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SUMMARY

This work is composed of two chapters. Both chapters contribute to the field of

the analysis of physical experiments by addressing some practical limitations and of-

fering alternatives to the existing methodology. The first chapter primarily addresses

the issue of how to estimate the many factorial effects in highly fractionated designs.

This is achieved through the application of nearly objective Bayes techniques. These

techniques employ a functionally induced prior for the model parameters that have

the highly desirable property of incorporating the concepts of effect hierarchy and

effect heredity. The second chapter addresses a common “second step” in industrial

settings, where often the entire purpose of the experiment is that of finding the opti-

mal factor settings. Optimization experiments require the determination of settings

for all of the factors so that a desired response can be achieved. With this as our

primary objective, we make the case for an alternative to the standard practice: esti-

mation followed by the use of statistical testing or the application of model selection

algorithms, and finally the optimization of some reasonable parsimonious model. In-

stead, we propose the estimation techniques described in the first chapter in addition

to a method of determining significance based on a criteria directly related to the

problem at hand.

In the first chapter we focus on the estimation of a large number of effects from an

experimental design with only a small number of runs. A full factorial experimental

design over even a moderate number of multi-level factors may become infeasible to

carry-out since the number of runs increases very rapidly with the number of factors.

As a result, highly fractionated designs are employed in practice. However, while now

the frequentist analysis may be carried out on this reduced run size, other problems
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are introduced. For instance, we can only estimate a small subset of the factorial

effects. The quantity of effects we can estimate is limited by the degrees of freedom

available from this reduced run size. In addition, special techniques must be employed

to resolve aliasing.

Bayes techniques have been suggested to address these issues. However, the com-

mon hierarchical model Bayesian approach to the design and analysis of experiments

is typically encumbered by the daunting task of specifying a prior distribution for the

large number of parameters in the linear model. Such a prior should also reflect a

belief in the well known experimental design properties of effect hierarchy and effect

heredity. Recently it has been proposed that we may specify a functional prior on the

underlying transfer function. Through this functional prior, we are able to reduce the

task of prior parameter specification to that of only a few hyper-parameters. When

carefully selected, this functional prior may also incorporate the properties of effect hi-

erarchy and effect heredity. Previously, this functionally induced prior was developed

for two level experiments. Here we have extended these concepts for three and higher

level designs. These designs play a very important role in industrial experiments.

The prior specification for multi-level factors requires that an interesting distinc-

tion be made between qualitative and quantitative factors. Such a distinction was

not necessary in the case of 2-level factors. However, the Gaussian process func-

tional prior assumption that we employ enables us to seamlessly integrate this aspect

of multi-level factors in the modeling through the choice of an appropriate class of

correlation functions. The application of the methodology is demonstrated with the

analysis of two real world examples.

In the second chapter, we focus on what to do next, after estimation, in the

case of an optimization experiment. Again, cost constraints may require that an

experimental design’s run size be kept small. In many such cases, not having enough

data may be solely to blame for not being able to conclude an effect’s significance
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via a standard frequentist statistical test. This is particularly troublesome in an

optimization experiment, where we wish to determine the optimal settings for all

of the factors based on the experimental output. Another problem associated with

frequentist hypothesis testing is that the choice of a significance level, α, tends to be

completely arbitrary and has little connection to the real world problem.

A convenient property of the empirical Bayes estimates obtained in the first chap-

ter is that they already incorporate information about uncertainty through the prior

specification and the data. These estimators can be characterized as shrinkage esti-

mates. In this chapter, some special known cases of the empirical Bayes estimator are

discussed. For instance, connections are drawn to the so-called James-Stein estimator

as well as the Beta Coefficient Method of Taguchi. Discussion of these special cases

allow us to fully appreciate the functionally induced prior empirical Bayes estimator

that is recommended here for the purpose of analyzing experiments.

After obtaining the empirical Bayes estimates, for an optimization experiment,

it may not be desirable to perform additional statistical hypothesis testing or model

selection. Instead, we may wish to use these estimates to determine factor settings

which balance the goal of optimizing the response with the cost of changing factors

from their current settings. Simulation results provide support for the conclusion

that the recommended procedure is superior to frequentist estimation and hypothesis

testing, with respect to a metric that should be of particular interest in optimization

experiments. On average, the proposed techniques dictate factor settings that yield

response values closer to our objective. Finally, we complete the analysis of a real

world optimization experiment that is first visited in chapter one.
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CHAPTER I

FUNCTIONALLY INDUCED PRIORS FOR THE

DESIGN AND ANALYSIS OF EXPERIMENTS

1.1 INTRODUCTION

In the analysis of a typical experiment with any number of three and higher level

factors, the amount and nature of the calculations in the traditional analysis do not

facilitate the adoption of analysis strategies that can be easily automated. Histor-

ically, frequentist analysis strategies have had to rely upon tedious calculations to

establish the aliasing relationships that comprise the design’s degrees of freedom.

Tools like half-normal plots and interaction plots would be used to perform variable

selection and determine optimal factor settings, respectively, while computing was

used to perform calculations necessary to estimate effects. While sometimes ade-

quate, the traditional approach can be quite time consuming and does not lend itself

well to utilization of the computing power that is now available.

Designs of three-level and four-level factors figure prominently in physical exper-

iments. For example, all of the case studies reported in Taguchi, Chowdhury, and

Taguchi (2000) use mixed two, three, and higher level designs. See Taguchi (1987)

and Wu and Hamada (2000) for several other examples. Beginning with three-level

factors, much more information about the shape of the response surface can be ex-

tracted from a good design. Unfortunately, the run size of full factorial 3p and 4p

designs can be prohibitively large. Fractional factorial designs are used for reducing

the run size, but they lead to aliasing of the effects. Several Bayesian approaches for

estimating the effects from fractional designs have been suggested in the literature.
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The technique used to incorporate prior information plays an important role in both

optimal design choice and the subsequent estimation of effects and variable selection.

Some previous approaches to Bayesian methods to the design and analysis of

experiments have focused on Bayesian hierarchical models that require eliciting or

estimating many hyper-parameters in order to specify priors for a linear model’s

parameters. See for instance the review of the literature by Chaloner and Verdinelli

(1995). Problems arise in both the proper specification of the numerous priors as

well as potential complications with calculation. An interesting Bayesian approach,

with model priors that facilitate the incorporation of principles like effect heredity

is suggested by Chipman, Hamada, and Wu (1997). In that paper, estimation is

through a Gibbs sampling procedure.

The specification of a prior for the model parameters is not a trivial matter. The

sheer quantity of the parameters is a major problem, but there are several other

issues. For example, consider a 32 design. Suppose u1 and u2 represent the two coded

variables of the first factor and u3 and u4 those of the second factor. Then the linear

model that we would like to fit is

Y = β0 + β1u1 + β2u2 + β3u3 + β4u4 + β5u1u3 + β6u1u4 + β7u2u3 + β8u2u4 + ε.

What should be the prior distribution for the β’s? The usual approach is to take

them as N (0, τ 2
0 ), see for example Chipman et al. (1997). Although this choice looks

reasonable, several questions remain unanswered. For example, by the effect hierarchy

principle (see Hamada and Wu 1992), we know that a two-factor interaction (2fi) is

less likely to be significant than a main effect. Therefore is it ideal to use the same

distribution for a main effect and 2fi? Moreover, we can use different coding schemes

to represent the two degrees of freedom for each factor. How should we change the

prior specification depending on the coding scheme? Are the two effects of the same

factor, say β1 and β2, equally important? It is known that if we use a linear-quadratic

system, then the linear effect is more important than the quadratic effect. How do we
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incorporate such a difference in the prior? Is it reasonable to take all the parameters

to be independent? How should the prior be modified depending on the type of factor

viz. qualitative or quantitative? It is imperative to develop a coherent and systematic

approach to prior specification, so that we can answer all these questions.

In this chapter we propose the use of functionally induced priors for prior spec-

ification (Joseph 2006). Here a prior using a Gaussian process is postulated for the

underlying transfer function and then the prior distribution for all the model param-

eters is induced from it. The work in Joseph (2006) focuses on two-level experiments.

Mitchell, Morris, and Ylvisaker (1995) and Kerr (2001) have also studied the use of

stochastic processes for the design of two-level experiments. Here we extend the ap-

proach for the case of three and higher level experiments. The extension is not trivial

as there are many issues involved in higher level experiments that are not present

in two-level experiments. For example, the type of factor, the type of correlation

function, the type of coding scheme, the mixed-level nature of the experiments, etc.

become important when dealing with higher level experiments, but are irrelevant for

two-level experiments.

A very nice property of the functionally induced prior is that it agrees with many

widely accepted principles in the design and analysis of experiments such as effect

sparsity, effect hierarchy, and effect heredity (Wu and Hamada 2000). The introduc-

tion of these priors has provided for a very nice setting that enables the automation

of many analytical tasks, that in previous approaches would have required a great

deal of time consuming manual work.

The chapter is organized as follows. We begin by reviewing the general function-

ally induced prior Bayesian framework. We present a decomposition result that is

extremely useful for studying three-level, four-level, · · ·, and mixed-level designs. The

results are different for the case of qualitative and quantitative factors. In Section 1.3,

we present the results for qualitative factors. The results of this section are very simple
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and general, so that they can be used with any number of levels. In Section 1.4, the

building blocks for applying the Bayesian methodology to three-level and four-level

quantitative factors are presented. Here, there is a brief discussion of complications

that can arise due to the choice of coding-scheme for the model matrix. We also

demonstrate that a direct consequence of the functionally induced prior is a system-

atic methodology for ordering the effects. The utility of this Bayesian setting is illus-

trated through examples where the forward variable selection procedure is adapted to

designs with three-level and four-level factors. This appears in Section 1.5. That this

functionally induced prior has interesting implications for optimal design is demon-

strated by an example in Section 1.6. Finally, concluding remarks and suggestions

for future research are given in Section 1.7.

1.2 GENERAL METHODOLOGY

Suppose that there are p factors x = (x1, x2, · · · , xp)′, where the factor xi is experi-

mented with at mi levels. Assume the model

Y = f(x) + e, e ∼ N (0, σ2),

where e represents the random error in the response due to the uncontrollable variables

in the system. The transfer function f could be nonlinear and highly complex, but

we would like to approximate it by a linear model containing the main effects and

interactions of the factors. The factor xi can be represented by mi−1 coded variables

and the interactions can be defined through the products of these coded variables.

Thus we would like to approximate f(x) by

f(x) ≈
q−1∑
i=0

βiui,

where q =
∏p

i=1mi. For example, in the 32 design discussed in Section 1, we let

u5 = u1u3, u6 = u1u4, u7 = u2u3, and u8 = u2u4.

4



As the number of factors and/or the number of levels increase, the total number

of parameters (q) can become very large. Therefore, postulating a prior distribution

for β = (β0, β1, · · · , βq−1)
′ is a difficult task. Joseph (2006) used a simple idea to

overcome this problem. The idea is to postulate a functional prior for the transfer

function and use that to induce a prior for all of the parameters in the linear model.

Therefore, let

f(x) ∼ GP (µ0, σ
2
0ψ),

where µ0 is the mean and σ2
0ψ is the covariance function of the Gaussian process

(GP). The covariance function is defined as cov(Y (x), Y (x + h)) = σ2
0ψ(h). Because

there are q parameters in the linear model, they can be chosen to exactly match the

function values at q points. A simple choice for the q points is the full factorial design.

Let U be the q× q model matrix for the parameter β and let Ψ be the corresponding

correlation matrix. To simplify the results, consider instead f(x) = µ0 +
∑q−1

i=0 βiui

at the q points in the full factorial design. Then,

β ∼ N
(
0, σ2

0U
−1Ψ(U−1)′

)
.

For obvious reasons, we call this a functionally induced prior distribution. For large q,

the variance-covariance matrix is huge, which can be difficult to construct and handle.

Therefore it is important to simplify the representation of the above matrix so that

the results can be easily used in practice. We achieve this under some assumptions.

Assume that the correlation function ψ has a product correlation structure of the

form:

ψ(h) =

p∏
j=1

ψj(|hj|). (1)

Let U j be the model matrix for factor xj and let Ψj be the corresponding correlation

matrix. For example, for a 3-level factor with possible levels 1, 2, and 3, the model
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matrix using orthogonal polynomial coding (with common column lengths of
√

3) is

U j =


1 −

√
3
2

√
1
2

1 0 −
√

2

1
√

3
2

√
1
2

 (2)

and the correlation matrix is

Ψj =


1 ψj(1) ψj(2)

ψj(1) 1 ψj(1)

ψj(2) ψj(1) 1

 . (3)

Now we have the following result. All of the proofs are given in the Appendix A.

Theorem 1 Under the product correlation structure in (1):

var(β) = σ2
0

p⊗
j=1

U−1
j Ψj(U

−1
j )′.

The impact of this theorem is that we can focus on each factor, one at a time, in

choosing whatever coding scheme and correlation function suits our modeling needs.

For example, to construct the variance-covariance matrix in a 2p2 × 3p3 × 4p4 design,

we only need to establish the structure of U−1
j Ψj(U

−1
j )′ for a two-level, three-level,

and four-level factor. The results can then be combined by taking Kronecker products

to get the desired variance-covariance matrix for any values of p2, p3, and p4.

In the following sections, we investigate the structure of the variance-covariance

matrix, so that the result can be easily interpreted and applied in the design and anal-

ysis of experiments. The choice of correlation functions and coding schemes depend

on the type of factors. Therefore we study the case of qualitative and quantitative

factors separately.

1.3 QUALITATIVE FACTORS

By qualitative factor we mean a factor whose levels are nominal. That is, a qualitative

factor might be the name of: the vendor for a part, a machine, a method, etc.
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1.3.1 Correlation Function

For a qualitative factor, we should assign equal correlation between any two levels.

This is because among our prior assumptions, there is no information as to how to

either order these factor levels or to determine the relative distances between any of

the levels. As mentioned previously, we assume that the prior Gaussian process is

stationary. So for the jth factor, we need only be concerned with hj = |xij − xkj|, for

two runs i and k. That is,

ψj(hj) =

 1 if hj = 0

ρj if hj 6= 0
,

where 0 < ρj < 1. Then the mj ×mj correlation matrix has the compound symmetry

form:

Ψj =



1 ρj . . . ρj

ρj 1 . . . ρj
... · · · . . .

...

ρj ρj . . . 1


. (4)

1.3.2 Prior Distribution

Suppose that for whatever coding schemes are selected for each of the single factor

model matrices U j for j = 1, . . . , p, we impose only the restrictions that the first

column of each U j is 1mj
to correspond to the “y-intercept” effect, and that the

remaining mj − 1 columns of each U j are a set of mutually orthogonal contrasts

normalized to the length
√
mj. Thus U ′

jU j = mjImj
, where Imj

is the identity

matrix of dimension mj. Then for Ψj as in (4),

U ′
jΨjU j = mj



1 + (mj − 1)ρj 0 . . . 0

0 1− ρj . . . 0

... · · · . . .
...

0 0 . . . 1− ρj


. (5)
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Of course, since the columns of Uj are mutually orthogonal vectors, each with squared

length mj, we have:

U−1
j Ψj(U

−1
j )′ =

1

m2
j

U ′
jΨjU j. (6)

Now we can propose the following very general result for the joint prior distribution

of the effects for a design incorporating some number of qualitative factors with any

mixture of levels. This follows directly from Theorem 1, Equation (5) and Equation

(6). Let

τ 2
0 = σ2

0

p∏
j=1

1 + (mj − 1)ρj
mj

and rj =
1− ρj

1 + (mj − 1)ρj
.

Let δij = 1 if βi includes the factor j and 0 otherwise.

Proposition 1 For factorial experiments on p qualitative factors, if we use an or-

thogonal coding for each factor and correlation matrix as in (4), then

βi ∼ N (0, τ 2
0

p∏
j=1

r
δij
j ), i = 0, 1, · · · ,

p∏
j=1

mj − 1

and the effects are all mutually independent.

Note that because of the independence, the variance-covariance matrix is diagonal,

which makes it very easy to construct. While the expression in the above proposition

may seem a bit complicated, it is easy to summarize what is happening. The variance

of any effect depends not on what the interpretation of the effect is, which contrasts

are involved, but only on which factors are involved in that effect. For further clarity,

consider the following example.

Example: Suppose we have two factors: A and B each experimented at three levels.

Let a1 and a2 represent the two coded variables of factor A and b1 and b2 that of

8



factor B. With the correlation matrix for factor A (and similarly for factor B):

ΨA =


1 ρA ρA

ρA 1 ρA

ρA ρA 1

 ,

we have τ 2
0 =

σ2
0

9
(1+2ρA)(1+2ρB), rA = (1−ρA)/(1+2ρA), and rB = (1−ρB)/(1+2ρB).

So that from Proposition 1: β0 ∼ N (0, τ 2
0 ), βa1 and βa2 ∼ N (0, τ 2

0 rA), βb1 and βb2 ∼

N (0, τ 2
0 rB), and βa1b1 , βa1b2 , βa2b1 , and βa2b2 ∼ N (0, τ 2

0 rArB).

