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SUMMARY

Information technology has revolutionized the way in which sellers engage with poten-

tial customers and distribute their products through online channels. However, they also

face increasing challenges to remain competitive. For example, in the software industry,

the plethora of available applications leads to a highly competitive landscape, making it

difficult for new entrants to gain visibility and attract consumer interest. For online plat-

forms, the platform owner not only serves as an intermediary for sellers and buyers but also

introduces its own private-label products, further intensifying competition with third-party

sellers.

This dissertation investigates the strategic actions sellers undertake to tackle these chal-

lenges. In the first essay, we build a game-theoretical model to examine two prevalent

strategies, seeding and time-limited freemium, that developers can employ to spur adop-

tion by helping consumers directly or indirectly learn the value of their products. We offer

managerial recommendations on the optimal circumstances for implementing each strategy,

considering factors such as social and self-learning dynamics, adoption costs, and product

value depreciation.

In the second essay, we study the impacts of Amazon launching its private-label prod-

ucts and engaging in self-preferencing for these products on third-party sellers. Our find-

ings show that although Amazon favors its own products in search results, the average sales

of third-party products in the affected categories increase more than those in unaffected cat-

egories. We then investigate several mechanisms that could contribute to this change. We

find that Amazon’s private-label products displace lower-quality sellers, foster variety in

xi



product designs, and serve as valuable references for third-party sellers to improve their

searchability. These factors potentially lead to higher sales and ultimately an increase in

consumer welfare, with little impact on prices.

xii



CHAPTER 1

INTRODUCTION

Information technology has revolutionized the way sellers connect with potential con-

sumers and distribute their products. However, this evolution also presents new challenges

for sellers to thrive in competitive markets. For instance, in the software industry, the vast

array of available applications makes it increasingly difficult for new offerings to stand out

and capture consumer attention. Additionally, in online platforms, the platform owner not

only serves as a gatekeeper connecting sellers and consumers but also introduces private-

label products, competing with third-party sellers under a self-preferencing recommenda-

tion system. My dissertation delves into these challenges and explores the strategic actions

sellers undertake to adapt and respond effectively to these evolving market dynamics.

In the first essay, along with coauthors Marius Florin Niculescu, D.J. Wu, and Yifan

Dou, I use a game-theoretical model to explore two popular strategies through which de-

velopers can catalyze adoption by helping consumers directly or indirectly learn the value

of their products - seeding and time-limited freemium. In software markets, the sheer num-

ber of available applications make it rather challenging for any given new one to stand out

and be noticed by consumers. While word-of-mouth (WOM) effects may help developers

gradually gain visibility for their products, efficiently jumpstarting and propagating adop-

tion prior to product obsolescence are by no means trivial. Often, relying solely on paid

adoption may result in sub-optimal outcomes. We explore two popular strategies through
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which developers can catalyze adoption by helping consumers directly or indirectly learn

the value of their products - seeding (free full-feature product giveaways to a subset of

the consumer base) and time-limited freemium (TLF). Seeding, as a business strategy, ex-

isted for a long time. On the other hand, the feasibility to offer market-wide TLF became

mainstream more recently, with the advent of digital goods and services. Thus, a natu-

ral question emerges - if TLF represents nowadays a feasible and easily implementable

strategy for software applications, has seeding approach been rendered irrelevant in these

markets? In this study, we provide managerial recommendations on when each of these

strategies with a free full-feature-consumption component is optimal, based on social and

self-learning dynamics, consumer priors, adoption costs, and individual product value de-

preciation. While we see TLF showing up as optimal in some parameter range for each

scenario explored, the same cannot be said about seeding. We identify two particular con-

ditions under which the latter can still emerge as a dominant strategy - the presence of (i)

user adoption costs and/or (ii) individual depreciation of value by usage. While WOM ef-

fects alone are not enough for seeding to dominate other strategies, we do see that in the

presence of any of the aforementioned additional market conditions, the parameter range

where seeding is dominant expands as social learning is more efficient. We further show

that our results are robust under diverse assumptions regarding seeding and the distribution

of consumer priors.

In the second essay, we document evidence of Amazon’s engagement in self-preferencing

and examine the consequences of Amazon launching its private-label products while em-

ploying such a strategy. We first present two pieces of evidence for self-referencing. In the

direct evidence, we find that Amazon private-label products are ranked higher than third-

2



party products even when accounting for other observables. To control for unobserved

product qualities, we further leverage a scenario where Amazon becomes the seller of an

existing third-party product, i.e., the product itself remains unchanged. We find that prod-

uct sales immediately increase after Amazon becomes the seller, indirectly showing that

Amazon may actively promote its own products more than third-party counterparts. We

then examine the effects of Amazon launching private-label products on third parties in

the same category. We find that although Amazon favors its own products in search, the

average sales of third-party products in affected categories increase more than those in the

unaffected categories. We further explore the mechanisms that may explain the changes.

We find that private-labels displace lower-rated sellers, stimulate innovation and variety

in product designs, and serve as valuable guidance for third-party sellers to enhance their

searchability by improving product descriptions. These factors potentially lead to higher

sales and ultimately an increase in consumer welfare, with prices being largely unchanged.

3



CHAPTER 2

SCORE HIGH WITH A FREE KICK: SEEDING VS. TIME-LIMITED

FREEMIUM AS CATALYSTS FOR THE ADOPTION OF SOFTWARE

APPLICATIONS

2.1 Introduction

The software app markets have been growing exponentially during the last decade thanks

to the advances in Internet technologies, the widespread use of desktop and mobile devices,

and a lower entry barrier for developers. Microsoft, the developer of Windows, the lead-

ing desktop operating system by market share, has facilitated compatibility with “over 35

million application titles with greater than 175 million application versions, and 16 mil-

lion unique hardware/driver combinations” (Fortin 2018). On the mobile front, with over

a decade of growth, the top two app stores, Google Play and Apple App Store, boast a

combined app count above 5.70 million (Statista 2021b).

However, in this supply-flooded app market, significant profits (and therefore market

success) can be elusive for developers. According to Slashdata (2018), in the second

quarter of 2018, almost three-quarters of the developers made less than USD 1,000 per

month in terms of app revenue. Failure to monetize apps can be attributed to a number

of factors, including product value, competition, limited consumer attention, high adop-

tion costs, inefficient dissemination of product and brand awareness, and limited product

life with consumption-based depreciation. Some app categories exhibit strong competition

4



(e.g., generic games with easily cloneable interfaces and gameplay), while others might be

dominated by a few leaders (e.g., productivity software, electronic medical records, and

niche products). In this paper, we focus on the latter categories of products, in which the

greatest challenge is to get the consumers to discover and adopt the product rather than

fending off competition.

It is well established that customers adopt software applications based on their percep-

tions of the product’s value – often known as “priors” – which may be in line with the real

value or considerably off (Lambrecht et al. 2007, Weathers et al. 2007, Shulman et al. 2015,

Chen et al. 2021, Zhang et al. 2021). Customers can increase their knowledge of the value

of the product via several additional learning mechanisms. On one hand, consumers can

engage in social learning via word-of-mouth (WOM), thus allowing their perceptions to

be shaped to a certain degree by the opinions of other consumers or experts. On the other

hand, if consumers are able to access the product directly, they can engage in self-learning,

whereby they update their priors on the value of the product upon using it for a period of

time.

Understanding the potential misalignment between consumer valuation perceptions and

reality, as well as the dynamics of consumer learning, software producers have been in-

creasingly involved in strategically managing the latter through various forms of free-

consumption offers ultimately intended to catalyze revenue-generating adoption. Two pop-

ular strategies employing the free-consumption approach are seeding (S) and time-limited

freemium (TLF, otherwise referred to as time-locked free trials). Through S, develop-

ers provide a full-functionality product for free to a subset of the market, counting on

these seeded consumers to not only use the product but also help spread awareness and

5



knowledge about it within their respective communities and beyond. For example, many

providers such as IBM, Microsoft, and SAS offer a bundle of their developer-grade prod-

ucts for free to students and educators (IBM 2022, Microsoft 2022, SAS 2022). Via its

Technology Impact Program, Autodesk (2022b) is giving away free licenses for many of

its products to nonprofits, startups, and entrepreneurs using design for environmental or so-

cial good. Seeding is also a popular strategy within mobile app markets via free app give-

away opportunities (distributed through portals such as AppAdvice Daily, AppsFree, and

https://www.giveawayoftheday.com/). Moreover, seeding and price discounts have been

used as popular, albeit frowned-upon incentives by market entrants without established

brands to harvest online reviews in order to jumpstart WOM effects (Hautala 2021).

Under TLF, all consumers are able to try the full-functionality product at no charge dur-

ing a limited trial period, after which they are required to pay for continuing the adoption.

Free trial windows typically span from a few days to a few months. TLF strategies have

been employed for many categories of apps and services in domains including engineering

and design (e.g., AutoCAD, VeSys, Adobe Creative Cloud), productivity (e.g., Salesforce

CRM products, Microsoft Office 365), IT security (e.g., Crowdstrike, Kaspersky, Nor-

ton, Bitdefender), content provision (e.g., Hulu, Apple TV+, Newspapers.com), health and

wellness (e.g., Peleton, Calm, Nutrium). And this is just a small subset of applications and

services taking advantage of TLF .

Both TLF and S are appealing strategies in the context of experience goods - a broad

category which encompasses many digital goods whose value and fit are better understood

by consumers once they are directly exposed to the product/service. It is important to

highlight that a major difference between TLF and S lies in how they cannibalize some

6
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demand in order to optimally drive paid consumption. TLF aims to cannibalize demand

from every potential customer for a limited period of time, leaving open the possibility to

charge later each of these customers (whose priors have been updated after the free trial)

for the residual value of the product after the completion of the trial. On the other hand, S

cannibalizes demand from a subset of the market, albeit for the entire product life. What

the firm attempts through S is to get seeded customers to influence the purchase decisions

of other customers. In that sense, it can be argued that TLF shapes paid consumption

mostly via self-learning, whereas S takes advantage of self-learning to fuel WOM (which

in turn, drives social learning).

Embracing a market strategy that involves some form of free access to the full product

involves a delicate balance act, due to intrinsic adoption costs and the potential of value

depreciation with use. Adoption costs (associated with installation, setup, hardware and

storage, testing, learning to use, etc.) can undermine the effectiveness of both TLF and S

as some consumers may shy away from exploring the product in the first place even when

there is some free access to it. Furthermore, as software applications are getting more

complex in terms of features and functionality the size of their installation footprint has

increased considerably, which is particularly challenging for mobile users whose phones

have limited storage. If a mobile user does not have enough space to install a new app on

her device, in order to explore a free-trial app she must either upgrade her cloud storage

or delete other applications both of which are costly actions. Value depreciation through

use, otherwise referred to as individual depreciation (Dou et al. 2017),1 can also dilute the
1Not to be confused with obsolescence, which captures time-based depreciation in value, regardless of

usage.
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benefit of free trials should consumers be able to utilize the software for a significant portion

of their specific related needs prior to the expiration of the trial period. This applies to cases

in which the user need is limited in scope and scale (e.g., installing Adobe Auditions for

a small project to remove background noise from a handful of audio tracks, or installing

Adobe Photoshop Lightroom to remove dust spots from digital photos from a vacation

trip, when the consumer realizes ex-post that the camera sensor was not clean of debris

when pictures were taken). In the mobile space, it has been documented that, users tend

to lose interest in many installed apps relatively quickly and the retention rates drop to

single-digit percentages for the majority of app categories after only one month (Statista

2022). Individual depreciation is also present when consumption is more hedonic (e.g.,

video games, music, movies) rather than utilitarian, switching costs are negligible, and

consumers constantly search for “the next” great experience.2 On the other hand, enterprise

applications that are used for daily operations (e.g., ERP systems, electronic medical record

systems) would likely exhibit low individual depreciation as their values are not expected

to decline through use.

Seeding as a business strategy existed for a long time, being applicable to both physical

and digital goods. On the other hand, the feasibility to implement a consistent, market-

wide TLF strategy has really been ushered in by the advent of digital goods and services

for it relies on encapsulating a limited free-for-all consumption component with encoded

automatic expiration at the end of the trial period. Hence, an important question for soft-

2For example, in the context of video games, it has been documented that, on average, players tire quickly
of a particular game. According to Shiller (2013), consumers reduce their valuation from $80 in the first
month of use to just a couple of dollars after six months. In fact, after only the first week of ownership,
the consumption value that owners place on the games they own already deteriorates between 22% and 49%
(Ishihara and Ching 2019).
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ware vendors is whether or not seeding is still relevant nowadays, given that now they can

embrace the TLF approach. While various studies explored seeding and free trials sepa-

rately, little research exists on how they fare against each other. This work aims to fill this

gap. Extant research looked at how seeding fares against other freemium models such as

feature limited freemium as well as strategies that do not involve a free consumption com-

ponent (Niculescu and Wu 2014) and the findings indicate that seeding is the dominating

model when consumers significantly underestimate the value of the product prior to adop-

tion. However, if TLF is among viable strategies, we show that the dominance of seeding

strategy is no longer guaranteed in such scenarios. For seeding to dominate TLF (and other

more traditional models without free consumption), in addition to customers significantly

underestimating the product, other market factors have to be present. In particular, in this

study, we identify two such factors - adoption costs and individual depreciation. While our

study does not completely dispute the continued viability of seeding as a strategy in today’s

markets for digital goods, we find that more stars need to align to warrant its use. Inter-

estingly, stronger WOM effects alone do not help the seeding strategy dominate the other

strategies. Nevertheless, if any of the aforementioned additional market conditions occur,

stronger WOM effects do lead to a larger region of the parameter space where seeding

dominates. We further show that our results are robust in nature under diverse assumptions

regarding seeding (uniform vs. targeted) and the distribution of consumer priors. More-

over, we uncover non-trivial properties of the optimal individual depreciation rate when the

firm chooses to endogenize it. Our work expands the research agenda on economics of free

in markets for digital goods and services, further refining the theory behind optimality of

strategies that involve some form of free offering on behalf of the vendors.
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2.2 Literature

Our novel theoretical contribution lies predominantly within the space of economics of free,

advancing the research agenda on the impact and optimality of (i) time-locked free trials

and (ii) seeding strategies.3 For expositional brevity, we keep the discussion in this section

focused predominantly around this extant literature. At the same time, we do acknowl-

edge that our modeling framework also draws on and combines various modeling elements

from several other supporting literature streams (including multi-period adoption of digi-

tal goods, role of WOM effects on adoption, and individual use-based value depreciation).

Relevant works in these ancillary research streams are referenced throughout the main body

of the paper, as we introduce various go-to-market models.

The ability to influence consumer perceptions, purchase behavior, and dissemination

of awareness through sampling campaigns has been recognized for a long time (Hamm

et al. 1969, Holmes and Lett 1977, Goering 1985). Time-locked free trials and free demon-

strations represent a special case of sampling where consumers get exposure to the full-

feature product for a limited period of time. Heiman and Muller (1996) explore the optimal

length of free trials and demonstrations in the context of physical goods, focusing in par-

ticular on cars and printers. In general, as physical goods and some digital services have

marginal costs, it may not be optimal to cover the entire market through free trial cam-

paigns. Accounting for such unit costs incurred by the vendor, Schlereth et al. (2013)

and Tian and Xueying (2018) explore the optimal market coverage of free trial campaigns.

While market-wide free trial strategies are not that common in the markets for physical

3There exist other forms of freemium (including quantity-limited and feature/quality-limited). This study
does not focus on these, and, as such, we do not discuss associated extant literature.
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goods, we do see widespread implementation of a seemingly similar, albeit quite differ-

ent strategy - free returns (or full money-back guarantees, MBGs within a certain time

frame) - occasionally paired with free shipping as well. Similar to free trials, MBG poli-

cies also help resolve consumer uncertainty and the risk of a mismatch, and may also

positively impact consumer adoption decisions and willingness to pay a higher price (Che

1996, Suwelack et al. 2011, Bower and Maxham III 2012). Unlike with free trials and

demonstrations, under MBGs consumers gain experience with the product after the pur-

chase. At the same time, from the perspective of both consumers and providers/retailers,

such strategies may add considerable costs. For consumers, there are inconvenience costs

associated with the return process (repackaging the item, taking it to the retailer or a col-

lection point, etc) and consumers must incur these costs in order to receive the refund

(because, unlike in the case of free trials, consumers are charged upfront in the case of free

return policies). Heiman et al. (2001) explore consumer preference for free demonstrations

vs. MBGs and analyze scenarios when the two risk-reducing strategies complement or

substitute each other. For providers/retailers, free returns add considerable logistical costs

as well. Part of it is in terms of labor costs to process returns, which, alone, can in some

cases cancel out the increase in revenue if we myopically consider short-term profits (Patel

et al. 2021). In addition, goods used and returned during the free returns window in many

cases exhibit wear and tear and cannot be re-commercialized as new items. The salvage

value of returns represents an important factor in the implementation of MBGs for physical

goods (Davis et al. 1995, Akçay et al. 2013) - some returns are unopened or in like-new

condition and can be put back on the shelf right away, others can be refurbished/recertified

and sold at a discount, and some necessitate retiring altogether, with the retailer (along with
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other entities upstream in the supply chain) absorbing the overall cost associated with the

retired item. Moorthy and Srinivasan (1995) explore how offering MBGs can also be used

to signal product quality. Furthermore, cross-channel full-refund or partial-refund returns

(e.g., buy online, return in person) have been considered as a feature to influence consumer

adoption in omnichannel operations and, potentially, help fight competition (He et al. 2020,

Jin et al. 2020, Nageswaran et al. 2020).

In the context of digital goods and services, and more specifically software applications

as well as online services, the provider costs associated with offering time-locked free trials

become negligible. Once the product is built, inserting code to lock the product or service

access upon the expiration of the free trial can be done with very few resources. As such, it

is feasible to offer market wide free trials (TLF ). Also, similarly, for this specific category

of products and services, the costs of offering MBGs are negligible - once a user requests

money back within an acceptable window after purchase, it is very easy for the provider

to reverse the online transaction. There are no actual physical or digital returns for the

products in this space - the licence gets deactivated or the online access is revoked. In

software application and services markets, both TLF and MBG strategies are employed.4

One difference between TLF and MBG is that with MBG the customer pays upfront,

whereas with TLF , in many cases consumers can download the free trial without initiating

payment or providing details on how the payment will be processed (e.g., providing a credit

card account). Arguably, with TLF , more consumers can try the product even if they

cannot afford the paid version. However, with financial instruments that offer short-term

4Intuit Quickbooks and TaxAct desktop versions, as well as Autodesk online services all come with risk-
free MBGs. We already discussed several TLF examples in the Introduction.
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access to capital (e.g., a credit card), even such customers can try products offered with

MBGs. Another difference is that TLF is usually implemented by the developer and can

benefit all consumers equally. On the other hand, MBG strategies are traditionally point-

of-sale (retailer) strategies and can differ in extent across developer and various resellers of

the same digital product.5 Since in this paper we focus on a single decision-making vendor

for the product, this difference is irrelevant for our analysis. As such, in the context of this

study, in contrast to physical goods markets, in digital goods markets the aforementioned

two risk-reducing strategies - MBG and TLF - are more or less equivalent. Keeping that

in mind, for the rest of this study we stick to TLF terminology.

The literature on properties and performance of TLF go-to-market strategies in the

digital space has also progressed substantially in the last decade. Cheng and Liu (2012)

and Dey et al. (2013) explore when it is optimal to offer TLF in software markets and

how the length of the trial period should be calibrated. Cheng et al. (2015) compare TLF

against other free sampling strategies (feature limited trials and hybrid feature/time limited

trials). Wang and Özkan-Seely (2018) show that price can serve as a quality signal that

complements direct experiential learning when TLF is the dominant strategy (the optimal

trial length is positive). Datta et al. (2015) and Foubert and Gijsbrechts (2016) explore the

impact of free trials on customer acquisition (conversion), churn, and overall customer life-

time value in the long run. Lee and Tan (2013) and Chen et al. (2017) investigate the inter-

action between WOM effects and free sampling strategies (including TLF ) when exploring

their market outcome. Sunada (2018) explores optimal free trial length in the presence of

5For example, while offering a 30-day MBG for direct purchases, as of January 2022, Autodesk (2022a)
also stated that “Return policies for purchases and renewal charges from third-party sellers such as retailers
or authorized Autodesk resellers can vary by seller.”
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demand depreciation. Mehra and Saha (2018) study whether public betas and free trials

should be used in tandem or not. Yoganarasimhan et al. (2020) investigate personalized-

length vs. uniform-length TLF strategies, and the impact of optimally-personalized free

trials on short-term conversions and long-run customer loyalty and overall revenues. Reza

et al. (2021) explore how promotion redemption and subsequent usage are impacted when

targeting existing users with hybrid time- and quantity-limited free trials.

Unlike TLF , seeding involves handing out free perpetual licenses but only to a frac-

tion of the market. Seeded customers learn about the value of the product through direct

use (same learning mechanism as in the case of TLF ) and then they may propagate in-

formation about the product through the network via WOM effects, or alter the value of

the product via network effects. A segment of this literature focuses on how to optimize

(or nearly optimize) targeted or stochastic seeding strategies contingent on the topology

of the network and the optimization objective (Galeotti and Goyal 2009, Libai et al. 2013,

Schlereth et al. 2013, Kim et al. 2015, Chen et al. 2017, Cui et al. 2018, Wilder et al. 2018,

Akbarpour et al. 2020, Chin et al. 2021). Aral et al. (2013) and Nejad et al. (2015) explore

the role of consumer homophily on the effectiveness of seeding campaigns. At a market

level, abstracting from the network structure, several studies employed adaptations of the

Bass (1969) model to explain how firms can employ seeding to jumpstart and accelerate the

product diffusion process (Jain et al. 1995, Lehmann and Esteban-Bravo 2006, Jiang and

Sarkar 2010). Dou et al. (2013) explore how seeding and social media features can be used

in tandem to engineer optimal network effects in markets for digital goods and services.

Niculescu and Wu (2014) find that uniform seeding dominates feature-limited freemium

and no-promotion strategies when consumers significantly underestimate apriori the value
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of the product. Lin et al. (2019) find that free sampling promotions (including seeding6)

can have positive effects on product ratings - in other words, seeding can be an effective

tool to harvest positive reviews early on in the diffusion process. Han et al. (2021) explore

scenarios in which seeding is a desirable strategy for either manufacturer or retailer in a

supply chain.

While extensive separate research investigations of each of TLF and seeding strate-

gies have been conducted, the direct comparison of optimal TLF against seeding has gone

largely unexplored. Schlereth et al. (2013) explore a numerical optimization of the market

coverage of TLF and seeding under exogenous pricing that is kept constant across the sam-

pling methods. They do not draw conclusions as to which strategy dominates in any given

parameter range and they do not benchmark these two business models with free consump-

tion against other no-promotion models in terms of profits. To the best of our knowledge,

this study is the first to compare and contrast TLF , (random and targeted) seeding, and

business models with no promotion (under perpetual-licensing and subscription-based li-

censing) within a unified framework accounting for WOM effects, endogenous pricing,

adoption costs, and individual use-based value depreciation. Complementing this model-

ing contribution, our main theoretical contribution lies in identifying market and product

factors that allow seeding to emerge as a dominant strategy at least in some range of the

parameter space when TLF is also in the vendor’s feasible go-to-market strategy set. Addi-

tional theoretical contributions include explorations of how the optimality regions fluctuate

6Lin et al. (2019) classify the products into nine categories. Not all free sampling campaigns fall under
our description of seeding. For example, free samples of health food items do not correspond to our definition
of seeding because food is a repeated consumption non-durable item and the sample provides only a small
portion. On the other hand, free sampling promotions of apparel and home appliances do correspond to
our definition of seeding because these goods are semi-durable or durable, with the same item not being
purchased very often.
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for various strategies contingent on model parameters and also interesting patterns in opti-

mal depreciation rate levels when the latter are endogenized.

2.3 Baseline Setup

This section presents the baseline model setup and related results. Section 2.3.1 intro-

duces the product characteristics and candidate business models. Section 2.3.2 provides

the parameterization of the demand structure. Lastly, Section 2.3.3 presents the benchmark

results associated with the baseline model.

2.3.1 Supply Structure and Candidate Business Models

We consider a scenario in which a firm has already developed a software product and is

exploring the most profitable way to commercialize it. At this pre-release stage, all the

development costs are sunk. The product has a life span of two periods, after which it

becomes obsolete. The marginal production cost and the time discount factor of future

earnings are considered negligible. The firm aims to maximize the undiscounted profit over

two periods. Consistent with established literature (Choudhary 2007, Zhang and Seidmann

2010, Niculescu and Wu 2014, Li and Jain 2016, Chen and Jiang 2021), we focus on

scenarios where the firm can offer a credible price commitment. In our setup, the firm

considers among the following four models:

(a) Charge for Everything - Perpetual Licensing (CE-PL): Consumers pay a one-time

fee at the beginning of the adoption period, which in turn grants them the right to use

the product throughout its entire lifecycle (i.e., until obsolescence horizon) without any

additional charges;
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(b) Charge for Everything - Subscription (CE-SUB): Consumers purchase a single-

period license at the beginning of period 1 and/or 2, which expires after that period.

Consumers who subscribed in period 1 have the option to renew the subscription at the

beginning of period 2 (but are not required to);

(c) Time-Limited Freemium (TLF): All consumers have the access to the product at no

charge in period 1 (i.e., the free trial period). When the free trial expires, consumers

are required to purchase a license in period 2 to continue using the product;7

(d) Seeding (S) - paired with perpetual licensing: In the baseline model setup, we focus

on uniform seeding, whereby the firm samples seeded customers uniformly across all

tiers of the addressable market (Libai et al. 2005, Li et al. 2019, Akbarpour et al. 2020,

Chin et al. 2021). Later, in Section 2.6 and in the Appendix, we also explore targeted

seeding, which involves firms choosing the seeded consumers selectively.

2.3.2 Demand Structure

Consider a unit mass of consumers with their types θ uniformly distributed on [0, 1]. A

type-θ consumer derives per-period benefits aθ from using the product. Coefficient a > 0,

which we refer hereafter as quality factor, quantifies in an aggregate form core quality

dimensions of the product such as reliability, versatility, efficiency, ease of use, etc. Type θ

captures heterogeneity in the consumers’ willingness to pay (WTP) for quality per period as

a reflection of diverse needs for the product and individual fit. Consumers cannot observe

the product quality a before the product is released. Instead, they rely on the prior on
7In practice there also exist subscription-based models with a free trial period in the beginning. However,

in this simplified framework of two periods, a subscription model with a free trial in first period is equivalent
to TLF.

17



product quality, a0 = αa. In the base model, we assume for simplicity a homogeneous

value α > 0 across consumers.8 We relax this assumption later in the paper in Section

2.6.2 and show numerically how heterogeneity of consumer priors on quality (whereby

some customers initially overestimate the quality of the product while others underestimate

it) impacts the main results.

Consumers adjust their priors over time. Let at to denote a consumer’s perceived valua-

tion factor before release (t = 0), at the beginning of period 1 (t = 1), and at the beginning

of period 2 (t = 2). We employ the same parameterization of the valuation learning process

as in Niculescu and Wu (2014), capturing in a unified framework how the value of at (for

t ∈ {1, 2}) is shaped up by self-learning via use and social learning through WOM. The

two dimensions of this learning model are reproduced below for readers’ convenience:

• Self learning. We assume that adopting consumers (whether paying, seeded, or

trying the product) can perfectly learn the product quality through use. As most

software products are experience goods, adopting consumers can directly update their

priors through own hands-on experience, which is not necessarily affected by the

opinions of others.

• Social learning via WOM. Non-adopters in period 1 (for all models except TLF),

while deprived from direct, own experience with the product, indirectly adjust their

priors on quality by learning from the “buzz” (WOM) spread by the period 1 adopters.

Formally, we assume that a2 = a1 + N
1
w
1,total(a − a1) = a1(1 − N

1
w
1,total) + aN

1
w
1,total,

where N1,total is the total number of period 1 adopters (which includes both paying

8if 0 < α < 1 then all customers initially underestimate the quality of the product, wheres if α > 1 then
all customers initially overestimate the quality of the product.

18



and non-paying adopters, if any)9 and w is the strength of the WOM effects (i.e., the

degree of persuasiveness of reviews). We refer readers to Niculescu and Wu (2014)

for an elaborate discussion of how this WOM-based learning model is anchored to

and motivated by the rich research streams on (i) factors that affect the magnitude

of the impact of (online) reviews and (ii) the stickiness/inertia of own beliefs and

strategies in the presence of additional information suggesting a potential need for

course correction.

In a nutshell, the updated prior a2 at the beginning of period 2 is a weighted average

between the older prior a1 at the beginning of period 1 and the signal a sent by period

1 adopters after they experience the product. The weight of the new signal (N
1
w
1,total)

captures its overall degree of persuasiveness in convincing non-adopters to deviate

from their prior beliefs. Part of the story has to do with how many reviews are out

there - the more reviews the higher the higher the likelihood that the non-adopting

potential customers will pay attention to the message of the reviews.10 The degree

of persuasiveness, w, captures how the content of these reviews has the ability to

influence non-adopters in changing their valuation. If there are any non-adopters

in period 1, then N1,total < 1. As such, N
1
w
1,total is increasing in w, spanning the

interval (0, 1) as w spans (0,∞). A very low w means that reviews, even in large

numbers, have limited power in convincing non-adopters to deviate from their priors.

9Under CE-PL and CE-SUB, N1,total represents the total amount of paying customers in period 1. Under
S, N1,total includes both paying and seeded period 1 consumers. Under TLF, in the absence of adoption costs,
N1,total = 1.

10In a more general context of combining priors with outside signals, Bates and Granger (1969) show that
the minimum variance unbiased estimator for the updated forecast is a weighted average of the prior and the
outside signals. Building on that, Zhang et al. (2018) further explain how the resulting weight of the prior
in the updated forecast is decreasing in the number of available outside reviews. Our social learning model,
albeit in a more reduced heuristical form, remains true to the essence of the aforementioned theories.
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A high w, on the other hand, means that it takes only a handful of reviews for the

non-adopters to adjust from a1 to a value very close to the real quality factor a. In

scenarios in which all consumers either paid for or got free access to the product in

period 1 (which is the case under TLF model), social learning becomes redundant

but remains mathematically consistent with self learning.11

Table 2.1: Consumer perceived quality factor across business models

Before release Beginning of period 1 Beginning of period 2

CE-PL All consumers: All consumers: Installed base at the end of period 1:
CE-SUB a0 = αa a1 = αa a2 = a

All other consumers:

a2 = a1 +N
1
w
1,total(a− a1)

S All consumers: Seeded consumers: Installed base at the end of period 1:
a0 = αa a1 = a a2 = a

All other consumers: All other consumers:

a1 = αa a2 = a1 +N
1
w
1,total(a− a1)

TLF All consumers: All consumers: All consumers:
a0 = αa a1 = a a2 = a

We summarize in Table 2.1 how the two learning mechanisms impact the updating of

consumer priors under each of the candidate models for both adopters and non-adopters.

Consistent with Niculescu and Wu (2014), we make several additional assumptions. First,

we further assume that, while each customer knows her own type, the distribution of θ

is not publicly known among consumers, such that they cannot infer the true quality a

based on the firm’s optimal pricing p. On the other hand, we assume the firm knows

11In such a case, N1,total = 1 and a1 = a (via self-learning). As such, regardless of the value of w > 0,
a2 = a+ 1× (a− a) = a = a1. Once customers learn the true quality of the product through self learning,
any subsequent WOM effects have no further impact on their perception of the product quality.

20



the consumer type distribution but does not have information on the precise type of each

individual customer and cannot price discriminate. Next, we assume a form of bounded

rationality in that consumers in period 1 do not anticipate a change in their priors at a later

time (they operate under the belief that their prior is the correct value of quality, especially

since they do not know the distribution of θ and they cannot anticipate various scenarios

of how demand will be realized). Last but not least, we assume WOM effects take longer

to manifest compared to self-learning effects - the former subsumes the latter as an initial

stage in that adopters in period one first have to learn themselves the quality of the product,

then disseminate information about it, and then, non-adopters need time to internalize that

WOM information. In the context of a two-period horizon, for simplicity, we assume WOM

effects take a period to apply whereas self-learning via direct experience is instantaneous.

We summarize our key notation in Table A.1 in the Appendix.

Without any loss of generality, throughout this manuscript we normalize the true quality

factor to a = 1. Moreover, the main results are derived under moderate strength of WOM

effects (w = 1). We relax this assumption and explore numerically in Sections 2.6.3 and

2.6.4 how the results hold under varying strengths of WOM effects.

2.3.3 Baseline Setup - Dominant Strategy

The individual solutions for each of the four strategies under the baseline setup are pre-

sented in Appendix B, in Propositions 5-8. We point out that the optimal pricing solutions

under CE-PL and S (reproduced in Propositions 5 and 8) are carried over directly from

Niculescu and Wu (2014). Note that CE-PL model is essentially a special case of model

S with the seeding ratio k set to zero. For clarity of exposition, for a given parameter
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set, we will consider CE-PL dominating S if the profit optimization under model S yields

k∗ = 0. In the result below, we present the dominant strategy, when comparing among the

considered four models, for each region of the parameter space.

Proposition 1. Under the baseline setup, there exists ᾱ ∈
(
0, 1

2

)
12 such that the firm’s

dominant strategy is:

(i) TLF, if α ∈ (0, ᾱ);

(ii) CE-SUB, if α ∈ [ᾱ, 1);

(iii) CE-PL, if α ≥ 1.

In addition, TLF yields the largest social welfare among all models.

Figure 2.1 illustrates firm’s optimal price and ensuing adoption pattern and profit under

each of the four strategies. An immediate implication from Proposition 1 is that seeding a

non-negligible mass of consumers upfront (model S with k∗ > 013) is always a dominated

strategy in any region of the parameter space. Niculescu and Wu (2014) discuss in detail

the mechanics of how S dominates CE-PL under low priors and a similar argument applies

to the dominance of S over CE-SUB in the same region. In essence, when consumer priors

on quality are low, in the absence of a free offering that would facilitate self and social

learning, the firm would have to rely on a very low price in order to jumpstart adoption,

thus taking in only a small profit. In contrast, in that same region, under S, WOM effects

do not need to be triggered by paid adoption. Instead, the firm can forfeit period 1 paid

12ᾱ ≈ 0.3968 is defined in implicit form the proof of Proposition 1.
13When optimizing firm strategy under S in isolation, k∗ > 0 is optimal only when consumers initially

severely underestimate the quality of the product (α ∈ (0, αs) where αs ≈ 0.065 is defined in Proposition 8).
As can be seen from Propositions 5, 6, and 8, we have limα↓0 π

∗
CE−PL = limα↓0 π

∗
CE−SUB = 0 < 1

16 =
limα↓0 π

∗
S .
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Figure 2.1: Baseline scenario - optimal price, profit, and associated adoption under each
model.

adoption altogether, and instead use seeded customers to induce social learning that can

achieve a considerable update of the priors of unseeded customers (to a point where a

considerable number of the latter are willing to pay a significant price in period 2 for a

single remaining period of use even though they balked at paying the very same price for

two periods of use at the beginning of period 1).

However, in contrast to Niculescu and Wu (2014), what we find is that when TLF
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enters the picture, that region of optimality for S evaporates. Under optimal implementa-

tion of S and, by definition, under TLF , for low enough priors, the firm does not get any

paid adoption in period 1. What ultimately decides the winner between these two strate-

gies is the revenue in period 2. Under S, the seeded customers steer other customers in

the direction of the right value of the quality factor. Nevertheless, as seeded customers get

perpetual licenses and seeding is uniform, the firm cannot afford loosing too many of the

high type customers that could be payers in period 2 (under updated priors) - yet, the firm

has no choice but to seed a fraction of that higher valuation population (because seeding is

uniform). As such, unseeded customers do not update their prior all the way to the correct

value of the quality (one would need k = 1 for that, which would essentially erase all

profit) and also the firm can no longer get revenue in period 2 from some of the high type

customers. On the other hand, under TLF , all customers update their priors upwards to the

correct value of the quality factor during period 1 trial. Moreover, the trial version is not

offered under perpetual license - all customers remain in the pool of potential adopters in

period 2. As such, the firm can collect revenue in period 2 from more high type customers

under TLF compared to S. Hence, TLF ends up dominating S in that region.

The dominance of TLF extends well beyond αS all the way to ᾱ ∼ 0.41. For α > αs, S

defaults to CE-PL (it is not optimal to seed any consumers with a perpetual license). While

both CE-PL and CE-SUB strategies become progressively more profitable with higher α,

under each of these models the firm is still considerably constrained by the priors and

cannot price too high upfront. While both of these models rely gradually less and less on

new period 2 adopters (which have not adopted in period 1) as consumer priors increase,

the firm gives up on this component of revenue considerably faster under CE-PL than under
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CE-SUB, as can be seen in panel (d) of Figure 2.1. Under CE-PL, social learning would

have to more than double the priors for a period 1 non-adopter to even consider period 2

adoption. As α increases, under CE-PL, for the firm to ensure enough WOM thrust for

period 2 adoption to occur, it would have to induce enough period 1 adoption, which would

put downward pressure on the price it charges. On the other hand, as α increases, under

CE-SUB, the firm continues to make use of both self and social learning as long as α < 1

(N∗
2,CE−SUB > N∗

1,CE−SUB for all α ∈ (0, 1)). This added flexibility allows CE-SUB to

overtake CE-PL when α ∈ (α†, 1) with α† ∼ 0.17.14

It is this same flexibility that eventually enables CE-SUB to flip the tables and dominate

TLF once customers only moderately or slightly underestimate the initial value of the

product (α ∈ [ᾱ, 1)). Under TLF it is optimal to have precisely half of the population

paying for adoption for one period. As α increases in this region, under CE-SUB, we see

from panels (c) and (d) of Figure 2.1 that the firm will optimally induce a little less than half

of the population to pay for adoption in period 1 and a little more than half of the population

to pay for adoption in period 2 (with N∗
1,CE−SUB + N∗

2,CE−SUB > 1 for all α ∈ [ᾱ, 1)).

With higher priors, the firm is able to charge a high enough per period subscription price

(for most of this region we have p∗CE−SUB ≥ p∗TLF/2), which ensures that from two periods

it will collect more revenue than under TLF .

If consumers initially overestimate the product (α ≥ 1), then CE-PL strategy has the

upper hand as it relies only on period 1 adoption, charging consumers for two periods

before they get a chance to update their priors through learning. On the other hand, both

TLF and CE-SUB rely on consumer valuation learning, which (under either self learning

14α† is defined in implicit form in the Appendix, in the proof of Proposition C.2.
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or social learning) in this case, leads to a downward calibration of priors and, implicitly of

the consumer’s willingness to pay.15

In terms of social welfare, TLF dominates. Since price represents an internal transfer,

social welfare amounts to consumer realized benefits from using the service. Under TLF ,

all customers get to use the product in period 1, and the top half of them (in terms of

valuation) pay for it also in period 2. None of the other models achieve an aggregate

product use similar to TLF . What this translates to is that the firm will choose a socially

optimal strategy only when consumer priors are low (i.e., α ∈ (0, ᾱ)).

2.4 Individual Depreciation

A central finding from Proposition 1 above is that, S, as a way to leverage free offerings

to incentivize paid adoptions, is dominated by other strategies. In particular, we show that

TLF , as an alternative “free” business model, is more profitable than S when k∗ > 0,

which is partly due to the one-way adjustment of consumer valuation – all consumers’

initial priors are underestimations. However, even if consumers’ priors are going up, there

can be loss of value from period 1 to period 2, which is not captured in the baseline model.

One common instance of loss of value is value depreciation through use, also referred to as

individual depreciation (Dou et al. 2017).

The presence of individual depreciation can originate from multiple sources, includ-

ing consumer satiation, diminishing frequency of usage, or simply when the consumer’s

interest is diverted to other alternatives. The individual depreciation occurs widely in the
15While under CE-SUB the firm gets some paid adoption in period 1 (from selling one-period subscrip-

tions), all those subscribers will downgrade their priors via self-learning and also WOM will push downwards
he priors of the non-adopters in period 1. Hence, under CE-SUB the firm would experience churn in period
2, without a single new adopter.
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intertemporal use of information goods and services, as demonstrated by Han et al. (2016).

They found that, among mobile applications, the satiation level is highest for the portal

search tools (users access these apps quickly and briefly), and the lowest for communica-

tion apps (users tend to continue communicating via mobile apps without growing tired

of them). Additionally, it has been documented that, users tend to lose interest in many

installed apps relatively quickly and the retention rates drop to single-digit percentages for

most apps after only one month (Statista 2021a). In somewhat related context, in the case

of video games, Shiller (2013) reports that consumers may tire quickly of playing, with

their valuation decays from $80 in the first month of use to just a couple of dollars by the

6th month. The extant literature has documented that the presence of consumer-side value

depreciation (Ishihara and Ching 2019) and investigates adjustments to the business model

design that incorporate this effect (Dou et al. 2017).

To capture this effect, we propose an adjustment to our baseline model. More specifi-

cally, for period 1 adopters, the period 2 valuation scales downwards by a factor λ ∈ (0, 1).

We initially explore a scenario with an exogenous depreciation rate (in section 2.4.1). We

then expand this analysis by endogenizing the depreciation rate (in section 2.4.2), to cap-

ture efforts by the firm to strategically adjust the valuation depreciation through new fea-

tures/content. As an example of how to intervene and endogenize individual depreciation

rate, a video-streaming platform can keep expanding the catalog of the titles to retain the

existing adopters. Game developers can inject new value into their products through the

production of DLCs (Dey et al. 2013).
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2.4.1 Exogenous Individual Depreciation

Table 2.2 demonstrates our approach to formalize the individual depreciation. The impacts

of the individual depreciation are captured in the following way: On one hand, the adopters’

period 1 consumer valuation drops proportionally by 1− λ (thus, the residual valuation in

period 2 is a fraction λ of the period 1 valuation). On the other hand, the valuation of

period 1 non-adopters is not affected by depreciation (and can only be impacted by WOM

effects). Nevertheless, we can fully characterize the equilibrium outcome even though the

closed-form solutions are intractable in most cases.

Table 2.2: Consumer perceived utility with the individual depreciation

Before release Beginning of period 2

CE-PL All consumers: Non-installed base at the end of period 1:
u0 = a0θ(1 + λ)− p u2 = a2θ − p

CE-SUB All consumers: Installed base at the end of period 1:
u0 = a0θ − p u2 = a2θλ− p

All other consumers:
u2 = a2θ − p

S Unseeded consumers: Non-installed base at the end of period 1
u0 = a0θ(1 + λ)− p u2 = a2θ − p

TLF All consumers: All consumers:
u0 = a0θ u2 = a2θλ− p

Proposition 2. In the presence of individual depreciation, the firm’s dominant strategy is:

(i) CE-PL, if 0 < α1(λ) < α;

(ii) TLF, λt < λ ≤ 1 and 0 < α < α2(λ) < 1;

(iii) Otherwise,

(a) CE-SUB, if α > αt and λ > λx(α);
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(b) S, otherwise.

Functions α1(λ), α2(λ), λx(α), and exogenous thresholds αt and λt are defined in the

Appendix. On the social welfare, TLF yields the highest among all models.

Figure 2.2: Individual Depreciation Scenario - Optimal Business Model

Proposition 2 is illustrated in Figure 2.2. Comparing Propositions 1 and 2, we see that

individual depreciation plays a non-trivial role in determining which strategy is dominant

in various regions of the parameter space. In contrast to Proposition 1, a major difference

in Proposition 2 is that S shows up (the red region in the left-bottom corner) where both

the individual depreciation and the prior underestimation are severe.16 On one hand, with

strong individual depreciation (i.e., a small λ), TLF is no longer profitable because free-

trial users have little residual valuation in period 2, and hence little willingness to pay in

16Note that a smaller λ indicates a smaller period-2 residual valuation of period-1 adopters. Thus, the
individual depreciation is severe when λ is close to zero.
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period 2. On the other hand, even under severe individual depreciation (low λ), if the

initial valuation priors are not too low (large α), CE-PL still outperforms S because the

WoM generated from the seeded consumers are not important if the initial estimation is

not too biased (i.e., a large α). While neither of these one-on-one strategy hierarchies are

surprising, it is considerably less intuitive and more complex to evaluate how CE-SUB

is impacted by depreciation and how that impacts its ability to dominate other strategies

in various regions of the parameter space. In particular, in Figure 2.2, the blue region

represents the optimality region for CE-SUB.

We further illustrate in Figure 2.3, for λ = 0.26, the sensitivity of price, demand and

profit w.r.t. alpha. First, as α increases horizontally, the price and demand under CE-PL can

be piece-wise increasing. The firm considers two strategies: (1) make profits solely from

period 1 adoption (i.e., price such that there are no period 2 adopters), or (2) capitalize on

adoption in both periods. The latter takes advantage of WOM, whereas the former does

not. It also leads to the non-smooth boundary between CE-PL and CE-SUB (α1(λ) in

Figure 2.2): When α is relatively small, strategy (1) under CE-PL and CE-SUB determine

the boundary between two models. When α is relatively large, strategy (2) under CE-PL

and CE-SUB determine the the boundary between two models. Second and perhaps more

interestingly, in Figure 2.3, S and TLF, as strategies with free offerings, work differently

from each other. α is simply irrelevant to TLF with or without depreciation. All consumers

learn the true value of the product via the free trial. By contrast, for S to dominate, it is

important that it induces paid adoption solely in period 2, as shown in panel (d) of Figure

2.3. Specifically, our results suggest that the cutoff between S and CE-SUB turns out to be

complex with two possible boundaries. The first one, αt, between certain λ values (λ > α),

30



0 0.2 0.4 0.6 0.8 1 1.2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1 1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

Figure 2.3: Optimal price and profit under each model with depreciation (λ = 0.26)

is a constant. This is because when depreciation is less severe than the underestimation in

priors (i.e., λ > α), all period 1 subscribers will renew their subscription in period 2 since

the use-based update (increase) of their priors offsets the loss of value due to depreciation.

Thus, a change in λ does not affect the number of subscribers in both periods. λ does

not affect either SUB or S in this case. The second one, λx, exists for α low enough but

not too low. When individual depreciation is strong enough (small λ), there is significant

subscriber churn in period 2 under CE-SUB. Hence CE-SUB becomes less profitable when
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both λ and α are smaller, and eventually loses to S in the left bottom corner of Figure 2.2.

Our findings also reveal that both the boundary between CE-SUB and CE-PL (α1(λ)) and

the boundary between CE-SUB and TLF (α2(λ)) exhibit an increasing trend with respect

to λ. The former is because, as we mentioned in section 2.3.3, under CE-SUB, the firm has

more flexibility in pricing since it can leverage both self and social learning. However, as

individual depreciation becomes more severe, this flexibility diminishes. The heightened

depreciation leads to a higher churn rate among period 1 subscribers, consequently exerting

more pressure on pricing. The latter is due to the fact that as individual depreciation lessens,

TLF becomes more profitable due to an increased willingness to pay. However, the profit

under CE-SUB does not change w.r.t λ (since α2(λ) falls into the region λ > α). Thus, as λ

increases, TLF gradually gains advantage and eventually ends up dominating CE-SUB for

low to moderate α.

2.4.2 Endogenous Individual Depreciation

Figure 2.2 offers an interesting implication that a firm’s strategy choice depends on the

degree of depreciation λ. A very small λ generally favors CE-PL and S, while CE-SUB and

TLF can also emerge as optimal if λ is large. In this subsection, we push our analysis one

step further to endogenize λ at a cost – What would the firm do if it could invest in altering

λ, and more importantly, which strategy would it choose under the optimal λ? This question

is relevant in the context of products or services that rely on the consumption of content, and

for which consumers exhibit a certain propensity for freshness / newness. Included in this

category are video streaming services (e.g., HBO Max, Apple TV+, Hulu+, Netflix), video

games (which can get new downloadable content, i.e., DLCs), among others. Investments
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in content rejuvenation help the firm alleviate the players’ fatigue and satiation over time.

In our model, we consider a quadratic content rejuvenation cost rλ2 with r > 0. Convex

content production costs are commonplace in the literature, conveying increasing difficulty

in adding novelty to an existing product or service catalog (e.g., Dou et al. 2013).

