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Summary

This dissertation addresses the efficient generation and potential applications of accuracy
certificates in the framework of “black-box-represented” convex optimization problems —
convex problems where the objective and the constraints are represented by “black boxes”
which, given on input a value x of the argument, somehow (perhaps in a fashion unknown
to the user) provide on output the values and the derivatives of the objective and the con-
straints at x. The main body of the dissertation can be split into three parts. In the first
part, we provide our background — state of the art of the theory of accuracy certificates
for black-box-represented convex optimization. In the second part, we extend the toolbox
of black-box-oriented convex optimization algorithms with accuracy certificates by equip-
ping with these certificates a state-of-the-art algorithm for large-scale nonsmooth black-
box-represented problems with convex structure, specifically, the Non-Euclidean Restricted
Memory Level (NERML) method. In the third part, we present several novel academic
applications of accuracy certificates.

The dissertation is organized as follows:

In Chapter 1, we motivate our research goals and present a detailed summary of our results.

In Chapter 2, we outline the relevant background, specifically, describe four generic black-
box-represented generic problems with convex structure (Convex Minimization, Convex-
Concave Saddle Point, Convex Nash Equilibrium, and Variational Inequality with Monotone
Operator), and outline the existing theory of accuracy certificates for these problems.

In Chapter 3, we develop techniques for equipping with on-line accuracy certificates the
state-of-the-art NERML algorithm for large-scale nonsmooth problems with convex struc-
ture, both in the cases when the domain of the problem is a simple solid and in the case
when the domain is given by Separation oracle.

In Chapter 4, we develop several novel academic applications of accuracy certificates, pri-
marily to (a) efficient certifying emptiness of the intersection of finitely many solids given
by Separation oracles, and (b) building efficient algorithms for convex minimization over
solids given by Linear Optimization oracles (both precise and approximate).

In Chapter 5, we apply accuracy certificates to efficient decomposition of “well structured”
convex-concave saddle point problems, with applications to computationally attractive de-
composition of a large-scale LP program with the constraint matrix which becomes block-
diagonal after eliminating a relatively small number of possibly dense columns (correspond-
ing to “linking variables”) and possibly dense rows (corresponding to “linking constraints”).
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CHAPTER I

MOTIVATION, GOALS, OVERVIEW OF RESULTS

1.1 Motivation

Certificates, explicitly representable entities used to prove a hypothesis, are ubiquitous
throughout mathematics and computer science. They range from the common, such as the
existence of

√
2 which proves the hypothesis that the set of irrational numbers is nonempty,

to field specific; such as the Theorem of Alternative which states that a system of strict and
nonstrict linear inequalities has no solution if and only if one of two other systems of strict
and nonstrict linear inequalities, explicitly given by the original system, has a solution.
Certificates are quite prevalent throughout Optimization, the best known being the above
mentioned Theorem of the Alternative, and Farkas’s Lemma, though accuracy certificates,
the focus of this thesis, are widely utilized.

At its most basic an accuracy certificate is an “easy to represent entity,” like a vector or a
finite collection of vectors, which allows one to justify in advance and in a “fully algorithmic”
fashion, a desired conclusion. As far as Optimization is concerned, the simplest examples
of certificates are given by Linear Programming. Specifically,

1. The simplest way to certify feasibility of a Linear Programming problem

Opt = min
x

{
cT x : Ax ≥ b

}
(1)

is to point out a vector x̄ which satisfies the system of constraints Ax ≥ b. Indeed,
given a candidate certificate x̄ of this type, it is easy to verify its validity (that is,
to check whether Ax̄ ≥ b); given that the certificate is valid, we do know that (1) is
feasible.

2. The simplest way to justify infeasibility of (1) is to point out a vector λ ≥ 0 such
that AT λ = 0 and λT b > 0. Here again, given a candidate certificate, it is easy to
check its validity, and if the latter does take place, (1) definitely is infeasible (since
assuming that x is such that Ax ≥ b, we would have 0 = λT Ax ≥ λT b > 0, which is a
contradiction). Moreover, by General Theorem on Alternative, (1) is infeasible if and

only if there exists an infeasibility certificate of the outlined type.

3. The simplest way to certify that x̄ is a feasible and ε-optimal (i.e., with cT x−Opt ≤ ε)

2



solution to (1) is to augment x by a feasible solution λ̄ to the dual problem

max
λ

{
bT λ : λ ≥ 0, AT λ = c

}

such that cT x̄−bT λ̄ ≤ ε. By Linear Programming Duality Theorem, a feasible solution
x̄ to (1) is ε-optimal if and only if it admits such a certificate of ε-optimality.

The third example in the above list is closely related to the main topic of our research –
this is an accuracy certificate, a certificate for the property of a feasible solution x̄ to an LP
program to be ε-optimal. As we see, in the case of LP such an accuracy certificate is given
by a solution λ̄ for the dual problem which makes a small (≤ ε) duality gap cT x̄− bT λ̄ with
the primal solution x̄. Note that the standard accuracy certificates in Conic Programming
(see, e.g., [2]), which is a natural extension of LP, have similar structure – they are feasible
solutions λ̄ to the conic dual of the conic program of interest such that the duality gap, as
evaluated at λ̄ and the primal feasible solution x̄ ε-optimality of which we want to certify,
is at most ε.

1.2 Summary of Thesis Goals and Results

In contrast to the just outlined “well structured” case, for a long time there was no well
defined general notion of an “accuracy certificate” for a black box represented convex prob-
lem, that is, convex problem where the objective and the constraints are represented by a
“black box” which, given on input a value x of the argument, somehow (perhaps in a fashion
unknown to the user) provides on output the values and the derivatives of the objective
and the constraints at x. Note that this “black box represented setting” is the most tra-
ditional and the most general way to pose a nonlinear convex optimization problem. The
general notion of accuracy certificate for a “black box represented problem with convex
structure” was worked out only recently [27]. The primary goal of this Thesis is further

development of the theory of accuracy certificates for black-box-represented problems with

convex structure, with emphasis on

• developing computationally cheap techniques for building “good” accuracy certificates

for large-scale problems with convex structure, and

• investigating a spectrum of novel applications of accuracy certificates.

1.2.1 Preliminaries: Black Box Represented Problems with Convex Structure
and Accuracy Certificates

In order to outline in more details the major goals and results of the Thesis, we start
with a brief summary of the background, originating from [27], on problems with convex
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structure and their accuracy certificates. To simplify our summary, we sometimes impose
on the situation in question more restrictions than in the main body of Thesis; for detailed
presentation of the background, see Chapter 2.

1.2.1.1 Problems with Convex Structure

Problems with convex structure as defined in [27] are Convex Minimization problems,
Convex-Concave Saddle Point problems, Convex Nash Equilibrium problems, and Varia-

tional Inequalities with Monotone Operators. These problems are posed as follows.

Convex Minimization problem: Given a solid (closed convex and bounded set with a
nonempty interior) X ⊂ Rn and a continuous real-valued convex function f on X, solve
the problem

Opt = min
x∈X

f(x) (2)

of minimizing f over X, that is, find a minimizer x∗ ∈ X of f on X such that f(x) ≥ f(x∗)
for all x ∈ X.

A black box representation of (2) is given by

• a Separation Oracle for X – a routine which, given on input x ∈ Rn, reports whether
x ∈ intX, or x ∈ ∂X, or x 6∈ X, and in the last two cases returns a separator e ∈ Rn

of x and X such that
e 6= 0 & eT x ≥ max

x′∈X
eT x′;

• a First Order oracle for f – a routine which, given on input a point x ∈ intX, returns
the value f(x) and a subgradient f ′(x) of f at X.

The first Order oracle defines, in particular, the vector field

F (x) = f ′(x) : intX → Rn.

We measure the inaccuracy of a candidate solution x ∈ X to problem (2) as

εopt(x) = f(x)−Opt = f(x)− min
x′∈X

f(x′).

Convex-Concave Saddle Point problem : Given two solids X1 ⊂ Rn1 , X2 ⊂ Rn2

and a continuous cost function φ(x1, x2) : X1 ×X2 → R which is convex in x1 ∈ X1, and
concave in x2 ∈ X2, solve the saddle point problem

SadVal = min
x1∈X1

max
x2∈X2

φ(x1, x2), (3)
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that is, find a saddle point x∗ = (x∗1, x
∗
2) ∈ X = X1 × X2 of φ on X1 × X2 such that

φ(x1, x
∗
2) ≥ φ(x∗1, x

∗
2) ≥ φ(x∗1, x2) for all (x1, x2) ∈ X1 ×X2.

A convex-concave saddle point problem gives rise to a primal-dual pair of convex optimiza-
tion problems

Opt(P ) = minx1∈X1 f(x1) := max
x2∈X2

φ(x1, x2)

Opt(D) = max
x2∈X2

f(x2) := min
x1∈X!

φ(x1, x2)
(4)

with equal optimal values:

Opt(P ) = Opt(D) = SadVal.

Saddle points of φ on X1×X2 are exactly the pairs (x∗1, x
∗
2) where x∗1 solves the primal, and

x∗2 solves the dual problem.

A black box representation of (4) is given by

• a Separation oracle for the domain X = X1 ×X2 ⊂ Rn1+n2 of the problem

• a First Order oracle representing φ. Given on input x = (x1, x2) ∈ intX, this oracle
returns the value φ(x1, x2) and a vector F (x) = [F1(x);F2(x)], where F1(x) is a
subgradient of φ(·, x2) taken at x1, and F2(x) is a subgradient of −φ(x1, ·) taken at
x2.

The First Order Oracle defines, in particular, the vector field

F (x) = F (x1, x2) : intX = intX1 × intX2 → Rn1+n2 .

We measure the inaccuracy of a candidate solution x = (x1, x2) ∈ X = X1×X2 to problem
(4) as

εsad(x) = max
x′2∈X2

f(x1, x
′
2)− min

x′1∈X
f(x′1, x2) = f(x1)− f(x2)

= [f(x1)−Opt(P )] + [Opt(D)− f(x2)].

Convex Nash Equilibrium problem is to find, given k solids Xi ⊂ Rni , 1 ≤ i ≤ n,
and k continuous functions φi(x1, ..., xk) : X1 × ...×Xk → R such that

• φi is convex in xi ∈ Xi and concave in xi = (x1, ..., xi−1, xi+1, ..., xk) ∈ Xi = X1 ×
...×Xi−1 ×Xi+1 × ...×Xk, 1 ≤ i ≤ k, and

• ∑
i φi(x) is convex on X = X1 × ...×Xk,

a Nash Equilibrium, that is, a point x∗ = (x∗1, ..., x
∗
k) such that for every i, x∗i is a minimizer,

over xi ∈ Xi, of the function φi(x∗1, ..., x
∗
i−1, xi, x

∗
i+1, ..., x

∗
k).
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A black box representation of Nash Equilibrium problem is given by

• a Separation oracle for the domain X = X1× ...×Xk ⊂ Rn1+n2+...+nk of the problem,
and

• a First Order oracle representing φ.
Given on input x = (x1, ..., xk) ∈ intX, this oracle returns the values φi(x) and
subgradients [φi]′i(x) of the functions φi(x1, ..., xi−1, ·, xi+1, ..., xk) taken at xi, 1 ≤ i ≤
k.

The First Order Oracle defines, in particular, the vector field

F (x) = F (x1, x2, ..., xk) = [φ′1(x); ...; φ′k(x)] : intX = intX1 × ...× intXk → Rn1+n2+...+nk .

We measure the inaccuracy of a candidate solution x = (x1, ..., xk) ∈ X = X1 × ...×Xk to
the Nash Equilibrium problem as

εNash(x) =
k∑

i=1

[
φi(x)− min

x′i∈Xi

φ(x1, ..., xi−1, x′i, x
i+1, ..., xk)

]
.

Note: The standard interpretation of Nash equilibrium problem is that there are k players
choosing simultaneously their actions xi in solids Xi; when the actions of all k players
form a vector x = (x1, ..., xk) ∈ X = X1 × ... × Xk, i-th player incurs loss φi(x). Nash
Equilibrium is a choice x∗ ∈ X of the players where every single player has no incentive to
change unilaterally his choice, and εNash(x) is the sum, over players, of their incentives to
change their choices from xi to argminx′i∈Xi

φ(x1, ..., xi−1, x
′
i, xi+1, ..., xk).

Remark 1.2.1. Note that a Convex Minimization problem can be considered as a Nash
Equilibrium problem with single player, while convex-concave saddle point problem can
be considered as a 2-player Nash Equilibrium problem with φ1(xi, x2) = −φ2(x1, x2) =
φ(x1, x2). Note that the entities we have associated with the three problems in question –
Separation and First Order oracles, the vector fields and the accuracy measures – are “com-
patible” with these identifications; e.g., the vector field and the accuracy measure associated
with a convex-concave saddle point problem (3) remain intact when we treat this problem
as a two-player Nash equilibrium problem with φ1 = −φ2 = φ.

Variational Inequalities with Monotone Operators. In such a problem, one is given
a solid X ⊂ Rn and a vector field F (x) : intX → Rn, which is monotone:

〈F (x)− F (x′), x− x′〉 ≥ 0 ∀x, x′ ∈ intX,

and the goal is to find a (weak) solution to the variational inequality given by X,F , i.e., a
point x∗ ∈ X such that

〈F (x), x− x∗〉 ≥ 0 ∀x′ ∈ intX.

A black box representation of a variational inequality with monotone operator is given by
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• a Separation oracle for the domain X of the problem, and

• a First Order oracle representing F . Given on input x ∈ intX, this oracle returns
F (x).

We measure the inaccuracy of a candidate solution x ∈ X to a variational inequality given
by X, F by the quantity

εvi(x) = sup
x′∈intX

〈F (x′), x− x′〉

which is sometimes called “dual gap function” [9].

Intermediate summary. Note that Variational Inequality with Monotone Operator is in
fact a “common denominator” of all four problems with convex structure as defined above:
the vector field F which we have associated with every one of the four problems are monotone
on the interior of problem’s domain X, and the solutions to the problem are nothing but
the weak solutions to the variational inequality given by (X,F ). This observation does not
mean that instead of investigating four generic problems, we could investigate just the most
general of them, the variational inequality with monotone operator. The reason for separate
treatment of separate problems is that in reality we are interested in approximate solutions
and thus – in accuracy measures, and in this respect the problems are not equivalent.
E.g., the “optimization inaccuracy” εopt(x) associated with a candidate solution x of a
convex minimization problem (2) is not the same as the “variational inaccuracy” εvi(x) of
x considered as an approximate solution to the variational inequality associated with (2);
in fact, εvi(x)/εopt(x) ≤ 1, and the ratio can be quite large.

1.2.1.2 Accuracy Certificates

Black box oriented algorithms and Execution protocols. By definition, a black box

oriented algorithm for solving a problem with convex structure is a procedure which, given
access to the Separation and the First Order oracles associated with this problem, generates
subsequent search points x1, x2, ... ∈ Rn (here Rn is an embedding space of the domain X

of the problem being solved), and at a search point xt calls the Separation oracle, xt being
the input, and then, if possible (that is, if it turns out that xt ∈ intX), calls the First Order
oracle, xt being the input. While we do not restrict the abilities of an algorithm to “learn”
the problem under consideration by those offered by the Separation and the First Order
oracles, we do assume that at every search point xt the Separation oracle was invoked, and
at every search point xt ∈ intX, in addition, the First Order oracle is invoked. It follows
that after a number τ of steps the algorithm has at its disposal the execution protocol

Pτ = ({xt, et}τ
t=1, Iτ , Jτ ), where

• xt, 1 ≤ t ≤ τ , are the search points generated in course of τ steps,
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• Iτ ⊂ {1, ..., τ} and Jτ ⊂ {1, ..., τ} are, respectively, the sets of indexes t of productive

(xi ∈ intX) and nonproductive (xt 6∈ intX) search points with indexes ≤ τ , and

• et = F (xt) for t ∈ Iτ (note that at a productive step t, the First Order oracle is
invoked, so that F (xt) indeed becomes known), and et 6= 0 separates xt and X for
t ∈ Jτ (note that at a nonproductive step t, the Separation oracle does report a
separator et of xt and X).

Accuracy certificate. An accuracy certificate ξτ is defined in terms of a productive (with
Iτ 6= ∅) execution protocol Pτ and is, by definition, a collection {ξτ

t }τ
t=1 of nonnegative reals

such that ∑

t∈Iτ

ξτ
t = 1.

The approximate solution associated with an execution protocol Pτ and accuracy certificate
ξτ is defined as

x̂(Pτ , ξ
τ ) =

∑

t∈Iτ

ξτ
t xt;

note that this solution belongs to intX (as a convex combination of the points xt ∈ intX,
t ∈ Iτ .

Given a solid B known to contain the domain X of the problem of interest, we define the
resolution of an accuracy certificate ξτ as the quantity

εcert(ξτ |Pτ ,B) = max
x∈B

τ∑

t=1

ξτ
t 〈et, xt − x〉.

Basic properties of accuracy certificates. At a first glance, the notion of an accuracy
certificate seems highly bizarre and completely unrelated to certification. Nevertheless, this
notion does work. The first – and the major – argument in its favor is given by the following
result.

Theorem 2.2.1[27] Let a pair (X, F ) originate from a problem with convex structure, that

is, from

(a) a convex optimization problem,

(b) a convex-concave saddle point problem,

(c) a convex Nash equilibrium problem, or

(d) a variational inequality with a monotone operator.
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Let Pτ be an execution protocol for (X, F ), let ξτ be an accuracy certificate associated with

this protocol, and let x̂ = x̂(Pτ , ξ
τ ).

Then:

(i) x̂ ∈ X, so that x̂ is a feasible solution to the problem underlying X, F , and

(ii) for every solid B ⊃ X the resolution εcert(ξτ |Pτ ,B) of ξτ w.r.t. Pτ and B is an upper

bound on the corresponding accuracy measure of x̂, so that

• εopt(x̂) ≤ εcert in the case of (a),

• εsad(x̂) ≤ εcert in the case of (b),

• εNash(x̂) ≤ εcert in the case of (c), and

• εvi(x̂) ≤ εcert in the case of (d).

Building accuracy certificates. Theorem 2.2.1 says, roughly speaking, that when solv-

ing a problem with convex structure, an accuracy certificate with small resolution is a
“highly valuable commodity” it allows for both

• generating a strictly feasible approximate solution to the problem with inaccuracy,
defined in terms of the problem, not exceeding the resolution of the certificate on (any)
convex solid B known to contain the domain X of the problem.

• certifying the quality of the above solution. Indeed, given an execution protocol, it is
easy to check whether a candidate accuracy certificate is a valid one. In the latter case,
assuming that the solid B is simple (like box, or ball, or simplex), meaning that it is easy to
minimize a linear function over B, it is easy to compute the resolution of the certificate and
thus it is easy to access the “level of non-optimality” of the (automatically strictly feasible!)
solution yielded by the certificate.

Taking alone, these observations still do not explain why accuracy certificates are of actual
interest; to the latter end, they should be computable at a computationally reasonable
price. The “ideal” situation here would be as follows: Given a generic problem (i.e., family
of instances) P with convex structure and a “prototype” black box oriented algorithm B for
solving problems from P with a complexity estimate TB(ε) (that is, it takes at most TB(ε)
steps of the algorithm to solve any instance of P within accuracy ε), we can augment B
with on-line rules for building accuracy certificates in such a way that

A: computing the certificates is cheap – it does not increase significantly the average,
over the steps, computational effort per step;

B: the certificates are consistent with the complexity bound, meaning that for every ε > 0
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and every instance of P, the number of steps of the augmented method in which a
certificate with resolution ≤ ε is built, does not exceed O(1)TB(ε).

Taken together, these two properties say that when augmenting B with an appropriate
technique for building the accuracy certificates and terminating the resulting algorithm
when for the first time an accuracy certificate with resolution not exceeding a required
tolerance ε is built, we neither increase significantly the computational effort per step, nor
spoil the complexity bound.

Now, the above “ideal situation” indeed takes place for some of known black box oriented
methods for solving problems with convex structure. Specifically, in the hindsight one un-
derstands that the accuracy certificates satisfying the above requirements indeed are built
in the simplest Subgradient Descent and Mirror Descent methods (originating, respectively,
from [38, 37] and [24, 26], see also [3]) and in the full memory Bundle-Level method [21].
On the other hand, the most interesting, at least from the theoretical viewpoint, polyno-

mial time cutting plane algorithms for problems with convex structure, most notably, the
Ellipsoid method (see, e.g., [46, 12, 2] and references therein) and the Inscribed Ellipsoid
method [41], by themselves do not produce accuracy certificates. For example, the standard
result on the Ellipsoid method is as follows (see, e.g., [2]):

Fact I: Let the n-dimensional domain X of a Convex Minimization problem (2)

be contained in the centered at the origin Euclidean ball B of a given radius R,

and let the objective f of the problem be convex and Lipschitz continuous, with

a known constant L taken w.r.t. ‖·‖2, on X. Then for every ε > 0, the number of

steps of the Ellipsoid method resulting in a strictly feasible approximate solution

xε of inaccuracy εopt(xε) ≤ ε, does not exceed T (ε) = O(1)n2 ln
(

LR2

rε + 2
)
,

where O(1) is an absolute constant and r is the largest among the radii of

Euclidean balls contained in X. For every τ , the computational effort at the

first τ steps, modulo τ calls to the Separation oracle and at most τ calls to the

First Order oracle, does not exceed O(1)τn2 operations.

In this result, the approximate solution xτ generated in course of τ steps is defined as the
best (with the smallest value of f) among the strictly feasible search points xt generated
in course of the first τ steps. While the method is equipped with on-line termination rules
(which do not require a priori knowledge of L, although do require a priori knowledge
of r), these rules do not use accuracy certificates. Note that the option of choosing, as an
approximate solution, the best, in terms of the objective, of the strictly feasible search points
generated so far, exists only when solving convex minimization problems (and requires from
the First Order oracle to report the values of the objective, and not only the subgradients)
and does not exist when solving other problems with convex structure, e.g., convex-concave
saddle point problems. In the latter case, the traditional polynomial time black box oriented
algorithms at best end up with a large-scale convex minimization problem with piecewise
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linear objective such that a good approximate solution to this problem induces an ε-solution
to the problem of interest. In the hindsight, this phenomenon can be explained by the fact
that the methods in question do not produce on line accuracy certificates, and the above
“large-scale convex minimization problem with piecewise linear objective” is, again in the
hindsight, nothing but the problem of building an accuracy certificate with the best possible
resolution for the execution protocol built at the first phase of the method. Note that solving
this auxiliary problem from scratch can be much more time-consuming than the first phase
of the algorithm.

The issue of equipping polynomial time cutting plane algorithms with accuracy certificates
satisfying the requirements A and B was fully resolved in [27]. For example, here is the
result on Ellipsoid method with accuracy certificates from [27]:

Fact II: Let X be an n-dimensional solid given by a Separation oracle and

contained in the centered at the origin Euclidean ball B of known radius R,

and let F : intX → Rn be a vector field, represented by the First Order oracle

computing F (x) at a query point x ∈ intX. Assume that F is semibounded:

V := sup
x∈intX,y∈X

〈F (x), y − x〉 < ∞.

Then the Ellipsoid method, as applied to (X,F ), can be augmented with on-line

techniques for building accuracy certificates in such a way that

• for every tolerance ε > 0, the number of steps before an accuracy certificate

with resolution≤ ε on B is built, does not exceed Ta(ε) = O(1)n2 ln
(

RV
rε + 2

)
,

where, same as above, r is the largest of the radii of Euclidean balls con-

tained in X, and

• for every τ , the computational effort at the first τ steps, modulo τ calls to

the Separation oracle and at most τ calls to the First Order oracle, does

not exceed O(1)τn2 operations.

Note that in the situation of Convex Minimization problem minx∈X f(x), the subgradient
field F of the objective f is semibounded on X with V ≤ maxX f −minX f , that is, under
the premise of Fact I one has V ≤ 2LR. It follows that the complexity bound stemming
from Fact II can be only better than the bound stemming from Fact I. At the same time,
Fact II has significant advantages as compared to Fact I:

1. First and foremost, it allows to equip the Ellipsoid method with accuracy certificates
with the on-line termination rule “terminate when the resolution of the current accu-
racy certificate on B becomes ≤ ε, and output the approximate solution yielded by
this certificate,” ε > 0 being the desired tolerance. This rule works equally well for
all problems with convex structure
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2. Even in the Convex Minimization case, the termination rule above is “less demanding”
than the termination rules associated with the standard Ellipsoid method — now
we neither require Lipschitz continuity of the objective, nor the necessity to know
the values of the objective at strictly feasible search points, nor (and this is most
important) the quantity r.

1.2.2 Goals and Main Results of the Thesis

After background on problems with convex problems and accuracy certificates is presented,
we can formulate in more details the goals and outline the main results of the Thesis.

