

Experience in conducting the load tests suggested that basing the performance 

assessment of an existing bridge on global response measurements, such as displacement, 

as opposed to local responses, such as strain, minimizes the likelihood that spurious local 

non-homogeneous or material behavior may lead to false conclusions regarding structural 

system safety.  It was also observed that redundancy in measurements, through multiple 

gauges at a single location and gauges at multiple locations in a single element, is essential 

to accurate condition assessment and should be utilized whenever practical. 

8.3 RECOMMENDED FUTURE WORK  

In the course of the research conducted in this dissertation, several topics worth 

further investigation have been identified: 

  In bridge rating by the LRFR method, the performance based evaluation 

philosophy is embedded in the load and resistance factors.  Each load or resistance factor 

should have a sound reliability basis and should enable performance objectives that are 
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consistent with current practice to be achieved.  The system factor appearing in the LRFR 

rating equation (Eq 2-6) should account for the reserve capacity and redundancy of the 

bridge in the rating calculation, but is based on a component level rather than system 

level of analysis.   The system reliability analysis conducted herein demonstrates the 

inadequacies of this component-based approach.  The development and basis of the 

system factors in LRFR should be more closely examined.   

The proposed multi-level rating approach clearly highlights the learning process 

of a given bridge through field inspections. Current bridge inspection programs seldom 

do an adequate job of reflecting in situ condition quantitatively, making it difficult to 

incorporate the results into the bridge capacity rating process. The use of modern non-

destructive evaluation (NDE) techniques, such as Carpenter hammer sounding, Schmidt 

rebound hammer and ultrasonic pulse velocity, should be encouraged in bridge inspection 

activities, as they may permit a revised estimate of in situ strength to be used in the 

bridge rating calculations.  The benefit and the cost of introducing these technologies 

should be considered in designing in-service inspection programs and in maintenance 

decisions.   Inspection guidelines corresponding to these NDE techniques should be 

established to coordinate with the updating of rating calculations.  

While each existing bridge structure is unique, many bridge types may share 

common failure mechanisms and may be governed by a relatively few parameters, 

especially when a group of bridges is constructed from a limited numbers of standard 

designs.  It is therefore possible to classify bridges by identifying these governing 

parameters and their variation within the population and to develop bridge type-specific 

strategies for load rating and condition assessment. The type-specific strategy could 
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provide significant advantage for inspection and load rating of bridges shearing common 

material, similar geometry and detailing, and the same critical behavior mechanisms. 

 Much of the development of the reliability assessment of bridges has focused on 

the performance of the bridge superstructure.  Less effort has been spent on studying 

reliability of bridge substructures (piercap, piers and columns) and connections.  Bridge 

deficiencies may become apparent under seismic, hurricane and other extreme events, in 

addition to traffic demands.  Efforts should be increased to collect data on the bridge 

substructure/connection behavior under extreme events in a time-dependent manner.  

These results should be included in condition assessment framework expressed in terms 

of reliability.  

A decision engine to supplement the tiered rating framework is necessary for 

authorities to maintain the functionality of the bridge system in a cost-effective manner.  

If a bridge is rated below the minimum acceptance level, the assessing engineer should 

examine the options of possible maintenance strategies on a future cost (or life-cycle 

cost) basis.  The bridge authority must have an internally consistent decision-making 

system which interprets the rating results, estimates the cost of each alternative strategy, 

examines the overall objective of bridge management in terms of risk, and assigns 

priorities for bridge maintenance.  The bridge condition assessment process will be able 

to determine not only the structural adequacy of the bridge at the present time, but will 

provide technical support for financial risk management strategies and future 

maintenance options.  
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