Endogenizing lambda further increases the complexity of the problem. For illustration

purposes, we numerically derive the optimal strategy under different levels of cost factor

r. When r is small, Indicating the ability to maintain a high λ (low depreciation) through

relatively cheap content investments, the analysis is similar to the right-hand side of Figure

2.2 where λ is large. More interestingly, we focus on the non-trivial case in which r is

relatively large. In this case, the firm faces a more difficult trade-off: incur high costs

of content rejuvenation to maintain a low depreciation, or allow for more depreciation by

investing less in content. We visualize the findings in Figure 2.4.
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Figure 2.4: Optimal Profit and Depreciation Rate
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It can be seen from panels (b) and (e) of Figure 2.4 that all four business models can

emerge to be optimal – in the order S, TLF, CE-PL, and CE-SUB, as α increases, which is

is consistent with Proposition 2. A somewhat surprising finding is that, when the cost of

content rejuvenation is high, the optimal depreciation rate λ might be piecewise increasing

for low and high α but decreasing for intermediate α. In other words, the firm might prefer

investing less in λ when the underestimation is less severe, this is because the profit gain

from getting more consumers by alternating a larger λ is offset by the cost of investing

in λ. Thus, the firm prefers to choose a smaller λ as α increases. However, when the

underestimation is severe (when α is close to 0), it is crucial to maintain a relatively high

λ and once the firm completely gives up the period 2 profits (when α is close to 1 or even

larger than 1), the optimal λ increases in α again.

Another interesting observation is that, for business models with free offerings (i.e.,

TLF and S), optimal λ values differ from each other significantly. Under TLF, the optimal

λ is not affected by α because consumers update their priors solely via self-learning in free

trials, but, as expected, it is impacted by r. In contrast, when S is optimal, paid adoption

happens only in period 2 and, as such, depreciation plays no role in adoption. Interestingly,

under CE-SUB, there is non-smooth point t the 45 degree line (see Figures 2.4 (d) to 2.4

(f)). This is because all subscribing consumers in period 1 will resume the subscription

when λ ≥ α. Otherwise, consumers between θ ∈ [p/α, p/λ] quit subscription in period

2. As a result, it is always optimal to set λ = α. When α is large, maintaining λ∗ = α

becomes too costly, such that the firm chooses a λ∗ which is slightly smaller than α.

To summarize, in the presence of endogenous individual depreciation, our implications

on the optimality of S remain consistent. Further exploration suggests that the firm’s strat-
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egy on individual depreciation is non-trivial, potentially exhibiting significant jumps and

swifts in monotonicity as the firm selects the best model to use.

2.5 Adoption Costs

In this section, we revisit our baseline model but open up another complexity dimension

by considering adoption costs for first-time users. On the user side, adoption costs are

growing quickly among information goods, as software installation and configuration be-

come increasingly sophisticated and time-consuming (e.g., a complete installation of Mat-

lab R2022a comes with a storage requirement of 31.5 gigabytes, more than 5 times that for

Matlab 2016b). This section shows that the dominant business model varies as the adoption

costs become more significant. Unlike in the case of depreciation, adoption costs will im-

pact every model, regardless of whether it relies on period 1 and/or period 2 paid adoption.

However, as it turns out, when α is low, an increase in adoption costs impacts TLF more

severely than S, allowing the latter to become optimal in a certain region of the parameter

space.

To formalize, we incorporate the adoption cost, c, as a disutility parameter in the con-

sumer’s utility function at the time of the adoption. The updating process for consumer

priors in the presence of adoption costs is summarized in Table 2.3. Although the optimal

strategies are intractable for the most part, we are able to derive Proposition 3 (below).

Proposition 3. In the presence of adoption costs, the firm’s dominant strategy is:

(i) Don’t enter the market, if α ≤ c
2
;

(ii) Enter the market, if α > c
2
:
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Table 2.3: Consumer perceived utility in the presence of adoption costs

Before release Beginning of period 2

CE-PL All consumers: Non-adopters in period 1:
u0 = 2a0θ − c− p u2 = a2θ − c− p

CE-SUB All consumers: Adopters in period 1:
u0 = a0θ − c− p u2 = a2θ − p

Non-adopters in period 1:
u2 = a2θ − c− p

S Seeded consumers: Non-adopters in period 1:
u0 = 2a0θ − c u2 = a2θ − c− p

Unseeded consumers:
u1 = 2a0θ − c− p

TLF All consumers: Adopters in period 1:
u0 = a0θ − c u2 = a2θ − p

Non-adopters in period 1:
u2 = a2θ − c

(a) CE-SUB, if α2(c) < α < α1(c);

(b) TLF, α3(c) < α < α2(c);

(c) Otherwise,

i. S, if α < α†(c) and c < c‡(α);

ii. CE-PL, otherwise.

Functions α1(c), α2(c), α3(c), α†(c), and c‡(α) are defined in the Appendix. In terms of

the social welfare, TLF yields the highest among all models.
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Figure 2.5: Optimal Pricing Model under Adoption Cost

We illustrate Proposition 3 in Figure 2.5. Panel (b) of the figure represents a magnifi-

cation of the subregion from panel (a) corresponding to low c and low α. When c ≥ 2α,

the is no way to jumpstart adoption under any of the models, including the ones with a free

offering. When alpha > c/2, a quick takeaway is that, once again, pricing models can

emerge as optimal. Starting from the left side where c is close to 0, TLF, CE-SUB, and

CE-PL first dominate, which is consistent with the baseline model. Increasing c (moving

towards right), S emerges as optimal briefly when both α and c are sufficiently small. Un-

der an intermediate c, for a relatively low α (still satisfying α > c/2) and high α, CE-PL

dominates TLF, whereas for an intermediate α, the opposite occurs. For a very large c,

CE-PL dominates everywhere. The switch among business models is due to the trade-off

between social learning and period 1 profit: If the adoption cost is low and consumers

severely underestimate the value of the product, S and TLF can effectively build an early

user base, which helps push up the period 2 price through social learning. Specifically, in

the region where S dominates, the firm gives up acquiring paid adopters in period 1 and
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Figure 2.6: Optimal price and profit under each model with adoption costs (α = 0.05)

simply provides giveaways instead (i.e., S), which pushes up the period 2 price and results

in higher profits. In contrast, the market coverage of TLF in period 1 is undermined by the

adoption cost because consumers might never try the product, even it is free. We further

illustrate the dynamic among TLF, S, CE-SUB, and CE-PL in Figure 2.6.

First and foremost, for small α, Figure 2.6 illustrates that as the adoption cost (c) rises,

the optimal model can transition from TLF to S and then to CE-PL. This occurs because,

due to the relatively small value of α (signifying severe underestimation in consumer pri-
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ors), the CE-SUB model is outperformed by the other three models. Customers only take

into account the perceived benefits of one period, which are relatively insignificant com-

pared to adoption costs, at the start of period 1.

Moreover, Figure 2.6 highlights a noteworthy distinction between the S and TLF strate-

gies, both of which involve free offerings. The TLF strategy remains unaffected by un-

derestimation but is sensitive to increasing adoption costs, causing its profits to plummet

drastically beyond a certian point. In contrast, the S strategy exhibits less sensitivity to

adoption costs, as demonstrated by the red curves on the left side of each panel in Fig-

ure 2.6. This occurs because, under the S strategy, seeded customers are more resistant to

adoption costs since they receive a lifetime (i.e., 2 periods) license for free. However, in

the case of TLF, despite being free during period 1, the benefits can be overshadowed by

high adoption costs, leading more customers to opt against starting the free trial in the first

place.

2.6 Extensions

We extend our model in multiple ways for robustness checks on the possibility of S to

emerge as an optimal strategy. First, in Section 2.6.1, we generalize the model by consid-

ering individual depreciation and adoption costs simultaneously. Second, in Section 2.6.2,

we relax the restrictions on the consumer priors by allowing some consumers to be over-

optimistic in their priors, whereas others underestimate. We also consider alternative forms

in our modeling components, such as the generalized WOM effects and targeted seeding

in Sections 2.6.3 and 2.6.4, respectively. Collectively, all 4 extensions confirm that S can

emerge as the optimal strategy in the presence of individual depreciation and/or adoption
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costs in a more general context.

2.6.1 Generalized Model

In this section we consider a model that combines exogenous individual depreciation and

adoption costs (literally combining the frameworks for the models from Sections 2.4 and

2.5). Due to the high complexity of this model, closed form solutions for optimal strategies

are analytically intractable. Instead, we run a numerical exploration over the 3-dimensional

parameter space of alpha, c, lambda to identify the optimal strategies. We present in Figure

2.7 several slices of the outcomes under this parameter space, at three distinct and relatively

small α values (0.01, 0.05, and 0.1).
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Figure 2.7: Optimal Pricing Model under Adoption Cost and Exogenous Individual Depre-
ciation

The key takeaways from the numerical exploration in Figure 2.7 are three-fold and

consistent with out prior findings. First, all four candidate models can emerge to be optimal.

Second, the consumer prior (i.e., α) and adoption costs (i.e., c) is the major differentiating

factor in determining the decide the dominance of CE-PL against others. In particular, when

α is small and c ≤ α (i.e., the bottom part of Figure 2.7, where consumers underestimate

40



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 2.8: Optimal Pricing Model under Adoption Cost and Endogenous Individual De-
preciation

the product significantly, and adoption costs are relatively small compared with consumer

priors), CE-PL is always dominated and never shows up, suggesting that the absence of the

free offering undermines the profitability of CE-PL under low α (the firm would have to

price very low to jump start adoption and induce WOM effects). In contrast, S and TLF can

effectively stimulate adoption in period 1 and charge a premium price in period 2. Third,

in the region where α is mildly small but still higher than c, individual depreciation plays a

significant role in determining the dominance between S and TLF, where a low depreciation

rate (i.e., a high λ) favors TLF and a high depreciation rate (i.e., a low λ) favors S.

We also explore a setting of this generalized model with endogenous depreciation rate

(directly extending the model in Section 2.4.2 by adding adoption cost to it). For this setup,

we illustrate the optimal strategies in Figure 2.8, by presenting 3 different scenarios of

content rejuvenation factor r (r = 0.001, r = 0.2, and r = 0.5). As expected, higher content

investment costs increase the region of no market entry for the firm (as can be seen moving

from panel (a) towards panel (c)). Resiliently, S is still the optimal choice at small α and

small c in all three panels.
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2.6.2 Heterogeneous priors

The baseline model has assumed that all consumers share the same prior factor α, implying

that they all either underestimate or overestimate the product quality before period 1. This

section relaxes this assumption by allowing for heterogeneity of priors, whereby some

customers initially underestimate the value of the product whereas others overestimate it.

We consider a Bernoulli distribution where a fraction τ of consumers (denoted by group H)

initially overestimate the value of the product at level aH0 = 2 − α (with α ∈ (0, 1)) and

the other fraction 1−τ of consumers (denoted by group L) initially underestimate it at level

aL0 = α. Intuitively, when τ = 0 or τ = 1, this setup reduces back to the baseline model

in Section 2.3. Again due to the analytical intractability, we explore this setup numerically

to identify the optimal strategy, which is shown in Figure 2.9.
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Figure 2.9: Optimal Business Strategy - Baseline Model with Consumer Prior Heterogene-
ity

In the absence of either individual depreciation or adoption cost, one interesting finding

is that CE-PL can emerge to be optimal for α < 1 (in contrast to Proposition 1), but S never
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shows up, still. It is due to that the profit focus of S is period 2, which is less affected by

the distribution of the initial prior. In contrast, CE-PL can take better advantage of the ex-

istence of an overestimating subgroup of consumers by charging a premium price in period

1. Uniform seeding would lead to forfeiting revenue from some of these overestimating

consumers in the first round, when they are willing to pay more (for two periods of product

use).

Figure 2.10: Optimal Business Strategy - Consumer Prior Heterogeneity with Depreciation

Adding the individual depreciation further corroborates the previous finding that all four

models can emerge as the optimal strategy, as shown in Figure 2.10. With two consumer

groups (L and H), what is new is that, as τ increases (i.e., there are more overestimating

consumers), CE-PL starts to dominate under a small α (panels (b) and (c)). In these panels,

under a small α, as the λ increases, the optimal strategy shifts from S to CE-PL and finally

to TLF. In the region in which CE-PL emerges as the dominating strategy, with an increas-

ing mass of overestimating consumers (in group H), the firm chooses to give up Group

L and serves Group H only. S and TLF emerge as optimal when λ is small and when λ

is large, respectively. However, under an intermediate λ, CE-PL achieves a greater profit

because the advantage of S erodes as λ increases.
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Figure 2.11: Optimal Business Strategy - Consumer Prior Heterogeneity with Adoption
Costs

Similarly, we can show that our results with adoption costs from Section 2.5 are robust

under the two-consumer-group setting as well. In particular, we compare and contrast out-

comes for τ ∈ {0.01, 0.025, 0.05}, which are presented in Figure 2.11. The results remain

consistent in nature - S emerges as optimal when the majority of consumers underestimate

the value of the product significantly and the adoption cost is small. However, different

from the previous finding, under the case when τ > 0, i.e., there always exist overestimat-

ing consumers, “No market entry” area does not exist when c < 2(2 − alpha), and the

corresponding region is dominated by CE-PL.

2.6.3 Generalized Social Learning Model

So far we have been working with w = 1 in which case the consumers are unlikely to

either change their priors dramatically (when w is small) or stick to their priors stubbornly

(when w is large when receiving WOM from period 1 adopters). In this extension, we

relax this constraint. Consumers can either heavily rely on a limited collection of reviews,

particularly when the product is a new launch (i.e., strong WOM effects), or firmly stick
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to the priors (i.e., weak WOM effects). We re-explore the model under different levels of

WOM effects below.
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Figure 2.12: Optimal Business Model under No Depreciation and No Adoption Cost

Figure 2.12 presents the numerical results under the benchmark case (i.e.,λ = 1 and

c = 0) over (α,w) ∈ {(0, 1)× (0, 5)}. As w moves from 1 to 0, indicating that consumers

are more likely to stick with priors, with a greater α (vertically above), CE-PL emerges

to be the optimal because its profit comes from period 1 only. Furthermore, it is worth

mentioning that S is still dominated for all w because w does not affect TLF, even if w is

large, unseeded consumers can only update to the true product quality, which is same as the

perfect self-learning under TLF. However, due to the existence of the seeded group, S loses

some consumers in period 2 comparing with TLF, thus, dominated by TLF. The results are

consistent with Proposition 1. This is because consumers update priors solely based on

self-learning under TLF.

Our further analysis suggests that the results under the varying w are also consistent
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Figure 2.13: Optimal Business Model under Depreciation

with our prior findings when the depreciation and adoption costs are considered. In Figure

2.2, We consider the same setup as but under different levels of WOM effects (0.5, 1, 2).

Serving as the benchmark, panel (b) of Figure 2.13 replicates Figure 2.2 with w = 1.

An immediate observation from Figure 2.13 is that S is always optimal in the left-bottom

corner where both α and λ are small. In addition, a greater w benefits S, expanding its

dominating region (in red). This is because even a small group of seeded consumers can

generate stronger WOM effects under a greater w. Consequently, a larger seeding ratio is

no longer necessary. In contrast, varying w seems to impose less impact among the other

three models (CE-PL, CE-SUB, TLF).
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Figure 2.14: Optimal Business Model under Adoption Costs
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When varying w, we also find that our earlier results remain robust in the presence of

adoption costs (as illustrated in Figure 2.14). This is reflected by the similarity between

Figure 2.14 and Figure 2.13. Again a greater w favors S, as its optimality region expands

when w is larger. Unlike the previous case with individual depreciation, CE-SUB also

benefits from a greater w when α is large but still below 1. This is because in this region CE-

PL focuses solely on period 1 profit. In contrast, a greater w helps CE-SUB to secure more

adopters in period 2. Therefore, a greater w is more helpful for CE-SUB when adoption

costs are considered.

2.6.4 Targeted Seeding

In this section, we allow the firm to conduct S differently through targeting, instead of

reaching consumers randomly with uniform seeding. Specifically, the firm is able to access

consumer preference information, such that it can seed consumers selectively. In our model

framework, it is intuitive to see that the optimal way to do this is to identify the consumers

with low valuations and target them as the the seeded consumers.

Interestingly, although the profitability of seeding is clearly strengthened under targeted

seeding, Proposition 4 suggests that it is still dominated in the baseline model (i.e.,λ = 1

and c = 0).

Proposition 4. Under the baseline setup (c = 0, λ = 1), Seeding and Targeted Seeding are

two dominated strategies.

When depreciation presents, we replace S with TS and illustrate the results in Figure

2.15. It can be seen that TS dominates in a larger region as it erodes toward the region
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where CE-PL dominates in Figure 2.2. It is because that CE-PL is strictly dominated by

TS because under TS the firm can always obtain better profit by seeding those low-end

consumers who would not purchase in period 1 under CE-PL. In fact, the region of TS

drills into the boundary between TLF and CE-SUB. Comparing the area of the dominant

region of S and TS, we find that there are significant improvements for all levels of w.

We use the proportion of the area dominated by S and TS to capture in increment: When

w = 0.5, switching from S to TS leads to the region expands from 0.88% to 30.16%; When

w = 1, switching from S to TS leads to the region expands from 2.39% to 36.30%; When

w = 2, switching from S to TS leads to the region expands from 5.74% to 41.50%. It

indicates that, the WOM effects can maximize the value of targeting capability for the firm.

Figure 2.15: Optimal Business Model - Targeted Seeding

Not surprisingly, acquiring consumer information is unlikely to be free of cost. There-

fore, it is worth exploring that, if TS is optimal, how much additional improvement can be

achieved. We depict how the profit (π∗), price (p∗), number of adopters in period 1 (N∗
1 ),

and number of adopters in period 2 (N∗
2 ) changes in α in Figure 2.16 (w = 1, λ = 0.25) and

Figure 2.17 (w = 1, λ = 0.75). We find that under a low λ, TS posts a significantly higher

price than other models if α is small. However, when both α and λ are large enough, the
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marginal benefits of adopting TS are much less glaring. It implies that firms need to care-

fully configure their strategies by balancing the costs of acquiring consumer information

and the benefit of adopting TS.
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Figure 2.16: Comparative Stats - Targeted Seeding λ = 0.25

Under the model with adoption costs (illustrated by Figure 2.2), TS also expands the

optimal region of S to some extent, but not as significant as above. When w = 0.5, switch-

ing from S to TS leads to the region expands from 0.01% to 0.39%; When w = 1, switching

from S to TS leads to the region expands from 0.13% to 2.23%; When w = 2, switching

from S to TS leads to the region expands from 0.69% to 5.40%. Due to the existence of

adoption costs, CE-PL mainly focuses on period 1 and thus stays unaffected by WOM ef-

fects. Under this case, TS does make a difference because the low-end consumers’ concern
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Figure 2.17: Comparative Stats - Targeted Seeding λ = 0.75
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Figure 2.18: Optimal Business Model - Targeted Seeding

about the adoption costs even if it is free. Therefore, CE-PL still outperforms other models

when both c and α are large enough.
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2.7 Conclusions

This paper reexamines the free business models to advance the understanding of how firms

can strategically manage consumer learning to improve profitability. As the recent literature

and practice overwhelmingly proclaim free trials, we explore in particular whether seeding

is still relevant. We identify two major factors that are understudied in the literature –

individual depreciation and adoption cost. We show that ignoring those effects might lead

to a biased understanding of the optimality of S. We also demonstrate that all the candidate

strategies can emerge to be optimal in the presence of these two factors. In particular,

a large depreciation and an adequately large adoption cost favors S, whereas the opposite

case favors TLF. These findings are robust when we extend the model in different directions

such as generalized WOM effects, generalized consumer priors, etc.

Our study offers timely practical implications for software providers. In the context of

console or PC games, without releasing additional content (to retain engagement and re-

duce depreciation), as there is enough dispersion of priors (after all, games are experience

goods, and thus it is difficult to know the precise value beforehand), the game develop-

ers should consider the seeding strategy. In recent years, indeed, we have witnessed an

emergence of the game “streaming” phenomenon, whereby developers will offer the game

for free to some players around market-release time (or very shortly before that) with the

hope that these players will post their gameplay videos on social media channels and at-

tract a substantial number viewers. On the other hand, if the individual depreciation is

minimal, we tend to witness the greater implementation of the CE-PL, TLF, and CE-SUB

models being applied (e.g., in the case of productivity software), which is consistent with
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our findings.

Our paper is also relevant to the platform and the digital content industry. Content

providers such as Netflix, Hulu, and YouTube TV also need to invest in adding content

regularly to keep the deprecation rate low. Under such cases, TLF is still the optimal

strategy. Moreover, for professional software such as Matlab, Stata, Microsoft Office, etc,

the major barrier that prevents adoption is the high adoption cost. Consumers need to

spend time and effort getting familiar with the software. It would be interesting to test it

empirically in future research.
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CHAPTER 3

AN EMPIRICAL INVESTIGATION ON AMAZON’S SELF-PREFERENCING

STRATEGY AND ITS LAUNCH OF PRIVATE-LABEL PRODUCTS

3.1 Introduction

An increasing number of platforms are functioning as both gatekeepers connecting third-

party sellers and consumers and as sellers competing with third-party sellers by offering

their own products. For instance, Amazon.com, the largest e-commerce platform in the

U.S., enters the product space by launching private-label products such as Amazon Basics

and Amazon Essentials, which rapidly gain popularity in the market (Fruhlinger 2019).

As the platform’s private-label products gain prominence, concerns are raised about the

platform potentially abusing its power at the expense of third-party sellers and consumers.

For example, Amazon is reported to collect its sellers’ data to launch competing products

(Mattioli 2020) and rig the search results to promote its own products (Kalra and Steck-

low 2021). Many regulators have highlighted the potential conflict of interest as a cause

for antitrust concerns. U.S. Senator Elizabeth Warren stated that “Many big tech compa-

nies own a marketplace, where buyers and sellers transact, while also participating on the

marketplace. This can create a conflict of interest that undermines competition.” (Warren

2019). In contrast, Amazon has countered these reports by arguing that its private-label

products improve customer experience and provide greater exposure for small businesses

(Fung 2022).
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Two key questions arise from this debate: Does Amazon employ a self-preferencing

strategy? And if so, does the introduction of Amazon’s private-label products positively or

negatively impact third-party sellers’ businesses? We address these questions in this pa-

per. Utilizing data scrapped from Amazon.com, we document Amazon’s self-preferencing

strategy and examine the effects of the platform introducing its private-label products while

engaging in self-preferencing.

In the first part of the paper, we present two pieces of evidence on Amazon’s involve-

ment in self-preferencing. We first show the direct evidence of self-preferencing by com-

paring the rank of Amazon’s private-label products in the search results with third-party

products. We find that Amazon’s products are ranked higher than third-party products,

even when accounting for other observable characteristics. The ranking distribution for

Amazon’s private-label products is also more right-skewed than for well-known third-party

brands. The limitation of this direct evidence is that the ranking may reflect some un-

observed qualities; it is possible that Amazon’s private-label products are ranked higher

because they genuinely have higher quality.

To control for unobserved product quality, we then leverage a scenario where Amazon

becomes the seller of an existing third-party product (referred to as “Sold by Amazon”

[SBA]). In this case, we can control for product quality since the product itself does not

change. We find that when Amazon becomes the seller of an existing third-party product,

the product immediately experiences a significant increase in sales, even though the product

itself remains the same and there are no significant changes in product rating, price, or

shipping fee. This result supports the hypothesis that Amazon promotes its own products

more through its self-preferencing strategy.
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In the second part of the paper, we then study the impacts of Amazon introducing its

private-label products while employing the self-preferencing strategy for them. To deter-

mine the effects of launching private-label products on third-party products in the same

category, we conduct a matched Difference-in-Differences analysis. For each affected cat-

egory that experienced private-label product launches, we use a similar but unaffected cate-

gory as the control group. We then compare the business outcomes between the two groups.

We find that although Amazon favors its own products, the introduction of private-label

products leads to a gradual increase in average sales and ratings of third-party products

in the same category, while the average prices remain largely the same. These combined

outcomes suggest an overall increase in consumer welfare.

We then conduct several analyses to investigate the underlying mechanisms that could

drive the observed changes in the market. First, we find sellers with lower rating exit

the platform. This suggests that sellers who provide better quality products and services

are more resilient to the increased competition brought about by Amazon’s private-label

products. As a result, consumers can benefit from improved product quality at the same

prices after Amazon introduces its private-label products.

Second, we find that newly launched third-party products become more differentiated

from Amazon’s offerings in terms of product design (using changes in product images as

a proxy for changes in product design). This suggests that private-label launches stimulate

innovation and increase variety in the category. Consumers can benefit from this change as

they may be more likely to find a product that suits their preferences.

Third, we find that newly launched third-party products’ descriptions become more

similar to those of Amazon’s private-label products. In the search data, we find that prod-
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uct rankings improve with the similarity between the focal product’s description and that

of the top product. This occurs because search outcomes are heavily influenced by the rele-

vance between the product description and search queries. Since private-label products are

more likely to appear at the top of the page, third-party sellers are incentivized to make their

product descriptions more similar to private-label products in order to boost their products’

searchability. Additionally, a closer examination of the product description texts reveals

that private-label products’ descriptions are generally more detailed and better structured,

allowing customers to quickly become informed about the product features. Consequently,

sellers may utilize private-label products’ descriptions as guidance to enhance their own de-

scriptions, increasing the likelihood of customers making an informed decision and leading

to more similar descriptions.

Our findings demonstrate that although Amazon favors its own products in search, in-

troducing private-labels does not necessarily harm consumers. Instead, it could increase

consumer welfare by crowding out low-quality products and spurring product innovations.

Furthermore, it can improve search outcomes by encouraging third-party sellers to enhance

their product descriptions. These results offer valuable insights into the dynamics between

e-commerce platforms and third-party sellers, as well as the potential implications of self-

preferencing strategies on the market. Moreover, they contribute to the ongoing debate

surrounding platform regulations.

3.2 Literature Review

Our paper contributes to three streams of literature: dual roles of the platform, platform’s

self-preferencing recommendation strategy, and third-party sellers’ defense strategy.
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First, we add to an expanding literature on dual roles of the platform. In the theoretical

space, earlier works have studied the impact of banning the platform from selling their own

products on consumer welfare and found mixed results (Hagiu et al. 2020, Lam and Liu

2021, Anderson and Bedre-Defolie 2021, Kang and Muir 2022, Lai et al. 2022). Other

works have explored the types of product spaces the platform should enter, considering the

popularity (Jiang et al. 2011), network effects (Hagiu and Spulber 2013, Hagiu and Wright

2015, Gautier et al. 2021), and shipping costs of the products (Etro 2021). In the empirical

space, earlier works have studied the impacts of platforms becoming sellers in various con-

texts. For example, He et al. (2020) find that when a Chinese omnichannel platform started

to sell the same packaged goods offered by third-party sellers in offline stores, it decreased

offline demand for third-party stores, but had no effect on online demand. In the software

market, Li and Agarwal (2017) find that Facebook’s integration of Instagram harms small

third-party applications but increases the demand for large third-party applications. Edel-

man and Lai (2016) document the negative effect when Google enters the travel market by

promoting its own flight search service.

Specifically, some studies focus on Amazon’s dual roles. For example, Gutierrez Gal-

lardo (2021) build a structural model to estimate the welfare consequences of several regu-

latory interventions. They find that banning Amazon from selling any products can benefit

third-party sellers at the expense of lower consumer welfare. Zhu and Liu (2018) document

the effect of Amazon selling existing third-party products, which are the most relevant to

our work. They find that when Amazon started to sell existing products, it increases product

demand, but discourages affected third-party sellers from subsequently growing business

on the platform. Our paper finds similar results when studying the impacts of Amazon
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selling existing products but we enrich the literature by studying the effect when Amazon

sells its private-label product, which has become a rising concern in antitrust and platform

regulation but lacks empirical evidence.

Second, there is an active stream of literature addressing concerns regarding platforms’

self-preferencing recommendation algorithms. Previous theoretical literature has exam-

ined how platforms can strategically adopt self-preferencing algorithms to promote their

private-label products (Hagiu and Jullien 2011, Zhou and Zou 2021, Long and Amaldoss

2022). These studies have also investigated antitrust agencies’ proposals for search neu-

trality, which would ban platforms’ self-preferencing algorithms, and found that it may

harm consumers due to weakened price competition (Zou and Zhou 2022). Empirically,

researchers have found that Amazon’s algorithm for deciding Buy Box sellers favors Ama-

zon’s own products but may still improve consumer surplus if it aligns with customer pref-

erences (Lee and Musolff 2021, Lam 2022). Moreover, Farronato et al. (2023) find that

Amazon private-label products are ranked higher than third-party products when control-

ling for observables. The limitation of this evidence is that the difference in rank may

arise from differences in product quality, which cannot be directly observed. We address

this limitation by studying the scenario in which Amazon becomes the seller of an existing

third-party product, allowing us to control for product quality and provide new evidence

for this study.

Third, we contribute to a limited body of literature studying third-party sellers’ defense

strategies in response to platform entry. Using data from a Chinese e-commerce platform,

Li et al. (2021) find that when third-party sellers choose to enter a platform’s private-label

product space, they are more likely to target areas with low prices, high demand, and lower
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logistics costs. Foerderer et al. (2018) and Wen and Zhu (2019) find that Google’s entry

into the Google Play Store increases the number of updates for other software develop-

ers in the affected category and forces developers to shift efforts to new apps. Our paper

expands the literature by examining how third-party sellers respond to Amazon’s introduc-

tion of private-label products and shed light on the effects on consumer welfare. To our

best knowledge, this is the first paper that studies third-party sellers’ responses to launches

of Amazon brands.

3.3 Background and Data

3.3.1 Amazon’s Involvement in the Marketplace

In this paper, we focus our analysis on Amazon.com, the leading retail e-commerce plat-

form in the United States.1 With its extensive range of products, large customer base,

and significant market share, Amazon has emerged as a dominant force in the U.S. online

shopping landscape. In 2022, the company generated net sales revenue of $315.88 billion,

accounting for 37.8% of the retail e-commerce market share in the United States(eMarketer

2022).

Amazon has experienced significant growth and transformation over the years, evolving

from a simple online marketplace into a multifaceted platform offering a variety of services

and products. While it continues to serve as a platform for third-party sellers, it also com-

petes with them by selling its own private-label products. Figure 3.1 presents a diagram

illustrating Amazon’s multifaceted involvement (in addition to its role as gatekeeper).

1Amazon has different marketplace all over the world, for example, Amazon.co.uk (United Kingdom),
Amazon.de (Germany), Amazon.ca (Canada), etc. We focus on the largest marketplace, i.e., Amazon.com
(United States).
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Figure 3.1: Amazon’s involvement

Notes: This figure shows a diagram of Amazon’s different involvement on Amazon.com.

Amazon’s most direct involvement on Amazon.com is the sale of its private-label prod-

ucts. Over the years, Amazon has introduced its own private-label brands, such as Amazon

Basics and Amazon Essentials, which compete with third-party sellers’ products on the

platform. These private-label products are designed and manufactured by Amazon and are

sold exclusively on Amazon.com. When Amazon sells its private-label products, it earns

the difference between the product’s retail price and the cost of goods sold (COGS), which

includes manufacturing costs, shipping, handling, and other operational expenses.

Besides Amazon’s private-label products (PLs hereafter), Amazon also acts as a reseller

by sourcing products from other suppliers or retail partners and sells them directly to con-

sumers. In this case, Amazon takes charge of pricing, shipping, customer service, refunds,
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and returns for those products. The products are labeled as “Sold by Amazon” (SBA) on

Amazon.com. Strictly speaking, PLs are also “Sold by Amazon.” To distinguish these two

scenarios in this paper, we separate PLs from SBA products. When we discuss SBA in

this paper, we are referring only to products manufactured by third-party suppliers, with

Amazon serving as the reseller.

In addition to the above roles, Amazon also provides fulfillment services, known as

“Fulfilled by Amazon” (FBA). On Amazon.com, all products using FBA services are la-

beled as “Ships from Amazon.” In this case, third-party sellers contract Amazon for ful-

fillment. They send their inventory in bulk to Amazon fulfillment centers, where they are

stored until sale. Upon sale, Amazon handles shipping, customer service, refunds, and re-

turns for the products, following Amazon’s own processes and policies. Both Amazon’s

PLs and SBA products use FBA services.2

We summarize the key characteristics of PL, SBA, and FBA in Table 3.1. In this paper,

we focus on SBA and PL, which are products owned by Amazon.

3.3.2 Data

Product Data

We use publicly available product-level data from Keepa.com for our analysis. Keepa is a

third-party website that tracks Amazon’s product information worldwide on a daily basis.

As of March 2023, the database includes over 3.4 billion products sold on Amazon in 12

countries (USA, UK, Germany, France, Japan, Canada, Italy, Spain, India, Mexico, Brazil,

2Another well-known label related to fulfillment on Amazon.com is “Prime”, i.e., whether the products
are eligible for 2-day Prime shipping for Prime members. All products using FBA services are eligible for
Prime.
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Table 3.1: Summary of Amazon’s involvement on Amazon.com

Amazon Private-label Sold by Amazon (SBA) Fulfilled by Amazon(FBA)

Manufacturing Yes No No

Pricing Yes Yes No

Fulfillment Yes Yes Yes

Prime-eligible Yes Yes Yes

Notes: This table shows the summary of Amazon’s involvement on Amazon.com. It mainly splits into three

categories, Amazon’s PL, SBA, and FBA.

and Netherlands). In our paper, we focus on products in the U.S. market (which refers to

Amazon.com) from 2016 to 2022.

For each product, Keepa tracks two types of information. First, it collects cross-

sectional information including the product’s unique identifier (ASIN), brand, manufac-

turer, title, description, category information, images, etc. Second, it collects high-frequency

panel data for product key characteristics such as price, rating, sales rank, seller informa-

tion, etc. Amazon does not publish the actual sales number on the website; instead, they

provide the sales rank of each product in its root category. For example, a pair of women’s

cowboy boots shows the sales rank in the entire “Clothing, Shoes & Jewelry” category.

However, we are able to back out the approximated sales number using Jungle Scout3,

a website that provides the mapping between sales rank and actual sales number in each

category.

As it is impossible to download all product data, we focus on the most popular cate-

3https://www.junglescout.com/
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gories on Amazon.com. Amazon adopts a category tree system with up to six levels of

categories for each product (from level 1 to level 6). Level 1 (also known as root cate-

gory) is the most general category (such as Automotive, Electronics, Home & Kitchen,

etc), whereas level 6 is the most specific category. Each product has at least four levels

of category information available. Around 80% of products have five levels, and less than

50% of products have six levels. For example, women’s cowboy boots have a category tree

with five levels: “Clothing, Shoes & Jewelry → Women → Shoes → Boots → Knee-High”.

Since not all products have level 5 or level 6 category information and level 4 is specific

enough to classify products, we collect data from level 4 category.

We focus on the top 2000 level 4 categories that have the most products. This infor-

mation can be accessed from Keepa’s category object that tracks the category information

on Amazon, including the number of products, children categories, parent categories, etc.

For each category, we collect data from the 100 bestseller products. Furthermore, since we

are focusing on Amazon’s self-preferencing and the impact of introducing PLs, we only

collect categories that have a mix of Amazon PLs and third-party products. Specifically,

we exclude categories such as Alexa Skills because only Amazon’s products are in this cat-

egory. We also exclude categories mainly containing digital goods such as software, digital

games, books, videos, and music since these products are mainly offered by Amazon. Also,

we only focus on products with the condition “new”; we do not investigate the used goods

market. We eventually obtain 173,555 products that entered the platform between 2016 and

2022. Among these products, there are 125,037 third-party products that are only sold by

third-party sellers, which means, during the observed window, Amazon never becomes the

seller of these products. There are 47,580 SBAs, which means, during the observed win-
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dow, these products are labeled as “Sold by Amazon” at some point. Additionally, there

are 938 PLs manufactured by Amazon. We show the proportion of each type of products

across root categories in Table3.2.

Table 3.2: Summary Statistics

Category Avg Price Avg Rating Avg Sales Rank SBA (%) PL(%)

Arts, Crafts & Sewing 18.57 4.45 63153.10 14.40% 0.13%

Beauty & Personal Care 22.73 4.35 54349.78 36.08% 0.13%

Clothing, Shoes & Jewelry 29.48 4.39 70144.72 22.43% 1.60%

Electronics 67.21 4.30 112258.50 22.22% 0.47%

Health & Household 23.76 4.38 62804.01 34.38% 1.22%

Home & Kitchen 46.83 4.42 146318.94 23.79% 0.72%

Industrial & Scientific 37.64 4.44 140045.91 25.37% 0.16%

Office Products 37.61 4.45 54579.51 28.61% 1.92%

Patio, Lawn & Garden 56.25 4.34 67929.27 21.55% 0.19%

Pet Supplies 27.07 4.32 34847.49 25.07% 0.36%

Sports & Outdoors 37.65 4.39 142538.19 35.80% 0.13%

Tools & Home Improvement 46.41 4.41 96908.97 32.26% 0.61%

Notes: This table shows the summary statistics and proportion of SBA and PL across root categories in our

data sample.
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Search Data

In addition to product information from Keepa, we scrape Amazon’s search page data to

analyze the search rank of different types of products. We use various keywords under

an anonymous IP address to ensure there is no influence from personal recommendations.

To guarantee the keywords match the popular categories we collect from Keepa, we use

the “Context Free Name” for all products in the top 2000 level 4 categories in our dataset.

Amazon.com publicly provides the context-free name for each category at each level. The

context-free name is able to accurately identify the keyword that can lead to products in the

corresponding category. For example, the “Context Free Name” for the level 4 category

“Clothing, Shoes & Jewelry → Women → Shoes → Boots” is “Women’s Boots”.

Once consumers search on Amazon, the ranking algorithm returns different numbers

of pages depending on the available products that are relevant to the keywords. Although

Amazon might return numerous products in the search results, consumers do not click

past the first results page in around 72% of searches according to Farronato et al. (2023).

Furthermore, only half of the products on the first page are actually seen by consumers.

Consumers complete one-third of their purchases in three minutes or less on average (Bezos

2021). Thus, the competition is only relevant on the first few pages of the search results.

To ensure our data covers the majority of products in the consumers’ choice set, we scrape

the products displayed on the first two pages for each keyword. On each page, Amazon

typically displays 15 rows of products with 4 slots per row. We define the rank of a product

using a zero-based index, starting from the top left corner of the search results page and

moving from left to right and top to bottom. For example, the first row of products has
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ranks 0, 1, 2, and 3, while the second row has ranks 4, 5, 6, and 7, and so on. To investigate

whether Amazon gives its products an advantage in the organic search results, we exclude

all sponsored ads and only keep the organic results.

3.4 Evidence of Amazon’s Self-preferencing Strategy

In this section, we present direct and indirect evidence demonstrating that Amazon em-

ploys a self-preferencing strategy. We first provide direct evidence by comparing Ama-

zon’s private-label (PL) and “Sold by Amazon” (SBA) products with third-party products

in search results. We find that both Amazon’s PL and SBA products tend to rank higher

(occupy better positions) in the search results even when controlling for product charac-

teristics. The limitation of this direct evidence is that we cannot exclude the influence of

unobserved product qualities. To address this concern, we present indirect evidence by ana-

lyzing the case where Amazon begins selling an existing third-party product. This approach

allows us to control for unobserved product qualities and further supports our hypothesis

of Amazon’s engagement in self-preferencing.

3.4.1 Direct evidence

The most direct way to see if Amazon favors their own products on search pages is to

compare the ranking distribution of their own products vs third-party products.

Ranking Distribution of Amazon’s Private-label Products

First, we check the rankings of PLs in search outcomes. Figure 3.2 shows the histogram

of their rankings. In our data, 1,114 PLs show up on the search pages. Among these
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products, 8.44% are listed in the first row; 31.78% are listed in the top 5 rows; 68.22% are

listed on the first page. As we can see, the distribution is highly right-skewed, i.e., PLs are

concentrated at the top of the search results.

Figure 3.2: Ranking of Amazon’s Private-label Products (PL) in Search Results

Notes: This figure shows the distribution of the ranking of Amazon’s private-label products. 8.44% of PL are

listed in the first row; 31.78% of PL are listed in the top 5 rows; 68.22% of PL are listed in the first page.

Ranking Distribution of Sold by Amazon Products (SBA)

Second, we check the ranking position of SBA. Figure 3.3 shows the distribution. In our

data, 20,508 SBA show up. 4.35% are listed in the first row; 22.04% are listed in the top 5

rows; 58.95% are listed on the first page. As we can see, SBAs are more evenly distributed

across the ranking positions than Amazon’s PLs, but they are still right-skewed in ranking.
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Figure 3.3: Ranking of Sold by Amazon Products (SBA) in Search Results

Notes: This figure shows the distribution of the ranking of Sold by Amazon (SBA). 4.35% SBA are listed in

the first row; 22.04% SBA are listed in the top 5 rows; 58.95% SBA are listed in the first page.

Ranking Distribution of Third-party Products

Third, we check the ranking position of third-party products. Figure 3.4 shows the distribu-

tion. In our search data, 80,011 third-party products show up. Among them, 3.80% prod-

ucts are listed in the first row; 18.49% products are listed in the top 5 rows; 55.95% products

are listed on the first page. As we can see, third-party products are more evenly distributed

across the ranking positions than PL and SBA. We further adopt the Kolmogorov–Smirnov

test and find that the ranking distributions between Amazon PL and third-party products are

significantly different (with p-value 1.43×10−20). The ranking distributions between SBAs

and third-party products are significantly different as well (with p-value 6.09× 10−43).

However, the difference in ranking distribution could be attributed to disparities in prod-

uct quality and brand recognition. PL and SBA may indeed have higher quality and brand
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Figure 3.4: Ranking of all Third-party Products in Search Results

Notes: This figure shows the distribution of the ranking of all third-party products. 3.80% products are listed

in the first row; 18.49% products are listed in the top 5 rows; 55.95% products are listed in the first page.

loyalty, resulting in higher ranks. Therefore, we examine the distribution of some popular

third-party brands, such as Nike, Adidas, Disney, etc in Figure 3.5. We can see that, despite

these third-party brands being already popular and of high quality, almost all of their rank-

ings are evenly distributed on the first two pages. This observation suggests that Amazon

may indeed favor its PL and SBA products in search rankings.

Ranking Distribution after Controlling for Observables

So far, we find that Amazon’s products (SBA and PL) appear more prominently in search

results. However, it is possible that the prominence may come from product features such

as price, rating, etc. In this section, we further compare the ranking distribution between

Amazon’s products (SBA and PL) and third-party products by running the following OLS
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Figure 3.5: Ranking of Popular Third-party Brands’ Products in Search Results

Notes: This figure shows the ranking distribution of famous third-party brands. Third-party products are

more evenly distributed in the search results.

regressions to control for observables:

yij = βAij + γXij + ϵij,

where yij denotes the rank of product i in the search result using search keyword j. The

dummy variable Aij denotes whether the product is Amazon’s (when comparing SBA with

third-party products, Aij = 1 denotes SBA product; when comparing PL with third-party
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products, Aij = 1 denotes PL product). Xij captures the observables including search

keyword fixed effects, product price, product rating, etc.

Table 3.3 presents the coefficient estimates for the dummy variable Aij . Model (1) con-

firms that, under the same search keyword, SBA are ranked 3.172 positions higher than

third-party products without controlling for observable characteristics. Model (2) shows

that after controlling for observables, SBA are still ranked 2.963 higher than third-party

products. The results from these two models suggest that SBA are given additional promi-

nence in search results that cannot be explained by other observables such as price, rating.

However, it is possible that Amazon tends to choose recognizable third-party brands and

make them SBA. To control for that, we compare the ranking distribution of SBA and third-

party products under same brand. For example, the potential observations might include

Nike shoes sold by Amazon and Nike shoes sold by third-party sellers. Model (3) and

(4) show the results. We find that within the same brand, SBA are ranked 4.694 positions

higher than third-party products without controlling for observables and are ranked 4.144

positions higher than third-party products after controlling for observables. Comparing

model (3) and (4) with model (1) and (2), we find that after controlling for brand, SBA

receive even greater prominence in search results.

We conduct similar analysis by comparing PL with third-party products in model (5)

and model (6). The results show that PL are ranked 10.416 positions higher than third-party

products without controlling for observables and 10.646 positions higher than third-party

products after controlling for observables. It confirms that Amazon PL are more favored in

search results comparing with third-party products. Our results in model (5) and model (6)

are consistent with Farronato et al. (2023).
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Table 3.3: Regression results of Product Ranking

(1) SBA (2) SBA (3) SBA (same brand) (4) SBA (same brand) (5) PL (6) PL

isSBA -3.172*** -2.953*** -4.694*** -4.144***

(0.239) (0.242) (0.597) (0.594)

isPL -10.416*** -10.646***

(1.379) (1.378)

Price -0.0001 -0.455*** -0.028**

(0.002) (0.009) (0.004)

Rating -3.896*** -24.591*** -2.937***

(0.527) (2.343) (0.707)

Keyword FE Yes Yes Yes Yes Yes Yes

R2 0.272 0.273 0.414 0.425 0.273 0.274

Adj. R2 0.262 0.262 0.400 0.410 0.255 0.256

N 96659 96659 8214 8214 54610 54610

Notes: This table shows the regression results of product rankings. Model (1) shows that SBA are ranked

3.172 positions higher than third-party products on average; Model 2 shows that after controlling for product

key characteristics such as price and rating, SBA are ranked 2.953 positions higher than third-party products;

Model 3 shows that when products are from the same brand and have the same search keyword, SBA are

ranked 4.694 positions higher than third-party products on average; Model 4 shows that after controlling

for product key characteristics such as price and rating, SBA are ranked 4.144 positions higher than third-

party products within same brand; Model 5 shows that Amazon PL are ranked 10.416 positions higher than

third-party products on average; Model 6 shows that Amazon PL are ranked 10.646 positions higher than

third-party products even when controlling for product price and ratings.

Overall, these results suggest that SBA and PL tend to receive higher rankings than

third-party products in search, even after controlling for factors such as brand, price, and

rating. This evidence suggests that Amazon may promote SBA and PL more heavily on
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search page. However, as mentioned in Farronato et al. (2023), the limitation of this anal-

ysis is that the difference in ranking distribution may arise from the unobserved quality

differences between Amazon’s and third-party sellers’ products that are not reflected in

brand, price, and rating. To address this concern, we provide additional indirect evidence

in the following section by analyzing products that were initially sold by third-party sellers

but later became sold by Amazon. This analysis ensures that the product itself remains the

same, thus controlling for the unobserved quality, so the only thing that drives the change

in sales outcomes is the change of ownership.

3.4.2 Indirect Evidence

In this section, we show evidence of Amazon’s self-preferencing strategy from a different

angle by analyzing the scenario in which Amazon becomes the seller of an existing third-

party product. That is, one product is sold by third-party seller first, and then during our

observing window, Amazon becomes the seller of the product (the third-party product be-

comes SBA product) at some point. This event study is particularly valuable as it allows

us to control for the unobserved product quality, which is a major concern when analyzing

search rankings. Our hypothesis is that if Amazon adopts the self-preferencing strategy, it

will improve the ranking of a product once Amazon becomes its seller, leading to increased

sales. Ideally, we should directly use the rank change of a product once Amazon becomes

its seller to study the self-preferencing strategy. However, we do not have access to the

panel data for search rank. Thus, we use the change in sales rank data as a proxy for search

rank change and provide the indirect evidence for the existence of self-preferencing.
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Model Free Analysis

During the sample period, 34,809 products were initially sold by third-party sellers and

later sold by Amazon. We keep products that we can observe 6 months before and after

Amazon becomes its seller in the main analysis, which leaves us with 5,186 products. We

first show the raw change in business outcomes when Amazon becomes the seller in Figure

3.6. Panel (a) shows that after Amazon becomes the seller of a product that was previously

sold by a third-party seller, the sales soar immediately. Panel (b) and (c) show that the

Buybox price and product rating remain the same as before. These two panels rule out the

possibility that increased sales arise from decreased prices or increased product quality and

service quality. Moreover, even if these characteristics may play a role in changing sales,

they should have a more gradual impact (it takes time to change the product quality, etc).

However, we can see that there is an immediate jump in sales when Amazon becomes the

seller, which suggests that the change is likely to arise from the improved ranking in search

results. This is because changing product ranking can be implemented instantly (as long as

the product is labeled as sold by Amazon in the ranking algorithm) and has a drastic and

direct impact on consumers’ choices.4 This combined model-free evidence implies that

Amazon adopts a self-preferencing strategy to promote its own product.

Matched Diff-in-diff Analysis

Next, we employ a matched difference-in-differences framework to formally estimate the

effects on products when Amazon becomes its seller. Products that were initially sold by

4Consumers on Amazon usually add a product to the cart within three minutes of search (Bezos 2021)

74



Figure 3.6: Impacts on the Product when Amazon Becomes its Seller (Model Free)

(a) Sales Rank

(b) Buybox Price (c) Rating

Notes: This figure shows the model free analysis of the raw change when Amazon becomes the seller of an

existing product. We use the relative day before and after Amazon’s entry as x-axis. We use key product

characteristics such as sales rank, buybox price, and rating as y-axis.

third party sellers and then sold by Amazon during our observational window serve as the

treated group. Products that were only sold by third party sellers during the whole sample

period serve as the control group.