Since each 0 < rj < 1 can be specified or estimated, both concepts of effect

hierarchy and effect heredity are appropriately integrated into the prior. Generally, as

the number of factors involved in an interaction increases, the a priori variance around

the effect’s mean, which is zero, decreases, justifying effect hierarchy. If a particular

ρj is small, then the corresponding rj is large, which would suggest a comparatively

larger variance for effects that include that factor than those interactions of the same

order that do not, justifying effect heredity.

There is a very simple case of Proposition 1 which arises when all of the correlation

matrices for the factors are the same. When this occurs, the marginal prior of the

effect depends on whether that effect is a “main effect” (me), “two-factor interaction”

(2fi), . . . , “p-factor interaction” (pfi):

Corollary 1 . For r1 = r2 = . . . = rp = r,

β0 ∼ N (0, τ 2
0 )

βme ∼ N (0, τ 2
0 r)

β2fi ∼ N (0, τ 2
0 r

2)

...

βpfi ∼ N (0, τ 2
0 r

p),

and the effects are all mutually independent.

9



1.3.3 Coding Schemes

The restrictions imposed on our model matrix to obtain the convenient result of

Proposition 1 actually admit many reasonable choices for coding schemes. We would

naturally find it desirable to estimate an overall mean effect, so the leading column of

1’s is not really an imposing constraint. That the other columns need be orthogonal

contrasts is also quite natural. We are still free to choose contrasts that have a sensible

interpretation for the type of factor we are considering in this section, a qualitative

factor. Below we discuss two such coding schemes that satisfy the assumptions of

Proposition 1, but have been suggested in the frequentist design setting, indicating

their value in interpretation.

For ease of implementation and interpretation, the orthogonal contrast coding

scheme we recommend for a qualitative factor is Helmert coding (see Harville 1997).

Other commonly used alternative coding schemes present problems. For instance, the

effects from orthogonal polynomial coding do not have a natural interpretation for

a qualitative factor. Although we do note that for two-level and three-level factors,

Helmert coding and orthogonal polynomial coding are the same. Wu and Hamada

(2000) offers some other alternatives. For example, for a three-level factor, the choice

of using two of the following coding vectors: D01 = (−1, 1, 0), D02 = (−1, 0, 1),

or D12 = (0,−1, 1) yield estimates for interpretable effects, however they are not

mutually orthogonal. The problem more generally with treatment coding or zero

sum coding is that the columns of U j would not be mutually orthogonal. This would

violate the assumptions that led to Proposition 1. Helmert coding, on the other

hand, along with providing for the calculation of effects that may be interesting for

the analysis of a qualitative factor, is quite easy to implement for any number of

levels. In Helmert coding, the first effect is the difference between the second level

and the first level. The second effect is the difference between the third level and the

average of the first two, etc. Below is the model matrix that makes the interpretation
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of effects more obvious:

1 −1 −1 −1 · · · −1

1 1 −1 −1 · · · −1

1 0 2 −1 · · · −1

1 0 0 3 · · · −1

...
...

...
...

. . .
...

1 0 0 0 · · · (mj − 1)


.

We need to “normalize” each column to have the same squared length, mj. To

accomplish this, the factors to multiply each column by are:(
1,

√
mj

2
,

√
mj

6
,

√
mj

12
, . . . ,

√
1

mj − 1

)
.

One should not feel restricted to using the above recommended coding scheme.

Any set of mutually orthogonal contrasts will do. So if there is a set of such effects

that is more interesting to the experimenter, they should be used. For a four-level

qualitative factor, Wu and Hamada (2000) offers a convenient coding scheme. Their

recommendation provides effects that can be interpreted as differences between pairs

of levels. The model matrix is below:

Uj =



1 −1 1 −1

1 −1 −1 1

1 1 −1 −1

1 1 1 1


.

The above coding scheme can be extended to factors with 8, 12, 16, . . . levels using

Hadamard matrices. Such a coding scheme using only {−1, 1} would not be naturally

applicable to a three-level factor or a five-level factor. Whereas model matrices based

on Helmert coding are easy to construct and provide interpretable effects for any

number of factor levels.
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1.4 QUANTITATIVE FACTORS

When a factor is continuous or discrete, but ordinal, where there exists some way to

quantify the differences between the factor’s level, we may treat it as a quantitative

factor. For a quantitative factor, we may wish to run the experiment at evenly spaced

levels, but this might not always be possible. Below we make recommendations for

each situation.

1.4.1 Correlation Function

When the levels are equally spaced, the correlation matrix Ψj has the symmetric

Toeplitz form given in (25), with ψj(hj) → 0 as |hj| → ∞. There are many parametric

forms for ψj(hj). For example, generally we could make use of the two parameter

exponential correlation function:

ψj(hj) = exp (−θj|hj|αj) 0 < αj ≤ 2 0 < θj <∞. (7)

This is the most popular correlation function used in computer experiments, but

other correlation functions such as the Matérn correlation function, cubic correlation

function, etc. could also be used (see Santner et al. 2003). A convenient special case

of the exponential correlation function is when the parameter αj = 2. This case is

useful for modeling functions that are infinitely differentiable. Let ρj = exp(−θj).

Then

Ψj =



1 ρj . . . ρ
(mj−1)2

j

ρj 1 . . . ρ
(mj−2)2

j

...
...

. . .
...

ρ
(mj−1)2

j ρ
(mj−2)2

j . . . 1


, (8)

which will be used in most of the examples presented here.

We suggest that when the levels are not evenly spaced for factor j, that instead

of using the values xj ∈ {1, 2, . . . ,mj} for the arguments of the correlation function,

that the end points: 1 and mj be used for the first and last levels, and that the
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other levels be represented by interpolating between these points. For example, if

the unevenly spaced levels for a quantitative three-level factor are: 25, 30, 37, then

use the quantities 1, 11/6, 3, instead of 1, 2, 3 in the correlation function. One might

anticipate that the factor levels would have to be grossly unevenly spaced for it to

result in any noticeable changes in practice. However, this is one part of our suggested

methodology where some caution should be exercised.

The most common coding scheme for quantitative factors is orthogonal polynomial

coding (see Wu and Hamada 2000). Unfortunately, a general result like Proposition 1

does not exist for quantitative factors under this coding scheme. Therefore, we ex-

amine the most important cases of three-level and four-level designs in detail.

1.4.2 Prior Distribution for Three-Level Experiments

Let us consider an experiment with p quantitative, evenly spaced three-level factors.

We assume a correlation matrix for each factor j = 1, 2, . . . , p of the form:

Ψj =


1 ψj(1) ψj(2)

ψj(1) 1 ψj(1)

ψj(2) ψj(1) 1

 .

The model matrix using orthogonal polynomial coding (with common column lengths

of
√

3) is:

U j =


1 −

√
3
2

√
1
2

1 0 −
√

2

1
√

3
2

√
1
2

 .

So that by matrix multiplication, we have:

U ′
jΨjU j =


3 + 4ψj(1) + 2ψj(2) 0 −

√
2(ψj(1)− ψj(2))

0 3(1− ψj(2)) 0

−
√

2(ψj(1)− ψj(2)) 0 3− 4ψj(1) + ψj(2)

 . (9)

Notice that the “quadratic” and “y-intercept” effects are going to be (negatively)

correlated. This is an important difference from qualitative factors, where this matrix
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was diagonal. We can now propose expressions for the model parameters’ marginal

prior distributions. For the following proposition, let:

τ 2
0 =

σ2
0

32p

p∏
j=1

(3 + 4ψj(1) + 2ψj(2)),

rjl =
3− 3ψj(2)

3 + 4ψj(1) + 2ψj(2)
, rjq =

3− 4ψj(1) + ψj(2)

3 + 4ψj(1) + 2ψj(2)
.

Let lij = 1 if βi includes the linear effect of factor j and 0 otherwise. Similarly,

qij = 1 if βi includes the quadratic effect of factor j and 0 otherwise. Then the

following expressions follow directly from (9) and Theorem 1:

Proposition 2 For p quantitative three-level factors, with a model matrix coded

according to orthogonal polynomial contrasts we have:

βi ∼ N

(
0, τ 2

0

p∏
j=1

r
lij
jl r

qij
jq

)
, i = 0, 1, · · · , 3p − 1.

Note that unlike the result in Proposition 1, the βi’s are not independent. We will

consider some properties of a special case of this result. Suppose for each factor we

assume a 3 × 3 correlation matrix in the form of (8), with ρ1 = ρ2 = . . . = ρp = ρ.

Let,

τ 2
0 =

σ2
0

32p
(3 + 4ρ+ 2ρ4)p, rl =

3− 3ρ4

3 + 4ρ+ 2ρ4
, rq =

3− 4ρ+ ρ4

3 + 4ρ+ 2ρ4
.

Then the following expressions illustrate a useful special case of Proposition 2:

Corollary 2 . For p quantitative three-level factors, with a model matrix coded

according to orthogonal polynomial contrasts, if we further assume ρ1 = ρ2 = · · · =

ρp = ρ in (8), then:

β0 ∼ N
(
0, τ 2

0

)
βl ∼ N

(
0, τ 2

0 rl
)

βq ∼ N
(
0, τ 2

0 rq
)
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βll ∼ N
(
0, τ 2

0 r
2
l

)
βlq ∼ N

(
0, τ 2

0 rlrq
)

...

βq···q ∼ N
(
0, τ 2

0 r
p
q

)
.

To clarify the above notation, the subscript lq, for example, indicates that βlq is the

interaction effect between the linear effect of any one of the p factors and the quadratic

effect of any of the other p− 1 remaining factors.

We have for all ρ ∈ (0, 1)

0 < r3
l < rq < r2

l < rl < 1. (10)

It is quite common to say that a quadratic effect is less important than a linear effect

(notationally q ≺ l) . Because rq < rl, we now have a mathematical justification of the

above statement. Similarly, rq < r2
l shows that q ≺ ll, which is an interesting result.

The property (10) can be used to order many higher order effects. For example,

qq ≺ llq ≺ lq ≺ ll.

The ordering of effects is important for properly defining a design criterion similar

to minimum aberration. Cheng and Ye (2005) proposes two rules:

(a) : l � q � ll � lq � lll � qq � llq � llll � lqq � lllq � qqq � llqq � lqqq � qqqq,

(b) : l � q � ll � lq � qq � lll � llq � lqq � qqq � llll � lllq � llqq � lqqq � qqqq.

Rule (a) is obtained by ordering effects first by the degree of the polynomial, and

then within that by the number of factors involved in the interaction, whereas rule

(b) is by ordering effects first by the number of terms in the interaction, and then by

the degree of that polynomial. Alternatively, the rule implied by (10) is:

l � ll � q � lll � lq � llll � llq � qq � lllq � lqq � llqq � qqq � lqqq � qqqq.
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As the number of factors increases, the ordering rule can get more complicated.

For example, when there are five three-level factors, and α = 2, we would need a

result like (10) to include a comparison of the two terms r5
l and r2

q . Numerically, it

can be shown that: for ρ ∈ (0, 0.357) or (0.847, 1),

0 < r5
l < r2

q < r3
l < rq < r2

l < rl < 1,

whereas for ρ ∈ (0.357, 0.847),

0 < r2
q < r5

l < r3
l < rq < r2

l < rl < 1.

This should be enough to order the orthogonal polynomial factorial effects for five

three-level factors when the value of ρ is known. When α = 1 the ordering of effects

additionally depends on ρ with as few as four factors. The nice thing about the

Bayesian approach is that we do not need to worry about these complicated ordering

of effects, it will be automatically built-in in the design and analysis of experiments.

1.4.3 Prior Distribution for Four-Level Experiments

Let us now consider an experiment with p quantitative, evenly spaced four-level fac-

tors. We assume a correlation matrix for each evenly spaced factor j = 1, 2, . . . , p of

the form:

Ψj =



1 ψj(1) ψj(2) ψj(3)

ψj(1) 1 ψj(1) ψj(2)

ψj(2) ψj(1) 1 ψj(1)

ψj(3) ψj(2) ψj(1) 1


. (11)

As we did before we may attempt to use orthogonal polynomial coding, albeit with

some reservations, in anticipation that some of the off diagonal terms in the prior

parameter covariance matrix will be nonzero. The “normalized” model matrix for
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the jth four-level factor using orthogonal polynomial coding is:

U j =



1 − 3√
5

1 − 1√
5

1 − 1√
5
−1 3√

5

1 1√
5

−1 − 3√
5

1 3√
5

1 1√
5


.

Now this model matrix would enable us to calculate “y-intercept”, “linear”, “quadratic”,

and “cubic” effects. However, as suggested by the matrix calculation below, the prior

covariance matrix is in fact not diagonal. There are some nonzero covariances be-

tween the “y-intercept” and the “quadratic” effect as well as between the “linear” and

“cubic” effects. For the following equation, let us denote: ψj(1) = ψj1, ψj(2) = ψj2,

and ψj(3) = ψj3. Then we obtain:

U ′
jΨjUj =0BBBBBBB@

4 + 6ψj1 + 4ψj2 + 2ψj3 0 −2(ψj1 − ψj3) 0

0 4 + 2ψj1 − 12
5
ψj2 − 18

5
ψj3 0 −2ψj1 + 16

5
ψj2 − 6

5
ψj3

−2(ψj1 − ψj3) 0 4− 2ψj1 − 4ψj2 + 2ψj3 0

0 −2ψj1 + 16
5
ψj2 − 6

5
ψj3 0 4− 6ψj1 + 12

5
ψj2 − 2

5
ψj3

1CCCCCCCA
.

(12)

Now using the above result and Theorem 1, we can obtain a result similar to

Proposition 2. For notational simplicity, we will only provide a special case where the

correlation matrix is as in (8) with ρ1 = ρ2 = . . . = ρp = ρ. Let

τ 2
0 =

σ2
0

42p
(4 + 6ρ+ 4ρ4 + 2ρ9)p, rl =

4 + 2ρ− 12
5
ρ4 − 18

5
ρ9

4 + 6ρ+ 4ρ4 + 2ρ9
,

rq =
4− 2ρ− 4ρ4 + 2ρ9

4 + 6ρ+ 4ρ4 + 2ρ9
, rc =

4− 6ρ+ 12
5
ρ4 − 2

5
ρ9

4 + 6ρ+ 4ρ4 + 2ρ9
.

Proposition 3 For p quantitative four-level factors, with a model matrix coded ac-

cording to orthogonal polynomial contrasts, if we further assume ρ1 = ρ2 = · · · =

ρp = ρ in (8), then:

βi ∼ N
(
0, τ 2

0 r
li
l r

qi
q r

ci
c

)
,
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where li, qi, and ci are the number of linear, quadratic, and cubic terms in βi.

Thus, using the notations used in Corollary 2, βc ∼ N (0, τ 2
0 rc), βlc ∼ N (0, τ 2

0 rlrc),

etc. Note that as in Corollary 2, these effects are not independent.

At this point, it should be abundantly clear that it is a trivial matter to construct

Proposition 1, Proposition 2, and Proposition 3-like results for designs of any mixture

of factors with possibly different numbers of levels, possibly different types: qualitative

or quantitative, and different parametric forms for the correlation functions. The user

need only construct a model matrix Uj and correlation matrix Ψj appropriate for each

factor and then deduce the full factorial prior covariance results using Theorem 1.

1.4.4 Coding Schemes

In this section on quantitative factors, we presented results for three-level and four-

level factors assuming that orthogonal polynomial coding was the most desirable

coding scheme. This coding scheme does indeed have some nice properties. The

model matrix is easy to generate for a factor of any number of levels. The effects

generated from such a model matrix are also easy to interpret for a quantitative

factor.

One drawback to the orthogonal polynomial coding scheme for a design containing

a quantitative factor is that the resulting prior covariance matrix is not diagonal. In

fact constructing the matrix R = τ−2
0 var(β), which will be used in the estimation, is

not a trivial matter. If the matrix R is not calculated directly, which in itself could be

prohibitively computationally intensive, it is quite a difficult matter of accounting to

calculate and position these off-diagonal elements correctly in the matrix. In addition,

the matrix R represented in its full form, may be quite large, requiring sparse matrix

techniques.

So suppose instead that our motivation was to find an orthogonal coding scheme

for a quantitative factor’s model matrix U j that produces a diagonal U−1
j Ψj(U

−1
j )′.
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Let Λj = diag(λj,1, λj,2, . . . , λj,mj
), with each λj,k, k = 1, . . . ,mj being the eigenvalues

of Ψj and Ej is a mj × mj matrix whose columns are orthonormal eigenvectors

corresponding to those eigenvalues. Now by letting U j =
√
mjEj, we obtain

U−1
j Ψj(U

−1
j )′ =

1

mj

Λj, (13)

which is a diagonal matrix. Now by Theorem 1, the variance-covariance matrix is

also diagonal. Therefore, the matrix R could be easily constructed. A related idea

exists in Steinberg and Bursztyn (2004), which contains a procedure for data analysis

that involves relating regression coefficients to those produced from the eigenvectors

of the correlation matrix of the corresponding random field model. However, using a

model matrix whose columns are proportional to the eigenvectors of Ψj presents its

own problems in the context here. The coding scheme will vary with the correlation

matrix. That is, the model matrix U j will depend on ψj(1), ψj(2), . . . , ψj(mj − 1).