The summary of our goals can be expressed by a single statement: we intend to provide
novel and important theoretical evidence of the fact that machinery of accuracy certificates
does work. More specifically, our goals are twofold:

• We intend to demonstrate that the state of the art black-box-oriented methods for
solving large scale problems with convex structure, same as the polynomial time cut-
ting plane algorithms, can be augmented with on line techniques for building accuracy
certificates which satisfy the above requirements A (computational simplicity) and B
(compatibility with the standard complexity bounds);

• We intend to present a spectrum of novel and important by their own right applications
of accuracy certificates.

We are about to present the outlined goals in more details and to outline the relevant results
of the Thesis.

1.2.2.1 Novel Techniques for Building Accuracy Certificates for Large-Scale Problems
with Convex Structure

Goal and Motivation As it was already explained, in order to make the machinery of
accuracy certificates indeed useful, one needs to know how to augment “good” – admit-
ting attractive complexity estimates – black box oriented methods with computationally
cheap techniques for building accuracy certificates compatible with these complexity esti-
mates. This crucial problem was resolved in [27] for theoretically most important poly-

nomial time cutting plane algorithms, like the Ellipsoid methods; besides this, we have
already mentioned that this problem, essentially does not arise when speaking about some
other “good” algorithms, primarily, Subgradient- and Mirror Descent algorithms and the
full memory Bundle Level methods – the accuracy certificates are, in the hindsight, built
into the latter algorithms from the very beginning. This, however, falls short of the present
state of black-box-oriented machinery for problems with convex structure, specifically, does
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not cover the most attractive bundle type algorithms for extremely large-scale problems
of this type. The situation here is as follows: whatever be the theoretical importance of
polynomial time cutting plane algorithms, these algorithms can be considered as practical
computational tools only in the low-dimensional case (at most few tens of decision vari-
ables). The Subgradient- and Mirror Descent algorithms are better suited for large-scale
problems and, moreover, as applied to nonsmooth problems with favorable geometry, ex-
hibit the best possible worst-case behavior in the large scale black box setting. From the
practical viewpoint, however, a severe shortcoming of these algorithms is that their typical

convergence rate is more or less the same as the worst-case one — the accuracy goes to
zero with the number τ of steps as slowly as 1/

√
τ , which is really slow from the practical

viewpoint. The usual way to improve practical behavior of Subgradient- and Mirror De-
scent type algorithms is to pass to their bundle versions, where the first order information
obtained at previous steps is efficiently utilized at subsequent steps as well1. However, the
only bundle-type algorithm which, in the hindsight, produces accuracy certificates is the full
memory Bundle-Level algorithm [21], and this algorithm, because of the necessity to keep
the full first order information accumulated so far (or, in the most advanced implementa-
tions, something like 2n “pieces” of this information, n being the design dimension of the
problem), is well suited for medium-size problems (n of order of at most few hundreds). The
bottom line is that at present, as far as large-scale (n in the range of thousands and more)

nonsmooth problems with convex structure are concerned, no general purpose black-box-

oriented algorithms with accuracy certificates are known. This is a severe shortcoming of
the existing results on accuracy certificates, since from the practical perspective, large-scale
(tens and hundreds of thousands of decision variables) general-type problems with convex
structure form the most important area of applications of black-box-oriented optimization
techniques. One of the major goals of the Thesis was to overcome this severe shortcoming.
To this end, we have investigated the possibilities to equip with accuracy certificates the
most attractive state-of-the-art bundle-type algorithm for solving large-scale nonsmooth
problems with convex structure – the Non-Euclidean Restricted Memory Level (NERML)
algorithm proposed in [4]2. The corresponding developments form the subject of Chapter
3 – this first fully original chapter of the Thesis.

Results. Consider a problem with convex structure, and let X be its domain, and F be
the associated monotone operator. In order to solve the problem by NERML (without or
with certificates), one should equip the embedding space E = Rn of X with a norm ‖ · ‖
(not necessarily the Euclidean one) and, in addition, specify

1Note that the Subgradient- and Mirror Descent algorithms “as they are” are memoryless – all information
accumulated so far is summarized in a single entity – the current search point. Bundle versions of gradient
type algorithms take their origin in [17, 23, 20] and over the years were the subject of numerous studies, see,
e.g., [39, 21, 18, 19] and references therein.

2The Euclidean version of this algorithm was proposed in [18].
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• a solid B ⊂ E which contains X, and

• a distance-generating function ω(x) : X → R, which should be continuously differen-
tiable and strongly convex, modulus α > 0, w.r.t.

〈ω′(x)− ω′(x′), x− x′〉 ≥ α‖x− x′‖2.

In order for the NERML algorithm associated with the above setup to be practical, B and
ω(·) should be simple and fit each other, meaning that it is easy to solve auxiliary problems
of the form

min
x∈B

[
ω(x) + aT x

]
. (5)

We consider two cases:

Case I: X is simple, specifically, X = B. We assume also that the monotone operator
F (which we usually treat as defined on intX only is in fact defined on the entire X 3. Our
main result here (see Proposition 3.3.1) is as follows:

Proposition In addition to the assumptions we have just made, let there exist c ∈ X = B,

V < ∞, and a Θ > 0 such that

∀(x ∈ B, y : ‖y‖ ≤ 1) : 〈F (x), c + Θy − x〉 ≤ V, (6)

e.g., F is bounded on X = B, in which case one can choose c ∈ X arbitrarily and set

Θ = R(B), V = 2‖F‖∗R(B), ‖F‖∗ = max
x∈X

‖F (x)‖∗, R(B) = max
x,x′∈B

‖x− x′‖,

‖ · ‖∗ being the norm conjugate to ‖ · ‖.

As applied to (X,F ), the prototype NERML algorithm from [4] can be equipped with

on-line techniques for building accuracy certificates in such a way that

• for every ε > 0, a certificate with resolution ≤ ε on X = B is built after at most

T (ε) = O(1)
Ω(V + ε)2

αΘ2ε2
(7)

steps, where α is the modulus of strong convexity of ω(·) w.r.t. ‖ · ‖ and

Ω = max
u,v∈B

[
ω(u)− ω(v)− 〈ω′(v), u− v〉] .

3For example, in the case of Convex Minimization we assume that the First Order oracle provides sub-
gradients of the objective both at the interior and at the boundary points of the domain X.
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• the computational effort per step is dominated by the necessity to compute F at a

point and to solve two auxiliary problems, one of the form

max
x∈B

min
1≤i≤m+1

hi(x),

and the other one of the form

min
x∈B

{
ω(x) + aT x : hi(x) ≤ 0, 1 ≤ i ≤ m + 1

}

where hi(·) are given affine functions and a nonnegative integer m is a parameter of

the construction (“memory depth”) of the algorithm.

It should be stressed that the structure of a step and the computational effort per step of
the NERML algorithm with certificates are completely similar to those of the prototype
algorithm without certificates as presented in [4], and the complexity bound (7) is, within
an absolute constant factor, the same as for the prototype.

Case II: X ⊂ B is given by Separation oracle. Here we assume neither that X is
simple, nor that F is defined on the entire X; instead, we assume that F is defined on intX,
and is semibounded:

∀(x ∈ intX, y ∈ X) : 〈F (x), y − x〉 ≤ V

with known V < ∞. In addition, we assume that X contains a ‖ · ‖-ball of radius r > 0.

Our main result here (see Proposition 3.4.1) is as follows:

Proposition Under assumptions we just have made, one can point out a NERML-type

algorithm equipped with on-line techniques for building accuracy certificates in such a way

that

• for every ε > 0, a certificate with resolution ≤ ε on B ⊃ X is built after at most

T (ε) = O(1)
ΩR2(B)(V + ε)2

αr4ε2
(8)

steps, with the same as above α, Ω and R(B);

• the computational effort per step is dominated by one call to the Separation oracle

representing X, at most one call to the First Order oracle computing F , and solving

the same auxiliary problems as in Case I.

Note that even aside of the issue of accuracy certificates, Case II goes beyond the scope of
the prototype NERML algorithm as presented in [4].
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1.2.2.2 Novel Academic Applications of Accuracy Certificates

Chapter 4 of the Thesis is devoted to several novel academic applications of accuracy cer-
tificates. We are about to outline these applications.

Certifying emptiness of intersection of convex sets. Let X1, ..., Xm be convex solids
in Rn given by Separation oracles and known to belong to the centered at the origin Eu-
clidean ball VR of a given radius R. It is easy to certify that the intersection ∩iXi of these
solids is nonempty: a certificate is just a point x̄ in ∩iXi, and the validity of a candidate
certificate is easy to check; indeed, all we need in order to verify that x̄ ∈ ∩iXi is to call the
Separation oracles for Xi, 1 ≤ i ≤ m, x̄ being the input. A nontrivial (and, to the best of
our knowledge, open) question is how to certify that the intersection of X1, ..., Xm is empty.
We resolve this challenging issue as follows. Let

X = X1 × ...×Xm ⊂ Rmn.

Observe that Separation oracles for Xi straightforwardly induce a Separation oracle S for
X.

1. We demonstrate (Proposition 4.1.1) that if we can point out a finite collection of

points ws ∈ Rmn such that ws /∈ intX along with vectors ηs = [η1
s ; ...; η

m
s ] ∈ Rmn

and nonnegative weights ζs, 1 ≤ s ≤ S, such that ηs is the separator of ws and X as

reported by S invoked at ws, so that

〈ηs, ws〉 ≥ sup
w∈X

〈ηs, w〉,

and the linear inequality

〈P
[

S∑
s=1

ζsηs

]
, y〉 ≤ ∑S

s=1 ζs〈ηs, ws〉
[
P [x1; ...; xm] =

∑m
i=1 xi : Rmn → Rn

] (9)

in variable y ∈ Rn has no solutions in the ball VR, then ∩iXi = ∅.

The above result states that a collection {ws, ηs, ζs} with the outlined properties can
be considered as a certificate of emptiness of ∩iXi; note that the validity of a candidate
certificate of this type is easy to check: given ws, we check whether ηs indeed is a
separator of ws and X by calling S, and given {ws, ηs, ζs}, it is easy to verify that (9)
has no solutions in VR, since the latter merely means that

−R‖P
[∑S

s=1
ζsηs

]
‖2 >

S∑

s=1

ζs〈ηs, ws〉.
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2. We demonstrate further (Proposition 4.1.2) that the sufficient condition for emptiness
of ∩iXi as expressed in the previous statement is in fact necessary and sufficient: ∩iXi

is empty if and only if there exists an emptiness certificate of the just outlined type.

3. Finally, we demonstrate (Proposition 4.1.2) that in order to certify emptiness of ∩iXi,
it suffices to apply to the Convex Minimization problem

Opt = min
x∈X

f(x) :=
1
2

m∑

i=1

‖xi − xi+1‖2
2, (P )

where xm+1 ≡ x1, an algorithm with accuracy certificates. Specifically, we show that

(a) an accuracy certificate for the latter problem satisfying certain easy to verify
condition can be straightforwardly converted into an emptiness certificate as defined
above;

(b) if ∩iXi = ∅ (or, equivalently, Opt > 0), then every accuracy certificate with
resolution < 2Opt on B = VR×...×VR definitely satisfies the “easy to verify condition”
in (a) and thus implies an emptiness certificate.

It follows that if ∩iXi indeed is empty and the algorithm with certificates used to
solve (P ) converges (meaning that the resolution of the associated certificates goes to
0 as the number of steps grows), an emptiness certificate will be eventually found. For
example, when Opt > 0 and (P ) is solved by the Ellipsoid method with certificates,
the emptiness will be certified not later than in O(1)(mn)2 ln

(
nR3

rOpt

)
steps, where

r = min
i

r(Xi) and r(Xi) is the largest of the radii of Euclidean balls contained in Xi.

Convex Minimization under Linear Optimization oracle. In the standard black
box setting of a Convex Minimization problem

Opt = min
x∈X

f(x), (2)

the feasible domain X of the problem is a solid represented by a Separation oracle, and the
objective f is represented by the First Order oracle. Now, representation by a Separation
oracle is not the only natural way of describing a solid X ⊂ Rn; another natural way to
represent X is via a Linear Optimization (LO) oracle. The latter, given on input a vector
e ∈ Rn, returns a minimizer xe of the linear function eT x over x ∈ X. There are situations
(see examples in section 4.2.3) where representation by an LO oracle is the only one available
(or is much more preferable from the computational viewpoint than the representation by
a Separation oracle). Now, it is well known (see, e.g., [12]) that given a solid X, both
Separation and LO oracles are polynomially reducible to each other: roughly speaking, with
LO oracle available, one can mimic a single call to Separation oracle via a polynomial time
number of calls to the LO oracle, and vice versa. This equivalence, however, is primarily of

17



theoretical value: mimicking Separation oracle via an LO one, while being a polynomially
solvable task, usually is too computationally expensive to be practical. We demonstrate
(section 4.2) that when solving a Convex Minimization problem (2), LO representation is
no less “practical” than the Separation one (and can be even much more practical than the
latter), provided that f admits a Fenchel-type representation, that is, representation of the
form

f(x) = max
y∈Y

{
xT (Ay + a)− h(y)

}
,

where Y is a solid in some Rm given by a Separation oracle, and h : Y → R is a convex
continuous function given by a First Order oracle. Specifically, we propose the following
strategy for solving the problem of interest (2):

• Given Fenchel-type representation of f , the problem of interest is nothing but the
primal optimization problem associated with the convex-concave saddle point problem

SadVal = Opt = min
x∈X

max
y∈Y

[
xT (Ay + a)− h(y)

]

The dual to (2) problem induced by this saddle point reformulation of the problem of
interest is

−Opt = min
y∈Y

g(y) := h(y)−min
x∈X

xT (Ay + a) (D)

(it is convenient for us to rewrite the dual problem, which by itself is a maximization
program, in the equivalent minimization form).

• Observe that the LO oracle for X clearly induces the First Order oracle for the convex
function f∗(y) = −minx∈X xT (Ay+a): given y, we form the linear form −(Ay+a)T x

of x and call the LO oracle for X to get a maximizer xy of this form over X, thus
getting f∗(y) = −xT

y (Ay + a) and f ′∗(y) = −AT xy. Since the First Order oracle
for h also is given to us (as a part of the Fenchel-type representation of f), we see
that (D) is equipped with both a Separation oracle for Y (it is the remaining part of
the Fenchel-type representation of f) and a First Order oracle (which is obtained by
combining the LO oracle for X and the First Order oracle for h). The bottom line is
that we can solve the dual problem (D) by a black-box-oriented method.

In order for the outlined strategy to be meaningful, we should answer two questions:

(?.a): How wide is the family of convex functions admitting explicit Fenchel-type represen-

tations, as compared to the family of functions admitting explicit representations by First

Order oracles?

(?.b): How to convert a good approximate solution to the dual problem (D) into an equally

good approximate solution to the problem of actual interest(2) ?

The first of these questions has to do with the scope of potential applications of the outlined
strategy, which, of course, is an important consideration. The second question is not merely
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important, it is crucial — without possibility to convert good solutions to (D) into equally
good solutions to the problem of interest, the proposed strategy is no more than wishful
thinking.

Fortunately, it turns out that both questions (?.a, b) admit quite satisfactory answers.
Specifically,

(!.a): While the existence of Fenchel-type representation of a convex function is not an issue
at all — every lower semicontinuous function of this type admits even the “pure” Fenchel
representation f(x) = supy∈Y

{
xT y − f∗(y)

}
, availability of such a representation could be

an issue (e.g., pure Fenchel representations available in closed analytic form, or easy-to-
compute algorithmic form, are a rare commodity). Surprisingly, availability of Fenchel-type

representations, in contrast to pure ones, is not an issue. Specifically, we present in section
4.2.2 a simple, albeit important by its own right, calculus of Fenchel-type representations
which demonstrates that all basic convexity-preserving operations with convex functions
(e.g., taking linear combinations with nonnegative coefficients, maxima of finite families,
and affine substitution of variables) preserves availability of Fenchel-type representations:
given these representations for the operands, one can easily convert them into a Fenchel-
type representation of the result. Since the Fenchel-type representations of “basic” convex
functions (like the exponent and other elementary univariate functions) is not an issue (for
these functions, the pure Fenchel representation is easy to compute), it follows that to
assume availability of explicit and easy-to-compute Fenchel-type representation of a convex
function is no more restrictive than assuming availability of easy to compute First Order
oracle.

(!.b): It turns out – and this is the main result of section 4.2 – that the crucial issue
(?.b) can be fully resolved via the machinery of accuracy certificates. Specifically, we
demonstrate (Theorem 4.2.1) that when the dual problem (D) is solved by a black box
oriented method with accuracy certificates, the latter allow to convert “certifiably good”
approximate solutions to (D) to equally good feasible approximate solutions to (2), namely,
an accuracy certificate ξτ for (D) induces a feasible solution xτ =

∑
t∈Iτ

ξτ
t xyt such that

εopt(xτ ) ≤ εcert(ξτ |Pτ ,B). Here Pτ = ({yt, et}τ
t=1, Iτ , Jτ ) is the execution protocol for (D)

underlying the certificate ξτ , xy ∈ X is the vector reported by the LO oracle when com-
puting the first order information for (D) at a point y ∈ Y , and B is a solid containing the
domain Y of (D).

The outlined results of section 4.2 are further extended to cover

• Convex Minimization problems with functional constraints, that is, problems of the
form

min
x∈X

{f0(x) : fi(x) ≤ 0, 1 ≤ i ≤ m}
where the solid X is given by an LO oracle, and convex functions f0(x), ..., fm(x) –
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by Fenchel-type representations (section 4.3.1);

• the situation where the domain X of (2) is given as an intersection of solids represented
by LO oracles.

When intersecting finitely many solids given by Separation oracles, these oracles
straightforwardly induce a Separation oracle for the intersection of the solids. In
contrast to this, when intersection solids given by LO oracles, there is no simple way
to get from these oracles an LO oracle for the intersection. This is why this situation
needs a dedicated treatment, presented in section 4.3.2;

• the situation of problem (2) with f given by Fenchel-type representation and compu-

tationally intractable solid X equipped with approximate LO oracle (section 4.3.3).

To illustrate the contents of section 4.3.3, consider an instructive particular case of the
situation investigated in this section, specifically, as follows. Let X ⊂ Rn be a solid,
and Ξ be a collection of vectors from Rn. Assume that we know how to maximize
in polynomial time linear functions 〈ξ, x〉 given by ξ ∈ Ξ over x ∈ X within some
approximation ratio α ∈ (0, 1]. In other words, we have at our disposal a polynomial
time algorithm B which, given on input ξ ∈ Ξ, returns a vector x̂ξ ∈ X such that
〈ξ, xξ〉 ≥ αOpt(ξ), Opt(ξ) = max

x∈X
〈ξ, x〉. Note that this assumption implies (at least

for α < 1) that Opt(ξ) ≥ 0 for every ξ ∈ Ξ, which we assume from now on. The
question is, to which extent these approximation guarantees can be extended from
maximizing over X linear functions 〈ξ, ·〉 with ξ ∈ Ξ to maximizing over X concave

functions ψ which in some sense are “generated” by the linear functions in question.
In the case under consideration the main result of section 4.3.3 – Theorem 4.3.1 —
states that if the convex function −ψ admits a Fenchel-type representation

−ψ(x) = max
y∈Y

[−〈x,Ay + a〉 − h(y)] [⇔ ψ(x) = min
y∈Y

[〈x,Ay + a] + h(y)]]

with convex nonnegative h(y) and such that Ay + a ∈ Ξ for all y ∈ Y , then, applying
an algorithm with accuracy certificates to (Y, F ) with

F (y) = −AT x̂Ay+a − h′(y),

an accuracy certificate ξτ for an execution protocol Pτ = ({yt, et}τ
t=1, Iτ , Jτ ) induces

a feasible approximate solution xτ =
∑

t∈Iτ
ξτ
t x̂yt to the problem of interest

Opt = max
x∈X

ψ(x)

such that
ψ(xτ ) ≥ αOpt− εcert(ξτ |Pτ ,B),

B being a solid containing Y . Specifying the algorithm in question as, e.g., the
Ellipsoid algorithm with certificates, we conclude that the problem of maximizing ψ

over X within approximation factor α′ < α is polynomially solvable.
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To give an instructive example, consider the set X ⊂ Sn comprised of all convex

combinations of dyadic n × n matrices uuT with ‖u‖∞ ≤ 1; here Sn is the linear

space of n × n symmetric matrices equipped with the Frobenuis inner product.

The set X is known to be heavily computationally intractable: for a general-

type positive semidefinite matrix ξ ∈ Sn, it is NP-hard to maximize the linear

form Tr(ξx) over x ∈ X within relative accuracy like 4%, even when randomized

algorithms are allowed. On the other hand, Nesterov’s π/2 Theorem [32] states

that if Ξ is the positive semidefinite cone in Sn, then Semidefinite relaxation allows

to maximize over X efficiently, within approximation factor 2/π, every linear form

Tr(ξx) given by ξ ∈ Ξ. Applying the above result to the concave function ψ(x)

defined as the sum of k smallest eigenvalues of a matrix x ∈ Sn and utilizing the

Fenchel representation of this function:

ψ(x) = max
y∈Y

Tr(yx), Y = {y ∈ Sn : 0 ¹ y ¹ I, Tr(y) = k},

we conclude that for every α′ < 2/π, one can efficiently find a matrix x̄ ∈ X such

that ψ(x̄) ≥ α′max
x∈X

ψ(x).

1.2.2.3 Accuracy Certificates and Decomposition of Large-Scale Linear Programs

The concluding chapter 5 of the Thesis, while still theoretical in its nature, is motivated by
“fully practical” considerations stemming from decomposition of large-scale LPs.

Motivation. Consider a large scale solvable Linear Programming program

Opt = min
x=[x1;x2]





cT
1 x1 + cT

2 x2 :

A11x1 + A12x2 ≤ b1

A21x1 + A22x2 ≤ b2

‖x‖∞ ≤ R





(LP)

with n = n1 + n2 variables x = [x1; x2], and m = m1 + m2 linear inequality constraints,
where the sizes of A11, A12 and A21 are, m1 × n1, m1 × n2 and m2 × n1 respectively.
Note that the bounds on variables ‖x‖∞ ≤ R, which we add for technical reasons, are of
no real importance from the practical viewpoint, since R can be arbitrarily large. The
Lagrange function of the problem (with the bounds of variables not included into the list
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of constraints) is

L(x1, x2; y1, y2)

= [c1 + [A11]T y1 + [A21]T y2]T x1 + [c2 + [A21]T y1 + [A22]T y2]T x2 : X × Y ∞ → R


X = X1 ×X2, Y ∞ = Y ∞
1 × Y ∞

2 ,

Xi = {xi : ‖xi‖∞ ≤ R}, Y ∞
i = {yi ≥ 0}, i = 1, 2.




(10)
Note that the saddle points of this bilinear (and thus convex-concave) function on X×Y are
exactly the optimal solutions to (LP) augmented by optimal solutions to the dual problem.

Assume that

(a) It is relatively easy to solve Linear Programming problems of the form

min
x1

{
cT x1 : A11x1 ≤ b, ‖x1‖∞ ≤ R

}
.

More precisely, we assume that for every fixed x2, y2, it is easy to solve the induced

saddle point problem

min
x1∈X1

max
y1∈Y1

L(x1, x2; y1, y2) (11)

where Y1 is a simple bounded part of Y ∞
1 , specifically, a box of the form {y1 ≥

0, ‖y1‖∞ ≤ L}.

The simplest (although by far not the only) case where (a) does take place is

when A11 is a block-diagonal matrix comprised of a large number N of relatively

low dimensional blocks (For example, these blocks can describe local technological

relations at N branches of a large corporation). In this situation, the induced

saddle point problem, due to the box structure of X1 and Y1, decomposes into N

independent of each other low dimensional (and thus easy to solve) bilinear saddle

point problems on products of two boxes.

(b) The number of m2 = dim b2 of linking constraints is ¿ the total number of constraints
m in (LP), and the number n2 = dim y2 of linking variables is ¿ the total number of
variables n in (LP).

The above “corporation – branches” example usually meets the assumption (b).

Indeed, in the situation considered in this example, the linking constraints usually

correspond to bounds on main resources (capital, well-trained human resources,

etc.) which are distributed between branches by the central management, while

linking variables represent “strategic decisions” (directions of development, adver-

tisement policies, etc.) made at the level of this management. Usually, the number

of these resources/decisions is much smaller that the total, over all branches, num-

ber of branch-specific constraints/decisions.
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The question (by far not new) is, how can we exploit the specific structure of (LP) in order
to accelerate its solution.

There are two well studied “extreme cases” of the outlined problem – one without linking
constraints, and another one without linking variables.

Case I: No linking constraints (m2 = 0). In this case, the most popular way to utilize
the specific structure of the problem is to use Benders decomposition (see, e.g., [5]). To the
best of our knowledge, this decomposition, while often being extremely efficient in practice,
in general is not supported by theoretical complexity bounds.