We first check whether the two groups’ products have similar characteristics prior to

Amazon becoming the seller. Table 3.4 shows summary statistics of key characteristics of

products in both groups. We find that treatment and control groups are significantly differ-

ent from each other: Amazon tends to choose products with higher prices, lower ratings,
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and higher sales rank (lower sales). To ensure balance along observed characteristics, we

implement a matching procedure to isolate the control group products that resemble the

treated ones in every observed aspect except for Amazon becoming the seller.

We employ matching methods as follows. First, we only keep the treated products

that we can observe for at least six months before and after Amazon becomes its seller. It

leaves us with 5,186 products in the treatment group. For each treated product, we then

identify all control products that can be observed six months before and after this treated

product’s Amazon entry date in our data. This ensures that the matched pair have the same

observational window.

Second, we impose an restriction that control products should belong to the same parent

category (level 3) as the treated product, but belong to a different subcategory (level 4) from

the treated product. This ensures that the control products are similar enough to serve as a

proxy for treated products’ counterfactual, but not that similar to become a close competitor

or direct substitutes. For example, as shown in Figure 3.7, the donor pool of a treated

product in women’s boots category can come from other categories within women’s shoes,

such as athletic, fashion sneakers, flats, etc.

Then, we calculate the Scaled Euclidean distance between each treated product and

eligible control product in terms of price, sales rank, and ratings across the six months

prior to Amazon becoming the seller. Finally, we use the one-nearest-neighbor (with re-

placement) algorithm to match treated product to its closest control counterparts. We also

impose a caliper that puts an absolute maximum on the Euclidean distance to avoid bad

matches. After the matching process, 3,308 treated products are matched to 2,639 unique

products in the control group. The descriptive statistics of the matched results are shown in
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Table 3.4: Comparison of product characteristics for control and treatment groups

# Treated 4200 (1) (2) (3)

# Control 53177 Buybox Price Rating Sales Rank

Month Treat Control t-stat. Treat Control t-stat. Treat Control t-stat.

-6 35.84 30.36 7.11*** 4.32 4.39 -6.92*** 265859.69 193552.70 9.14***

-5 35.86 30.40 7.10*** 4.32 4.39 -7.05*** 269462.57 189910.78 10.16***

-4 35.84 30.44 7.00*** 4.31 4.39 -7.68*** 265787.41 186534.70 10.08***

-3 35.73 30.47 6.87*** 4.31 4.39 -8.02*** 263686.87 182420.55 10.23***

-2 35.75 30.50 6.86*** 4.31 4.39 -8.04*** 261571.95 179022.93 10.35***

-1 35.69 30.53 6.75*** 4.32 4.39 -7.86*** 255569.60 175890.23 10.20***

Notes: This table shows that products in treatment and control groups are significantly different on a set of

key characteristics prior to Amazon becoming the seller of the products.

Table 3.5: Comparison of matched product characteristics for control and treatment groups

# Treated 3308 (1) (2) (3)

# Control 2639 Buybox Price Rating Sales Rank

Month Treat Control t-stat. Treat Control t-stat. Treat Control t-stat.

-6 25.32 25.12 0.31 4.34 4.37 -2.47 120592.65 111586.72 1.79

-5 25.37 25.13 0.37 4.33 4.37 -2.36 121258.16 111740.71 1.86

-4 25.40 25.12 0.44 4.33 4.36 -2.47 119980.62 111987.04 1.56

-3 25.39 25.14 0.39 4.33 4.36 -2.64 118024.99 110730.39 1.41

-2 25.42 25.14 0.42 4.33 4.36 -2.57 118965.73 110564.49 1.60

-1 25.43 25.19 0.37 4.33 4.36 -2.32 118558.77 110888.48 1.45

Notes: This table shows that after matching, the differences between products in control and treatment

groups are insignificant on a set of key characteristics prior to Amazon becoming the seller.

77



Figure 3.7: Matching - Category Selection for Control Group

Table 3.5. The covariance are well balanced between the treated and control groups after

matching.

Now we compare the average outcomes of treated products and matched control prod-

ucts to estimate the impacts of Amazon becoming the seller of an existing product. We run

the following difference-in-differences regression:

yjt =
6∑

m=−6

βm(Ij × τm) + ωmτm + γj + λt + ϵjt, (3.1)

where yjt is the monthly product feature for product j at time t. Ij is an indicator variable

that equals to 1 for treated products. τm is an indicator of m-th month since Amazon

becomes the seller. βm is our coefficient of interest. It represents the treatment effect in

the τ -th month since Amazon becomes the seller. γj are product fixed effects, λt are year-

month fixed effects.
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Figure 3.8 shows our main estimation results. In Panel (a), we observe a significant and

immediate decrease in product’s sales rank, which means there is an immediate increase

in product sales after Amazon becomes the seller. The sales rank decreases from around

110,000 to 30,000, which is equivalent to quantity sales increases from around 270 units per

month to 930 units per month.5 However, in Panels (b) and (c), the buybox price and rating

of the product do not change significantly after Amazon’s entry. Combining these three

plots, we find although the product remains the same and there is no discernible change

in product prices, quality and service quality, sales of the product soared after Amazon

became the seller of the product. It is consistent with the hypothesis that Amazon runs a

self-preferencing algorithm to give their own product an advantage in search results, which

instantly generates a big and positive impact on sales.

3.4.3 Robustness Tests

A caveat of the above analysis that matches on observables is that it may not be able to

control for time-invariant and time-variant unobservables. It is possible that the products

chosen by Amazon are systematically different from other products. It is also possible that

Amazon strategically chooses the timing to become the seller. Furthermore, customers may

favor the products after it becomes SBA since Amazon offers premier fulfillment services

(FBA). To account for the above mentioned endogeneity concerns, we conduct several

robustness tests in this section.
5Amazon does not officially provide the measurement to transfer sales rank to quantity sales. However,

there are bunch of third-party tools provide the measurement on Amazon. We use one of the most famous
tools: Jungle Scout (https://www.junglescout.com/estimator/) to transfer sales rank to monthly quantity sales.
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Figure 3.8: Impacts on the Product when Amazon Becomes its Seller (Matched Diff-in-
Diff)

(a) Sales Rank

(b) Buybox Price (c) Rating

Notes: This figure shows the event study when Amazon becomes the seller of existing products. Each point

is an estimate of effect βm in m-th month. We use one month before Amazon becomes the seller (m = −1)

as the benchmark. 95% confidence intervals constructed using standard errors clustered at the product level

are also displayed.

Selection on Unobservables

In our main analysis, we assume that we can control for the unobserved characteristics of

products by conditioning on a rich set of observed characteristics. However, if products

chosen by Amazon are systematically different from other products in a way that is not

controlled for by the observable in the matching but affects the sales, our estimated effects
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will be biased. To check this, we replicate the main analysis using only treated products.

Because products started being sold by Amazon in different periods, we use this timing

variation to match early treated products with late treated products and use the latter as the

control group. For example, if a product was sold by Amazon from Jan 2022, we then find

products that were not sold by Amazon until six months later (July 2022) and use them as

control sellers. We adopt the same matching method in the previous section and show the

covariance balance check before and after matching in Table F.1 and Table F.2, respectively.

Figure 3.9 shows the matched diff-in-diff results using a within-treated group sample.

We can see that the results are very similar to our main results. This provides further

support that our matching procedure is free from selection on unobservables.

Endogenous Entry Time

Another potential concern of the analysis is that Amazon’s entry date (ie the date it became

a seller of an existing product) may be endogenous. In particular, they may be more likely to

enter during holiday seasons which would bias our estimates of impacts on sales upwards.

To alleviate this concern, we look at the distribution of Amazon entry dates. The figure

is shown in the Appendix F. We can see that entry dates are mostly uniformly distributed

across months. This suggests that Amazon’s entry timing is not carefully calibrated and is

spread throughout the whole year. Indeed, before amazon enters into a product space, they

need to negotiate with the product manufacturers and arrange the logistics, which are not

purely controlled by Amazon itself, introducing an element of randomness in their entry

timing.

Furthermore, we replicate the event study by cohorts, that is, we looked at the effects
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Figure 3.9: Impacts on the Product after Amazon Becomes its Seller (Matched Diff-in-Diff
within treated)

(a) Sales Rank

(b) Buybox Price (c) Rating

Notes: This figure shows the event study of when Amazon becomes the seller of existing products. The

matching process is conducing within the treated group, whereas a later treated product can serve as the

control product for an earlier treated product. Each point is an estimate of effect βm in m-th month. We

use one month before Amazon becomes the seller (m = −1) as the benchmark. 95% confidence intervals

constructed using standard errors clustered at the product level are also displayed.

when Amazon entered in different months of the year. We show the results in the Appendix

F and find that no matter whether Amazon entered in peak season like December or off-

season like April, we can see similar effect trends.
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Change in Shipping Options

When Amazon becomes the seller of a product, it could change the logistics, e.g., storing

the product in its own fulfillment center and enabling faster delivery. This change in in-

ventory management and delivery options may have an impact on customers’ choices and

further affects the sales of the products. To control for the change in logistics, we replicate

our analysis on a subsample of the data: we look at products that were already fulfilled by

Amazon (FBA) before Amazon becomes its seller. That is, for these products, the inventory

inbound and outbound remains the same when Amazon becomes its seller. We show the

replicated event study results in the Appendix F. The results are very close to those from

the main sample. This analysis rules out the possibility that the change in sales is primarily

driven by the change in logistics.

3.5 The Effects of Launching Private-label Products

In the above section, we document evidence that Amazon engages in self-preferencing. In

this section, we then explore the impacts of Amazon introducing its private-label products

while employing the self-preferencing strategy.

3.5.1 Change in Third-parties’ Business Outcomes

In our dataset, 362 level-4 categories experienced the introduction of PLs during the sample

period. To maintain a consistent observation period, we only consider level-4 categories

where we can observe data for 6 months before and after Amazon launches its private-label

products. This leaves us with 312 categories for our analysis.

83



To estimate the effects of Amazon’s introduction of PL on other third-party products

in the same category, we employ a matched difference-in-differences (DiD) framework.

Categories that initially did not have any PL but later had them during our observation

window are considered as the treated group. On the other hand, categories that did not have

any PL throughout the entire observation window are considered as the control group.

Before the estimation, we first examine whether the categories in the treated and con-

trol groups have similar characteristics prior to the introduction of PL. Table 3.6 presents

summary statistics of key characteristics for categories in both groups. We observe that

the treatment and control groups are significantly different from each other: Amazon tends

to launch products in categories with higher average ratings and lower average sales rank

(indicating higher sales).

To ensure that our comparison is balanced along the observed characteristics, we im-

plement a matching procedure to identify control group categories that closely resemble

the treated ones in every observed aspect, except for the introduction of PL. We discuss the

detailed matching process in the Appendix G.

After matching, 198 treated categories are matched to 179 unique control group cate-

gories. The descriptive statistics of the matched results are shown in Table 3.7. Covariates

are well balanced between the treated and control groups after matching, ensuring a more

accurate estimation of the effects of Amazon’s private-label product launches.

Now we compare the average outcomes of treated categories and matched control cat-

egories to estimate the impacts of Amazon introducing PL on third-party products in the
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Table 3.6: Comparison of categories in control and treatment groups (before matching)

# Treated 312 (1) (2) (3) (4)

# Control 2017 Buybox Price Rating Sales Rank # Sellers

Month Treat Control t-stat. Treat Control t-stat. Treat Control t-stat. Treat Control t-stat.

-6 37.97 39.30 -0.67 4.37 4.34 2.72*** 111699.63 175212.40 -8.45*** 7.23 6.92 1.02

-5 38.17 39.30 -0.57 4.37 4.34 2.82*** 111631.82 173945.22 -8.41*** 7.21 6.91 0.98

-4 38.09 39.38 -0.66 4.38 4.35 2.20** 112129.20 172849.56 -8.12*** 7.17 6.88 0.95

-3 38.22 39.41 -0.60 4.38 4.35 2.58** 110742.78 171184.46 -7.87*** 7.06 6.85 0.72

-2 37.88 39.44 -0.79 4.38 4.35 2.48** 105539.99 170380.57 -9.10*** 7.00 6.80 0.67

-1 37.99 39.49 -0.78 4.39 4.36 2.77*** 102714.35 169910.67 -10.20*** 6.90 6.77 0.44

Notes: This table shows that categories in treatment and control groups are significantly different on a set of

key characteristics prior to Amazon introducing PL products.

Table 3.7: Comparison of categories in control and treatment groups (after matching)

# Treated 198 (1) (2) (3) (4)

# Control 179 Buybox Price Rating Sales Rank # Sellers

Month Treat Control t-stat. Treat Control t-stat. Treat Control t-stat. Treat Control t-stat.

-6 26.67 25.51 0.79 4.42 4.41 0.39 68241.69 68112.48 0.02 7.07 6.78 0.61

-5 26.83 25.49 0.91 4.42 4.42 0.49 69508.59 69019.85 0.08 7.01 6.73 0.59

-4 26.85 25.52 0.90 4.43 4.42 0.42 68525.18 68734.56 -0.04 6.99 6.72 0.57

-3 26.76 25.49 0.85 4.43 4.43 0.27 68090.77 67287.83 0.14 6.92 6.69 0.50

-2 26.68 25.40 0.87 4.43 4.43 0.15 66387.69 67064.50 -0.12 6.85 6.63 0.47

-1 26.77 25.50 0.86 4.44 4.43 0.28 66991.74 66612.84 0.07 6.79 6.55 0.52

Notes: This table shows that after matching, the differences between products in control and treatment

groups are insignificantly on a set of key characteristics prior to Amazon becoming the seller.

same category. We run the following difference-in-differences regression:

yjt =
6∑

m=−6

βm(Ij × τm) + ωmτm + γj + λt + ϵjt, (3.2)
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where yjt is the average product features across third-party products in category j at time

t. Ij is an indicator variable that equals to 1 for treated category. τm is an indicator for

the m-th month since Amazon introduced private-label products in this category. βm is our

coefficient of interest, representing the treatment effect in the τ -th month since Amazon

introduces its product. γj are category fixed effects, accounting for time-invariant category-

specific characteristics. λt are year-month fixed effects, controlling for any time-specific

factors that could affect all categories.

Figure 3.10: Impacts of Amazon Introducing PL on third-party sellers in the same category

(a) Sales Rank (b) Rating

(c) Buybox Price (d) Number of Sellers

Notes: This figure shows the event study of when Amazon introduced PL. Each point is an estimate of effect

βm in m-th month. We use one month before Amazon introduces PL (m = −1) as the benchmark. 95%

confidence intervals constructed using standard errors clustered at the product level are also displayed.
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Figure 3.10 presents our main estimation results. In Panel (a), we observe a gradual

decrease in third-party products’ average sales rank when Amazon introduced private la-

bels, suggesting that this introduction potentially leads to higher sales for other products

in the same category. Specifically, the sales rank decreases from around 67,500 to 60,000,

which is equivalent to the quantity sales per month increasing from 450 to 570 units. Panel

(b) shows that the average rating across third-party sellers in the same category increases

in the long run, implying a higher product quality. Panel (c) shows that the buy box price

does not change significantly before and after Amazon’s product launch, indicating the in-

troduction has a minimal impact on the price level within the category. Panel (d) shows

that the number of sellers in the treated category declines over time, suggesting that more

sellers are leaving the platform in the treated category.

Overall, the introduction of PL appears to positively impact consumer welfare by of-

fering improved product quality and stable prices. These benefits can enhance consumers’

shopping experiences and their satisfaction with the products available on the platform.

For sellers, on the one hand, the sales and rating increase for the third-party products in the

same category as PL. On the other hand, more sellers left the platform due to intensified

competition, so the impact on sellers is mixed.

3.5.2 Possible Mechanisms

The most interesting finding from above is that although Amazon favors its own PL prod-

ucts in search, we observe an increase in sales for third-party sellers. Thus, in this sec-

tion, we carry out several analyses to explore the possible mechanisms driving this change.

We find that launched PLs displace lower-rated sellers, stimulate innovation and variety

87



in product designs, and serve as valuable guidance for third-party sellers to enhance their

searchability through improving product descriptions. These factors could potentially lead

to higher sales and ultimately an increase in consumer welfare, with prices being largely

unchanged.

Sellers with Lower Rating Exit the Platform

In Section 3.5.1, we found that the number of sellers in the treated category declines after

Amazon introduces PL. To further explore this phenomenon, we compare the Amazon

Seller Rating of those who exit the platform and those who remain after Amazon launches

its private-label products.

According to Amazon Seller Central6, the Amazon Seller Rating is a metric employed

by Amazon to assess the performance of third-party sellers on its platform. This rating

system is designed to assist consumers in making informed purchasing decisions and to

encourage sellers to deliver excellent customer service. The Amazon Seller Rating takes

into account several factors, such as customer feedback, order defect rate, shipping perfor-

mance, and policy compliance. Ratings are represented on a scale of 1 to 100, with 100

being the highest possible rating.

In the treatment group, 46,399 sellers exit the platform within six months of Amazon

launching its private-label products, while 127,556 sellers remain on the platform. Figure

3.11 displays a histogram comparing the rating distribution of sellers who leave the plat-

form versus those who stay. We can see that sellers with lower ratings are more likely to

exit the platform. T-test shows that sellers who left the platform typically have ratings that

6https://sellercentral.amazon.com/
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are 3.13 points (with p-value < 0.001) lower than those who continue operating on the

platform.

Figure 3.11: Distribution of seller ratings - Exit vs. Stay

Notes: The figure shows the distribution of seller ratings for two groups. The sellers who exit the platform

within 6 months after Amazon introducing PL are shown in orange. The sellers who stay on the platform for

at least 6 months after Amazon introducing PL are shown in blue.

This difference in seller ratings could partly explain why the average product rating

increased after Amazon introduced PL. As the competition becomes fierce, sellers may

be incentivized to enhance their products and customer service in order to maintain their

presence on the platform. Those with low ratings are forced to cease operations, resulting

in superior products and services for consumers.

More Variety in Product Designs

Next, we investigate whether Amazon’s introduction of PL stimulates the change in the

design of third-party products. We collect all the product images of each product as shown
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in Figure 3.12. We then use the change in product images as a proxy to measure the change

in product designs.

Figure 3.12: Product description and images

To measure the change in product images, the key process is to measure the change

in image similarity before and after Amazon introducing PL in the same category. Thus,

we split the third-party products into two groups. One group is the products that already

exist when Amazon launches PL (existing products); the other group is the products that

are newly launched after Amazon launches PL (new products).

Then for each product in each group, we compute the image similarity between that

product’s images and PL’s images in the same category. This ensures that all the image

similarities are computed using the same benchmark, here, the Amazon PL. To compute the

image similarity, we use the off-the-shelf computer vision deep learning model to extract

the image features and then use cosine similarity to measure the similarity among images.
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The detailed methodology is explained in Appendix H.

We show the distribution of the cosine similarity between each third-party product and

Amazon PL by group in Figure 3.13. It shows that new products tend to have lower sim-

ilarity than existing products, suggesting that new products are more differentiated. T-test

shows that the difference in product images increases by 0.0348/0.6486 = 5.36% (with

p-value < 0.001).

Figure 3.13: Distribution Comparison for image similarity - Existing vs. New products

Notes: The figure shows the distribution of image similarity for two groups. The existing products are before

Amazon introducing PL are shown in blue. The newly launched products are before Amazon introducing PL

are shown in orange.

We show an example of the Pajamas category in Figure 3.17. Panel (a) depicts the

product image before Amazon launches PL. Panel (b) shows the Amazon Basics image.

Panel (c) shows images of the newly added product after the launch of Amazon Basics.

Amazon Basics’ product is displayed in the same way as the product already existed before

its launch. However, the newly launched product shows quite different designs and images

91



compared to Amazon’s product. We think a potential underlying mechanism is that third-

party sellers try to differentiate from Amazon’s products by designing and displaying the

product in a new way. This increase in product variety may further drive more demand

from customers, resulting in increased sales.

Figure 3.14: An example of the product image change

(a) Pre Amazon Entry Prod-
uct (b) Amazon’s Product

(c) Post Amazon Entry Product

Notes: This figure shows three different products’ description in Pajamas category. Panel (a) is the product
before Amazon’s entry. Panel (b) is Amazon Basics’ product. Panel (c) is the product after Amazon’s entry.

Enhanced Searchability of the Products

Finally, we investigate how the introduction of PL and the use of self-preferencing strategy

affect third-party sellers’ search engine optimization (SEO) strategy. It is well-documented

that the easiest way to improve the relevancy on Amazon’s search results is by matching
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product content with search keywords (Baldwin 2021, Breslin 2023). The product content

that Amazon uses to match keywords is a combination of product titles, descriptions, and

bullet points. Thus, we combine the text from Amazon’s product title, description, and

bullet points (which refer to the “About this item” section in Figure 3.12) as the product

text description.

Ideally, we should select the most searchable product in each category as the bench-

mark, and then compute the cosine similarity between this product and all other products

in the same category. However, we do not observe which product has the highest searcha-

bility under Amazon’s algorithm. Alternatively, in previous section, we already found that

PLs tend to be ranked at the top of the search results. Also, as Amazon itself has the most

knowledge on its ranking algorithm, it can best utilize the text description and make sure

it covers all the possible search keywords with high relevancy. Thus, we use PL in each

category as the benchmark product, and calculate the cosine similarity in the description

text between PL and third-party sellers’ products that were launched before and after the

introduction of PLs.7

We show the distribution of the cosine similarity among these two groups in Figure

3.15. It shows that new products tend to have higher similarity than existing products,

suggesting that new products’ text description is more similar to Amazon’s. T-test also

shows that the similarity in product text description increases by 0.0058/0.0413 = 14.04%

(with p-value < 0.001). We further check whether this change can make third-party sellers

better-off.
7We first create the vector representations of the text description using “Term frequency-inverse document

frequency” (TF-IDF) and then use cosine similarity to measure the similarity between different products. The
methodology is discussed in detail in the Appendix I.
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Figure 3.15: Distribution Comparison for text similarity - Existing vs. New products

Notes: The figure shows the distribution of log of text similarity for two groups. The existing products

are before Amazon introducing PL are shown in blue. The newly launched products are before Amazon

introducing PL are shown in orange.

First, it is important to check whether text description plays an critical role in search

result. To verify this, we look at the search data and find that the text description does

have an impact on product ranking in the search outcome. We use the first product in each

search result (rank = 0) as the benchmark product since it is the most relevant product from

Amazon’s ranking algorithm. We calculate the cosine similarity of text description between

this first product and all other products on the first page. We show the average text similarity

between the top position and the rest other positions on the first search page in Figure

3.16. We observe a decreasing trend in text similarity as the rank number increases, which

suggests that when the product is more similar to the first product in text descriptions, it is

more likely to get a higher rank in the search result. Thus, with Amazon’s self-preferencing

strategy favoring PL, third-party sellers adjust their SEO strategy and make the product text
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description more similar to Amazon’s. In this way, they can potentially get better position

in search results.

Figure 3.16: Relationships between product texts description and product ranks in search

Notes: The figure shows the average text similarity for each ranking position in search results.

Second, we verify that Amazon’s text description does contain more information and

possibly achieves higher relevancy in search results. We show the example of the category

Car Floor Mat in Figure 3.17. Panel (a) depicts the existing product’s description before

Amazon launches its private-label product. Panel (b) shows the Amazon Basics product.

Panel (c) shows the newly added product after the launch of Amazon Basics. Before PL

launches, the third party product description is written in a less well-organized way. Al-

though it explains the main feature of the product, it lacks detailed information such as di-

mensions, material, etc. Amazon Basics’ description is more specific and well-organized.

After PLs are introduced, the newly entered products have similar product description as

the PLs.

As we can see, after Amazon introduces PL, third-party sellers in the same category also
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get more knowledge about how to improve their SEO strategy. Amazon’s product serves

as the guideline for third-party sellers to write the product description. Thus, Amazon’s

introducing of PL also enhance the searchability of third-party sellers. In the meantime,

customers are also able to find more relevant products on Amazon through search and

make more informed decisions.

To summarize, we find three possible mechanisms that may explain the change in ob-

served outcomes like sales and ratings. First, introducing PL intensifies the competition and

crowds out low-quality products. Second, newly added products tend to be more different

from Amazon’s products in product design to differentiate themselves. This increased va-

riety can improve consumer welfare by providing more options for consumers to choose

from based on their unique needs and preferences. Third, newly added products use Ama-

zon private label products as a leading example when crafting the product description.

With better-structured and more specific product details, consumers are more likely to find

a good match through search and make more informed decisions.

3.6 Conclusion

In this paper, we first document the existence of Amazon’s self-preferencing strategy. Our

direct evidence shows that PL and SBA are ranked higher in search than third party prod-

ucts. Our indirect evidence controls for the unobserved product quality and further supports

the self-preference hypothesis.

Upon proving the existence of the self-preferencing strategy, we investigate the effects

of Amazon introducing PL with the use of this strategy, which has become a rising con-

cern from regulators. We find that after Amazon launches PL such as Amazon Basics and
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Figure 3.17: An example of the product description change

(a) Pre Amazon Entry Product

(b) Amazon’s Product

(c) Post Amazon Entry Product

Notes: This figure shows three different products’ description in Car Floor Mat category. Panel (a) is the

product before Amazon’s entry. Panel (b) is Amazon Basics’ product. Panel (c) is the product after Amazon’s

entry.

Amazon Essentials in specific categories, the sales and rating of other third-party prod-

ucts within the same category increase in the long run, while the price does not change.
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Additionally, we find that more low-rating sellers exit the platform in affected categories.

We further examine the underlying mechanisms for the observed changes. We find

that the newly launched products have a more differentiated design than Amazon’s. Also,

third-party sellers enhanced the searchability of their products by referring to PL’s product

descriptions. These factors could ultimately lead to more sales and therefore an increase

in consumer welfare, with prices being largely unchanged. These findings offer valuable

insights into the implication of a platform selling its own products on third-party sellers

and consumers and shed light on the ongoing debate surrounding platform regulations.

We acknowledge that other mechanisms could also contribute to the observed increase

in sales for third-party sellers. For instance, Bairathi et al. (2022) find that platform en-

dorsement led to increased search and purchases not only for endorsed services but also for

unendorsed ones. This increase is mainly driven by an increase in overall quality perception

of the services offered on the platform. It is possible that Amazon favoring its own products

could similarly drive increased search and purchase activity for other products within the

same category by increasing customers’ perception of product quality on Amazon. This

analysis would require data on changes in the website traffic when Amazon launched PLs

and we leave this for future research.
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APPENDIX A

SUMMARY OF KEY NOTATIONS OF CHAPTER 2

Table A.1: Summary of key notation.

Symbol Description

θ
Consumer type

a True product quality

at Consumers’ perceived valuation at the beginning of period t, with

t ∈ {1, 2}

α Level of deviation in valuation in ex-ante (prior) beliefs

λ Use-based value depreciation

c Adoption costs incurred by consumers

w Strength of WOM effects

p Price of the product

k Seeding ratio under S model

π Firm’s profit

Nt Size of paying population in period t, with t ∈ {1, 2}

Nt,total Size of installed base (including paying, free trial, and/or seeded

consumers) in period t, with t ∈ {1, 2}
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APPENDIX B

PROOFS OF RESULTS FOR THE BASELINE SETUP OF CHAPTER 2

We first present the optimal strategies under each of the business models separately. The

solutions for pricing and profit for CE-PL and S are reproduced from Niculescu and Wu

(2014) for readers’ convenience.

Proposition 5. [expanded from Proposition 1 in Niculescu and Wu (2014) to include social

welfare] Under CE-PL model, the firm’s optimal pricing strategy, profit, and ensuing social

welfare are:

0 < α < 13− 4
√
10 13− 4

√
10 ≤ α

p∗CE−PL
2α
1−α

(
1−

√
2α
1+α

)
α

π∗
CE−PL

2α(
√
1+α−

√
2α)2

(1−α)2
α
2

SW ∗
CE−PL 1− 1+2α+2α2

2(1+α)(
√
1+α+

√
2α)2

3
4

Paid Adoption in both periods only in period 1

Proof. See Proposition 1 in Niculescu and Wu (2014) for the derivation of p∗CE−PL and

π∗
CE−PL. The social welfare derivation follows trivially.
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Proposition 6. Under CE-SUB model, the firm’s optimal pricing strategy, corresponding

profit, and ensuing social welfare are:

0 < α ≤ 1 1 < α ≤ 3 α > 3

p∗CE−SUB p̃ α
1+α

α
2

π∗
CE−SUB p̃

(
1− p̃

α
+ 1− p̃

1+p̃− p̃
α

)
α

1+α
α
4

SW ∗
CE−SUB 1− 1

2

(
p̃
α

)2 − 1
2

(
p̃

1+p̃− p̃
α

)2
α2+4α+1
2(1+α)2

3
8

Subscription in both periods in both periods only in period 1
(paid adoption)

where p̃ is unique solution to the equation 2α3− 2(α− 1)2p3+(α− 6)(α− 1)αp2+2(α−

3)α2p = 0 on the interval (0, α).

Proof. In period 1, consumers subscribe iff αθ ≥ p. To make any profit, the firm is

constrained to set 0 < p < α. The marginal adopter has type θ1 =
p
α

and the installed base

in period 1 is N1 = 1 − p
α

. All period 1 adopters learn the true quality of the product in

the first period. In the beginning of period 2, the non-adopters from period 1 update their

priors through social learning from a1 = α to a2 = α+ (1− α)
(
1− p

α

)
= 1 + p− p

α
. We

have two cases:

• Case 1: 0 < α ≤ 1.

In this case, a1 ≤ a2 ≤ a = 1. All period 1 adopters will renew the subscription in

period 2. The marginal customer type θ2 satisfies θ2 = p
1+p− p

α
≤ θ1. Therefore, the

number of adopters in period 2 is N2 = 1 − p
1+p− p

α
. The firm’s profit maximization

problem becomes

max
0<p<α

πCE−SUB = max
0<p<α

p

(
1− p

α
+ 1− p

1 + p− p
α

)
.
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Differentiating πCE−SUB with respect to p we obtain:

∂πCE−SUB(p)

∂p
=

2α3 − 2(α− 1)2p3 + (α− 6)(α− 1)αp2 + 2(α− 3)α2p

α(α + (α− 1)p)2
.

The denominator is positive. Denote the numerator as g(p) ≜ 2α3−2(α−1)2p3+(α−

6)(α−1)αp2+2(α−3)α2p. Thus, the sign of ∂πCE−SUB(p)/∂p is the same as the sign

of g(p). Differentiating g(p) w.r.t. p, we obtain:

∂g(p)

∂p
= −2(α + (α− 1)p) (3(α− 1)p− (α− 3)α).

We have two subcases:

– If α = 1, then ∂g(p)
∂p

= −2α2(3− α) < 0 for all p ∈ (0, α).

– If α < 1, then, ∂g(p)
∂p

= 0 has two solutions, p1 and p2 on the real line, but they are

both outside the interval (0, α). More precisely, α < p1 = (3−α)α
3(1−α)

< p2 = α
1−α

.

Thus, when α < 1, ∂g(p)
∂p

< 0 for all p ∈ (0, α).

Thus, when α ∈ (0, 1], g(p) is decreasing in p over (0, α). Given that g(0) = 2α3 >

0 > g(α) = −α4(1 + α), there exists a unique p̃ ∈ (0, α) that satisfies g(p) = 0. Thus,

∂πCE−SUB(p)

∂p
> 0 when p ∈ (0, p̃) and ∂πCE−SUB(p)

∂p
< 0 when p ∈ (p̃, α). As such

p∗CE−SUB = p̃ is the optimal price. The formulas for the optimal profit and associated

social welfare follow trivially.

• Case 2: α > 1.

In this case, a1 > a2 > a = 1. None of the period 1 non-adopters will subscribe in
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period 2 (they value in period 2 the product even less than in period 1). Also, only part

of the period 1 adopters will renew the subscription in period 2. Since all adopters from

period 1 updated their priors to a2 = a = 1 The marginal customer type θ2 satisfies

θ2 = min{1, p}. We have two subcases:

– Case 2-i: 0 < p < 1.

Then θ2 = p and N2 = 1− p. The firm’s profit maximization problem becomes:

max
0<p<1

πCE−SUB = max
0<p<1

p
(
1− p

α
+ 1− p

)
.

We have ∂2πCE−SUB(p)

∂p2
< 0. From FOC, we obtain the following interior solution

p∗CE−SUB = α
1+α

. This leads to π∗
CE−SUB = α

1+α
, SW ∗

CE−SUB = α2+4α+1
2(1+α)2

.

– Case 2-ii: 1 ≤ p < α.

Then θ2 = 1 and N2 = 0, i.e., none of the period 1 adopters will renew the subscrip-

tion in period 2. The firm’s profit maximization is simplified to:

max
1≤p<α

πCE−SUB = max
1≤p<α

p
(
1− p

α

)
.

We need to consider two subsequent subcases:

* Case 2-ii-a: 1 < α ≤ 2.

Then we have a corner solution p∗CE−SUB = 1, which yields π∗
CE−SUB = α−1

α

and SW ∗
CE−SUB = 1

2
− 1

2α2 .

* Case 2-ii-b: α > 2.

Then we have an interior solution p∗CE−SUB = α
2

, which yields π∗
CE−SUB = α

4
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and SW ∗
CE−SUB = 3

8
.

If 1 < α ≤ 3, α
1+α

≥ max{α−1
α

, α
4
}. If α > 3, then α

4
> α

1+α
> α−1

α
. Comparing

π∗
CE−SUB values among subcases, the results follow immediately.

Proposition 7. Under TLF model, the firm’s optimal pricing strategy, corresponding

profit, and ensuing social welfare are p∗TLF = 1
2
, π∗

TLF = 1
4
, and SW ∗

TLF = 7
8
, respec-

tively.

Proof. Under TLF, all customers get the product for free in period 1, i.e., N1,total = 1 (but

the number of paying customers is N1 = 0) . Consequently, in period 2, all customers

update their prior on quality to a2 = a = 1. Thus. customers purchase the product if and

only if their types satisfy θ ≥ p, yielding N2 = 1 − p. The firm’s profit maximization

problem becomes:

max
0<p<1

πTLF = max
0<p<1

p(1− p),

which, in turn, yields p∗TLF = 1
2

and π∗
TLF = 1

4
. The social welfare is

∫ 1

0
θdθ = 1

2
for period

1 and
∫ 1

1
2
θdθ = 3

8
for period 2, which gives SW ∗

TLF = 7
8
.

Proposition 8. [expanded from Proposition 2 in Niculescu and Wu (2014) to include social

welfare] Under S model, the firm’s optimal pricing strategy, corresponding profit, and

ensuing social welfare are:

where αS ≈ 0.065 is the unique solution to the equation fS(α) = 0 over the interval

(0, 13− 4
√
10), with fS(α) ≜ 1

16(1−α)
− 2α

(
√
1+α+

√
2α)2

.
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0 < α < αS αS ≤ α < 13− 4
√
10 α ≥ 13− 4

√
10

k∗
S

1−2α
2(1−α)

0 0

p∗S
1
4

2α
1−α

(
1−

√
2α
1+α

)
α

π∗
S

1
16(1−α)

2α(
√
1+α−

√
2α)2

(1−α)2
α
2

SW ∗
S

11−16α
16(1−α)

1− 1+2α+2α2

2(1+α)(
√
1+α+

√
2α)2

3
4

Paid adoption only in period 2 in both periods only in period 1

Proof. See Proposition 2 in Niculescu and Wu (2014) for the derivation of p∗S and π∗
S . The

social welfare derivation follows trivially.

Lemma 1. If 0 < α ≤ 1, then α(α+3)
4(α+1)

≤ π∗
CE−SUB ≤ α(α+1)

3α+1
.

Proof. [Derivation of the lower bound]

π∗
CE−SUB = max

0<p<α
πCE−SUB(p) ≥ πCE−SUB(p)

∣∣
p=α/2 =

α(α + 3)

4(α + 1)
.

[Derivation of the upper bound]

Recall from the proof of Proposition 6 that p̃ satisfies g(p̃) = 0 and g(p) is decreasing in p

over (0, α). Given that g(α
2
) = 1

4
(1−α)α3 > 0, we have α

2
< p̃ < α. Also, it can be easily

shown that the profit function satisfies:

p

(
1− p

α
+ 1− p

− p
α
+ p+ 1

)
≤ p

(
1− p

α
+ 1− p

α
2
− 1

2
+ 1

)
, ∀p ∈

(α
2
, α
)
.

Denote h(p) ≜ p
(
1− p

α
+ 1− p

α
2
− 1

2
+1

)
. Then, π∗

CE−SUB ≤ h(p̃). We next derive

an upper bound for h(p̃). As h(p) is a concave quadratic polynomial in p, we can use

F.O.C to derive its maximum on (α
2
, α). Setting ∂h(p)

∂p
= 0, we get the interior solution
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p∗h = α(α+1)
3α+1

∈ (α
2
, α). Then, π∗

CE−SUB ≤ h(p̃) ≤ h(p∗h) =
α(α+1)
3α+1

.

Proof of Proposition 1.

We have two cases:

• Case 1: 0 < α < 1.

[Firm’s optimal strategy ] We have several subcases:

– Case 1-i: 0 < α ≤ 1
2
.

Then, it can be easily seen that π∗
TLF ≥ max{π∗

CE−PL, π
∗
S}. So we are left to com-

pare π∗
TLF = 1

4
with π∗

CE−SUB. We define

∆(p̃(α), α) ≜ π∗
CE−SUB − π∗

TLF

= p̃(α)

(
1− p̃(α)

α
+ 1− p̃(α)

− p̃(α)
α

+ p̃(α) + 1

)
− 1

4
,

where p̃(α) was defined in Prop. 6. Form the Envelope theorem, for α ∈ (0, 1
2
], we

obtain:

∂∆(p̃(α), α)

∂α
= p̃(α)2

(
1

α2
+

p̃(α)

(α + (α− 1)p̃(α))2

)
> 0.

Thus, ∆(p̃(α), α) is increasing in α for α ∈ (0, 1
2
]. From Lemma 1, we see that

∆(p̃(α), α)
∣∣∣α= 1

2
= π∗

CE−SUB

∣∣
α=1/2 − 1

4
> α(α+3)

4(α+1)

∣∣
α=1/2 − 1

4
= 7

24
− 1

4
> 0.

Moreover, from Lemma 1, we have limα↓0∆(p̃(α), α) = limα↓0 π
∗
CE−SUB − 1

4
≤

limα↓0
α(α+1)
3α+1

− 1
4
= −1

4
< 0. Hence, there exists a unique ᾱ ∈ (0, 1

2
) such that
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∆(p̃(α), α) |α=ᾱ = 0.

Thus, TLF is the dominating strategy on the interval (0, ᾱ), whereas CE-SUB is the

dominant strategy on the interval [ᾱ, 1
2
].

– Case 1-ii: 1
2
< α < 1.

Then, it can be easily seen that π∗
CE−PL > π∗

TLF and π∗
CE−PL = π∗

S (more precisely,

S defaults to CE-PL). Thus, we only have to compare π∗
CE−PL and π∗

CE−SUB. Using

Lemma 1, we have π∗
CE−SUB ≥ α(α+3)

4(α+1)
> α

2
= π∗

CE−PL. Thus, CE-SUB is the

dominant strategy.

[Social welfare comparison] It can be shown with relative ease, through direct com-

parisons of closed form solutions, that SW ∗
TLF = 7

8
≥ max{SW ∗

CE−PL, SW
∗
S} for all

α ∈ (0, 1). Thus, we only have to compare SW ∗
TLF with SW ∗

CE−SUB. We have shown

in the proof of Lemma 1 that p̃(α) ∈ (α
2
, α). It is straightforward to see that:

SW ∗
CE−SUB = 1− 1

2

(
p̃

α

)2

− 1

2

(
p̃

1 + p̃− p̃
α

)2

< 1− 1

2

(
p̃

α

)2

<
7

8
= SW ∗

TLF .

Thus, TLF yields the highest social welfare.

• Case 2: α ≥ 1.

It can be seen from Propositions 5-8, by comparing profits and social welfare values,

that CE-PL is the dominant strategy in terms of the profit1 and TLF is the dominant

1We point out that S defaults to CE-PL in this region as k∗ = 0.
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strategy in terms of the social welfare.
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APPENDIX C

PROOFS OF RESULTS FOR THE SETUP WITH EXOGENOUS INDIVIDUAL

DEPRECIATION OF CHAPTER 2

We first present the optimal strategies under each of the business models separately.

Proposition 9. Under CE-PL model, in the presence of exogenous individual depreciation,

the firm’s optimal pricing strategy, corresponding profit, and ensuing social welfare are:

(a) 0 < α < 5 + 8λ− 4
√

(1 + λ)(1 + 4λ) (b) Otherwise

p∗CE-PL
α(λ+1)

(
αλ+1−

√
α(λ+1)(αλ+1)

)
(1−α)(αλ+1)

1
2
α(1 + λ)

π∗
CE-PL

α(λ+1)
(
2αλ+α+1−2

√
α(λ+1)(αλ+1)

)
(1−α)2

1
4
α(1 + λ)

SW ∗
CE-PL

˜SW CE-PL
3(λ+1)

8

Paid adoption in both periods only in period 1

where ˜SW CE-PL = 1
2

(
1 + λ− α2(λ+1)2(

αλ+
√

α(λ+1)(αλ+1)+α
)2 − λ(

αλ+
√

α(λ+1)(αλ+1)+1
)2

)
.

Proof. In period 1, consumers purchase the product iff (1 + λ)αθ ≥ p. To make any profit,

the firm is constrained to trigger adoption in period 1 (otherwise, no customer would update

their priors and there will also be no adopters in period 2 either). To achieve that, the firm

has to set price p ∈ (0, (1 + λ)α). The marginal adopter has type θ1 = p
(1+λ)α

and the

installed base in period 1 is N1 = 1− θ1 = 1− p
(1+λ)α

.

At the beginning of period 2, the consumers who did not adopt in period 1 update their
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priors via social learning from a1 = α to:

a2 = a1 +N1 (1− a1) = α + (1− α)

(
1− p

α(1 + λ)

)
= 1 +

(α− 1)p

α(1 + λ)
.

In period 2, new consumers purchase the product if their type θ satisfies a2θ ≥ p. It

immediately follows the marginal potential consumer in period 2 has type θ2 = p

1+
(α−1)p
α(1+λ)

.

We have new adopters in period 2 iff 0 ≤ θ2 < θ1. We have two cases:

• Case 1: 0 < α < 1

In this case, we have two subcases:

– Case 1-i: 0 < p < α(λ+1)(1−α−αλ)
1−α

< α(1 + λ).

Then we have 0 < θ2 < θ1. Then, N2 = θ1 − θ2 > 0. In this case, the firm’s profit

maximization problem becomes:

max
0<p<

α(λ+1)(1−α−αλ)
1−α

πCE−PL = max
0<p<

α(λ+1)(1−α−αλ)
1−α

p

(
1− p

1 + (α−1)p
α(λ+1)

)
.

It can be shown that ∂2πCE−PL

∂p2
< 0 for p ∈ (0, α(λ+1)(1−α−αλ)

1−α
). Thus, it is sufficient

to solve FOC:

∂πCE−PL

∂p
=

α2(λ+ 1)2 + (1− α)p2(αλ+ 1)− 2α(λ+ 1)p(αλ+ 1)

(αλ+ α + (α− 1)p)2
= 0.
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Without constrains, the FOC yields two solutions:

p1 =
α(λ+ 1)

(
αλ+ 1 +

√
α(λ+ 1)(αλ+ 1)

)
(1− α)(αλ+ 1)

,

p2 =
α(λ+ 1)

(
αλ+ 1−

√
α(λ+ 1)(αλ+ 1)

)
(1− α)(αλ+ 1)

.

It can be shown that p1 >
α(λ+1)(1−α−αλ)

1−α
. Comparing p2 with α(λ+1)(1−α−αλ)

1−α
, we get

two subcases:

* Case 1-i-a: α(λ+ 1)(αλ+ 1) < 1

Then 0 < p2 < α(λ+1)(1−α−αλ)
1−α

. It immediately follows that p∗CE−PL = p2 =

α(λ+1)
(
αλ+1−

√
α(λ+1)(αλ+1)

)
(1−α)(αλ+1)

,

and π∗
CE−PL =

α(λ+1)
(
2αλ+α+1−2

√
α(λ+1)(αλ+1)

)
(1−α)2

.

* Case 1-i-b: α(λ+ 1)(αλ+ 1) ≥ 1.

Then α(λ+1)(1−α−αλ)
1−α

≤ p2. In this case, we have the corner solution p∗CE−PL =

α(λ+1)(1−α−αλ)
1−α

, π∗
CE−PL = α2λ(λ+1)(1−α−αλ)

(1−α)2
.

– Case 1-ii: α(λ+1)(1−α−αλ)
1−α

≤ p < α(λ+ 1).

Then θ2 ≥ θ1. In this case, N2 = 0 ; adoption takes place only in period 1. The

firm’s profit maximization problem becomes:

max
α(λ+1)(1−α−αλ)

1−α
≤p<(1+λ)α

πCE−PL = max
α(λ+1)(1−α−αλ)

1−α
≤p<(1+λ)α

p

(
1− p

α(1 + λ)

)
.

112



Since the function is quadratic, it is sufficient to use FOC. Unconstrained, FOC

yields the following solution:

p3 =
1

2
(α + αλ) < (1 + λ)α.

Comparing p3 with α(λ+1)(1−α−αλ)
1−α

, we have two subcases:

* Case 1-ii-a: α + 2αλ > 1.

Then α(λ+1)(1−α−αλ)
1−α

< p3 < α(λ + 1), and, thus, p∗CE−PL = p3 = 1
2
(α + αλ)

and π∗
CE−PL = 1

4
(α + αλ);

* Case 1-ii-b: α + 2αλ ≤ 1.

Then p3 ≤ α(λ+1)(1−α−αλ)
1−α

. Then, we have the corner solution p∗CE−PL =

α(λ+1)(1−α−αλ)
1−α

, π∗
CE−PL = α2λ(λ+1)(1−α−αλ)

(1−α)2
.

Comparing case 1-i and case 1-ii, we can get the optimal solution and the associated

social welfare for case 1:

– If 0 < α < 5 + 8λ− 4
√

(1 + λ)(1 + 4λ),

then p∗CE−PL =
α(λ+1)

(
αλ+1−

√
α(λ+1)(αλ+1)

)
(1−α)(αλ+1)

,

π∗
CE−PL =

α(λ+1)
(
2αλ+α+1−2

√
α(λ+1)(αλ+1)

)
(1−α)2

, and

SW ∗
CE−PL = 1

2

(
1 + λ− α2(λ+1)2(

αλ+
√

α(λ+1)(αλ+1)+α
)2 − λ(

αλ+
√

α(λ+1)(αλ+1)+1
)2

)
;

– If 5 + 8λ − 4
√
(1 + λ)(1 + 4λ) ≤ α < 1, then p∗CE−PL = 1

2
(α + αλ), π∗

CE−PL =

1
4
(α + αλ), and SW ∗

CE−PL = 3(λ+1)
8

.
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• Case 2: α ≥ 1

In this case, a1 > a2 > a = 1. None of the period 1 non-adopters will purchase in

period 2. The firm’s profit maximization problem is:

max
0<p<(1+λ)α

πCE−PL = p

(
1− p

α(1 + λ)

)
.

Since the profit is quadratic in p, we can derive the solution from FOC. We get p∗CE−PL =

1
2
α(1 + λ), π∗

CE−PL = 1
4
α(1 + λ), and SW ∗

CE−PL = 3(λ+1)
8

.

Proposition 10. Under CE-SUB model, in the presence of exogenous individual depreci-

ation, the firm’s optimal pricing strategy, corresponding profit, and ensuing social welfare

are:

(a) 0 < α ≤ λ ≤ 1 (b) λ < α ≤ α† (c) α† < α ≤ 1 (d) 1 < α ≤ max{3λ, 1} (e) α > max{3λ, 1}

p∗CE−SUB pa pb
α√
α+1

αλ
α+λ

α
2

π∗
CE−SUB πCE−SUB,a πCE−SUB,b

α

(
√
α+1)

2
αλ
α+λ

α
4

SW ∗
CE−SUB SWCE−SUB,a SWCE−SUB,b

2
√
α+1

2(
√
α+1)

2
1
2

(
1 + λ− λ(α2+λ)

(α+λ)2

)
3
8

Paid adoption in both periods in both periods in both periods in both periods only in period 1

where:

- pa ∈
(
α
2
, α
)

is the unique solution to the equation GSUB,a(p) ≜ 2α3 − 2(α − 1)2p3 +

(α− 6)(α− 1)αp2 + 2(α− 3)α2p = 0 over the interval (0, α),
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πCE−SUB,a = pa

(
2− pa

α
− pa

1+pa− pa
α

)
,

and SWCE−SUB,a =
1
2

(
1 + λ− λp2a

α2 − p2a

(1+pa− pa
α )

2

)
;

- pb ∈
(
λ
2
, λ
)

is the unique solution to the equation GSUB,b(p) ≜ 2α2λ+(α−1)p2(α(λ−

4)−2λ)−2(α−1)2p3+2αp(α(λ−1)−2λ) = 0 over the interval (0, λ), πCE−SUB,b =

pb

(
2− pb

λ
− pb

1+pb−
pb
α

)
, and SWCE−SUB,b =

1
2

(
1 + λ− p2b

λ
− 1

(1+pb−
pb
α )

2

)
; and

- threshold α† is defined in implicit form in the proof, in equation (C.1).