Also, that the leading column of this coding scheme will not precisely be a column

of ones, failing to yield a true “y-intercept” effect, complicates construction of the

full design model matrix with Kronecker products less predictable. So rather than

suggesting the use of this“eigen-Coding” scheme here, we merely use the observation

that orthogonal polynomial coding is very nearly the coding scheme obtained from

the eigenvectors of Ψj’s as evidence in support of the belief that dismissing the off-

diagonal elements of the matrix R may be acceptable in practice.

In Figure 1 we see a comparison of the orthogonal polynomial coding scheme and

the eigen-coding scheme. From the figure we see the curvature in the y-intercept

and linear effects demonstrating their dependence on the quadratic and cubic effects

respectively. In addition, the plots demonstrate the relative “closeness” of the or-

thogonal polynomial effects and each of their corresponding eigen-coding effect. For

a single factor it is also easy to verify numerically that the correlation between a

polynomial effect and its corresponding eigen-coding effect is very high. For refer-

ence, through numerical studies it can be shown that a single evenly-spaced four-level
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Figure 1: Comparison of Eigen-Coding (solid) and Orthogonal Polynomial Coding
(dashed) for ρ = 0.5
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factor with a correlation matrix like (8), the correlation between a polynomial effect

and its corresponding eigen-coded effect is greater than 0.97 for all ρ ∈ (0, 1).

1.5 EXAMPLES

We need the following notation. Let D be the design matrix, which has n rows

and p columns corresponding to the p factors and y = (y1, · · · , yn)′ be the response

values obtained from the experiment. Let UD be the model matrix generated from

D and ΨD the corresponding correlation matrix. Let var(β) = τ 2
0 R, where the

construction of the matrix R was discussed in detail in the previous sections. The

examples presented in this section do not have replicates. Because we do not have

any information about σ2, we set σ2 = 0. We obtain

β̂ = E(β|y) =
τ 2
0

σ2
0

RU ′
DΨ−1

D (y − µ01n)

and

var(β|y) = τ 2
0

(
R− τ 2

0

σ2
0

RU ′
DΨ−1

D UDR

)
.

A general expression for τ 2
0 /σ

2
0 is given by

τ 2
0

σ2
0

=

∏p
j=1 sum(Ψj)

q2
, (14)

where q =
∏p

i=1mi and sum(Ψj) denotes the sum of all the elements of the matrix

Ψj. We can calculate the ratios

ti =
|β̂i|
σ̂βi

,

to identify the important effects, where σ̂2
βi

is the diagonal element in var(β|y) cor-

responding to βi. The most important effect is the one with the largest ti. The other

important effects can be similarly identified one-by-one using a forward selection

strategy as explained in Joseph (2006).

The hyper-parameters can be estimated using empirical Bayes methods. Let ρ =

(ρ1, · · · , ρp)′. Then

ρ̂ = arg min
ρ

n log σ̂2
0 + log det(ΨD),
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µ̂0 = (1′nΨ
−1
D 1n)

−11′nΨ
−1
D y,

and

σ̂2
0 =

1

n
(y − µ̂01n)

′Ψ−1
D (y − µ̂01n).

For numerical stability, we must put some mild constraints on the feasible region of ρ

in the above optimization, such as ρi ∈ [0, 0.99]. We could have instead implemented

the penalized likelihood recommendations from Li and Sudjianto (2005). There are

some additional considerations in the empirical Bayes step for estimating ρ. It is

important to obtain the constrained global optimum. Most software will converge on

some local optima. We employ a naive approach to global optimization and implement

a sequence of local optimizations over randomly generated initial values, choosing the

best local optimum as the global optimum. We caution that it is possible to begin

the algorithm with a value for ρ that is not a true global optimum due to either the

precautions taken to prevent inverting an ill-conditioned Ψ matrix, or by not being

able to pragmatically do an exhaustive search of the feasible region for all of the

local optima. The ρ is estimated only at step 0 of the forward selection procedure.

We use this estimate for each subsequent step. From this estimate of ρ, we are

able to calculate the factor τ 2
0 /σ

2
0, as well as the matrices R and ΨD used in the

calculations at all later steps. The first example illustrates a situation where the

matrix R has nonzero off-diagonal elements. This matrix can be constructed through

the explicit matrix calculations suggested by Theorem 1. However, we found that the

diagonal approximation to R in this example is adequate for discovering the first few

important effects. In the second example, R is a diagonal matrix. So for this example

constructing R is a simple matter, where the diagonal elements of R correspond to

the appropriate factor calculation preceding each of the propositions and entered into

the matrix R in the order the effects appear as columns of UD.

Here we emphasize the ease with which the methodology of Joseph (2006) is

extended beyond two-level experiments. In addition, we stress that very often the
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procedure is entirely automatic, yielding no ambiguity in situations where the tra-

ditional frequentist approach would require deeper attention. Finally, we note that

there may exist situations where the iterative procedure is unnecessary. That is, a

quick proxy to the forward selection may be to use a half-normal plot to select effects

in Step 0. This technique seems to produce results equivalent to the forward selection

when the significant effects after k steps form a projection of the factor space onto a

lower dimensional, but orthogonal factor space.

1.5.1 Blood Glucose Experiment

Hamada and Wu (1992) analyzed an experiment designed to study blood glucose

reading levels from a testing device. In this experiment, there was one two-level factor

and seven three-level factors (Table 1). The three-level factors were all considered to

be quantitative factors. These factors did not all have evenly spaced levels, but they

were approximately evenly spaced. The design was a nonregular fraction of a 21× 37

design, the 18-run design popularized by Taguchi (1987). The design and the data

are given in Table 2.

Table 1: Factors and Levels, the Blood Glucose Experiment

Level
Factor 1 2 3

A. wash no yes
B. microvial volume (ml) 2.0 2.5 3.0
C. caras H2O level (ml) 20 28 35
D. centrifuge RPM 2100 2300 2500
E. centrifuge time (min) 1.75 3 4.5
F. (sensitivity, absorption) (0.10,2.5) (0.25,2) (0.50,1.5)
G. temperature (0C) 25 30 37
H. dilution ratio 1:51 1:101 1:151

In the frequentist analysis, it is computationally cumbersome to entertain all of

the 4,374 possible factorial effects. Therefore, we consider only the main effects and

two-factor interactions. This analysis identifies the effects BlHq, BqHq, ElGl, AHq,
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Table 2: Design Matrix and Data, the Blood Glucose Experiment

Factor Mean
Run A G B C D E F H Reading

1 1 1 1 1 1 1 1 1 97.94
2 1 1 2 2 2 2 2 2 83.40
3 1 1 3 3 3 3 3 3 95.88
4 1 2 1 1 2 2 3 3 88.86
5 1 2 2 2 3 3 1 1 106.58
6 1 2 3 3 1 1 2 2 89.57
7 1 3 1 2 1 3 2 3 91.98
8 1 3 2 3 2 1 3 1 98.41
9 1 3 3 1 3 2 1 2 87.56
10 2 1 1 3 3 2 2 1 88.11
11 2 1 2 1 1 3 3 2 83.81
12 2 1 3 2 2 1 1 3 98.27
13 2 2 1 2 3 1 3 2 115.52
14 2 2 2 3 1 2 1 3 94.89
15 2 2 3 1 2 3 2 1 94.70
16 2 3 1 3 2 3 1 2 121.62
17 2 3 2 1 3 1 2 3 93.86
18 2 3 3 2 1 2 3 1 96.10

· · ·, as having high explanatory power, which is shown in Figure 2(b). Thus, the

frequentist approach does not lead to a model satisfying effect hierarchy or effect

heredity.

By contrast, the proposed methodology does respect effect hierarchy and effect

heredity, and is able to entertain all of the factorial effects. In step 0 of the Bayesian

forward selection, the empirical Bayes estimate of the correlation matrix parameters

is given by the vector,

ρ̂ = (0.93, 0.00, 0.99, 0.99, 0.98, 0.98, 0.99, 0.00)′.

Figure 3(a) shows the half-normal plot of the ti ratios at this step. We can see that

BlHq is the most significant effect. After selecting this effect and continuing with the

forward selection, we identify the effects BqHq, Bl, Bq, · · · as having high explanatory

power. This is shown in the R2-plot in Figure 3(b).
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Of course, the principles of effect hierarchy and effect heredity can be enforced

in the frequentist forward selection through some modifications, such as the strategy

presented in Hamada and Wu (1992). However, we believe that the Bayesian strategy

is more elegant and efficient. For example, if a three-factor interaction effect is sig-

nificant, the frequentist analysis will miss it, but the Bayesian analysis will identify it

with high probability. Indeed, the Bayesian analysis seems to be more powerful than

the frequentist analysis, as can be seen by comparing the half-normal plots of both

of the analyses at step 0; that is, all of the significant effects can be identified even

at step 0 of the Bayesian analysis. In the next section, we provide an example where

the frequentist analysis fails, but the Bayesian analysis succeeds.

Implementation of the Bayesian methodology of Chipman et al. (1997) was also il-

lustrated through this example. One of the most significant differences in the Bayesian

methodology presented here versus that of Chipman et al. (1997) is how the prior

belief in effect heredity is incorporated into the model. In the procedure presented

above, specification of effect heredity is through the parameter space as a consequence

of our functional prior assumption. In Chipman et al. (1997), effect heredity is re-

flected through prior specification in the model space. In the methodology presented

here, effect heredity was a direct consequence of the functionally induced prior on

β, whereas in Chipman et al. (1997) hierarchical priors on all subset models had to

be specified in order to incorporate prior beliefs about heredity. The technique of

Chipman et al. (1997) does offer the advantage of great flexibility in enabling the

incorporation of other possible a priori beliefs about relationships between effects

through adding on to the hierarchical prior structure. However, the procedure de-

scribed in this paper is a fairly automatic methodology that quite naturally imposes

effect hierarchy and effect heredity. Moreover, the extension of the prior specification

to include three and higher order interactions, cubic, fourth order terms, etc. is more

difficult to implement with the hierarchical priors compared with the functionally

25



1.8 2.0 2.2 2.4 2.6 2.8

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

half−normal quantiles

ab
so

lu
te

 e
ffe

ct

F.QG.L:H.QD.Q:G.Q

E.Q

C.Q:D.Q

C.Q:G.Q

A:H.Q
B.Q:H.Q

E.L:F.L

B.L:H.Q

(a) Frequentist Forward Selection (Step 0)

Step

R
2

B.L:H.Q

B.Q:H.Q

E.L:G.L

A:H.QE.Q:G.QE.Q:F.QF.Q:G.QE.Q:H.LB.Q:E.QF.QC.Q:G.L

1 3 5 7 9 11

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Frequentist Forward Selection

Figure 2: Frequentist Analysis of the Blood Glucose Experiment
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induced priors.

1.5.2 Router Bit Experiment

Phadke (1989) reported on an experiment designed to help improve the lifetime of

a router bit used to cut printed circuit boards. This experiment was also analyzed

by Wu and Hamada (2000). The experiment is an unreplicated fraction of a 27 × 42

design. The factors and levels are shown in Table 3 and the design and data are given

in Table 4. There are only 32 runs and 2,048 possible effects to consider. The two

four-level factors: (D) “bit type” and (E) “spindle position” are treated as qualitative

factors. So in analyzing this experiment, we have two types of factors: seven two-level

factors and two qualitative four-level factors.

Table 3: Factors and Levels, the Router Bit Experiment

Factor Level
A. suction (in of Hg) 1 2
B. x-y feed (in/min) 60 80
C. in-feed (in/min) 10 50
D. bit type 1 2 3 4
E. spindle position 1 2 3 4
F. suction foot SR BB
G. stacking height (in) 3/16 1/4
H. Slot depth (mils) 60 100
J. speed (rpm) 30000 40000

The coding scheme that we used for the four-level factors is the Wu-Hamada

recommendation highlighted in a previous section. Here, those main effects are labeled

D1, D2, D3 and E1, E2, E3. Figure 4(a) shows the half-normal plot from a traditional

analysis. The effects D2, G, J , GJ and AF appear to be significant. Note that each of

them represents a set of aliased effects. Assuming three and higher order interactions

are negligible, one can show that

AF = −D2H = −CE2 = BD3 = D1E3 = E1G (15)

28



Table 4: Design Matrix and Data, the Router Bit Experiment

Factor
Run A B C D E F G H J Lifetime

1 − − − 1 1 − − − − 3.5
2 − − − 2 2 + + − − 0.5
3 − − − 3 4 − + + − 0.5
4 − − − 4 3 + − + − 17.0
5 − + + 3 1 + + − − 0.5
6 − + + 4 2 − − − − 2.5
7 − + + 1 4 + − + − 0.5
8 − + + 2 3 − + + − 0.5
9 + − + 4 1 − + + − 17.0

10 + − + 3 2 + − + − 2.5
11 + − + 2 4 − − − − 0.5
12 + − + 1 3 + + − − 3.5
13 + + − 2 1 + − + − 0.5
14 + + − 1 2 − + + − 2.5
15 + + − 4 4 + + − − 0.5
16 + + − 3 3 − − − − 3.5
17 − − − 1 1 − − − + 17.0
18 − − − 2 2 + + − + 0.5
19 − − − 3 4 − + + + 0.5
20 − − − 4 3 + − + + 17.0
21 − + + 3 1 + + − + 0.5
22 − + + 4 2 − − − + 17.0
23 − + + 1 4 + − + + 14.5
24 − + + 2 3 − + + + 0.5
25 + − + 4 1 − + + + 17.0
26 + − + 3 2 + − + + 3.5
27 + − + 2 4 − − − + 17.0
28 + − + 1 3 + + − + 3.5
29 + + − 2 1 + − + + 0.5
30 + + − 1 2 − + + + 3.5
31 + + − 4 4 + + − + 0.5
32 + + − 3 3 − − − + 17.0
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and

D2 = AG = BE3 = E1F,

whereas the effects G, J , and GJ are clear (not aliased with any of the main effects

or two-factor interactions). Follow-up experiments can be used to de-alias the above

effects (see, e.g, Meyer, Steinberg, and Box 1996). An alternative to running a follow-

up experiment is the approach in Wu and Hamada (2000) which appeals to the

widely accepted principles of effect hierarchy and effect heredity. In that analysis,

effect hierarchy was manually applied to the aliasing relationships to select the main

effect D2 as opposed to one of the two-factor interactions with which it is aliased.

Similarly, effect heredity was used to justify selecting either the interaction D2H or

E1G as opposed to the other four two-factor interaction effects. However neither of

these two principles enable breaking the tie between D2H and E1G. Wu and Hamada

(2000) argued that because the four spindles are synchronized, the effect of G should

not vary substantially with the spindle position; thus ruling out the E1G interaction,

so that D2H was the effect identified as significant.

In Step 0 of the proposed method, we obtain the empirical Bayes estimates of ρ,

ρ̂ = (0.99, 0.99, 0.99, 0.71, 0.99, 0.99, 0.60, 0.09, 0.56)′.

Figure 4(b) shows that the effects J , GJ , D2, HJ , D2H, G, and GHJ seem to be

significant, which are the same as the first seven effects identified by the Bayesian

forward selection strategy. Note that in the Bayesian analysis no confusion is created

by the aliasing relationships. For example, at step 0, the ti ratios for the effects in

(15) are: tAF = 0.14, tD2H = 42.33, tCE2 = 0.10, tBD3 = 0.61, tD1E3 = 0.43, and

tE1G = 0.70. Thus D2H stands out very clearly from the others as the significant

effect. This could not be achieved using the frequentist analysis. Wu and Hamada

(2000) were able to choose D2H but only after applying expert knowledge of the

process. Whereas the Bayesian approach was able to identify this effect through
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mere data analysis. We also note that a reasonable, potentially significant three-

factor interaction is identified by the Bayesian analysis, which was not even possible

in the frequentist analysis.

By proposing the aforementioned Bayesian analysis, we are not trying to dis-

courage the use of follow-up experiments. If a decision has to be made based on

a one-shot experiment, the Bayesian analysis will be able to provide a unique an-

swer. On the other hand, if resources do exist to perform follow-up experiments,

then even in this situation, this type of Bayesian analysis can yield very useful in-

formation. For example, based on the ti ratios, we can order the effects in (15):

D2H � E1G � BD3 � D1E3 � AF � CE2. This ordering is immensely helpful for

the optimal choice of follow-up runs. In frequentist analysis all six of these effects

would be viewed as equally important and thus some of these additional resources

will be spent on de-aliasing unimportant effects.

1.6 AN EXPERIMENTAL DESIGN EXAMPLE

A functionally induced prior is extremely useful for finding an optimal experimental

design. In this section we will demonstrate its usefulness through an example. The

detailed development of design criteria for three and higher level designs and their

construction are left for future work.