Case II: No linking variables (n2 = 0). One way to exploit this structure is to use
Dantzig-Wolfe decomposition (see, e.g., [5]), which is a specific implementation of the Re-
vised Primal Simplex method. Another well-known decomposition scheme, much more
flexible in the sense that it does not rely upon particular solution algorithm, is Lagrangian

decomposition, where one dualizes the linking constraints, thus arriving at the partial dual

of (LP), specifically, the problem

Opt = max
y2≥0

ψ(y2) := min
x1

{
[c1 + [A21]T y2]T x1 : ‖x1‖∞ ≤ R, A11x1 ≤ b1

}
. (12)

Assuming that we can point out a “large enough” L, specifically, such that

max
y2≥0

ψ(y2) = max
y2≥0,‖y2‖1≤L

ψ(y2)

problem (12) becomes the Convex Minimization problem

−Opt = min
y2∈Y L

[−ψ(y2)], Y L = {y2 ≥ 0,
∑

i

(y2)i ≤ L} (13)

on a simple solid. Now, assumption (a) says that the first order information on ψ is not
too costly. Specifically, given y2, the optimization problem specifying φ(y2) according to
(12) is a problem of the form considered in (a) and thus is relatively easy to solve; after the
optimal solution x1(y2) to the latter problem is found, the first order information on ψ is
readily given by the relations

ψ(y2) = [c1 + [A21]T y2]T x1(y2), ψ′(y2) = A21x1(y2).

Thus, the Convex Minimization problem (13) is well suited for solving by black box oriented
methods. Of course, methods of this type are much slower than those oriented at well
structured problems of comparable sizes, e.g., LPs. The point, however, is that according
to (b), the design dimension of (13), that is, m2, is much smaller that the sizes of the original
LP, so that it well may happen (and indeed happens in numerous applications) that a “slow
by itself” black-box-oriented method, like NERML or the Ellipsoid algorithm, as applied
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to a relatively low dimensional problem (13) by far outperforms fast state-of-the-art LP
solvers as applied to the large scale original problem (LP).

In order for the outlined Lagrange decomposition scheme to work, one should resolve a
nontrivial question of how to pass from a good approximate solution to (13) to equally
good approximate solution to the problem of actual interest (LP). There are various ways
to resolve this challenging issue (e.g., to pass from the usual Lagrange function underlying
(13) to an augmented Lagrangian). We demonstrate in section 5.2.2 that the machinery of
accuracy certificates allows to resolve this issue in a pretty general and quite attractive, at
least from the theoretical viewpoint, manner. The corresponding result is as follows:

Proposition 5.2.1 Assume that n2 = 0 and that (13) is solved by an algorithm with

accuracy certificates. By construction of the First Order oracle for the objective of this

problem, at every productive step t of this algorithm, the search point being yt
2 ∈ Y , we

have at our disposal a point

xt
1 = x1(yt

2) ∈ Argmax
x1

{−[c1 + [A21]T yt
2]

T x1 : A11x1 ≤ b1, ‖x1‖∞ ≤ R
}

.

Now let τ be a step such that the accuracy certificate ξτ associated with the corresponding

execution protocol Pτ =
{{yt

2, et}τ
t=1, Iτ , Jτ

)
is well defined. Setting

x̂τ
1 =

∑

t∈Iτ

ξτ
t xt

1,

we get an approximate solution to the problem of interest (LP) such that

A11x̂τ
1 ≤ b1 & ‖xτ

1‖∞ ≤ R,

A21x̂τ
1 ≤ b2 + L−1[Opt + εcert(ξτ |Pτ , Y

L) + R‖c1‖1]1

cT
1 x̂τ

1 ≤ Opt + εcert(ξτ |Pτ , Y ),

(14)

where 1 is the all-ones vector of dimension m2. In other words, the approximate solution x̂τ
1

exactly satisfies all but the linking constraints of the problem of interest, violates every one

of the linking constraints by at most L−1[Opt + εcert(ξτ |Pτ ,BL) + R‖c1‖1] – the quantity

which is small when L is large enough and εcert(ξτ |Pτ , Y
L) is small enough, and is non-

optimal in terms of the objective by at most εcert(ξτ |Pτ , Y
L).

In addition, let ỹ = [ỹ1; ỹ2; ỹ+; ỹ−] ≥ 0 be the vector of optimal Lagrange multipliers for

(LP), so that

cT
1 x1 + ỹT

1 [A11x1 − b1] + ỹT
2 [A21x1 − b2] + ỹT

+[x1 −R1] + ỹT
−[−x1 −R1] ≡ Opt∀x1.

When ` := L−∑m2
i=1[ỹ2]i > 0, then, in addition to the second relation in (14), we have

A21x̂τ
1 ≤ b2 + `−1εcert(ξτ |Pτ , Y

L)1
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In particular, with properly chosen L one has ` ≥ 1, so that both infeasibility of x̂τ
1 w.r.t. the

linking constraints and nonoptimality of this solution in terms of the objective are bounded

from above by εcert(ξτ |Pτ , Y
L).

General case. Our main emphasis in chapter 5 is on the general case where both linking
variables and linking constraints are present. To the best of our knowledge, the only well
known decomposition scheme proposed for this case is “cross decomposition” originating
from T.J. Van Roy [42, 43], see also [45, 13, 14, 15, 16, 36] and references therein. In
this scheme, essentially, one alternates iteratively between the Benders and the Lagrange
decompositions. To the best of our understanding, no complexity results for this scheme
are known (that is natural: the primary motivation and application of cross decomposition
is the Mixed Integer version of (LP) where the linking variables x2 are subject to addi-
tional constraints of integrality, the situation where no good complexity bounds could be
expected). When completing our research, we became aware of a single paper [11] where,
in hindsight, we recognized the accuracy-certificate-based approach similar to the one we
developed in the Thesis. Note, however, that [11] is restricted to the case of problem (LP)
and the full memory Bundle-Level algorithm as a working horse, while the approach we are
about to present is much more general.

Our strategy is as follows.

1. We assume that our a priori understanding of (LP) allows to point out a finite upper
bound S on the dual variables such that solving (LP) reduces (exactly or within
accuracy sufficient for our goals) to solving the bilinear saddle point problem

SadVal = min
(x1,x2)∈X1×X2

max
(y1,y2)∈Y1×Y2

L(x1, x2; y1, y2), (15)

where L(·), X1, X2 are as in (10), and Y1 = {y1 : 0 ≤ y1 ≤ L1}, Y2 = {y2 : 0 ≤ y2 ≤
L1} are bounded “approximations” of Y ∞

1 , Y ∞
2 .

By assumption (a), given x2 ∈ X2, y2 ∈ Y2, it is easy to solve the saddle point problem

L̂(x2, y2) = min
x1∈X1

max
y1∈Y1

L(x1, x2; y1, y2); (16)

it is immediately seen that L̂ is convex-concave and continuous, and that first order
information on L̂ is readily given by (any) solution x1 = x1(x2, y2), y1 = y1(x2, y2) of
the right hand side saddle point problem. We now can form the induced saddle point
problem

SadVal = min
x2∈X2

max
y2∈Y2

L̂(x2, y2); (17)

as we have already mentioned, we have at our disposal First Order oracle associ-
ated with this problem, and thus can solve it by a black-box-oriented saddle point
algorithm.
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By assumption (b), the dimension of this problem is much less than the one of the
problem of interest (15), and under favorable circumstances it may happen that the
total computational effort of solving (17) (including the expenses to generate the first
order information on L̂) in this fashion is much smaller as compared to the effort of
solving (LP) by a general purpose LP solver. Whenever this is the case, the only issue

we should resolve in order to use the outlined approach, is how to convert a good

approximate solution to the induced saddle point problem (17) into an equally good

approximate solution to the saddle point of interest (15). Our major effort in chapter
5 is to resolve this issue by using the machinery of accuracy certificates.

Note that the outlined strategy is a natural extension of the one used in Lagrange decom-
position, with the only (although essential) difference that in the latter, the induced saddle
point problem is just a Convex Minimization program.

In fact, in the main body of chapter 5 we consider a situation more general than the one
outlined above. Specifically, we assume that the problem of interest is a convex-concave
saddle point problem of the form (15), with arbitrary solids X1, X2, Y1, Y2 and a not nec-
essarily bilinear cost function L(·) which should be convex-concave and continuous and,
in addition, should satisfy mild regularity assumption which for sure is satisfies when L is
continuously differentiable on X1×X2×Y1×Y2. Same as above, we assume that whenever
x2 ∈ X2, y2 ∈ Y2, it is easy to solve the saddle point problem in the right hand side of
(16). Under the regularity assumption we have mentioned, a solution x1(x2, y2), y1(x2, y2)
straightforwardly induces first order information for the function L̂(x2, y2) which automat-
ically is convex-concave and continuous on X2 × Y2. As a result, the induced saddle point

problem (17) is well suited for solving by black box oriented methods. Our main result
in chapter 5 is how to resolve the issue of converting a good approximate solution to the
induced problem into an equally good solution to the problem of interest. Here is the result
(cf. Theorem 5.3.1):

Theorem Let the induced saddle point (17) be solved by an algorithm with accuracy

certificates. Assume that after a number τ of steps, we have at our disposal execution

protocol Pτ =
({(xt

2, y
t
2), et}τ

t=1, Iτ , Jτ

)
along with an accuracy certificate ξτ . For t ∈ Iτ , as

a byproduct of getting first order information on L̂ at the productive search points (xt
2, y

t
2),

we have at our disposal vectors xt
1 ∈ X1, y

t
1 ∈ Y1 such that (xt

2, y
t
1) is a solution to the right

hand side saddle point problem in (16) corresponding to (x2, y2) = (xt
2, y

t
2). Now let

(xτ
1 , x

τ
2 , y

τ
1 , yτ

2 ) =
∑

t∈Iτ

ξτ
t (xt

1, x
t
2, y

t
1, y

t
2).

Then (xτ
1 , x

τ
2 , y

τ
1 , yτ

2 ) is a feasible approximate solution to the problem of interest (15), and

εsad(xτ
1 , x

τ
2 , y

τ
1 , yτ

2 ) ≤ εcert(ξτ |Pτ ,B)

for every solid B containing X2 × Y2. In other words, a good approximate solution to the

induced saddle point problem (one induced by an accuracy certificate with resolution ≤ ε)
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can be easily converted into equally good (with εsad(·) ≤ ε) approximate solution to the

problem of interest.

The above outline makes it clear that our research is theoretical in its nature. We, however,
do believe that some of our findings, especially those related to decomposition, possess
certain practical potential. The specific time limitations imposed on our research did not
allow for extensive numerical experimentation aimed at investigations this potential; we
consider such an investigation as a subject of future research.
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CHAPTER II

BACKGROUND: ACCURACY CERTIFICATES FOR

PROBLEMS WITH CONVEX STRUCTURE

The notion of a certificate — a well-structured entity which provides an easy-to-verify
proof of a certain statement — is widely used in Computer Science and Optimization. For
example,

• A simple certificate of the solvability of a system of linear inequalities Ax ≥ b is a
solution x̄ to this system, while a simple certificate of insolvability of the system is a
solution ȳ to the alternative system AT y = 0, y ≥ 0, yT b > 0 (General Theorem on
Alternative).

• Given a Linear Programming problem Opt = min
x
{cT x : Ax ≥ b} and a tolerance

ε ≥ 0, a simple certificate of the fact that a candidate solution x̄ is feasible and ε-
optimal (i.e., cT x̄ ≤ Opt + ε) is given by a feasible solution to the primal problem x̄,
and a feasible solution ȳ to the dual problem max

y
{bT y : AT y = c, y ≥ 0} such that

the corresponding duality gap cT x̄− bT ȳ is ≤ ε.

Note that both these constructions can be naturally extended from Linear Programming
problems and systems of linear inequalities, to conic programming problems min

x
{cT x :

Ax− b ∈ K}, and conic inequalities Ax− b ∈ K, where K ⊂ Rn is a closed convex pointed
cone with a nonempty interior, see, e.g., [2]. 1

As a matter of fact, certificates for feasibility and ε-optimality of candidate solutions to Con-
vex Programming problems were until recently known solely for “well-structured” problems,
like those in the examples above. Surprisingly, till very recently no notion of a certificate for
black box represented convex problems — those where the objective and the constraints are
represented by oracles capable of computing their values and derivatives – was known. This
is quite unfortunate considering the fact that black box representation of a problem is the
standard “computational environment” for general-type Convex Programming algorithms.
A general concept of an “accuracy certificate” for a black box represented convex program

1It should be mentioned that in the case of an LP problem/a system of linear inequalities the existence of
the outlined certificate is not only a sufficient, but also a necessary condition for the validity of the fact we
intend to certify. In the case of Conic Programming problems/conic inequalities, the existence of a certificate
is merely sufficient; to make it necessary, mild regularity assumptions should be made, see [2].
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was introduced only recently in [27].

In this chapter we will introduce four problems with convex structure along with their
associated accuracy measures, we will then introduce the idea of a ξ certificate first detailed
in [27], we will show that this ξ certificate is sufficient to prove that we have achieved an
accuracy of ε for any ε > 0. Further we will briefly exam the necessity of these ξ certificates.

2.1 Problems with Convex Structure and Accuracy Mea-
sures

In this section, we present four generic “problems with convex structure” — convex min-
imization, convex-concave saddle point problem, convex Nash equilibrium problem, and
variational inequality with monotone operator — which will be of primary interest in the
sequel. Each problem will be associated with a natural accuracy measure and a specific op-
erator (a vector field on the problem’s domain). The “common ground” for these seemingly
highly diverse problems is that up to certain point they admit a unified treatment that cov-
ers the most basic first-order solution algorithms (Cutting Plane, Subgradient Descent, and
Bundle methods), as well as the issue of accuracy certificates, the latter being our primary
focus for this study.

2.1.1 Convex Minimization

A convex minimization problem is:

Opt = min
x∈X

f(x), (18)

where X is a solid (a compact convex set with a nonempty interior) in Rn, and f is a
convex continuous function on X, s.t. intX ⊂ Dom f .

We focus on black box represented convex minimization problems, meaning that:

1. X is given by a Separation oracle — a routine which, given on input a vector x ∈ Rn,
reports one of three possible situations: x ∈ intX, x ∈ ∂X, or x 6∈ X. If x 6∈ intX,
the routine returns a separator — a nonzero linear form 〈e, ·〉 on Rn such that

〈e, x〉 ≥ max
y∈X

〈e, y〉.

Example 2.1.1. A standard example of a Separation oracle corresponds to the case
when X is given by a finite set of strictly feasible convex constraints: X = cl {x ∈
Rn; gi(x) < 0, 1 ≤ i ≤ m}, where the convex functions gi : Rn → R are computable
along with their subgradients. The associated Separation oracle is a routine which,
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given on input a query point x, computes the values gi(x) and subgradients g′i(x) of
all the constraints at x and checks whether gi(x) < 0 for all i. If it is the case, the
oracle reports that x ∈ intX; otherwise, it reports that x 6∈ intX, finds i = ix such
that gix(x) ≥ 0, and returns the separator e = g′ix(x).

2. f is represented by a First Order Oracle — a routine which, given on input a vector
x ∈ intX, returns the value f(x), as well as a subgradient f ′(x) ∈ ∂Xf(x) of f at x,
so that

∀y ∈ X : f(y) ≥ f(x) + 〈f ′(x), y − x〉.
Sometimes we will assume that f possesses subgradients everywhere on X and that
the first Order oracle is capable of computing f(x) and f ′(x) ∈ ∂Xf(x) at every point
x ∈ X; in this case, we say that the First Order oracle serves the entire X, while in
the former case we say that it serves intX only.

Accuracy Measure: We quantify the (in)accuracy of a candidate solution x ∈ X for a
convex minimization problem (18) via the accuracy measure

εopt(x) := f(x)−Opt (19)

Comment. While the accuracy measure we have introduced (usually called
the residual in terms of the objective) is quite natural, it is not the only natural
accuracy measure in convex minimization. Perhaps a more intuitive accuracy
measure would be the “accuracy in argument” — the distance dist(x,X∗) from
a candidate solution x ∈ X to the set X∗ of optimal solutions to (18):

dist(x,X∗) = min
x∗∈X∗

‖x− x∗‖.

The rationale behind our choice of accuracy measure is completely pragmatic:
namely, in general-type convex minimization εopt is the only known accuracy

measure which gives rise to affirmative complexity results. For example, assume
that in addition to convexity, f is bounded on X; then it is known ([46]; also
Proposition 2.2.1 below) that for every ε > 0 one can find an approximate
solution xε ∈ X to (18) such that εopt(x) ≤ ε in no more than

N = O(1)n2 ln
(

r(X)
maxX f −minX f

ε

)

calls to the Separation and First Order oracles, with O(1)n2 additional arith-
metic operations per oracle call. (Here r(X) < ∞ depends solely on X, and all
O(1)’s are absolute constants.) In contrast to this, the complexity of approxi-
mating the optimal solution in terms of the argument can be disastrous.

Specifically, consider the case of minimizing a C∞ convex function f of two variables

over the unit disk X ⊂ R2, where we know in advance that, for a given k, the kth-order
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derivatives of f are bounded by 1 within a disk which is twice as large. Let us also

assume that instead of a First Order oracle, we have at our disposal an oracle which

reports all partial derivatives of f at a query point. Let us now impose on an algorithm,

based on this powerful oracle, the requirement that for any given objective f with the

outlined properties, the algorithm terminates after a finite number of steps (this number

can depend on f) and outputs a point x̄ = x̄f such that dist(x̄f , ArgminX f) ≤ 1
4 . The

fact is that no such algorithm exists! [27]. It should be stressed that while there exist

numerous — and simple — algorithms which generate sequences of iterates converging

to ArgminX f ; the convergence of these algorithms is completely “unobservable” —

there is no on-line test which allows one to conclude that the distance from an iterate

to the optimal set is already ≤ 1
4 .

Of course, when imposing on f additional assumptions (e.g., strong convexity),
then measuring the inaccuracy in the argument becomes a tractable task. Note,
however, that as far as we know all assumptions of this type allow one to bound
the accuracy in argument via εopt, such that we may focus solely on our chosen
accuracy measure.

We will follow this “pragmatic” approach (namely “a good (in)accuracy measure
is the one which we can make small in an efficient fashion”) when introducing
accuracy measures for other problems with convex structure.

Monotone Operator: The crucial entity associated with the convex minimization prob-
lem (18) is the operator F (x) = f ′(x), the domain DomF of this operator being intX or X,
depending on whether the First Order oracle serves intX or X. Note that DomF is always
convex, and F is monotone on its domain:

〈F (x)− F (y), x− y〉 ≥ 0 ∀x, y ∈ DomF. (20)

For the sake of completeness, here is the verification of monotonicity: by construction

combined with the subgradient inequality, for x, y ∈ Dom F we have 〈F (x), y − x〉 ≤
f(y)− f(x) and 〈F (y), x− y〉 ≤ f(x)− f(y); summing up these relations, we arrive at

(20).

2.1.2 Convex-Concave Saddle Point Problem

A convex-concave saddle point problem is

Find x∗ = (x∗1, x
∗
2) ∈ X = X1 ×X2 : f(x1, x

∗
2) ≥ f(x∗1, x

∗
2) ≥ f(x∗1, x2) ∀(x1, x2) ∈ X, (21)

where Xi ⊂ Rni , i = 1, 2, are convex solids and f is a continuous function on X = X1×X2

which is convex in x1 ∈ X1, and concave in x2 ∈ X2.
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We focus on black box represented saddle points problems, meaning that X1, and X2 are
given by Separation oracles, and f is given by a First Order oracle capable of computing
the value f(x) along with a subgradient f ′x1

(x) of f with respect to x1 and a super-gradient
f ′x2

(x) of f with respect to x2 at every point x ∈ intX (“the oracle serves intX”) or at every
point x ∈ X (“the oracle serves the entire X”); of course, in the latter case we assume that
the required sub- and supergradients exist.

Accuracy Measure: A convex-concave saddle point problem (21) gives rise to a primal-
dual pair of convex optimization problems

Opt(P ) = min
x1∈X1

f(x1), where f(x1) = max
x2∈X2

f(x1, x2),

Opt(D) = max
x2∈X2

f(x2), where f(x2) = min
x1∈X1

f(x1, x2)
(22)

with equal optimal values. The solutions to (21) are exactly the pairs (x∗1, x
∗
2) comprised of

optimal solutions to the respective optimization problems. This leads us to equip (21) with
a natural accuracy measure

εsad(x) := f(x1)− f(x2) = [f(x1)−Opt(P )] + [Opt(D)− f(x2)]. (23)

We note that εsad(x1, x2) is the sum of the nonoptimalities of x1 as a solution to the primal
problem and of x2 as a solution to the dual problem. As such, the duality gap is always
nonnegative and equals zero iff x1 is an optimal solution to (P ) and x2 is an optimal solution
to (D), i.e., iff x = [x1; x2] is a solution to (21).

Monotone Operator: We associate with (21) the operator F (x1, x2) = [f ′x1
(x);−f ′x2

(x)]
with the domain which is either intX or X, depending on whether the First Order oracle
serves intX or X. It is well known that this operator is monotone on its domain.

For the sake of completeness, here is the verification of the monotonicity: by construc-

tion combined with the definitions of sub/supergradients, for x = [x1;x2], y = [y1; y2] ∈
DomF we have

〈F (x), y − x〉 = 〈f ′1(x), y1 − x1〉 − 〈f ′2(x), y2 − x2〉
≤ [f(y1, x2)− f(x)] + [f(x)− f(x1, y2)] = f(y1, x2)− f(x1, y2),

and similarly 〈F (y), x−y〉 ≤ f(x1, y2)−f(y1, x2). Summing up the resulting inequalities,

we arrive at (20).
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2.1.3 Convex Nash Equilibrium Problem

In a Nash equilibrium problem, one is given m sets Xi ⊂ Rni along with m functions fi(x)
defined on X = X1 × ...×Xm, and seeks a Nash equilibrium:

a point x∗ ∈ X such that for every i ≤ m x∗i is a minimizer of the function

fi(x∗1, ..., x
∗
i−1, ξi, x

∗
i+1, ..., x

∗
m) over ξi ∈ Xi.

(24)

The “story” is that xi ∈ Xi represents the choice of the i-th player, and fi(x) represents
the loss incurred by this player when the choices of all the players constitutes a point
x = [x1; ...; xm]. Viewed in this fashion, an equilibrium is a collection of players choices
such that no player can reduce his loss by his unilateral actions.

Following [27], we call a Nash equilibrium problem convex, if the Xi are solids, and the
fi are continuous functions on X such that fi is convex in xi and jointly concave in the
remaining components of x, and the function f(x) =

∑
i fi(x) is convex. From now on,

when speaking about Nash equilibrium problems we will always assume that the problem
is convex.

We focus on black box represented convex Nash equilibrium problems, where Xi are rep-
resented by Separation oracles, and fi, i = 1, ...,m are represented by First Order oracles
capable of computing fi(x) and subgradients f ′i(x) of fi w.r.t. xi, i = 1, ..., m. As is now
standard this holds for every x ∈ intX (“first Order oracle serves intX”), or for every x ∈ X

(“the oracle serves the entire X”).

Accuracy Measure: The accuracy measure for a convex Nash equilibrium problem is
defined as

εN(x) :=
m∑

i=1

[
fi(x)− min

ξi∈Xi

fi(x1, ..., xi−1, ξi, xi+1, ..., xm)
]

which can be interpreted as the sum, over the m players, of the incentive for the i−th player
to deviate from his choice xi given that all the remaining players stick to their choices.

Note a convex minimization problem (18), with an objective f which is continuous on X,
can be considered as a convex Nash equilibrium problem with m = 1 player (set X1 = X,
f1(x1) = f(x)), and in this case we clearly have εopt(x) ≡ εN(x). Similarly, a convex-concave
saddle point problem can be thought of as a convex Nash equilibrium problem with m = 2
players, such that f1(x) = f(x), f2(x) = −f(x), and thus f1(x)+f2(x) ≡ 0. In this case the
Nash accuracy measure recovers εsad(·), and here again the accuracy measure εN reduces to
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the saddle point accuracy measure εsad, since when f1(x) = f(x), f2(x) = −f(x), we have

εN(x1, x2) = [f1(x1, x2)−minx′1 ∈ X1f1(x′1, x2)] + [f2(x1, x2)−minx′2 ∈ X2f2(x1, x
′
2)]

= [f(x1, x2)−minx′1 ∈ X1f(x′1, x2)] + [−f(x1, x2) + maxx′2 ∈ X2f(x1, x
′
2)]

= [f(x)− f(x2)] + [f(x1)− f(x)] = εsad(x).

Monotone Operator: A convex Nash equilibrium problem can be associated with the
operator F (x) = [f ′1(x); ...; f ′m(x)] with a domain which is either intX, or X, depending on
whether the First Order oracle serves intX or the entire X. In both cases, F is monotone
on its domain.

For the sake of completeness, here is the verification of the monotonicity as taken from

[27]. Let x, y ∈ Dom F , and let us prove that 〈F (x)−F (y), x− y〉 ≥ 0, or, equivalently,

that 〈F (x̄ + ∆) − F (x̄ − ∆), ∆〉 ≥ 0, where x̄ = 1
2 (x + y) and ∆ = 1

2 (x − y). For

z = [z1; ...; zm] ∈ X let us set zi = [z1; ...; zi−1; zi+1; ...; zm], so that fi(z) = fi(zi, zi).