Proof. In period 1, customers subscribe iff αθ ≥ p. To make any profit, the firm is con-

strained to set 0 < p < α. The marginal adopter has type θ1 =
p
α

and the installed base in

period 1 is N1 = 1 − p
α

. All period 1 adopters learn the true quality of the product in the

first period. At the beginning of period 2, the period 1 non-adopters update their priors via

social learning from a1 = α to a2 = α+(1−α)
(
1− p

α

)
= 1+ p− p

α
. We have two cases:

• Case 1: 0 < α ≤ 1.

In this case, a1 ≤ a2 ≤ a = 1. The marginal customer type for period 1 non-adopters

at the beginning of period 2 is θ2 = p
1+p− p

α
< θ1. Thus, all customers with types

θ ∈ [θ2, θ1) are new adopters in period 2 (i.e., fresh subscribers). For period 1 adopters,

while their valuation of the product increased, due to individual depreciation, there is a

limited residual value that they can extract in period 2. These past adopters make another

decision at the beginning of period 2 on whether to renew subscription or abandon the

product. A period 1 adopter with type θ will renew subscription in period 2 iff p ≤ λθ.

We get several subcases:

– Case 1-i: α ≤ λ ≤ 1.
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Then p/λ ≤ θ1. All period 1 subscribers renew the subscription in period 2. The

profit maximization becomes:

max
0<p<α

πCE−SUB = max
0<p<α

p

(
1− p

α
+ 1− p

1 + p− p
α

)
.

It can be shown that SOC is satisfied (∂
2πCE−SUB

∂p2
< 0). Hence, FOC is sufficient to

determine the optimal price:

∂πCE−SUB

∂p
=

2α3 − 2(α− 1)2p3 + (α− 6)(α− 1)αp2 + 2(α− 3)α2p

α(α + (α− 1)p)2
.

When solving FOC (∂πCE−SUB

∂p
= 0), it is enough to look at the numerator.

Denote GSUB,a(p) ≜ 2α3 − 2(α− 1)2p3 + (α− 6)(α− 1)αp2 + 2(α− 3)α2p = 0.

It can be easily shown that GSUB,a(p) is decreasing in
(
−∞, (3−α)α

3(1−α)

)
, increasing in( (3−α)α

3(1−α)
, α
1−α

)
, and decreasing in

(
α

1−α
,+∞

)
. Moreover, α < (3−α)α

3(1−α)
< α

1−α
.

Evaluating GSUB,a(p) at various threshold points allows us to further narrow the

bounds for pa:

GSUB,a(0) > GSUB,b

(α
2

)
> 0 > GSUB,a(α) > GSUB,a

(
(3− α)α

3(1− α)

)
,

GSUB,a

(
α

1− α

)
< 0.

Thus, GSUB,a(p) = 0 has a unique solution pa ∈
(
α
2
, α
)

over the real line, which is

also the price value maximizing the profit in this region. More precisely, ∂πCE−SUB

∂p
>

0 for p ∈ (0, pa) and ∂πCE−SUB

∂p
< 0 for p ∈ (pa, α). The formulas for the optimal

116



profit and associated social welfare follow trivially.

– Case 1-ii: λ < α ≤ 1.

We explore two subcases:

* Case 1-ii-a: λ < p < α.

Then p/λ > 1 > θ1. In this case, all period 1 subscribers (customers with type

θ ∈ [θ1, 1]) unsubscribe in period 2. The profit maximization problem becomes:

max
λ<p<α

πCE−SUB = max
λ<p<α

p

(
1− p

α
+

p

α
− p

1 + p− p
α

)
= max

λ<p<α
p

(
1− p

1 + p− p
α

)
.

It can be shown that ∂2πCE−SUB

∂p2
< 0. Thus, FOC is sufficient to determine the

optimal price. Solving the unconstrained FOC:

∂πCE−SUB

∂p
=

α2 + p2 − α(p+ 2)p

(α + (α− 1)p)2
= 0,

we get two candidate solutions:

p1 =
α

1−
√
α

and p2 =
α

1 +
√
α
.

It immediately follows that p1 > α and p2 < α. Thus, p2 is the only feasible

candidate against the upper bound. Comparing p2 and λ (the lower bound), we

get two subcases:
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· Case 1-ii-a1: α
1+

√
α
≤ λ.

Then p∗CE−SUB ↓ λ, which is a corner solution and is weakly dominated by

the case when p ≤ λ (case 1-ii-b).

· Case 1-ii-a2: α
1+

√
α
> λ.

We point out that this subcase is feasible only when 0 < λ < 1
2

and

λ(λ+2+
√
λ2+4λ)

2
< α ≤ 1. Then p∗CE−SUB = α√

α+1
, π∗

CE−SUB = α

(
√
α+1)

2 ,

and SW ∗
CE−SUB = 2

√
α+1

2(
√
α+1)

2 .

* Case 1-ii-b: p ≤ λ.

Then 1 ≥ p/λ > θ1. In this case, period 1 subscribers with type θ ∈ [θ1, p/λ)

unsubscribe in period 2. The profit maximization problem becomes:

max
p≤λ

πCE−SUB = max
p≤λ

p

(
1− p

α
+ 1− p

λ
+

p

α
− p

1 + p− p
α

)
= max

p≤λ
p

(
2− p

λ
− p

1 + p− p
α

)
.

It can be shown that ∂2πCE−SUB

∂p2
< 0. Thus, FOC is sufficient to determine the

optimal price. The FOC of the profit function is:

∂πCE−SUB

∂p
=

2α2λ+ (α− 1)p2(α(λ− 4)− 2λ)− 2(α− 1)2p3 + 2αp(α(λ− 1)− 2λ)

λ(α+ αp− p)2

= 0.

Denote GSUB,b(p) ≜ 2α2λ + (α − 1)p2(α(λ − 4) − 2λ) − 2(α − 1)2p3 +

2αp(α(λ− 1)− 2λ). It can be easily shown that GSUB,b(p) is decreasing in
(
−
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∞, α(1−λ)+2λ
3(1−α)

)
, increasing in

(
α(1−λ)+2λ

3(1−α)
, α
1−α

)
, and decreasing in

(
α

1−α
,+∞

)
.

Moreover, under the current case, λ < α(1−λ)+2λ
3(1−α)

< α
1−α

.

Evaluating GSUB,b(p) at various threshold points allows us to further narrow the

bounds for pb. In particular, since we are in the case λ < α ≤ 1, we have:

GSUB,b(0) > GSUB,b

(
λ

2

)
> 0 > GSUB,b(λ) > GSUB,b

(
α(1− λ) + 2λ

3(1− α)

)
,

GSUB,b

(
α

1− α

)
< 0.

Thus, GSUB,b(p) = 0 has a unique solution pb ∈
(
λ
2
, λ
)

over the real line, which

is also the price value maximizing the profit in this region. More precisely,

∂πCE−SUB

∂p
> 0 for p ∈ (0, pb) and ∂πCE−SUB

∂p
< 0 for p ∈ (pb, λ). The formulas

for the optimal profit and associated social welfare follow trivially.

We next need to compare the optimal profits under cases 1-ii-a2 and 1-ii-b for the region

in which we can simultaneously have λ < α ≤ 1 and α
1+

√
α
> λ. As mentioned above

(under the discussion of case 1-ii-a2), that region is characterized by 0 < λ < 1
2

and

λ(λ+2+
√
λ2+4λ)

2
< α ≤ 1. Define the difference between the optimal profits under cases

1-ii-b and 1-ii-a2 as:

Ξ(pb(α, λ), α, λ) ≜ pb(α, λ)

(
2− pb(α, λ)

λ
− pb(α, λ)

1 + pb(α, λ)− pb(α,λ)
α

)
− α

(
√
α + 1)2

,

where pb(α, λ) is the unique solution mentioned in case 1-ii-b. From the Envelope the-
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orem, and using pb < λ < α
1+

√
α

, we obtain:

∂Ξ(pb(α, λ), α, λ)

∂α
=

pb(α, λ)
3

(α− (1− α)pb(α, λ))2
− 1

(
√
α + 1)

3

=
pb(α, λ)

3(1 +
√
α)3 − (α− (1− α)pb(α, λ))

2

(α− (1− α)pb(α, λ))2(1 +
√
α)3

<
α3 − (α− (1− α) α

1+
√
α
)2

(α− (1− α)pb(α, λ))2(1 +
√
α)3

= 0.

Thus, Ξ(pb(α, λ), α, λ) is decreasing in α.

Note that, since pb(·) maximizes the profit under case 1-ii-b, it also maximizes Ξ(p, ·)

under the feasible region and it is a strictly interior solution. As such, since Ξ(pb(α, λ), α, λ) >

Ξ(p, α, λ) |p=λ for all α ∈
(

λ(λ+2+
√
λ2+4λ)

2
, 1
]

when λ < 1
2
. By applying this inequality,

the fact that α
(1+

√
α)2

= λ2

α
when α = λ(λ+2+

√
λ2+4λ)

2
, and a few algebraic manipulations

of the grouped expressions, we get the sign of Ξ at that lower boundary for α:

Ξ(pb(α, λ), α, λ)

∣∣∣∣α=λ(λ+2+
√

λ2+4λ)
2

),0<λ< 1
2

> Ξ(p, α, λ)

∣∣∣∣p=λ,α=
λ(λ+2+

√
λ2+4λ)

2
,0<λ< 1

2

= λ

2− λ

λ
− λ

1 + λ− λ
λ(λ+2+

√
λ2+4λ)

2


− 2λ

λ+ 2 +
√
λ2 + 4λ

= 0.

At the upper boundary, when α = 1, we can directly solve pb(1, λ) = λ
1+λ

. Thus,
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Ξ(pb(1, λ), 1, λ) =
λ

1+λ
− 1

4
. It immediately follows that:

Ξ(pb(1, λ), 1, λ)


< 0 if 0 < λ < 1

3
,

≥ 0 if 1
3
≤ λ < 1

2
.

Given that Ξ(pb(α, λ), α, λ) is decreasing in α, then, Ξ(pb(α, λ), α, λ) ≥ 0 when 1
3
≤

λ < 1
2

and λ(λ+2+
√
λ2+4λ)

2
< α ≤ 1. As such, in this region, profit under case 1-ii-b

dominates profit under case 1-ii-a2.

However, when 0 < λ < 1
3
, we have a single crossing. In other words, there ex-

its a unique threshold α̃† ∈
(

λ(λ+2+
√
λ2+4λ)

2
, 1
]

such that Ξ(pb(α̃
†, λ), α̃†, λ) = 0,

Ξ(pb(α, λ), α, λ) > 0 for all α ∈ (λ, α̃†), and Ξ(pb(α, λ), α, λ) < 0 for all α ∈ (α̃†, 1].

Denote α† as:

α† ≜


α̃†, if 0 < λ < 1

3
,

1, if 1
3
≤ λ ≤ 1.

(C.1)

Then, we obtain that Case 1-ii-b dominates Case 1-ii-a when λ < α < α† and Case

1-ii-a dominates Case 1-ii-b when α† ≤ α ≤ 1. Defining α† as in (C.1) ensures that

region α† ≤ α ≤ 1 vanishes if feasibility conditions are not met.

• Case 2: α > 1.

In this case, a1 > a2 > a = 1. None of period 1 non-adopters will subscribe in period 2.

Also, only part of the period 1 adopters will renew the subscription in period 2 because

of tandem pressure from both the downward updating of the valuation and the individual

depreciation. The marginal subscriber in period 2 has type θ2 = min
{
1, p

λ

}
> θ1. We
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have two subcases:

– Case 2-i: 0 < p < λ.

Then, we have θ2 = p
λ

and N2 = 1 − p
λ

. The firm’s profit maximization problem

becomes:

max
0<p<λ

πCE−SUB = max
0<p<λ

p
(
1− p

α
+ 1− p

λ

)
.

We have ∂2πCE−SUB

∂p2
< 0. From FOC, we obtain the following interior solution

p∗CE−SUB = αλ
α+λ

, π∗
CE−SUB = αλ

α+λ
.

– Case 2-ii: λ ≤ p < α.

Then, we have θ2 = 1 and N2 = 0. The firm’s profit maximization problem be-

comes:

max
λ≤p<α

πCE−SUB = max
λ≤p<α

p
(
1− p

α

)
.

We have two subcases:

* Case 2-ii-a: α ≤ 2λ.

This case is feasible only if 1
2
< λ < 1. Then, p∗CE−SUB = λ and π∗

CE−SUB =

λ
(
1− λ

α

)
. However, we do notice that

(
1− λ

α

)
< αλ

α+λ
. As such, case 2-i

dominates case 2-ii-a and we do not have to consider case 2-ii-a going further.

* Case 2-ii-b: α > max {2λ, 1}.

Then, p∗CE−SUB = α
2

and π∗
CE−SUB = α

4
.
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Comparing profits under cases 2-i and 2-ii-b, we get:

* If α ≤ 3λ, then p∗CE−SUB = αλ
α+λ

, π∗
CE−SUB = αλ

α+λ
, and SW ∗

CE−SUB = 1
2

(
1 +

λ − λ(α2+λ)
(α+λ)2

)
. We point out that this case is only feasible when λ > 1

3
. This is

why we define this region as 1 < α ≤ max{1, 3λ} in the text of the proposition

and we point out this region vanishes when λ < 1
3
.

* If α > max{1, 3λ}, p∗CE−SUB = α
2

, π∗
CE−SUB = α

4
, and SW ∗

CE−SUB = 3
8
.

Proposition 11. Under TLF model, in the presence of exogenous individual depreciation,

the firm’s optimal pricing strategy, corresponding profit, and ensuing social welfare are

given by p∗TLF = λ
2
, π∗

TLF = λ
4
, and SW ∗

TLF = 3λ
8
+ 1

2
.

Proof. Under TLF, all consumers get the product for free in period 1, i.e., N1,total = 1

(but the number of paying customers is N1 = 0). Consequently, in period 2, all customers

update their prior on quality to a2 = a = 1. Taking into account depreciation, customers

purchase the product in period 2 iff their types satisfy θλ ≥ p. The firm’s profit maximiza-

tion problem is:

max
0<p<λ

π = p
(
1− p

λ

)
,

which yields p∗TLF = λ
2
, π∗

TLF = λ
4
, and SW ∗

TLF = 3λ
8
+ 1

2
.

Proposition 12. Under S model, in the presence of exogenous individual depreciation, the

firm’s optimal pricing strategy, corresponding profit, and ensuing social welfare are:
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(a) 0 < α < α‡ (b) α‡ ≤ α < 5 + 8λ− 4
√

(1 + λ)(1 + 4λ) (c) α ≥ 5 + 8λ− 4
√

(1 + λ)(1 + 4λ)

k∗
S

1−2α
2(1−α)

0 0

p∗S
1
4

α(λ+1)
(
αλ+1−

√
α(λ+1)(αλ+1)

)
(1−α)(αλ+1)

1
2
α(1 + λ)

π∗
S

1
16(1−α)

α(λ+1)
(
2αλ+α+1−2

√
α(λ+1)(αλ+1)

)
(1−α)2

1
4
α(1 + λ)

SW ∗
S

4λ+7−8α(λ+1)
16(1−α)

˜SWCE−PL
3(1+λ)

8

Paid adoption only in period 2 in both periods only in period 1

where threshold α‡ is the unique solution to equation α(32α(λ+1)(8α(λ+1)−6λ−7)+

32λ+ 33)− 1 = 0 over the interval
(

2λ(6λ+13)+14−(λ+1)
√

48λ(3λ+5)+97

48(λ+1)2
, 1
4(λ+1)

)
.

Proof. First, we point out that CE-PL is a particular case of S with seeding ratio set to

zero. Throughout the proof, we will show that in certain regions CE-PL dominates S with

non-zero seeding ratio - that is equivalent to saying that the optimal seeding ration will be

0 in those regions (i.e., S defaults to CE-PL).

If α ≥ 1, seeding brings no benefit as any social learning calibrates perceived valuations

downwards, and, as such, S defaults to CE-PL.

Thus, we are left to explore the non-trivial case of 0 < α < 1. We have two cases:

• Case 1: 0 < p < (1 + λ)α.

There are paying adopters in period 1 (potentially alongside seeded customers if k > 0).

The marginal paying customer in period 1 has type θ1 =
p

α(1+λ)
. Then, the total number

of adopters in period 1 is N1,total = (1− k)
(
1− p

α(1+λ)

)
+ k. In period 2, the potential

customers who have not adopted in period 1 update their prior beliefs via social learning
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as follows:

a2 = a1 +N1,total (1− a1)

= α+ (1− α)

(
(1− k)

(
1− p

α(1 + λ)

)
+ k

)
= 1− (1− α)(1− k)p

α(1 + λ)
.

A customer of type θ who has not adopted in period 1 (via paying for license or through

the seeding program) will adopt in period 2 iff θ1 > θ ≥ θ2 =
p

1− (1−α)(1−k)p
α(1+λ)

. Comparing

θ1 and θ2, we have:

θ1 > θ2 ⇐⇒ 0 < p <
α(λ+ 1)(1− α− αλ)

(1− α)(1− k)
.

We have two cases:

– Case 1-i: α + αλ ≥ 1.

In this case, we have θ2 > θ1 for any k ∈ [0, 1). There are no paying adopters in

period 2. The firm’s profit maximization problem becomes:

max
0<p<(1+λ)α, 0≤k<1

πS = max
0<p<(1+λ)α, 0≤k<1

p(1− k)

(
1− p

α(1 + λ)

)
.

It trivially follows that k∗
S = 0. S defaults to CE-PL.

– Case 1-ii: α + αλ < 1.
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We have:

α(λ+ 1)(1− α− αλ)

(1− α)(1− k)
< (1 + λ)α ⇐⇒ 0 ≤ k <

αλ

1− α
.

Subsequently, we have several subcases:

* Case 1-ii-a: 0 < p < α(λ+1)(1−α−αλ)
(1−α)(1−k)

and 0 ≤ k < αλ
1−α

.
In this case, θ2 ≤ θ1. Customers with type θ ∈ [θ2, θ1), who have not been
seeded in period 1, adopt in period 2. The firm’s profit maximization problem
becomes:

max

0<p<
α(λ+1)(1−α−αλ)

(1−α)(1−k)
, 0≤k< αλ

1−α

πS = max

0<p<
α(λ+1)(1−α−αλ)

(1−α)(1−k)
, 0≤k< αλ

1−α

p(1 − k)

1 −
p

1 − (1−α)(1−k)p
α(1+λ)

 .

Taking first order derivative of the profit w.r.t. p, we get:

∂πS

∂p
=

(1 − k)
[
α2(λ + 1)2 + (1 − α)(1 − k)p2(αλ + (α − 1)k + 1) − 2α(λ + 1)p(αλ − (1 − α)k + 1)

]
((1 − α)(1 − k)p − α(λ + 1))2

.

The denominator is always positive. We define the numerator as a function:

η(p) ≜ α2(λ+ 1)2 + (1− α)(1− k)p2(αλ− (1− α)k + 1)− 2α(λ+ 1)p(αλ− (1− α)k + 1).

η(p) is convex in p. Solving in unconstrained form the equation η(p) = 0, we

obtain two candidate solutions:

p1 =
α(λ+ 1)(αλ− (1− α)k + 1)−

√
α3(λ+ 1)3(αλ− (1− α)k + 1)

(1− α)(1− k)(αλ− (1− α)k + 1)
,

p2 =
α(λ+ 1)(αλ− (1− α)k + 1) +

√
α3(λ+ 1)3(αλ− (1− α)k + 1)

(1− α)(1− k)(αλ− (1− α)k + 1)
.
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It can be easily shown that p1 > 0 and p2 >
α(λ+1)(1−α−αλ)

(1−α)(1−k)
. Moreover:

p1 <
α(λ+ 1)(1− α− αλ)

(1− α)(1− k)
⇐⇒ α(1 + λ)(1 + αλ)− 1

α(1− α)(1 + λ)
< k.

We need to consider several subcases:

· Case 1-ii-a-I: α(1 + λ)(1 + αλ) ≥ 1.

□ Case 1-ii-a-I1: 0 < p < α(λ+1)(1−α−αλ)
(1−α)(1−k)

and 0 ≤ k ≤ α(1+λ)(1+αλ)−1
α(1−α)(1+λ)

.

In this case, p1 ≥ α(λ+1)(1−α−αλ)
(1−α)(1−k)

. As such, η(p) > 0 for all 0 < p <

α(λ+1)(1−α−αλ)
(1−α)(1−k)

. Thus, πS(p) is strictly increasing in p in this region and the

profit in this case is strictly dominated by the profit under Case 1-ii-b.

□ Case 1-ii-a-I2: 0 ≤ p < α(λ+1)(1−α−αλ)
(1−α)(1−k)

and α(1+λ)(1+αλ)−1
α(1−α)(1+λ)

< k < αλ
1−α

.

In this case, p1 < α(λ+1)(1−α−αλ)
(1−α)(1−k)

. As such, η(p) > 0 for all p ∈ (0, p1)

and η(p) < 0 for all p ∈
(
p1,

α(λ+1)(1−α−αλ)
(1−α)(1−k)

)
. Thus, p∗S = p1. The profit

function can be simplified to:

πS =
−2
√
α3(λ+ 1)3(αλ− (1− α)k + 1) + α(λ+ 1)(2αλ+ α− (1− α)k + 1)

(1− α)2(1− k)
.

It is straightforward to show that α > 5 + 8λ − 4
√
(1 + λ)(1 + 4λ) in

this case, which corresponds to the second case under CE-PL. For any k ∈(
α(1+λ)(1+αλ)−1
α(1−α)(1+λ)

, αλ
1−α

)
, it can be easily shown that πS(k) < 1

4
α(1 + λ) =

π∗
CE−PL. Therefore, this case is sub-optimal, as it is dominated by not seed-
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ing anyone.

· Case 1-ii-a-II: α(1 + λ)(1 + αλ) < 1.

In this case, it immediately follows that α(1+λ)(1+αλ)−1
α(1−α)(1+λ)

< 0 ≤ k. Thus,

p1 <
α(λ+1)(1−α−αλ)

(1−α)(1−k)
. Similar to case 1-ii-a-I2, we have p∗S = p1. Following

the same steps in Case 1-ii-a, we get k∗
S = 0. S defaults to CE-PL.

* Case 1-ii-b: α(λ+1)(1−α−αλ)
(1−α)(1−k)

≤ p < (1 + λ)α and 0 ≤ k < αλ
1−α

.
In this case, θ2 ≥ θ1. There are no new adopters in period 2. The firm’s profit
maximization problem becomes:

max
α(λ+1)(1−α−αλ)

(1−α)(1−k)
≤p<(1+λ)α, 0≤k< αλ

1−α

πS = max
α(λ+1)(1−α−αλ)

(1−α)(1−k)
≤p<(1+λ)α, 0≤k< αλ

1−α

p(1 − k)

(
1 −

p

α(1 + λ)

)
.

It trivially follows that k∗
S = 0. S defaults to CE-PL.

* Case 1-ii-c: 0 < p < (1 + λ)α and αλ
1−α

≤ k < 1.

In this case, p < (1 + λ)α ≤ α(λ+1)(1−α−αλ)
(1−α)(1−k)

. Then, θ2 ≤ θ1. Customers with

type θ ∈ [θ2, θ1), who have not been seeded in period 1, adopt in period 2. The

firm’s profit maximization problem becomes:

max
0<p<(1+λ)α, αλ

1−α
≤k<1

πS = max
0<p<(1+λ)α, αλ

1−α
≤k<1

p(1− k)

(
1− p

1− (1−α)(1−k)p
α(1+λ)

)
.

Following the same steps as in Case 1-ii-a, we get the same two solutions, p1

and p2, to the equation η(p) = 0. It can be easily shown that p1 > 0 and
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p2 > (1 + λ)α. Moreover:

p1 < (1 + λ)α ⇐⇒ αλ

1− α
≤ k < min

{
−α+ αλ+

√
α(1 + λ)(4 + α+ αλ

2(1− α)
, 1

}
.

We have several subcases:

· Case 1-ii-c-I: αλ+
√

α(λ+ 1)(αλ+ α + 4) + α < 2.

Then, it can be shown that αλ
1−α

<
−α+αλ+

√
α(1+λ)(4+α+αλ

2(1−α)
< 1.

□ Case 1-ii-c-I1: αλ
1−α

≤ k <
−α+αλ+

√
α(1+λ)(4+α+αλ

2(1−α)
.

In this case we have p1 < (1 + λ)α. Then, we have the interior solution

p∗S = p1. The profit is simplified to:

πS =
α(λ+ 1)

(
−2
√

α(λ+ 1)(αλ− (1− α)k + 1) + (2αλ+ α− (1− α)k + 1)
)

(1− α)2(1− k)
.

It is straightforward to show that 0 < α < 5 + 8λ − 4
√
(1 + λ)(1 + 4λ)

in this case, which corresponds to the first case under CE-PL. The first

order derivative w.r.t. k satisfies ∂πS

∂k
< 0. Hence, we have corner solution

k∗
S = αλ

1−α
. The optimal profit is simplified to:

π∗
S =

α(λ+ 1)
(
αλ+ α + 1− 2

√
α(λ+ 1)

)
(1− α)(1− α− αλ)

<
α(λ+ 1)

(
2αλ+ α + 1− 2

√
α(λ+ 1)(αλ+ 1)

)
(1− α)2

= π∗
CE−PL.
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Therefore, this case is sub-optimal.

□ Case 1-ii-c-I2:
−α+αλ+

√
α(1+λ)(4+α+αλ

2(1−α)
≤ k < 1.

In this case, we have p1 ≥ (1 + λ)α. We can see that, for any k in this

region, πS(p) is strictly increasing in p and the profit in this case is strictly

dominated by the profit under Case 2.

* Case 1-ii-c-II: αλ+
√

α(λ+ 1)(αλ+ α + 4) + α ≥ 2.

Then, it can be shown that αλ
1−α

< 1 ≤ −α+αλ+
√

α(1+λ)(4+α+αλ

2(1−α)
. As such, when

αλ
1−α

≤ k ≤ 1, we have p1 < (1 + λ)α, and, thus, we have the interior solution

p∗S = p1. Following the same step in Case 1ii-c-I1, we get k∗
S = αλ

1−α
and, fol-

lowing the same reasoning, it can be shown that this case is sub-optimal as well.

In summary, we have shown that Case 1 either defaults to CE-PL or is strictly dom-

inated by CE-PL.

• Case 2: p ≥ (1 + λ)α.

In this case, there are only seeded consumers in period 1 (i.e., no unseeded customer is

willing to pay for the product based on priors). Hence, N1,total = k. At the beginning of

period 2, the un-seeded customers update their priors to a2 = α + (1− α)k. The firm’s

profit maximization problem becomes:

max
p≥(1+λ)α, 0≤k<1

πS = max
p≥(1+λ)α, 0≤k<1

p(1− k)

(
1− p

α− αk + k

)
.
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The profit is concave in p. The first order derivative w.r.t p is:

∂πS

∂p
=

(1− k)(α + (1− α)k − 2p)

α− αk + k
.

From FOC, the uncontrained optimizer is p̄ = α+(1−α)k
2

. We have:

p̄ ≥ (1 + λ)α ⇐⇒ k ≥ 2αλ+ α

1− α
,

2αλ+ α

1− α
< 1 ⇐⇒ α(λ+ 1) <

1

2
.

We get two subcases:

– Case 2-i: α(λ+ 1) < 1
2
.

Then 2αλ+α
1−α

< 1.

* Case 2-i-a: 0 ≤ k < 2αλ+α
1−α

.

Then p̄ < (1 + λ)α. As such, we have the corner solution p∗S = α(λ + 1). The

firm’s profit maximization problem becomes:

max
0≤k< 2αλ+α

1−α

πS = max
0≤k< 2αλ+α

1−α

α(λ+ 1)(1− k)

(
1− α(λ+ 1)

α− αk + k

)
.

We have:

∂πS

∂k
= −α(λ+ 1) (−αλ− α + (α− αk + k)2)

(α− αk + k)2
.
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Solving the unconstrained equation ∂πS

∂k
= 0, we obtain two candidate solutions:

k1 =
−α−

√
α(λ+ 1)

1− α
< 0 < k2 =

−α +
√
α(λ+ 1)

1− α
.

πS is decreasing in k on (−∞, k1), increasing on (k1, k2), and then decreasing

on (k2,∞). Comparing k2 and 2αλ+α
1−α

, we get two subcases:

· Case 2-i-a-I: 1
4
< α(λ+ 1) < 1

2
.

Then, k2 < 2αλ+α
1−α

. Thus, we get the interior solution k∗
S = k2 and π∗

S =

α(λ+1)
(
1+α((1−α)λ+α)−2(1−α)

√
α(λ+1)

)
(1−α)2

.

· Case 2-i-a-II: 0 < α(λ+ 1) ≤ 1
4
.

Then, k2 ≥ 2αλ+α
1−α

. Thus, πS is increasing in k on the entire region and this

case gets dominated by case 2-i-b-II.

* Case 2-i-b: 2αλ+α
1−α

≤ k < 1.

In this case, p̄ ≥ (1 + λ)α. Thus, we have the interior solution p∗S = p̄ =

α+(1−α)k
2

. The firm’s profit maximization problem becomes:

max
2αλ+α
1−α

≤k<1
πS = max

2αλ+α
1−α

≤k<1

(1− k)(α + k(1− α))

4
.
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The profit function is concave in k. We have:

∂πS

∂k
=

1

4
(1− 2α− 2(1− α)k).

Solving the unconstrained equation ∂πS

∂k
= 0, we obtain the candidate solution

k̄S = 1−2α
2(1−α)

< 1. We also have:

2αλ+ α

1− α
≤ k̄S ⇐⇒ α(λ+ 1) ≤ 1

4
.

We get two subcases:

· Case 2-i-b-I: 1
4
< α(λ+ 1) < 1

2
.

Then, 2αλ+α
1−α

> k̄S . As such, we get the corner solution k∗ = 2αλ+α
1−α

. Sub-

stituting k∗
S , we obtain p∗S = α(λ+ 1) and π∗

S = α(λ+1)(1−2α(λ+1))
2(1−α)

.

· Case 2-i-b-II: α(λ+ 1) ≤ 1
4
.

Then, 2αλ+α
1−α

> k̄S and we get the interior solution k∗
S = k̄S = 1−2α

2(1−α)
. Sub-

stituting k∗
S , we obtain p∗S = 1

4
and π∗

S = 1
16(1−α)

.

Comparing Cases 2-i-a and 2-i-b, we get:

* If α(λ+ 1) ≤ 1
4
, p∗S = 1

4
, k∗

S = 1−2α
2(1−α)

, π∗
S = 1

16−16α
.
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* If 1
4
< α(λ + 1) < 1

2
, then p∗S = α(λ + 1) under both 2-i-a-I and 2-i-b-I. Com-

paring the profits directly, it can be shown that Case 2-i-a-I dominates. Thus,

k∗
S = k2 and π∗

S =
α(λ+1)

(
1+α((1−α)λ+α)−2(1−α)

√
α(λ+1)

)
(1−α)2

.

[Comparison between S and CE-PL]

Under both cases (i.e., when α(λ+1) < 1
2
), we get 0 < α < 5+8λ−4

√
(1 + λ)(1 + 4λ).

Therefore, in this region π∗
CE−PL =

α(λ+1)
(
2αλ+α+1−2

√
α(λ+1)(αλ+1)

)
(1−α)2

. We have two

regions to compare:

* If α(λ+ 1) ≤ 1
4
, then π∗

S = 1
16−16α

. It can be shown that:

π∗
S > π∗

CE−PL ⇐⇒


α(λ+ 1) ≤ 1

4 , and

32
√

α3(λ+ 1)3(αλ+ 1) + 1 > α(16α(λ+ 1)(2λ+ 1) + 16λ+ 17).

(C.2)

When S dominates CE-PL, we have:

SW ∗
S = k∗

S

∫ 1

0
(1 + λ)θdθ + (1− k∗

S)
∫ 1

p∗
S

α−αk∗
S
+k∗

S

θdθ = 4λ+7−8α(λ+1)
16(1−α)

.

Let us better understand the region characterized under condition (C.2).

· If 0 < α ≤ 2

16λ+17+
√

32λ(12λ+23)+353
, then α(16α(λ + 1)(2λ + 1) + 16λ +

17)−1 ≤ 0. Then, the inequality 32
√
α3(λ+ 1)3(αλ+ 1)+1 > α(16α(λ+

1)(2λ+ 1) + 16λ+ 17) is always satisfied.
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· If 2

16λ+17+
√

32λ(12λ+23)+353
< α ≤ 1

4(λ+1)
,1 then α(16α(λ + 1)(2λ + 1) +

16λ+ 17)− 1 > 0. In this region, we have:

32
√
α3(λ+ 1)3(αλ+ 1) + 1 > α(16α(λ+ 1)(2λ+ 1) + 16λ+ 17)

⇐⇒ Γ(α) ≜ α(32α(λ+ 1)(8α(λ+ 1)− 6λ− 7) + 32λ+ 33)− 1 > 0.

Solving ∂Γ(α)
∂α

= 0, we get two solutions:

α̃1 =
2λ(6λ+ 13) + 14− (λ+ 1)

√
48λ(3λ+ 5) + 97

48(λ+ 1)2
,

α̃2 =
2λ(6λ+ 13) + 14 + (λ+ 1)

√
48λ(3λ+ 5) + 97

48(λ+ 1)2
.

It can be easily shown that 0 < 2

16λ+17+
√

32λ(12λ+23)+353
< α̃1 < 1

4(λ+1)
<

α̃2, Γ(α̃1) > 0, Γ
(

2

16λ+17+
√

32λ(12λ+23)+353

)
> 0, Γ

(
1

4(λ+1)

)
< 0, Γ(α̃2) <

0. In terms of monotonicity, Γ(α) is increasing on(
2

16λ+17+
√

32λ(12λ+23)+353
, α̃1

)
and then decreasing on

(
α̃1,

1
4(λ+1)

]
. There-

fore, there exits a unique α‡ ∈
(

2

16λ+17+
√

32λ(12λ+23)+353
, 1
4(λ+1)

)
, such

that Γ(α‡) = 0. Thus, when α ∈
(

2

16λ+17+
√

32λ(12λ+23)+353
, α‡
)

, S domi-

nates CE-PL, and when α ∈
[
α‡, 1

4(λ+1)

)
, CE-PL dominates S.

Moreover, the range for α‡ can be further narrowed to:

α‡ ∈
(
α̃1,

1

4(λ+ 1)

)
⊂

(
2

16λ+ 17 +
√
32λ(12λ+ 23) + 353

,
1

4(λ+ 1)

]
.

1We also verified that 2

16λ+17+
√

32λ(12λ+23)+353
< 1

4(λ+1) to make sure this region exists.
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Thus, putting the two subregions together, S dominates CE-PL when 0 < α < α‡

and CE-PL dominates S when α ∈
[
α‡, 1

4(λ+1)

)
.

* If 1
4
≤ α(λ+ 1) < 1

2
, it can be shown that:

π∗
S =

α(λ+ 1)
(
1 + α((1− α)λ+ α)− 2(1− α)

√
α(λ+ 1)

)
(1− α)2

<
α(λ+ 1)

(
2αλ+ α + 1− 2

√
α(λ+ 1)(αλ+ 1)

)
(1− α)2

= π∗
CE−PL.

– Case 2-ii: α(λ+ 1) ≥ 1
2
.

Then 2αλ+α
1−α

≥ 1 > k. As such p̄ < (1 + λ)α. Thus, we have the corner solu-

tion p∗S = α(λ + 1). Following the same steps as Case 2-i, we get threshold values

k1 < 0 < k2. Comparing k2 with 1, we have two subcases:

* Case 2-ii-a: 1
2
≤ α(λ+ 1) < 1.

Then k∗
S = k2 =

−α+
√

α(λ+1)

1−α
and π∗

S =
α(λ+1)

(
1+α((1−α)λ+α)−2(1−α)

√
α(λ+1)

)
(1−α)2

. It

can be shown that:

π∗
S <



α(λ+1)(2αλ+α+1)−2
√

α3(λ+1)3(αλ+1)

(1−α)2
= π∗

CE−PL

, if 1
2(λ+1) ≤ α < 5 + 8λ− 4

√
(λ+ 1)(4λ+ 1),

1
4α(λ+ 1) = π∗

CE−PL

, if 5 + 8λ− 4
√
(λ+ 1)(4λ+ 1) ≤ α < 1

λ+1

Thus, S is dominated by CE-PL in this region.
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* Case 2-ii-b: If α(λ+ 1) ≥ 1.

Then, k∗
S = 1 and π∗

S = 0. This case is clearly suboptimal - in this region S is

obviously dominated by CE-PL since the latter generates non-zero profit when

α ≥ 1
λ+1

.2

Proof of Proposition 2.

When α ≥ 1, by directly comparing profits and social welfare values from Propositions

9-12, it can be easily seen that CE-PL is always the dominant strategy for the firm, whereas

TLF is always the strategy that yields the highest social welfare.

The bulk of the proof, below, is addressing the considerably more complex case 0 < α < 1.

Let us define:

α1(λ) ≜


α‡(λ) , if 0 ≤ λ < λ1,

αa(λ) , if λ1 ≤ λ < λ2,

αb(λ) , if λ2 ≤ λ ≤ 1,

and

α2(λ) ≜


αc(λ) , if 1

4
≤ λ < λ3,

αd(λ) , if λ3 ≤ λ ≤ 1,

where α‡(λ) was defined in Prop 12, and functions αa(·), αb(·), αc(·), αd(·), as well as

2We have 5 + 8λ− 4
√
(λ+ 1)(4λ+ 1) < 1

λ+1 ≤ α. In this region, π∗
CE−PL = 1

4α(λ+ 1).
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Figure C.1: Individual Depreciation Scenario - Optimal Business Model - Marked Bound-
aries

constant thresholds λ1, λ2, and λ3 are defined and further analyzed below. For ease of

identification, Figure C.1 contains the illustration of these boundaries and thresholds (this

is a more detailed version of Figure 2.2 from the main body).

• Monotonicity of α‡(λ).

As discussed in the text and proof of Prop. 12, α‡(λ) represents the boundary between

the regions where S dominates CE-PL and the region where CE-PL dominates S (i.e., the

region in which S, under optimality, requires k∗ = 0, effectively defaulting to CE-PL).

We have shown that α‡(λ) exists, it is unique (thus, it is well defined for all λ ∈ (0, 1))

and it satisfies:

α‡(λ)(λ+ 1)
(
2α‡(λ)λ+ α‡(λ) + 1− 2

√
α‡(λ)(λ+ 1)(α‡(λ)λ+ 1)

)
(1− α‡(λ))2

− 1

16− 16α‡(λ)
= 0.
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Define:

Ψ‡(α, λ) ≜
α(λ+ 1)

(
2αλ+ α + 1− 2

√
α(λ+ 1)(αλ+ 1)

)
(1− α)2

− 1

16(1− α)
.

We have Ψ‡(α
‡(λ), λ) = 0. At the same time, for all α, λ ∈ (0, 1), it can be shown that:

∂Ψ‡(α, λ)

∂α
=

(
α(8λ+ 7)2 + 16λ+ 15

)√
α(λ+ 1)(αλ+ 1)− 48α(λ+ 1)2 − 16α2(4λ+ 1)(λ+ 1)2

16(1− α)3
√
α(λ+ 1)(αλ+ 1)

(C.3)

> 0, (C.4)

∂Ψ‡(α, λ)

∂λ
=

α

(
4αλ+ 3α+ 1− α(λ+1)(4αλ+α+3)√

α(λ+1)(αλ+1)

)
(1− α)2

(C.5)

> 0. (C.6)

Therefore, ∂α‡(λ)
∂λ

= −
∂Ψ‡(α,λ)

∂λ
∂Ψ‡(α,λ)

∂α

< 0. Hence, α‡(λ) is decreasing in λ.

• Definition of λ1, λ2, and αa(λ). Monotonicity of αa(λ).

We know that when α ≥ α‡, CE-PL dominates S. In this same region (α ≥ α‡), let us

further compare profits under CE-PL and CE-SUB strategies.

– First, the following two inequalities can be easily shown:

α

(
√
α+ 1)

2 <
α(λ+ 1)

(
2αλ+ α+ 1− 2

√
α(λ+ 1)(αλ+ 1)

)
(1− α)2

, ∀λ ∈ (0, 1), α ∈ (λ, 1),

α

(
√
α+ 1)

2 <
1

4
α(1 + λ), ∀λ ∈ (0, 1), max{5 + 8λ− 4

√
(1 + λ)(1 + 4λ), λ} < α < 1.

Thus, given that λ < α†, we see that in the region α† < α ≤ 1 (third case in Prop.
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10) we have π∗
CE−SUB < π∗

CE−PL.

– We further compare π∗
CE−PL under the first case in Prop. 9 and π∗

CE−SUB under

the second case in Prop. 10. As we stay within region α ≥ α‡, we look at the

parameter region at the intersection among regions α ≥ α‡, λ < α ≤ α†, and

α < 5 + 8λ − 4
√

(1 + λ)(1 + 4λ). Since α‡ < 5 + 8λ − 4
√

(1 + λ)(1 + 4λ), it

can immediately follows that this is a non-empty region. In this region, define the

difference between optimal profits under CE-SUB and CE-PL as:

Ψa(α, λ) ≜ pb

(
1− pb

λ
+ 1− pb

1 + pb − pb

α

)
−

α(λ+ 1)
(
2αλ+ α+ 1− 2

√
α(λ+ 1)(αλ+ 1)

)
(1− α)2

.

Let’s next try to understand the monotonicity of Ψa(α, λ) with respect to α and

λ. After taking derivatives and applying the Envelope theorem with respect to

π∗
CE−SUB, given that pb(α, λ) represents the maximizing price for CE-SUB, we ob-

tain:

∂Ψa(α, λ)

∂α
=
2α(λ+ 1)

(
2
√

α(λ+ 1)(αλ+ 1)− 2αλ+ α+ 1
)

(1− α)3

−
(λ+ 1)

(
α

(
− (λ+1)(4αλ+3)√

α(λ+1)(αλ+1)
+ 4λ+ 2

)
+ 1

)
(1− α)2

+
p3b

(α− (1− α)pb)2
,

∂Ψa(α, λ)

∂λ
=
p2b
λ2

−
α

(
−α(λ+1)(4αλ+α+3)√

α(λ+1)(αλ+1)
+ 2α(λ+ 1) + 2αλ+ α+ 1

)
(1− α)2

.

We know from the proof of Prop. 10 that pb ∈
(
λ
2
, λ
)
. Using these additional bounds

on pb, it is easy to get ∂Ψa(α,λ)
∂λ

> 0. Therefore, for any given α, when we increase λ

there can be at most one crossing point that separates the optimality regions for CE-

SUB and CE-PL, and, moreover, the crossing (if it exists) can only be from CE-PL
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to CE-SUB as λ increases in this region of the parameter space.

Next, let’s check the sign of ∂Ψa(α,λ)
∂α

. Bringing all the terms to a common denomi-

nator, we can write ∂Ψa(α,λ)
∂α

= q1
q2

, where:

q1 = p3b(1− α)3
√

α(λ+ 1)(αλ+ 1)

+ p2bα(1− α)2(λ+ 1)2
(
(λ+ 1)(4α2λ+ α2 + 3α) + (α(4λ+ 3) + 1)

√
α(λ+ 1)(αλ+ 1)

)
− 2pbα

2(1− α)(λ+ 1)2
(
(λ+ 1)(4α2λ+ α2 + 3α)− (α(4λ+ 3) + 1)

√
α(λ+ 1)(αλ+ 1)

)
+ α3(λ+ 1)2

(
(λ+ 1)(4α2λ+ α2 + 3α)− (α(4λ+ 3) + 1)

√
α(λ+ 1)(αλ+ 1)

)
,

q2 =(1− α)3
√

α3(λ+ 1)3(αλ+ 1)(α+ αpb − pb)
2 > 0.

Therefore, the sign of ∂Ψa(α,λ)
∂α

is the same as the sign of the numerator, q1.

Recall from Prop. 10 that pb is the unique solution to the equation GSUB,b(p) =

2α2λ− 2(1− α)2p3 − (1− α)p2(α(λ− 4)− 2λ)− 2αp(α(1− λ) + 2λ) = 0. We

use this property of pb (i.e., GSUB,b(pb) = 0) to reduce the expression of q1 from a

cubic polynomial in pb to a quadratic one, as follows:

q1 =α(λ+ 1)

×
(
p2b

1

2
(1− α)2

(
2α(λ+ 1)2(4αλ+ α+ 3)−

(
α
(
8λ2 + 15λ+ 2

)
+ 2
)√

α(λ+ 1)(αλ+ 1)
)

+ pb(1− α)α
((

α
(
8λ2 + 15λ+ 5

)
+ 2
)√

α(λ+ 1)(αλ+ 1)− 2α(λ+ 1)2(4αλ+ α+ 3)
)

+ α2
(
2α(λ+ 1)2(4αλ+ α+ 3)−

(
α
(
4λ2 + 8λ+ 3

)
+ 1
)√

α(λ+ 1)(αλ+ 1)
))

.
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Denote:

A ≜
1

2
(1− α)2

(
2α(λ+ 1)2(4αλ+ α+ 3)−

(
α
(
8λ2 + 15λ+ 2

)
+ 2
)√

α(λ+ 1)(αλ+ 1)
)
,

B ≜ (1− α)α
((

α
(
8λ2 + 15λ+ 5

)
+ 2
)√

α(λ+ 1)(αλ+ 1)− 2α(λ+ 1)2(4αλ+ α+ 3)
)
,

C ≜ α2
(
2α(λ+ 1)2(4αλ+ α+ 3)−

(
α
(
4λ2 + 8λ+ 3

)
+ 1
)√

α(λ+ 1)(αλ+ 1)
)
.

Then q1
α(λ+1)

= Ap2b + Bpb + C. Define quadratic function HSUB,PL(p) ≜ Ap2 +

Bp+ C. In this range of the parameter space, it can be shown that:

B2 − 4AC = (1− α)2α4(λ+ 1)

×
(
2
(
λ2 − λ− 2

)
(4αλ+ α + 3)

√
α(λ+ 1)(αλ+ 1)

− ((αλ+ 1)(α(λ(λ(8λ− 1)− 28)− 13) + 2(λ− 2)))
)
> 0.

Hence, there are two real solutions of HSUB,PL(p) = 0, namely:

pH1 = −B +
√
B2 − 4AC

2A
and pH2 =

−B +
√
B2 − 4AC

2A
.

It can be shown that pH1 < pH2 < α
1−α

. Recall that pb is the unique solution of

GSUB,b(p) = 0. Moreover, from the proof of Prop. 10, we know that GSUB,b(p) > 0

on (−∞, pb) and GSUB,b(p) < 0 on (pb,∞).

It can be proved directly that GSUB,b(pH1) > 0 = GSUB,b(pb) > GSUB,b(pH2).

Hence, pH1 < pb < pH2.
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Furthermore, it can be shown that A > 0, which indicates that HSUB,PL(p) is con-

vex. Therefore, HSUB,PL(pb) < 0. Thus, ∂Ψa(α,λ)
∂α

< 0. Therefore, for any given

λ, when we increase α, there can be at most one crossing point that separates the

optimality regions for CE-SUB and CE-PL, and, moreover, the crossing (if it exists)

can be only from CE-SUB to CE-PL as α increases.

So far, we proved that a threshold (crossing) boundary between optimality regions

for CE-SUB and CE-PL within this particular region of the parameter space (at the

intersection among regions α ≥ α‡, λ < α ≤ α†, and α < 5+8λ−4
√

(1 + λ)(1 + 4λ)

) is unique for every λ and for every α (i.e., if we look vertically or horizontally),

if it exists. Next, we show that such a threshold boundary does indeed exist in this

region of the parameter space.