Consider an OA(16, 2441). It can be constructed from an OA(16, 215) using

the method of replacement as follows. Denote the 15 columns of OA(16, 215) by

1,2,3,4,12,13, · · · ,1234, where the two levels in each column are coded as −1 and

1. Let A be the four-level factor and B,C,D, and E be the four two-level factors.

The columns 1,2, and 12 can be combined to form the four-level factor. Now, how

should the four two-level factors be assigned to the remaining 12 columns? Consider

the following two choices given in Wu and Hamada (2000):

d1 : A,3,4,23,134,
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and

d2 : A,3,4,34,124.

The factor A can be represented by three dummy variables a1, a2, and a3. Using Wu-

Hamada coding a1 = 1, a2 = 2, and a3 = 12. Then the defining contrast subgroup

of the two designs are given by

d1 : I = a1BCE = a2BD = a3CDE,

and

d2 : I = BCD = a3CE = a3BDE.

In the case of two-level factors Joseph (2006) has shown that the posterior variance of

β0 can be minimized by minimizing
∑

i∈J0(d)Rii, where J0(d) denotes the indices of the

effects in the defining contrast subgroup of design d. Denote this objective function by

W0(d). If the four-level factor is a qualitative factor, then by Proposition 1, the βi’s

are independent and we can use the result in Joseph (2006). Let the prior variances

of the four-level factor be τ 2
0 r4 and that of the two-level factors τ 2

0 r2. Then,

W0(d1) = 1 + r4r
2
2 + 2r4r

3
2,

and

W0(d2) = 1 + r4r
2
2 + (1 + r4)r

3
2.

Since r4 < 1, we can see that W0(d1) < W0(d2). Therefore d1 is a better design

than d2. This agrees with the minimum aberration criterion proposed by Wu and

Zhang (1993). This example shows that there may be some interesting connections

between the Bayesian criterion and the minimum aberration criterion. Note that

the minimum aberration criterion in Wu and Zhang (1993) considers only qualitative

factors. Cheng and Ye (2005) proposed design criteria for quantitative factors using

indicator functions. This extension can be easily made using the Bayesian approach

presented here, because we only need to change the correlation function. We leave

the details for future research.

33



1.7 CONCLUSIONS

Typically, frequentist methods in the analysis of three and higher level experiments

require significant work to resolve ambiguities. First the analyst, must identify the

aliasing relationships. In the case of a regular fraction, this will enable the analyst to

make variable selection decisions based on the well known principles of effect sparsity,

effect hierarchy, and effect heredity. After analyzing the data, there may still be

the need to run a follow-up experiment to resolve issues that arise from aliasing. In

nonregular designs, such as the 18-run designs, the traditional approach would only

consider estimating main effects, because of complex aliasing. Modern techniques

such as those presented in Wu and Hamada (2000), while adequate in extracting more

information from these designs, do not lend themselves well to being an automatic

procedure. Here we have extended the use of functionally induced priors to designs

that involve three-level and four-level factors. From this exposition, the procedure

for extending the ideas for fractions of factorials not directly addressed here should

be obvious. These tools provide a major step toward a reasonable fully automatic

procedure for analyzing experimental data. Not only are the procedures well grounded

in theory that facilitate the above mentioned principles of analysis of experiments,

but the procedures are easy to implement and yield credible empirical results.

In the general framework, a Gaussian process over the design space induces a

joint prior distribution for the linear model’s parameters. From this, some additional

assumptions about experimental design can be validated. Yet two effect ordering

principles for three-level designs from Cheng and Ye (2005) could be challenged as a

consequence of the theory here. We could be more specific about when the ordering

assumptions are valid and explain why. Moreover new rules can be obtained when

the assumptions are not valid.

We make a distinction between qualitative factors and quantitative factors. This

becomes important with three-level and higher designs. We also provide a consistent
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and logical way of addressing this distinction through the specification of the cor-

relation function that partially characterizes the underlying Gaussian Process. This

approach fits into the Gaussian process functional prior framework seamlessly.

In our discussion of the examples, we note that some designs might be more likely

than others to produce ambiguities in variable selection. When these arise, they could

either be resolved manually or resolved through a simple automated procedure that

respects the principles of effect sparsity, effect hierarchy and effect heredity. When

different components of the ρ vector are used for each factor, this issue becomes

increasingly less likely to be a concern.

This chapter also presents an example that illustrates how functionally induced

priors can be used in optimal design. The example shows that the Bayesian criterion

and the minimum aberration criterion may be related for the case of qualitative

factors. The Bayesian criterion is more general, because there is no restriction on

the type of design or the number of runs. Moreover, the Bayesian criterion can be

easily extended to deal with the case of quantitative factors. We believe that some

very useful optimal design results can be obtained by using the Bayesian methodology

proposed in this chapter.

1.8 CONTRIBUTIONS

The research described in this chapter contributes to the body of knowledge in the

field of the Design and Analysis of Experiments in the following ways:

1. A prior distribution which seamlessly incorporates the properties of effect hi-

erarchy and effect heredity for the parameters in the linear model is developed

for three and higher level experiments.

2. This prior is also designed to allow for the specialization for qualitative and

quantitative factors through a simple correlation structure specification.
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3. A new analysis methodology is provided which is computationally simpler than

the existing Bayesian analysis methodologies.

4. A coherent methodology is described for obtaining an a priori ordering of the

importance of factorial effects.

5. A coherent and general methodology is further advanced toward the goal of a

completely automatic expert system for the design and analysis of experiments.
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CHAPTER II

ANALYSIS OF OPTIMIZATION

EXPERIMENTS

2.1 INTRODUCTION

Experiments are used for many purposes such as for optimizing a process, for develop-

ing a prediction model, for identifying important factors, and for validating a scientific

theory. Among these, optimization is arguably the most important objective in in-

dustrial experiments (Taguchi 1987, Wu and Hamada 2000, Myers and Montgomery

2002, Montgomery 2004). However, the same type of data analysis is used irrespec-

tive of the underlying objective. Here we argue that the analysis of optimization

experiments should be done in a different way.

The existing approach to data analysis is to first identify the statistically signif-

icant effects that influence the response. Analysis of variance, t-tests, half-normal

plots, step-wise regression, and other variable selection techniques are used for this

purpose. Once the significant effects are identified, a model is built involving only

those factors. The model is then optimized to find the best settings of the factors.

The factors that are not statistically significant are allowed to take any values in

the experimental range. Their settings are left to the discretion of the experimenter.

The usual recommendation is to choose levels that minimize the cost. The foregoing

procedure is very intuitive and might be adequate, but it is in the identification of

the significant factors where something can go wrong.

The basic flaw in the procedure is that the objective of optimization cannot be

easily translated into meaningful quantities used in a significance test. An α level
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of 5% is usually used for identifying the significant effects. But what is this signifi-

cance level’s connection to the optimization of a machining process in order to reduce

dimensional variation or the optimization of a chemical process in order to improve

yield? Using a quantity in a procedure that has no direct connection to the objective

of the experiment can be misleading.

For example, consider an experiment with the objective of increasing the lifetime

of a product. A factor x is varied at two levels −1 and 1 in the experiment. Suppose

that the lifetimes observed at these two settings are 50 and 65 hours, respectively.

Consider the model y = β0 + β1x + ε, where ε ∼ N (0, σ2) with σ = 10. We obtain

the least squares estimate β̃1 = 7.5. Now to test the hypothesis H0 : β1 = 0 against

H1 : β1 6= 0, we obtain

p-value = 2Φ

(
− β̃1

σ/
√

2

)
= 0.2888,

where Φ is the standard normal distribution function. This level is much higher than

α = .05, hence we would fail to reject H0 and would conclude that the factor is not

significant.

Now let us take a different view of this problem, that with optimization as the

objective. It is easier to use a Bayesian framework to demonstrate what is happening.

Under the improper prior distribution, p(β) ∝ 1, β ∈ R2, the posterior distribution

of β1 given the data (y) is N (β̃1, σ
2/2). Thus

Pr(β1 > 0|y) = Φ

(
β̃1

σ/
√

2

)
= 0.8556.

In other words, if we set x = 1, then there is an 86% chance that the lifetime will be

higher than when x = −1. No matter what, we need to set x to some value. Thus

we should choose 1, a conclusion quite different from that obtained when using the

statistical test of significance.

What makes an optimization experiment different? When we optimize a product
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or process, we need to select a level for the factor irrespective of whether it is statis-

tically significant or not. A factor can be easily thrown out of a model, but cannot

be thrown out of a product or process. Thus the application of a test of significance

makes sense in the case of experiments where the objective is prediction or screening,

but not when the objective is optimization. When developing a model for prediction

and screening, one can focus on balancing model fit and size, but when developing

a model for optimization, a balance should be made between the improvement that

can be achieved and the cost associated with changing the level of factors.

In the example, suppose instead that the lifetime at x = 1 is 50.1 hours. Because

this is greater than the lifetime at x = −1, there is still more than a 50% chance of

achieving an improvement by changing the setting to x = 1. However, the improve-

ment is very small. So, should we make this change? To answer this question, we may

look into the cost associated with such a change. Suppose changing x from −1 to 1

reduces the cost, then the best decision after the experiment seems to be to choose

x = 1. But if it increases the cost, then the decision is not easy. We may not want

to change the setting unless the improvement of 0.1 hours is worth more to us than

the increase in cost of producing the product with x = 1. Thus if the improvement is

practically insignificant, then we may decide not to make any change. Let ∆ denote

the practical significance level. Then a change will be made if |2β̃1| > ∆. For exam-

ple, ∆ could be taken to be 5% of the existing lifetime. Thus we will make a change

if the improvement is more than 2.5 hours. Note that here, the use of the 5% level is

much more meaningful than the 5% level used in the test of significance. It is much

easier to say “make a change if it can result in at least a 5% improvement” than to

say “make a change if the factor is statistically significant at the 5% level”.

One immediate objection to this approach might be that it does not consider

the randomness in the response. We will overcome this problem by modifying the

estimation method of β1. We will show that empirical Bayes estimation assuming a
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proper prior distribution for β1 will give an estimate that shrinks as σ increases. Thus

when σ is large enough, the expected improvement becomes less than ∆, indicating

no change for the factor level.

In the recent literature, Bayesian analysis techniques have been successfully im-

plemented to address the problem of process optimization. In particular, Rajagopal

and Castillo (2005) presents an intriguing fully Bayesian approach that obtains a

posterior predictive distribution by averaging over candidate classes of models. From

this, factor settings can be ranked based on their probability of yielding a response in

some desirable range. Rather than requiring the specification of priors in the model

space, our approach concentrates on the familiar, full factorial linear model and uti-

lizes the approach of Chapter 1 for parameter prior elicitation and hyper-parameter

estimation.

The details of the proposed analysis method are described in the following sections.

It differs from the usual, frequentist analysis in two aspects: the statistical significance

level is replaced with a practical significance level and the least squares estimation

is replaced with empirical Bayes estimation. First, we present a real experiment to

motivate the problem solution.

2.2 AN EXAMPLE

Consider the experiment reported by Hellstrand (1989) with the objective of reducing

the wear rate of deep groove bearings (see also Box, Hunter, and Hunter 2005, pp.

209-211). A two-level full factorial design over three factors: osculation (x1), heat

treatment (x2), and cage design (x3), was used for the experiment. The design and

the data are given in Table 5.

The estimates of the seven effects are given in Table 6. Because this is an un-

replicated experiment, t-values cannot be computed in order to test the significance
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Table 5: Design Matrix and Data, the Bearing Experiment

Factor lifetime wear
Run x1 x2 x3 (hours) rate

1 −1 −1 −1 17 5.882
2 −1 −1 1 19 5.263
3 −1 1 −1 26 3.846
4 −1 1 1 16 6.250
5 1 −1 −1 25 4.000
6 1 −1 1 21 4.762
7 1 1 −1 85 1.176
8 1 1 1 128 0.781

Table 6: Parameter Estimates and Significance, the Bearing Experiment

Approx. p-value

Effect β̃i |tPSE| IER EER
x1 −1.315 1.678 0.10 > 0.40
x2 −0.982 1.253 0.19 > 0.40
x3 0.269 0.343 > 0.40 > 0.40
x1x2 −0.719 0.918 0.31 > 0.40
x1x3 0.177 0.226 > 0.40 > 0.40
x2x3 −0.233 0.298 > 0.40 > 0.40
x1x2x3 −0.523 0.667 > 0.40 > 0.40

of each effect. Hamada and Balakrishnan (1998) provides an excellent and compre-

hensive review of the very many techniques that have been suggested for identifying

active effects under this complication of unreplication. A common approach is to use

a half-normal plot (Daniel 1959) and declare the large effects that appear to be out-

liers as the significant effects. The half normal plot of the effects is given in Figure 5.

We can see that none of the effects seem to be significant.

A more formal approach for identifying significant effects in unreplicated experi-

ments is to use the method proposed by Lenth (1989). (See Hamada and Balakrishnan

(1998) for an excellent review of many other methods as well as Variyath, Abraham,
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and Chen (2005) for a new approach using the jackknife that also examines this bear-

ing example.) The tPSE values from applying Lenth’s method are given in Table 6.

Two types of critical values may be used: the individual error rate (IER) and the

experiment-wise error rate (EER). IER and EER critical values for Lenth’s test are

tabulated in Wu and Hamada (2000). At the 5% significance level the critical value

for IER is 2.30. Because the tPSE values are much lower than this value, none of

the effects are found to be significant. The EER critical value is 4.87, which is much

larger than the IER critical value, and thus the same conclusion would be obtained.

We can also compute the p-values for each effect based on IER and EER. They are

also shown in Table 6. We can see that the p-values are large enough to conclude

that none of the effects are significant.

0.0 0.5 1.0 1.5

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

half−normal quantiles

|  ββ̂
  |

x3

x2x3
x1x2

x1x3

x1x2x3

x2

x1

Figure 5: Half Normal Plot for the Bearing Experiment

By examining the data in Table 5, we can see that run numbers 7 and 8 produce
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wear rates much lower than those of the other runs. It appears that keeping osculation

and temperature simultaneously at their high values is beneficial. Hellstrand (1989)

confirmed this choice of factor settings through observing vastly improved bearing

performance in a particular application. These settings are said to yield a substantial

improvement in wear rate that would have been missed if we were to rely upon only

the statistical test of significance.

2.3 PRACTICAL SIGNIFICANCE LEVEL

Let Y denote the response and x = (x1, x2, · · · , xp)′ the experimental factors. Let

L(Y ) be an appropriate quality loss function that converts the units of the response

measurements into dollars. Let C(x) be the cost function that reflects the cost of

running the process or producing the product at each of the particular settings for

the factors. Then, our objective is to find the optimal settings for the factors that

minimize the total cost

TC = E{L(Y )}+ C(x), (16)

where the expectation is taken with respect to the distribution of the response.

The form of the cost function C(x) is problem-specific and can be difficult to

obtain. Therefore, we propose a general strategy that can be used without requiring

the knowledge of the actual form of the cost function. To achieve this, we will

identify the factors that have a practically significant effect on E{L(Y )} and use only

those factors in order to minimize E{L(Y )}. The settings of the other factors may be

selected so as to minimize the cost. This is similar to the existing strategy, except that

practical significance is used instead of statistical significance and factor significance

is used instead of effect significance.

To be more specific, we select a model for E{L(Y )} optimize it, and adopt that

setting for a factor, only if it is a practically significant factor. A factor will be iden-

tified as practically significant if its effect on the response is more than a prescribed
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practical significance level ∆.

For example, consider the bearing experiment again. It is easier to illustrate the

concept if only the main effects are present in the model. The main effects model is

given by

ŷ = 3.995− 1.315x1 − 0.982x2 + 0.269x3.

The wear rate is a smaller-the-better (STB) characteristic and thus L(Y ) = KY

is a reasonable loss function to use (see Joseph 2004). So we need to minimize the

mean E(Y ) which is estimated by ŷ. Suppose that the existing level of wear rate is

5 and a 5% decrease is considered to be a significant improvement, then we can take

∆ = .05×5 = 0.25. Each of the factors can independently make a change of two times

its coefficient estimate (because they vary from −1 to 1). All of these are more than

0.25 and so all of the factors are identified as practically significant. Under the main

effects model, an estimate of σ can be obtained. Using the ubiquitous independent

t-test procedure we can find that the factor x1 is statistically significant at the 5%

level (p-value= 0.048) and the other two effects are not significant (p-values are 0.104

and 0.596), a very different conclusion from that arrived at from the application of

the practical significance level.

Now consider the full linear model with interactions. It is given by

ŷ = 3.995−1.315x1−0.982x2+0.269x3−0.719x1x2−0.177x1x3+0.233x2x3−0.523x1x2x3.