We have

〈F (x̄ + ∆)− F (x̄−∆),∆〉 =
∑

i

[ 〈f ′i(x̄ + ∆),∆i〉︸ ︷︷ ︸
≥
(a) fi(x̄+∆)−fi(x̄i+∆i,x̄i)

+ 〈f ′i(x̄−∆),−∆i〉︸ ︷︷ ︸
≥
(a) fi(x̄−∆)−fi(x̄i−∆i,x̄i)

]

≥ ∑
i

[
fi(x̄ + ∆)− fi(x̄i + ∆i, x̄i) + fi(x̄−∆)− fi(x̄i −∆i, x̄i)

]

= Φ(x̄ + ∆) + Φ(x̄−∆)−∑
i

[
fi(x̄i + ∆i, x̄i) + fi(x̄i −∆i, x̄i)︸ ︷︷ ︸

≤
(b) 2fi(x̄)

]

≥ Φ(x̄ + ∆) + Φ(x̄−∆)− 2Φ(x̄) ≥(c)0

where (a), (b) are due to the fact that fi(z) are convex in zi and concave in zi, and (c)

is due to the convexity of Φ =
∑

i fi, along with definitions of x̄ and ∆.

2.1.4 Variational Inequalities with Monotone Operators

Let X ⊂ Rn be a solid, and F (x) : DomF → Rn be an operator with convex domain
DomF such that intX ⊂ DomF ⊂ X2 and F is monotone on its domain. The pair X, F

gives rise to the variational inequality problem

Find x∗ ∈ X : 〈F (y), y − x∗〉 ≥ 0∀y ∈ DomF (25)

2Note that while variational inequalities are quite general, our main interest is to set up the operator F
as the monotone operator from one of our three prior functional problems. Hence it makes perfect sense to
consider intX ⊂ Dom F ⊂ X, since we are guaranteed that sub/super gradients are defined on at least all
of intX, and may be defined over the entire X.
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In literature, the just defined solutions to (25) are called weak solutions, as opposed to
strong solutions — points x∗ ∈ DomF such that 〈F (x∗), y − x∗〉 ≥ 0 for all y ∈ X. Note
that for a monotone F strong solutions are always weak solutions.

Indeed let us assume that we have a strong solution x∗, then x∗ ∈ Dom(Φ) is such that 〈Φ(x∗), x− x∗〉 ≥ 0 ∀x ∈ X.

This certainly implies that 〈Φ(x∗), x − x∗〉 ≥ 0 ∀x ∈ X ∩ Dom(Φ), further monotonicity implies 〈Φ(x), x − x∗〉 −
〈Φ(x∗), x−x∗〉 ≥ 0. Now since 〈Φ(x∗), x−x∗〉 ≥ 0 we must have 〈Φ(x), x−x∗〉 ≥ 0, and thus x is also a weak solution

Also have that under mild regularity assumptions (F is continuous on X = DomF ) the
inverse is also true (weak solutions are also strong solutions). The advantage of weak
solutions is that they always exist.

For the sake of completeness, here is the proof of the aforementioned well known result.

Proposition 2.1.1. [Existence of weak solutions to VIs with monotone operators]

Under our assumptions on X and F , the variational inequality (25) always has a (weak)

solution.

Proof. Setting Πy = {x ∈ X : 〈F (y), y − x〉 ≥ 0}, for every y ∈ Dom F , we get a

family of closed subsets of the compact set X; what we want to prove, is that this whole

family of sets has a point in common, and to this end, by the standard compactness

argument it suffices to prove that every finite collection {Πyi : yi ∈ Dom F}N
i=1 of

these sets has a nonempty intersection. Let, on the contrary to what should be proved,

{Πyi : yi ∈ Dom F}N
i=1 be a collection with

N⋂
i=1

Πyi = ∅, or, which is the same, such that

min
1≤i≤N

〈F (yi), yi − x〉 < 0 ∀x ∈ X.

Then, invoking the von Neumann Lemma, there exists a convex combination
N∑

i=1

λi〈F (yi), yi − x〉

of the affine functions 〈F (yi), yi − x〉 of x which is negative everywhere on X:
N∑

i=1

λj〈F (yi), yi − x〉 < 0 ∀x ∈ X. (26)

Let us set x̄ =
∑N

i=1 λiyi; this point belongs to Dom F , since the latter set is convex,

and thus belongs to X. By monotonicity of F , we have for every i

〈F (yi), yi − x̄〉 ≥ 〈F (x̄), yi − x̄〉.

Multiplying both sides of these inequalities by λi and summing up, we get
N∑

i=1

λi〈F (yi), yi − x̄〉 ≥ 〈F (x̄),
N∑

i=1

λiyi − x̄〉 = 0,
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which contradicts (26). We have arrived at a desired contradiction.

We are interested in black box represented variational inequalities with monotone operators,
meaning that X is given by a Separation oracle, and F is represented by a First Order
oracle capable of computing F (x) for x ∈ DomF . In what follows, we restrict ourselves
to the situations where either DomF = intX (“the First Order oracle serves intX”), or
DomF = X (“the First Order oracle serves the entire X”).

Accuracy Measure: The accuracy measure associated with (25) is

εvi(x) = sup
y∈DomF

〈F (y), x− y〉;

when x ∈ X. This measure (also called the dual gap function in the terminology of [9])
originates from [1] and has been used in many papers, in particular, in [25, 21, 27]. It is
immediately seen that εvi(x) satisfies the natural requirements for an accuracy measure,
specifically, it is nonnegative and equals zero if and only if x is a weak solution to (25). The
latter fact is evident; while the nonnegativity of εvi(·) is readily given by the fact that this
function is convex (as the supremum of a family of affine functions of x) and nonnegative
on DomF ⊃ intX (indeed, for x ∈ DomF one has εvi(x) ≥ 〈F (x, ), x− x〉 = 0).

Note: We have associated with our three prior functional problems, namely, convex min-
imization problems, convex-concave saddle point problems, and convex Nash equilibrium
problems, a monotone operator F with a convex domain which is in-between the domain X

of the problem of interest and intX. It is well known that the solutions to these problems
are exactly the weak solutions of the variational inequality associated with X and F .

Proposition 2.1.2. Under assumptions of the respective sections 2.1.1, 2.1.2, 2.1.3,

weak solutions to the variational inequalities with monotone operators associated with

convex minimization, convex-concave saddle point and convex Nash equilibrium prob-

lems are exactly the solutions to the respective problems.

Proof. Let us start with the convex minimization problem (18).

⇒ First, we observe that an optimal solution x∗ to the associated variational inequality

is a weak solution to this inequality. Indeed, by construction of the monotone operator

F associated with (18), for every y ∈ domF we have F (y) ∈ ∂Xf(y), whence by the

gradient inequality and the optimality of x∗, 〈F (y), y − x∗〉 ≥ f(y) − f(x∗) ≥ 0 for all

y ∈ Dom F , (i.e., x∗ is a weak solution).
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⇐ Vice versa, let x∗ be a weak solution to the variational inequality associated with

(18), and let z ∈ intX. Then for every α ∈ (0, 1] we have yα = (1 − α)x∗ + αz ∈
intX ⊂ DomF , whence by (25) 〈F (yα), yα − x∗〉 ≥ 0, meaning that the function

φ(α) = f(yα) is nonincreasing in α ∈ (0, 1]. Since f is lower semicontinuous, we

conclude that f(x∗) = φ(0) ≤ φ(1) = f(z) for any z ∈ intX. The bottom line is that

f(x∗) ≤ infz∈intX f(z) = inf
z∈X

f(z), where the concluding relation follows from the fact

that f is convex on X and intX 6= ∅. The proof in the case of convex minimization is

completed.

As we have seen, the convex-concave saddle point problem is a particular case of the

convex Nash equilibrium problem, so that all that remains is to prove the Proposition

for the case of a convex Nash equilibrium problem.

⇒ Let x∗ be a Nash equilibrium, and let us prove that x∗ is a weak solution to the

corresponding variational inequality. Let y ∈ domF . As we remember from section

2.1.3, Dom F is either intX, or the entire X; in both cases, setting ∆ = 1
2 (y − x∗) and

x̄ = 1
2 (y + x∗), we have x̄ ∈ Dom F . We have 3

1
2 〈F (y), y − x∗〉 = 〈F (x̄ + ∆), ∆〉 =

∑
i 〈f ′i(x̄ + ∆), ∆i〉︸ ︷︷ ︸
≥
(a) fi(x̄+∆)−fi(x̄i+∆i,x̄i)

≥ ∑
i

[
fi(x̄ + ∆)− fi(x̄i + ∆i, x̄i) + fi(x̄−∆)− fi(x̄i −∆i, x̄i)︸ ︷︷ ︸

=fi([x∗]i,x∗i )−fi([x∗]i,x̄i)
≤
(b) 0

]

= Φ(x̄ + ∆) + Φ(x̄−∆)−∑
i

[
fi(x̄i + ∆i, x̄i) + fi(x̄i −∆i, x̄i)︸ ︷︷ ︸

≤
(c) 2fi(x̄)

]

≥ Φ(x̄ + ∆) + Φ(x̄−∆)− 2Φ(x̄) ≥(d)0

where (a) is due to convexity of fi(yi, yi) in yi, (b) due to the fact that fi([x∗]i, xi)

attains it minimum in xi ∈ Xi at the point x∗i , (c) is due to the concavity of fi(xi, x̄i)

in xi and (d) is due to the convexity of Φ. We see that 〈F (y), y − x∗〉 ≥ 0 for all

y ∈ Dom F , so that x∗ is a weak solution to the variational inequality in question.

⇐ Now let x∗ be a weak solution to the variational inequality associated with (24),

and let us prove that x∗ is a Nash equilibrium. Assume, on the contrary, that for some

i the function fi([x∗]i, xi) does not attain its minimum over xi ∈ Xi at the point x∗i ;

3Recall our notation, for z = [z1; ...; zm] ∈ X let us set zi = [z1; ...; zi−1; zi+1; ...; zm], so that fi(z) =
fi(z

i, zi)
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w.l.o.g., let it be the case for i = m. Let v be a minimizer of the convex continuous

function fm([x∗]m, ·) on Xm; then the function f(s) = fm([x∗]m, x∗m + s[v − x∗m]) is

nonincreasing in s ∈ [0, 1] and there exists s̄ ∈ (0, 1) such that f(s̄) − f(1) > 0, or,

equivalently, fm([x∗]m, x∗m + s̄[v − x∗m]) > fm([x∗]m, v). Since fm(x) is continuous in

x ∈ X, we can find, ε > 0, v̄ ∈ intXm close enough to v, and a small enough convex

neighborhood U (in Xm = X1 × ...×Xm−1) of the point [x∗]m such that

∀(u ∈ U) : fm(u, x∗m + s̄[v̄ − x∗m])− fm(u, v̄) ≥ ε. (27)

Let us choose somehow ū ∈ U ∩ intXm and let

x[ρ, δ] = ([x∗]m + ρ[ū− [x∗]m]︸ ︷︷ ︸
ūρ

, x∗m + δ[v̄ − x∗m]︸ ︷︷ ︸
vδ

),

so that x[ρ, δ] ∈ intX for 0 < ρ, δ ≤ 1. For 1 ≤ i < m and 0 ≤ ρ < 1, 0 < δ ≤ 1 we have

〈f ′i(x[ρ, δ]), xi[ρ, δ]− x∗i 〉 = ρ
1−ρ 〈f ′i(x[ρ, δ]), ūi − xi[ρ, δ]〉

≤
(a)

ρ
1−ρ [fi(xi[ρ, δ], ūi)− fi(x[ρ, δ])] ≤ ρ

1−ρM,
(28)

where M/2 is an upper bound on |fj(x)| over j = 1, ..., m and x ∈ X; here (a) is given

by the convexity of fi in xi ∈ Xi. We further have ūρ ∈ U , whence, by (27),

−ε ≥ fm(ūρ, v̄)− fm(ūρ, x
∗
m + s̄[v̄ − x∗m]) = fm(x[ρ, 1])− fm(x[ρ, s̄])

=
∫ 1

s̄
〈f ′m(x[ρ, s]), v̄ − x∗m〉ds.

We see that there exists δ = δρ ∈ [s̄, 1] such that 〈f ′m(xm[ρ, δρ], v̄−x∗m〉 ≤ −ε, or, which

is the same,

〈f ′m(x[ρ, δρ]), xm[ρ, δρ]− x∗m〉 = δρ〈f ′m(x[ρ, δρ]), v̄ − x∗m〉 ≤ −δρε ≤ −s̄ε.

Combining this relation with (28), we get

〈F (x[ρ, δρ]), x[ρ, δρ]− x∗〉 ≤ (m− 1)
ρ

1− ρ
M − s̄ε.

For small ρ > 0, the right hand side in this inequality is < 0, while the left hand side

is nonnegative for all ρ ∈ (0, 1] since x∗ is a weak solution to the variational inequality.

We now have the desired contradiction.

Relations between accuracy measures. We have associated each of the three func-
tional problems with convex structure — convex minimization, convex-concave saddle point
and convex Nash equilibrium problems — with their own accuracy measure. We showed
above that each of these problems can also be associated with variational inequalities with
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monotone operators and as such with the accuracy measure εvi(·) resulting from these varia-
tional inequalities. Consequently, each of our three problems is equipped with two accuracy
measures, and a natural question is, what is the relation between these measures? This
question admits a simple answer in the case of convex minimization and convex-concave
saddle point problems:
Proposition 2.1.3. [27] Consider the variational inequality associated with (a) a convex
minimization problem (18), or (b) with a convex-concave saddle point problem (21). Then
for every x ∈ X one has

εvi(x) ≤





εopt(x), in the case of (a)

εsad(x), in the case of (b)
(29)

Proof. Let (a) be the case. Then, by construction, for every y ∈ domF we have F (y) ∈
∂Xf(x), whence 〈F (y), x− y〉 ≤ f(x)− f(y) for all y ∈ DomF , x ∈ X, whence

εvi(x) = sup
y∈DomF

〈F (y), x− y〉 ≤ sup
y∈DomF

[f(x)− f(y)] ≤ f(x)−min
y∈X

f(y) = εopt(x).

Now let (b) be the case. Then for every y = [y1; y2] ∈ DomF we have F (y) = [f ′1(y);−f ′2(y)],
where f ′1(y) is a partial subgradient of f(y) in y1, and f ′2(y) is a partial supergradient of
f(y) in y2. consequently, for every x = [x1;x2] ∈ X we have

εvi(x) = sup
y∈DomF

〈F (y), x− y〉 = sup
y∈DomF

[ 〈f ′1(y), x1 − y1〉︸ ︷︷ ︸
≥f(x1,y2)−f(y1,y2)

+ 〈f ′2(y), y2 − x2〉︸ ︷︷ ︸
≥f(y1,y2)−f(y1,x2)

]

≤ sup
y∈DomF

[f(x1, y2)− f(y1, x2)] = f(x1)− f(x2) = εsad(x),

2.2 Accuracy Certificates for Problems with Convex Struc-
ture

In this section we shall follow material presented in [27]; specifically we will define and in-
vestigate the entity of primary importance for our study — namely the accuracy certificate.

2.2.1 Accuracy Certificates: the Goal

For the sake of definiteness, let us restrict ourselves for a moment to the convex minimization
problem in the form of (18). An “intelligent” solution algorithm for this problem should be
capable of generating a feasible solution x̄ of a pre-specified quality: εopt(x̄) ≤ ε, where ε is
a given-in-advance positive tolerance (which can be arbitrarily small). A related question
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is: How can we certify that the resulting approximate solution meets these properties? The
feasibility of x̄, can usually be certified by calling on a Separation oracle for the feasible
domain (which, essentially, means just checking that the constraints defining the feasible
domain X of the problem are satisfied at x̄, cf. Example 2.1.1). However certifying the
accuracy specification εopt(x̄) ≤ ε is a much more challenging problem,4 and the structure
of the associated certificates depends heavily on the structure of the convex minimization
problem in question. Here is a list of examples:

• When (18) is a Linear Programming (or, more generally, a Conic Programming) pro-
gram, the usual way to certify accuracy is to point out a feasible solution to the dual
program such that the duality gap associated with the resulting primal-dual feasible
pair of solutions is ≤ ε.

• Another way to certify accuracy is offered by self-concordance-based feasible start
path-following interior point methods [30]; here the accuracy certificate is given by
the fact that x̄ is “close” (in a certain precise and verifiable sense) to a point on the
central path with appropriately large value of the penalty parameter.

• Finally it may happen that the problem (18) in question can be represented as the
primal component (P ) of the primal-dual pair of optimization programs associated
with a convex-concave saddle point problem (21). Assuming that the domains X1, X2

and the cost function f(x1, x2) of (21) are sufficiently simple so that it is easy to com-
pute the accuracy measure εsad.5 In this case, similarly to the LP/conic Programming
case, a certificate for the relation εopt(x̄) ≤ ε can be given by a feasible solution ȳ to
the dual problem (D) such that εsad(x̄, ȳ) ≤ ε. This method of certifying accuracy is
utilized, for example, in recent first order methods (smoothing [33] and Mirror Prox
algorithm [29]) for “well-structured” large-scale convex minimization.

Unfortunately the above outlined approaches for certifying accuracy in convex minimiza-
tion are applicable only to “well structured” problems, and do not work in the general
black-box-oriented setting we are interested in. This does not mean, however, that no
black-box-oriented convex minimization algorithms capable of guaranteeing a pre-specified
accuracy are known; this feature is shared, for example, by the polynomial time Cutting
Plane algorithms (most notably, by the Ellipsoid method) and by “intelligent” gradient-type
methods for smooth and nonsmooth convex minimization (primarily, by Subgradient and
Mirror Descent algorithms and their bundle versions, see, e.g., [21, 31, 3, 4] and references
therein). While in hindsight these algorithms, (primarily, the Bundle-Level method [21]),
do suggest the notion of accuracy certificates as defined below, this notion, to the best of

4This is quite natural, since we don’t know the true minimum the goal then is to certify a negative
statement “there does not exist a feasible solution x with f(x) < f(x̄)− ε”.

5This is the case, for example, when f(x1, x2) is bilinear and it is easy to minimize linear functions over
X1 and X2, such that it is easy to compute f(x1) and f(x2).
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our knowledge, was explicitly defined for the first time only recently (specifically, in [27]).
We are about to define formally what an accuracy certificate is.

2.2.2 Accuracy Certificate: Definition

Let us consider the following situation: We are given a pair (X,F ) comprised of a solid
X ⊂ Rn given by a Separation oracle, and an operator F : DomF → Rn with convex
domain DomF (which is either intX, or X) represented via a First Order oracle that, given
an input x ∈ DomF , returns F (x). Note that we have associated with every one of the
aforementioned four problems with convex structure such a pair (X, F ), and in all these
cases F is monotone on its domain.

Now assume that we have at our disposal an algorithm which generates a sequence of search

points xt ∈ Rn, t = 1, 2, ..., where at every step t the algorithm queries the Separation oracle,
inputting the point xt, and if the Separation oracle says that xt ∈ DomF (such as when
x ∈ intX), the algorithm invokes the First Order oracle to get F (xt).

• We refer to the steps t where the First Order oracle is invoked as productive steps,
and

• we refer to the remaining steps as non-productive ones. Note that at a non-productive
step t we have xt 6∈ intX, so that the Separation oracle provides a vector et 6= 0 which
separates xt and X, i.e an et s.t. 〈et, xt − x〉 ≥ 0 for all x ∈ X.

The information acquired by such an algorithm during the course of τ = 1, 2, ... steps
contains at a minimum the τ -step execution protocol

Pτ = ({xt, et}τ
t=1, Iτ , Jτ ) ,

where

• xt is t-th search point,

• Iτ is an index set of productive steps t ≤ τ ,

• Jτ is an index set of non-productive steps t ≤ τ , and

• et = F (xt) when the step t is productive; or

• et 6= 0 separates xt and X, when the step t is non-productive.

The central notions of an Accuracy Certificate associated with an execution protocol Pτ are:
Definition 2.2.1. [27] Let Pτ = ({xt, et}τ

t=1, Iτ , Jτ ) be an execution protocol for X,F , and
let B be a solid containing X.
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(i) An accuracy certificate associated with an execution protocol Pτ is an ordered collection
ξ = {ξt ≥ 0}τ

t=1 of nonnegative weights such that
∑

t∈Iτ
ξt = 1.

Note that a certificate can only be associated with a productive execution protocol — one
with Iτ 6= ∅.

(ii) The resolution of an accuracy certificate ξ is the quantity

εcert(ξ|Pτ ,B) = max
x∈B

τ∑

t=1

ξt〈et, xt − x〉. (30)

(ii) The approximate solution induced by an accuracy certificate ξ is the vector

x̂ = x̂(Pτ , ξ
τ ) :=

∑

t∈Iτ

ξtxt. (31)

While at first glance these definitions may seem strange, we now provide the justification.

2.2.3 Accuracy Certificates: Justification

Theorem 2.2.1. [27] Let a pair (X, F ) originate from a problem with convex structure,
that is, from

(a) a convex optimization problem,

(b) a convex-concave saddle point problem,

(c) a convex Nash equilibrium problem, or

(d) a variational inequality with a monotone operator.

Let Pτ be an execution protocol for (X, F ), let ξτ be an accuracy certificate associated with
this protocol, and let x̂ = x̂(Pτ , ξ

τ ).

Then:
(i) x̂ ∈ X, so that x̂ is a feasible solution to the problem underlying X, F , and
(ii) for every solid B ⊃ X the resolution εcert(ξτ |Pτ ,B) of ξτ w.r.t. Pτ and B is an upper
bound on the corresponding accuracy measure of x̂, so that

• εopt(x̂) ≤ εcert in the case of (a),

• εsad(x̂) ≤ εcert in the case of (b),

• εN(x̂) ≤ εcert in the case of (c), and

• εvi(x̂) ≤ εcert in the case of (d).
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Proof.
(i): The fact that x̂ ∈ DomF ⊂ X is evident, since by definition of an accuracy certificate
x̂ is a convex combination of points xt, t ∈ Iτ , and all these points belong to the convex set
DomF ⊂ X.
(ii): To prove the case (d) of εvi(x̂) ≤ εcert, note that

∀y ∈ DomF :

〈F (y), x̄− y〉 = 〈F (y),
∑

t∈Iτ
ξtxt − y〉 [definition of x̂]

=
∑

t∈Iτ
ξt〈F (y), xt − y〉 [since

∑
t∈Iτ

ξt = 1]

≤ ∑
t∈Iτ

ξt〈F (xt), xt − y〉 [since ξt ≥ 0 and F is monotone]

≤ ∑
t∈Iτ

ξt〈F (xt), xt − y〉+
∑

t∈Jτ
ξt〈et, xt − y〉




since et separates xt and X 3 y

when t ∈ Jτ




=
∑τ

t=1 ξt〈et, xt − y〉
≤ εcert(ξ|Pτ ,B) [by definition of εcert and due to y ∈ X ⊂ B]

Since this holds for ∀y ∈ DomF then it certainly holds for y∗ = argmax〈F (y), x−y〉. Hence
εvi = sup

y∈DomF

〈F (y), x− y〉 ≤ εcert

To prove the case (a) of εopt(x̂) ≤ εcert, note that

∀y ∈ X :

f(x̂)− f(y) = f(
∑

t∈Iτ
ξtxt)− f(y) [definition of x̂]

≤ ∑
t∈Iτ

ξtf(xt)− f(y)




since f is convex on X, ξt ≥ 0,
∑

t∈Iτ
ξt = 1

and xt ∈ X, ∀t ∈ Iτ , and via Jensen’s Inequality.




=
∑

t∈Iτ
ξt[f(xt)− f(y)] [since

∑
t∈Iτ

ξt = 1]

≤ ∑
t∈Iτ

ξt〈et, xt − y〉




since et ∈ ∂f(xt) when t ∈ Iτ and ξt ≥ 0, by applying

the gradient inequality for convex functions.




≤ ∑τ
t=1 ξt〈et, xt − y〉 [since ξt ≥ 0 and et separates xt and X 3 y when t ∈ Jτ ]

≤ εcert(ξ|Pτ ,B) [by definition of εcert and due to y ∈ X ⊂ B],

as required for the case of (a). Since this holds for any y ∈ X it certainly holds for
y∗ = argmin f(x). Hence εopt ≤ εcert.