We look at two particular delimiting boundaries for this region, namely α = α† and

α = λ and examine the sign of Ψa(α, λ) along these boundaries.

* On the boundary α = α†(λ), since we are under condition α < 5 + 8λ −

4
√

(1 + λ)(1 + 4λ) < 1, by definition of α†, we obtain:

Ψa(α, λ)
∣∣∣
α=α†(λ)

=
α

(
√
α+ 1)2

−
α(λ+ 1)

(
2αλ+ α+ 1− 2

√
α(λ+ 1)(αλ+ 1)

)
(1− α)2

< 0.
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* On the boundary α = λ, we obtain:

Ψa(α, λ)
∣∣∣
α=λ

=pb

(
2− pb

λ
− pb

1 + pb − pb
λ

)

−
λ(λ+ 1)

(
2λ2 + λ+ 1− 2

√
λ(λ+ 1)(λ2 + 1)

)
(1− λ)2

.

We point out that we could have written the profit for CE-SUB in terms of pa at

the boundary when α = λ - however, on that boundary, whether we write the

profit in terms of pa or pb, we obtain the same profit because on that particular

line, pa = pb (as they satisfy the same implicit equation). Bringing all the terms

to a common denominator, we can write Ψa(α, λ) |α=λ = q3
q4

, where:

q3 =(1− λ)3p3b − (3− λ)(1− λ)2λp2b

+ (1− λ)λ2
(
2λ3 + 3λ2 + 3− 2

√
λ(λ+ 1)3 (λ2 + 1)

)
pb

− λ2
(
2λ4 + 3λ3 + 2λ2 − 2

√
λ3(λ+ 1)3 (λ2 + 1) + λ

)
,

q4 =(1− λ)2λ(λ+ λpb − pb) > 0.

Therefore, the sign of Ψa(α, λ) |α=λ is the same as the sign of the numerator, q3.

We use GSUB,b(pb) = 0 to reduce the expression of q3 from a cubic polynomial
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in pb to a quadratic one, as follows:

q3 =
λ2

2

×
(
(1− λ)2p2b + 2

(
1− λ2

) (
2λ2 − 2

√
λ(λ+ 1) (λ2 + 1) + λ

)
pb

+4λ(λ+ 1)
√
λ(λ+ 1) (λ2 + 1)− 2λ2

(
2λ2 + 3λ+ 3

))
.

Denote:

D ≜ (1− λ)2,

E ≜ 2
(
1− λ2

) (
2λ2 − 2

√
λ(λ+ 1) (λ2 + 1) + λ

)
,

F ≜ 4λ(λ+ 1)
√

λ(λ+ 1) (λ2 + 1)− 2λ2
(
2λ2 + 3λ+ 3

)
.

Then 2q3
λ2 = Dp2b + Epb + F . Define quadratic function H̃SUB,PL(p) ≜ Dp2 +

Ep+F . In this range of the parameter space, it can be shown that E2−4DF > 0.

Hence, there are two real solutions to the equation H̃SUB,PL(p) = 0, namely:

pH̃1 =
−E −

√
E2 − 4DF

2D
and pH̃2 =

−E +
√
E2 − 4DF

2D
.

It can be shown that λ
2
< pH̃1 < λ < pH̃2. Recall that pb is the unique solu-

tion of GSUB,b(p) = 0. Moreover, from the proof of Prop. 10, we know that

GSUB,b(p) > 0 on (−∞, pb) and GSUB,b(p) < 0 on (pb,∞). It can be proved

directly that GSUB,b(pH̃1) < 0 = GSUB,b(pb). Hence, pb < pH̃1 < pH̃2. Further-

more, it can be shown that D > 0, which indicates that H̃SUB,PL(p) is convex.
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Therefore, H̃SUB,PL(pb) > 0. Hence, in this region of the parameter space:

Ψa(α, λ)
∣∣∣
α=λ

> 0.

Thus, Ψa(α, λ)
∣∣∣
α=α†(λ)

< 0 and Ψa(α, λ)
∣∣∣
α=λ

> 0. Therefore, in this parameter

region, there exists a unique threshold boundary, which we define as αa(λ), which

separates the optimality regions for CE-SUB and CE-PL, and which falls between

boundaries α = α† and α = λ. It satisfies:

αa(λ)(λ+ 1)
(
2αa(λ)λ+ αa(λ) + 1− 2

√
αa(λ)(λ+ 1)(αa(λ)λ+ 1)

)
(1− αa(λ))2

= pb

(
1− pb

λ
+ 1− pb

1 + pb − pb
αa(λ)

)
.

Since existence and uniqueness are satisfied, αa(λ) is properly defined as a func-

tion. Moreover, since Ψa(αa(λ), λ) = 0, by differentiation w.r.t. λ, we obtain

∂αa(λ)
∂λ

= −
∂Ψa(α,λ)

∂λ
∂Ψa(α,λ)

∂α

> 0. Hence, αa(λ) is increasing.

Since both boundaries α‡ and α = 5 + 8λ − 4
√
(1 + λ)(1 + 4λ) are decreasing in

λ and αa(λ) is increasing in lambda and strictly between the lines α† and α = λ,

then there exists a unique intersection point between αa(λ) and α‡, and a unique

intersection point between αa(λ) and α = 5 + 8λ− 4
√

(1 + λ)(1 + 4λ).

* Define {λ1, α
‡(λ1)} as the unique intersection between αa(λ) and α‡. Then, λ1
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satisfies:

1

16(1− α‡(λ1))
=

α‡(λ1)(λ1 + 1)(2α‡(λ1)λ1 + α‡(λ1) + 1)

(1− α‡)2

−
2
√
α‡(λ1)3(λ1 + 1)3(α‡(λ1 + 1)

(1− α‡)2

= pb

(
1− pb

λ1

+ 1− pb
1 + pb − pb

α‡(λ1)

)
.

More precisely, at {λ1, α
‡(λ1)}, we have:

π∗
CE−PL(λ1, α

‡(λ1)) = π∗
CE−SUB(λ1, α

‡(λ1)) = π∗
S(λ1, α

‡(λ1)).

* Define {λ2, 5+8λ2−4
√

(1 + λ2)(1 + 4λ2)} as the unique intersection between

αa(λ) and α = 5 + 8λ− 4
√
(1 + λ)(1 + 4λ). Then, λ2 satisfies:

(
5 + 8λ2 − 4

√
(1 + λ2)(1 + 4λ2)

)
(1 + λ2)

4

= pb

1− pb
λ2

+ 1− pb
1 + pb − pb

5+8λ2−4
√

(1+λ2)(1+4λ2)

 .

It immediately follows that λ1 < λ2 and αa(λ) is properly defined and increasing on

λ ∈ [λ1, λ2]. We show αa(λ) in Figure C.2.

• Definition and monotonicity of αb(λ).

We further compare the second case under CE-PL and the second case under CE-SUB at

the intersection among regions 5+8λ− 4
√
(1 + λ)(1 + 4λ) ≤ α < 1 and λ < α ≤ α†.
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Figure C.2: Specification of αa(λ)

Denote the profit difference between CE-SUB and CE-PL in this region as:

Ψb(α, λ) ≜ pb

(
1− pb

λ
+ 1− pb

1 + pb − pb
α

)
− α(1 + λ)

4
.

Then, using Envelope theorem (since pb maximizes πCE−SUB), we have :

∂Ψb(α, λ)

∂α
=

p3b
(α− (1− α)pb)2

− 1 + λ

4
,

∂Ψb(α, λ)

∂λ
=

p2b
λ2

− α

4
>

(λ
2
)2

λ2
− α

4
> 0.

Next, let’s check the sign of ∂Ψb(α,λ)
∂α

. Bringing all the terms to a common denominator,

we can write ∂Ψb(α,λ)
∂α

= q5
q6

, where:

q5 ≜ −α2λ− α2 + 4p3b + p2b
(
−α2λ− α2 + 2αλ+ 2α− λ− 1

)
+ pb

(
−2α2λ− 2α2 + 2αλ+ 2α

)
,

q6 ≜ 4(α+ αpb − pb)
2 > 0.
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Thus, the sign of ∂Ψb(α,λ)
∂α

is the same as the sign of the numerator, q5. We use GSUB,b(pb) =

0 to reduce the expression of q5 from a cubic polynomial in pb to a quadratic one, as fol-

lows:

q5 = −p2b(1− α)(α(−(3− α)α(λ+ 1) + λ+ 11) + 3λ− 1)

+ pb2α(α(−(3− α)α(λ+ 1) + λ+ 5) + 3λ− 1)

+ α2(−(2− α)α(λ+ 1)− 3λ+ 1).

Denote:

J ≜ −(1− α)(α(−(3− α)α(λ+ 1) + λ+ 11) + 3λ− 1),

K ≜ 2α(α(−(3− α)α(λ+ 1) + λ+ 5) + 3λ− 1),

L ≜ α2(−(2− α)α(λ+ 1)− 3λ+ 1).

Then, q5 = Jp2b+Kpb+L. Define the quadratic function H̄SUB,PL(p) ≜ Jp2+Kp+L.

In this range of the parameter space, it can be shown that K2 − 4JL > 0. Hence, there

are two real solutions to the equation H̄SUB,PL(p) = 0, namely:

pH̄1 =
−K −

√
K2 − 4JL

2J
and pH̄2 =

−K +
√
K2 − 4JL

2J
.

It can be shown that pH̄2 < λ < pH̄1. Recall that pb is the unique solution of GSUB,b(p) =

0. Moreover, from the proof of Prop. 10, we know that GSUB,b(p) > 0 on (−∞, pb)

and GSUB,b(p) < 0 on (pb,∞). It can be proved directly that GSUB,b(pH̄2) > 0 =
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GSUB,b(pb). Hence, pH̄2 < pb < λ < pH̄1. Furthermore, it can be shown that J < 0,

which indicates that H̄SUB,PL(p) is concave. Therefore, H̄SUB,PL(pb) > 0. Hence, in

this region of the parameter space:

∂Ψb(α, λ)

∂α
> 0.

So far, we proved that a threshold (crossing) boundary between optimality regions for

CE-SUB and CE-PL within this particular region of the parameter space (at the intersec-

tion among regions 5 + 8λ− 4
√

(1 + λ)(1 + 4λ) ≤ α < 1 and λ < α ≤ α†) is unique

for every λ and for every α (i.e., if we look vertically or horizontally), if it exists.

Next, we show that such a threshold boundary does indeed exist in this region of the

parameter space. We look at two particular delimiting boundaries for this region, namely

α = α† and α = λ (boundary in limit) and examine the sign of Ψb(α, λ) along these

boundaries.

– On the boundary α = α†(λ), since we are under condition

5 + 8λ− 4
√

(1 + λ)(1 + 4λ) ≤ α < 1, by definition of α†, we obtain:

Ψb(α, λ)
∣∣∣
α=α†(λ)

=
α

(
√
α + 1)2

− α(1 + λ)

4
< 0.

– On the boundary α = λ (boundary in limit), we obtain:
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Ψb(α, λ)
∣∣∣
α=λ

= pb

(
2− pb

λ
− pb

1 + pb − pb
λ

)
− λ(1 + λ)

4
.

Again, we remind the reader we could have written the profit for CE − SUB in

terms of pa at the boundary when α = λ - however, on that boundary, whether

we write the profit in terms of pa or pb, we obtain the same profit because on that

particular line, pa = pb. Bringing all the terms to a common denominator, we can

write Ψb(α, λ) |α=λ = q7
q8

, where:

q7 = − λ4 − λ3 − 4λp3b + 4p3b + 4λ2p2b − 12λp2b − λ4pb + 9λ2pb,

q8 =4λ(λ+ λpb − pb) > 0.

Therefore, the sign of Ψb(α, λ) |α=λ is the same as the sign of the numerator, q7.

We use GSUB,b(pb) = 0 to reduce the expression of q7 from a cubic polynomial in pb

to a quadratic one, as follows:

q7 =
λ2 (λ3 + 3λ+ 2(1− λ)p2 − (3− λ)(λ+ 1)2p)

1− λ
.
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Denote:

R ≜ 2(1− λ),

S ≜ −(3− λ)(λ+ 1)2,

T ≜ λ3 + 3λ.

Then (1−λ)q7
λ2 = Rp2b + Spb + T . Define quadratic function ĤSUB,PL(p) ≜ Rp2 +

Sp + T . In this range of the parameter space, it can be shown that S2 − 4RT > 0.

Hence, there are two real solutions to the equation ĤSUB,PL(p) = 0, namely:

pĤ1 =
−S −

√
S2 − 4RT

2R
and pĤ2 =

−S +
√
S2 − 4RT

2R
.

It can be shown that λ
2

< pĤ1 < λ < pĤ2. Recall that pb is the unique solu-

tion of GSUB,b(p) = 0. Moreover, from the proof of Prop. 10, we know that

GSUB,b(p) > 0 on (−∞, pb) and GSUB,b(p) < 0 on (pb,∞). It can be proved di-

rectly that GSUB,b(pĤ1) < 0 = GSUB,b(pb). Hence, pb < pĤ1 < pĤ2. Furthermore,

R > 0, which indicates that ĤSUB,PL(p) is convex. Therefore, ĤSUB,PL(pb) > 0.

Hence, in this region of the parameter space:

Ψb(α, λ)
∣∣∣
α=λ

> 0.

Thus, Ψb(α, λ)
∣∣∣
α=α†(λ)

< 0 and Ψb(α, λ)
∣∣∣
α=λ

> 0. Therefore, in this parameter region,

there exists a unique threshold boundary, which we define as αb(λ), which separates the
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optimality regions for CE-SUB and CE-PL, and which falls between boundaries α = α†

and α = λ (with the 3 lines converging when λ → 1). It satisfies:

pb

(
1− pb

λ
+ 1− pb

1 + pb − pb
αb(λ)

)
=

αb(λ)(1 + λ)

4
.

Since existence and uniqueness are satisfied, αb(λ) is properly defined as a function.

Moreover, since Ψb(αb(λ), λ) = 0, by differentiation w.r.t. λ, we obtain ∂αb(λ)
∂λ

=

−
∂Ψb(α,λ)

∂λ
∂Ψb(α,λ)

∂α

> 0. Hence, αb(λ) is increasing in λ.

As α = 5+8λ−4
√

(1 + λ)(1 + 4λ) is decreasing in λ, there exists a unique intersection

point between α = 5 + 8λ − 4
√

(1 + λ)(1 + 4λ) and αb(λ). Defining this point as

{λ2,b, αb(λ2,b)}, we can immediately see that {λ2, αa(λ2)} and {λ2,b, αb(λ2,b)} satisfy

exactly the same conditions. Due to the uniqueness properties discussed above, we have

λ2,b = λ2 and αa(λ2) = αb(λ2).

Thus, αb(λ) is properly defined and increasing on [λ2, 1).

Moreover, we extend the domain of αb to include 1. We define asymptotically αb(1) =

1 = limλ↑1αb(λ).

• Definition and monotonicity of αc(λ).

Next, we compare S and TLF in the region 0 < α < α‡. Denote the profit difference
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between S and TLF strategies in this region as:

Ψc(α, λ) ≜
1

16(1− α)
− λ

4
.

Then:

∂Ψc(α, λ)

∂α
> 0 >

∂Ψc(α, λ)

∂λ
.

Therefore, a threshold (crossing) boundary between optimality regions for S and TLF

within this particular region of the parameter space (0 < α < α‡) is unique for every λ

and for every α (i.e., if we look vertically or horizontally), if it exists.

Next, we show that such a threshold boundary does indeed exist in this region of the

parameter space. We look at two particular delimiting boundaries for this region, namely

λ = 0 and λ = 1 and examine the sign of Ψc(α, λ) along these boundaries.

– On the boundary λ = 0, we obtain:

Ψc(α, λ)
∣∣∣
λ=0

=
1

16(1− α)
> 0.

– On the boundary λ = 1, as α < α‡ < 3
4
, we obtain:

Ψc(α, λ)
∣∣∣
λ=1

=
1

16(1− α)
− 1

4
< 0.

154



Therefore, in this parameter region, there exists a unique threshold boundary, which we

define as αc(λ), which separates the optimality regions for S and TLF. It satisfies:

1

16(1− αc(λ))
− λ

4
= 0.

We obtain: αc(λ) ≜ 1− 1
4λ

. Also, αc(λ) is increasing in λ.

As α‡(λ) is decreasing in λ, there exists a unique intersection point between α‡(λ) and

αc(λ). Defining this intersection point as {λc, αc(λc)}, we can numerically get that

λc ≈ 0.2789. Then, αc(λ) is properly defined and increasing on λ ∈ [1
4
, λc].

• Definition of αd(λ) and λ3. Monotonicity of αd(λ).

We further compare π∗
CE−SUB under the first case in Prop. 10, i.e., 0 < α ≤ λ ≤ 1, and

π∗
TLF .

We focus first on the case λ < 1. In this region, define the difference between optimal

profits under CE-SUB and TLF as:

Ψd(α, λ) = pa

(
2− pa

α
− pa

1 + pa − pa
α

)
− λ

4
.

Let’s next try to understand the monotonicity of Ψd(α, λ) with respect to α and λ. After

taking derivatives and applying the Envelope theorem with respect to π∗
CE−SUB, given
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that pa(α, λ) represents the maximizing price for CE-SUB in this region, we obtain:

∂Ψd(α, λ)

∂α
= p2a

(
1

α2
+

pa
(α− (1− α)pa)2

)
> 0,

∂Ψd(α, λ)

∂λ
= −1

4
< 0.

Therefore, for each λ (α) there can be at most one crossing point that separates the op-

timality regions for CE-SUB and TLF in this region as we move α (λ). Next, we show

that such a threshold boundary does indeed exist in this region of the parameter space

(0 < α ≤ λ).

We look at two particular delimiting boundaries for this region, namely α → 0 and

α = λ and examine the sign of Ψd(α, λ) along these boundaries.

– On the boundary α → 0, under CE − SUB, the firm can only jump start adoption

through a subscription rate pa → 0. Thus, limα↓0 π
∗
CE−SUB = 0. Hence:

lim
α↓0

Ψd(α, λ) = 0− λ

4
≤ 0.

– On the boundary α = λ, we obtain:

Ψd(α, λ)
∣∣∣
α=λ

=
4(1− λ)p3a − 4(3− λ)λp2a + (9− λ)λ2pa − λ3

4λ(λ+ λpa − pa)
.

Bringing all the terms to a common denominator, we can write Ψd(α, λ)
∣∣∣
α=λ

= q9
q10

,
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where:

q9 =4(1− λ)p3a − 4(3− λ)λp2a + (9− λ)λ2pa − λ3,

q10 =4λ(λ+ λpa − pa) > 0.

The second inequality holds because pa ∈
(
α
2
, α
)

and, in this region, α < λ. There-

fore, the sign of Ψd(α, λ)
∣∣∣
α=λ

is the same as the sign of the numerator, q9.

We use GSUB,a(pa) = 0 to reduce the expression of q9 from a cubic polynomial in

pa to a quadratic one, as follows:

q9 =
λ2
(
λ(λ+ 3) + 2(1− λ)p2a + (−3 + (λ− 6)λ)pa

)
1− λ

.

Denote:

U ≜ 2(1− λ),

V ≜ −3 + (λ− 6)λ,

W ≜ λ(λ+ 3).

Then (1−λ)q9
λ2 = Up2a + V pa +W . Define quadratic function HSUB,TLF (p) ≜ Up2 +

V p+W . In this range of the parameter space, it can be shown that V 2 − 4UW > 0.

Hence, there are two real solutions to the equation HSUB,TLF (p) = 0, namely:

˜̃pH1 =
−V −

√
V 2 − 4UW

2U
and ˜̃pH2 =

−V +
√
V 2 − 4UW

2U
.
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It can be shown that α
2

< ˜̃pH1 < α < ˜̃pH2. Recall that pa is the unique solu-

tion of GSUB,a(p) = 0. Moreover, from the proof of Prop. 10, we know that

GSUB,a(p) > 0 on (−∞, pa) and GSUB,a(p) < 0 on (pa,∞). It can be proved di-

rectly that GSUB,a(˜̃pH1) < 0 = GSUB,a(pa). Hence, pa < ˜̃pH1 < ˜̃pH2. Furthermore,

U > 0, which indicates that HSUB,TLF (p) is convex. Therefore, HSUB,TLF (pa) > 0.

Hence, in this region of the parameter space:

Ψd(α, λ)
∣∣∣
α=λ

> 0.

Thus, Ψd(α, λ)
∣∣∣
α→0

< 0 and Ψd(α, λ)
∣∣∣
α=λ

> 0. Therefore, in this parameter region,

there exists a unique threshold boundary, which we define as αd(λ), which separates

the optimality regions for CE-SUB and TLF (i.e., and Ψd(αd(λ), λ) = 0), which falls

between boundaries α = 0 and α = λ. It satisfies:

pa

(
2− pa

αd(λ)
− pa

1 + pa − pa
αd(λ)

)
=

λ

4
.

Since existence and uniqueness are satisfied, αd(λ) is properly defined as a function. In

terms of the domain of αd(λ), given that Ψd(α, λ)
∣∣∣
α→0

= 0 − λ
4
≤ 0, the intersection

of αd(λ) and α = 0 (x-axis) line can only happen when λ = 0. Hence αd(λ) is well

defined on (0, 1) domain. Moreover, since Ψd(αd(λ), λ) = 0, by differentiation w.r.t. λ,

we obtain ∂αd(λ)
∂λ

= −
∂Ψd(α,λ)

∂λ
∂Ψd(α,λ)

∂α

> 0. Hence, αd(λ) is increasing in λ.

For the case λ = 1, we have αd(1) = limλ→1 αd(λ) = α̃, where α̃ was defined in Propo-

158



sition 1.

Next we check whether αc(λ) and αd(λ) have a crossing point. First, let’s check that

αc and αd are defined in overlapping regions. αc(λ) is defined on λ ∈
[
1
4
, λc

]
, where

λC ≈ 0.2789. It is easy to check that αc(λ) = 1 − 1
4λ

< λ. Thus, any point {λ, αc(λ)}

with λ ∈
[
1
4
, λc

]
falls inside the bigger region 0 < α ≤ λ ≤ 1, which is also the region

where αd(λ) is defined.

Both αc(λ) and αd(λ) are increasing in λ, as previously proved. In this region (i.e.,

λ ∈
[
1
4
, λc

]
, with λC ≈ 0.2789), using αd(λ) < λ and pa (αd(λ), λ) ∈

(
αd(λ)

2
, αd(λ)

)
,

it can be shown that:

∂αd(λ)

∂λ
= −

∂Ψd(α,λ)
∂λ

∂Ψd(α,λ)
∂α

∣∣∣
α=αd(λ)

=
1

4p2a

(
1

αd(λ)2
+ pa

(αd(λ)−(1−αd(λ))pa)2

) <
1

4λ2
=

∂αc(λ)

∂λ
.

Therefore, there can be at most one intersection point between αc(λ) and αd(λ) in this

region.

Given that αd is defined on (0, 1] and αc is defined on
[
1
4
, λc

]
, with (λc, αc(λc)) being

on α‡ line, for αc(λ) and αd(λ) to intersect, it is sufficient to show that αd

(
1
4

)
≥ αc

(
1
4

)
and αd(λc) ≤ αc(λc). Since αd is increasing, it can be immediately seen that:

αd

(
1

4

)
≥ 0 = αc

(
1

4

)
.
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Moreover, through numerical derivation, it can be shown that:

αd(λ)− αc(λ)
∣∣∣
λ=λc

≈ 0.0882− 0.1036 < 0.

Therefore, there exists one unique intersection point between αc(λ) and αd(λ), which

we define as {λ3, αc(λ3)}. Then, we have:

π∗
CE−SUB(λ3, αc(λ3)) = π∗

S(λ3, αc(λ3)) = π∗
TLF (λ3, αc(λ3)).

More precisely, λ3 satisfies:

λ3 ∈
[
1

4
, λc

]
and

1

16(1− αc(λ3))
= pa

(
2− pa

αc(λ3)
− pa

1 + pa − pa
αc(λ3)

)
=

λ3

4
.

Also, we can numerically get λ3 ≈ 0.272 < λc. {λ3, αc(λ3)} falls into the region

0 < α < α‡.

Since αd(λ) is properly defined on (0, 1], obviously it is also properly defined on [λ3, 1].

• Definition of threshold constant αt.

We further compare π∗
CE−SUB under the first case in Prop. 10 and π∗

S under the first case

in Prop 12. Specifically, we look at the parameter region at the intersection of constraints

0 < α < α‡ and 0 < α ≤ λ. In this region, define the difference between optimal profits
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under CE-SUB and S as:

Ψt(α, λ) ≜ pa

(
2− pa

α
− pa

1 + pa − pa
α

)
− 1

16(1− α)
.

Since pa is the unique solution of GSUB,a(pa) = 0, pa does not depend on λ. Therefore,

Ψt(α, λ) does not depend on λ. After taking derivatives and applying the Envelope

theorem with respect to π∗
CE−SUB, given that pa(α, λ) represents the maximizing price

for CE-SUB in this region, we obtain:

∂Ψt(α, λ)

∂α
= p2a

(
1

α2
+

pa
(α− (1− α)pa)2

)
− 1

16(1− α)2
,

∂Ψt(α, λ)

∂λ
= 0.

Let’s check the sign of ∂Ψt(α,λ)
∂α

. Bringing all the terms to a common denominator, we

can write ∂Ψt(α,λ)
∂α

= q11
q12

, where:

q11 =16(1− α)4p4a + 16α(3α− 2)(1− α)2p3a + 15α2(1− α)2p2a + 2α3(1− α)pa − α4,

q12 =16(1− α)2α2(α + αpa − pa)
2 > 0.

Therefore, the sign of ∂Ψt(α,λ)
∂α

is the same as the sign of the numerator, q11.

Recall from Prop. 10 that pa is the unique solution to the cubic equation GSUB,a(pa) =

0. We use this property of pa to reduce the expression of q11 from a quartic polynomial
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in pa to a quadratic one, as follows:

q11 =
(
4α4 − 16α3 − 5α2 + 2α + 15

)
α2p2a

+ 2
(
4α3 − 8α2 + 3α− 15

)
α3pa +

(
8α2 − 8α + 15

)
α4.

Denote:

X ≜ α2
(
4α4 − 16α3 − 5α2 + 2α + 15

)
,

Y ≜ 2α3
(
4α3 − 8α2 + 3α− 15

)
,

Z ≜ α4
(
8α2 − 8α + 15

)
.

Then q11 = Xp2a + Y pa + Z. Define quadratic function HSUB,S(p) ≜ Xp2 + Y p + Z.

In this range of the parameter space, it can be shown that:

Y 2 − 4XZ = 16α8(α(α(−4(α− 6)α− 15) + 4) + 55) > 0.

Hence, there are two real solutions of HSUB,S(p) = 0, namely:

¯̄pH1 =
−Y −

√
Y 2 − 4XZ

2X
and ¯̄pH2 =

−Y +
√
Y 2 − 4XZ

2X
.

It can be shown that ¯̄pH1 < ¯̄pH2 < α
1−α

. From the proof of Prop. 10, we know that

GSUB,a(p) > 0 on (−∞, pa) and GSUB,a(p) < 0 on (pa,∞). It can be proved directly

that GSUB,a(¯̄pH1) < 0. Hence, pa < ¯̄pH1 < ¯̄pH2.
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Furthermore, it can be shown that X > 0, which indicates that HSUB,S(p) is convex.

Therefore, HSUB,PL(pa) > 0. Thus, ∂Ψt(α,λ)
∂α

> 0. Thus, for any given λ, when we

increase α, there can be at most one crossing point that separates the optimality regions

for CE-SUB and S, and, moreover, the crossing (if it exists) can be only from S to CE-

SUB as α increases. Such a separating threshold line, if it exists, has to be horizontal

(i.e., constant for any λ for which it exists in this region) since Ψt(α, λ) is independent

of λ (because pa is independent of λ).

Next, we show that such a threshold boundary does indeed exist in this region of the

parameter space (0 < α < min{λ, α‡}). Since we established that such a threshold will

be a horizontal line cutting through this region, it is enough to show that it exists at a

particular λ. Consider {λ4, α4}, with λ4 = α4, to be the unique intersection between

lines α = λ and α = α‡.3 Numerical analysis reveals that λ4 = α4 ≈ 0.1195. We

examine the sign of Ψt(α, λ) at boundary points {λ4, 0} and {λ4, α4}:

Ψt(α, λ)
∣∣∣
λ=λ4, α↓0

= 0− 1

16
< 0,

Ψt(α, λ)
∣∣∣
λ=α=λ4

≈ 0.0909− 0.0710 > 0.

Therefore, in this parameter region, there exists a unique threshold boundary which sep-

arates the optimality regions for S and CE-SUB and which does not change with λ. And

it is straight forward that the boundary line goes through the point {λ3, αc(λ3)} since

3we know that the intersection is unique because α = λ is increasing in λ, whereas α‡ is decreasing in λ.
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it is the point when π∗
S = π∗

CE−SUB. We define this threshold as constant αt ≜ αc(λ3).

This horizontal boundary extends from {αt, αt} to {λ3, αt}.

• Definition and monotonicity of λx(α).

Finally, we compare π∗
CE−SUB under the second case in Prop. 10 and π∗

S under the first

case in Prop. 12. More specifically, we explore the parameter space at the intersection

of constraints λ < α ≤ α† and 0 < α < α‡. We denote the difference between optimal

profits under strategies CE-SUB and S as:

Ψx(α, λ) ≜ pb

(
2− pb

λ
− pb

1 + pb − pb
α

)
− 1

16(1− α)
.

As pb maximizes π∗
CE−SUB, using Envelope theorem, we get:

∂Ψx(α, λ)

∂α
=

p3b
(α− (1− α)pb)2

− 1

16(1− α)2

∂Ψx(α, λ)

∂λ
=

p2b
λ2

> 0.

As it turns out, in this range of the parameter space, ∂Ψx(α,λ)
∂α

changes signs. As such,

it is not possible to characterize the threshold between S and CE-SUB as a function of

λ (there exist values of λ for which increasing α leads to multiple crossings between

optimality regions for S and CE-SUB).

Nevertheless, moving horizontally, given that ∂Ψx(α,λ)
∂λ

> 0, a threshold (crossing) bound-

ary between optimality regions for CE-SUB and S, within this particular region of the

parameter space, is unique for every α, if it exists.
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Next, we show that such a threshold boundary does indeed exist in this region.

We look at two particular cases for this region:

– First, we consider points on the boundary α = α†(λ). Note that, in this region, we

have λ < α < α‡(λ) (since we consider the intersection of constraints λ < α ≤ α†

and 0 < α < α‡). Given that α‡ is decreasing, as shown above, it means that in this

region we have λ < α‡(λ) ≤ α‡(0) ≈ 0.1352 < 1
3
.4 From Prop. 10, given that in

this parameter region we have λ < 1
3
, we consequently get α† = α̃† (see equation

(C.1)), which satisfies Ξ(α, λ) = 0 and ∂Ξ(α,λ)
∂α

< 0. Similarly, from the Envelope

theorem, we get:

∂Ξ(α, λ)

∂λ
=

p2b
λ2

> 0.

Therefore,

∂α†(λ)

∂λ
= −

∂Ξ(α,λ)
∂λ

∂Ξ(α,λ)
∂α

∣∣∣
α=α†(λ)

> 0.

Thus, α†(λ) = α̃†(λ) is strictly increasing in λ in this region. Therefore, it is invert-

4We can achieve the same conclusion the following way. The intersection point between boundaries
α = α‡(λ) (decreasing) and α = λ (increasing), which occurs approximately at {0.1195, 0.1195}, achieves
the maximum λ for this region, which is smaller than 1

3 .
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ible. On the boundary α = α†(λ), we obtain.

Ψx(α, λ)
∣∣∣
λ=α†−1(α)

=
α

(
√
α + 1)2

− 1

16(1− α)
< 0. (C.7)

– Next, we consider the intersection point between α = α‡ and α = λ, which is

{0.1195, 0.1195}. At this point, we obtain:

Ψx(α, λ)
∣∣∣
α=λ=0.1195

= 0.0909− 0.0710 > 0. (C.8)

Therefore, in this parameter region, there exists a sub-region where Ψx < 0 (S dominates

CE-SUB) and a sub-region where Ψx > 0 (CE-SUB dominates S). Given that, for any

λ, as we increase α, there can be at most one crossing point between optimality regions

for S and CE-SUB, then there exists a unique threshold boundary, which we define as

λx(α), which separates the optimality regions for CE-SUB and S. It satisfies:

1

16(1− α)
= pb

(
2− pb

λx(α)
− pb

1 + pb − pb
α

)
.

Let’s next examine the domain of λx(α). For that purpose, we look at the monotonicity

of Ψx(α, λ) in terms of λ on two particular boundaries:

– First, we consider the line α = λ (boundary in limit). On this line, we get:

Ψx(α, λ)
∣∣∣
λ=α

= pb

(
2− pb

λ
− pb

1 + pb − pb
λ

)
− 1

16(1− λ)
.
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Again, we reminder the reader that we could have written the profit for CE-SUB

in terms of pa at the boundary when α = λ - however, on this boundary, whether

we write the profit in terms of pa or pb, we obtain the same profit because on that

particular line, pa = pb. Then,

∂Ψx(α, λ)

∂λ

∣∣∣
λ=α

= p2b

(
1

λ2
+

pb
(λ+ (λ− 1)pb)2

)
− 1

16(λ− 1)2
.

Let’s check the sign of ∂Ψx(α,λ)
∂λ

∣∣∣
λ=α

. Bringing all the terms to a common denomina-

tor, we can write ∂Ψx(α,λ)
∂λ

= q13
q14

, where:

q13 =16(1− λ)4p4b + 16λ(3λ− 2)(1− λ)2p3b

+ 15λ2(1− λ)2p2b + 2λ3(1− λ)pb − λ4,

q14 =16(1− λ)2λ2(λ+ λpb − pb)
2 > 0.

Therefore, the sign of ∂Ψx(α,λ)
∂λ

is the same as the sign of the numerator, q13.

Recall from Prop. 10 that pb is the unique solution to the cubic equation GSUB,b(pb) =

0. We use this property of pb to reduce the expression of q13 from a quartic polyno-

mial in pb to a quadratic one, as follows:

q13 =
(
4λ4 − 16λ3 − 5λ2 + 2λ+ 15

)
p2b + 2λ

(
4λ3 − 8λ2 + 3λ− 15

)
pb

+ λ2
(
8λ2 − 8λ+ 15

)
.
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Denote:

Ax,1 ≜
(
4λ4 − 16λ3 − 5λ2 + 2λ+ 15

)
,

Bx,1 ≜ 2λ
(
4λ3 − 8λ2 + 3λ− 15

)
,

Cx,1 ≜ λ2
(
8λ2 − 8λ+ 15

)
.

Then q13 = Ax,1p
2
b+Bx,1pb+Cx,1. Define quadratic function H♢

SUB,S(p) ≜ Ax,1p
2+

Bx,1p+ Cx,1. In this range of the parameter space, it can be shown that:

B2
x,1 − 4Ax,1Cx,1 = 16λ4(λ(λ(−4(λ− 6)λ− 15) + 4) + 55) > 0.

Hence, there are two real solutions to the equation H♢
SUB,S(p) = 0, namely:

p♢H1 =
−Bx,1 −

√
B2

x,1 − 4Ax,1Cx,1

2Ax,1

and p♢H2 =
−Bx,1 +

√
B2

x,1 − 4Ax,1Cx,1

2Ax,1

.

It can be shown that p♢H1 < p♢H2 <
α

1−α
when λ < 1

3
(which is satisfied in this region

of the parameter space, as per the above argument). From the proof of Prop. 10, we

know that GSUB,b(p) > 0 on (−∞, pb) and GSUB,b(p) < 0 on (pb,∞). It can be

proved directly that GSUB,b(p
♢
H1) < 0. Hence, pb < p♢H1 < p♢H2.

Furthermore, it can be shown that Ax,1 > 0, which indicates that H♢
SUB,S(p) is con-

vex. Therefore, H♢
SUB,S(pb) > 0. Thus, ∂Ψx(α,λ)

∂λ

∣∣∣
λ=α

> 0. Thus, on the portion of

boundary α = λ within this particular region (0 < α < α‡), as we increase λ (or,
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equivalently, as we increase α), there can be at most one crossing point that separates

the optimality regions for S and CE-SUB, and, moreover, the crossing (if it exists)

can be only from S to CE-SUB as λ increases.

On the asymptotic boundary λ = α, when α → 0, π∗
S > π∗

CE−SUB (as per in-

equality (C.7), given that limλ↓0 α
† = 0); when α → α‡, π∗

S < π∗
CE−SUB (as per

inequality (C.8)). Therefore, there exists a unique intersection point between λx(α)

and λ = α within this region. And it is straight forward to see that the intersection

point is {αt, αt} since it is the point when π∗
S = π∗

CE−SUB. More precisely, when

λx(αt) = αt.

– Second, we consider the boundary α = α‡(λ) (boundary in limit). On this line, we

can get:

Ψx(α
‡(λ), λ) = pb

(
2− pb

λ
− pb

1 + pb − pb
α‡(λ)

)
− 1

16(1− α‡(λ))
.

Differentiating with respect to λ, and using Envelope theorem as pb is maximizing

πCE−SUB, we obtain:

∂Ψx

∂λ
=

(
p3b

(α‡ − (1− α‡)pb)2
− 1

16(1− α‡)2

)
∂α‡

∂λ
+

p2b
λ2

,
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where ∂α‡(λ)
∂λ

= −
∂Ψ‡(α,λ)

∂λ
∂Ψ‡(α,λ)

∂α

, with ∂Ψ‡(α,λ)

∂α
and ∂Ψ‡(α,λ)

∂λ
expressions derived in equa-

tions (C.3) and (C.5).

Let’s check the sign of ∂Ψx(α‡(λ),λ)
∂λ

. Bringing all the terms to a common denominator,

we can write ∂Ψx(α‡(λ),λ)
∂λ

= q15
q16

, where,

q16 = − (1− α)λ2(α + αpb − pb)
2

×
(
16α(λ+ 1)2(4αλ+ α + 3)

+
(
−α(8λ+ 7)2 − 16λ− 15

)√
α(λ+ 1)(αλ+ 1)

)
> 0,

and q15, via degree reduction (since, as per Prop. 10, pb is the unique solution to the

cubic equation GSUB,b(pb) = 0), can be simplified from a quartic polynomial in pb

to a quadratic function q15 = Ax,2p
2
b +Bx,2pb + Cx,2 with:
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Ax,2 ≜
1

4
(1− α)λ2

(
4α(λ+ 1)

(
α3
(
48λ2 − 104λ− 29

)
− 2α2

(
64λ2 + 28λ+ 51

)
+ α

(
64λ2 − 16λ− 29

)
+ 48(λ+ 1)

)
+
(
α3
(
−192λ2 + 320λ+ 347

)
+ α2

(
512λ2 + 576λ+ 301

)
−4α

(
64λ2 + 80λ+ 35

)
− 64λ− 60

)√
α(λ+ 1)(αλ+ 1)

)
,

Bx,2 ≜
1

2
αλ
(
4α(λ+ 1)

(
α3
(
48λ3 + 8λ2 + 15λ+ 4

)
− 2α2

(
64λ3 + 28λ2 + 9λ− 6

)
+ αλ

(
64λ2 − 16λ− 29

)
+ 48λ(λ+ 1)

)
+
(
−
(
α3
(
192λ3 + 128λ2 + 53λ+ 49

))
+ α2

(
512λ3 + 576λ2 + 189λ− 15

)
− 4αλ

(
64λ2 + 80λ+ 35

)
−4λ(16λ+ 15))

√
α(λ+ 1)(αλ+ 1)

)
,

Cx,2 ≜
1

2
α2λ2

(
2α3

(
96λ3 + 148λ2 + 59λ+ 7

)
− α2

(
48λ2

(
4
√
α(λ+ 1)(αλ+ 1) + 3

)
+ λ

(
200
√

α(λ+ 1)(αλ+ 1) + 6
)

+ 43
√

α(λ+ 1)(αλ+ 1) + 128λ3 − 10
)

+ α
(
32λ2

(
4
√

α(λ+ 1)(αλ+ 1)− 3
)

+ 16λ
(
11
√

α(λ+ 1)(αλ+ 1)− 12
)

+85
√

α(λ+ 1)(αλ+ 1)− 96
)

+2(16λ+ 15)
√

α(λ+ 1)(αλ+ 1)
)
,
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where, for simplicity of notation, we dropped the superscript and used α instead of

α‡(λ). Since q16 > 0, the sign of ∂Ψx(α,λ)
∂λ

is the same as the sign of the numerator,

q15.

Define quadratic function ȞSUB,S(p) ≜ Ax,2p
2 + Bx,2p + Cx,2. In this range of the

parameter space, it can be shown that:

B2
x,2 − 4Ax,2Cx,2 > 0.

Hence, there are two real solutions to the equation ȞSUB,S(p) = 0, namely:

p̌H1 =
−Bx,2 −

√
B2

x,2 − 4Ax,2Cx,2

2Ax,2

and p̌H2 =
−Bx,2 +

√
B2

x,2 − 4Ax,2Cx,2

2Ax,2

.

It can be shown that p̌H1 < p̌H2 <
α

1−α
when λ < 1

3
(which is satisfied in this region

of the parameter space, as per the above argument). From the proof of Prop. 10, we

know that GSUB,b(p) > 0 on (−∞, pb) and GSUB,b(p) < 0 on (pb,∞). It can be

proved directly that GSUB,b(p̌H1) < 0. Hence, pb < p̌H1 < p̌H2.

Furthermore, it can be shown that Ax,2 > 0, which indicates that ȞSUB,S(p) is con-

vex. Therefore, ȞSUB,S(pb) > 0. Thus, ∂Ψx(α,λ)
∂λ

> 0. Hence, on the line α = α‡(λ),

when we increase λ, there can be at most one crossing point that separates the op-

timality regions for S and CE-SUB, and, moreover, the crossing (if it exists) can be

only from S to CE-SUB as λ increases.
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As α† is increasing in λ (and spanning the entire interval (0, 1]) and α‡ is decreasing

in λ, there exists a unique intersection point between α† and α‡ . Defining this point

as {λx,1, α
‡(λx,1)}, with α‡(λx,1) = α†(λx,1).

On the asymptotic boundary α = α‡, when α → α‡(λx,1), π∗
S > π∗

CE−SUB (as per

inequality (C.7)); when α → λ, π∗
S < π∗

CE−SUB (as per inequality (C.8)). Therefore,

there exists a unique intersection point between λx(α) and α‡. We define this point

as {λx(αx), αx}. At this point, we have π∗
S = π∗

CE−PL = π∗
CE−SUB. As such, it can

be easily seen that λx(αx) = λ1.

As λx(α) only intersects once boundaries α = λ and α = α‡(λ), it means that λx(α) is

properly defined on α ∈ (αt, αx), as {α, λx(α)} stays inside this region of the parameter

space for all α ∈ (αt, αx).

Thus, we completely characterized lines α1, α2, and λx, (in particular, segments, α‡(λ),

αa(·), αb(·), αc(·), αd(·), as well as constant thresholds λ1, λ2, λ3, αx), as well as threshold

αt.

Comparison of α1(λ) and α2(λ):

All segments in α1(λ) on [0, 1] (i.e., α‡ on [0, λ1), αa on [λ1, λ2), and αb on [λ2, 1] satisfy

α1(λ) ≥ λ (with equality happening only when λ = 1). At the same time, all segments of
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α2(λ) on
[
1
4
, 1
]

(i.e., αc on
[
1
3
, λ3

)
and αd on [λ3, 1]) satisfy α2(λ) < λ. Thus, we have:

α1(λ) > α2(λ) ∀λ ∈
[
1

4
, 1

]
.

Derivation of the dominating strategy in the entire region 0 < α < 1:

• When λ ≤ α < 1, it is easy to show, via direct comparison, that π∗
CE−PL > π∗

TLF .

Therefore, TLF is suboptimal in this region. Then, by the definition of α1(λ) and λx(α),

and in light of the earlier analysis, we get:

– When α1(λ) ≤ α < 1 and λ ≤ α < 1, CE-PL is the dominating strategy;

– When λ ≤ α < α1(λ), we have two subcases:

* When λ ≤ α < α1(λ) and 0 ≤ λ < λx(α), then S is the dominant strategy;

* When λx(α) ≤ λ ≤ α < α1(λ), then CE-SUB is the dominant strategy.

• When 0 < α < λ, we first show that CE-PL is always dominated:

– When 0 < α ≤ λ(4+5λ−4(1+λ)
√
λ)

16+24λ−7λ2−16λ3 and 0 < α < λ, then it can be shown that

π∗
TLF = λ

4
≥ π∗

CE−PL =
α(λ+1)

(
2αλ+α+1−2

√
α(λ+1)(αλ+1)

)
(1−α)2

. Hence, in this region,

CE-PL is dominated.

– When
λ(4+5λ−4(1+λ)

√
λ)

16+24λ−7λ2−16λ3 < α < 5 + 8λ− 4
√

(λ+ 1)(4λ+ 1) and 0 < α < λ, then

π∗
TLF = λ

4
< π∗

CE−PL =
α(λ+1)

(
2αλ+α+1−2

√
α(λ+1)(αλ+1)

)
(1−α)2

. Therefore, in this region,

CE-PL dominates TLF. Define the difference between optimal profits under CE-SUB
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and CE-PL as:

Ψe(α, λ) ≜ pa

(
2− pa

α
− pa

1 + pa − pa
α

)

−
α(λ+ 1)

(
2αλ+ α + 1− 2

√
α(λ+ 1)(αλ+ 1)

)
(1− α)2

,

Bringing all the terms to a common denominator, we can write Ψe(α, λ) = q17
q18

,

where:

q17 = (1− α)3p3a + (3− α)α(1− α)2p2a

− α(1− α)
(
2
√
α3(λ+ 1)3(αλ+ 1) + α2

(
−2λ2 − 3λ+ 1

)
− α(λ+ 3)

)
pa

+ α2
(
2
√

α3(λ+ 1)3(αλ+ 1)− α2
(
2λ2 + 3λ+ 1

)
− α(λ+ 1)

)
,

q18 = (1− α)2α(α + αpa − pa) > 0,

where q18 > 0 is due to the fact that pa ∈
(
α
2
, α
)
. Therefore, the sign of Ψe(α, λ) is

the same as the sign of q17. Recall from Prop. 10 that pa is the unique solution to the

cubic equation GSUB,a(pa) = 0. We use this property of pa to reduce the expression

of q17 from a cubic polynomial in pa to a quadratic one, as follows:

q17 =
α

2

×
(
(1− α)2αp2a

+ 2(1− α)
(
αλ(α(2λ+ 3) + 1)− 2

√
α3(λ+ 1)3(αλ+ 1)

)
pa

− 2α3(λ(2λ+ 3) + 2) + 4α
√

α3(λ+ 1)3(αλ+ 1)− 2α2λ
)
.
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Denote:

Ae ≜ (1− α)2α,

Be ≜ 2(1− α)
(
αλ(α(2λ+ 3) + 1)− 2

√
α3(λ+ 1)3(αλ+ 1)

)
,

Ce ≜ −2α3(λ(2λ+ 3) + 2) + 4α
√

α3(λ+ 1)3(αλ+ 1)− 2α2λ.

Then 2
α
× q17 = Aep

2
a + Bepa + Ce. Define quadratic function H̃♢

SUB,PL(p) ≜

Aep
2 +Bep+ Ce. In this range of the parameter space, it can be shown that:

B2
e − 4AeCe > 0.

Hence, there are two real solutions to the equation H̃♢
SUB,PL(p) = 0, namely:

p̃♢H1 =
−Be −

√
B2

e − 4AeCe

2Ae

and p̃♢H2 =
−Be +

√
B2

e − 4AeCe

2Ae

.

It can be shown that p̃♢H1 < p̃♢H2 < α
1−α

. From the proof of Prop. 10, we know

that GSUB,a(p) > 0 on (−∞, pa) and GSUB,a(p) < 0 on (pa,∞). It can be proved

directly that GSUB,a(p̃
♢
H1) < 0. Hence, pa < p̃♢H1 < p̃♢H2.

Furthermore, since Ae > 0, H̃♢
SUB,PL(p) is convex. Therefore, H̃♢

SUB,PL(pa) > 0.

Thus, Ψe(α, λ) > 0, meaning that, in this region, CE-PL is dominated by CE-SUB.

– When 5+ 8λ− 4
√

(λ+ 1)(4λ+ 1) ≤ α < 1, we show that CE-PL is dominated by
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CE-SUB. In this region, define the difference between optimal profits under CE-SUB

and CE-PL as:

Ψf (α, λ) ≜ pa

(
2− pa

α
− pa

1 + pa − pa
α

)
− 1

4
α(λ+ 1).