To apply the practical significance level to each factor, we need to know the effect of

each factor. But, because interactions are present the effect of a factor changes with

the levels of the other factors. When there are factors present having more than two

levels, then we might consider their quadratic, cubic, etc. effects. Therefore, we need

a more general concept than “effects”. Therefore, we need a more general concept

than “effects”. To address this issue and alleviate any confusion with the definition of

factorial effects, we define the impact of a factor with respect to the optimal setting
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of x.

Let E{L(Y )} = g(x) and let x∗ minimize g(x). The minimization is performed

while constraining x within the experimental region. Define the impact of factor xi

as

imp(xi) = max
xi

g(xi,x
∗
(i))−min

xi

g(xi,x
∗
(i)),

where x(i) denotes all of the factors except xi. The impact is the maximum change in

E{L(Y )}, when the factor xi is changed from its best to worst settings. If this change

is less than ∆, then we will identify the factor as practically insignificant. It is easy

to see that if g(x) = β0 +
∑p

i=1 βixi and if the two levels are encoded by −1 and 1,

then imp(xi) = |2βi|, which would coincide exactly with the usual definition of that

factorial effect.

To identify two factors as practically insignificant, we should also consider their

combined impact:

imp(xi, xj) = max
xi,xj

g(xi, xj,x
∗
(i,j))−min

xi,xj

g(xi, xj,x
∗
(i,j)).

The two factors xi and xj would be identified as practically insignificant if imp(xi, xj) <

2∆, in addition to each of imp(xi) < ∆ and imp(xj) < ∆. In this manner, we can

extend these definitions to any number of factors. In fact, we may define the set of

practically insignificant factors as:

S∗ := {S � ∀s ⊆ S : imp(s) < card (s) ∆} , (17)

where card(s) represents the number of elements in the set s. In words, the set of

practically insignificant factors is the largest set of factors such that every subset has

an impact less than the practical significance level times the number of elements in

that subset. So we are not merely interested in obtaining the set of factors such that

each factor’s impact is less than ∆. We must also consider all possible combined im-

pacts. The search for this largest set of insignificant factors can be performed through
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an exhaustive search. However, we propose Algorithm 1 for identifying this set of in-

significant factors. In this algorithm, X represents the set of p factors: {x1, . . . , xp}.

At each step we increase the cardinality of the set S∗ by including the factor x∗ that

yields the smallest combined impact, so long as for this new S∗, the marginal increase

in combined impact from this step is still less than ∆.

Algorithm 1 Identify the Full Set of Insignificant Factors: S∗
S∗ ⇐ ∅
p⇐ card (X )
k ⇐ 1
while k ≤ p do
x∗ ⇐ argminx∈X\S∗ imp(x ∪ S∗)
if imp(x∗ ∪ S∗)− imp(S∗) ≥ ∆ then

return S∗
else
S∗ ⇐ x∗ ∪ S∗
k ⇐ k + 1

end if
end while
return S∗

By optimizing the full linear model, we obtain x∗1 = 1, x∗2 = 1, and x∗3 = 1. Now

the impact of the three factors can be computed as

imp(x1) = 2× | − 0.523− 0.177− 0.719− 1.315| = 5.469,

imp(x2) = 2× | − 0.523 + 0.233− 0.719− 0.982| = 3.981,

imp(x3) = 2× | − 0.523 + 0.233 + 0.269− 0.177| = 0.395.

Because all of these impacts are more than 0.25, they are all identified as practi-

cally significant. There are no insignificant factors. Thus all three factors should be

changed to their higher levels to minimize the wear rate. This is a much different

conclusion than what we obtain using the statistical significance tests.

This result agrees with the conclusion obtained by Hellstrand (1989), except

therein the factor cage design (x3) was not considered significant. Can the observed
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effect of x3 be entirely due to random error? Are we unnecessarily incurring a poten-

tial cost by forcing the cage design to its higher level? We will answer these questions

in the next section.

2.4 EMPIRICAL BAYES ESTIMATION

Suppose that the response is related to the factors through the model Y = β0 +∑
i βiui + ε, where ε ∼ N (0, σ2) and ui’s are functions of the factors. For example, in

a 23 design we can take u1 = x1, u2 = x2, u3 = x3, u4 = x1x2, u5 = x1x3, u6 = x2x3,

and u7 = x1x2x3. Let u = (1, u1, u2, · · ·)′ and β = (β0, β1, β2, · · ·)′. Then Y = u′β+ε.

To use Bayesian methods, we need to specify a prior distribution for β. An excellent

general reference for Bayesian analysis is provided by Gelman, Carlin, Stern, and

Rubin (2004). For notational simplicity, rewrite the model as Y = µ+u′β + ε, where

µ denotes the prior mean for β0. We use the following multivariate normal prior:

β ∼ N (0,Σ).

Let D be the design matrix with n runs and UD be the model matrix. Let y

denote the data obtained from the experiment. Assuming the ε’s are independent,

we have the Bayesian model

y|β ∼ N (µ1n + UDβ, σ2In) and β ∼ N (0,Σ),

where 1n is a vector of 1’s having length n and In is the n-dimensional identity

matrix. Then the posterior mean of β given the data is

β̂ = ΣU ′
D(UDΣU ′

D + σ2In)
−1(y − µ1n). (18)

The unknown hyper-parameters in the model can be estimated using empirical

Bayes methods. The log-likelihood of the marginal distribution of y is given by

l = constant− 1

2
log det(UDΣU ′

D+σ2In)−
1

2
(y−µ1n)′(UDΣU ′

D+σ2In)
−1(y−µ1n).

The log-likelihood can be maximized with respect to µ, and the parameters in Σ to

get their estimates. We consider three special structures for Σ. They are presented
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in the order of increasing complexity. The last covariance structure is the one we

recommend, however the discussion of the first two is provided because it reveals

additional insights into the overall procedure.

2.4.1 Identical Variances Prior

Consider the bearing experiment again. For simplicity, assume that Σ = τ 2I8.

Because D is a full factorial design, the columns of UD are orthogonal. Thus

UDΣU ′
D = 8τ 2I8. From (18), we obtain

β̂ =
U ′
D(y − µ18)

8 + σ2/τ 2
.

The least squares estimate of β is given by

β̃ = (U ′
DUD)−1U ′

D(y − µ18) =
1

8
U ′
D(y − µ18).

Thus

β̂ =
8

8 + σ2/τ 2
β̃,

which illustrates that the Bayes estimate shrinks the least squares estimate by the

factor 8/(8 + σ2/τ 2).

The marginal log-likelihood simplifies to

l = constant− 8

2
log(8τ 2 + σ2)− (y − µ18)

′(y − µ18)

2(8τ 2 + σ2)
.

Differentiating with respect to µ and τ 2 and equating to 0, we obtain the familiar

solutions

µ̂ = ȳ

and

8τ 2 + σ2 =
1

8

8∑
i=1

(yi − ȳ)2.

Denote the right side of this equation, the sample variance of Y , by s2. Then, because

τ 2 cannot be negative, we obtain

τ̂ 2 =
1

8

(
s2 − σ2

)
+
,
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where (x)+ = x if x > 0 and 0 otherwise. Thus

β̂ =

(
1− σ2

s2

)
+

β̃.

Thus the estimate of β decreases as σ2 increases and becomes 0 when σ2 exceeds the

observed variance of Y . The above estimator may be recognized as the well-known

positive-part James-Stein estimator (see Lehmann and Casella 1998, pg. 275). The

connection between James-Stein estimation and empirical Bayes estimation is well-

known in the statistical literature. However, we have not seen it advanced as an

alternative to statistical testing for the analysis of experiments.

The coefficients β1, β2, · · · , β7 are plotted in Figure 6(a) against σ2 (note that

β0 = 0). We can see that as σ2 increases, the β’s decrease to 0. The impacts of

the three factors can be calculated as before and are plotted in Figure 6(b). We can

see that the impact of x3 is practically insignificant at the 5% level when σ2 > 1.4.

Therefore, it can be set to minimize the cost. This is exactly the same result obtained

by Hellstrand (1989) with his subsequent experiments. The analysis shows that even

in the presence of large random error, the two factors, osculation and heat treatment,

have significant effects and can be adjusted to improve the wear rate substantially.

This is a conclusion completely different from that obtained using the statistical tests

of significance.

2.4.2 Unequal Variances Prior

Now consider a more general form for Σ. As before, let the βi’s be independent but

with possibly different prior variances: τ 2
i . Then Σ = diag(τ 2

0 , τ
2
1 , · · · , τ 2

7 ). We obtain,

β̂i =
8τ 2
i

8τ 2
i + σ2

β̃i,

and the marginal log-likelihood becomes

l = constant− 1

2

7∑
i=0

log(8τ 2
i + σ2)− 1

2

7∑
i=0

8β̃i
2

8τ 2
i + σ2

. (19)
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Maximizing l, we obtain τ̂ 2
i = (β̃i

2
− σ2/8)+. Let

zi =
β̃i
σ eβi

,

which is the usual test statistic for testing H0 : βi = 0 when σ eβi
denotes the standard

error of β̃i. Because σ eβi
= σ/

√
8, we obtain

β̂i =

(
1− 1

z2
i

)
+

β̃i. (20)

This shows that β̂i shrinks completely to 0 if |zi| ≤ 1. This threshold is equivalent

to using an α level of about 32% in statistical testing. That is, when |zi| > 1, the ith

coefficient is identified as statistically significant at the 32% level and β̃i is used in

the model. Whereas in the EB shrinkage procedure, a value smaller than β̃i is used

and as |zi| increases, β̂i increases continuously to β̃i. A more detailed comparison of

the hard thresholding rule of statistical testing and the soft or continuous thresholding

rule of this shrinkage estimator are provided in Section 2.5.

Here we address the interesting connection between shrinkage estimators and sub-

set regression techniques. If we rewrite (20) as:

β̂i =

(
1−

σ2eβi

β̃i
2

)
+

β̃i

then we can recognize that this is very similar to the nonnegative (nn-) garrote co-

efficients of Breiman (1995). However, in the nn-garrote, the values σ2eβi
are replaced

by a single parameter that is estimated through minimizing squared errors in a cross-

validation scheme. Note however, that the EB estimate recommended here is more

general than any of the techniques mentioned above to which we are drawing compar-

isons. We may use the EB estimate for all factorial effects from a fractional factorial

design. Its representation does not depend on the existence of a corresponding least-

squares estimate.

The estimates of the coefficients are plotted in Figure 7(a). In addition, the im-

pacts for the three factors at their optimal settings are plotted in Figure 7(b). We can
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see that the coefficients shrink to 0 at a slower rate. The impact of x3 is practically

insignificant at the 5% level when σ2 > 1.7. The impacts of x1 and x2 are practically

significant, provided σ2 < 12.5 and σ2 < 6.7, respectively.

Although we used the 23 design to derive the result in (20), the result is much

more general. It can be applied to fractional factorial designs and to designs with

factors having more than two levels. The only restriction is that the model matrix

corresponding to the effects that we are trying to estimate should be orthogonal. The

proposition is formally stated and proved in Appendix B.

The approach can easily be extended to the case of an unknown σ. If an estimate

of σ can be obtained, then ti = β̃i/σ̂ eβi
has a t distribution. Thus, we obtain

β̂i =

(
1− 1

t2i

)
+

β̃i. (21)

2.4.3 Heredity Prior

The foregoing analysis does not incorporate the principles of effect hierarchy and effect

heredity (Hamada and Wu 1992). The effect hierarchy principle is not incorporated

because the main effects, two-factor interactions, and the three-factor interaction are

all treated the same way. The effect heredity principle is not incorporated because an

interaction term can appear in the model without any of its parent factors. Joseph

(2006) and Chapter 1 of the present work show that these principles can easily be

incorporated into the analysis through the prior specification. Let Σ = τ 2R, where

R = diag(1, r1, r2, r3, r1r2, r1r3, r2r3, r1r2r3), and ri ∈ [0, 1] for all i.

For convenience, let us introduce the indicator variables:

γi,j =

 1 if effect i includes factor j

0 otherwise.

So that, for example, γ0,1 = γ0,2 = γ0,3 = 0, and γ1,1 = 1, while γ1,2 = γ1,3 = 0. Then
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we have

β̂i =
8τ 2r

γi,1

1 r
γi,2

2 r
γi,3

3

8τ 2r
γi,1

1 r
γi,2

2 r
γi,3

3 + σ2
β̃i,

and the marginal log-likelihood becomes

l = constant− 1

2

7∑
i=0

(
log

(
8τ 2

3∏
j=1

r
γi,j

j + σ2

)
+

8β̃i
2

8τ 2
∏3

j=1 r
γi,j

j + σ2

)
. (22)

We may numerically maximize this log likelihood in order to find empirical Bayes’

estimates for the hyper-parameters µ, r1, r2, r3, and τ 2.

The consequence of assuming the heredity model can be readily discerned from

the plot of the coefficients given in Figure 8(a). Coefficients approach zero in groups

as σ2 increases. For instance, both β̂2 and the interaction β̂1,2 are zero for σ2 > 6.

Overall the coefficients shrink at a rate that is much more rapid than with just the

unequal prior variances assumption. The separation between the significant effects

and insignificant effects is quite discernable. For σ2 < 6.3, x1 is practically significant,

for σ2 < 5.5, x2 is practically significant, and for σ2 < 0.3, x3 is practically signifi-

cant. That is, the factor x3, cage design, is practically insignificant under virtually

all assumptions for the error variance. The impacts in Figure 8(b) are once again

consistent with the conclusion of Hellstrand (1989).

2.5 STATISTICAL TESTING AS AN APPROX-

IMATION

For the empirical Bayes estimate in (20), the value of βi in the estimated model can

be written: λiβ̃i, where λi = (1 − 1/z2
i )+. If statistical testing is used, then λi = 0

when |zi| ≤ zα/2 and 1 otherwise. As discussed in the introduction, it is difficult

to find a meaningful value of α for a given problem. However, the similarity of this

testing procedure with the empirical Bayes procedure reveals that statistical testing

can be used as an approximation. A simple approximation is to take zα/2 = 1, which

gives an α level of 31.73%. But because the empirical Bayes estimates shrink towards

0 when zi > 1, we may prefer to search for an even closer approximate statistical test.
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A plot of λ as a function of z is provided in Figure 9(a). The objective is to find the

zα/2 that minimizes the absolute difference between the empirical Bayes estimate and

the estimate after using statistical testing. Under the null hypothesis, z ∼ N (0, 1).

Thus, we minimize∫ zα/2

1

{(1− 1

z2
)− 0}φ(z) dz +

∫ ∞

zα/2

{1− (1− 1

z2
)}φ(z) dz,

where φ(z) is the standard normal density function. By differentiating with respect

to zα/2 and equating to 0, we obtain

(1− 1

z2
α/2

)φ(zα/2)−
1

z2
α/2

φ(zα/2) = 0.

Solving, we obtain zα/2 =
√

2. This corresponds to an α level of 15.73%. At this

level, the empirical Bayes estimate of βi is one half of the least squares estimate.

If σ can be estimated, then a t-statistic would be used for testing H0: βi = 0. Note

that the optimal critical value remains the same as
√

2 irrespective of the distribution

of the test statistic. Therefore, the optimal significance level in a t-test can be obtained

by solving for α in tα/2,ν =
√

2, where ν represents the degrees of freedom for the

error. For ν = 1, we obtain α = 0.3918. This approaches 0.1573 as ν → ∞ (see

Figure 9(b)).

Because of the popularity of statistical testing and its primacy in the analysis

techniques described in many textbooks on the design and analysis of experiments,

we envision that it will be continued to be used for many more years to come. More-

over, the procedure using statistical testing is easier to implement than the empir-

ical Bayes procedure. So if an investigator prefers to apply statistical testing, we

do recommend using the α level of 15%. Our derivation clearly demonstrates that

this liberal level should be used irrespective of the number of effects being examined.

Therefore, for optimization experiments, we additionally recommend against incorpo-

rating in procedures intended for multiple testing such as the Bonferronni correction

method, studentized maximum modulus method, etc. There does exist previous work
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in attempting to provide guidance in the choice of α-level for frequentist point null

hypothesis testing. For example, Kennedy and Bancroft (1971) also make the case

for the use of a more liberal, 0.10 ≤ α ≤ 0.25, significance level, in the context of

the sequential tests involved in forward selection. However, Berger and Sellke (1987)

demonstrates that in univariate point-null hypothesis testing, even fairly conservative

choices for α, can lead to an unacceptably high posterior probability for the null in

an objective Bayes setting.

2.6 TAGUCHI’S BETA COEFFICIENT METHOD

Taguchi (1987, chapter 19) criticized the use of statistical testing in experiments and

proposed an intriguing method which he named the beta coefficient method. From his

experience he found that the predicted value from the experiment is always an over

estimate of the true value. Therefore, he suggested that the effects obtained from the

experiment should be shrunk towards 0 before making the prediction. He denoted the

shrinkage factor by the parameter β and so he named the method the beta coefficient

method. But because the variable β is more commonly used for denoting the linear

model parameters, we use different notation.