Recalling that a convex-concave saddle point problem is just the zero sum 2-player case of
a convex Nash equilibrium problem, (see section 2.1.3), all that remains is to prove the case
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(c) of εN(x̂) ≤ εcert. To this end note that6

∀y = [y1; ...; ym] ∈ X = X1 × ...×Xm :
∑m

i=1

[
fi(x̂)− fi(x̂i, yi)

]
= Φ(x̂)−∑m

i=1 fi(x̂i, yi) [definition of Φ]

= Φ(
∑

t∈Iτ
xt)−

∑m
i=1 fi(

∑
t∈Iτ

ξtx
i
t, yi) [definition of x̂]

≤ ∑
t∈Iτ

ξtΦ(xt)−
∑

t∈Iτ

∑m
i=1 f(xi

t, yi)




since Φ is convex, fi(zi, zi) is concave in

zi, while ξt ≥ 0 and
∑

t∈Iτ
ξt = 1




=
∑

t∈Iτ
ξt

∑m
i=1

[
fi(xt)− fi(xi

t, yi)
]

[definition of Φ]

≤ ∑
t∈Iτ

ξt
∑m

i=1〈f ′i(xt), (xt)i − yi〉 [since fi(zi, zi) is convex in zi]

=
∑

t∈Iτ
ξt〈et, xt − y〉 [by definition of et ∈ ∂f(xt), when t ∈ Iτ ]

≤ ∑τ
t=1 ξt〈et, xt − y〉 [since ξt ≥ 0 and et separates xt and X 3 y when t ∈ Jτ ]

≤ εcert(ξ|Pτ ,B) [by definition of εcert and due to y ∈ X ⊂ B],

as required in the case of (c).

Intermediate summary. Observe that when B is “simple”, so that it is easy to maximize
linear forms over B (for example, B is an Euclidean ball, or a box, or a simplex), it is easy
to verify, given an execution protocol Pτ , that a given candidate accuracy certificate ξτ is
indeed an accuracy certificate, and when this holds, it is also easy to compute its resolution.
This fact combined with Theorem 2.2.1 implies that an accuracy certificate with resolution
εcert ≤ ε is both a simple way to build a feasible approximate solution to a problem with
convex structure and a “simple proof” of the fact that this solution is ε-optimal.

This knowledge motivates a desire to equip black box oriented algorithms for problems with
convex structure with computationally cheap techniques for building accuracy certificates.
These certificates can be used in stopping rules for both identifying the termination step
(“stop when the resolution of the current accuracy certificate is ≤ a desired tolerance ε”)
and generating the resulting feasible and ε-optimal approximate solution. In respect to
this desire, a significant step was made in [27], where computationally cheap certificate-
generating techniques were proposed for the cutting plane algorithms, most notably, for the
Ellipsoid method. Here is the corresponding result from [27]:
Proposition 2.2.1. Let X ⊂ Rn be a solid given by Separation oracle and contained in the
centered at the origin Euclidean ball B = {x ∈ Rn : ‖x‖2 ≤ R} of a given radius R, and let

F : intX → Rn

6Recall our notation, for z = [z1; ...; zm] ∈ X let us set zi = [z1; ...; zi−1; zi+1; ...; zm], so that fi(z) =
fi(z

i, zi)
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be a semi-bounded vector field, meaning that the X-variation of F – the quantity

VarX(F ) := sup
x∈intX,y∈X

〈F (x), y − x〉

– is finite.

The Ellipsoid algorithm can be equipped with rules for building accuracy certificates in such
a way that

(i) The resulting algorithm, as applied to (X, F ), at every step τ

1. makes a single call to the Separation oracle at the current search point xτ ,

2. when Separation oracle reports that xτ ∈ intX, the algorithm makes a single call to
the F -oracle to get F (xτ ),

3. given the answer(s) of the oracle(s), produces

(a) the current execution protocol

Pτ = ({xt, et}τ
t=1, Iτ , Jτ ) ,


Iτ = {t ≤ τ : xt ∈ intX}, Jτ = {t ≤ τ : xt 6∈ intX},

t ∈ Iτ ⇒ et = F (xt), t ∈ Jt ⇒ et 6= 0 & 〈et, xt − x〉 ≥ 0, ∀x ∈ X




(b) an accuracy certificate ξτ for Pτ , provided Iτ 6= ∅

(c) the next search point xt+1

(ii) The resulting algorithm ensures that for every ε > 0, the number τ = τ(ε) of steps until
an accuracy certificate ξτ with εcert(ξτ |Pτ ,B) ≤ ε is built, is upper-bounded by

O(1)n2 ln
(

nR[VarX(F ) + ε]
rε

)
,

where r is the largest of radii of Euclidean balls contained in X;

(iii) For the resulting algorithm, for every τ , the average, over the first τ steps, “computa-
tional overhead” per step (the number of arithmetic operations except for those carried out
by the oracles) does not exceed O(1)n2.

This Proposition combines with Theorem 2.2.1 to imply that a problem with convex struc-
ture on a solid X ⊂ Rn (known to belong to a given Euclidean ball of radius R) can be
solved by the Ellipsoid method within (any) desired accuracy ε in O(1)n2 ln

(
nR
r

V +ε
ε

)
steps,

where V is the X-variation of the monotone operator associated with the problem, and r

is the maximum of radii of Euclidean balls contained in X.
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In the next chapter we make another step in this direction, specifically, equip with accuracy
certificates one of the most attractive state-of-the-art black-box oriented algorithms for
large-scale non-smooth problems with convex structure - the (generalized) Non-Euclidian
Restricted Memory Level Method (NERML, [4]).
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CHAPTER III

ACCURACY CERTIFICATES IN LARGE-SCALE FIRST

ORDER MINIMIZATION

3.1 Motivation

While cutting plane algorithms play a crucial role in the theory of Convex Programming —
these are the algorithms underlying the most general results on polynomial time solvability
of generic Convex Programming problems, see [2], their role as practical computational
tools is rather restricted. The reason is that the operation count of these algorithms as
applied to solving to within an accuracy of ε, n-dimensional problems with convex struc-
ture is at least O(1)n4 ln(1/ε). While polynomial in n and ln(1/ε), this operation count
grows rapidly with n, which makes these cutting plane algorithms impractical for problems
with several hundred or more variables. For well structured convex problems, like Linear,
Conic Quadratic, and Semidefinite Programming, a viable alternative is offered by polyno-

mial time interior point methods (see, e.g., [2]); however, a single iteration of an interior
point method is computationally demanding in the large scale case.1 As a result, interior
point methods as applied to really large-scale problems (tens of thousands or more vari-
ables) often become completely impractical. Hence, when speaking about these huge-scale
well structured convex problems (or about medium- or large-scale convex problems with no
transparent structure), computationally cheap gradient-type methods are the algorithms of
choice. These algorithms are black box oriented, and as such obey the theoretical limits of
performance established in Information-based Complexity Theory (see [46]) stating, essen-
tially, that the number of iterations required to solve an n-dimensional problem with convex
structure to within an accuracy of ε for large n is at least O(ε−2). Since this lower bound
grows rapidly when ε → +0, it follows that gradient-type methods cannot be used to solve
large-scale problems to within a high accuracy. On the positive side, an attractive property
of these methods is that in the case of problems with “favorable geometry,” the iteration
complexity (the number of calls to the oracles representing the problem) for finding an
ε-solution is dimension-independent (like O(ε−2)) or nearly so (like O(ln(n)ε−2)), and an

1O(n3) operations, unless the problem’s data possess a favorable sparsity pattern; this is usually the case
in Linear Programming problems originating in decision making, and usually is not the case for semidefinite
programs, or for LP problems originating in Signal Processing and several other areas.
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iteration is “cheap” (just O(n) operations on top of the computational expenses of the or-
acles). This makes computationally cheap gradient-type methods attractive techniques for
finding low- and medium-accuracy solutions to large-scale “favorable geometry” problems
with convex structure. This motivates, in particular, our goal in this chapter – extending
the computational techniques for building accuracy certificates to gradient-type black box
oriented algorithms. As a prototype algorithm in this development, we have chosen the
state-of-the-art Non-Euclidean Restricted Memory Level method (NERML, [4]).

3.2 NERML Algorithm with Certificates

NERML is aimed at solving problems with convex structure as defined in the previous
chapter and works with the variational inequalities associated with these problems, that is,
finally, with convex domains X and monotone operators on these domains.

3.2.1 NERML with Certificates: Setup

The setup for the NERML algorithm is given by

1. A solid B ⊂ Rn which contains the domain X of interest.

2. A norm ‖ · ‖ (not necessarily the Euclidean one) on the embedding space Rn of B.
The norm conjugate to the norm ‖ · ‖ is denoted by ‖ · ‖∗:

‖ξ‖∗ = max
x
{〈ξ, x〉 : ‖x‖ ≤ 1} .

3. A strongly convex and continuously differentiable distance generating function ω(·)
on B, strong convexity meaning that there exists α > 0 (called modulus of strong

convexity of ω w.r.t. ‖ · ‖) such that

〈ω′(x)− ω′(y), x− y〉 ≥ α‖x− y‖2 ∀x, y ∈ B.

We associate with B and ω the “ω-size of B” – the quantity

Ω = max
x,y∈B

[
ω(y)− ω(x)− 〈ω′(x), y − x〉] . (32)

Example 3.2.1. [Euclidean Setup] The simplest setup for NERML is the one where ‖ · ‖
is the usual Euclidean norm ‖ · ‖2 on Rn, and ω(x) = 1

2xT x. In this case, ‖ · ‖∗ = ‖ · ‖2,
α = 1 and Ω = maxx,y∈B

1
2‖x− y‖2

2. In particular, when B is contained in the ‖ · ‖2 ball of
radius R, we have Ω ≤ 2R2.
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Example 3.2.2. [`1 Setup] Here B is contained in the standard simplex ∆R = {x ∈ Rn :
x ≥ 0,

∑
i xi ≤ R} of size R, ‖ · ‖ is ‖ · ‖1 (so that ‖ · ‖∗ is ‖ · ‖∞), and ω(x) is scaled and

regularized entropy:

ω(x) = R(1 + κ)
n∑

i=1

(xi + Rκ/n) ln(xi + Rκ/n),

where κ > 0 is a once for ever fixed small regularization parameter (say, κ = 1.e− 16). In
this case

α = 1, Ω ≤ 2 ln(n/κ)R2 ≤ O(1)R2 ln n.

Here is the computation proving the above facts. Due to regularization, ω(·) is C∞

on B, and this function clearly is convex. In order to prove strong convexity with the

parameter α = 1 w.r.t. ‖ · ‖ = ‖ · ‖1, it suffices to verify that hT ω′′(x)h ≥ ‖h‖21 for all

h and for all x ∈ B. Indeed, with x ∈ B, setting ai = xi+Rκ/n
R(1+κ) , we have ai > 0 and

∑
i ai ≤ 1 due to xi ≥ 0 and

∑
i xi ≤ R. It follows that

||h||21 = [
∑

i|hi|]2 =
[∑

i[|hi|a−1/2
i ]a1/2

i

]2

≤ [∑
ih

2
i /ai

]
[
∑

i ai]

≤ ∑
i h2

i /ai = hT ω′′(x)h.

Further, when x, y ∈ B, setting ȳi = yi + Rκ/n, x̄i = xi + Rκ/n, one has

ω(y)− ω(x)− 〈ω′(x), y − x〉 = R(1 + κ) [
∑

i ȳi ln(ȳi/x̄i) +
∑

i x̄i −
∑

i ȳi]

[direct computation]

≤ R(1 + κ) [
∑

i x̄i +
∑

i ȳi ln(ȳi/x̄i)] [since ȳi ≥ 0]

≤ R(1 + κ) [
∑

i x̄i +
∑

i ȳi ln ((1 + κ)n/κ)] [since ȳi/x̄i ≤ (1 + κ)n/κ]

≤ R2(1 + κ)2 [1 + ln((1 + κ)n/κ)]

[since
∑

i x̄i ≤ R(1 + κ),
∑

i ȳi ≤ R(1 + κ)]

≤ 2R2 ln(n/κ) [since κ =1.e-16]

Example 3.2.3. [Spectahedron Setup] With this setup, B is the spectahedron – the set
of positive semidefinite matrices of trace ≤ R – in the space Sν of symmetric matrices of
block-diagonal structure ν = (ν1, ..., νk) (that is, matrices from Sν are symmetric block-
diagonal with k diagonal blocks of sizes ν1, ..., νk). The embedding space Sν is equipped
with the Frobenius inner product 〈x, y〉 = Tr(xy) and the trace norm ‖x‖ =

∑|ν|
i=1 λi(x),

where |ν| =
∑k

`=1 ν` is the row size of matrices x ∈ Sν , and λ1(x) ≥ λ2(x) ≥ ... ≥ λs(x)
are the eigenvalues of a symmetric s× s matrix x. The distance-generating function is the
regularized matrix entropy

ω(x) = 2R(1 + κ)
|ν|∑

i=1

(λi(x) + Rκ/|ν|) ln(λi(x) + Rκ/|ν|),
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where κ plays the same role as in the case of `1 setup; we lose nothing when assuming that
κ = 1.e− 16. For this setup, similarly to the `1-one,

α = 1, Ω ≤ O(1) ln(|ν|/κ)R2

see [4].

Note that when ν = (1, ..., 1), that is, Snu is the space of diagonal matrices, identifying
diagonal matrices and the vectors of their diagonal entries, spectahedrons become simplexes,
and the Spectahedron setup essentially reduces to the `1 setup.
Example 3.2.4. [Mixed Setup] In some cases (specially when solving saddle point and
Nash Equilibrium problems), the domain X in question is given as a direct product of
domains Xi ⊂ Ei, 1 ≤ i ≤ k, where Xi are convex domains, and Ei are Euclidean spaces
embedding Xi. In this case, a typical way to specify NERML setup is to combine NERML
setups for domains Xi, that is, to specify for i ≤ k solids Bi, Xi ⊂ Bi ⊂ Ei, norms ‖ · ‖(i)

on Ei, and distance-generating functions ωi(xi) for Bi, and set

(a) B = B1 × ...×Bk

(b) ω(x1, ..., xk) =
∑k

i=1
pi
αi

ωi(xi)

(c) ‖[x1; ...; xk]‖ =
√∑k

i=1 pi‖xi‖2
(i)

where positive reals pi are parameters of the construction, and αi are moduli of strong
convexity of ωi(·) w.r.t. ‖ · ‖(i). It is immediately seen that ω(·) is indeed a distance-
generating function for B with modulus of strong convexity w.r.t. ‖ · ‖ equal to 1, and the
ω-size of B does not exceed the quantity

Ω =
k∑

i=1

pi

αi
Ωi,

where Ωi is the ωi-size of Bi.

The “free parameters” p1, ..., pk of the construction can be chosen in order to optimize the
efficiency estimate of the associated version of NERML.

Implementability. In order for NERML (with or without certificates) to be practical, B
and ω should be “simple” and “match” each other, meaning that it should be easy to solve
auxiliary optimization problems of the form

min
x∈B

[〈a, x〉+ ω(x)]

for any linear form a. From now on we assume this to be true.

For example, with the Euclidean setup, B matches ω when B is a ball, a box, a standard
simplex, or a direct product of these basic domains. With the `1/Spectahedron setup, B
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matches ω when B is a standard simplex/spectahedron or is the intersection of a simplex
with a box. Note that passing from partial setups to a mixed one (see Example 3.2.4), one
preserves “matching:” if Bi matches ωi for all i, then B matches ω.

3.2.2 NERML with Certificates: Data and Goal

Let us fix the setup (B ⊂ Rn, ‖ · ‖, ω(·)) of the NERML algorithm.

The data for the NERML algorithm is a vector field

g(x) : B 7→ Rn

assumed to be bounded by 1:
‖g(x)‖∗ ≤ 1 ∀x ∈ B. (33)

Given the data, we

• associate with x ∈ B the affine function

hx(y) = 〈g(x), x− y〉 : Rn → R;

• associate with a finite set S ⊂ B the family FS of affine functions on Rn which are
convex combinations of functions hx(·), x ∈ S.

In the sequel, the words “we have at our disposal a function h(·) ∈ FS” mean that we know
the functions hx(·), x ∈ S, and nonnegative weights λx, x ∈ S, summing up to 1, such that
h(y) =

∑
x∈S λxhx(y).

The goal of the algorithm is, given a tolerance δ > 0, to find a finite set S ⊂ B and a
function h(·) ∈ FS such that

max
y∈B

h(y) ≤ δ. (34)

As we shall see in Sections 3.3, 3.4, solving a problem with convex structure can be reduced
to achieving the above goal for an appropriate vector field g(·) associated with the problem
of interest.

3.2.3 NERML with Certificates: Construction

The NERML algorithm with certificates builds search sequences x1 ∈ B, x2 ∈ B, ... along
with the sets St = {x1, ..., xt} ⊂ B, according to the following rules:
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Initialization. We choose an arbitrary x1 ∈ B and set f1 = max
y∈B

hx1(y). We clearly have

f1 ≥ 0.

• In the case of f1 = 0, we terminate and output h(x) = hx1(x) ∈ FS1 , thus ensuring
(34) with δ = 0.

• When f1 > 0, we proceed. Our subsequent actions are split into phases enumerated
1,2,...

Phase s = 1, 2, ... At the beginning of phase s, we have at our disposal

• the set Ss = {x1, ..., xts} ⊂ B of already built search points, and

• an affine function hs(·) ∈ FSs along with the real fs := max
x∈B

hs(x) ∈ (0, f1].

We define the level `s of phase s as

`s = (1− γ)fs,

where γ ∈ (0, 1) is a control parameter of the method. Note that `s > 0 due to fs > 0.

To save notation, we denote the search points generated at phase s as u1, u2, ..., so that
xts+t = ut, t = 1, 2, ....

Initializing phase s. We somehow choose

1. A collection of m functions hs
0,j(·) ∈ FSs , 1 ≤ j ≤ m, such that the set

Xs
0 = cl {x ∈ B : hs

0,j(x) > `s, 1 ≤ j ≤ m}

is nonempty,

2. A prox center u1 ∈ Xs
0 ,

and set
ωs(x) = ω(x)− ω(u1)− 〈x− u1, ω

′(u1)〉.
Here a positive integer m is a control parameter of the method.

Note that to ensure the above requirements, we can set u1 = argmaxx∈B h1(x) and choose
all hs

0,j equal to h1(·), thus ensuring that hs
0,j(u1) = f1 ≥ fs > `s.
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Step t = 1, 2, ... of phase s:

• At the beginning of step t, we have at our disposal

1. The set Ss
t−1 of all previous search points;

2. A collection of functions {hs
t−1,j(·) ∈ FSs

t−1
}m

j=1 such that the set

Xs
t−1 = cl {x ∈ B : hs

t,j(x) > `s, 1 ≤ j ≤ m}

is nonempty,

3. Current search point ut ∈ Xs
t−1 such that

ut = argmin
x∈Xs

t−1

ωs(x) (Πs
t )

Note that this relation is trivially true when t = 1.

• Our actions at step t are as follows.

1. We compute g(ut) and set

ht−1,m+1(x) = 〈g(ut), ut − x〉.

2. We solve the auxiliary problem

Opt = max
x∈B

min
1≤j≤m+1

ht−1,j(x) (35)

Note that

Opt = max
x∈B

min
λj≥0,

∑
j λj=1

m+1∑
j=1

λjh
s
t−1,j(x) = min

λj≥0,
∑

j λj=1
max
x∈B

m+1∑
j=1

λjh
s
t−1,j(x)

= max
x∈B

∑m+1
j=1 λt

jh
s
t−1,j(x),

where λt
j ≥ 0 and

∑m+1
j=1 λt

j = 1. We assume that when solving the auxiliary problem,
we compute the above weights λt

j , and thus have at our disposal the function

hs,t(·) =
m+1∑

j=1

λt
jh

s
t−1,j(·) ∈ FSs

t

such that
Opt = max

x∈B
hs,t(x).

2.A: It may happen that Opt ≤ δ. In this case we terminate and output hs,t(·) ∈
FSs

t
; this function satisfies (34).
2.B: It may happen that Opt < `s + θ(fs − `s), where θ ∈ (0, 1) is method’s
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control parameter. In this case, we terminate phase s and start phase s+1 by setting
hs+1 = hs,t, fs+1 = Opt. Note that by construction 0 < fs+1 ≤ [γ + θ(1− γ)]fs ≤ f1,
so that we have at our disposal all we need to start phase s + 1.

2.C: When neither 2.A, nor 2.B take place, we proceed with phase s, specifically,
as follows:

(a) We are in the situation when there exists a point u ∈ B such that hs
t−1,j(u) ≥

Opt > `s, so that the set Yt = {x ∈ B : hs
t−1,j(x) ≥ `s, 1 ≤ j ≤ m + 1}, has a

nonempty interior. We specify ut+1 as

ut+1 = argmin
x∈Yt

ωs(x). (36)

Observe that
ut+1 ∈ Xs

t−1 (37)

due to Yt ⊂ Xs
t−1.

(b) By optimality conditions for (36), for certain nonnegative µj , 1 ≤ j ≤ m + 1,
such that

µj [hs
t−1,j(ut+1)− `s] = 0, 1 ≤ j ≤ m + 1,

the vector

e := ω′s(ut+1)−
m+1∑

j=1

µj∇hs
t−1,j(·) (38)

is such that
〈e, x− ut+1〉 ≥ 0 ∀x ∈ B. (39)

• In the case of µ =
∑

j µj > 0, we set

hs
t,1 =

1
µ

m+1∑

j=1

µjh
s
t−1,j ,

so that

(a) hs
t,1 ∈ FSs

t
,

(b) hs
t,1(ut+1) = `s,

(c) 〈ω′s(ut+1)− µ∇hs
t,1, x− ut+1〉 ≥ 0∀x ∈ B

(40)

We then discard from the collection {hs
t−1,j(·)}m+1

j=1 two (arbitrarily chosen) ele-
ments and add to hs

t,1 the remaining m−1 elements of the collection, thus getting
an m-element collection {hs

t,j}m
j=1 of elements of FSs

t
.

Remark 3.2.1. We have ensured that the set Xs
t = cl {x ∈ B : hs

t,j > `s, 1 ≤
j ≤ m} is nonempty (indeed, we clearly have hs

t,j(û) > `s, 1 ≤ j ≤ m, where û is
an optimal solution to (35)). Besides this, we have ensured (Πs

t+1). Indeed, by
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construction ut+1 ∈ Yt, meaning that hs
t−1,j(ut+1) ≥ `s, 1 ≤ j ≤ m+1; since hs

t,j

by construction are convex combinations of the functions hs
t−1,j , 1 ≤ j ≤ m + 1,

it follows that ut+1 ∈ Xs
t+1. Besides this, (40.b-c) imply that

ut+1 = argmin
x

{
ωs(x) : x ∈ B, hs

t,1(x) ≥ `s

}
,

and the right hand side set clearly contains Xs
t+1. Thus, ut+1 indeed is the

minimizer of ωs(·) over Xs
t+1.

• In the case of µ = 0, (38) – (39) say that ut+1 is a minimizer of ωs(·) on B.
In this case, we discard from the collection {hs

t−1,j}m+1
j=1 one (arbitrarily chosen)

element, thus getting the m-element collection {hs
t,j}m

j=1. Here, by exactly the
same reasons as above, the set Xs

t+1 := cl {x ∈ B : hs
t,j(x) > `s} is nonempty

and contains ut+1, and of course (Πs
t+1) holds true (since ut+1 minimizes ωs(·)

on the entire B).

In both cases, the one of µ > 0 and the one of µ = 0, we have built the data
required to start step t + 1 of phase s, and we proceed to this step.

The description of the algorithm is completed.

Two important remarks are in order.
Remark 3.2.2. The outlined algorithm requires solving at every step two nontrivial aux-
iliary optimization problems, specifically, (35) and (36). It is explained in [4] that these
problems are relatively easy, provided that m is moderate (note that this parameter is under
our full control) and B and ω are “simple and fit each other,” meaning that we can easily
solve problems of the form

min
x∈B

[ω(x) + 〈a, x〉] . (∗)

For example, with Euclidean setup (see Example 3.2.1), problems (∗) are indeed easy, pro-
vided that B is a simple set (Euclidean ball or its intersection with the nonnegative orthant,
box, standard simplex,...). In the case of `1 setup (see Example 3.2.2), problems (∗) are
easy when B is the simplex {x ∈ Rn : x ≥ 0,

∑
i xi ≤ R}. Note that the auxiliary problems

arising in the presented algorithm are identical to those in the prototype NERML algorithm
presented in [4], where one can find also a detailed discussion of the implementation issues.
Remark 3.2.3. By construction, the presented algorithm produces upon termination (if
any)

• a protocol Πτ = {xt, g(xt)}τ
t=1, where τ is the step where the algorithm terminates,

and xt, 1 ≤ t ≤ τ , are the search points generated in course of the run; by construction,
all these search points belong to B;

• a collection of nonnegative weights λ = (λ1, λ2, ..., λτ ) summing up to 1 such that the

55



output

h(x) =
τ∑

t=1

λt〈g(xt), xt − x〉

satisfies the relation
max
x∈B

h(x) ≤ δ, (41)

where δ is the input value of the target tolerance.

We shall see in a while that the above entities can be easily converted into an accuracy
certificate.

3.2.4 NERML with Certificates: Analysis

We start with the following observation:
Proposition 3.2.1. Given on input a target tolerance δ > 0, the NERML algorithm termi-
nates after finitely many steps, with the output described in Remark 3.2.3, and the number
of steps of the algorithm does not exceed

N = C(γ, θ)
Ω

αδ2
, where C(γ, θ) =

2(1 + γ2)
γ2[1− [γ + (1− γ)θ]2]

. (42)

Proof. Observe that the algorithm can terminate only according to 2.A, and in this case
the output is indeed as claimed in Proposition. Thus, all we need to prove is the upper
bound (42) on the number of steps before termination.