Bringing all the terms to a common denominator, we can write Ψf (α, λ) = q19
q20

,

where:

q19 = p3a(4− 4α) + 4p2a(α− 3)α + paα
2(−α(λ+ 1) + λ+ 9)− α3(λ+ 1),

q20 = 4α(α + αpa − pa) > 0,

where q20 > 0 is due to the fact that pa ∈
(
α
2
, α
)
. Therefore, the sign of Ψf (α, λ)

is the same as that of q19. Recall from Prop. 10 that pa is the unique solution to the

cubic equation GSUB,a(pa) = 0. We use this property of pa to reduce the expression

of q19 from a cubic polynomial in pa to a quadratic one, as follows:

q19 = Afp
2
a +Bfpa + Cf ,

with

Af ≜ 2(1− α),

Bf ≜ α(α− 6− (2− α)λ) + λ− 3,

Cf ≜ α(α− 1)λ+ α + 3).
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Define quadratic function Ȟ♢
SUB,PL(p) ≜ Afp

2 + Bfp + Cf . In this range of the

parameter space, it can be shown that:

B2
f − 4AfCf = (α((α− 2)λ+ α− 6) + λ− 3)2 − 8(1− α)α((α− 1)λ+ α + 3)

> 0.

Hence, there are two real solutions to the equation Ȟ♢
SUB,PL(p) = 0, namely:

p̌♢H1 =
−Bf −

√
B2

f − 4AfCf

2Af

and p̌♢H2 =
−Bf +

√
B2

f − 4AfCf

2Af

.

It can be shown that p̌♢H1 < p̌♢H2 < α
1−α

. From the proof of Prop. 10, we know

that GSUB,a(p) > 0 on (−∞, pa) and GSUB,a(p) < 0 on (pa,∞). It can be proved

directly that GSUB,a(p̌
♢
H1) < 0. Hence, pa < p̌♢H1 < p̌♢H2.

Furthermore, since Af > 0, Ȟ♢
SUB,PL(p) is convex. Therefore, Ȟ♢

SUB,PL(pa) > 0.

Thus, Ψf (α, λ) > 0, meaning that, in this region, CE-PL is dominated by CE-SUB.

Since CE-PL is always dominated when 0 < α < λ, in this region we only need to

compare CE-SUB, TLF, and S. By the definition of α2(λ) and αt, and in light of the

earlier analysis, in the region 0 < α < λ we get:

– If max{α, 1
4
} < λ ≤ 1 and 0 < α < α2(λ), then TLF is the dominating strategy;

– Else, if αt ≤ α < λ, then CE-SUB is the dominant strategy;
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– Else, S is the dominant strategy.

This completes the mapping of dominant strategy to the parameter space (we discussed the

case α ≥ 1 at the very beginning of the proof).

Social welfare comparison.

It can be shown with relative ease, through direct comparisons of closed form solutions,

that SW ∗
TLF = 3λ

8
+ 1

2
≥ max{SW ∗

CE−PL, SW
∗
S}. Thus, we only have to compare SW ∗

TLF

with SWCE−SUB,a, SWCE−SUB,b, and 2
√
α+1

2(
√
α+1)

2 for α ∈ (0, 1). From Prop 10, we know

that pa ∈
(
α
2
, α
)

and pb ∈
(
λ
2
, λ
)
. It is straightforward to see that:

SWCE−SUB,a =
1

2

(
1 + λ− λp2a

α2
− p2a(

1 + pa − pa
α

)2
)

<
1

2

(
1 + λ− λp2a

α2

)
<

3λ

8
+

1

2
= SW ∗

TLF .

SWCE−SUB,b =
1

2

(
1 + λ− p2b

λ
− 1(

1 + pb − pb
α

)2
)

<
1

2

(
1 + λ− p2b

λ

)
<

3λ

8
+

1

2
= SW ∗

TLF .

2
√
α + 1

2 (
√
α + 1)

2 <
1

2
<

3λ

8
+

1

2
= SW ∗

TLF .

Thus, TLF yields the highest social welfare when α ∈ (0, 1). This completes the social

welfare analysis since we discussed the case α ≥ 1 at the very beginning of the proof.
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APPENDIX D

PROOFS OF RESULTS FOR THE SETUP WITH ADOPTION COSTS OF

CHAPTER 2

We first present the optimal strategies under each of the business models separately. As the

proofs require defining a lot of parameters, in the interest of avoiding notation abuse, we

add a subscript D to some of the newly defined parameters (to distinguish from parameters

used in the previous proofs)

Proposition 13. Under CE-PL model, in the presence of adoption costs, the firm’s optimal

pricing strategy, the corresponding profit, and ensuing social welfare are:

0 < α < 13− 4
√
10 α ≥ 13− 4

√
10

(a) 0 ≤ c < c† (b) c† ≤ c < 2α c ≥ 2α 0 ≤ c < 2α c ≥ 2α

p∗CE−PL

α2c−c+2α
(
1+α−

√
(α+1)(α(c+2)−c)

)
1−α2

1
2
(2α− c) - 1

2
(2α− c) -

π∗
CE−PL

2α+α2(c+6)−c−4α
√

(α+1)(2α+(α−1)c)

(1−α)2
(c−2α)2

8α
- (c−2α)2

8α
-

SW ∗
CE−PL

˜SWCE−PL,E
(c−2α)((4α−1)c−6α)

16α2 - (c−2α)((4α−1)c−6α)
16α2 -

Paid adoption in both periods only in period 1 none only in period 1 none

where

˜SWCE−PL,D =
(8α3 + 8α2 + 4α− (4α3 − 6α + 2) c)

√
(α + 1)(2α− (1− α)c)

2(1− α)2(α + 1)(2α− (1− α)c)

+
2α4 (c2 + c− 4)− α2(5c(c+ 1) + 14) + 2α(c+ 1)2 + (c− 1)c

2(1− α)2(α + 1)(2α− (1− α)c)
,

and threshold c†(α) is the unique solution to the equation ΦPL,D(α, c) = 0 over the interval
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(
c†L,

2α(1−2α(α+1))
1−α

)
, with

ΦPL,D(α, c) ≜ (1− α)4c4

+ 8(1− α)2(α(2− 3α) + 1)αc3

+
(
16(α(2− 3α) + 1)2α2 + 8(α− 1)2((α− 14)α− 3)α2

)
c2

+
(
32α3(α(2− 3α) + 1)((α− 14)α− 3)− 1024(α− 1)α4(α + 1)

)
c

− 2048(α + 1)α5 + 16α4((α− 14)α− 3)2,

and

c†L ≜


(
6− 4

1−α

)
α, if 0 < α < 1

3
,

0, if 1
3
≤ α ≤ 13− 4

√
10.

Proof. In period 1, consumers with type θ purchase the product iff 2αθ − c ≥ p. To make

any profit, the firm is constrained to trigger adoption in period 1 (otherwise, no customer

would update their priors and there will also be no adopters in period 2 either). To achieve

that, the firm has to set price p ∈ (0, 2α − c). Thus, it immediately follows that the firm

can make profit iff 0 ≤ c < 2α. As such, the firm does not enter the market if c ≥ 2α.

In the remaining part of the proof we focus on the scenario 0 ≤ c < 2α. In period 1,

the marginal adopter has type θ1 =
c+p
2α

and the installed base is N1 = 1− θ1 = 1− c+p
2α

.

At the beginning of period 2, the consumers who did not adopt in period 1 update their
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priors via social learning from a1 = α to:

a2 = a1 + (1− a1)N1 =
1

2

(
2 + c+ p− c+ p

α

)
.

In period 2, new consumers purchase the product if their type θ satisfies a2θ − c ≥ p.

The marginal potential consumer in period 2 has type θ2 = c+p
1
2(2+c+p− c+p

α )
. We have new

adopters in period 2 iff 0 ≤ θ2 < θ1. We have two cases:

• Case 1: 0 < α < 1.

In this case, we have three subcases:

– Case 1-i: 0 ≤ c < 2α−4α2

1−α
, 0 < p < 2α+αc−4α2−c

1−α
.

Then we have 0 < θ2 < θ1. Then, N2 = θ1 − θ2 > 0. In this case, the firm’s profit

maximization problem becomes:

max
0<p< 2α+αc−4α2−c

1−α

πCE−PL = max
0<p< 2α+αc−4α2−c

1−α

p

(
1− c+ p

1
2

(
2 + c+ p− c+p

α

)) .

It can be shown that ∂2πCE−PL

∂p2
< 0 for p ∈

(
0, 2α+αc−4α2−c

1−α

)
. Thus, it is sufficient to

solve FOC:

∂πCE−PL

∂p
=

−α2 ((c+ p)2 + 4(p− 1))− 4α(c+ p) + (c+ p)2

(c+ p− α(c+ p+ 2))2
= 0.
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Without constrains, the FOC yields two solutions:

p1,D =
α2c− c+ 2α

(
1 + α +

√
(α + 1)(α(c+ 2)− c)

)
1− α2

,

p2,D =
α2c− c+ 2α

(
1 + α−

√
(α + 1)(α(c+ 2)− c)

)
1− α2

.

It can be shown that p1,D > max
{

2α+αc−4α2−c
1−α

, p2,D
}

and p2,D > 0. Comparing

p2,D with 2α+αc−4α2−c
1−α

, we have three subcases:

* Case 1-i-a: 0 < α < 1
2

(√
3− 1

)
, 0 < c < 2α(1−2α(α+1))

1−α
.

Then 0 < p2,D < 2α+αc−4α2−c
1−α

, and it immediately follows that p∗CE−PL =

p2,D =
α2c−c+2α

(
1+α−

√
(α+1)(α(c+2)−c)

)
1−α2 ,

and π∗
CE−PL =

2α+α2(c+6)−c−4α
√

(α+1)(2α+(α−1)c)

(1−α)2
.

* Case 1-i-b: 0 < α < 1
2

(√
3− 1

)
, 2α(1−2α(α+1))

1−α
≤ c < 2α−4α2

1−α
.

Then p2,D ≥ 2α+αc−4α2−c
1−α

. In this case, we have p∗CE−PL → 2α+αc−4α2−c
1−α

. This

case is suboptimal as optimal pricing is pushed into case 1-ii.

* Case 1-i-c: 1
2

(√
3− 1

)
≤ α < 1.

Then p2,D ≥ 2α+αc−4α2−c
1−α

. In this case, we have p∗CE−PL → 2α+αc−4α2−c
1−α

, and

π∗
CE−PL = α(2α(1−2α)−(1−α)c)

(1−α)2
. This case is suboptimal as optimal pricing is

pushed into case 1-ii.

– Case 1-ii: 0 ≤ c < 2α−4α2

1−α
, 2α+αc−4α2−c

1−α
≤ p < 2α− c.

Then we have θ2 ≥ θ1. In this case, N2 = 0; adoption takes place only in period 1.
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The firm’s profit maximization problem becomes:

max
2α+αc−4α2−c

1−α
≤p<2α−c

πCE−PL = max
2α+αc−4α2−c

1−α
≤p<2α−c

p

(
1− c+ p

2α

)
.

Since the profit function is quadratic concave in p, it is sufficient to use FOC. Un-

constrained, FOC yields the following solution:

p3,D =
1

2
(2α− c).

It is obvious that p3,D < 2α − c. Comparing p3,D with 2α+αc−4α2−c
1−α

, we have three

subcases:

* Case 1-ii-a: 0 < α < 1
3
, 0 ≤ c <

(
6− 4

1−α

)
α.

Then 0 < p3,D < 2α+αc−4α2−c
1−α

. Then, we have the corner solution p∗CE−PL =

2α+αc−4α2−c
1−α

, which is dominated by case 1-i-a (at the corner solution we have

θ1 = θ2).

* Case 1-ii-b: 0 < α < 1
3
,
(
6− 4

1−α

)
α ≤ c < 2α−4α2

1−α
.

Then 2α+αc−4α2−c
1−α

≤ p3 < 2α − c. Thus, p∗CE−PL = p3,D = 1
2
(2α − c) and

π∗
CE−PL = (c−2α)2

8α
.

* Case 1-ii-c: 1
3
≤ α < 1, 0 ≤ c < 2α−4α2

1−α
.

Then 2α+αc−4α2−c
1−α

≤ p3,D < 2α − c. Thus, p∗CE−PL = p3,D = 1
2
(2α − c) and

π∗
CE−PL = (c−2α)2

8α
.

– Case 1-iii: 2α−4α2

1−α
≤ c < 2α.

Then θ2 ≥ θ1. In this case, N2 = 0; adoption takes place only in period 1. The firm’s
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profit maximization problem becomes:

max
0<p<2α−c

πCE−PL = max
0<p<2α−c

p

(
1− c+ p

2α

)
.

Since the profit function is quadratic concave in p, it is sufficient to use FOC. Un-

constrained, FOC yields the same solution p3,D = 1
2
(2α− c). Then, p∗CE−PL = p3 =

1
2
(2α− c) and π∗

CE−PL = (c−2α)2

8α
.

As cases 1-i-b, 1-i-c, and 1-ii-a are suboptimal, in order to determine the optimal strategy

when 0 ≤ c < 2α−4α2

1−α
we are left to compare cases 1-i-a to cases and 1-ii-b and 1-ii-c.

When 0 < α < 1
2

(√
3− 1

)
we have

(
6− 4

1−α

)
α < 2α(1−2α(α+1))

1−α
< 2α−4α2

1−α
. Thus, we

only need to explore two subregions:

– Comparison Subregion 1: 0 < α < 1
3
,
(
6− 4

1−α

)
α ≤ c < 2α(1−2α(α+1))

1−α
.

In this region, denote the difference between profits under case 1-i-a and case 1-ii-b

as:

∆PL,D(α, c) ≜
2α + α2(c+ 6)− c− 4α

√
(α + 1)(2α + (α− 1)c)

(1− α)2
− (c− 2α)2

8α
.

Note that:

∆PL,D(α, c) > 0

⇐⇒ 4α2((14− α)α + 3)− (1− α)2 − c2 − 4α(3α + 1)(1− α)c

> 32α2
√

(α + 1)(2α− (1− α)c).
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It can be shown that the 4α2((14−α)α+3)−(1−α)2−c2−4α(3α+1)(1−α)c > 0.

Thus, the sign of ∆PL,D(α, c) is same as the sign of ΦPL,D(α, c), where:

ΦPL,D(α, c) ≜
(
4α2((14− α)α + 3)− (1− α)2 − c2 − 4α(3α + 1)(1− α)c

)2
(D.1)

− 1024α4(α + 1)(2α− (1− α)c).

= (1− α)4c4

+ 8(1− α)2(α(2− 3α) + 1)αc3

+
(
16(α(2− 3α) + 1)2α2 + 8(α− 1)2((α− 14)α− 3)α2

)
c2

+
(
32α3(α(2− 3α) + 1)((α− 14)α− 3)

−1024(α− 1)α4(α + 1)
)
c

− 2048(α + 1)α5 + 16α4((α− 14)α− 3)2.

It can be shown that, in this region, ∂ΦPL,D(α,c)

∂c
< 0. Next, we check the sign of

ΦPL,D(α, c) at the two extremes in c :

ΦPL,D(α, c)
∣∣∣
c=(6− 4

1−α)
= 256(1− 2α)2α6 > 0,

ΦPL,D(α, c)
∣∣∣
c=

2α(1−2α(α+1))
1−α

= 16(1− 2α)2α7(α(4(α− 1)α− 31)− 32) < 0.

Thus, there exists a unique solution c = c†(α) to the equation ∆PL,D(α, c) = 0 over

the interval
((

6− 4
1−α

)
, 2α(1−2α(α+1))

1−α

)
, such that when

(
6− 4

1−α

)
≤ c < c†, case

1-i-a dominates case 1-ii-b; when c† ≤ c < 2α(1−2α(α+1))
1−α

, case 1-ii-b dominates case
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1-i-a.

– Comparison Subregion 2: 1
3
≤ α < 1

2

(√
3− 1

)
, 0 ≤ c < 2α(1−2α(α+1))

1−α
.

In this region, the difference between profits under case 1-i-a and case 1-ii-c is again

given by ΦPL,D(α, c), as defined in equation (D.1). Following the same steps as

above, we can show that in this region as well we have ∂ΦPL,D(α,c)

∂c
< 0 and:

ΦPL,D(α, c)
∣∣∣
c=

2α(1−2α(α+1))
1−α

= 16(1− 2α)2α7(α(4(α− 1)α− 31)− 32) < 0.

Then, we look at the other extreme in c:

ΦPL,D(α, c)
∣∣∣
c=0

= 16(1− α)2α4((α− 26)α + 9).

It can be shown that:

ΦPL,D(α, c)
∣∣∣
c=0


> 0 , 1

3
≤ α < 13− 4

√
10,

≤ 0 , 13− 4
√
10 < α < 1

2

(√
3− 1

)
.

(D.2)

Thus:

* When 1
3
≤ α < 13 − 4

√
10, there exists a unique solution c = c†(α)1 to the

equation ∆PL,D(α, c) = 0 over the interval
(
0, 2α(1−2α(α+1))

1−α

)
, such that when

0 ≤ c < c†, case 1-i-a dominates case 1-ii-c; when c† ≤ c < 2α(1−2α(α+1))
1−α

, case

1-ii-c dominates case 1-i-a;

* When 13− 4
√
10 < α < 1

2

(√
3− 1

)
, case 1-ii-c dominates case 1-i-a.

1We use the same notation as in the prior case, since the solution is to the same equation, but over a
different range of α.
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In summary, in case 1, when 0 < α < 13 − 4
√
10 and 0 ≤ c < c†(α), then we have

p∗CE−PL =
α2c−c+2α

(
1+α−

√
(α+1)(α(c+2)−c)

)
1−α2 , π∗

CE−PL =
2α+α2(c+6)−c−4α

√
(α+1)(2α+(α−1)c)

(1−α)2
,

and

SW ∗
CE−PL =

(8α3 + 8α2 + 4α− (4α3 − 6α + 2) c)
√
(α + 1)(2α− (1− α)c)

2(1− α)2(α + 1)(2α− (1− α)c)

+
2α4 (c2 + c− 4)− α2(5c(c+ 1) + 14) + 2α(c+ 1)2 + (c− 1)c

2(1− α)2(α + 1)(2α− (1− α)c)
.

Otherwise, p∗CE−PL = 1
2
(2α−c), π∗

CE−PL = (c−2α)2

8α
, and SW ∗

CE−PL = (c−2α)((4α−1)c−6α)
16α2 .

• Case 2: α ≥ 1.

In this case, a1 > a2 > a = 1. None of the period 1 non-adopters will purchase in

period 2. The profit maximization problem becomes:

max
0<p<2α−c

πCE−PL = max
0<p<2α−c

p

(
1− c+ p

2α

)
.

Then, p∗CE−PL = 1
2
(2α − c), π∗

CE−PL = (c−2α)2

8α
, and SW ∗

CE−PL = (c−2α)((4α−1)c−6α)
16α2 .

Proposition 14. Under CE-SUB model, in the presence of adoption costs, the firm’s opti-

mal pricing strategy, the corresponding profit, and ensuing social welfare are:

• 0 < α ≤ 1.
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0 ≤ c < α α ≤ c

p∗CE−SUB pa,D -

π∗
CE−SUB π1,CE−SUB,D -

SW ∗
CE−SUB SW1,CE−SUB,D -

Paid adoption in both periods none

where pa,D is the unique solution to the equation GSUB,D(p) = 0 over the interval[
α−c
2
, α− c

)
with

GSUB,D(p) ≜ −2(1− α)2p3 + p2(1− α)((6− α)α + 5(α− 1)c)

+ 2p
(
(α− 3)α2 − 2(α− 1)2c2 + α

(
α2 − 6α + 5

)
c
)

+ (1− α)2c3 + 2α3 + (3α− 5)α2c+ α
(
α2 − 5α + 4

)
c2,

and

π1,CE−SUB,D = pa,D

(
2− c+ pa,D

α
− c+ pa,D

1 + c+ pa,D − c+pa,D
α

)
,

SW1,CE−SUB,D = 1− c− (c+ pa,D)
2

2α2
− (c+ pa,D)

2

2
(
1 + c+ pa,D − c+pa,D

α

)2
+

c(c+ pa,D)

1 + c+ pa,D − c+pa,D
α

.

• 1 < α ≤ 2.
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0 ≤ c < 2(α−1)α
3α+1

2(α−1)α
3α+1

≤ c < α2−α
α+1

α2−α
α+1

≤ c < α α ≤ c

p∗CE−SUB
2α−c
2(α+1)

c
α−1

α−c
2

-

π∗
CE−SUB

(2α−c)2

4α(α+1)
2c(α−c−1)
(α−1)2

(α−c)2

2α
-

SW ∗
CE−SUB SW2,CE−SUB,D

(α−2)c2

(α−1)2
− c+ 1 (α−c)(−(2α−1)c+3α)

4α2 -

Paid adoption in period 1 in both periods in both periods none

where SW2,CE−SUB,D =
4α2(α(α+4)+1)+(α2(8α+7)−1)c2−4α(2α+1)(α2+1)c

8α2(α+1)2
.

• 2 < α < 1
2

(√
17 + 3

)
.

0 ≤ c < α− 2 α− 2 ≤ c < 2(α−1)α
3α+1

2(α−1)α
3α+1

≤ c < α2−α
α+1

α2−α
α+1

≤ c < α α ≤ c

2 < α ≤ 3 3 < α < 1
2

(√
17 + 3

)

0 ≤ c < c1,SUB,D c1,SUB,D ≤ c < α− 2

p∗CE−SUB
2α−c
2(α+1)

α−c
2

2α−c
2(α+1)

2α−c
2(α+1)

c
α−1

α−c
2

-

π∗
CE−SUB

(2α−c)2

4α(α+1)
(α−c)2

4α
(2α−c)2

4α(α+1)
(2α−c)2

4α(α+1)
2c(α−c−1)
(α−1)2

(α−c)2

2α
-

SW ∗
CE−SUB SW2,CE−SUB,D

(α−c)(−(4α−1)c+3α)
8α2 SW2,CE−SUB,D SW2,CE−SUB,D

(α−2)c2

(α−1)2
− c+ 1 (α−c)(−(2α−1)c+3α)

4α2 -

Paid adoption in both periods in period 1 in both periods in both periods in both periods in both periods none

where c1,SUB,D = α−
√
α + 1− 1.

• 1
2

(√
17 + 3

)
≤ α < 4

√
2 + 5.
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0 ≤ c < c1,SUB,D c1,SUB,D ≤ c < 2(α−1)α
3α+1

2(α−1)α
3α+1

≤ c < α2−α
α+1

α2−α
α+1

≤ c < α α ≤ c

p∗CE−SUB
α−c
2

2α−c
2(α+1)

c
α−1

α−c
2

-

π∗
CE−SUB

(α−c)2

4α
(2α−c)2

4α(α+1)
2c(α−c−1)
(α−1)2

(α−c)2

2α
-

SW ∗
CE−SUB

(α−c)(−(4α−1)c+3α)
8α2 SW2,CE−SUB,D

(α−2)c2

(α−1)2
− c+ 1 (α−c)(−(2α−1)c+3α)

4α2 -

Paid adoption in period 1 in both periods in both periods in both periods none

• 4
√
2 + 5 ≤ α.

0 ≤ c < c3,SUB,D c3,SUB,D ≤ c < α2−α
α+1

α2−α
α+1

≤ c < α α ≤ c

p∗CE−SUB
α−c
2

c
α−1

α−c
2

-

π∗
CE−SUB

(α−c)2

4α
2c(α−c−1)
(α−1)2

(α−c)2

2α
-

SW ∗
CE−SUB

(α−c)(−(4α−1)c+3α)
8α2

(α−2)c2

(α−1)2
− c+ 1 (α−c)(−(2α−1)c+3α)

4α2 -

Adoption in period 1 in both periods in both periods none

where c3,SUB,D = (α−1)α(α+3)−2
√
2α(α−1)

α(α+6)+1
.

Proof. In period 1, customers subscribe iff αθ − c ≥ p. To make profit, the firm is

constrained to set 0 < p < α − c. Thus, it immediately follows that the firm can make

profit iff 0 ≤ c < α. As such, the firm does not enter the market if c ≥ α.

In the remaining part of the proof we focus on the scenario 0 ≤ c < α. In period 1, the

marginal adopter has type θ1 =
c+p
α

and the installed base is N1 = 1− θ1 = 1− c+p
α

.
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At the beginning of period 2, the consumers who did not adopt in period 1 update their

priors via social learning from a1 = α to:

a2 = a1 + (1− a1)N1 = 1 + p+ c− c+ p

α
.

In period 2, new consumers subscribe to the product/service if their type θ satisfies a2θ−c ≥

p.

We have two cases:

• Case 1: 0 < α ≤ 1.

In this case, a1 ≤ a2 ≤ a = 1. The marginal customer type for period 1 non-adopters

at the beginning of period 2 is θ2 = c+p

1+c+p− c+p
α

< θ1. Thus, all customers with types

θ ∈ [θ2, θ1) are new adopters in period 2 (i.e., fresh subscribers). In the case of period

1 adopters (i.e., with type θ ∈ [θ1, 1]), their valuation of the product updates upwards

and there is no more adoption cost in period 2 (since adoption cost is a one-time cost).

Thus, all adopters in period 1 continue to subscribe in period 2. The profit maximization

problem becomes:

max
0<p<α−c

πCE−SUB = max
0<p<α−c

p(1− θ1 + 1− θ2)

= max
0<p<α−c

p

(
2− c+ p

α
− c+ p

1 + c+ p− c+p
α

)
.

It can be shown that ∂2πCE−SUB

∂p2
< 0. Hence, FOC is sufficient to determine the optimal
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price. We have:

∂πCE−SUB

∂p
=

GSUB,D

QSUB,D

,

where:

GSUB,D(p) ≜ −2(1− α)2p3 + p2(1− α)((6− α)α + 5(α− 1)c)

+ 2p
(
(α− 3)α2 − 2(α− 1)2c2 + α

(
α2 − 6α + 5

)
c
)

+ (1− α)2c3 + 2α3 + (3α− 5)α2c+ α
(
α2 − 5α + 4

)
c2,

QSUB,D(p) ≜ α(α− (1− α)c− (1− α)p)2 > 0.

Thus, when solving FOC
(

∂πCE−SUB

∂p
= 0

)
, it is enough to look at the numerator. We

further have two cases:

– Case 1-i: 0 < α < 1.

In this case, GSUB,D(p) is cubic in p and, thus, the equation ∂GSUB,D(p)

∂p
= 0 has two

solutions:

p1,SUB,D =
α + αc− c

1− α
and p2,SUB,D =

−α2 + 3α + 2αc− 2c

3(1− α)
.

It can be shown that p1,SUB,D > α− c and p2,SUB,D > α− c. Thus, ∂GSUB,D(p)

∂p
< 0

for all p ∈ (0, α − c). Evaluating GSUB,D(p) at various threshold points, it can be
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shown that:

GSUB,D(0) > GSUB,D

(α− c

2

)
> 0 > GSUB,D(α− c).

Thus, GSUB,D(p) = 0 has a unique solution pa,D ∈
[
α−c
2
, α− c

)
over the real line,

which is also the optimal profit-maximizing price in this region (p∗CE−SUB = pa,D).

More precisely, ∂πCE−SUB(p)

∂p
> 0 for p ∈ (0, pa,D) and ∂πCE−SUB(p)

∂p
< 0 for p ∈

(pa,D, α − c). The formulas for the optimal profit and associated social welfare

follow trivially.

– Case 1-ii: α = 1.

In this case, GSUB,D(p) = −2(c + 2p − 1). The equation GSUB,D(p) = 0 has a

unique solution pa,D = 1−c
2

∈
[
1−c
2
, 1− c

)
. Therefore, p∗CE−SUB = pa,D.

• Case 2: 1 < α.

In this case, a1 ≥ a2 ≥ a = 1. None of period 1 non-adopters will subscribe in

period 2 as they revise downwards their perceived valuation of the product. On the

other hand, period 1 subscribers, when exploring renewing their subscription for period

2, have to consider the tension between two opposing forces: (i) the downgrading in

the perceived valuation (which by now has been calibrated to the real value through

experience learning) and (ii) the reduction in adoption cost (the adoption cost is incurred

only at adoption time and, as such, returning customers would no longer incur that

cost in period 2). Thus, the marginal adopting customer type in period 2, θ2, satisfies

θ2 = max{θ1,min{1, p}}. Since 0 < p < α − c, comparing α − c with 1, we get three
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cases:

– Case 2-i: 0 ≤ c < α− 1, 0 < p < 1.

In this case, α − c > 1 > p and θ2 = max{θ1, p}. Comparing θ1 and p, we obtain

two sub-cases:

* Case 2-i-A: 0 < p ≤ c
α−1

.

In this case, θ1 ≥ p and all period 1 subscribers continue to subscribe in period

2. Thus, the profit maximization problem becomes:

max
0<p< c

α−1

πCE−SUB = max
0<p< c

α−1

2p

(
1− c+ p

α

)
.

Since the profit is quadratic concave in p, it is sufficient to use FOC to derive

optimal price. Unconstrained, FOC yields the following solution:

p3,SUB,D =
α− c

2
.

Comparing p3,SUB,D with c
α−1

, we obtain two sub-cases:

· Case 2-i-A-I: 0 ≤ c < α2−α
α+1

.

In this case, p3,SUB,D > c
α−1

. Then, p∗CE−SUB = c
α−1

and π∗
CE−SUB =

2c(α−c−1)
(α−1)2

.

· Case 2-i-A-II: α2−α
α+1

≤ c < α− 1.

In this case, p3,SUB,D ≤ c
α−1

. Then, p∗CE−SUB = p3,SUB,D = α−c
2

and

π∗
CE−SUB = (α−c)2

2α
.
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* Case 2-i-B: c
α−1

< p < 1.

In this case, θ2 = p > θ1 and the profit maximization problem becomes:

max
c

α−1
≤p<1

πCE−SUB = max
c

α−1
≤p<1

p

(
2− c+ p

α
− p

)
.

Since the profit function is quadratic concave in p, it is sufficient to use FOC to

identify the optimal price. Unconstrained, FOC yields the following solution:

p4,SUB,D =
2α− c

2(α + 1)
< 1.

Comparing p4,SUB,D with c
α−1

, we obtain two sub-cases:

· Case 2-i-B-I: 0 ≤ c < 2(α−1)α
3α+1

.

In this case, p4,SUB,D > c
α−1

, p∗CE−SUB = p4,SUB,D = 2α−c
2(α+1)

, π∗
CE−SUB =

(2α−c)2

4α(α+1)
.

· Case 2-i-B-II: 2(α−1)α
3α+1

≤ c < α− 1.

In this case, p4,SUB,D ≤ c
α−1

, and p∗CE−SUB → c
α−1

. This case is suboptimal

as we are pushed into case 2-i-A.

Since α2−α
α+1

> 2(α−1)α
3α+1

, comparing case 2-i-A (both subcases) against case 2-i-B-I

and reorganizing, we get:

* Case 2-i-a: 0 ≤ c < 2(α−1)α
3α+1

.

In this case, 2c(α−c−1)
(α−1)2

< (2α−c)2

4α(α+1)
, i.e., case 2-i-B-I dominates case 2-i-A-I,

p∗CE−SUB = 2α−c
2(α+1)

, π∗
CE−SUB = (2α−c)2

4α(α+1)
.

* Case 2-i-b: 2(α−1)α
3α+1

≤ c < α2−α
α+1

.
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In this case, as discussed above, case 2-i-B-II is dominated by 2-i-A-I. Thus,

p∗CE−SUB = c
α−1

, π∗
CE−SUB = 2c(α−c−1)

(α−1)2
.

* Case 2-i-c: α2−α
α+1

≤ c < α− 1.

In this case, as discussed above, case 2-i-B-II is dominated by 2-i-A-II, Thus

p∗CE−SUB = α−c
2

, π∗
CE−SUB = (α−c)2

2α
.

– Case 2-ii: 0 ≤ c < α− 1, 1 ≤ p < α− c

In this case, θ2 = 1. There are no subscribers in period 2. The profit maximization

problem becomes:

max
1≤p<α−c

πCE−SUB = max
1≤p<α−c

p

(
1− c+ p

α

)
.

Since the function is quadratic, it is sufficient to use FOC. Unconstrained, FOC

yields the following solution:

p3,SUB,D =
α− c

2
< α− c.

Comparing p3,SUB,D with 1, we obtain three sub-cases:

* Case 2-ii-a: 1 < α ≤ 2.

In this case, p3,SUB,D ≤ 1, and thus p∗CE−SUB = 1, π∗
CE−SUB = 1− c+1

α
.

* Case 2-ii-b: 2 < α, 0 ≤ c < α− 2.

In this case, p3,SUB,D > 1, p∗CE−SUB = p3,SUB,D = α−c
2

, π∗
CE−SUB = (α−c)2

4α
.

* Case 2-ii-c: 2 < α, α− 2 ≤ c < α− 1.
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In this case, p3,SUB,D ≤ 1, p∗CE−SUB = 1, π∗
CE−SUB = 1− c+1

α
.

– Case 2-iii: α− 1 ≤ c < α, 0 < p < α− c ≤ 1.

In this case, c
α−1

≥ 1 > p. Thus, θ1 > p and θ2 = θ1. The profit maximization

problem becomes:

max
0≤p<α−c

πCE−SUB = max
0≤p<α−c

2p

(
1− c+ p

α

)
.

It follows that p∗CE−SUB = α−c
2

, π∗
CE−SUB = (α−c)2

2α
.

Let us summarize case 2 (and in particular compare 2.i and 2.ii cases). It is easy to see

that α− 2 < α2−α
α+1

. Comparing α− 2 and 2(α−1)α
3α+1

, we get three cases:

– 1 < α ≤ 2.

It can be easily shown that case 2-i dominates case 2-ii-a when c < α−1. Combining

with case 2-iii, we extend the region to c < α.

– 2 < α < 1
2

(√
17 + 3

)
.

In this case, we have α− 2 < 2(α−1)α
3α+1

< α2−α
α+1

. We further have four sub-cases:

* 0 ≤ c < α− 2.

In this region, denote the profit difference between case 2-i-a and case 2-ii-b as:

H1,SUB,D ≜
(2α− c)2

4α(α + 1)
− (α− c)2

4α
=

−c2 + 2(α− 1)c− (α− 3)α

4(α + 1)
.
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The equation H1,SUB,D = 0 has two solutions:

c1,SUB,D = α−
√
α + 1− 1 and c2,SUB,D = α +

√
α + 1− 1.

We have c1,SUB,D < α− 2 < c2,SUB,D. Comparing c1,SUB,D with 0, we get:

· If 2 < α ≤ 3, then c1,SUB,D < 0 and H1,SUB,D ≥ 0 for all c ∈ [0, α − 2),

i.e. case 2-i-a dominates case 2-ii-b. Thus, p∗CE−SUB = 2α−c
2(α+1)

, π∗
CE−SUB =

(2α−c)2

4α(α+1)
, and SW ∗

CE−SUB =
4α2(α(α+4)+1)+(α2(8α+7)−1)c2−4α(2α+1)(α2+1)c

8α2(α+1)2
.

· If 3 < α < 1
2

(√
17 + 3

)
and 0 ≤ c < c1,SUB,D = α −

√
α + 1 − 1, then

H1,SUB,D < 0, i.e. case 2-ii-b dominates case 2-i-a. Thus, p∗CE−SUB = α−c
2

,

π∗
CE−SUB = (α−c)2

4α
, SW ∗

CE−SUB = (α−c)(−(4α−1)c+3α)
8α2 .

· If 3 < α < 1
2

(√
17 + 3

)
and c1,SUB,D ≤ c < α − 2, then H1,SUB,D ≥ 0 ,

i.e. case 2-i-a dominates case 2-ii-b. Thus, p∗CE−SUB = 2α−c
2(α+1)

, π∗
CE−SUB =

(2α−c)2

4α(α+1)
, and SW ∗

CE−SUB =
4α2(α(α+4)+1)+(α2(8α+7)−1)c2−4α(2α+1)(α2+1)c

8α2(α+1)2
.

* α− 2 ≤ c < 2(α−1)α
3α+1

.

In this region, it can be shown that (2α−c)2

4α(α+1)
> 1− c+1

α
, i.e. case 2-i-a dominates

case 2-ii-c. Thus, p∗CE−SUB = 2α−c
2(α+1)

, π∗
CE−SUB = (c−2α)2

4α(α+1)
, and SW ∗

CE−SUB =

4α2(α(α+4)+1)+(α2(8α+7)−1)c2−4α(2α+1)(α2+1)c
8α2(α+1)2

.

*
2(α−1)α
3α+1

≤ c < α2−α
α+1

.

In this region, it can be shown that 2c(α−c−1)
(α−1)2

> 1− c+1
α

, i.e. case 2-i-b dominates

case 2-ii-c. Thus, p∗CE−SUB = c
α−1

, π∗
CE−SUB = 2c(α−c−1)

(α−1)2
, and SW ∗

CE−SUB =

(α−2)c2

(α−1)2
− c+ 1.

*
α2−α
α+1

≤ c < α.
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In this region, it can be shown that, when α2−α
α+1

≤ c < α − 1, we have (α−c)2

2α
>

1− c+1
α

, i.e. case 2-i-c dominates case 2-ii-c, and p∗CE−SUB = α−c
2

, π∗
CE−SUB =

(α−c)2

2α
, SW ∗

CE−SUB = (α−c)(−(2α−1)c+3α)
4α2 . Combining with case 2-iii, we extend

the region to α2−α
α+1

≤ c < α.

– α ≥ 1
2

(√
17 + 3

)
.

In this case, we have 2(α−1)α
3α+1

≤ α− 2 < α2−α
α+1

. We further have four sub-cases:

* 0 ≤ c < 2(α−1)α
3α+1

.

Following the same steps as in the above case, it can be shown that 0 < c1,SUB,D

and 2(α−1)α
3α+1

< c2,SUB,D. It can be shown that c1,SUB,D < 2(α−1)α
3α+1

iff α <

4
√
2 + 5. We have the following sub-cases:

· If 1
2

(√
17 + 3

)
≤ α < 4

√
2 + 5, 0 ≤ c < c1,SUB,D, case 2-ii-b dominates

case 2-i-a. Thus, p∗CE−SUB = α−c
2

, π∗
CE−SUB = (α−c)2

4α
, and SW ∗

CE−SUB =

(α−c)(−(4α−1)c+3α)
8α2 .

· If 1
2

(√
17 + 3

)
≤ α < 4

√
2 + 5 and c1,SUB,D ≤ c < 2(α−1)α

3α+1
, case 2-i-

a dominates case 2-ii-b. Thus, p∗CE−SUB = 2α−c
2(α+1)

, π∗
CE−SUB = (2α−c)2

4α(α+1)
,

SW ∗
CE−SUB =

4α2(α(α+4)+1)+(α2(8α+7)−1)c2−4α(2α+1)(α2+1)c
8α2(α+1)2

.

· If α ≥ 4
√
2+5, then c1,SUB,D ≥ 2(α−1)α

3α+1
. Case 2-ii-b dominates case 2-i-a.

p∗CE−SUB = α−c
2

, π∗
CE−SUB = (α−c)2

4α
, and SW ∗

CE−SUB = (α−c)(−(4α−1)c+3α)
8α2 .

*
2(α−1)α
3α+1

≤ c < α− 2.
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In this region, denote the profit difference between case 2-i-b and case 2-ii-b as:

H2,SUB,D ≜
2c(α− c− 1)

(α− 1)2
− (α− c)2

4α

=
− (α2 + 6α + 1) c2 + 2α (α2 + 2α− 3) c− (α− 1)2α2

4(α− 1)2α
.

The equation H2,SUB,D = 0 has two solutions:

c3,SUB,D =
(α− 1)α(α + 3)− 2

√
2α(α− 1)

α(α + 6) + 1
,

c4,SUB,D =
(α− 1)α(α + 3) + 2

√
2α(α− 1)

α(α + 6) + 1
.

It can be shown that c3,SUB,D < α− 2 < c4,SUB,D. We have c3,SUB,D < 2(α−1)α
3α+1

iff α < 4
√
2 + 5. We get the following sub-cases:

· If 1
2

(√
17 + 3

)
≤ α < 4

√
2+5, then c3,SUB,D < 2(α−1)α

3α+1
. Thus, H2,SUB,D >

0 for all c ∈
[
2(α−1)α
3α+1

, α− 2
)

. Case 2-i-b dominates case 2-ii-b. We have

p∗CE−SUB = c
α−1

, π∗
CE−SUB = 2c(α−c−1)

(α−1)2
, and SW ∗

CE−SUB = (α−2)c2

(α−1)2
−c+1.

· If α ≥ 4
√
2 + 5 and 2(α−1)α

3α+1
≤ c < c3,SUB,D, then case 2-ii-b dominates

case 2-i-b. Thus, p∗CE−SUB = α−c
2

, π∗
CE−SUB = (α−c)2

4α
, and SW ∗

CE−SUB =

(α−c)(−(4α−1)c+3α)
8α2 .

· If α ≥ 4
√
2 + 5 and c3,SUB,D ≤ c < α− 2, then case 2-i-b dominates case

2-ii-b. Thus, p∗CE−SUB = c
α−1

, π∗
CE−SUB = 2c(α−c−1)

(α−1)2
, and SW ∗

CE−SUB =

(α−2)c2

(α−1)2
− c+ 1.

* α− 2 ≤ c < α2−α
α+1

.

In this region, it can be shown that 2c(α−c−1)
(α−1)2

> 1− c+1
α

, i.e. case 2-i-b dominates
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case 2-ii-c. Thus, p∗CE−SUB = c
α−1

, π∗
CE−SUB = 2c(α−c−1)

(α−1)2
, and SW ∗

CE−SUB =

(α−2)c2

(α−1)2
− c+ 1.

*
α2−α
α+1

≤ c < α.

In this region, it can be shown that when α2−α
α+1

≤ c < α − 1, (α−c)2

2α
> 1 − c+1

α
,

i.e. case 2-i-c dominates case 2-ii-c and p∗CE−SUB = α−c
2

, π∗
CE−SUB = (α−c)2

2α
,

SW ∗
CE−SUB = (α−c)(−(2α−1)c+3α)

4α2 . Combining with case 2-iii, we extend the

region to α2−α
α+1

≤ c < α.

Proposition 15. Under TLF model, in the presence of adoption costs, the firm’s optimal

pricing strategy, the corresponding profit, and ensuing social welfare are:

0 < α < 1 α ≥ 1

0 ≤ c < α
2

α
2
≤ c < α c ≥ α 0 ≤ c < α

2
α
2
≤ c < α c ≥ α

p∗TLF
1
2

c
α

- 1
2

c
α

-

π∗
TLF

1
4

c(1− c
α)

α
- 1

4

c(1− c
α)

α
-

SW ∗
TLF

αc2(α+2(α−1)c)
2(α+(α−1)c)2

− c+ 7
8

1
2
c
(

(2α−1)c
α2 − 2

)
+ 7

8
-

2α4−(1−α)2c4+2(1−α)2αc3+(α2−α4)c2+2(α−2)α3c

2α2(α+αc−c)2
(α−c)(−(α−1)c+α)

α2 -

Paid adoption in both periods in both periods none in both periods in both periods none

Proof. Under TLF, all customers get the product for free in period 1, but they incur adoption

cost c. Thus, customers of type θ start the free trial iff αθ ≥ c. It is straightforward to see

that there is no adoption 0 < α ≤ c. In the remaining part of the proof, we focus on the

more interesting scenario in which adoption can take place, i.e. 0 ≤ c < α.

The marginal adopter in period 1 has type θ1 = c
α

. The size of the adopter population in

period 1 is N1 = 1− c
α

.

At the beginning of period 2, adopters in period 1 purchase the product iff θ ≥ p (they

already incurred the one-time adoption cost during the free trial in period 1). Period 1

adopters, through WOM, will help the non-adopters update their priors at the beginning of
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period 2 - however, the consumers who did not adopt in period 1 still have one free-trial

period available to them and thus, regardless of how they update their priors, they will not

contribute revenue to the firm. Hence, the only revenue can comes from consumers who

took advantage of the free trial in period 1. Thus, the firm must set p ∈ (0, 1). The marginal

paying customer in period 2 has type θ2 = max{θ1, p}. Comparing p with θ1, we get two

cases:

• Case 1: 0 < p < c
α
= θ1.

In this case, θ2 = θ1 and the profit maximization problem becomes:

max
0<p< c

α

πTLF = max
0<p< c

α

p
(
1− c

α

)
.

It follows that p∗TLF ↑ c
α

. This case is suboptimal as p∗TLF is pushed into case 2 region.

• Case 2: c
α
≤ p < 1.

In this case, θ2 ≥ θ1 and the profit maximization problem becomes:

max
c
α
≤p<1

πTLF = max
c
α
≤p<1

p(1− p).

We have two subcases:

– Case 2-i: If 0 ≤ c < α
2

, p∗TLF = 1
2
, π∗

TLF = 1
4
.

– Case 2-ii: If α
2
≤ c < α, p∗TLF = c

α
, π∗

TLF = c
α

(
1− c

α

)
.

To get the social welfare, we further consider the non-adopters in period 1. Non-
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adopters in period 1 update their priors via social learning from a1 = α to:

a2 = a1 +N1(1− a1) = 1 + c− c

α
.

For a period 1 non-adopter of type θ < θ1 to adopt in period 2 under free trial, it must be

the case that θ ≥ θ̃2 ≜ c
1+c− c

α
. Comparing θ̃2 with θ1, we further split cases 2-i and 2-ii

each into two subcases as follows:

• Case 2-i-a: 0 ≤ c < α
2

, 0 < α < 1.

In this case, θ̃2 < θ1, SW ∗
CE−SUB = αc2(α+2(α−1)c)

2(α+(α−1)c)2
− c+ 7

8
.

• Case 2-i-b: 0 ≤ c < α
2

, α ≥ 1.

In this case, θ̃2 ≥ θ1, SW ∗
CE−SUB = 1

2
c
(

(2α−1)c
α2 − 2

)
+ 7

8
.

• Case 2-ii-a: α
2
≤ c < α, 0 < α < 1.

In this case, θ̃2 < θ1, SW ∗
CE−SUB =

2α4−(1−α)2c4+2(1−α)2αc3+(α2−α4)c2+2(α−2)α3c

2α2(α+αc−c)2
.

• Case 2-ii-b: α
2
≤ c < α, α ≥ 1.

In this case, θ̃2 ≥ θ1, SW ∗
CE−SUB = (α−c)(−(α−1)c+α)

α2 .

Proposition 16. Under S model, in the presence of adoption costs, the firm’s optimal seed-

ing ratio, pricing strategy, the corresponding profit, and ensuing social welfare are:

where:
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0 < c < 2α 2α ≤ c

Region A (described below) Otherwise

p∗S
2α−(7α+1)c+t

16α
p∗CE−PL -

k∗
S

−8α2+2α+(α−1)c+t
4(1−α)(2α−c)

0 -

π∗
S

(6α+3(α−1)c−t)(2α−(7α+1)c+t)2

128(1−α)α(2α−c)(2α+(α−1)c+t)
π∗
CE−PL -

SW ∗
S

˜SW S,D SW ∗
CE−PL -

Paid adoption in both periods same as CE-PL none

˜SWS,D =
(2α(1− c) + c)(2α(1− 4α) + (α− 1)c+ t)

16(1− α)α2
+
(
(6α+ 3(α− 1)c− t)

(
−16α3(c(16c+ 15)

−18) + α2(c(c(86c+ 325)− 228) + 4(4t− 3)) + 2α(c(c(−46c+ 10t+ 15)− 5t+ 6)− 2t)

+(2c− 1)(c− t)(3c+ t))
(
4α2(56α− 3) + (α(29α+ 38)− 3)c2 − 2c(2α(α(4α+ 47)− 3)

+(α− 1)t) + t2 − 4α(4α+ 1)t
))

/
(
2
(
4α2(64α− 3)−

(
(α− 1)(43α− 3)c2

)
+2c(2α(α(32α− 55) + 3)− 5αt+ t) + t2 − 4αt

)2
(4(α− 1)(c− 2α))

)
,

and t = (2α + 17αc − c)(α(c + 2) − c). Region A corresponds to parameters α and c

satisfying:

0 ≤ c < c‡(α) , if 0 < α < 1
16
,

and

1
16

≤ α < α†(c).

c‡(α) and α†(c) are defined the proof below.

Proof. First, we point out that CE-PL is a particular case of S with seeding ratio set to

zero. Throughout the proof, we will show that in certain regions CE-PL dominates S with
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non-zero seeding ratio - that is equivalent to saying that the optimal seeding ratio will be 0

in those regions (i.e., S defaults to CE-PL).