Taguchi developed his method using an analysis of variance model and sum of

squares calculations, but for the consistency of exposition, we explain his method

using the regression model set up used throughout this chapter. Let λi denote the

shrinkage applied to the least squares estimate β̃i. The objective is to find the λi that

minimizes the mean squared error E{(λiβ̃i − βi)
2}. Because E(β̃i) = βi, we obtain

E{(λiβ̃i − βi)
2} = λ2

i var(β̃i) + (1− λi)
2β2

i .

Differentiating with respect to λi and equating to 0, we obtain

λi =
β2
i

β2
i + var(β̃i)

= 1− var(β̃i)

β2
i + var(β̃i)

.

58



If the columns in the model matrix are orthogonal, then var(β̃i) = σ2/n. An unbiased

estimate of β2
i + σ2/n is β̃i

2
. Thus λi can be estimated by

λi = 1− σ̂2/n

β̃i
2 = 1− 1

t2i
. (23)

Because λi must be nonnegative, modifying the estimate to λi = (1 − 1/t2i )+ is

required. This produces the shrinkage coefficient suggested by Taguchi. This is

exactly the same as the empirical Bayes shrinkage coefficient in (21). Taguchi used

sum of squares to derive the result and thus the shrinkage coefficient is obtained as

(1− 1/Fi)+, where Fi is the F-ratio from the analysis of variance table. It is easy to

show that Fi = t2i . Consequently, the two shrinkage coefficients are equivalent.

We note that replacing the numerator and denominator by unbiased estimators in

the expression for λi would not generally produce an unbiased estimate of λi. Indeed,

several other estimates are possible. For example, the maximum likelihood estimate

of λi is

λi = 1− σ̂2/n

β̃i
2
+ σ̂2/n

= 1− 1

1 + t2i
,

is a very different estimate. Taguchi does not sufficiently detail his line of reasoning

for how he arrived at the estimate in (23), but he did seem to have the right intuition

to obtain the correct estimate.

Taguchi (1987) predicted that his method would completely replace the statistical

testing methods used in the analysis of experiments. However, it did not happen.

We believe that the justification given through the empirical Bayes method will make

this method more popular in the future. We also note that this empirical Bayes

perspective admits an even more general procedure that can be used with any type of

design (it need not be orthogonal) and that easily incorporates effect hierarchy and

heredity. This should lead to better models and better decision making.
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2.7 SIMULATION

We use simulation to investigate the properties of the proposed procedure for op-

timization experiments. In particular, we are interested in providing evidence to

support our expectation that this method performs better than the usually applied

statistical testing techniques. This is most easily revealed through simulation of main

effects models. We are especially encouraged by how well the proposed methodology

performs compared to the frequentist technique when σ2 is not known.

2.7.1 Main Effects Modeling

Below, we consider the estimation of the main effects from a design that is a 12-run

orthogonal array over 11 factors, with model matrix:

U =



1 1 1 −1 1 1 1 −1 −1 −1 1 −1

1 −1 1 1 −1 1 1 1 −1 −1 −1 1

1 1 −1 1 1 −1 1 1 1 −1 −1 −1

1 −1 1 −1 1 1 −1 1 1 1 −1 −1

1 −1 −1 1 −1 1 1 −1 1 1 1 −1

1 −1 −1 −1 1 −1 1 1 −1 1 1 1

1 1 −1 −1 −1 1 −1 1 1 −1 1 1

1 1 1 −1 −1 −1 1 −1 1 1 −1 1

1 1 1 1 −1 −1 −1 1 −1 1 1 −1

1 −1 1 1 1 −1 −1 −1 1 −1 1 1

1 1 −1 1 1 1 −1 −1 −1 1 −1 1

1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1



.

Models were simulated with the following mechanism:

f(βi|ηi) = ηiN (0, τ 2) + (1− ηi)N (0, 1) i = 1, . . . , 11

ηi =

 1 with probability 1− γ

0 with probability γ.
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Y = µ+ Uβ + ε ε ∼ N (0, σ2).

The use of a normal mixture model of this sort to represent a linear model with some

combination of active and inactive effects is not uncommon in Bayes hierarchical

modeling. For instance, Chipman, Hamada, and Wu (1997) uses a similar mixture

model assumption for their model selection technique. Without loss of generality,

we assume µ = 0 and σ2 to be known. Then, for each of these models we carry

out estimation and variable selection in the traditional frequentist method, using

statistical hypothesis testing. The significance levels of α = 0.0045, α = 0.0500,

and α = 0.1573 correspond to the Bonferroni adjustment to α = 0.05 to properly

account for simultaneous testing, the α-level required for declaring significance in

many publications, and the level we would recommend as an approximation to the

empirical Bayes procedure presented in this paper, respectively. In addition, results

are presented for a variety of levels of the thresholding parameter, ∆. N=10,000

random models were generated for many different settings of σ2, τ 2, and γ.

We assume that Y is a larger the better quality characteristic. Table 7 and Table 8

display some metrics for comparing the proposed procedure with the existing fre-

quentist techniques for a couple of scenarios that could easily characterize some real

experiments. For the moment we assume that the value of σ2 is known. With 11

main effects and a parameter value of γ = 0.2, around two effects are expected to be

active, characterizing factor sparsity. When an effect is active, its coefficient is drawn

from a N (0, 1) distribution and should be much larger than the coefficient from an

inactive effect which is drawn from a distribution that is very tightly concentrated

around zero, N (0, τ 2 = 0.001). We also consider models when several more factors

should be active, γ = 0.5.

From these simulations, we intend to compare the performance of using the EB

shrinkage estimator combined with the practical thresholding level ∆, with some

typical frequentist hypothesis testing approaches. The different techniques are used
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for estimation, parameter thresholding and selecting optimal factor settings.

The metrics by which we compare the procedures are: % Improvement, Estimation

Error, and Number of Active Effects. By % Improvement we hope to quantify the

quality of the guidance provided by each procedure for determining factor settings.

For each run j, we have a true model for the response yj(x). Let x† represent the

true optimal factor settings. We would choose these settings if we knew the true

response function. Whereas x∗ denote the factor settings we would choose based on

the estimated model and thresholding technique we use. Then

% Improvement =
1
N

∑N
j=1 yj(x

∗)− yj(0)
1
N

∑N
j=1 yj(x

†)− yj(0)
.

So this ratio reflects the proportion of the maximum possible improvement in the

response that is actually obtained on average with that technique. Estimation error

is averaged over all of the model i coefficients in the following way:

Estimation Error =

√√√√ 1

N(n− 1)

N∑
j=1

n−1∑
i=1

(
βi,j − β̂i,j

)2

.

And finally, the number of active effects is the average over all of the simulation

runs of the estimated effects that are nonzero. When an effect estimate is 0, either

because of failure to reject H0 in the statistical test, or by shrinkage, or practical

significance thresholding, the setting selected is 0. For the purposes of these metrics,

this is equivalent to determining the setting for that factor to be either +1 or −1

based on a “coin flip” or by arbitrarily setting it to its midpoint, if such a setting

exists.

From these tables, it is quite clear that the settings selected when using the EB

estimators, in particular when ∆ = 0.0, yield superior results with respect to the

optimization experiment objective of improving the response that would be realized.

This pattern is most pronounced when σ2 is large. Here there is also a distinct

pattern of slightly better performance for the proposed method with regard to criteria
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Table 7: ME Simulation (γ = 0.2, τ 2 = 0.001, σ2 known)

% Improvement
Frequentist (α) Practical Thresholding (∆)

σ2 0.0045 0.0500 0.1573 0.0 0.2 0.4 0.6 0.8 1.0
0.0 1.00 1.00 1.00 1.00 0.88 0.87 0.85 0.82 0.78
0.5 0.74 0.81 0.84 0.86 0.85 0.83 0.81 0.78 0.74
1.0 0.62 0.74 0.79 0.83 0.81 0.79 0.77 0.74 0.71
2.0 0.46 0.63 0.72 0.77 0.76 0.74 0.71 0.69 0.66
5.0 0.23 0.43 0.55 0.64 0.63 0.61 0.59 0.57 0.54
10.0 0.10 0.27 0.41 0.52 0.51 0.49 0.47 0.46 0.44

Estimation Error
Frequentist (α) Practical Thresholding (∆)

σ2 0.0045 0.0500 0.1573 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.00 0.00 0.00 0.00 0.03 0.03 0.05 0.06 0.08
0.5 0.14 0.15 0.17 0.14 0.14 0.14 0.13 0.13 0.14
1.0 0.20 0.21 0.24 0.20 0.20 0.20 0.20 0.19 0.19
2.0 0.28 0.30 0.34 0.28 0.28 0.28 0.28 0.28 0.27
5.0 0.40 0.45 0.54 0.43 0.43 0.43 0.43 0.43 0.43
10.0 0.47 0.60 0.74 0.59 0.59 0.59 0.59 0.59 0.59

Number of Active Effects
Frequentist (α) Practical Thresholding (∆)

σ2 0.0045 0.0500 0.1573 0.0 0.2 0.4 0.6 0.8 1.0
0.0 11.00 11.00 11.00 11.00 2.03 1.83 1.66 1.50 1.34
0.5 1.28 1.97 3.11 4.67 3.56 2.60 1.95 1.54 1.30
1.0 0.98 1.73 2.94 4.51 3.73 2.97 2.31 1.81 1.44
2.0 0.67 1.48 2.73 4.37 3.77 3.20 2.68 2.20 1.79
5.0 0.31 1.08 2.35 4.08 3.68 3.28 2.91 2.55 2.21
10.0 0.16 0.84 2.10 3.88 3.59 3.31 3.02 2.75 2.48
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Table 8: ME Simulation (γ = 0.5, τ 2 = 0.001, σ2 known)

% Improvement
Frequentist (α) Practical Thresholding (∆)

σ2 0.0045 0.0500 0.1573 0.0 0.2 0.4 0.6 0.8 1.0
0.0 1.00 1.00 1.00 1.00 0.97 0.95 0.93 0.90 0.86
0.5 0.81 0.88 0.92 0.93 0.92 0.90 0.88 0.85 0.81
1.0 0.69 0.81 0.87 0.90 0.88 0.87 0.84 0.81 0.78
2.0 0.50 0.68 0.78 0.84 0.82 0.80 0.77 0.75 0.71
5.0 0.25 0.46 0.61 0.70 0.69 0.67 0.64 0.62 0.60
10.0 0.11 0.30 0.45 0.57 0.55 0.54 0.52 0.50 0.48

Estimation Error
Frequentist (α) Practical Thresholding (∆)

σ2 0.0045 0.0500 0.1573 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.00 0.00 0.00 0.00 0.02 0.04 0.06 0.09 0.13
0.5 0.21 0.19 0.19 0.17 0.17 0.18 0.18 0.19 0.20
1.0 0.30 0.27 0.27 0.24 0.25 0.25 0.25 0.26 0.26
2.0 0.43 0.38 0.38 0.34 0.34 0.34 0.35 0.35 0.35
5.0 0.61 0.58 0.60 0.51 0.51 0.51 0.52 0.52 0.52
10.0 0.70 0.75 0.82 0.68 0.68 0.68 0.68 0.68 0.68

Number of Active Effects
Frequentist (α) Practical Thresholding (∆)

σ2 0.0045 0.0500 0.1573 0.0 0.2 0.4 0.6 0.8 1.0
0.0 11.00 11.00 11.00 11.00 5.10 4.65 4.21 3.80 3.42
0.5 3.17 4.11 5.17 6.41 5.54 4.74 4.09 3.60 3.20
1.0 2.41 3.51 4.72 6.08 5.40 4.75 4.13 3.61 3.16
2.0 1.57 2.80 4.14 5.63 5.11 4.59 4.08 3.59 3.15
5.0 0.72 1.87 3.31 4.98 4.62 4.24 3.86 3.50 3.16
10.0 0.33 1.31 2.74 4.49 4.22 3.94 3.66 3.38 3.12
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of Estimation Error. However, the third panel demonstrates that if the goal is a

parsimonious model for prediction, then the proposed method with ∆ = 0 is clearly

not the best choice. Figure 10 illustrates a pattern that we expect to observe in

real experiments. With even a very small choice for ∆, say 0.2, the model is of the

appropriate size and not much is lost in % Improvement. In fact, in Section 2.8 we

observe that in the router bit experiment for even small values of ∆, the number

of practically significant factors is small, so the complexity of the model that is to

be optimized is dramatically reduced. This consequently increases the number of

practically insignificant factors which can be set to levels that reduce costs.

For the simple case when σ2 = 0, many of the values in the tables and all of

Figure 10 could have been calculated analytically, or at least via a very simple nu-

merical integration, rather than simulation. This is a consequence of the fact that the

underlying probability distribution is a mixture of half-normal distributions. Since

y(0) = 0 and we are only considering main effects models, we could instead calculate:

% Improvement =
γe−

∆2

8 + (1− γ)τe−
∆2

8τ2

γ + τ (1− γ)
.

In the denominator, we use the well known expression for the mean of a half-normal

random variable. See, for instance Johnson, Kotz, and Balakrishnan (1994). That is,

more generally, when X ∼ N (µ, σ2), then

E(|X|) = µ+

√
2

π
σ.

When σ2 = 0, we also note that:

Estimation Error =

√∫ ∆
2

0

2x2

(
γφ (x) + (1− γ)

1

τ
φ
(x
τ

))
dx,

and

Number of Effects = 22

(
1− γΦ

(
∆

2

)
− (1− γ) Φ

(
∆

2τ

))
,

where φ(·) represents the standard normal density function and Φ(·) represents the

standard normal cumulative distribution function. When σ2 > 0, the tabulated values

65



could also be expressed as integrals that could be evaluated numerically. However,

the expressions are more complex. And when σ2 is unknown, the expressions and

numerical integration would be even more complicated. So in every case, we ap-

proximate these values through the simulation explicitly described above. The high

number of simulation runs, N=10,000, does not take much time on today’s standard

desktop computer.

That the same patterns so far revealed in this section are reproducible for different

combinations of γ and τ 2 is illustrated in the following “interaction” plots. The same

three metrics are now plotted as a function of γ. Each line represents a different

value of τ 2, for either of the usual frequentist statistical test of significance procedure

or the empirical Bayes shrinkage estimation procedure. In these plots, σ2 = 1 and

is assumed to be known. The statistical significance level of α = 0.05 and practical

thresholding rule of ∆ = 0 are used in these three plots. Notice that for virtually

any values for γ and τ 2, the % Improvement using the settings suggested by the EB

parameter estimates is superior to that when using the statistical z-test.

2.7.2 Main Effects With Unknown σ2

In this section we examine the case when σ2 is not known but may be estimated

from the data. The important distinction we make here with the simulation in the

previous section is that since we are estimating σ2, the frequentist tests of statistical

significance involve t-statistics rather than z-statistics. For simplicity, we assume that

m center points are incorporated into each experimental design. The use of center

points in this manner is illustrated in an exercise from Wu and Hamada (2000, page.

146).

In Table 9 and Table 10 we provide the simulation results for when m = 3 that

correspond to Table 7 and Table 8, respectively. The advantage of the proposed factor

optimization procedure over the procedure that involves a frequentist t-test with small
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ν is profound. For example, when m = 3, γ = 0.50, τ 2 = 0.001, and σ2 = 1.0, on

average, we would expect to obtain 90% of the true optimum, by choosing the settings

that are dictated by our EB estimates. Whereas, in the frequentist setting, the usual

t-test would only yield 54% of the true optimal response, on average.

However, as m→∞ the advantage of the proposed procedure over the utilization

of a frequentist test quickly begins to resemble that smaller, but distinct, advantage

demonstrated in the previous section. This is illustrated in the plots of % Improve-

ment provided in Figure 12. Additional simulation results appear in Appendix C.

2.8 ROUTER BIT EXPERIMENT, REVISITED

Once again, recall the Router Bit Experiment of Phadke (1989). This experiment is

used to illustrate the application of the induced, heredity prior in Section 1.5, above,

and is also analyzed in Wu and Hamada (2000). The experiment is a 32 run regular

fraction of a 27 × 42 factorial design, where the objective is to maximize the lifetime

of router bits. Therefore, we consider this problem to be an optimization experi-

ment. We achieve the objective of determining optimal factor settings by applying

the methodology presented in this chapter. That is, we find the optimal settings that

minimize the total cost (16). Here, we primarily focus on the objective of maximizing

the expected bit lifetime.

To find the optimal factor settings, we calculate the EB estimates of the 2,048 full

factorial model parameters, optimize the response with respect to all of the factors,

and apply a practical significance level thresholding rule ∆ to the factor impacts.

For the factors that were deemed practically insignificant, the setting adopted is the

current factor setting.