10. Let us bound from above the number of steps at an arbitrary phase s. Assume that
phase s did not terminate in course of the first T steps, so that u1, ..., uT are well defined.
We claim that then

‖ut − ut+1‖ ≥ `s, 1 ≤ t < T. (43)

Indeed, by construction hs
t−1,m+1(x) := 〈g(ut), ut − x〉 is ≥ `s = γfs when x = ut+1 (due to

ut+1 ∈ Yt). Since ‖g(u)‖∗ ≤ 1 for all u ∈ B, (43) follows.

Now let us look at what happens with the quantities ωs(ut) as t grows. By strong convexity
of ω (and thus ωs) we have

ωs(ut+1)− ωs(ut) ≥ 〈ω′s(ut), ut+1 − ut〉+
α

2
‖ut − ut+1‖2

The first term in the right hand side is ≥ 0, since ut is the minimizer of ωs(·) over Xs
t−1,

while ut+1 ∈ Yt ⊂ Xs
t−1. The second term in the right hand side is ≥ α

2 `2
s by (43). Since

ωs(u1) = 0 and ωs(ut+1)− ωs(ut) ≥ α
2 `2

s, we get

ωs(uT ) ≥ (T − 1)
α`2

s

2
= (T − 1)

αγ2f2
s

2
.
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Recalling the definition of Ω, the left hand side in this inequality is ≤ Ω. It follows that
whenever phase s does not terminate in course of the first T steps, one has

T ≤ 2Ω
αγ2f2

s

+ 1,

that is, the total number of steps at phase s, provided this phase exists, is at most

Ts =
2Ω

αγ2f2
s

+ 2.

Now, we have
fs ≤ f1 = max

x∈B
〈g(x0), x− x0〉 ≤ max

x∈B
‖x− x0‖

(recall that ‖g(x)‖∗ ≤ 1). Besides this,

ω(x) ≥ ω(x0) + 〈ω′(x0), x− x0〉+
α

2
‖x− x0‖2 ∀x ∈ B,

whence
max
x∈B

‖x− x0‖ ≤
√

2Ω/α.

Putting things together, we get
fs ≤ f1 ≤

√
2Ω/α,

whence 2Ω
αγ2f2

s
≥ γ−2 and therefore

Ts =
2Ω

αγ2f2
s

+ 2 ≤ 2(1 + 2γ2)
γ2

Ω
αf2

s

for all s for which s-th phase exists. By construction, we have fs ≥ δ and fs ≤ [γ + (1 −
γ)θ]fs−1, whence, denoting by s̄ the number of the phase where the method terminates, the
total number of steps is bounded by

∑s̄
s=1

2(1+2γ2)
γ2

Ω
αf2

s
≤ ∑s̄

s=1
2(1+2γ2)

γ2
Ω[γ+(1−γ)θ]2(s̄−s)

αf2
s̄

≤ ∑s̄
s=1

2(1+2γ2)
γ2

Ω[γ+(1−γ)θ]2(s̄−s)

αδ2

≤ 2(1+2γ2)
γ2(1−[γ+(1−γ)θ]2)

Ω
αδ2 ,

as claimed.

We are about to explain how to utilize the above algorithm when solving problems with
convex structure. To this end, we present two possible schemes, differing in the assumptions
imposed on the problem to be solved.
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3.3 Accuracy Certificates for Problems with Convex Struc-
ture via NERML, Case I: X is Simple

3.3.1 The Situation

Assume that we want to solve a problem with convex structure as defined in sections 2.1.1
– 2.1.4 in the situation when

A.1. We can take the domain X of the problem as the solid B participating in the setup
of NERML.
In light of Remark 3.2.2, this assumption means that X is simple enough to be associ-
ated with an explicit distance generating function in a way which ensure that problems
(∗) with B = X are easy to solve. This requirement is satisfied, for example, when X

is an explicitly given ball, or box, and we use the Euclidean setup (Example 3.2.1),
or when X is the standard simplex ∆R, and we use the `1 setup. We can also “sur-
vive” the situations when X is cut off from the previously mentioned simple sets by
a moderate number of explicitly given linear inequalities.

A.2. The domain of the monotone operator F associated with the problem of interest is the
entire X, and associated First Order oracle “serves” the entire DomF , see Remarks
3.2.1 – 3.2.3. Moreover, we assume that there exists c ∈ X = B, V < ∞, and a
Θ ∈ R > 0 such that

∀(x ∈ B, y : ‖y‖ ≤ 1) : 〈F (x), c + Θy − x〉 ≤ V. (44)

Assumption A.2 deserves some additional examination.

A.2.1. The simplest way to ensure A.2 is to assume that F is bounded on its domain
DomF = X = B:

‖F‖∗ := sup
x∈DomF

‖F (x)‖∗ < ∞. (45)

Denoting by R(X) the radius of the smallest ‖ · ‖ ball containing X and choosing an
arbitrary c ∈ X, we clearly have for every Θ > 0:

∀(y : ‖y‖ ≤ 1, x ∈ X) : 〈F (x), c + Θy − x〉 ≤ ‖F‖∗(2R(X) + Θ),

that is, (44) holds no matter what the value is for Θ > 0, provided that

V = V(Θ) = ‖F‖∗(2R(X) + Θ). (46)

A.2.2 In connection with A.2.1 it should be noted that for a “functional” problem with
convex structure (i.e., convex minimization problem (18), or convex-concave saddle
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point problem (21), or convex Nash equilibrium problem 2.1.3), the corresponding
monotone operator indeed can be chosen to be bounded, provided that the underlying
function(s) are Lipschitz continuous. Specifically,

• In the case of a convex minimization problem (18), Lipschitz continuity, with a
constant L, of the objective f , with respect to the norm ‖ · ‖, implies that at
every point x ∈ X f admits a subgradient f ′(x) with ‖f ′(x)‖∗ ≤ L, and further
at all the points from intX all the subgradients satisfy this bound, so that we
ensure the validity of A.1 and the relation ‖F‖∗ ≤ L;

• In the case of a convex-concave saddle point problem, assuming that the norm
‖ · ‖ (which in this case is a norm on the direct product Rn1 ×Rn2), satisfies the
relation

‖[x1; x2]‖ ≥ max[‖[x1; 0]‖, ‖[0, x2]‖] ∀x1 ∈ Rn1 , x2 ∈ Rn2 ,

we have that Lipschitz continuity, with a constant L, of the cost function f(x1, x2)
with respect to ‖ ·‖ implies that the associated monotone operator can be chosen
to satisfy ‖F‖∗ ≤ 2L, and, moreover, whatever be the choice of partial sub-and
supergradients f ′1(x), f ′2(x), one always has ‖F (x)‖∗ ≤ 2L when x ∈ intX;

• Similarly, in the case of a convex Nash equilibrium problem, assuming that the
norm ‖ · ‖ (which in this case is a norm on Rn1 × ...×Rnm) satisfies the relation

∀(xi ∈ Rni , 1 ≤ i ≤ m) :

‖[x1; ...; xm]‖ ≥ max [‖[x1; 0; ...; 0]‖, ‖[0, x2; 0; ...; 0]‖, ..., ‖[0; ...; 0; xm]‖] ,

we have that the Lipschitz continuity, with a constant L, of every one of the
functions fi(x), 1 ≤ i ≤ m, implies that the associated monotone operator
can be chosen to satisfy the relation ‖F‖∗ ≤ mL, and for x ∈ intX, one has
‖F (x)‖∗ ≤ mL whatever the choice of the associated partial subgradients f ′i(x).

3.3.2 Construction and Result

Now we are ready to formulate out first major result on NERML.
Proposition 3.3.1. Let assumptions A.1-2 take place. Given ε > 0, let us set

δ =
Θε

V + ε
.

Consider the vector field g(x) : X = B → Rn given by

g(x) =





0, F (x) = 0

1
‖F (x)‖∗F (x), F (x) 6= 0
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and let us apply to this vector field the NERML algorithm, the target tolerance being δ. Let
Πτ = {xt, g(xt)}τ

t=1, λ, h(·) be the resulting protocol and output (see Remark 3.2.3), so that
h(x) =

∑τ
t=1 λt〈g(xt), xt − x〉 satisfies

max
x∈B

h(x) ≤ δ, (47)

while λ ≥ 0 and
∑τ

t=1 λt = 1.

In the case when there exists t∗ ∈ {1, ..., τ} such that g(xt∗) = 0, let us set ξt∗ = 1 and
ξt = 0 for all remaining t ∈ {1, ..., τ}. When g(xt) 6= 0 for all t ∈ {1, ..., τ}, let us set

ξt =
λt/‖F (xt)‖∗∑τ

s=1 λs/‖F (xs)‖∗ .

Then ξ ≥ 0,
∑τ

t=1 ξt = 1 and

max
x∈B

τ∑

t=1

ξt〈F (xt), xt − x〉 ≤ ε. (48)

Besides this,

τ ≤ C(γ, θ)
Ω

αδ2
= C(γ, θ)

Ω(V + ε)2

αΘ2ε2
. (49)

Proof. The complexity bound (49) is readily given by Proposition 3.2.1. The facts that
ξt ≥ 0,

∑
t ξt = 1 are evident. Relation (48) is evident when g(xt) = 0 for some t ∈ {1, ..., τ}.

Thus, it remains to demonstrate that (48) holds true when g(xt) 6= 0 for all t ≤ τ . Let us
set ht = F (xt), gt = ‖ht‖∗. Relation (47) reads

∀x ∈ B :
τ∑

t=1

λt

gt
〈ht, xt − x〉 ≤ δ. (50)

Specifying in (44) x as xt, we have

〈ht, c− xt〉+ Θ‖ht‖∗ = max
y:‖y‖≤1

〈ht, c− xt + Θy〉 ≤ V,

whence
〈ht, xt − c〉 ≥ Θgt −V.

Multiplying these inequalities by λt
gt

and summing up over t = 1, ..., τ , we get

τ∑

t=1

λt

gt
〈ht, xt − c〉 ≥ Θ

τ∑

t=1

λt

︸ ︷︷ ︸
=1

−
(

τ∑

t=1

λt/gt

)
V.

The left hand side in this inequality is ≤ δ by (50) due to c ∈ B. It follows that

τ∑

t=1

λt/gt ≥ Θ− δ

V
=

1
V

[
Θ− Θε

V + ε

]
=

Θ
V + ε

=
δ

ε
.
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Dividing both sides in (50) by
∑τ

t=1 λt/gt, we get

max
x∈B

τ∑

t=1

ξt〈F (xt), xt − x〉 ≤ δ∑τ
t=1 λt/gt

≤ ε,

as claimed in (48).

3.3.3 Comments

1) In the situation of Proposition 3.3.1, the protocol Πτ = {xt, g(xt)}τ
t=1 reported by

NERML can be straightforwardly converted into a “fully productive” (no non-productive
steps) execution protocol Pτ = ({xt, F (xt)}τ

t=1, Iτ , Jτ ) for (X = B, F ), where Iτ = {1, ..., τ}
and Jτ = ∅. The Proposition further states that the NERML output readily provides
an accuracy certificate ξ for this execution protocol, and that for this certificate one has
εcert(ξ|Pτ ,B) ≤ ε. In other words, we have indeed equipped NERML with accuracy certifi-
cates.

Now let us examine the complexity of building an accuracy certificate with resolution ε.
Assume that the monotone operator F in question is bounded. As we have seen in A.2.1,
in this case the assumption A.2 is satisfied for every Θ with V = V(Θ) = ‖F‖∗(2R(X)+Θ).
Setting Θ = R(X) and assuming ε ≤ ‖F‖∗R(X), we get from (49) the bound

τ ≤ C̄(γ, θ)
Ω‖F‖2∗

αε2
, (51)

which is exactly the complexity estimate, as stated in [4], for the prototype NERML algo-
rithm (i.e the NERML algorithm which does not produce accuracy certificates). Thus, as it
was done in [27] for the case of Cutting Plane algorithms, we have succeeded in equipping
the prototype algorithm with a computationally cheap technique for producing accuracy
certificates which justifies the theoretical complexity of the prototype.

2) To illustrate the complexity results we have obtained, consider the situation when we
use the `1 setup, (see Example 3.2.2). Here the complexity bound (51) (where we treat γ,
and θ as absolute constants) reads

τ ≤ O(1)
ln(n)R2‖F‖2∗

ε2
,

where R is the size of the standard simplex ∆R containing X = B, and ‖F‖∗ = sup
x∈X

‖F (x)‖∞.

Note that this complexity bound is nearly dimension-independent and, moreover, nearly op-
timal in the large scale case (see [4] and references therein). Similarly, in the case of the
Euclidean setup (see Example 3.2.1), the complexity bound (51) becomes a fully dimension-
independent (and optimal in the large-scale case) bound

τ ≤ O(1)
R2‖F‖2

2

ε
,
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where R is the radius of the smallest Euclidean ball containing X = B, and ‖F‖2 =
sup
x∈X

‖F (x)‖2.

3.4 Accuracy Certificates for Problems with Convex Struc-
ture via NERML, Case II: X is given by a Separation
Oracle

From a practical viewpoint, the drawback of the situation considered in section 3.3 lies in
the restrictive nature of assumption A.1 which “in reality” means that X must be really
simple (otherwise the auxiliary problems arising in NERML can become too difficult). We
are about to demonstrate that we can also handle the case of a “complicated” X, e.g., an
X given by a Separation oracle, provided that X can be reasonably well approximated by
a ‖ · ‖ ball.

3.4.1 Preliminaries: Semi-bounded Operators

Let X ⊂ Rn be a solid, and F : Dom F → Rn be an operator with DomF ⊇ intX. Then
F is said to be bounded on X, if the quantity ‖F‖2 = sup {‖F (x)‖2 : x ∈ intX} is finite.
While F is said to be semi-bounded on X, if the quantity

VarX(F ) = sup{〈F (x), y − x〉 : x ∈ intX, y ∈ X}

is finite. Clearly a bounded operator F is semi-bounded with VarX(F ) ≤ ‖F‖2Diam2(X),
where Diam2 is the Euclidean diameter of X. There exists, however, semi-bounded op-
erators which are not bounded. E.g., the monotone operator F associated with a convex
minimization problem (18) with a bounded objective f is clearly semi-bounded: since for
x ∈ DomF F (x) ∈ ∂Xf(x), we have 〈F (x), y− x〉 ≤ f(y)− f(x) for all x ∈ DomF , y ∈ X,
whence

VarX(F ) ≤ sup
X

f −min
X

f < ∞.

Moreover, the monotone operator associated with (18) can be semi-bounded for certain
unbounded objectives f , most notably, when f is a ϑ-self-concordant barrier for X [30,
Chapter 2]; for such a barrier, VarX(F ) ≤ ϑ [30, Proposition 2.3.2].

For similar reasons, the monotone operator associated with a convex Nash equilibrium
problem (section 2.1.3) (in particular, with a convex-concave saddle point problem, section
2.1.2) is always semi-bounded:

VarX(F ) ≤
m∑

i=1

[max
X

fi(x)−min
X

fi(x)].
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3.4.2 Situation and Goal

The situation we intend to consider is as follows: We are given a NERML setup, i.,e., a
norm ‖ · ‖ on Rn, a solid B ⊂ Rn and a distance generating function ω(·) for this solid.
We assume here that B is contained within a ‖ · ‖-ball of a known radius R > 0 centered
at the origin. Further, we assume that there exists a solid X, X ⊂ B, represented by a
Separation oracle and known to contain a ‖ · ‖-ball of a given radius r > 0. Finally, we
assume that we are given an operator F : DomF → Rn with convex domain such that
intX ⊂ DomF ⊂ X, such that F is semi-bounded on X, and we are given an upper bound
V < ∞ on the corresponding variation:

sup{〈F (x), y − x〉 : x ∈ intX, y ∈ X} ≤ V. (52)

Finally, we assume that we are given access to a First Order oracle which, given on input
x ∈ intX, returns F (x).

Our goal is generate, given ε > 0, an execution protocol Pτ for (X, F ) with an accuracy
certificate for this protocol with resolution εcert ≤ ε, that is, we desire to generate a sequence
of points x1, ..., xτ and nonnegative reals ξt, 1 ≤ t ≤ τ , such that

∑

t:xt∈intX

ξt = 1 & max
x∈B

τ∑

t=1

ξt〈et, xt − x〉 ≤ ε, (53)

where et = F (xt) when xt ∈ intX and et separates xt and X:

et 6= 0, 〈et, xt − x〉 ≥ 0 ∀x ∈ X

when xt 6∈ intX.

3.4.3 The Construction

In order to achieve our goal, we

1. Define a vector field g(x) : B → Rn by the relation

g(x) =





F (x)/‖F (x)‖∗, x ∈ intX, F (x) 6= 0

0, x ∈ intX, F (x) = 0

ex/‖ex‖∗, x 6∈ intX

,

where for x 6∈ intX the linear form given by ex separates x and X and is nonzero.

Note that the Separation oracle for X and the First Order oracle for F we have at
our disposal allow us to compute g(x) for every x ∈ B.
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2. Apply to the vector field g(·) the NERML algorithm as described in section 3.2.2, the
target tolerance being

δ =
εr2

V(r + 2R) + ε(2r + 2R)
.

Applying Proposition 3.2.1, in

τ ≤ C(γ, θ)
Ω

αδ2
≤ 16C(γ, θ)

ΩR2(V + ε)2

αr4ε2
(54)

steps we build a set S = {x1, ..., xτ} ⊂ B and a function h(x) =
∑
t

λt〈g(xt), xt − x〉
with λt ≥ 0,

∑
t λt = 1, such that

max
x∈B

h(x) ≤ δ.

Note that as a byproduct of generating S, h(·), and λ, we have at our disposal the
sets It = {t ≤ τ : xt ∈ intX}, Jt = {t ≤ τ : xt 6∈ intX} and vectors et such that
et = F (xt) when t ∈ Iτ and et = g(xt) separates xt and X when t ∈ Jτ . Thus, we
have at our disposal an execution protocol Pτ = ({xt, et}τ

t=1, Iτ , Jτ ) for (X,F ).

3. Note that two things may happen
Case A: It may happen that there exists t∗ ≤ τ such that g(xt) = 0. In this case, we
set ξt∗ = 1, ξt = 0, t 6= t∗.
Case B: g(xt) 6= 0 for all t ≤ τ . In this case, we set µ =

∑
t∈I λt/‖F (xt)‖∗, and

ξt =





λt
µ , xt 6∈ intX

λt
‖F (xt)‖∗µ , xt ∈ intX.

3.4.4 The Result

Our main result here is as follows:
Proposition 3.4.1. If B is the case, the above procedure is well defined (that is, Iτ 6= ∅
and µ > 0). In both cases A,B we have ξt ≥ 0,

∑
t∈Iτ

ξt = 1, and

εcert(ξ|Pτ ,B) ≤ ε. (55)

Proof. Since g(x) 6= 0 when x 6∈ intX, in the case of A we have xt∗ ∈ intX, and all required
facts follow. Now assume that B is the case.

10. Let P =
∑

t∈Iτ
λt, and let c be such that the ‖ · ‖ ball of radius r centered at c is

contained in X. When t 6∈ Iτ , we have

∀(y, ‖y‖ ≤ 1) : 〈g(xt), xt − c− ry〉 ≥ 0& ‖g(xt)‖∗ = 1,
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whence
〈g(xt), xt − c〉 ≥ r.

When t ∈ Iτ , we have ‖xt − c‖ ≤ 2R (since xt, c ∈ X ⊂ B and B is contained in the ‖ · ‖
ball of radius R) and ‖g(xt)‖∗ = 1, whence

〈g(xt), xt − c〉 ≥ −2R.

We therefore have
δ ≥

∑
t

λt〈g(xt), xt − c〉 ≥ (1− P )r − 2PR,

whence
P (r + 2R) ≥ r − δ

and therefore
P ≥ r − δ

r + 2R
.

Since δ < r, we have P > 0. Thus, Iτ 6= ∅ and µ > 0. It follows that ξt ≥ 0 are well defined
and

∑
t∈Iτ

ξt = 1.

20. For t ∈ Iτ , let us set gt = ‖F (xt)‖∗. When x ∈ X, we have
∑

t∈Jτ
λt〈g(xt), xt − x〉 ≥ 0,

whence
∀x ∈ X :

∑

t∈Iτ

λt〈g(xt), xt − x〉 =
∑

t∈Iτ

λt

gt
〈F (xt), xt − x〉 ≤ δ.

Now let t ∈ Iτ , and let vt, ‖vt‖ = 1, be such that 〈F (xt), vt〉 = gt. Since the vector c + rvt

belongs to X, we have
〈F (xt), c + rvt − xt〉 ≤ V,

whence
〈F (xt), xt − c〉 ≥ rgt −V.

Multiplying by λt
gt

and summing up over t ∈ Iτ , we get

δ ≥
∑

t∈Iτ

λt

gt
〈F (xt), xt − c〉 ≥ rP − µV,

whence

µ ≥ rP − δ

V
≥ r r−δ

r+2R − δ

V
=

δ

ε
.

It follows that

∀(x ∈ B) :
[∑

t∈Iτ
ξt〈F (xt), xt − x〉+

∑
t∈Jτ

ξt〈g(xt), xt − x〉] = 1
µ

∑
t λt〈g(xt), xt − x〉 ≤ ε,

that is, ξ is an accuracy certificate with resolution ≤ ε.
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CHAPTER IV

ACCURACY CERTIFICATES: ACADEMIC

APPLICATIONS

In this chapter, we present several novel academic applications of the accuracy certificates.

4.1 Certifying Emptiness of the Intersection of Solids

The problem. Let X1, ..., Xm be convex solids known to belong to the centered at the
origin Euclidean ball VR of a given radius R in Rn. We assume that these solids are given
by Separation oracles. It is trivial to provide a certificate proving that ∩Xi 6= ∅, indeed to
certify this it suffices to provide an x ∈ ∩Xi; the validity of such a certificate can be easily
verified by calling the Separation oracles representing Xi. However it is not immediately
obvious how one could certify the opposite, namely, that ∩Xi = ∅. We propose a simple
certificate for this fact, namely, as follows:
Proposition 4.1.1. Let X = X1× ...×Xm ⊂ V m

R = VR× ...×VR ⊂ Rmn = Rn× ...×Rn.
Assume we can point out a finite collection of points ws ∈ Rmn such that ws /∈ intX along
with vectors ηs = [η1

s ; ...; η
m
s ] ∈ Rmn and nonnegative weights ζs, 1 ≤ s ≤ S, such that ηs

separates ws and X:
〈ηs, ws〉 ≥ sup

w∈X
〈ηs, w〉,

and the linear inequality

〈P
[

S∑
s=1

ζsηs

]
, y〉 ≤ ∑S

s=1 ζs〈ηs, ws〉
[
P [x1; ...; xm] =

∑m
i=1 xi : Rmn → Rn

] (56)

in variable y ∈ Rn has no solutions in the ball VR. Then ∩iXi = ∅.

Proof. Assuming, on the contrary to what should be proved, that ∩iXi 6= ∅, we can
choose y ∈ ∩iXi and set x = [y; ...; y], so that x ∈ X. Note that y ∈ VR due to Xi ⊂ VR,
i = 1, ..., m. We have 〈∑i η

i
s, y〉 = 〈ηs, x〉 ≤ 〈ηs, ws〉 for all s. It follows that y ∈ VR is a

solution to the linear inequality in (56), which is a desired contradiction.

Proposition 4.1.1 can be interpreted as follows: whenever we can specify the data S,
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{ws, ηs, ζs}S
s=1 participating in the premise of the proposition in such a way that the inequal-

ity (56) has no solutions in VR, we can treat these data as a certificate for the emptiness of
∩iXi. Note that given the data, it is easy to verify whether (56) has or has no solutions in
VR: it has no solutions in this ball iff

−R‖P
[∑S

s=1
ζsηs

]
‖2 >

S∑

s=1

ζs〈ηs, ws〉. (57)

While this proposition shows that the existence of such a certificate is a sufficient condition
for ∩iXi = ∅, it does not show if it is also necessary for the intersection of Xi to be empty.
Similarly the proposition does not show how to build such a certificate if one does exist.
We answer these questions now.

Let us define a convex function f : X 7→ R as

f(x) = f(x1, ..., xm) =
1
2

m∑

i=1

‖xi − xi+1‖2
2,

where xm+1 ≡ x1. Now let us consider the optimization problem

Opt = min
x∈X

f(x) (58)

By defining our problem in this manner we ensure that the sets Xi have no point in common
iff Opt > 0.

Observe that the Separation oracles for Xi induce a Separation oracle for X, and there
is no problem with equipping f with a First Order oracle which serves X. Thus, we can
solve the convex minimization problem (58) by an algorithm B with certificates, e.g., by
the Ellipsoid method with certificates (Proposition 2.2.1) or by NERML with certificates
(chapter 3). Assume that after τ steps the algorithm produces an execution protocol Pτ =
({xt, et}τ

t=1, Iτ , Jτ ) (where xt ∈ intX and et = f ′(xt) when t ∈ Iτ , and xt 6∈ intX and et 6= 0
separates xt and X when t ∈ Jτ ) and an associated certificate ξτ .