If α ≥ 1, seeding brings no benefit as any social learning calibrates perceived valuations

downwards, and, as such, S defaults to CE-PL.

Thus, we are left to explore the non-trivial case of 0 < α < 1. It is straightforward that

the firm can make profit iff 0 ≤ c < 2α. In the remaining part of the proof we focus on the

scenario 0 ≤ c < 2α. We have two cases:

• Case 1: 0 < p < 2α− c.

In this case, there are paying adopters in period 1 (potentially alongside seeded cus-

tomers if k > 0). The marginal paying adopter in period 1 has type θ1 = c+p
2α

. The

marginal seeded adopter in period 1 has type θseed = c
2α

(unlike in the baseline model,

in the scenario with adoption cost not all seeded customers adopt).

Thus, the total number of adopters in period 1 is N1,total = k
(
1− c

2α

)
+(1−k)

(
1− c+p

2α

)
=

2α−c−p(1−k)
2α

. In period 2, the potential customers who have not adopted in period 1 up-

date their prior beliefs via social learning as follows:

a2 = a1 +N1,total(1− a1) = α +
(1− α)(2α− c− p(1− k))

2α
.

A customer of type θ who has not adopted in period 1 (via paying for license or through

the seeding program) will adopt in period 2 iff θ1 > θ ≥ θ2 = c+p

α+
(1−α)(2α−c−p(1−k))

2α

.
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Comparing θ1 and θ2, we have:

θ1 > θ2 ⇐⇒ p <
−4α2 + 2α + αc− c

(1− α)(1− k)
.

Comparing −4α2+2α+αc−c
(1−α)(1−k)

with 0, we have:

−4α2 + 2α + αc− c

(1− α)(1− k)
> 0 ⇐⇒ 0 < α <

1

2
and 0 ≤ c <

2α− 4α2

1− α
< 2α.

Comparing −4α2+2α+αc−c
(1−α)(1−k)

with 2α− c, we have:

−4α2 + 2α + αc− c

(1− α)(1− k)
< 2α− c ⇐⇒ 0 ≤ k <

2α2

(1− α)(2α− c)
< 1.

Since in this case we consider p ∈ (0, 2α− c), we have four sub-cases:

– Case 1-i: 0 < α < 1
2
, 0 ≤ c < 2α−4α2

1−α
, 0 ≤ k < 2α2

(1−α)(2α−c)
.

In this case, 0 < −4α2+2α+αc−c
(1−α)(1−k)

< 2α− c. We have two sub-cases:

* Case 1-i-a: 0 < p < −4α2+2α+αc−c
(1−α)(1−k)

.

In this case, θ1 > θ2. Customers with type θ ∈ [θ2, θ1), who have not been

successfully seeded in period 1, adopt in period 2.

The firm’s profit maximization problem becomes:

max
0<p<−4α2+2α+αc−c

(1−α)(1−k)
,0≤k< 2α2

(1−α)(2α−c)

πS

= max
0<p<−4α2+2α+αc−c

(1−α)(1−k)
,0≤k< 2α2

(1−α)(2α−c)

p(1− k)

(
1− c+ p

α + (α−1)(−2α+c−kp+p)
2α

)
.
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It can be shown that ∂2πS

∂p2
< 0. Thus, it is sufficient to solve FOC:

∂πS

∂p
=

(k − 1)

(2α + (α− 1)c+ p(α− αk + k − 1))2

×
(
α2
(
c2 + 2c(k + 1)p+ p(k(4− kp) + p+ 4)− 4

)
+2α(c(2− 2kp) + (k − 1)p(kp− 2))− (c− kp+ p)2

)
.

Without constraints, the FOC yields two solutions:

p1,D,S =
2α + (α− 1)c+

√
2
√

α(α(c+2)−c)(α+(α−1)k+1)(2α+(α−1)ck)

α+(α−1)k+1

(1− α)(1− k)
,

p2,D,S =
2α + (α− 1)c−

√
2
√

α(α(c+2)−c)(α+(α−1)k+1)(2α+(α−1)ck)

α+(α−1)k+1

(1− α)(1− k)
.

It can be shown that p1,D,S > −4α2+2α+αc−c
(1−α)(1−k)

and p2,D,S > 0. Comparing p2,D,S

with −4α2+2α+αc−c
(1−α)(1−k)

, we have:

p2,D,S <
−4α2 + 2α + αc− c

(1− α)(1− k)

⇐⇒ 4α2 <
√
2

√
α(2α + (α− 1)c)(2α + (α− 1)ck)

α + (α− 1)k + 1

⇐⇒ 8α4 <
α(2α + (α− 1)c)(2α + (α− 1)ck)

α + (α− 1)k + 1

⇐⇒ 8α4 + 8α3 + 2α((1− α)c− 2α)

+ k
(
8(α− 1)α3 + (α− 1)c((1− α)c− 2α)

)
< 0.
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Without constraints,

8α4+8α3+2α((1−α)c−2α)+k
(
8(α− 1)α3 + (α− 1)c((1− α)c− 2α)

)
= 0

yields one solution:

k1,D,S =
2α(2α(2α(α + 1)− 1)− αc+ c)

(1− α) (8α3 + c2 − αc(c+ 2))
.

Notice that:

8(α− 1)α3 + (α− 1)c((1− α)c− 2α) > 0 ⇐⇒ c(2α + (α− 1)c)− 8α3 > 0

k1,D,S ≥ 0 ⇐⇒
(
c(2α + (α− 1)c)− 8α3

)
(2α(2α(α + 1)− 1)− αc+ c) ≤ 0,

k1,D,S <
2α2

(1− α)(2α− c)
⇐⇒ c(2α + (α− 1)c)− 8α3 < 0.

Then, we obtain four cases:

· Case 1-i-a-I: c(2α + (α− 1)c)− 8α3 ≥ 0.

In this case, p2,D,S < −4α2+2α+αc−c
(1−α)(1−k)

. Thus, p∗S = p2,D,S . The profit maxi-

mization problem becomes:

max
0≤k< 2α2

(1−α)(2α−c)

(−(α− 1)c(α + (3α− 1)k + 1)

+2
√
2
√

α(2α + (α− 1)c)(α + (α− 1)k + 1)(2α + (α− 1)ck)

+2α(−α(k + 3) + k − 1)) /
(
(α− 1)2(k − 1)

)
.
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It can be shown that ∂πS

∂k
< 0. Thus, k∗

S = 0, S defaults to CE-PL.

· Case 1-i-a-II: c(2α+(α−1)c)−8α3 < 0, 2α(2α(α+1)−1)+c−αc ≥ 0,

0 ≤ k < k1,D,S .

In this case, p2,D,S > −4α2+2α+αc−c
(1−α)(1−k)

, p∗S = 2α+αc−2c
−α+αk−k+2

. The profit maxi-

mization problem becomes:

max
0≤k<

2α(2α(2α(α+1)−1)−αc+c)

(1−α)(8α3+c2−αc(c+2))

(2α− 1)(k − 1)(2α + (α− 2)c)

−α + (α− 1)k + 2
.

It can be shown that ∆PL,D(α, c) < 0 in this case, which corresponds to the

second case under CE-PL. For any k ∈ [0, k1,D,S),
(2α−1)(k−1)(2α+(α−2)c)

−α+(α−1)k+2
<

(c−2α)2

8α
= π∗

CE−PL. Therefore, this case is sub-optimal, as it is dominated

by not seeding anymore.

· Case 1-i-a-III: c(2α+(α−1)c)−8α3 < 0, 2α(2α(α+1)−1)+c−αc ≥ 0,

k1,D,S ≤ k < 2α2

(1−α)(2α−c)
.

In this case, p2,D,S < −4α2+2α+αc−c
(1−α)(1−k)

. Thus, p∗S = p2,D,S . It can be shown

∂π
∂k

< 0 as well. Therefore, k∗
S = k1,D,S . It can be shown that ∆PL,D(α, c) <

0 in this case, which corresponds to the second case under CE-PL. For any

k ∈
[
k1,D,S,

2α2

(1−α)(2α−c)

)
, πS < (c−2α)2

8α
= π∗

CE−PL. Therefore, this case is

sub-optimal, as it is dominated by not seeding anymore.

· Case 1-i-a-IV: c(2α+(α−1)c)−8α3 < 0, 2α(2α(α+1)−1)+c−αc < 0.

In this case, p2,D,S < −4α2+2α+αc−c
(1−α)(1−k)

. Thus, p∗S = p2,D,S . Same as case 1-i-

a-I, ∂πS

∂k
< 0. Thus, k∗

S = 0, S defaults to CE-PL.

Thus, under case 1-i-a, S either defaults to CE-PL or is strictly dominated by
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CE-PL.

* Case 1-i-b: −4α2+2α+αc−c
(1−α)(1−k)

≤ p < 2α− c.

In this case, θ1 ≤ θ2. There are no new adopters in period 2. The firm’s profit

maximization problem becomes:

max
−4α2+2α+αc−c

(1−α)(1−k)
≤p<2α−c,0≤k< 2α2

(1−α)(2α−c)

πS

= max
−4α2+2α+αc−c

(1−α)(1−k)
≤p<2α−c,0≤k< 2α2

(1−α)(2α−c)

p(1− k)

(
1− c+ p

2α

)
.

It trivially follows that k∗
S = 0. S defaults to CE-PL.

– Case 1-ii: 0 < α < 1
2
, 0 ≤ c < 2α−4α2

1−α
, 2α2

(1−α)(2α−c)
≤ k < 1.

In this case, −4α2+2α+αc−c
(1−α)(1−k)

≥ 2α−c. θ2 < θ1. Customers with type θ ∈ [θ2, θ1), who

have not been seeded in period 1, adopt in period 2. The firm’s profit maximization

problem becomes:

max
0<p<2α−c, 2α2

(1−α)(2α−c)
≤k<1

πS

= max
0<p<2α−c, 2α2

(1−α)(2α−c)
≤k<1

p(1− k)

(
1− c+ p

α + (α−1)(−2α+c−kp+p)
2α

)
.

Similarly to case 1-i-a, it can be shown that p1,D,S > 2α − c and p2,D,S > 0. Com-

paring p2,D,S with 2α− c, we have:
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p2,D,S < 2α− c

⇐⇒ (α− 1)ck + 2α(α− αk + k) <
√
2

√
α(2α + (α− 1)c)(2α + (α− 1)ck)

α + (α− 1)k + 1

⇐⇒ ((α− 1)ck + 2α(α− αk + k))2 <
2α(2α + (α− 1)c)(2α + (α− 1)ck)

α + (α− 1)k + 1

⇐⇒ (1− α)2(c− 2α)2k2 + 2(1− α)(2α− c)αck + 4α2(c− α(α + 2)) < 0.

Without constraints, (1−α)2(c−2α)2k2+2(1−α)(2α−c)αck+4α2(c−α(α+2)) =

0 yields two solutions:

k2,D,S =
−αc+

√
α2(4α(α + 2) + (c− 4)c)

(1− α)(2α− c)

k3,D,S =
−αc−

√
α2(4α(α + 2) + (c− 4)c)

(1− α)(2α− c)
.

It can be shown that k3,D,S < 2α2

(1−α)(2α−c)
and k2,D,S > 2α2

(1−α)(2α−c)
. Comparing k2,D,S

with 1, we obtain three cases:

* Case 1-ii-a: α
(
2α +

√
4α(α + 2) + (c− 4)c− 2

)
+ c ≥ 2αc.

In this case, k2,D,S ≥ 1, i.e., p2,D,S < 2α − c. Thus, p∗S = p2,D,S . The profit

maximization problem becomes:

max
2α2

(1−α)(2α−c)
≤k<1

(−(α− 1)c(α + (3α− 1)k + 1)

+2
√
2
√
α(2α + (α− 1)c)(α + (α− 1)k + 1)(2α + (α− 1)ck)+

2α(−α(k + 3) + k − 1)) /
(
(α− 1)2(k − 1)

)
.
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It can be shown that ∂πS

∂k
< 0. Thus, k∗

S = 2α2

(1−α)(2α−c)
. Therefore, this case is

weakly dominated by case 1-i. Thus, this case is strictly dominated by CE-PL.

* Case 1-ii-b: α
(
2α +

√
4α(α + 2) + (c− 4)c− 2

)
+ c < 2αc, 2α2

(1−α)(2α−c)
≤

k < k2,D,S .

In this case, p2,D,S < 2α− c. Thus, p∗S = p2,D,S . Similarly as case 1-ii-a, we get

∂πS

∂k
< 0. Thus, k∗

S = 2α2

(1−α)(2α−c)
. Therefore, this case is also weakly dominated

and is strictly dominated by CE-PL.

* Case 1-ii-c: α
(
2α +

√
4α(α + 2) + (c− 4)c− 2

)
+ c < 2αc, k2,D,S ≤ k < 1.

In this case, p2,D,S ≥ 2α − c. We can see that, for any k in this region, πS(p)

is strictly increasing in p and the profit in this case is strictly dominated by the

profit under Case 2.

– Case 1-iii: 0 < α < 1
2
, 2α−4α2

1−α
≤ c < 2α.

In this case, −4α2+2α+αc−c
(1−α)(1−k)

≤ 0. θ2 ≥ θ1, the profit maximization problem becomes:

max
0<p<2α−c,0≤k≤1

πS = max
0<p<2α−c,0≤k≤1

p(1− k)

(
1− c+ p

2α

)
.

It trivially follows that k∗
S = 0. S defaults to CE-PL.

– Case 1-iv: 1
2
≤ α < 1.

In this case, −4α2+2α+αc−c
(1−α)(1−k)

≤ 0. θ2 ≥ θ1, the profit maximization problem becomes:

max
0<p<2α−c,0≤k≤1

πS = max
0<p<2α−c,0≤k≤1

p(1− k)

(
1− c+ p

2α

)
.

It trivially follows that k∗
S = 0. S defaults to CE-PL.
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• Case 2: p ≥ 2α− c.

In this case, there are only seeded consumers in period 1 (i.e., no unseeded customer is

willing to pay for the product based on priors). Hence, N1,total = k(1 − c
2α
). At the

beginning of period 2, the un-seeded customers update their priors to:

a2 = a1 +N1,total(1− a1) = α + (1− α)k
(
1− c

2α

)
.

The marginal paying customer in period 2 has type θ2 = c+p

α+(1−α)k(1− c
2α)

. Comparing θ2

with 1, we obtain:

θ2 < 1 ⇐⇒ p < α− αk + k +
1

2
c

(
−k

α
+ k − 2

)
.

Comparing α− αk + k + 1
2
c
(
− k

α
+ k − 2

)
with 2α− c, we have:

α− αk + k +
1

2
c

(
−k

α
+ k − 2

)
≥ 2α− c ⇐⇒ k ≥ 2α2

(1− α)(2α− c)
> 0.

Comparing 2α2

(1−α)(2α−c)
with 1, we have:

2α2

(1− α)(2α− c)
< 1 ⇐⇒ 0 < α <

1

2
and 0 < c <

2α(1− 2α)

1− α
.
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Thus, we obtain that:

θ2 < 1 ⇐⇒0 < α <
1

2
, 0 < c <

2α(1− 2α)

1− α
,

2α2

(1− α)(2α− c)
≤ k < 1,

and 2α− c ≤ p < α− αk + k +
1

2
c

(
−k

α
+ k − 2

)
.

Otherwise, θ2 ≥ 1. There are no paying adopters in period 2, i.e., the firm does not

make any profit.

When θ2 < 1, the firm’s profit maximization problem becomes:

max
2α−c≤p<α−αk+k+ 1

2
c(− k

α
+k−2), 2α2

(1−α)(2α−c)
≤k<1

πS

= max
2α−c≤p<α−αk+k+ 1

2
c(− k

α
+k−2), 2α2

(1−α)(2α−c)
≤k<1

p(1− k)

(
1− c+ p

α + (1− α)k
(
1− c

2α

)) .

Since it is quadratic in p, it is sufficient to use FOC. Taking the first order derivative of

the profit w.r.t. p, we get:

∂πS

∂p
=

2α(k − 1)(c+ 2p)

(α− 1)ck + 2α(α− αk + k)
− k + 1.

Without constraints, the FOC yields one solution:

p3,D,S =
αc(k − 2)− ck + 2α(α− αk + k)

4α
.

It can be shown that p3,D,S < α + 1
2
c
(
− k

α
+ k − 2

)
− αk + k. Comparing p3,D,S with
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2α− c, we obtain:

p3,D,S ≥ 2α− c ⇐⇒ k ≥ 2α(3α− c)

(1− α)(2α− c)
.

It can be shown that 2α(3α−c)
(1−α)(2α−c)

> 2α2

(1−α)(2α−c)
. Comparing 2α(3α−c)

(1−α)(2α−c)
with 1, we obtain:

2α(3α− c)

(1− α)(2α− c)
< 1 ⇐⇒(

0 < α <
1

3
and c <

2α(1− 4α)

1− 3α

)
or
(
1

3
< α <

1

2
and c >

2α(1− 4α)

1− 3α

)
.

Comparing 2α(1−4α)
1−3α

with 0 and 2α(1−2α)
1−α

, we obtain three cases:

– Case 2-i: 0 < α < 1
4
.

In this case, 0 < 2α(1−4α)
1−3α

< 2α(1−2α)
1−α

. We obtain three cases:

* Case 2-i-a: 0 ≤ c < 2α(1−4α)
1−3α

, 2α2

(1−α)(2α−c)
≤ k < 2α(3α−c)

(1−α)(2α−c)
.

In this case, p3,D,S < 2α − c. Thus, p∗S = 2α − c. The profit maximization

problem becomes:

max
2α2

(1−α)(2α−c)
≤k<

2α(3α−c)
(1−α)(2α−c)

πS

= max
2α2

(1−α)(2α−c)
≤k<

2α(3α−c)
(1−α)(2α−c)

(1− k)(2α− c)

(
1− 2α

α + (α−1)k(c−2α)
2α

)
.

It can be shown that ∂2πS

∂k2
< 0. Hence, FOC is sufficient to determine the optimal
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seeding ratio. We have:

∂πS

∂k
= (2α− c)

(
4α2(2α + (α− 1)c)

((α− 1)ck + 2α(α− αk + k))2
− 1

)
= 0.

Without constraints, FOC yields two solutions:

k4,D,S =
−2α2 + 2α

√
2α + (α− 1)c

(1− α)(2α− c)
,

k5,D,S =
−2α2 − 2α

√
(2α + (α− 1)c)

(1− α)(2α− c)
.

It can be shown that k5,D,S < 2α2

(1−α)(2α−c)
and k4,D,S > 2α2

(1−α)(2α−c)
. Comparing

k4,D,S with 1, we obtain two sub cases:

· Case 2-i-a-I:
√
α(c+ 2)− c+ c < 4α.

In this case, k4,D,S < 1, p∗S = 2α− c, k∗
S = k4,D,S ,

π∗
S =

−αc+2α
(
−2α+2

√
α(c+2)−c−1

)
+c

α−1
. It can be shown that under both the first

and second case in CE-PL, we have π∗
S < π∗

CE−PL. Thus, it is dominated

by CE-PL.

· Case 2-i-a-II:
√
α(c+ 2)− c+ c ≥ 4α.

In this case, k4,D,S ≥ 1, p∗S = 2α−c, k∗
S = 1, π∗

S = 0. Thus, it is dominated

by CE-PL.

* Case 2-i-b: 0 ≤ c < 2α(1−4α)
1−3α

, 2α(3α−c)
(1−α)(2α−c)

≤ k < 1.

In this case, p3,D,S ≥ 2α− c. Thus, p∗S = p3,D,S . The firm’s profit maximization
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problem becomes:

max
2α(3α−c)

(1−α)(2α−c)
≤k≤1

πS

= max
2α(3α−c)

(1−α)(2α−c)
≤k≤1

(k − 1)(αc(k − 2)− ck + 2α(α− αk + k))2

8α (−α(c+ 2)k + ck + 2α2(k − 1))
.

We differentiate πS w.r.t. k:

∂πS

∂k
=
(
(c(2α− αk + k) + 2α((α− 1)k − α))

(
(α− 1)c2((α− 1)k(2k − 1)

− 2α)− 2αc
(
α2 + α + 4(α− 1)2k2 + ((7− 5α)α− 2)k

)
+4α2((α− 1)k − α)(−2α + 2(α− 1)k + 1)

))
/
(
8α((α− 1)ck + 2α(α− αk + k))2

)
.

It can be shown that: c(2α−αk+k)+2α((α−1)k−α)
8α((α−1)ck+2α(α−αk+k))2

< 0. Denote:

GD,S(k) ≜−
(
(α− 1)c2((α− 1)k(2k − 1)− 2α)− 2αc

(
α2 + α + 4(α− 1)2k2

+((7− 5α)α− 2)k) + 4α2((α− 1)k − α)(−2α + 2(α− 1)k + 1)
)

=− 2(1− α)2(2α− c)2k2

+ (α− 1)
(
4α2(4α− 1) + (α− 1)c2 + 2α(2− 5α)c

)
k

+ 2α
(
2α2(1− 2α) + (α− 1)c2 + α(α + 1)c

)
.

It is straightforward that GD,S(k) is concave. Without constraints, GD,S(k) = 0
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yields two solutions:

k6,D,S =
−8α2 + 2α + (α− 1)c+

√
(2α + 17αc− c)(α(c+ 2)− c)

4(1− α)(2α− c)
,

k7,D,S =
−8α2 + 2α + (α− 1)c−

√
(2α + 17αc− c)(α(c+ 2)− c)

4(1− α)(2α− c)
.

It can be shown that k7,D,S < 2α(3α−c)
(1−α)(2α−c)

and k6,D,S < 1. Comparing k6,D,S with

2α(3α−c)
(1−α)(2α−c)

, we obtain two sub-cases:

· Case 2-i-b-I: α(9c+2)+
√

(2α + (α− 1)c)(2α + (17α− 1)c) > 32α2+c.

In this case, k6,D,S > 2α(3α−c)
(1−α)(2α−c)

. Denote t = (2α+17αc−c)(α(c+2)−c),

We can further get:

p∗S = 2α2−2αc+αck−ck−2α2k+2αk
4α

= 2α−(7α+1)c+t
16α

,

k∗
S = k6,D,S = −8α2+2α+(α−1)c+t

4(1−α)(2α−c)
,

π∗
S = (6α+3(α−1)c−t)(2α−(7α+1)c+t)2

128(1−α)α(2α−c)(2α+(α−1)c+t)
,
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SW ∗
S =

(2α(1− c) + c)(2α(1− 4α) + (α− 1)c+ t)

16(1− α)α2

+
(
(6α + 3(α− 1)c− t)

(
−16α3(c(16c+ 15)− 18)

+ α2(c(c(86c+ 325)− 228) + 4(4t− 3))

+ 2α(c(c(−46c+ 10t+ 15)− 5t+ 6)− 2t)

+(2c− 1)(c− t)(3c+ t))
(
4α2(56α− 3) + (α(29α + 38)− 3)c2

−2c(2α(α(4α + 47)− 3) + (α− 1)t) + t2 − 4α(4α + 1)t
))

/
(
2
(
4α2(64α− 3)−

(
(α− 1)(43α− 3)c2

)
+2c(2α(α(32α− 55) + 3)− 5αt+ t) + t2 − 4αt

)2
(4(α− 1)(c− 2α))) .

· Case 2-i-b-II: α(9c+2)+
√

(2α + (α− 1)c)(2α + (17α− 1)c) ≤ 32α2+c.

In this case, k6,D,S ≤ 2α(3α−c)
(1−α)(2α−c)

. Thus, k∗
S = 2α(3α−c)

(1−α)(2α−c)
,

π∗
S = (2α−c)(2α(4α−1)−3αc+c)

(α−1)(4α−c)
. It can be shown that under both the first and

second case in CE-PL, we have π∗
S < π∗

CE−PL. Thus, it is dominated by

CE-PL.

* Case 2-i-c: 2α(1−4α)
1−3α

≤ c < 2α(1−2α)
1−α

.

In this case, p3,D,S < 2α − c. Thus, p∗S = 2α − c. Following the same step

in case 2-i-a, we obtain that 2α2

(1−α)(2α−c)
< k4,D,S < 1 and k5,D,S < 2α2

(1−α)(2α−c)
.

Thus, k∗
S = k4,D,S , π∗

S =
−αc+2α

(
−2α+2

√
α(c+2)−c−1

)
+c

α−1
. It can be shown that

under both the first and second case in CE-PL, we have π∗
S < π∗

CE−PL. Thus, it
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is dominated by CE-PL.

– Case 2-ii: 1
4
≤ α < 1

3
.

In this case, 2α(1−4α)
1−3α

≤ 0. p3,D,S ≤ 2α − c. Thus, p∗S = 2α − c. Following

the same step in case 2-i-a, we obtain that 2α2

(1−α)(2α−c)
< k4,D,S < 1 and k5,D,S <

2α2

(1−α)(2α−c)
. Thus, k∗

S = k4,D,S , π∗
S =

−αc+2α
(
−2α+2

√
α(c+2)−c−1

)
+c

α−1
. It can be shown

that under both the first and second case in CE-PL, we have π∗
S < π∗

CE−PL. Thus, it

is dominated by CE-PL.

– Case 2-iii: 1
3
≤ α < 1

2
.

In this case, 2α(1−4α)
1−3α

≥ 2α(1−2α)
1−α

. Thus, 2α(3α−c)
(1−α)(2α−c)

≥ 1. p3,D,S < 2α − c. Thus,

p∗S = 2α − c. Following the same step in case 2-i-a, we obtain that 2α2

(1−α)(2α−c)
<

k4,D,S < 2α(3α−c)
(1−α)(2α−c)

and k5,D,S < 2α2

(1−α)(2α−c)
. Thus, k∗

S = k4,D,S ,

π∗
S =

−αc+2α
(
−2α+2

√
α(c+2)−c−1

)
+c

α−1
. It can be shown that under both the first and

second case in CE-PL, we have π∗
S < π∗

CE−PL. Thus, it is dominated by CE-PL.

In summary, only under case 2-i-b-I, S can be optimal. We further explore the boundary

between S and CE-PL. Recall that the condition for case 2-i-b-I is: 0 ≤ c < 2α(1−4α)
1−3α

, and

α(9c+2)+
√
(2α + (α− 1)c)(2α + (17α− 1)c) > 32α2+c. This region is only relevant

to case (a) and case (b) under CE-PL. The last inequality can be rewrite as:

√
(2α + (α− 1)c)(2α + (17α− 1)c) > 32α2 + c− α(9c+ 2). (D.3)

We first check whether the R.H.S. is positive. Denote HS,1(α, c) ≜ 32α2+ c−α(9c+2) =

2α(16α− 1) + (1− 9α)c. We obtain two cases (we reorganize the case number to avoid it
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goes too deep):

• Case 1: 0 < α < 1
9
.

In this case, HS,1(α, c) is increasing in c, 32α2 + c − α(9c + 2) > 0 is equivalent to

c > 2α(1−16α)
1−9α

. It can be shown that 2α(1−16α)
1−9α

< 2α(1−4α)
1−3α

. Comparing 2α(1−16α)
1−9α

with 0,

we obtain two sub cases:

– Case 1-i: 0 < α < 1
16

.

In this case, 0 < 2α(1−16α)
1−9α

< 2α(1−4α)
1−3α

. We obtain two sub cases:

* Case 1-i-a: 0 ≤ c < 2α(1−16α)
1−9α

.

In this case, 32α2+c−α(9c+2) < 0, the inequality D.3 is always satisfied. Re-

call that for CE-PL, the boundary between two cases is c†(α), where c†(α) is the

unique solution to the equation ΦPL,D(α, c) = 0 and ΦPL,D(α, c) is decreasing

in c. It can be shown that ΦPL,D(α, c)
∣∣∣
c=

2α(1−16α)
1−9α

> 0. Thus, 2α(1−16α)
1−9α

< c†(α).

This case falls into the region of first case under CE-PL.

Next, we compare the optimal profit between S and CE-PL. We first simplify the

optimal profit under S as (move the square root to the numerator):

π∗
S =

(√
(2α + 17αc− c)(α(c+ 2)− c)

(
4α2 +

(
17α2 − 18α + 1

)
c2

+ 4α(9α− 1)c)−
(
−8α3 +

(
71α3 − 109α2 + 37α + 1

)
c3

+2α
(
109α2 − 74α− 3

)
c2 + 4α2(37α + 3)c

))
/ (64(1− α)α(2α− c)(2α + (α− 1)c)) .

It can be shown that under this case, π∗
S > π∗

CE−PL. Thus, S dominates CE-PL.
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* Case 1-i-b: 2α(1−16α)
1−9α

≤ c < 2α(1−4α)
1−3α

.

In this case, 32α2+c−α(9c+2) ≥ 0. We take square both sides of the inequality

D.3. After the simplification the inequality is equivalent to:

c2 + (1− 9α)c+ 2α(8α− 1) < 0,

which is equivalent to:

1

2

(
−
√
17α2 − 10α + 1 + 9α− 1

)
< c <

1

2

(√
17α2 − 10α + 1 + 9α− 1

)
.

It can be shown that:

1

2

(
−
√
17α2 − 10α + 1 + 9α− 1

)
<

2α(1− 16α)

1− 9α

<
1

2

(√
17α2 − 10α + 1 + 9α− 1

)
<

2α(1− 4α)

1− 3α
.

Thus, the inequality D.3 is equivalent to:

2α(1− 16α)

1− 9α
≤ c <

1

2

(√
17α2 − 10α + 1 + 9α− 1

)

. Then we compare S with CE-PL. We first check the relationship between

1
2

(√
17α2 − 10α + 1 + 9α− 1

)
and c†(α).

It can be shown that ΦPL,D(α, c)
∣∣∣
c= 1

2(
√
17α2−10α+1+9α−1)

> 0 is equivalent to

1
17

< α < 1
16

. We further get two sub cases:

· Case 1-i-b-I: 0 < α < 1
17

.
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In this case, we have 1
2

(√
17α2 − 10α + 1 + 9α− 1

)
> c†(α). Thus, we

consider two regions:

Region 1: 2α(1−16α)
1−9α

≤ c < c†(α).

In this region, denote the profit difference between S and CE-PL as:

HS,2 ≜
(√

(2α + 17αc− c)(α(c+ 2)− c)
(
4α2 +

(
17α2 − 18α + 1

)
c2

+4α(9α− 1)c)−
(
−8α3 +

(
71α3 − 109α2 + 37α + 1

)
c3

+2α
(
109α2 − 74α− 3

)
c2 + 4α2(37α + 3)c

))
/ (64(1− α)α(2α− c)(2α + (α− 1)c))

−
2α + α2(c+ 6)− 4

√
α2(α + 1)(2α + (α− 1)c)− c

(1− α)2
.

Thus, the boundary between S and CE-PL satisfies: HS,2 = 0. We simplify

the equation HS,2 = 0 by getting rid of the fraction and square root. We

finally get HS,2 = 0 is equivalent to HS,3 = 0, where HS,3 is defined as:

HS,3 ≜4(α + 1)(2α− c)2(2α + (α− 1)c)
(
c2 − 128α4(c+ 6)

+ 5α3(c(27c+ 92)− 52) + α2(c(184− 109c) + 4)

−αc(27c+ 4))2 −
(
8α3(α(α(544α + 451) + 30)

− 1) + 2(α− 1)2(α + 1)(26α− 1)c4 − (α− 1)(α(α(5α(27α

− 134)− 604)− 14) + 1)c3 + 2α(α(α(α(α(32α− 1147) + 760)

+ 1310) + 72)− 3)c2 + 4α2(α(α(α(448α− 1137)

−1279)− 83) + 3)c)2 .
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We can obtain that:

∂HS,3(α, c)

∂α
=2(1− α)

(
64(α− 1)α5(α(α(32α(192α− 287)

+ 3653)− 232) + 3) + 4(α− 1)2(α + 1)(26α− 1)

(α(104α + 23)− 27)c8 − 4(α− 1)(α(α(α(α(5α(3159α

+ 1238)− 36154)− 7416) + 12637)− 658) + 6)c7

+ (α(α(α(α(α(α(α(124405α− 24086)− 663362)

+ 406518) + 503028)− 359002) + 30266)− 1414)

+ 31)c6 − 2(α(α(α(α(α(α(3α(10α(1584α + 1693)

− 197561) + 329621) + 774877)− 651119) + 108631)

− 10665) + 375)− 3)c5 + 4α(α(α(α(α(α(α(α(96α(64α

+ 603)− 216517) + 132899) + 637875)− 745325)

+ 236785)− 33335) + 1425)− 15)c4

− 16α2(α(α(α(α(α(2α(16α(384α + 395)

+ 13645) + 142805)− 295747) + 151714)− 26660)

+ 1285)− 15)c3 + 16α3(α(α(α(3α(α(64α(192α

+ 269) + 25401)− 108576) + 221380)− 46398) + 2445)

− 30)c2 − 32α4(α(α(α(2α(48α(256α + 223)− 54221)

+ 84329)− 20999) + 1191)− 15)c).
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∂HS,3(α, c)

∂c
=2(1− α)2(32α5(α(α(α(32α(64α + 119)− 7417)

+ 2777)− 195) + 3)− 16(−26α3 + α2 + 26α− 1)2c7

+ 28(α− 1)α(α + 1)(α(α(5α(351α + 67)− 4007) + 323)

− 6)c6 − 3(α(α(α(α(α(α(α(24881α + 16764)

− 151172)− 13428) + 156486)− 18412) + 1324)

− 60) + 1)c5 + 10α(α(α(α(α(α(α(4320α2 + 8967α

− 57883)− 9445) + 102601)− 23019) + 3311)− 183)

+ 3)c4 − 8α2(α(α(α(α(α(α(64α(16α + 179)

− 32993) + 206) + 159649)− 76108) + 15505)− 930)

+ 15)c3 + 48α3(α(α(α(α(α(32α(32α + 65) + 4601)

+ 19957)− 19506) + 4954)− 315) + 5)c2

− 16α4(α(α(α(3α(128α(16α + 39) + 9573)− 46856)

+ 14346)− 960) + 15)c) < 0.

As it turns out, in this range of the parameter space, ∂HS,3(α,c)

∂α
changes signs.

As such, it is not possible to characterize the threshold between S and CE-

PL as a function of c (there exist values of c for which increasing α leads to

multiple crossings between optimality regions for S and CE-PL).

Nevertheless, moving horizontally, given that ∂HS,3(α,c)

∂c
< 0, a threshold

(crossing) boundary between optimality regions for CE-PL and S, within

this particular region of the parameter space, is unique for every α, if it ex-
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ists.

Next, we show that such a threshold boundary does indeed exist in this re-

gion.

We look at two particular cases for this region:

(1) First, we consider points on the boundary c = 2α(1−16α)
1−9α

. It can be shown

that HS,3(α, c)
∣∣∣
c=

2α(1−16α)
1−9α

> 0. Thus, S dominates CE-PL on c = 2α(1−16α)
1−9α

.

(2) First, we consider points on the boundary

c = 1
2

(√
17α2 − 10α + 1 + 9α− 1

)
. It can be shown that

HS,3(α, c)
∣∣∣
c= 1

2(
√
17α2−10α+1+9α−1)

< 0. Thus, CE-PL dominates S on c =

1
2

(√
17α2 − 10α + 1 + 9α− 1

)
.

Therefore, in Region 1, as we increase c, there can be at most one cross-

ing point between optimality regions for S and CE-PL, then there exists a

unique boundary, which we define as ca(α), which separates the optimality

regions for S and CE-PL. It satisfies:

HS,3(α, c1(α)) = 0.

Region 2: c†(α) ≤ c < 1
2

(√
17α2 − 10α + 1 + 9α− 1

)
.
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In this region, denote the profit difference between S and CE-PL as:

HS,4 ≜
(√

(2α + 17αc− c)(α(c+ 2)− c)
(
4α2 +

(
17α2 − 18α + 1

)
c2

+4α(9α− 1)c)−
(
−8α3 +

(
71α3 − 109α2 + 37α + 1

)
c3

+2α
(
109α2 − 74α− 3

)
c2 + 4α2(37α + 3)c

))
/ (64(1− α)α(2α− c)(2α + (α− 1)c))

− (c− 2α)2

8α
.

Thus, the boundary between S and CE-PL satisfies: HS,4 = 0. We simplify

the equation HS,4 = 0 by getting rid of the fraction and square root. We

finally get HS,5 = 0 is equivalent to HS,5 = 0, where HS,5 is defined as:

HS,5 ≜(2α + (α− 1)c)(2α + (17α− 1)c)3 − (−4α2(16(α− 1)α + 1)

+ 8(α− 1)c3 + (α(23α + 10)− 1)c2 + 4α(α(24α− 5) + 1)c)2.
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We can obtain that:

∂HS,5(α, c)

∂α
=− 4(−4α2(16(α− 1)α + 1) + 8(α− 1)c3

+ (α(23α + 10)− 1)c2

+ 4α(α(24α− 5) + 1)c)(−4α(8α(4α− 3) + 1)

+ 4c3 + (23α + 5)c2

+ 2(2α(36α− 5) + 1)c) + (c+ 2)(2α + (17α− 1)c)3

+ 3(17c+ 2)(2α + (α− 1)c)(2α + (17α− 1)c)2 > 0.

∂HS,5(α, c)

∂c
=16(16α4(α(6α− 5)(8α− 3)− 1)− 24(α− 1)2c5

− 5(α− 1)(α(23α + 10)− 1)c4

+ 8α(α(α(89α− 137) + 15) + 1)c3

+ 12α2(α((133− 53α)α− 34) + 2)c2

+ 16α3(α(α(17− 49α) + 10)− 2)c) < 0.

Therefore, a threshold (crossing) boundary between optimality regions for

CE-PL and S within this particular region is unique for every c and for every

α (i.e., if we look vertically or horizontally), if it exists.

Next, we show that such a threshold boundary does indeed exist in this re-

gion of the parameter space. We look at two particular functions for this
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region, namely c = 2α(1−16α)
1−9α

and c = 1
2

(√
17α2 − 10α + 1 + 9α− 1

)
and

examine the sign of HS,5(α, c) along these boundaries.

(1) On the boundary c = 1
2

(√
17α2 − 10α + 1 + 9α− 1

)
, we obtain:

HS,5(α, c)
∣∣∣
c= 1

2(
√
17α2−10α+1+9α−1)

< 0. Thus, CE-PL dominates S on c =

1
2

(√
17α2 − 10α + 1 + 9α− 1

)
.

(2) On the boundary c = 2α(1−16α)
1−9α

, we obtain:

HS,5(α, c)
∣∣∣
c=

2α(1−16α)
1−9α

> 0. Thus, S dominates CE-PL on c = 2α(1−16α)
1−9α

.

Therefore, in this parameter region, there exists a unique threshold bound-

ary, which we define as cb(α), which separates the optimality regions for

CE-PL and S. It satisfies:

HS,5(α, cb(α)) = 0.

Also, it is straightforward that ∂cb(α)
∂α

= −
∂HS,5(α,c)

∂α
∂HS,5(α,c)

∂c

> 0. Hence, cb(α) is

increasing in α.

It can be shown that there are two intersection points between cb(α) and

c†(α), i.e., (0, 0) and (cx, αx) (where cx ≈ 0.0231 and αx ≈ 0.0117). Thus,

cb(α) is properly defined and increasing on (0, αx).

It can be shown that ca(α) is also passing through (cx, αx), thus, ca(α) is

properly defined on
(
αx,

1
17

)
.

230



· Case 1-i-b-II: 1
17

≤ α < 1
16

.

In this case, we have 1
2

(√
17α2 − 10α + 1 + 9α− 1

)
≤ c†(α). Thus, the

profit difference between S and CE-PL is:

HS,2 ≜
(√

(2α + 17αc− c)(α(c+ 2)− c)
(
4α2 +

(
17α2 − 18α + 1

)
c2

+4α(9α− 1)c)−
(
−8α3 +

(
71α3 − 109α2 + 37α + 1

)
c3

+2α
(
109α2 − 74α− 3

)
c2 + 4α2(37α + 3)c

))
/ (64(1− α)α(2α− c)(2α + (α− 1)c))

−
2α + α2(c+ 6)− 4

√
α2(α + 1)(2α + (α− 1)c)− c

(1− α)2
.

Similarly, we can simplify HS,2(α, c) and finally analyze HS,3(α, c). Fol-

lowing the same step in case 1-i-b-I, we can get that in this region, ∂HS,3(α,c)

∂c
<

0. ∂HS,3(α,c)

∂α
changes signs. As such, it is not possible to characterize the

threshold between S and CE-PL as a function of c (there exist values of c for

which increasing α leads to multiple crossings between optimality regions

for S and CE-PL).

Nevertheless, moving horizontally, given that ∂HS,3(α,c)

∂c
< 0, a threshold

(crossing) boundary between optimality regions for CE-PL and S, within

this particular region of the parameter space, is unique for every α, if it ex-

ists.
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Next, we show that such a threshold boundary does indeed exist in this re-

gion.

We look at two particular cases for this region:

(1) First, we consider points on the boundary c = 2α(1−16α)
1−9α

. It can be shown

that HS,3(α, c)
∣∣∣
c=

2α(1−16α)
1−9α

> 0. Thus, S dominates CE-PL on c = 2α(1−16α)
1−9α

.

(2) First, we consider points on the boundary

c = 1
2

(√
17α2 − 10α + 1 + 9α− 1

)
. It can be shown that

HS,3(α, c)
∣∣∣
c= 1

2(
√
17α2−10α+1+9α−1)

< 0. Thus, CE-PL dominates S on c =

1
2

(√
17α2 − 10α + 1 + 9α− 1

)
.

Therefore, as we increase c, there can be at most one crossing point between

optimality regions for S and CE-PL, which is defined as ca(α) in case 1-i-

b-I. Thus, we can further extend the domain of ca(α) to
(
αx,

1
16

)
.

– Case 1-ii: 1
16

≤ α < 1
9
.

In this case, 2α(1−16α)
1−9α

≤ 0 ≤ c < 2α(1−4α)
1−3α

. Therefore, HS,1 ≥ 0. We square both

sides of the inequality D.3 and follow the same step in case 1-i-b. The inequality D.3

is equivalent to:

0 ≤ c <
1

2

(√
17α2 − 10α + 1 + 9α− 1

)
.
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Also, it can be shown that 1
2

(√
17α2 − 10α + 1 + 9α− 1

)
< c†(α). Therefore, in

this region, the profit difference between S and CE-PL is:

HS,2 ≜
(√

(2α + 17αc− c)(α(c+ 2)− c)
(
4α2 +

(
17α2 − 18α + 1

)
c2

+4α(9α− 1)c)−
(
−8α3 +

(
71α3 − 109α2 + 37α + 1

)
c3

+2α
(
109α2 − 74α− 3

)
c2 + 4α2(37α + 3)c

))
/ (64(1− α)α(2α− c)(2α + (α− 1)c))

−
2α + α2(c+ 6)− 4

√
α2(α + 1)(2α + (α− 1)c)− c

(1− α)2
.

Similarly, we can simplify HS,2(α, c) and finally analyze HS,3(α, c). Following the

same step in case 1-i-b-I, we can get that in this region, ∂HS,3(α,c)

∂α
< 0. ∂HS,3(α,c)

∂c

changes signs. As such, it is not possible to characterize the threshold between S

and CE-PL as a function of α (there exist values of α for which increasing c leads to

multiple crossings between optimality regions for S and CE-PL).

Nevertheless, moving vertically, given that ∂HS,3(α,c)

∂α
< 0, a threshold (crossing)

boundary between optimality regions for CE-PL and S, within this particular region

of the parameter space, is unique for every c, if it exists.

Next, we show that such a threshold boundary does indeed exist in this region.

We look at two particular cases for this region:

(1) First, we consider points on the boundary α = 1
16

. It can be shown that
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HS,3(α, c)
∣∣∣
α= 1

16

> 0. Thus, S dominates CE-PL on α = 1
16

.

(2) Then, we consider points on the boundary α = 1
9
. It can be shown that

HS,3(α, c)
∣∣∣
α= 1

9

< 0. Thus, CE-PL dominates S on α = 1
9
.

Therefore, as we increase α, there can be at most one crossing point between op-

timality regions for S and CE-PL, then there exists a unique boundary, which we

define as α†(c), which separates the optimality regions for S and CE-PL. It satisfies:

HS,3(α
†(c), c) = 0.

It is straightforward that the domain of α†(c) is
(
0, ca(

1
16
)
)
.

• Case 2: 1
9
≤ α < 1

4
.

In this case, HS,1(α, c) is decreasing in c, 32α2 + c − α(9c + 2) > 0 is equivalent to

c < 2α(1−16α)
1−9α

. It can be shown that 2α(1−16α)
1−9α

> 2α(1−4α)
1−3α

. Thus, 32α2+c−α(9c+2) > 0.

We square both sides of the inequality D.3 and follow the same step in case 1-i-b. The

inequality D.3 is equivalent to:

0 ≤ c <
1

2

(√
17α2 − 10α + 1 + 9α− 1

)
.

Comparing 1
2

(√
17α2 − 10α + 1 + 9α− 1

)
with 2α(1−4α)

1−3α
, we further get two cases:

– Case 2-i: 1
9
≤ α < 1

17

(
5− 2

√
2
)
.
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In this case, 1
2

(√
17α2 − 10α + 1 + 9α− 1

)
< 2α(1−4α)

1−3α
. It can be shown that

1
2

(√
17α2 − 10α + 1 + 9α− 1

)
< c†(α). Therefore, in this region, the profit differ-

ence between S and CE-PL is:

HS,2 ≜
(√

(2α + 17αc− c)(α(c+ 2)− c)
(
4α2 +

(
17α2 − 18α + 1

)
c2

+4α(9α− 1)c)−
(
−8α3 +

(
71α3 − 109α2 + 37α + 1

)
c3

+2α
(
109α2 − 74α− 3

)
c2 + 4α2(37α + 3)c

))
/ (64(1− α)α(2α− c)(2α + (α− 1)c))

−
2α + α2(c+ 6)− 4

√
α2(α + 1)(2α + (α− 1)c)− c

(1− α)2
.

It can be shown that HS,3 < 0, i.e., HS,2 < 0. Thus, S is dominated by CE-PL.

– Case 2-ii: 1
17

(
5− 2

√
2
)
≤ α < 1

4
.

In this case, 1
2

(√
17α2 − 10α + 1 + 9α− 1

)
≥ 2α(1−4α)

1−3α
. Comparing 2α(1−4α)

1−3α
with

c†(α), we further have two cases:

* Case 2-ii-a: 2α(1−4α)
1−3α

< c†(α).

The profit difference between S and CE-PL is:

HS,2 ≜
(√

(2α + 17αc− c)(α(c+ 2)− c)
(
4α2 +

(
17α2 − 18α + 1

)
c2

+4α(9α− 1)c)−
(
−8α3 +

(
71α3 − 109α2 + 37α + 1

)
c3

+2α
(
109α2 − 74α− 3

)
c2 + 4α2(37α + 3)c

))
/ (64(1− α)α(2α− c)(2α + (α− 1)c))

−
2α + α2(c+ 6)− 4

√
α2(α + 1)(2α + (α− 1)c)− c

(1− α)2
.
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It can be shown that HS,2 < 0. Thus, S is dominated by CE-PL.

* Case 2-ii-b: 2α(1−4α)
1−3α

≥ c†(α).

The profit difference between S and CE-PL is:

HS,4 ≜
(√

(2α + 17αc− c)(α(c+ 2)− c)
(
4α2 +

(
17α2 − 18α + 1

)
c2

+4α(9α− 1)c)−
(
−8α3 +

(
71α3 − 109α2 + 37α + 1

)
c3

+2α
(
109α2 − 74α− 3

)
c2 + 4α2(37α + 3)c

))
/ (64(1− α)α(2α− c)(2α + (α− 1)c))

− (c− 2α)2

8α
.

It can be shown that HS,4 < 0. Thus, S is dominated by CE-PL.

To summarize, we define c‡(α) as:

c‡(α) ≜


ca(α) , if αx ≤ α < 1

16
,

cb(α) , if 0 < α < αx.

Then S dominates CE-PL if and only if:

0 ≤ c < c‡(α) , if 0 < α < 1
16
,

and

1
16

< α < α†(c).
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Proof of Proposition 3

When α ≥ 1, by directly comparing profits and social welfare values from Propositions 13-

16, it can be easily seen that CE-PL is always the dominant strategy for the firm, whereas

TLF is always the strategy that yields the highest social welfare.

The bulk of the proof, below, is addressing the considerably more complex case 0 < α < 1.