Unfortunately, when the model matrix is not orthogonal, there is not a general,

convenient result like Proposition 4 for expressing the EB parameter estimates in
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Table 9: ME Simulation (γ = 0.2, τ 2 = 0.001, m = 3 centerpoints)

% Improvement
Frequentist (α) Practical Thresholding (∆)

σ2 0.0045 0.0500 0.1573 0.0 0.2 0.4 0.6 0.8 1.0
0.0 1.00 1.00 1.00 1.00 0.88 0.87 0.85 0.82 0.78
0.5 0.16 0.64 0.80 0.87 0.85 0.83 0.81 0.78 0.75
1.0 0.09 0.50 0.72 0.83 0.82 0.80 0.78 0.75 0.72
2.0 0.04 0.35 0.61 0.77 0.76 0.74 0.72 0.69 0.66
5.0 0.02 0.19 0.42 0.65 0.64 0.62 0.60 0.58 0.55
10.0 0.01 0.12 0.31 0.54 0.53 0.51 0.50 0.48 0.47

Estimation Error
Frequentist (α) Practical Thresholding (∆)

σ2 0.0045 0.0500 0.1573 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.00 0.00 0.00 0.00 0.03 0.04 0.05 0.06 0.08
0.5 0.39 0.20 0.17 0.16 0.16 0.15 0.14 0.14 0.14
1.0 0.42 0.28 0.23 0.22 0.22 0.22 0.21 0.20 0.20
2.0 0.44 0.35 0.33 0.31 0.31 0.31 0.31 0.30 0.29
5.0 0.44 0.45 0.50 0.48 0.48 0.48 0.48 0.48 0.47
10.0 0.46 0.54 0.67 0.67 0.67 0.67 0.67 0.67 0.67

Number of Active Effects
Frequentist (α) Practical Thresholding (∆)

σ2 0.0045 0.0500 0.1573 0.0 0.2 0.4 0.6 0.8 1.0
0.0 11.00 11.00 11.00 11.00 2.04 1.85 1.68 1.52 1.36
0.5 0.26 1.50 2.93 5.62 4.28 3.03 2.15 1.63 1.35
1.0 0.16 1.20 2.70 5.48 4.52 3.54 2.68 2.03 1.58
2.0 0.10 0.95 2.41 5.30 4.62 3.90 3.20 2.57 2.05
5.0 0.07 0.72 2.09 5.08 4.63 4.16 3.68 3.21 2.76
10.0 0.06 0.66 2.00 4.98 4.66 4.33 3.98 3.63 3.28
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Table 10: ME Simulation (γ = 0.5, τ 2 = 0.001, m = 3 centerpoints)

% Improvement
Frequentist (α) Practical Thresholding (∆)

σ2 0.0045 0.0500 0.1573 0.0 0.2 0.4 0.6 0.8 1.0
0.0 1.00 1.00 1.00 1.00 0.97 0.95 0.93 0.90 0.86
0.5 0.17 0.69 0.87 0.93 0.92 0.91 0.88 0.85 0.81
1.0 0.10 0.54 0.78 0.90 0.88 0.87 0.84 0.81 0.78
2.0 0.05 0.39 0.67 0.84 0.83 0.81 0.78 0.76 0.72
5.0 0.02 0.22 0.47 0.71 0.70 0.68 0.66 0.64 0.61
10.0 0.01 0.14 0.34 0.58 0.57 0.56 0.54 0.53 0.51

Estimation Error
Frequentist (α) Practical Thresholding (∆)

σ2 0.0045 0.0500 0.1573 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.00 0.00 0.00 0.00 0.02 0.04 0.06 0.09 0.13
0.5 0.61 0.30 0.20 0.18 0.18 0.18 0.19 0.19 0.21
1.0 0.66 0.42 0.30 0.26 0.26 0.26 0.26 0.26 0.27
2.0 0.68 0.53 0.41 0.36 0.36 0.36 0.36 0.37 0.37
5.0 0.70 0.65 0.61 0.55 0.55 0.55 0.55 0.55 0.55
10.0 0.71 0.73 0.79 0.74 0.74 0.74 0.74 0.74 0.74

Number of Active Effects
Frequentist (α) Practical Thresholding (∆)

σ2 0.0045 0.0500 0.1573 0.0 0.2 0.4 0.6 0.8 1.0
0.0 11.00 11.00 11.00 11.00 5.10 4.66 4.24 3.82 3.43
0.5 0.56 2.92 4.74 7.07 6.04 5.05 4.24 3.66 3.23
1.0 0.32 2.20 4.15 6.76 5.98 5.18 4.43 3.78 3.25
2.0 0.19 1.64 3.58 6.42 5.82 5.19 4.56 3.98 3.45
5.0 0.10 1.06 2.80 5.89 5.48 5.05 4.60 4.15 3.71
10.0 0.08 0.85 2.41 5.49 5.19 4.87 4.54 4.20 3.87
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terms of shrinkage factors multiplied by the least squares estimates.

There do exist some additional scenarios when an expression of the form β̂i = λiβ̃i

can be found. For instance, see Joseph (2006), expression (18), for estimators of this

form for each of the parameters when the experiment is a positive, regular fraction

of a 2p design.

Here the model matrix is 32 × 2,048. However, as described at the beginning

of Section 2.4, we may still use the EB estimator obtained from the posterior mean

(18), after plugging in the covariance matrix parameters obtained from maximizing

the integrated likelihood.

The sampling error, σ2 is unknown, but we assume it is practically limited by the

precision of the observations. That is, the exact times the router bits failed during

the experiment are not known. The bits are only inspected at regular intervals, after

each 100 inches of cutting (in the X-Y plane). The recorded lifetimes, yi, are the

midpoint of that interval during which the bit is determined to have failed, in units of

100s of inches. So suppose that with high probability the recorded lifetime is within

50 inches of the true lifetime for that particular bit. That is,

P (µyi
− 0.5 < Yi < µyi

+ 0.5) > 0.9973

This statement implies that there may be other, very minor, sources of measurement

error, besides the interval censoring, and that σ < 1
6
. We perform the analysis twice:

first with σ2 = 0 and then with σ2 = 1
36

.

From Figure 13 it is made apparent how even a small practical significance level,

∆, can dramatically simplify the model that needs to be considered in the E{L(Y )}

portion of (16).

Recall that in Section 1.5, the analysis is performed with σ2 = 0. We obtain EB

estimates of: µ̂ = 5.8125, σ̂2
0 = 74.9462, and

ρ̂ = (0.99, 0.99, 0.99, 0.71, 0.99, 0.99, 0.60, 0.09, 0.56)′.
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We then obtain the EB estimates for the 2,048 full factorial model parameters. Note

that since the two four level factors are qualitative, optimizing ŷ(x) is a trivial exercise

of evaluating ŷ(x), at all x ∈ X , the 2,048 discrete design points, and comparing.
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Figure 13: Router Bit Experiment: Model Size as ∆ Increases

Factor E represents a variable “spindle position” which does not require us to

determine its setting. The optimal settings for the remaining factors, under the full

factorial parameter model, are:

A = −, B = −, C = +, D = 4, F = −, G = −, H = +, J = + (24)

Now suppose that we are interested in making a factor setting change, as long as

it offers at least a 10% improvement in the expected lifetime (at the current settings).

This implies

∆ = 0.10ŷ = 0.10(3.5) = 0.35.
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Recall that this value for ∆ corresponds to a marginal lifetime of 35 inches of cutting.

In order to apply the practical significance level, ∆, we wish to identify the largest

set of insignificant effects that exists, such that all of its subsets are also insignificant,

as defined in (17). Below, we systematically identify the set S∗ for the Router Bit

Experiment. First, after examining the individual factor impacts,

imp(x) = (0.39, 0.22, 0.54, 15.54, 0.35, 0.01, 0.75, 0.62, 1.18),

we discover that the factor, D, has an enormous impact on router bit lifetime at the

optimum, whereas the factors J , G, H, C, A, and E are merely practically significant.

The subset {B,E, F} has the potential to be practically insignificant. Recall that a

k-factor combined impact has to be greater than k∆ for us to identify that something

in that subset of factors as practically significant. So we could evaluate the combined

impacts of all subsets of {B,E, F} to determine the set S∗, but instead, here we will

illustrate the application of Algorithm 1.

S∗ = ∅

Step 1

imp(x) = (0.39, 0.22, 0.54, 15.54, 0.35, 0.01, 0.75, 0.62, 1.18)

imp(F )− imp(∅) = 0.01 < 0.35 (continue)

S∗ = {F}

X \ S∗ = (A,B,C,D,E,G,H, J)

Step 2

imp(F,x) = (0.41, 0.23, 0.55, 15.58, 0.37, 0.82, 0.94, 1.18)

imp(F,B)− imp(F ) = 0.22 < 0.35 (continue)

S∗ = {B,F}

X \ S∗ = (A,C,D,E,G,H, J)

Step 3
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imp(F,B,x) = (0.63, 0.77, 15.79, 0.58, 1.23, 0.98, 1.71)

imp(F,B,E)− imp(F,B) = 0.353 > 0.35 (STOP)

S∗ = {B,F}

The results of the algorithm indicate that A, B, C, D, E, G, H, and J are practically

significant. As a result, we suggest that these factors be set to the levels determined

in (24). The remaining factors should have their settings determined by minimizing

C(x) in (16). So for minimizing E{L(Y )} in (16), the settings

A = −, B = −, C = +, D = 4, G = −, H = +, J = +

are recommended.

The settings for D, G, H, and J are consistent with the recommended settings in

the analysis of Wu and Hamada (2000). However, only the effects D2, G, J , and the

interactions GJ and D2H appear in their model for predicted lifetime. As a result

there is ambiguity in the optimal setting for the four level factor D. This factor could

be set to its level 1 or its level 4, to attain the same predicted lifetime. In order to

resolve this uncertainty in the setting for factor D, Wu and Hamada (2000, page 270)

employ the D ×H interaction plot. From this plot, it is quite clear that D = 4 and

H = + is the optimal setting.

With the procedure discussed here, we were able to identify these optimal setting

for factors D and H automatically. In addition, here we have applied a criteria with

a practical connection to the optimization problem at hand, for when to consider

changing a factor from its most inexpensive operating conditions. In addition, we

anticipate that in selecting optimal settings for two additional factors, A and B, we

may realize additional improvement in the mean lifetime.

When we change to σ2 = 1
36

, the numerical results are virtually the same as

those observed with σ2 = 0. The recommended factor settings are identical to those

reported here for σ2 = 0.

76



2.9 CONCLUSIONS

The deep groove bearing design optimization example of Hellstrand (1989) illustrates

a common and profound challenge encountered by quality technology practitioners.

There are some undesirable practical consequences associated with the rigorous ap-

plication of frequentist statistical hypothesis testing procedures that can prevent ob-

taining sufficient guidance in the design process. As is often the case, cost constraints

keep the run size of an experiment quite small. In this particular example, a small

run size may be to blame for not being able to conclude from a standard statistical

test that two of the three factors are indeed significant. Unfortunately, the usual

recommendation to just “collect more data” is usually not a practical solution. The

engineer may have to make decisions with just the data that is presently available.

Another difficulty with statistical testing is that there seems to be a blind devotion

to the use of an α = 0.05 significance level, without much reflection on what this

actually means and whether it has any practical connection with the problem at

hand. In fact, if we are to rigorously adhere to the meaning of a test of significance

at the α = 0.05 level, then we would have to apply the correct simultaneous testing

procedure when we examine the size of multiple factorial effects; thereby magnifying

the probability we will be unable to identify any significant effects.

In an optimization experiment, the sole objective is determining the particular

factor settings that will yield a desired response. In such a situation, we should be

able to identify an amount of improvement in the response that is not large enough

to be of practical significance. Thus, practical significance provides a much more

meaningful criteria for determining whether changing a factor’s setting is “worth it”

than does an α-level. Further, when we focus on the objective of determining optimal

factor settings, we might be able to ignore other metrics for evaluating our estimation

and model selection procedure.

The procedure we recommend for the analysis of optimization experiments centers
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around an overall objective function which balances quality and cost. We suggest

the empircal Bayes estimator presented in Joseph (2006) that has many desirable

properties. It shrinks the coefficients and incorporates the effect heredity principle.

Based on these estimates, we may find the optimal settings for the factors. Further,

we may calculate the impact that a factor level change can have near this optimal

and determine whether this is large enough to be of practical interest.

There are special cases to the empirical Bayes estimator discussed herein, that

have received some previous attention. In particular, connections are drawn to the

so-called James-Stein estimator as well as the Beta Coefficient Method of Taguchi.

And for those that are bound to using a frequentist point-null test, we suggest an

α-level that serves as an approximation to using the recommended procedure.

The simulation results provide support for the conclusion that the recommended

procedure is superior to frequentist testing for identifying factor settings that, on

average, yield response values closer to our objective without unduly increasing the

cost. This is the goal of optimization experiments. Finally, we come full-circle by

revisiting the router bit experiment that is analyzed in Chapter 1, illustrating the

application of the techniques discussed in this chapter to this real world example.

2.10 CONTRIBUTIONS

The research described in this chapter contributes to the body of knowledge in the

Design and Analysis of Experiments in the following ways:

1. Through real examples and simulation, it is shown that the widely used statis-

tical tests of hypothesis are not appropriate for optimization experiments.

2. An alternative analysis, using empirical Bayes methods, is proposed. Its con-

nections to James-Stein estimation and Taguchi’s Beta Coefficient Method are

established.
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3. Two concepts, practical significance level and factor impacts, are introduced as

tools for obtaining optimal factor settings.
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APPENDIX A

PROOFS

Proof of Theorem 1

We first need to establish a general result concerning the construction of our corre-

lation matrices over all p factors. Observe that for the following result to hold, that

we can define the (m1m2 · · ·mp)× (m1m2 · · ·mp) full factorial model matrix over all

p factors, U , using whatever coding scheme we desire. Suppose we construct our

full model matrix via a Kronecker product of the individual factor model matrices,

taken in increasing order of the frequency the levels change. The run order for the

full factorial design corresponds to one where the first factor’s levels are changing the

slowest and the pth factor’s levels are changing the quickest:

U = U 1 ⊗U 2 ⊗ · · · ⊗U p =

p⊗
j=1

U j.

Now, let Ψ denote the correlation matrix corresponding to the full factorial design

over all p factors. The mj ×mj correlation matrix corresponding to factor j denoted

by Ψj will have the general structure of a symmetric Toeplitz matrix due to the

stationarity assumption imposed on the Gaussian process in each factor:

Ψj =



1 ψj(1) . . . ψj(mj − 1)

ψj(1) 1
. . . ψj(mj − 2)

...
. . . . . .

...

ψj(mj − 1) ψj(mj − 2) . . . 1


. (25)

Then Ψ has a convenient block symmetric structure. Let the matrix Ψ(i) represent

the correlation matrix for the full factorial design over the last p − i factors. Then,
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since the first factor’s levels are changing the slowest, and we have assumed a product

correlation function structure, the correlation matrix has the following block form:

Ψ =



Ψ(1) ψ1(1)Ψ(1) . . . ψp(m1 − 1)Ψ(1)

ψ1(1)Ψ(1) Ψ(1)
. . . ψ1(m1 − 2)Ψ(1)

...
. . . . . .

...

ψ1(m1 − 1)Ψ(1) ψ1(m1 − 2)Ψ(1) . . . Ψ(1)


, (26)

where each of the blocks are (m2m3 · · ·mp)×(m2m3 · · ·mp). This matrix follows from

the fact that the first (m2m3 · · ·mp) runs in the full factorial design only differ among

the last p−1 factors, in the same way the full factorial design with p−1 factors varies.

Each run in the second block of (m2m3 · · ·mp) runs differs from the first run in the

full factorial design by one level in the first factor, and then in the same way as the

full factorial design differs among the last p − 1 factors, etc. Hence Ψ = Ψ1 ⊗Ψ(1).

Noting that Ψ(p−1) = Ψp, we obtain

Ψ = Ψ1 ⊗Ψ(1) = Ψ1 ⊗Ψ2 ⊗Ψ(2) = · · · = Ψ1 ⊗ · · · ⊗Ψp =

p⊗
j=1

Ψj.

Now through the properties of the Kronecker product operator, we can prove Theorem 1:

var(β) = σ2
0U

−1Ψ(U−1)′

= σ2
0(

p⊗
j=1

U j)
−1

p⊗
j=1

Ψj

(
(

p⊗
j=1

U j)
−1

)′

= σ2
0

p⊗
j=1

U−1
j

p⊗
j=1

Ψj

(
p⊗
j=1

U−1
j

)′

= σ2
0

p⊗
j=1

U−1
j

p⊗
j=1

Ψj

p⊗
j=1

(U−1
j )′

= σ2
f

p⊗
j=1

U−1
j Ψj(U

−1
j )′.

♦

81



Proof of Equation (5)

We have Ψj = (1 − ρj)Imj
+ ρjJmj

, where Jmj
is a mj ×mj square matrix of 1’s.

Then:

U ′
jΨjU j = (1− ρj)U

′
jU j + ρjU

′
jJmj

U j

= mj(1− ρj)Imj
+ ρjU

′
j


mj 0 · · · 0

...
... · · · 0

mj 0 · · · 0



= mj(1− ρj)Imj
+ ρj



m2
j 0 · · · 0

0 0 · · · 0

...
... · · · 0

0 0 · · · 0



= mj



1− ρj +mjρj 0 · · · 0

0 1− ρj · · · 0

...
. . . . . .