It may happen that Jτ 6= ∅; in this case, we denote by S the number of elements in Jτ and
by t(s), 1 ≤ s ≤ S, the s-th of these elements. Then the data

ωS =
{

ws = xt(s), ηs = et(s), ζs = ξτ
t(s)

}S

s=1

can be treated as a candidate emptiness certificate as defined in Proposition 4.1.1.
Proposition 4.1.2. Let τ be such that ξτ is well defined, and let

δτ = 2
∑

t∈Iτ

ξτ
t f(xt)− εcert(ξτ |Pτ , V

m
R ).

Whenever δτ > 0, we have Jτ 6= ∅, so that ωS is well defined, and ωS is a valid emptiness
certificate for ∩iXi.
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Proof. Let Pτ = {(xt, et)}τ
t=1 be an execution protocol associated with (58) and satisfying

the premise of Proposition, and let ξ be a certificate for Pτ . In order to make the upcoming
calculations more transparent we set

ai =
∑

t∈Jτ

ξt〈ei
t, x

i
t〉,

f i =
∑

t∈Jτ

ξte
i
t,

zi =
∑

t∈Iτ

ξt[2xi
t − xi+1

t − xi−1
t ],

where, x0 := xm and, same as above, xm+1 := x1. Taking into account that f is homoge-
neous of degree 2, so that 〈f ′(x), x〉 = 2f(x), and that [f ′(x1, ..., xm)]i = 2xi − xi+1 − xi−1,
we have

εcert(ξ|Pτ , V
m
R )

= max
x∈V m

R

[
∑

t∈Iτ

ξt〈f ′(xt), xt − x〉+
∑

t∈Jτ

ξt

m∑
i=1
〈ei

t, x
i
t − xi〉

]

= max
x∈V m

R

[
∑

t∈Iτ

[
2ξtf(xt)− ξt

m∑
i=1
〈2xi

t − xi+1
t − xi−1

t , xi〉
]

+
m∑

i=1
[ai − 〈f i, xi〉]

]

= 2
∑

t∈Iτ

ξtf(xt) +
m∑

i=1
ai + R

m∑
i=1

‖zi + f i‖2,

where the last equality follows from the fact that VR is the centered at the origin Euclidean
ball of the radius R. Rearranging terms we have that

m∑

i=1

ai + R
m∑

i=1

‖zi + f i‖2 = εcert(ξ|Pτ , V
m
R )− 2

∑

t∈Iτ

ξtf(xt)

Now since
∑

i z
i = 0, and by the Triangle inequality we have

m∑

i=1

‖zi + f i‖2 ≥ ‖
m∑

i=1

(zi + f i)‖2 = ‖
∑

i

f i‖2,

whence

R‖
m∑

i=1

f i‖2 ≤ −
∑

i

ai + εcert(ξ|Pτ , V
m
R )− 2

∑

t∈Iτ

ξtf(xt)

︸ ︷︷ ︸
−δτ

(59)

Now (59), and our assumption that δτ ≥ 0 along with our definitions of f i =
∑

t∈Jτ

ξte
i
t and

ai =
∑

t∈Jτ

ξt〈ei
t, x

i
t〉 immediately implies that Jτ 6= ∅, and

−R‖
∑

i

f i‖2 >

m∑

i=1

ai. (60)

68



While Jτ 6= ∅ and (57) together proves that ωS is well defined, and that ωS is a valid
emptiness certificate for ∩iXi.

Note that if the algorithm with certificates B converges, meaning that

εcert(ξτ |Pτ , V
m
R ) → 0, τ → +∞

(as is the case, e.g., for the Ellipsoid and NERML algorithms with certificates), and ∩iXi =
∅, so that Opt > 0, we will eventually have δτ > 0. Indeed, since ξτ

t ≥ 0, and
∑

t∈Iτ
ξτ
t = 1

we have that
∑

t∈Iτ
ξτ
t f(xt) ≥ Opt, and thus δτ = 2

∑
t∈Iτ

ξτ
t f(xt) − εcert(ξτ |Pτ , V

m
R ) > 0 for

all large enough values of τ (namely, those for which εcert(ξτ |Pτ , V
m
R ) < 2Opt. When it

happens for the first time that δτ > 0, we get an emptiness certificate for ∩iXi. We see, in
particular, that the existence of an emptiness certificate is both a necessary and sufficient
condition for ∩iXi = ∅. How long it takes to get such a certificate, depends on the rate of
convergence of εcert(ξτ |Pτ , V

m
R ) to 0 as τ → ∞, and on the actual value of Opt > 0 (the

“measure of closeness” of the collection {Xi} with empty intersection to a collection with a
nonempty intersection). For example, when we use the Ellipsoid algorithm with certificates
and Opt > 0, the number of steps till an emptiness certificate is built does not exceed the
quantity O(1)(mn)2 ln

(
nR3

rOpt

)
, where r = min

i
r(Xi), see Proposition 2.2.1.

4.2 Minimizing Convex Function over a Solid given by a
Linear Optimization Oracle

In the standard setting of a black box represented convex minimization problem, the feasi-
ble domain X of the problem is given via a Separation oracle. Another natural description
of a solid S ⊂ Rn is given via a Maximization oracle (also known as a Linear Optimiza-
tion (LO) oracle). Such an oracle, given an input vector e ∈ Rn, returns a point from
Argmaxx∈S〈e, x〉. It is known [12] that a Separation oracle can be mimicked in polynomial
time via an Optimization oracle, and vice versa, so that given an algorithm which works
with a separation-type representation of X, we could convert it into an algorithm which
works with a maximization-type representation of X, and vice versa. This conversion, while
it preserves polynomiality of the running time of the algorithms, replaces a single step of
the original algorithm with solving a nontrivial problem, which usually makes the result-
ing algorithm of purely academic interest with no practical value. Our goal is to develop
an alternative way to solve convex minimization problems, defined over solids represented
by Maximization oracles. Our approach will be based on Fenchel-type representations of
convex functions.
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4.2.1 The Problem

We readdress the problem (18), specifically, the convex minimization problem

min
x∈X

f(x) (61)

on a solid X ⊂ Rn. However unlike our prior treatment, where X was a convex solid
equipped with a separation oracle and f was represented by a First Order oracle, we now
assume that X is a solid such that it is easy to maximize linear functions over X (i.e., we
assume X is mated to a Linear Optimization oracle). As for f , we still assume that this is a
continuous on X convex function, however we now assume that f is given by a Fenchel-type
representation

f(x) = sup
y

[〈x,Ay + a〉 − h(y)] , (62)

where

• y 7→ Ay + a : Rm → Rn is a given affine mapping, and

• h(y) : Rm → R ∪ {+∞} is a lower semicontinuous convex function,

The assumptions on X and f we have just made seem to be rather “esoteric.” Indeed,
usually we deal with a convex objective f given by a “closed form analytical expression”
which makes it relatively easy to equip f with a computationally efficient First Order oracle,
but which does not straightforwardly yield a Fenchel-type representation of f . Similarly,
the feasible domains in convex minimization programs are usually given by systems of
constraints

fi(x) ≤ 0, i = 1, ..., m,

where the fi are continuous convex functions given by “closed form analytical expressions”
allowing us to build computationally efficient First Order oracles for fi. These oracles, in
turn, can be easily combined into a Separation oracle for X, as follows. Assuming that
the system of constraints in question is strictly feasible (i.e that there exists x̄ such that
fi(x̄) < 0 for all i), and given an x ∈ Rn, we compute the values and subgradients of fi at
x. If all the values are negative, we conclude that x ∈ intX. While if all the values are non-
positive, but some are equal to 0, we conclude that x ∈ ∂X. Finally, if a certain constraint is
violated at x (i.e some value is strictly positive), we conclude that x 6∈ X. Now if x 6∈ intX,
then there exists an i∗ such that fi∗(x) ≥ 0. Let e be a subgradient of this function at x.
Then fi∗(y) ≥ fi∗(x) + 〈e, y − x〉 ≥ 〈e, y − x〉 (note that fi∗(x) ≥ 0). When y ∈ X, we have
fi∗(y) ≤ 0, that is, 〈e, y−x〉 ≤ 0; this means that e separates x and X. It remains to check
that e 6= 0, which is immediate: if e = 0, then the inequalities fi∗(y) ≥ 〈e, y − x〉 + fi∗(x),
fi∗(x) ≥ 0 say that fi∗(y) ≥ 0 everywhere, which contradicts the assumed strict feasibility
of the system. Thus, typically feasible domains of convex minimization problems do admit
efficient Separation oracles, which seemingly is not the case for LO oracles.
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To motivate our interest in the outlined setting of a convex minimization problem, we intend
to demonstrate, first, that the availability of explicit Fenchel-type representations of convex
functions is more of a rule rather than an exception, and, second, that there are meaningful
situations when convex solids admit efficient LO oracles which are better suited for our
ultimate purpose — solving (61) numerically – compared to Separation oracles.

4.2.2 Fenchel-type Representations of Convex Functions.

A Fenchel-type representation a convex function f seems to be much less intuitive than
the First Order representation of f , and one might think that the availability of such a
representation is a “rare commodity.” We will explain that this is not the case, and show
that providing a Fenchel-type representation is no more difficult than providing a First
Order representation.

Note that every function f(x) which admits a Fenchel-type representation must be convex
and lower semicontinuous. If the representation in question is a Fenchel one, meaning that
Ay + a ≡ y, then f must also be proper, (i.e., have a nonempty domain). The Fenchel

Duality Theorem (see, e.g., [35]) says that these conditions are not only necessary, but also
sufficient for a function f to admit a Fenchel representation. Specifically, this theorem states
that every proper lower semicontinuous convex function f admits a Fenchel representation

f(x) = sup
y
{〈x, y〉 − f∗(y)}

where f∗(y) is the Fenchel dual of f :

f∗(y) = sup
x
{〈x, y〉 − f(x)} . (63)

Moreover, there exists exactly one proper and lower semicontinuous function — the Fenchel
dual of f as given by (63) — which recovers f via the Fenchel representation. It follows,
then that Fenchel duality is symmetric: whenever f is a proper lower semicontinuous convex
function, so is its Fenchel dual f∗, and further (f∗)∗ = f .

We see that the assumption of the existence of a Fenchel-type representation of a convex
function is not really an assumption at all. In order for it to hold we impose on a convex
function f only the extremely mild restrictions of properness and lower semicontinuity —
exactly the restrictions which make the problem of minimizing f well posed. From the
computational viewpoint the existence of Fenchel-type representations is however insuffi-
cient. In order to use a Fenchel-type representation in a computational algorithm, like the
one we intend to develop, we need an “explicit” representation of this type, one where we
can equip cl (Domh) with a Separation oracle, and where we can equip the restriction of
h onto the relative interior of its domain with a First Order oracle. From this perspective,
Fenchel representations are “bad”. Specifically we note that for the Fenchel representation
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of f to be explicit, the Fenchel dual of f should be readily available, and functions f with
this property are indeed a rare commodity. For example, there is seemingly no way to
represent in a closed form the Fenchel dual of a function as simple as exp{x}+ 1

2 exp{−x}.
In contrast to this, there is no difficulty in pointing out an explicit Fenchel-type repre-
sentation of the latter function (or, for that matter essentially any convex function given
by a closed form analytical expression). This is the dramatic difference between Fenchel
and Fenchel-type representations, and is precisely the reason we will be using Fenchel-type
representations instead of Fenchel representations. This difference stems from the fact that
Fenchel-type representations admit a kind of fully algorithmic calculus, meaning that all
standard convexity-preserving operations for convex functions, (such as taking linear com-
binations with nonnegative coefficients, or maximum, or affine substitution of variables),
can be accompanied by simple rules which build an explicit Fenchel-type representation for
the result of the operation via Fenchel-type representations of the operands. Here are the
most important “calculus rules:”

1. [Taking weighted sums] Let the functions fi, i = 1, ..., k, be given by Fenchel-type
representations:

fi(x) = sup
yi

{〈x,Aiyi + ai〉 − hi(yi)} ,

and let λi ≥ 0. We clearly have

k∑

i=1

λifi(x) = sup
y=[y1;...;yk]

{〈x,
∑

i

λi[Aiyi + ai]

︸ ︷︷ ︸
=:Ax+a

〉 −
∑

i

λihi(yi)

︸ ︷︷ ︸
=:h(y)

}
;

thus, a Fenchel-type representation of
∑k

i=1 λifi(x) is readily the given by Fenchel-

type representations of fi.

2. [Affine substitution of variables] Let f(x) = supy {〈x,Ay + a〉 − h(y)} be given by a
Fenchel-type representation, and let g(u) = f(Bu + b). We clearly have

g(u) = sup
y
{〈Bu + b, Ay + a〉 − h(y)} = sup

y

{〈u,BT Ay + BT a︸ ︷︷ ︸
=:Ãy+ã

〉−[h(y)− 〈b, Ay + a〉︸ ︷︷ ︸
=:h̃(y)

]
}
,

thus, a Fenchel-type representation of g is readily given by a Fenchel-type represen-

tation of f .

3. [Taking maximum] Let fi(x) = sup
yi

{〈x,Aiyi + ai〉 − hi(yi)}, 1 ≤ i ≤ k, be functions
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given by Fenchel-type representations. Then

f(x) := max
i≤i≤k

fi(x) = sup
λ>0,

∑
i λi=1

∑
i λifi(x)

= sup
λ>0,

∑
i λi=1

sup
y=[y1;...;yk]

{〈x,
∑

i λi[Aiyi + ai]−
∑

i λihi(yi)}

= sup
λ>0,

∑
i λi=1

sup
w=[w1;...;wk]

{〈x,
∑

i[Aiwi + λiai]〉 −
∑

i λihi(wi/λi)}

[substitution wi = λiyi]

= sup
z=[λ;w]:λ>0,

∑
i λi=1

{〈x,
∑

i

[Aiwi + λiai]

︸ ︷︷ ︸
=:Az+a

〉 −
∑

i

λihi(wi/λi)

︸ ︷︷ ︸
=h(z)

}

=
∑

z=[λ;w]

{
〈x, Az + a〉 − h̃(z)

}
,

where

h̃([λ;w1; ...;wk]) =





∑
i h̃i(λi, wi), λ ≥ 0,

∑
i λi = 1

+∞, otherwise

and h̃i(λi, wi) is a lower semicontinuous convex extension of the function λihi(wi/λi)
of λi > 0 and wi (it is well known that this function is convex on its domain) on the
domain {(λi, wi) : λi ≥ 0). We see that taking maximum preserves explicit Fenchel-

type representability.

The above outlined “calculus rules”, along with several more advanced rules, can be aug-
mented by explicit knowledge of Fenchel representations of elementary univariate functions
(given by explicit computation of their Fenchel duals) to yield a powerful “fully algorithmic”
calculus of Fenchel-type representations. As a result, from a practical perspective we claim
that for almost all proper convex lower semicontinuous functions, which admit a closed form
representation, one can build an explicit Fenchel-type representation as well.

To aid in seeing how this can be accomplished we present three simple illustrations:
Example 4.2.1. The function f(x) =

∑
i=1

exp{aT
i x + bi} admits an explicit Fenchel-type

representation, specifically,

f(x) = sup
y∈Rk

{
〈x,

∑

i

yiai〉 −
∑

i

[yi ln yi + (bi − 1)yi]

}
,

where we use the convention that s ln s is zero when s = 0 and is +∞ when s < 0.

Indeed, via direct computation of the Fenchel dual of the exponent we have

exp{s} = sup
t
{st− [t ln t− t]} .
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Thus it only remains to apply the calculus rules on affine substitution of variables and summation.

This result provides a nice counterpoint to the aforementioned fact that the explicit Fenchel
representation of exp{x}+ 1

2 exp{−x} is beyond our reach.

Example 4.2.2. The convex function f(x) = ln
(∑k

i=1 exp{aT
i x + bi}

)
admits an explicit

Fenchel type representation, specifically,

f(x) = sup
y∈Rk

{
〈x,

∑

i

yiai〉 −
[∑

i

[yi ln yi − biyi] + χ(
∑

i

yi − 1)

]}
,

where, as above, s ln s is 0 when s = 0, is +∞ when s < 0 and χ(·) is the proper lower

semicontinuous function on the real axis equal to 0 when s = 0 and equal to +∞ otherwise.

Indeed, via direct computation of Fenchel dual we have

ln

(∑

i

exp{si}
)

= sup
y≥0,

∑
i yi=1

{∑

i

siyi −
∑

i

yi ln yi

}
,

and it only remains to use the calculus rule of affine substitution of variables.

Example 4.2.3. Let B(x) = B0 +
∑k

i=1 xiBi, where B0, B1, ..., Bk are symmetric m ×m

matrices, and let Sp(B) be the sum of p largest eigenvalues of a symmetric matrix B; here
m ≥ p. The function f(x) = Sp(B(x)) admits an explicit Fenchel-type representation,
specifically,

f(x) = sup
Y ∈Sm

{
Tr(Y

∑

i

xiBi)

︸ ︷︷ ︸
=:〈x,A(Y )〉

−[ξ(Y )− Tr(B0Y )︸ ︷︷ ︸
=:h(Y )

]
}
,

where Sm is the space of symmetric m ×m matrices, the linear mapping A : Sm → Rk is
given by A(Y ) = [Tr(B1Y ); Tr(B2Y ); ...; Tr(BkY )], and

ξ(Y ) =





0, 0 ¹ Y ¹ I,Tr(Y ) = p

+∞, otherwise
.

Where we define the notation P º Q ⇔ Q ¹ P to mean that P, Q are symmetric matrices

of the same size such that P −Q is positive semidefinite.

Indeed, applying the rule on affine substitution of variables, it suffices to verify that

Sp(X) = max
0¹Y¹I,Tr(Y )=p

Tr(Y X), ∀X ∈ Sm.

While this equality can be derived in a systematic way, here we will simply demonstrate that it

holds. Let us fix X and pass to the representation of all symmetric matrices in the orthonormal

basis where X becomes diagonal; the statement to be proved now reads

sp(x) = max
y∈Y

xT y,
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where sp(u) is the sum of the p largest entries in a vector u ∈ Rm, x is the vector of eigenvalues of

X (recall that X is now diagonal), and Y is the set of all diagonals of m ×m symmetric matrices

which are º 0, ¹ I and have trace p. In other words, Y is the set of all nonnegative vectors with

entries ≤ 1 and sum of entries equal to p. By elementary Linear Programming, the extreme points

of Y are nothing but Boolean vectors with exactly p entries equal to 1, and therefore maxy∈Y xT y

is indeed the sum of the p largest entries in x.

4.2.3 Representations of Solids by LO Oracles.

We claimed that there exist meaningfully situations when convex solids which admit Linear
Optimization oracles are superior (and as will be seen, sometimes exclusive) to Separation
Oracles which we have till now been solely working with. To this end we present several
pseudo-academic examples of situations where LO oracles are the sole readily available
oracles, or are preferable to separation oracles.

A. A simple generic example of a solid X which can be easily equipped with an LO oracle,
but for which an equally simple Separation oracle can be problematic, is the situation where
X is given as a convex hull of the union of convex compact sets Xi, i = 1, ..., m which are
“simple’ (say, simplexes, boxes, balls) and thus can be equipped with easy-to-implement LO
and Separation oracles. Clearly, easy-to-implement LO oracles for Xi, i = 1, ..., m, induce
an easy-to-implement (unless m is very large) LO oracle for X: in order to maximize a
linear form over X = Conv{∪iXi}, we maximize it over every one of the sets X1, ..., Xm; a
maximizer of the form over X is nothing but the best — with the largest value of the form
– of the “partial maximizers” we get. Note however that in comparison there is no easy
way to combine Separation oracles for Xi into a Separation oracle for X.

B. Another generic example of a solid X such that it is easy to maximize linear forms over
X, while building a separation oracle for X is a nontrivial problem, is offered by Markov
Decision processes. Imagine that we control a discrete time dynamical system over a finite
time horizon 1, ..., T , and the state of the system at every time t can be identified with a
point from a given finite set which we without loss of generality identify with the “discrete
segment” S = {1, ..., N}. The evolution of the system is defined by our actions at at times
1, ..., T taking values in another finite set, say, {1, ..., M}, according to the state equations

st = Ft(st−1, at),

where st ∈ S is the state of the system at time t, and the transition rules Ft(s, a) :
{1, ..., N}×{1, ..., M} → {1, ..., N} are given in advance. Assuming for the sake of definite-
ness that the initial state s0 of the system is once for ever fixed, we can associate with every
sequence a(T ) = [a1, ..., aT ] of control actions the corresponding trajectory s(T ) = [s1; ...; sT ]
of the system, which can be considered as a vector from RT . Denoting by X the convex
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hull of all feasible (i.e., achievable via certain controls) trajectories, we get a polytope in
RT . Note that unless M, N are astronomically large, the maximization of a linear function
eT x over x ∈ X is easy. Indeed, maximizing a linear form over X is the same as maximizing
it over the feasible trajectories of the underlying dynamical system, which can be done by
Dynamic Programming, that is, by generating, backward in time, the cost-to-go functions

Ct(s) = max
1≤a≤M

[
eT s + Ct+1(Ft(s, a))

]
: S = {1, ..., N} → R, t = T, T − 1, ..., 1,

[CT+1(s) ≡ 0]
Note that there is no equally simple mechanism for separating a given point from the
polytope X.

The following is an example of a meaningful situation where we are interested
in minimizing a nonlinear (and non-separable) convex function over a polytope
X, which is given by the above construction.
Example 4.2.4. [Protein similarity problem] One possible method for modeling a protein

(a chain of amino acids folded in R3) is via a graph with ordered vertices 1, 2, ...T. Where each

vertex represents an amino acids, and the vertex order is derived from the order of the amino

acids in the chain. In order to model the 3-D folding of the chain two vertices are linked by

an arc when the corresponding amino acids are spatially close to one another. Now, given two

proteins, P with T amino acids, and Q with N > T amino acids, it is sometimes important

to find out whether P is “similar” to a subsection of Q. A simple mathematical model of

“similarity” is as follows: we map the vertices of P onto the vertices of Q in some sort of

order-preserving fashion, and count how many pairs of vertices which are adjacent in P are

mapped onto pairs which are adjacent in Q. We then maximize the result of this count over

all order-preserving embeddings of P onto Q and treat the result as the “degree of similarity”

of P and a part of Q. Now, order-preserving embeddings of P onto Q can be easily identified

with the feasible trajectories of a discrete time dynamical system with moderate cardinalities

(like N + 1) of the state and the action spaces on time horizon 1, ..., T . The similarity is

the maximum of an easy-to-compute function ψ(s(T )) over all feasible trajectories s(T ). The

difficulty, however, is that this function is not separable with respect to states, which makes it

impossible to maximize ψ over the feasible trajectories by Dynamic Programming. In fact, this

maximization is a difficult combinatorial problem. We can, however, easily point out a simple

concave (but nonlinear!) function f : RT → R which coincides with ψ at every trajectory,

and then maximize f over the convex hull X of feasible trajectories, thus obtaining an upper

bound on the true similarity. Note that computing this bound is nothing more then minimizing

an explicitly given convex function (namely, −f) over a polytope X given by the LO oracle.

That is, it is exactly our current problem of interest. This bound can be used as a computable

substitution of the “true” similarity; alternatively, it can be used within a branch-and-bound

scheme aimed at computing similarity.

C. In A, and B we were speaking about situations where the solid of interest X can be
equipped with a relatively easy-to-implement LO oracle, but not with an easy-to-implement
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Separation oracle. There are also situations when both types of oracles are easy to imple-
ment, but an LO representation is more attractive computationally. Specifically, consider
the case when we are solving problem (61) and have at our disposal

• LO and Separation oracles for the feasible domain X of the problem,
• a First Order oracle and a Fenchel-type representation (62) for the objective f , and,

in addition,
• a Separation oracle for the set Y = cl (Domh) along with a First Order oracle for h,

where h is the convex function participating in the Fenchel-type representation (62) of f .

In this ideal situation, where everything we might need is available, consider the case when
the dimension of X is much larger than the dimension of Y = cl (Domh). With the approach
we are about to develop, solving (61), i.e., minimizing f over X, reduces to minimizing a
convex function φ over Y (“the dual problem”), where the First Order oracle for φ is readily
given by the LO oracle for X and the First Order oracle for h(·). Assuming we are looking
for a high accuracy solution and are implementing a black box oriented method, say, the
Ellipsoid algorithm, our options are to apply this algorithm directly either to the problem of
interest min

X
f , or to the dual problem min

Y
φ. Since the rate of convergence of the Ellipsoid

algorithm is heavily affected by dimension, in the case of dimY ¿ dimX, the second option
– which uses a LO representation of X and a Fenchel-type representation of f — is highly
preferable.