Let us define:

α1(c) ≜ αf (c) , if 0 ≤ c < c4

α2(c) ≜


αe(c) , if 0 ≤ c < c4,

αa(c) , if c4 ≤ c < c1,

αb(c) , if c1 ≤ c < c2,

and

α3(c) ≜


αg(c) , if 0 ≤ c < c5,

αd(c) , if c5 ≤ c < c3,

αc(c) , if c3 ≤ c < c2,

and

α4(c) ≜


αg(c) , if 0 ≤ c < c5,

α†(c) , if c5 ≤ c < c‡( 1
16
),

where functions αa(·), αb(·), αc(·), αd(·), αe(·), αf (·), αg(·), as well as constant thresholds

c1, c2, c3, c4, and c5 are defined and further analyzed below. α†(c) and c‡(α) is defined in the
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Figure D.1: Adoption Costs Scenario - Optimal Business Model - Marked Boundaries

Prop 16. For ease of identification, Figure D.1 contains the illustration of these boundaries

and thresholds (this is a more detailed version of Figure 2.5 from the main body).

• Definition of c1 and αa(c). Monotonicity of αa(c).

We first compare CE-PL and TLF under the intersection of regions 0 ≤ c < α
2

and

13 − 4
√
10 ≤ α < 1, it can immediately follws that this is a non-empty region. In this

region, define the difference between optimal profits under CE-PL and TLF as:

Ψa,D(α, c) ≜
(c− 2α)2

8α
− 1

4
.

We can obtain that:

∂Ψa,D(α, c)

∂α
=

1

2
− c2

8α2
> 0,

∂Ψa,D(α, c)

∂c
=

1

4

( c
α
− 2
)
< 0.
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Therefore, a threshold (crossing) boundary between optimality regions for CE-PL and

TLF within this particular region is unique for every c and for every α (i.e., if we look

vertically or horizontally), if it exists.

Next, we show that such a threshold boundary does indeed exist in this region of the

parameter space. We look at two particular delimiting boundaries for this region, namely

α = 13− 4
√
10 and α = 1 and examine the sign of Ψa,D(α, c) along these boundaries.

– On the boundary α = 13− 4
√
10, we obtain:

Ψa,D(α, c)
∣∣∣
α=13−4

√
10

=
1

72

(
4
√
10 + 13

)(
c+ 8

√
10− 26

)2
− 1

4
< 0.

– On the boundary α = 1, we obtain:

Ψa,D(α, c)
∣∣∣
α=1

=
1

8
((c− 4)c+ 2) > 0.

Therefore, in this parameter region, there exists a unique threshold boundary, which we

define as αa(c), which separates the optimality regions for CE-PL and TLF. It satisfies:

(c− 2αa(c))
2

8αa(c)
− 1

4
= 0.

Also, it is straightforward that ∂αa(c)
∂c

= −
∂Ψa,D(α,c)

∂c
∂Ψa,D(α,c)

∂α

> 0. Hence, αa(c) is increasing in

c.
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It is straightforward there is a unique intersection point between αa(c) and c = 0, i.e.,

(0, 1
2
). Moreover, there is a unique intersection point between αa(c) and α = 2c, i.e.,

(c1 =
4
9
, 8
9
). Thus, αa(c) is properly defined and increasing on [0, c1).

• Definition of c2, c3, αb(c) and αc(c). Monotonicity of αc(c).

We then compare CE-PL and TLF under the intersection of regions α
2
≤ c < α and

the union of regions 0 < α < 13 − 4
√
10, c† ≤ c < α and 13 − 4

√
10 ≤ α < 1 (In

this union of regions, π∗
CE−PL = (c−2α)2

8α
). In this region, define the difference between

optimal profits under CE-PL and TLF as:

Ψb,D(α, c) ≜
(c− 2α)2

8α
−

c
(
1− c

α

)
α

.

We can obtain that:

∂Ψb,D(α, c)

∂α
=

1

2
− c((α + 16)c− 8α)

8α3
,

∂Ψb,D(α, c)

∂c
=

(α + 8)c− 2α(α + 2)

4α2
.

As it turns out, in this range of the parameter space, ∂Ψb,D(α,c)

∂α
and ∂Ψb,D(α,c)

∂c
changes

signs. As such, it is not possible to characterize the threshold between CE-PL and TLF

as a function of c or α.

Nevertheless, we first find the point that satisfies the equation Ψb,D(α, c) = 0 (i.e., on the
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boundary between CE-PL and TLF) and has a vertical tangent line, i.e., ∂Ψb,D(α,c)

∂α
= 0.

We can obtain that with in the above mentioned region, there is only one point that

satisfies the condition, which is
(
20
√
5− 44, 4

(√
5− 2

))
. We define c2 = 20

√
5 −

44, 4
(√

5− 2
)
.

Next, we define αb(c) and αc(c) by splitting the boundary Ψb,D(α, c) = 0

at
(
20
√
5− 44, 4

(√
5− 2

))
.

It is straightforward that when c > 20
√
5 − 44, Ψb,D(α, c) > 0, i.e., CE-PL dominates

TLF. Then, we focus on the case when c ≤ 20
√
5− 44.

We first construct a line go through
(
0, 1

2

)
and

(
20
√
5− 44, 4

(√
5− 2

))
. And it is

straightforward that the expression of the line is: αl1 =
(8

√
5−17)c

8(5
√
5−11)

+ 1
2
.

If αl1 ≤ α < 2c, we obtain that:

∂Ψb,D(α, c)

∂α
=

1

2
− c((α + 16)c− 8α)

8α3
> 0,

∂Ψb,D(α, c)

∂c
=

(α + 8)c− 2α(α + 2)

4α2
.

As it turns out, in this range of the parameter space, ∂Ψb,D(α,c)

∂c
changes signs. Never-

theless, moving vertically, given that ∂Ψb,D(α,c)

∂α
> 0, a threshold (crossing) boundary

between optimality regions for CE-PL and TLF, within this particular region of the pa-
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rameter space, is unique for every c, if it exists.

Next, we show that such a threshold boundary does indeed exist in this region of the

parameter space. We look at two particular delimiting boundaries for this region, namely

α = αl2 = 1
4

(√
5 + 3

)
c and α = 1, and examine the sign of Ψb,D(α, c) along these

boundaries.

– On the boundary α = αl2, we obtain:

Ψb,D(α, c)
∣∣∣
α=αl2

=
c2
((
9117− 4077

√
5
)
c− 358912

√
5 + 802608

)
64
((
8
√
5− 17

)
c+ 20

√
5− 44

)2
+

64c
(
3881

√
5− 8679

)
64
((
8
√
5− 17

)
c+ 20

√
5− 44

)2
+

512
(
123− 55

√
5
)

64
((
8
√
5− 17

)
c+ 20

√
5− 44

)2
< 0.

– On the boundary α = 1, we obtain:

Ψb,D(α, c)
∣∣∣
α=1

=
1

8
(2− 3c)2 > 0.

Therefore, in this parameter region, there exists a unique threshold boundary, which we

define as αb(c), which separates the optimality regions for CE-PL and TLF. It satisfies:

(c− 2αb(c))
2

8αb(c)
−

c
(
1− c

αb(c)

)
αb(c)

= 0.
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It is easy to obtain that (c1, 89) is on αb(c). Thus, (c1, 89) is the unique interaction point

between α = 2c and αb(c). Thus, αb(c) is properly defined on [c1, c2).

Then we construct a line go through (0, 0) and
(
20
√
5− 44, 4

(√
5− 2

))
. And it is

straightforward that the expression of the line is: αl2 =
1
4

(√
5 + 3

)
c.

We can obtain that when αl2 ≤ α < αl1, Ψb,D(α, c) < 0, TLF dominates CE-PL.

If c ≤ α < αl2, we obtain that:

∂Ψb,D(α, c)

∂α
=

1

2
− c((α + 16)c− 8α)

8α3
< 0,

∂Ψb,D(α, c)

∂c
=

(α + 8)c− 2α(α + 2)

4α2
> 0.

Therefore, a threshold (crossing) boundary between optimality regions for CE-PL and

TLF within this particular region is unique for every c and for every α (i.e., if we look

vertically or horizontally), if it exists.

Next, we show that such a threshold boundary does indeed exist in this region of the

parameter space. We look at two particular delimiting boundaries for this region, namely

α = c and α = αl2 = 1
4

(√
5 + 3

)
c and examine the sign of Ψb,D(α, c) along these

boundaries.
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– On the boundary α = c, we obtain:

Ψb,D(α, c)
∣∣∣
α=c

=
c

8
> 0.

– On the boundary α = αl2, we obtain:

Ψb,D(α, c)
∣∣∣
α=αl2

=
c

4
− 5

√
5 + 11 > 0.

Therefore, in this parameter region, there exists a unique threshold boundary, which we

define as αc(c), which separates the optimality regions for CE-PL and TLF. It satisfies:

(c− 2αc(c))
2

8αc(c)
−

c
(
1− c

αc(c)

)
αc(c)

= 0.

Also, it is straightforward that ∂αc(c)
∂c

= −
∂Ψb,D(α,c)

∂c
∂Ψb,D(α,c)

∂α

> 0. Hence, αc(c) is increasing in c.

Moreover, by solving the system of equations c† = 0 and (c−2αc(c))2

8αc(c)
−

c(1− c
αc(c)

)
αc(c)

= 0, we

can get there is a unique intersection point (it is around (0.2255, 0.2329)) between c† and

αc(c), denote it as (c3, αc(c3)). Thus, αc(c) is properly defined and increasing on [c3, c2).

• Definition and Monotonicity of αd(c).

We then compare CE-PL and TLF under the intersection of regions α
2
≤ c < α and

0 < α < 13 − 4
√
10, 0 ≤ c < c†, it can immediately follows that this is a non-empty

region. In this region, define the difference between optimal profits under CE-PL and
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TLF as:

Ψd,D(α, c) ≜
2α + α2(c+ 6)− 4α

√
(α + 1)(2α + (α− 1)c)− c

(α− 1)2
−

c
(
1− c

α

)
α

.

First, we can obtain that in this region, when α
2
≤ c < 2α

3
, Ψd,D(α, c) < 0, i.e., TLF

dominates CE-PL.

Next, we check the case when 2α
3
≤ c < α. We can further obtain that:

∂Ψd,D(α, c)

∂α
=

−4α− 2α2(c+ 6) + 8α
√

(α + 1)(2α + (α− 1)c) + 2c

(α− 1)3

+
2α(c+ 6)− 4α(α(c+2)+1)√

(α+1)(2α+(α−1)c)
− 4
√

(α + 1)(2α + (α− 1)c) + 2

(α− 1)2

− c2

α3
+

c(α− c)

α3
< 0,

∂Ψd,D(α, c)

∂c
=

c

α2
+

α2 − 2(α2−1)α√
(α+1)(2α+(α−1)c)

− 1

(α− 1)2
+

c− α

α2
> 0.

Therefore, a threshold (crossing) boundary between optimality regions for CE-PL and

TLF within this particular region is unique for every c and for every α (i.e., if we look

vertically or horizontally), if it exists.

Next, we show that such a threshold boundary does indeed exist in this region of the

parameter space. We look at two particular delimiting boundaries for this region, namely

c = 2
3
α and c = α and examine the sign of Ψd,D(α, c) along these boundaries.
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– On the boundary c = 2
3
α, we obtain:

Ψd,D(α, c)
∣∣∣
c= 2

3
α
=

2α
(
α(3α + 26)− 6

√
6
√
α(α + 1)(α + 2) + 8

)
− 2

9(α− 1)2
< 0.

– On the boundary c = α, we obtain:

Ψd,D(α, c)
∣∣∣
c=α

=
α
(
α(α + 6)− 4

√
α(α + 1)2 + 1

)
(α− 1)2

> 0.

Therefore, in this parameter region, there exists a unique threshold boundary, which we

define as αd(c), which separates the optimality regions for CE-PL and TLF. It satisfies:

2α + α2(c+ 6)− 4α
√
(α + 1)(2α + (α− 1)c)− c

(α− 1)2
−

c
(
1− c

α

)
α

= 0.

Also, it is straightforward that ∂αd(c)
∂c

= −
∂Ψd,D(α,c)

∂c
∂Ψd,D(α,c)

∂α

> 0. Hence, αd(c) is increasing in c.

• Definition and Monotonicity of αe(c).

It is easy to obtain that when c ≤ α < 2c, πTLF > πCE−SUB, i.e., TLF dominates

CE-SUB.

We then compare CE-SUB and TLF under the intersection of regions α ≥ 2c. In this

region, define the difference between optimal profits under CE-SUB and TLF as:

Ψe,D(α, c) ≜ pa,D

(
2− c+ pa,D

α
− c+ pa,D

1 + c+ pa,D − c+pa,D
α

)
− 1

4
.
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Then, using the Envelope theorem (since pa,D ∈
(
α−c
2
, α− c

)
maximize πCE,SUB), we

have:

∂Ψe,D(α, c)

∂α
=

pa,D(c+ pa,D)

(
c+pa,D(

−
c+pa,D

α
+c+pa,D+1

)2 + 1

)
α2

> 0,

∂Ψe,D(α, c)

∂c
= pa,D

(
− 1

α
− (1− α)α(c+ pa,D)

(α + (α− 1)c+ (α− 1)pa,D)2
− 1

− c+pa,D
α

+ c+ pa,D + 1

)

< 0.

Therefore, a threshold (crossing) boundary between optimality regions for CE-SUB and

TLF within this particular region is unique for every c and for every α (i.e., if we look

vertically or horizontally), if it exists.

Next, we show that such a threshold boundary does indeed exist in this region of the

parameter space. We look at two particular delimiting boundaries for this region, namely

α = 2c and α = 2c+ 1
2

and examine the sign of Ψe,D(α, c) along these boundaries.

– On the boundary α = 2c, we obtain:

Ψe,D(α, c)
∣∣∣
α=2c

= pa,D

(
− 2c(c+ pa,D)

2c2 + 2cpa,D + c− pa,D
− c+ pa,D

2c
+ 2

)
− 1

4
< 0.

The above inequality is satisfied for all p ∈
(
α−c
2
, α− c

)
.
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– On the boundary 2c+ 1
2
, we obtain:

Ψe,D(α, c)
∣∣∣
2c+ 1

2

= pa,D

(
−2(c+ pa,D)

4c+ 1
− c+ pa,D

−2(c+pa,D)

4c+1
+ c+ pa,D + 1

+ 2

)
− 1

4

≥ 6c (2c (8c2 + 2c+ 1) + 1) + 1

8(4c+ 1)(2c(12c+ 7) + 3)
(Plug pa,D =

1

4
(2c+ 1))

> 0.

Therefore, in this parameter region, there exists a unique threshold boundary, which we

define as αe(c), which separates the optimality regions for CE-SUB and TLF. It satisfies:

pa,D

(
2− c+ pa,D

αe(c)
− c+ pa,D

1 + c+ pa,D − c+pa,D
αe(c)

)
− 1

4
= 0.

Also, it is straightforward that ∂αe(c)
∂c

= −
∂Ψe,D(α,c)

∂c
∂Ψe,D(α,c)

∂α

> 0. Hence, αe(c) is increasing in c.

• Definition of c4 and αf (c). Monotonicity of αf (c).

We further compare CE-SUB with CE-PL. From the definition of αa(c), we know that

αa(c) has a unique interaction point with y axis, i.e., (0, 1
2
). Given that αa(c) is increas-

ing in c, CE-PL can only have the possibility to become the dominant strategy when

1
2
< α < 1. Also, from the definition of αe(c), we know that αe(c) has a unique in-

teraction point with α = 1, i.e., (1 − 1√
2
, 1). CE-SUB can only have the possibility

to become the dominant strategy when 0 ≤ c < 1 − 1√
2
. Thus, we only need to com-

pare CE-SUB with CE-PL in the intersection of 1
2
≤ α < 1, 0 ≤ c < 1− 1√

2
, and α ≥ 2c.
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In this region, define the difference between optimal profits under CE-SUB and CE-PL

as:

Ψe,D(α, c) ≜ pa,D

(
2− c+ pa,D

α
− c+ pa,D

1 + c+ pa,D − c+pa,D
α

)
− (c− 2α)2

8α
.

Then, using the Envelope theorem (since pa,D ∈
(
α−c
2
, α− c

)
maximize πCE,SUB), we

have:

∂Ψf,D(α, c)

∂α
=

c2 + 8cpa,D + 8p2a,D
8α2

+
pa,D(c+ pa,D)

2

(α + (α− 1)c+ (α− 1)pa,D)2
− 1

2
,

∂Ψf,D(α, c)

∂c
= − c

4α
+ pa,D

(
− 1

α
+

(α− 1)α(c+ pa,D)

(α + (α− 1)c+ (α− 1)pa,D)2

− 1

− c+pa,D
α

+ c+ pa,D + 1

)
+

1

2
< 0.

Therefore, a threshold (crossing) boundary between optimality regions for CE-SUB and

TLF within this particular region is unique for every c and for every α (i.e., if we look

vertically or horizontally), if it exists.

Next, let’s check the sign of ∂Ψf,D(α,c)

∂α
. Bring all the terms to a common denominator,
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we can write ∂Ψf,D(α,c)

∂α
=

q1,D
q2,D

, where:

q1,D ≜ 8p4a,D(1− α)2 + 8p3a,D
(
α(3α− 2) + 3(α− 1)2c

)
+ p2a,D

(
−4α2

(
α2 − 2α− 1

)
+ 25(α− 1)2c2 + 16α(3α− 2)c

)
+ 2pa,D

(
−4(α− 1)α3 + 5(α− 1)2c3 + α(13α− 9)c2 − 4(α− 2)α3c

)
+ (α + (α− 1)c)2

(
c2 − 4α2

)
,

q2,D ≜ 8α2(α + αc− c+ αpa,D − pa,D)
2 > 0.

Thus, the sign of ∂Ψf,D(α,c)

∂α
is the same as the sign of the numerator, q1,D. We use

GSUB,D(pa,D) = 0 to reduce the expression of q1,D from a quartic polynomial in pa,D to

a quadratic one, as follows:

q1,D =
1

(1− α)2

×
(
p2a,D(1− α)

(
2α2(α((α− 3)α + 10) + 2) + (α− 1)3c2 − 4α2(1− α)c

)
+ pa,D

(
−4α3(α((α− 4)α + 5) + 2)− 2(α− 1)4c3 − 2α(5α− 1)(α− 1)2c2

−4α2(α((α− 4)α + 9) + 2)(α− 1)c
)

+ 4α4(α + 1)− (α− 1)4c4 − 2α(3α− 1)(α− 1)2c3 − α2(α(2(α− 4)α + 15)

+ 3)(α− 1)c2 −2(α− 5)α4(α− 1)c− 8α3c
)
.
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Denote:

A = (1− α)
(
2α2(α((α− 3)α + 10) + 2) + (α− 1)3c2 − 4α2(1− α)c

)
B = −4α3(α((α− 4)α + 5) + 2)− 2(α− 1)4c3 − 2α(5α− 1)(α− 1)2c2

− 4α2(α((α− 4)α + 9) + 2)(α− 1)c

C = 4α4(α + 1)− (α− 1)4c4 − 2α(3α− 1)(α− 1)2c3 − α2(α(2(α− 4)α + 15)+

3)(α− 1)c2 − 2(α− 5)α4(α− 1)c− 8α3c.

Then, q1,D = 1
(1−α)2

×
(
Ap2a,D +Bpa,D + c

)
. Define the quadratic function HSUB,PL,D(p) ≜

Ap2+Bp+ c. In this range of the parameter space, it can be shown that B2− 4AC > 0

and A > 0. Hence, there are two real solutions to the equation HSUB,PL,D(p) = 0,

namely:

pH1 =
−B −

√
B2 − 4AC

2A
and pH2 =

−B +
√
B2 − 4AC

2A
.

It can be shown that α−c
2

< pH1 < α − c < pH2. Recall that pa,D is the unique solution

of GSUB,D(p) = 0. Moreover, from the proof of Prop. 14, we know that GSUB,D(p) > 0

on (α−c
2
, pa,D) and GSUB,D(p) < 0 on (pa,D, α − c). It can be proved directly that

GSUB,D(pH1) > 0 = GSUB,D(pa,D). Hence, α−c
2

< pH1 < pa,D < α − c < pH2.

Furthermore, it can be shown that A > 0, which indicates that H̄SUB,PL(p) is convex.

Therefore, HSUB,PL,D(p) < 0. Hence, in this region of the parameter space:

∂Ψf,D(α, c)

∂α
< 0.

251



So far, we proved that a threshold (crossing) boundary between optimality regions for

CE-SUB and CE-PL within this particular region of the parameter space is unique for

every c and for every α (i.e., if we look vertically or horizontally), if it exists.

Next, we show that such a threshold boundary does indeed exist in this region of the

parameter space. We look at two particular delimiting boundaries for this region, namely

c = 0 and c = 1− 1√
2

and examine the sign of Ψf,D(α, c) along these boundaries.

– On the boundary c = 0, it defaults to our basic model. And from Prop 1, we know

that π∗
CE−SUB > π∗

CE−PL, i.e., Ψf,D(α, c)
∣∣∣
c=0

> 0.

– On the boundary c = 1− 1√
2
, we obtain:

Ψf,D(α, c)
∣∣∣
c=1− 1√

2

= pa,D

−pa,D + 1√
2
− 1

α
+

1
1
α
+ 1

−pa,D+ 1√
2
−1

− 1
+ 2


−
(
4α +

√
2− 2

)2
32α

< 0.

Therefore, in this parameter region, there exists a unique threshold boundary, which

we define as αf (c), which separates the optimality regions for CE-SUB and CE-PL. It

satisfies:

pa,D

(
2− c+ pa,D

αe(c)
− c+ pa,D

1 + c+ pa,D − c+pa,D
αe(c)

)
− (c− 2α)2

8α
= 0.

Also, it is straightforward that ∂αf (c)

∂c
= −

∂Ψf,D(α,c)

∂c
∂Ψf,D(α,c)

∂α

< 0. Hence, αf (c) is decreasing in c.
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As αe(c) is increasing in c, there exists a unique intersection point between αe(c) and

αf (c). Defining this point as (c4, αe(c4)). At this point, we get π∗
CE−SUB = π∗

CE−PL

(from the definition of αf (c)) and π∗
CE−SUB = π∗

TLF (from the definition of αe(c)).

Thus, π∗
CE−PL = π∗

TLF . (c4, αe(c4)) is also on αa(c). αf (c) is properly defined and

decreasing on [0, c4).

• Definition of c5 and αg(c). Monotonicity of αg(c).

We further compare TLF with S. From Proposition 16, we know S dominates CE-PL

when:

0 ≤ c < c‡(α) , if 0 < α < 1
16
,

and

1
16

≤ α < α†(c).

In this region, we further consider two regions:

– Region 1: 0 ≤ c < α
2

.

In this region, it can be shown that π∗
S < π∗

TLF , i.e., TLF dominates S.

– Region 2: α
2
≤ c < α.
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In this region, define the difference between optimal profits under S and TLF as:

Ψg,D(α, c) ≜
(√

(2α + 17αc− c)(α(c+ 2)− c)
(
4α2 +

(
17α2 − 18α + 1

)
c2

+4α(9α− 1)c)−
(
−8α3 +

(
71α3 − 109α2 + 37α + 1

)
c3

+2α
(
109α2 − 74α− 3

)
c2 + 4α2(37α + 3)c

)
/ (64(1− α)α(2α− c)(2α + (α− 1)c))−

c
(
1− c

α

)
α

.

First, it can be shown that when α
2
≤ c < 3α

4
, Ψf,D(α, c) < 0, i.e., TLF dominates S.

Then we focus on the region 3α
4
≤ c < α. We obtain that:

∂Ψg,D(α, c)

∂α
< 0,

∂Ψg,D(α, c)

∂c
> 0.

Therefore, a threshold (crossing) boundary between optimality regions for S and TLF

within this particular region is unique for every c and for every α (i.e., if we look

vertically or horizontally), if it exists.

Next, we show that such a threshold boundary does indeed exist in this region of

the parameter space. We look at two particular delimiting boundaries for this region,

namely c = 3
4α

and c = α and examine the sign of Ψg,D(α, c) along these boundaries.

* On the boundary c = 3
4α

, we obtain:
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Ψg,D

∣∣∣
c= 3

4α

=
α
(
639α2 − 51

√
α2(3α + 5)(51α + 5) + 330α + 215

)
1280(α− 1)α

−
5
√

α2(3α + 5)(51α + 5)

1280(α− 1)α

< 0.

Thus, on the boundary, TLF dominates S.

* On the boundary c = α, it is easy to get π∗
TLF → 0, whereas π∗S > 0. Thus,

π∗
S > π∗

TLF , S dominates TLF.

Therefore, in this parameter region, there exists a unique threshold boundary, which

we define as αg(c), which separates the optimality regions for S and TLF. It satisfies:

Ψg,D(αg(c), c) = 0.

Also, it is straightforward that ∂αg(c)

∂c
= −

∂Ψg,D(α,c)

∂c
∂Ψg,D(α,c)

∂α

> 0. Hence, αg(c) is decreasing

in c.

As αg(c) > c and c1(
1
16
) ≈ 0.0876 > 1

16
, there exists a unique intersection point

between αg(c) and α†(c). Defining this point as (c5, αg(c5)). Thus, αg(c) is properly

defined and increasing on [0, c5).

Thus, we completely characterized lines α†(c), ca(α), α1(c), α2(c), α3(c) and α4(c), (in

particular, segments, αa(c), αb(c), αc(c), αd(c), αe(c), αf (c), αg(c), as well as constant
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thresholds c1, c2, c3, c4, c5).

Comparison of α1(c) and α2(c):

When 0 ≤ c < c4, we already show that αf (c) is decreasing in c and αe(c) is increasing in

c. Furthermore, they interact at the point (c4, αe(c)[αf (c)]). Thus, we have αf (c) ≥ αe(c),

i.e., α1(c) > α2(c).

Comparison of α2(c) and α3(c):

The region where αg(c) is defined is with in 0 < α < 1
9
< αe(c). Thus, αg(c) < αe(c). For

the other segments of α2(c) and α3(c), they are all related to comparing TLF and CE-PL.

Thus, by definition, α2(c) > α3(c).

Derivation of the dominating strategy in the entire region 0 < α < 1:

• By the definition of αf (c) and αe(c), we know when α2(c) ≤ α < α1(c), CE-SUB

dominates CE-PL and TLF. Since S can only dominates CE-PL within a subregion in

0 < α < 1
9
. Thus, CE-SUB also dominates TLF as well when α2(c) ≤ α < α1(c).

• By the definition of α2(c) and α3(c) (including the comparison between TLF with CE-

SUB, CE-PL, and S), it is straightforward that TLF is the optimal strategy when α3(c) ≤

α < α2(c).

• We have discussed in detail in Prop. 16 and we can get that S is the optimal strategy

when α < α3(c) and c < c‡(α).
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This completes the mapping of dominant strategy to the parameter space (we discussed the

case α ≥ 1 at the very beginning of the proof).
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APPENDIX E

PROOFS OF RESULTS FOR TARGETED SEEDING OF CHAPTER 2

We first present the optimal solution under Targeted Seeding in Prop. 17.

Proposition 17. Under TS model, the firm’s optimal pricing strategy and profit are:

0 < α < 1
5

(
3−

√
7
)

1
5

(
3−

√
7
)
≤ α < 1

2
1
2
≤ α ≤ 1

p∗TS p∗TS−a p̃TS p∗CE−PL

π∗
TS π∗

TS−a max{π∗
TS−a, π

∗
TS−b} π∗

CE−PL

Adoption in period 2 in period 2 or in both periods in period 1
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where:

p∗TS−a =

(
−2α +

√
(α− 1)α + 1 + 1

)(
α +

√
(α− 1)α + 1 + 1

)
9(1− α)

,

π∗
TS−a =

(
−2α +

√
(α− 1)α + 1 + 1

)(
α +

√
(α− 1)α + 1 + 1

)
27(1− α)2

×
(
−α−

√
(α− 1)α + 1 + 2

)
,

p∗TS−b = 2αθ∗1,

π∗
TS−b = 2αθ∗1

(
1−

−
√

(α− 1)θ∗1 ((α− 1)θ∗1 − 8α + 2) + 1 + (α− 1)θ∗1 + 1

2(α− 1)

)
,

p̃TS =


p∗TS−a if π∗

TS−a > π∗
TS−b

p∗TS−b o/w
,

θ∗1 is the unique solution to the equation

8(α− 1)2
(
1− α2

)
θ31 + 4(α− 1)

(
6
(
1− α2

)
− 19α

(
1− α2

))
θ21

+ 4(α− 1)(2(α− 2)α(4α− 5)− 6)θ1 + 4(2− α)(α− 1) = 0

over the interval [0, 1].

Proof. It trivially follows that when α ≥ 1, TS defaults to CE-PL. If 0 < α < 1, in period 1,

customer purchase iff 2αθ ≥ p. Under Targeted Seeding, the firm can choose two different

strategies:

• Case 1: The firm sets 0 < p < 2α, there are both seeded customers and adopters in

period 1;

• Case 2: The firm sets p ≥ 2α, under this case, there are only seeded customers in period
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1.

Also, we can further derive that for period 2 adoption to occur, we need 0 < α ≤ 1
2
.

Otherwise, no amount of social learning can compensate for reducing the product life in

half. Also, when 1
2
≤ α < 1, there is only period 1 adoption strategy and TS defaults

to CE-PL outcome with no seeding. Therefore, for TS to have a chance to be the optimal

model, it is necessary that 0 < α < 1
2
.

Case 1: 0 < α < 1
2

and 0 < p < 2α

We denote θ1 and θ2 as the marginal consumer in period 1 and period 2, respectively.

We get: θ1 = p
2α

, and the number of adopters in period 1 is θ2 + 1 − θ1. Based on

social learning, non-adopters in period 1 updates their valuation from a1 = α to a2 =

(1 − α) (θ2 + 1− θ1) + α. In period 2, the marginal customer satisfies a2θ2 = p, and it

gives us:

θ2 ((1− α) (−θ1 + θ2 + 1) + α) = 2αθ1.

We solve θ2 as a function of θ1:

θ21 =
−
√

(α− 1)θ1 ((α− 1)θ1 − 8α + 2) + 1 + (α− 1)θ1 + 1

2(α− 1)
,

θ22 =

√
(α− 1)θ1 ((α− 1)θ1 − 8α + 2) + 1 + (α− 1)θ1 + 1

2(α− 1)
.
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It can be shown that θ21 < 0 and θ22 ∈ [0, θ1]. Therefore:

θ2 =
−
√
(α− 1)θ1 ((α− 1)θ1 − 8α + 2) + 1 + (α− 1)θ1 + 1

2(α− 1)
≤ θ1.

The firm’s profit maximization problem becomes:

max
0<p<2α

πTS = max
0<p<2α

(1− θ2) p

= max
θ1

2αθ1

(
1−

−
√

(α− 1)θ1 ((α− 1)θ1 − 8α+ 2) + 1 + (α− 1)θ1 + 1

2(α− 1)

)
.

Maximizing by changing p is equivalent to maximizing by changing θ1 since p = 2αθ1.

Differentiating π(θ1) we obtain:

∂π(θ1)

∂θ1
=

(α−1)αθ1
(
−2
√

(α−1)θ1((α−1)θ1−8α+2)+1+2(α−1)θ1−12α+3
)
+α√

(α−1)θ1((α−1)θ1−8α+2)+1
+ α(2α− 3)

α− 1
.

To solve the equation ∂π(θ1)
∂θ1

= 0, we define M =
√
(α− 1)θ1 ((α− 1)θ1 − 8α + 2) + 1

and simplify the equation as:

(3− 2α)M − ((α− 1)θ1 (2(α− 1)θ1 − 12α− 2M + 3) + 1) = 0,

so we have:

2(1− α)(1− α)θ21 − 3(1− α)θ1 + 12(1− α)αθ1 + 1 = M (−2(1− α)θ1 − 2α + 3) .

It can be shown that −2(1 − α)θ1 − 2α + 3 > 0. Therefore, the interior point solution
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can exist only if 2(1 − α)(1 − α)θ21 − 3(1 − α)θ1 + 12(1 − α)αθ1 + 1 > 0. Solve

2(1−α)(1−α)θ21 − 3(1−α)θ1 +12(1−α)αθ1 +1 > 0. By solving 2(1−α)2θ21 − 3(1−

α)θ1 + 12(1− α)αθ1 + 1 > 0. Solve 2(1− α)2θ21 − 3(1− α)θ1 + 12(1− α)αθ1 + 1 = 0,

we get:

θ11 =
12α2 − (α− 1)

√
144α2 − 72α + 1− 15α + 3

2 (2α2 − 4α + 2)
,

θ12 =
12α2 + (α− 1)

√
144α2 − 72α + 1− 15α + 3

2 (2α2 − 4α + 2)
.

We have three subcases:

• Case 1-i: If 0 < α ≤ 1
12

(
3− 2

√
2
)
, 144α2 − 72α + 1 > 0, there are two real solutions

θ11 and θ12 for 2(1 − α)2θ21 − 3(1 − α)θ1 + 12(1− α)αθ1 + 1 = 0. It trivially follows

∂π(θ1)
∂θ1

> 0, θ∗1 = 1. Therefore, there is no adoption in period 1.

• Case 1-ii: If 1
12

(
3− 2

√
2
)
< α < 1

12

(
2
√
2 + 3

)
, 144α2 − 72α+ 1 < 0, there is no real

solution for 2(1− α)2θ21 − 3(1− α)θ1 + 12(1− α)αθ1 + 1 = 0. Recall that we want to

find the solution of:

(α−1)αθ1
(
−2
√

(α−1)θ1((α−1)θ1−8α+2)+1+2(α−1)θ1−12α+3
)
+α√

(α−1)θ1((α−1)θ1−8α+2)+1
+ α(2α− 3)

α− 1
= 0.

We can simplify the equation as:

8(α− 1)2
(
1− α2

)
θ31 + 4(α− 1)

(
6
(
1− α2

)
− 19α

(
1− α2

))
θ21

+ 4(α− 1)(2(α− 2)α(4α− 5)− 6)θ1 + 4(2− α)(α− 1) = 0.
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Denote the L.H.S as H(θ1), and it can be shown that H(0) < 0. We further derive the

FOC of H(θ1):

∂H(θ1)

∂θ1
=− 24(α− 1)2

(
α2 − 1

)
θ21 + 4(α− 1)

(
38α

(
α2 − 1

)
− 12

(
α2 − 1

))
θ1

+ 4(α− 1)(2(α− 2)α(4α− 5)− 6).

By solving ∂H(θ1)
∂θ1

= 0, we can get:

θ13 =
19α4 − 25α3 − 13α2 + 25α− 6

6 (α4 − 2α3 + 2α− 1)

−
√
409α8 − 1250α7 + 815α6 + 988α5 − 1417α4 + 334α3 + 193α2 − 72α

6 (α4 − 2α3 + 2α− 1)
,

θ14 =
19α4 − 25α3 − 13α2 + 25α− 6

6 (α4 − 2α3 + 2α− 1)

+

√
409α8 − 1250α7 + 815α6 + 988α5 − 1417α4 + 334α3 + 193α2 − 72α

6 (α4 − 2α3 + 2α− 1)
.

We split case 1-ii into two subcases:

– Case 1-ii-a: If 1
12

(
3− 2

√
2
)
< α < 1

818

(√
118321 + 23

)
, 409α8−1250α7+815α6+

988α5−1417α4+334α3+193α2−72α < 0, there is no real solution for ∂H(θ1)
∂θ1

= 0.

Under case 1-ii-a, it can be shown that ∂H(θ1)
∂θ1

> 0, and we already know H(0) < 0.

By checking the sign of H(1), we get two subcases:

* If 1
12

(
3− 2

√
2
)
< α < 1

5

(
3−

√
7
)
, H(1) < 0, H(θ1) < 0, ∂π(θ1)

∂θ1
> 0, θ∗1 = 1,

such that there is no adoption in period 1;

* If 1
5

(
3−

√
7
)
≤ α < 1

818

(√
118321 + 23

)
, there exists a unique θ∗1 ∈ (0, 1)
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such that H(θ∗1) = 0. It can be shown that when θ1 ∈ [0, θ∗1), H(θ1) < 0,

the profit π is increasing in θ1; when θ1 ∈ (θ∗1, 1], H(θ1) > 0, the profit π is

decreasing in θ1. Therefore, θ∗1 can get us the optimal profit.

– Case 1-ii-b: If 1
818

(√
118321 + 23

)
≤ α < 1

12

(
2
√
2 + 3

)
, 409α8 − 1250α7 +

815α6 + 988α5 − 1417α4 + 334α3 + 193α2 − 72α ≥ 0, there are two real solu-

tions θ13 and θ14 for ∂H(θ1)
∂θ1

= 0. It can be shown that both θ13 and θ14 are negative.

Therefore, ∂H(θ1)
∂θ1

> 0 for all θ1 ∈ [0, 1]. It immediately follows H(θ1) is increasing

in θ1 ∈ [0, 1]. And we already know H(0) < 0. It can be shown that H(1) > 0.

Thus, there is a unique θ∗1 ∈ [0, 1] such that θ∗1 can get us the optimal profit.

• Case 1-iii: If 1
12

(
2
√
2 + 3

)
< α < 1

2
, there are two real solutions θ11 and θ12 for

2(1 − α)2θ21 − 3(1 − α)θ1 + 12(1 − α)αθ1 + 1 = 0. It can be shown that θ11 < 0 and

θ12 < 0. Following the steps under case 1-2, we can get H(0) < 0 and H(1) > 0. It can

be shown that H(θ1) is increasing in θ over the interval [0, 1]. Thus, there is a unique

θ∗1 ∈ [0, 1].

In summary, under case 1, when 0 < α < 1
5

(
3−

√
7
)
, there is no profit. When 1

5

(
3−

√
7
)
≤

α < 1
2
, there exists a unique θ∗1 ∈ [0, 1] such that:

8(α− 1)2
(
1− α2

)
θ∗31 + 4(α− 1)

(
6
(
1− α2

)
− 19α

(
1− α2

))
θ∗21

+ 4(α− 1)(2(α− 2)α(4α− 5)− 6)θ∗1 + 4(2− α)(α− 1) = 0.

Furthermore, when θ1 ∈ [0, θ∗1), H(θ1) < 0, the profit π is increasing in θ1; when θ1 ∈
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(θ∗1, 1], H(θ1) > 0, the profit π is decreasing in θ1. The optimal profit is:

π∗
TS−b = 2αθ∗1

(
1−

−
√

(α− 1)θ∗1 ((α− 1)θ∗1 − 8α + 2) + 1 + (α− 1)θ∗1 + 1

2(α− 1)

)
.

Case 2: 0 < α < 1
2

and p ≥ 2α

Under case 2, the profit maximization problem becomes:

max
p≥2α

π = max
p≥2α

(1− θ1) p = max
θ1

θ1 (1− θ1) ((1− α)θ1 + α) .

It trivially follows:

θ∗1 =
−2α +

√
(α− 1)α + 1 + 1

3− 3α
,

p∗TS−a =

(
−2α +

√
(α− 1)α + 1 + 1

)(
α +

√
(α− 1)α + 1 + 1

)
9(1− α)

,

π∗
TS−a =

(
−2α +

√
(α− 1)α + 1 + 1

)(
α +

√
(α− 1)α + 1 + 1

)
27(1− α)2

×
(
−α−

√
(α− 1)α + 1 + 2

)
.

Proof of Proposition 4

Proof. From Prop. 1, we get S is dominated by TLF.

Comparing both case 1 and case 2 with TLF, we get when 0 < α < 1
2
, π∗

TS−a < 1
4
=

π∗
TLF ,∀θ∗1 ∈ (0, 1) and π∗

TS−b <
1
4
= π∗

TLF . TLF dominates TS.
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APPENDIX F

ROBUSTNESS TESTS OF CHAPTER 3

F.1 Entry Timing

Figure F.1: Distribution of the timing when Amazon takes over as the seller of the product

Notes: The figure shows the distribution of the timing when Amazon takes over as the seller of the product.

There does not appear to be a discernible pattern in the timing of Amazon becoming the seller.
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F.2 Cohort Analysis

Figure F.2: Impacts on Product Characteristics when Amazon Becomes its Seller Cohort
Analysis (April)

(a) Sales Rank

(b) Buybox Price (c) Rating

Notes: This figure shows the event study (cohort analysis) of when Amazon becomes the seller of existing

products in April. Each point is an estimate of effect βm in m-th month. We use one month before Amazon

becomes the seller (m = −1) as the benchmark. 95% confidence intervals constructed using standard errors

clustered at the product level are also displayed. The results are consistent with our main analysis.
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Figure F.3: Impacts on Product Characteristics when Amazon Becomes its Seller Cohort
Analysis (August)

(a) Sales Rank

(b) Buybox Price (c) Rating

Notes: This figure shows the event study (cohort analysis) of when Amazon becomes the seller of existing

products in August. Each point is an estimate of effect βm in m-th month. We use one month before Amazon

becomes the seller (m = −1) as the benchmark. 95% confidence intervals constructed using standard errors

clustered at the product level are also displayed. The results are consistent with our main analysis.
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Figure F.4: Impacts on Product Characteristics when Amazon Becomes its Seller Cohort
Analysis (December)

(a) Sales Rank

(b) Buybox Price (c) Rating

Notes: This figure shows the event study (cohort analysis) of when Amazon becomes the seller of existing

products in December. Each point is an estimate of effect βm in m-th month. We use one month before Ama-

zon becomes the seller (m = −1) as the benchmark. 95% confidence intervals constructed using standard

errors clustered at the product level are also displayed. The results are consistent with our main analysis.
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F.3 Selection on Unobservables

Table F.1: Products characteristics for control and treatment groups (within treated)

# Treated 4898 (1) (2) (3)

# Control 5180 Buybox Price Rating Sales Rank

Month Treat Control t-stat. Treat Control t-stat. Treat Control t-stat.

-6 36.07 31.53 6.37*** 4.31 4.31 0.07 254754.59 203804.56 7.29***

-5 36.07 31.53 6.38*** 4.31 4.32 -0.02 256339.05 200712.30 8.03***

-4 36.04 31.52 6.34*** 4.31 4.32 -1.24 253404.11 197692.61 7.98***

-3 36.00 31.53 6.29*** 4.30 4.32 -1.75* 249551.05 193968.45 7.91***

-2 35.97 31.54 6.24*** 4.31 4.32 -1.71* 246673.48 189879.50 8.13***

-1 35.98 31.54 6.26*** 4.31 4.32 -1.67* 238754.23 185594.29 7.88***

Notes: This table shows that products in treatment and control groups are significantly different on a set of

key characteristics prior to Amazon introducing PL.

Table F.2: Matched products characteristics in control and treatment groups (within treated)

# Treated 3549 (1) (2) (3)

# Control 2253 Buybox Price Rating Sales Rank

Month Treat Control t-stat. Treat Control t-stat. Treat Control t-stat.

-6 25.63 25.23 0.61 4.32 4.33 -0.92 86685.58 81095.48 1.63

-5 25.64 25.19 0.68 4.32 4.34 -1.43 85668.05 80708.06 1.43

-4 25.61 25.20 0.63 4.31 4.34 -1.82 84385.14 80661.06 1.06

-3 25.62 25.25 0.56 4.31 4.34 -2.08 83712.70 79951.04 1.06

-2 25.62 25.27 0.53 4.31 4.34 -2.03 84870.13 79709.48 1.45

-1 25.67 25.30 0.56 4.32 4.34 -1.95 85383.27 79861.20 1.52

Notes: This table shows that after matching, the differences between products in control and treatment

groups are insignificant on a set of key characteristics prior to Amazon introducing PL.
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F.4 FBA

Figure F.5: Impacts on Product Sales Rank after Amazon Becomes its Seller (FBA)

(a) Sales Rank

(b) Buybox Price (c) Rating

Notes: This figure shows the event study of when Amazon becomes the seller of existing products that are

already fulfilled by Amazon. Therefore, there is no change in fulfillment methods before and after Amazon

becomes the seller of existing products. Each point is an estimate of effect βm in m-th month. We use one

month before Amazon becomes the seller (m = −1) as the benchmark. 95% confidence intervals constructed

using standard errors clustered at the product level are also displayed. The results are consistent with our main

analysis.
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APPENDIX G

MATCHING PROCESS OF CHAPTER 3

We employ matching methods as follows. First, We keep only the treated categories that

can be observed for at least six months before and after Amazon introduces its private-label

product. This results in 312 categories in the treatment group. For each treated category,

we then identify all control categories that can be observed at least six months before and

after the treated category’s Amazon entry date. This ensures that the matched pairs have

the same observational window.

Second, We impose a restriction that control categories must belong to the same root

category (level 1) as the treated category. This ensures that the control categories are similar

enough to serve as a proxy for the counterfactual of the treated categories.

Third, We compute the Scaled Euclidean distance between each treated category and

eligible control category in terms of category average price, average sales rank, average

ratings, and average number of sellers over the six months prior to Amazon introducing its

own product.

Finally, we use the one-nearest-neighbor (with replacement) algorithm to match each

treated category to its closest control counterpart. We also impose a caliper that sets an

absolute maximum on the Euclidean distance to avoid poor matches.
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APPENDIX H

VECTOR REPRESENTATION OF IMAGES AND COSINE SIMILARITY

ANALYSIS OF CHAPTER 3

The key process is to calculate the similarity between images as the proxy for the difference

in product design.

We first extract image features using a deep learning model GoogLeNet Inception v3

(Szegedy et al. 2016). It is a widely used neural network for image classification and

was originally trained on ImageNet dataset which contains more than 14 million annotated

images with more than 1000 classes. In our dataset, we collect 123,878 images from 19,155

products. We adopt the transfer learning approach (Xia et al. 2017, Wang et al. 2019,

Jignesh Chowdary et al. 2020) to use Inception v3 architecture to extract image features on

the top layer of the neural network. The final output of the Inception V3 architecture is the

score for images classes. However, for our analysis, we do not need the score to determine

the class of images since we have category that can accurately determine the image class.

Instead, we keep the top layer in the neural network since it is the most informative vector

representation of the image. This process eventually transforms each image into a 2048-

dimensional vector.

We then use the vectors to calculate the cosine similarity between images. The benefit

of using cosine similarity is it measures the angle between two vectors rather than their

magnitudes. This means that the metric is not sensitive to the scale of the vectors.
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On Amazon, each product can have multiple images. To calculate the cosine similarity

between products, we first calculate the cosine similarity matrix between each image of a

third-party product and those of the Amazon’s product in the same category. Specifically,

for each Amazon product image mj and a third-party product image mp, the pairwise cosine

similarity is computed as:

CSj,p =
mj ·m′

p

|mj||mp|
. (H.1)

The cosine similarity score measures the angle between the vectors of two images and can

range between 0 and 1. A score of 0 indicates that the two images have nothing in common,

while a larger score suggests that the two images are more similar.

We use the largest similarity as a proxy for the similarity between this third-party prod-

uct’s image and Amazon product’s images. That is, we find the closest images between

Amazon’s and the third-party’s product. The purpose of this step is, the images of one

product can be taken from different angles, different angles might lead to small cosine

similarity even if two products are pretty close in the design. To address this concern, we

only keep the max cosine similarity between a third-party image and a group of Amazon’s

images.

Then we calculate the average cosine similarity between all images of the third-party

product and Amazon’s products in the same category and use it as the cosine similarity

between the two types of products.
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APPENDIX I

VECTOR REPRESENTATION OF TEXT DESCRIPTIONS AND COSINE

SIMILARITY ANALYSIS OF CHAPTER 3

We first create vector representations of the product description text using a method called

“Term frequency-inverse document frequency” (TF-IDF) (Robertson 2004, Wang et al.

2019, Burtch et al. 2022). TF-IDF calculates statistics that represent the importance of

a word or phrase within a document in a corpus. With this approach, the raw frequency

of words is weighted by the uniqueness of the word. Specifically, if a word is highly

unique and only appears in one document, in our case, in a single product’s description, it

maintains its raw frequency. However, if a word is commonly used across all products, its

frequency decreases to a smaller value.

We use cosine similarity to measure the similarity in text descriptions between existing

third-party products and newly added products following previous literature (Allan et al.

2003, Gentzkow et al. 2019, Kelly et al. 2021). The benefit of using cosine similarity is

it measures the angle between two vectors rather than their magnitudes. This means that

the metric is not sensitive to the scale of the vectors, making it suitable for comparing

documents of different lengths or with different frequencies of terms.

We then compile all product descriptions into a matrix Mjw, where each row represents

a product, and each column represents the total number of times word w occurs in that

product. Next, we calculate the pairwise cosine similarity scores between Amazon’s prod-
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ucts and third-party products. Specifically, for each Amazon product mj and a third-party

product mp, the pairwise cosine similarity is computed as:

CSj,p =
mj ·m′

p

|mj||mp|
. (I.1)

The cosine similarity score measures the angle between the vectors of two products and

can range between 0 and 1. A score of 0 indicates that the two products’ descriptions have

nothing in common, while a larger score suggests that the two products are more similar.
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