...

0 0 0 1− ρj


.

♦

Proof of Equation (14)

Let Σ = U−1Ψ(U−1)′. Then var(β0) = τ 2
0 = σ2

0Σ1,1. But since U is the orthogonal

full factorial model matrix with the leading column of U assumed to be 1q, we have

that U−1 has as its leading row: 1
q
1q

′. So that:

τ 2
0

σ2
0

=
1′qΨ1q

q2
=
sum(Ψ)

q2
=
sum(

⊗p
j=1 Ψj)

q2
=

∏p
j=1 sum(Ψj)

q2
.

♦
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APPENDIX B

A GENERALIZATION OF THE EMPIRICAL

BAYES ESTIMATE

Proposition 4 Let

y = µ01n + Uβ + ε, ε ∼ N (0, σ2In)

and

β ∼ N (0,Σ), where Σ = diag(τ 2
0 , . . . , τ

2
s−1).

U is an n× s matrix such that U ′U = nIs. Then the empirical Bayes (EB) estimate

is

β̂i = (1− 1

z2
i

)+β̃i,

where β̃ = (U ′U )−1U ′y, the ordinary least squares estimate of β and zi is the test

statistic for testing H0 : βi = 0 vs. H1 : βi 6= 0, that is zi =
eβi

σ/
√
n
.

Proof of Proposition 4

By EB estimate, we mean the estimate obtained for β̂i after plugging the estimates

of τ 2
i , i = 0, . . . , s− 1 that maximize the integrated likelihood, or equivalently:

τ̂ 2 = argmin
τ 2

[
log |UΣU ′ + σ2In|+ (y − µ01n)

′(UΣU ′ + σ2In)
−1(y − µ01n)

]
into the expression for the posterior mean of β, conditional on τ 2.

In order for the n × s matrix U to yield U ′U = nIs, it must be that s ≤ n.

When s < n, there exist orthogonal columns that can be appended to U , say V ,
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such that: W = [U ,V ], where W is n × n and W ′W = nIn. Since we are not

particularly interested in the “effects” represented by the columns of V and as we

demonstrate below, the optimization problem is separable, we can extend the matrix

Σ in an arbitrary way. Let S = diag(τ 2
0 , . . . , τ

2
s−1, τ

2
s , . . . τ

2
n−1) represent the n × n

prior covariance matrix for these n orthogonal effects. In terms of these matrices, the

-2 log likelihood is

l = log |WSW ′ + σ2In|+ (y − µ01n)
′(WSW ′ + σ2In)

−1(y − µ01n).

Note that

WSW ′ + σ2In = WSW ′ + σ2WW−1(W ′)−1W ′.

Now, since W is orthogonal,

WSW ′ + σ2In = WSW ′ +
σ2

n
WW ′.

Or simply,

WSW ′ + σ2In = W diag

(
τ 2
0 +

σ2

n
, τ 2

1 +
σ2

n
, . . . , τ 2

n−1 +
σ2

n

)
W ′. (27)

Consider the determinant,

|WSW ′ + σ2In| =

∣∣∣∣W diag

(
τ 2
0 +

σ2

n
, τ 2

1 +
σ2

n
, . . . , τ 2

n−1 +
σ2

n

)
W ′
∣∣∣∣

=

∣∣∣∣diag(τ 2
0 +

σ2

n
, τ 2

1 +
σ2

n
, . . . , τ 2

n−1 +
σ2

n

)
W ′W

∣∣∣∣
=

∣∣diag (nτ 2
0 + σ2, nτ 2

1 + σ2, . . . , nτ 2
n−1 + σ2

)∣∣
=

n−1∏
i=0

(
nτ 2

i + σ2
)
.

So that its log is:

log |WSU ′ + σ2In| =
n−1∑
i=0

log(nτ 2
i + σ2). (28)
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Now consider the inverse of (27),

(WSW ′ + σ2In)
−1 =

(
W diag(τ 2

0 +
σ2

n
, τ 2

1 +
σ2

n
, . . . , τ 2

n−1 +
σ2

n
)W ′

)−1

= (W ′)−1 diag

(
n

nτ 2
0 + σ2

,
n

nτ 2
1 + σ2

, . . . ,
n

nτ 2
n−1 + σ2

)
W−1

=
1

n2
W diag

(
n

nτ 2
0 + σ2

,
n

nτ 2
1 + σ2

, . . . ,
n

nτ 2
n−1 + σ2

)
W ′.

Let

D = diag

(
n

nτ 2
0 + σ2

,
n

nτ 2
1 + σ2

, . . . ,
n

nτ 2
n−1 + σ2

)
.

So that,

(y − µ01n)
′(WSW ′ + σ2In)

−1(y − µ01n) =
1

n2
(y − µ01n)

′WDW ′(y − µ01n)

= β̃
′
Dβ̃

=
n−1∑
i=0

n

nτ 2
i + σ2

β̃i
2
. (29)

Thus, from (28) and (29), we see that the finding of τ 2 that maximizes the integrated

likelihood is equivalent to solving the convenient separable optimization problem:

τ̂ 2 = argmin
τ 2≥0

n−1∑
i=0

[
log(nτ 2

i + σ2) +
n

nτ 2
i + σ2

β̃i
2
]
.

Differentiating with respect to τ 2
i , we obtain the partial derivatives:

∂l

∂τ 2
i

=
n

nτ 2
i + σ2

− n2

(nτ 2
i + σ2)2

β̃i
2
, ∀i = 1, . . . , n− 1.

Setting the partial derivatives to zero and solving for τ 2
i , yields

n(nτ̂ 2
i + σ2) = n2β̃i

2
.

So that

τ̂ 2
i =

(
β̃i

2
− σ2

n

)
+

is feasible. We can verify that τ̂ 2 = (τ̂ 2
0 , τ̂

2
1 , . . . , τ̂

2
n−1)

′ is a constrained global minimizer

by observing that:

∀τ 2
i < β̃i

2
− σ2

n
:
∂l

∂τ 2
i

=
n

nτ 2
i + σ2

− n2

(nτ 2
i + σ2)2

β̃i
2
< 0
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and

∀τ 2
i > β̃i

2
− σ2

n
:
∂l

∂τ 2
i

=
n

nτ 2
i + σ2

− n2

(nτ 2
i + σ2)2

β̃i
2
> 0.

That is, l is monotonically decreasing for τ 2
i < β̃i

2
− σ2

n
and monotonically increasing

for τ 2
i > β̃i

2
− σ2

n
.

From Joseph (2006), we have an expression for the posterior mean of β. Plugging

in the EB estimators τ̂ 2
i , ∀i = 0, . . . n− 1, into (18) yields:

β̂EB = ŜW ′
(
WŜW ′ + σ2In

)−1

(y − µ01n)

=
1

n2
ŜW ′WD̂W ′(y − µ01n)

= ŜD̂β̃

= diag

(
nτ̂ 2

0

nτ̂ 2
0 + σ2

,
nτ̂ 2

1

nτ̂ 2
1 + σ2

, . . . ,
nτ̂ 2

n−1

nτ̂ 2
n−1 + σ2

)
β̃

Note that when nβ̃i
2
> σ2,

nτ̂ 2
i

nτ̂ 2
i + σ2

=
nβ̃i

2
− σ2

nβ̃i
2 = 1− 1

z2
i

.

And when nβ̃i
2
< σ2,

nτ̂ 2
i

nτ̂ 2
i + σ2

=
0

σ2
= 0.

Therefore,

β̂i = (1− 1

z2
i

)+β̃i ∀i = 0, . . . , n− 1.

And if the effects β̂s, . . . , β̂n−1 are not of interest, then they can simply be ignored. ♦
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APPENDIX C

ADDITIONAL SIMULATION RESULTS

The following tables characterize the performance of the proposed optimization ex-

periement analysis methodology versus the traditional, frequentist methodology em-

ploying a statistical test of significance. Random models were generated with the

same mechanism as described in Section 2.7.1. However, we additionally assume that

σ2 is unknown, but we guess that it is σ2
guess = 1, without using centerpoints. The

procedure is compared to that using the independent t-tests with α = 0.05, with

different assumptions on the number of degrees of freedom (ν) that are “left over” for

estimating this variance. The summary tables that follow further demonstrate the

strong performance of the proposed methodology. In addition, the tables provide an

adequate baseline (when ν = 1) for putting this performance into perspective.
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Table 11: ME Simulation (γ = 0.25, τ 2 = 0.001, σ2
guess = 1)

% Improvement
t-test α = 0.05 (ν) Practical Thresholding (∆)

σ2 1 2 10 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.00 0.43 0.74 0.88 0.86 0.84 0.81 0.78 0.75
0.5 0.00 0.43 0.74 0.87 0.85 0.83 0.81 0.78 0.74
1.0 0.00 0.43 0.73 0.85 0.84 0.82 0.79 0.77 0.73
2.0 0.00 0.43 0.71 0.82 0.81 0.79 0.77 0.74 0.71
5.0 0.01 0.45 0.67 0.75 0.74 0.73 0.72 0.70 0.68
10.0 0.02 0.45 0.61 0.66 0.66 0.65 0.64 0.62 0.61

Estimation Error
t-test α = 0.05 (ν) Practical Thresholding (∆)

σ2 1 2 10 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.50 0.29 0.13 0.07 0.08 0.08 0.10 0.11 0.13
0.5 0.50 0.29 0.16 0.14 0.14 0.14 0.14 0.15 0.16
1.0 0.50 0.30 0.21 0.21 0.21 0.21 0.21 0.20 0.20
2.0 0.50 0.32 0.34 0.33 0.33 0.33 0.33 0.32 0.31
5.0 0.50 0.48 0.60 0.57 0.58 0.57 0.57 0.57 0.56
10.0 0.50 0.77 0.89 0.86 0.86 0.86 0.86 0.85 0.85

Average Number of Active Effects
t-test α = 0.05 (ν) Practical Thresholding (∆)

σ2 1 2 10 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.00 0.59 1.42 2.13 2.01 1.88 1.74 1.59 1.44
0.5 0.00 0.62 1.48 3.47 2.83 2.32 1.95 1.69 1.50
1.0 0.00 0.65 1.70 4.80 4.02 3.25 2.62 2.12 1.74
2.0 0.00 0.70 2.48 6.13 5.38 4.61 3.85 3.15 2.55
5.0 0.01 1.27 4.25 7.61 7.03 6.38 5.69 5.01 4.33
10.0 0.02 2.43 5.73 8.50 8.04 7.53 6.96 6.39 5.81
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Table 12: ME Simulation (γ = 0.50, τ 2 = 0.001, σ2
guess = 1)

% Improvement
t-test α = 0.05 (ν) Practical Thresholding (∆)

σ2 1 2 10 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.00 0.45 0.79 0.93 0.91 0.89 0.87 0.83 0.79
0.5 0.00 0.45 0.78 0.92 0.90 0.88 0.85 0.82 0.79
1.0 0.00 0.45 0.77 0.90 0.88 0.86 0.84 0.81 0.77
2.0 0.00 0.46 0.75 0.87 0.85 0.84 0.82 0.79 0.76
5.0 0.01 0.47 0.70 0.79 0.78 0.77 0.75 0.73 0.71
10.0 0.02 0.47 0.64 0.70 0.70 0.69 0.67 0.66 0.64

Estimation Error
t-test α = 0.05 (ν) Practical Thresholding (∆)

σ2 1 2 10 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.70 0.40 0.18 0.10 0.10 0.11 0.13 0.15 0.18
0.5 0.70 0.41 0.22 0.18 0.18 0.18 0.19 0.20 0.22
1.0 0.71 0.42 0.27 0.24 0.25 0.25 0.25 0.26 0.27
2.0 0.71 0.45 0.38 0.36 0.36 0.36 0.36 0.36 0.36
5.0 0.70 0.57 0.62 0.59 0.59 0.59 0.59 0.59 0.59
10.0 0.70 0.82 0.89 0.86 0.86 0.86 0.86 0.86 0.86

Average Number of Active Effects
t-test α = 0.05 (ν) Practical Thresholding (∆)

σ2 1 2 10 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.00 1.17 2.85 4.25 4.02 3.77 3.49 3.19 2.89
0.5 0.00 1.23 2.93 5.18 4.60 4.09 3.65 3.29 2.97
1.0 0.00 1.27 3.08 6.08 5.39 4.73 4.12 3.59 3.14
2.0 0.00 1.39 3.66 6.96 6.33 5.65 4.98 4.34 3.74
5.0 0.01 1.93 4.98 8.05 7.53 6.95 6.33 5.69 5.06
10.0 0.04 2.93 6.13 8.69 8.28 7.81 7.29 6.75 6.20
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Table 13: ME Simulation (γ = 0.25, τ 2 = 0.25, σ2
guess = 1)

% Improvement
t-test α = 0.05 (ν) Practical Thresholding (∆)

σ2 1 2 10 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.00 0.21 0.59 0.89 0.85 0.80 0.74 0.67 0.59
0.5 0.00 0.23 0.60 0.86 0.83 0.78 0.73 0.67 0.61
1.0 0.00 0.24 0.60 0.83 0.80 0.76 0.72 0.66 0.61
2.0 0.00 0.26 0.59 0.78 0.75 0.72 0.69 0.65 0.60
5.0 0.00 0.31 0.56 0.67 0.66 0.64 0.62 0.60 0.57
10.0 0.01 0.33 0.50 0.56 0.56 0.55 0.54 0.52 0.50

Estimation Error
t-test α = 0.05 (ν) Practical Thresholding (∆)

σ2 1 2 10 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.66 0.50 0.29 0.16 0.17 0.18 0.21 0.25 0.29
0.5 0.66 0.50 0.32 0.23 0.23 0.24 0.26 0.28 0.31
1.0 0.66 0.50 0.36 0.29 0.29 0.30 0.31 0.32 0.34
2.0 0.66 0.52 0.43 0.38 0.38 0.39 0.39 0.40 0.41
5.0 0.66 0.62 0.64 0.60 0.60 0.60 0.61 0.61 0.61
10.0 0.66 0.85 0.90 0.87 0.87 0.87 0.87 0.87 0.87

Average Number of Active Effects
t-test α = 0.05 (ν) Practical Thresholding (∆)

σ2 1 2 10 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.00 0.69 3.05 6.77 6.07 5.33 4.57 3.81 3.13
0.5 0.00 0.79 3.40 7.03 6.36 5.65 4.90 4.17 3.49
1.0 0.00 0.90 3.65 7.23 6.59 5.89 5.16 4.44 3.74
2.0 0.00 1.14 4.12 7.54 6.94 6.28 5.59 4.89 4.21
5.0 0.00 1.88 5.19 8.19 7.69 7.13 6.53 5.90 5.27
10.0 0.02 2.91 6.17 8.73 8.32 7.85 7.35 6.80 6.25
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Table 14: ME Simulation (γ = 0.50, τ 2 = 0.25, σ2
guess = 1)

% Improvement
t-test α = 0.05 (ν) Practical Thresholding (∆)

σ2 1 2 10 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.00 0.33 0.69 0.92 0.89 0.86 0.81 0.76 0.70
0.5 0.00 0.33 0.69 0.90 0.87 0.84 0.80 0.75 0.70
1.0 0.00 0.34 0.68 0.87 0.85 0.82 0.78 0.74 0.69
2.0 0.00 0.36 0.68 0.83 0.81 0.79 0.76 0.72 0.68
5.0 0.00 0.39 0.63 0.74 0.73 0.71 0.69 0.67 0.64
10.0 0.01 0.40 0.57 0.64 0.63 0.62 0.61 0.59 0.57

Estimation Error
t-test α = 0.05 (ν) Practical Thresholding (∆)

σ2 1 2 10 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.79 0.53 0.27 0.15 0.16 0.18 0.20 0.24 0.27
0.5 0.79 0.53 0.32 0.23 0.23 0.24 0.26 0.28 0.31
1.0 0.79 0.54 0.36 0.29 0.29 0.30 0.31 0.33 0.35
2.0 0.79 0.56 0.44 0.39 0.39 0.40 0.40 0.41 0.43
5.0 0.79 0.67 0.65 0.61 0.61 0.61 0.62 0.62 0.62
10.0 0.79 0.87 0.91 0.87 0.87 0.87 0.87 0.87 0.87

Average Number of Active Effects
t-test α = 0.05 (ν) Practical Thresholding (∆)

σ2 1 2 10 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.00 1.26 3.97 7.37 6.75 6.09 5.40 4.71 4.06
0.5 0.00 1.36 4.21 7.56 6.96 6.31 5.63 4.94 4.29
1.0 0.00 1.45 4.41 7.66 7.09 6.48 5.82 5.16 4.49
2.0 0.01 1.69 4.81 7.95 7.40 6.81 6.18 5.54 4.90
5.0 0.01 2.34 5.63 8.45 7.98 7.46 6.90 6.31 5.71
10.0 0.04 3.24 6.41 8.86 8.47 8.02 7.51 7.01 6.48
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