Example 4.2.5. As a simple example, note that in the NERML algorithm, with or without certificates,

one should, at every step, solve to within a high accuracy an auxiliary problem of the form min
z∈Q

g(z), where

Q is a simple solid1 and g(·) is the maximum of m linear forms 〈z, as〉 + bs, 1 ≤ s ≤ m. The number m

of these linear forms (the memory depth of NERML) is under our full control and usually is at most a few

tens. Note that g admits a simple Fenchel-type representation

g(z) = max
y

{
〈z,

m∑
s=1

ysas〉
︸ ︷︷ ︸
〈z,Ay+a〉

−h(y)

}
,

where h(y) = −∑
s bsys when y belongs to the standard simplex Y = {y ≥ 0 :

∑
s ys = 1} and is +∞

outside of Y . In the large scale case, when the dimension of Q is of the order of thousands or more, it

is incomparably easier to solve, by a black box oriented method, the low dimensional dual problem min
Y

φ,

φ(y) = h(y)−min
z∈Q

〈z, Ay + a〉, rather than to directly attack, with whatever algorithm (including an interior

point one) the large-scale problem min
Q

g.

1Specifically, Q = {[x; t] : x ∈ B, ω(x) ≤ t ≤ maxB ω}, where B and ω(·) are the entities participating
in NERML’s setup; note that the assumption that one can easily maximize linear forms over Q is nothing
but the assumption that B and ω(·) are simple and match each other, made when presenting the NERML
setup.
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4.2.4 Construction and Main Result

Recall that our current goal is to solve the convex minimization problem (61) when X is
represented by an LO oracle, and f is given by a Fenchel-type representation (62). As for
the function h participating in this representation, we assume from now on that the set
Y = cl (Domh) is a solid given by a Separation oracle, and h is given by a First Order
oracle which serves either intY , or perhaps the entire Y .

The dual problem. Given a Fenchel-type representation (62) of f , we associate with
(61) the saddle point problem

(P) min
x∈X

max
y∈Y

[〈x, Ay + a〉 − h(y)]

and consider the associated dual problem which it is convenient for us to write down in the
minimization form:

(D) min
y∈Y

φ(y), where φ(y) = −min
x∈X

[〈x,Ay + a〉 − h(y)] = max
x∈X

[h(y)− 〈x, Ay + a〉]

(via standard duality the dual problem would be max
y∈Y

[−φ(y)], which is equivalent to (D)).

Note that since X and Y are solids, by the Sion-Kakutani Theorem, and taking into account
that the optimal value in our dual problem is minus the optimal value in the standard (i.e.,
the maximization) dual, the optimal values Opt(P ) and Opt(D) in the problems sum up to
zero:

Opt(P ) + Opt(D) = 0. (64)

Observe that the objective φ of the dual problem (D) admits a First Order oracle which
serves either intY , or the entire Y , depending on whether the First Order oracle for h serves
intY or Y . Indeed, given y, we can call the Linear Optimization oracle for X to compute

xy ∈ Argmin
x∈X

〈x,Ay + a〉.

Given xy, the value h(y), and a subgradient h′(y) of h at y (as provided by the First Order
oracle for h), the value, and a subgradient of φ at y are readily given by

φ(y) = h(y)− 〈xy, Ay + a〉, φ′(y) = h′(y)−AT xy. (65)

It follows that (D) can be solved via “usual” black box oriented algorithms for convex
minimization, (i.e those which rely on a Separation oracle for the feasible domain and a First
Order oracle for the objective). However, while this approach can recover the optimal value
Opt(P ) = −Opt(D) of the problem of interest (P ), it cannot find an approximate solution
to (P ), only an approximate solution to the dual problem (D). Of course, when solving
(D), we get a lot of feasible solutions to (P ) — specifically, all the points xy associated
with the search points y where we invoke the First Order oracle for φ(·), but there is no
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reason why any one of these points should be a good approximate solution to (P ). (Indeed
xy typically will be extreme points of X, while the true optimal set of (P ) will probably be
contained in intX.) We are about to demonstrate that when solving (D) via an algorithm
equipped with certificates, these certificates allow us to recover good approximate solutions
to (P ). Towards this end we present the following construction.

The construction and the main result. When solving (D) by a black box oriented
algorithm equipped with certificates, at every productive step t ∈ Iτ (i.e. where yt ∈ Y and
the First Order oracle for φ is invoked), we get a point xt ∈ X which is a minimizer of the lin-
ear function 〈x,Ayt +a〉 over x ∈ X. Thus, the execution protocol Pτ = ({yt, et}τ

t=1, Iτ , Jτ ),
(where et = φ′(yt) for t ∈ Iτ , and et separates yt and Y for t ∈ Jτ ,) is augmented by
the collection {xt}t∈Iτ . Now, assuming that the algorithm associates with Pτ an accuracy
certificate ξτ , we can also associate with the protocol the point

xτ =
∑

t∈Iτ

ξτ
t xt; (66)

this point belongs to X (as a convex combination of points xt ∈ X; recall that ξτ is an
accuracy certificate). Our main result here is:
Theorem 4.2.1. In the outlined situation, let τ be such that the execution protocol Pτ is
augmented with an accuracy certificate ξτ , so that xτ is well defined and belongs to X. Then

εopt(xτ ) := f(xτ )−min
X

f ≤ εcert(ξτ |Pτ ,B), (67)

where B is a solid containing Y .

Proof. For y ∈ Y , we have

〈xτ , Ay + a〉 − h(y)

=
∑

t∈Iτ

ξt[〈xt, Ay + a〉 − h(y)]

=
∑

t∈Iτ

ξt[〈xt, Ayt + a〉+ 〈xt, A(y − yt)〉 − h(yt) + h(yt)− h(y)]

=
∑

t∈Iτ

ξt[〈xt, Ayt + a〉 − h(yt)] +
∑

t∈Iτ

ξt[〈xt, A(y − yt)〉+ h(yt)− h(y)]

︸ ︷︷ ︸
δ

(68)

Recalling that et = φ′(yt) for t ∈ Iτ and et separates yτ and Y when t 6∈ Iτ , we have for
y ∈ Y :

εcert := εcert(ξτ |Pτ ,B) ≥ ∑
t∈Iτ

ξt〈AT xt − h′(yt), y − yt〉

=
∑

t∈Iτ

ξt[〈xt, A(y − yt)〉 − 〈h′(yt), y − yt〉]

≥
∑

t∈Iτ

ξt[〈xt, A(y − yt)〉+ h(yt)− h(y)]

︸ ︷︷ ︸
δ
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Where the last inequality follows the gradient inequality on the convex function h

〈h′(yt), y − yt〉 ≤ h(y)− h(yt)

Hence we have that

∑
t∈Iτ

ξt[〈xt, Ayt + a〉 − h(yt)] +
∑

t∈Iτ

ξt[〈xt, A(y − yt)〉+ h(yt)− h(y)]

≤ − ∑
t∈Iτ

ξtφ(yt) + εcert ≤ −min
y∈Y

φ(y) + εcert

Recalling that
Opt(D) = min

y∈Y
φ(y) = −min

x∈X
f(x) ≡ −Opt(P )

we conclude that
∑

t∈Iτ

ξt[〈xt, Ayt + a〉 − h(yt)] +
∑

t∈Iτ

ξt[〈xt, A(y − yt)〉+ h(yt)− h(y)] ≤ Opt(P ) + εcert,

which combines with (68) to imply that

∀y ∈ Y : 〈xτ , Ay + a〉 − h(y) ≤ Opt(P ) + εcert.

The supremum of the right hand side in the latter inequality is f(xτ ), and (67) follows.

Thus, when an accuracy of ε can be certified by an accuracy certificate (εcert ≤ ε), when
solving the dual problem, the certificate provides us with a feasible ε-optimal solution to
the problem of interest (61).

4.3 Minimizing Convex Function over a Solid Given by a
Linear Optimization Oracle: Extensions

4.3.1 Problems with Functional Constraints

Now consider the situation where the problem of interest is a solvable problem of the form

Opt = min
x∈X

{f(x) : fi(x) ≤ 0, 1 ≤ i ≤ m} , (69)

where, as above, X is a solid given by an LO oracle, and f , fi are convex functions given
by Fenchel-type representations. We can handle this problem as follows: let us set

fL(x) = f(x) + Lmax[0, f1(x), ..., fm(x)],

where L > 0 is a penalty parameter. It is immediately seen that an ε-optimal feasible
solution x̄ to the penalized problem

min
x∈X

fL(x) (70)
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satisfies
f(x̄)−Opt ≤ ε, fi(x̄) ≤ V + ε

L
, 1 ≤ i ≤ n,

where V = Opt − min
x∈X

f(x). It follows that given an “optimality tolerance” ε > 0 and a

feasibility tolerance δ > 0, for all sufficiently large values of the penalty parameter L, an
ε-optimal feasible solution x̄ to (70) will be ε-optimal, and δ-feasible for the problem of
interest (69):

x̄ ∈ X, f(x̄) ≤ Opt + ε, fi(x̄) ≤ δ, 1 ≤ i ≤ m. (71)

Usually it is possible to bound V from above, and thus to point out explicitly a “large
enough” value of the penalty.

Now, for any given L, the aforementioned calculus of Fenchel-type representations allows
us to combine Fenchel-type representations of f and fi, which are initially given, into an
explicit Fenchel-type representation of fL, and we can use this representation and the LO
oracle for X in order to solve (70) to within a desired accuracy ε, as explained in section
4.2, thus solving the problem of interest (69) to within the given tolerances ε, and δ.

4.3.2 Minimizing over Intersection of Solids Given by Linear Maximization
Oracles

Consider the following problem which is of definite academic interest. We want to solve a
convex minimization problem

Opt = min
x∈X

f(x), (72)

where, as always, X ⊂ Rn is a solid and f is convex. However, now we assume that neither
a Separation, nor a LO oracle for X are available; all we know is that X = ∩m+1

i=1 Xi for
some solids Xi which do have oracle representations, either all by Separation oracles, or all
by LO oracles. The situation when all the Xi are given by Separation oracles is easy: these
oracles induce straightforwardly a Separation oracle for X = ∩iXi. In contrast to this, the
case when Xi are represented by LO oracles seems to be difficult: there is no simple way
to combine these oracles into an LO or a Separation oracle for X. We can however use the
above construction as follows.

Let X+ = X1 × X2 × ... × Xm+1. Denoting a point z from the linear space R(m+1)n =
Rn × ... ×Rn (where X+ ⊂ R(m+1)n) as z = [x1; ...;xm+1] with xi ∈ Rn, we can rewrite
the problem of interest as

min
z=[x1;...;xm+1]∈X+

{f+(z) := f(x1) : fi(z) := ‖xi+1 − x1‖2 ≤ 0, 1 ≤ i ≤ m} (73)

Observe that the LO oracles for Xi clearly induce an LO oracle for X+. Assuming that f

is given by a Fenchel-type representation

f(x) = sup
y
{〈x,Ay + a〉 − h(y)} ,
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a Fenchel-type representation of fL
+(z) = f+(z)+Lmax[f1(z), ..., fm(z)] is readily available,

specifically:

fL
+(x1, ..., xm+1) = sup

w=[y;y1,...,ym]

{
〈x1, Ay + a〉+ L

m∑

i=1

〈xi+1 − x1, yi〉
︸ ︷︷ ︸

〈[x1;...;xm+1],A+w+a+〉

−h(y)−H(y1, ..., ym)
}

,

where H(y1, ..., ym) = 0 when ‖yi‖2 ≤ 1, i = 1, ..., m, and H(y1, ..., ym) = +∞ otherwise.
We can now apply the above machinery to solve (73). Note that the component x̄1 of
ε-optimal and δ-feasible solution xτ to (73) satisfies f(x̄1) ≤ Opt + ε and “nearly belongs”
to X = ∩m+1

i=1 Xi, specifically, it belongs to X1 and is at the distance at most δ from each of
the sets X2, ..., Xm+1.

4.3.3 The Case of an Approximate LO Oracle

Situation and Goal: Some computationally intractable convex solids X can be equipped
with approximate LO oracles capable of approximating the maximum/minimum over X of
linear forms from a specified family Ξ within a given approximation factor. A typical result
is as follows:

Given a tolerance ε > 0, a solid X from a particular family X and a vector ξ

from a particular family Ξ such that ξ matches X (i.e., ξ belongs to the Euclidean
space RX such that X ⊂ RX), the algorithm in question can find efficiently a
point x̄ ∈ X such that

〈ξ, x̄〉 ≤ αOpt∗(ξ, X) + ε, Opt∗(ξ, X) = min
x∈X

〈ξ, x〉, (74)

where the approximation factor α is a specific quantity independent of the nu-
merical values of the data and of ε.

Note that unless α = 1, such a formulation imposes implicit restrictions on the sign of
Opt∗(ξ, X). Indeed, when α > 1, this value should be nonnegative (otherwise αOpt∗(ξ,X) <

Opt∗(ξ, X), and the required x̄ simply cannot exist). Similarly, when 0 < α < 1, the optimal
value Opt∗(ξ, X) must be nonpositive.

Thus, there exist four possible types of approximation results:

• Two in the minimization framework

– “min-plus-definite,” where the structures of X and Ξ ensure that Opt∗(ξ,X) ≥ 0
for all matching pairs ξ ∈ Ξ, X ∈ X , and the approximation factor α is ≥ 1;
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– “min-minus-definite,” where the structures of X and Ξ ensure that Opt∗(ξ, X) ≤
0 for all matching pairs ξ ∈ Ξ, X ∈ X , and the approximation factor α is ≤ 1
and ≥ 0.

• and two in the maximization framework, where we want to maximize rather than
minimize — to find x̄ ∈ X such that

〈ξ, x̄〉 ≥ αOpt∗(ξ, X)− ε, Opt∗(ξ,X) := max
x∈X

〈ξ, x〉

– “max-plus-definite,” where the structures of X and Ξ ensure that Opt∗(ξ, X) ≥ 0
for all matching pairs ξ ∈ Ξ, X ∈ X , and the approximation factor α is ≥ 0 and
≤ 1;

– “max-minus-definite,” where the structures of X and Ξ ensure that Opt∗(ξ, X) ≤
0 for all matching pairs ξ ∈ Ξ, X ∈ X , and the approximation factor α is ≥ 1.

Clearly, when passing from the family Ξ to the family −Ξ, that is, from the minimization
of 〈ξ, x〉 to the maximization of 〈−ξ, x〉, a min-plus-definite approximation result translates
into an equivalent max-minus-definite result, and a min-minus-definite result translates
into an equivalent max-plus-definite one. It follows that we can restrict our attention to
“min-type” settings and results.

The problem we intend to consider now is:

Assume that a particular pair (X ,Ξ) admits a min-type approximation result.
To what extent can we extend the efficiency and accuracy guarantees yielded by
this result when passing from minimizing linear forms 〈ξ, ·〉, ξ ∈ Ξ, over X to
minimizing a convex function f(·) over X?

Clearly, in order to hope for a meaningful answer, we need to impose on f restrictions which
ensure that

– first, f is somehow “comprised” of linear forms from the family Ξ, and,

– second, the true minimum of f is of the required sign (i.e., nonnegative for a min-plus-
definite result, and nonpositive for a min-minus-definite one).

To this end, it is natural to impose restrictions on a Fenchel-type-representation of f , as in
the following definition:
Definition 4.3.1. (i) Let X be a family of solids, and Ξ be a family of vectors from

Euclidean spaces. We say that these families form a

• plus-definite pair, if whenever X ∈ X and ξ ∈ Ξ match each other (i.e., ξ ∈ RX),
we have Opt∗(ξ, X) = min

x∈X
〈ξ, x〉 ≥ 0.
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• minus-definite pair, if whenever X ∈ X and ξ ∈ Ξ match each other, we have
Opt∗(ξ, X) = min

x∈X
〈ξ, x〉 ≤ 0.

(ii) Let Ξ be a family of vectors from Euclidean spaces, and let f be a function on a Eu-
clidean space E given by a Fenchel-type representation f(x) = supy [〈x,Ay + a〉 − h(y)].
We say that

• f plus-matches Ξ, if Ay + a ∈ Ξ whenever y ∈ clDomh, and h is nonpositive on
its domain;

• f minus-matches Ξ, if Ay + a ∈ Ξ whenever y ∈ clDom h, and h is nonnegative
on its domain.

Note that the sign, and the domain restrictions imposed on h in this definition imply that
when a function f on a Euclidean space E is given by a Fenchel-type representation (62),
Ξ is a family of vectors from Euclidean spaces, and X is a family of solids in these spaces,
then

• whenever f plus-matches Ξ, and (X ,Ξ) is a plus-definite pair, then for every solid
X ∈ X which is contained in E one has Opt∗(f, X) := min

X
f ≥ 0;

• whenever f minus-matches Ξ, and (X ,Ξ) is a minus-definite pair, then for every solid
X ∈ X which is contained in E one has Opt∗(f, X) ≤ 0.

We are about to demonstrate that if (X , Ξ) form a plus/minus-definite pair which admits an
approximation algorithm for linear minimization with some approximation factor, then this
algorithm can be extended to minimizing convex functions matching Ξ, the approximation
factor being preserved. Specifically, consider a situation as follows: we are given

1. a sign-definite pair (X ,Ξ) (i.e., either a plus-definite, or a minus-definite one),

2. a solid X ∈ Rn which belongs to X and is equipped with an approximate LO oracle.
This oracle, given on input a linear form 〈ξ, x〉 with ξ ∈ Ξ, and a tolerance ε > 0,
returns a point x̄ε[ξ] ∈ X such that

〈ξ, x̄ε[ξ]〉 ≤ α min
x∈X

〈ξ, x〉+ ε, (75)

where α is certain approximation factor (which is ≥ 1 when (X , Ξ) is plus-definite,
and belongs to [0, 1] when (X , Ξ) is minus-definite)2;

3. a function f on Rn, given by a Fenchel-type representation (62), which sign-matches
Ξ, (that is, plus-matches Ξ, when (X , Ξ) is a plus-definite pair, and minus-matches ξ

2We note that in the minus-definite case we would, equivalently to (75), have 〈ξ, x̄ε[ξ]〉 ≤ α min
x∈X

〈ξ, x〉−ε
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when (X , Ξ) is a minus-definite) pair. Assume also that the data of the Fenchel-type
representation of f are such that Y = cl Domh is a solid given by a Separation oracle,
and h is given by a First Order oracle.

Main result. Our main result on approximation algorithms is as follows:
Theorem 4.3.1. In the outlined situation, given ε > 0, let us apply to the problem of
interest (61) the construction from section 4.2.4, where the precise minimizers

xt ∈ Argmin
x∈X

〈x,Ayt + a〉

are replaced with approximate minimizers x̄t as reported by the approximate LO oracle
associated with X. Thus, instead of the true value and subgradient of φ at yt ∈ Domφ given
by (65) the algorithm with certificates “is fed” by estimates of these quantities, specifically,
the estimate h(yt)− 〈x̄t, Ayt + a〉 of φ(yt) and the estimate h′(yt)−AT x̄t of φ′(yt).

At every step τ where the algorithm with certificates participating in our construction aug-
ments the corresponding execution protocol Pτ = ({yt, et}τ

t=1, Iτ , Jτ ) with a certificate ξτ ,
setting

x̂τ =
∑

t∈Iτ

ξτ
t x̄t

we have x̂τ ∈ X and
f(x̂τ ) ≤ α min

x∈X
f(x) + εcert(ξτ |Pτ ,B) + ε, (76)

where B is a solid containing Y .

Proof is completely similar to the proof of Theorem 4.2.1.
For ease of terminology we will assume we are dealing with the plus matching, plus definite
case. The minus matching, minus definite case is exactly similar. Now let τ be as in the
premise of Theorem, and let (P ) and (D) be the primal and the dual problem associated
with f , X, Y and (62) in exactly the same way as in section 4.2.4. Finally, let

φ(y) = h(y)−max
x∈X

〈x,Ay + a〉

be the objective in (D). Observe that since h is nonpositive on its domain (since f plus-
matches Ξ and Ay + a ∈ Ξ for y ∈ clDom h), we have

φ̄(y) := h(y)− 〈x̄ε[Ay + a], Ay + a〉 ≥ αφ(y)− ε (77)
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for all y ∈ Domφ = Domh (see (75) and take into account that α ≥ 1). We now have

∀y ∈ Domh :

[〈x̂τ , Ay + a〉 − h(y)] =
∑

t∈Iτ
ξτ
t [〈xt, Ay + a〉 − h(y)] [definition of x̂τ ]

=
∑

t∈Iτ
ξτ
t

[
[〈xt, Ay −Ayt〉+ 〈h′(yt), yt − y〉]− [h(yt)− 〈xt, Ayt + a〉]

+[h(yt) + 〈h′(yt), y − yt〉 − h(y)]
]

≤ ∑
t∈Iτ

ξτ
t

[
[〈xt, Ay −Ayt〉+ 〈h′(yt), yt − y〉]− [h(yt)− 〈xt, Ayt + a〉]

]

[by gradient inequality for convex h]

≤ ∑
t∈Iτ

ξt

[
[〈xt, Ay −Ayt〉+ 〈h′(yt), yt − y〉︸ ︷︷ ︸

〈g(yt),yt−y〉

]− [h(yt)− 〈xt, Ayt + a〉︸ ︷︷ ︸
φ̄(yt)

]
]

[definitions of g and φ̄]

≤
[
∑

t∈Iτ
〈g(yt), yt − y〉+

∑
t∈Jτ

〈et, yt − y〉
]
−∑

t∈Iτ
ξτ
t φ̄(yt)

[since y ∈ Domh ⊂ Y and thus 〈et, yt − y〉 ≥ 0, t ∈ Jτ ]

≤ εcert(ξτ |Pτ ,B)−∑
t∈Iτ

ξτ
t φ̄(yt) [since y ∈ Domh ⊂ Y ⊂ B]

≤ εcert(ξτ |Pτ ,B) +
∑

t∈Iτ
ξτ
t [−αφ(yt) + ε] [by (77)]

≤ εcert(ξτ |Pτ ,B) +
∑

t∈Iτ
ξτ
t [−αOpt(D) + ε] [since yt ∈ Y ]

= εcert(ξτ |Pτ ,B) + αOpt(P ) + ε [by (64)]

Thus,
∀y ∈ Domh : 〈x̂τ , Ay + a〉 − h(y) ≤ εcert(ξτ |Pτ ,B) + αOpt(P ) + ε,

since f(x̂τ ) = supy∈Domh [〈x̂τ , Ay + a〉 − h(y)] by (62), (76) follows.

Observe that in the convex minimization case, the convergence properties (i.e the rate at
which the resolution of the generated certificates ξτ goes to 0 as τ grows) of the algorithms
with certificates presented so far (the Ellipsoid algorithm with certificates, and the NERML
algorithm with certificates), depends solely on the (semi)boundedness properties of the
operator F the algorithm is applied to, and not on whether F is, or is not, the subgradient
vector field of the objective we intend to minimize. In the situation we are considering now,
where the operator we are processing is yielded by an approximate LO algorithm for X,
these boundedness properties, as it is immediately seen, are independent of whether the LO
oracle in question is a precise or an approximate one. As a result, in our present situation,
the rate at which the resolution of ξτ goes to 0 as τ grows is essentially the same as in the
case of a precise LO oracle. In particular, when the Ellipsoid algorithm with certificates is
used, it takes a polynomial, in the dimY and ln(1/ε), number of steps to make the resolution
≤ ε. Looking at (76) we conclude that given the ability to efficiently minimize linear forms,
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from the sign-matched family Ξ, over X to within a given approximation factor, we can
then efficiently minimize all convex functions, sign-matching Ξ, over X to within that same
approximation factor.

Example 4.3.1. Consider a unit box Bn = {u ∈ Rn : ‖u‖∞ ≤ 1}, and let Xn be the convex hull of

all dyadic (rank 1) matrices uuT , u ∈ Bn. Then the space Sn is the set of all n × n symmetric matrices

(which contains Xn) equipped with the Frobenius inner product 〈p, q〉 = Tr(pq). 3 The set Xn is “severely

computationally intractable.” Indeed, to minimize a linear form 〈ξ, x〉 over x ∈ Xn given by a matrix ξ ∈ Sn

is exactly the same as maximizing the quadratic form uT ξu over the unit box Bn; it is known that the

latter problem is NP-hard even in the case when ξ is a general-type positive semidefinite matrix, and when

a relative accuracy of around 4% is sought. At the same time, when ξ is positive semidefinite, the problem

max
u∈Bn

uT ξu = max
x∈Xn

〈ξ, x〉

admits a polynomial time approximation algorithm, based on semidefinite relaxation of the problem, with

approximation ratio 2/π (Nesterov’s π/2 Theorem [32]). In other words, setting X = {Xn}∞n=1 and Ξ =

⋃
n

{ξ ∈ Sn : ξ ¹ 0}, we get a minus-definite pair which admits an efficient approximation algorithm with

approximation factor α = 2/π. Now consider the function f(x) which is minus the sum of the k smallest

eigenvalues of a symmetric matrix x, or, equivalently, the sum of the k largest eigenvalues of the matrix −x.

Function f admits the explicit Fenchel representation

f(x) = sup
w
{〈x, w〉 : w ∈ Sn, 0 º w º −I, Tr(w) = −k} .

Observe that the feasible set of the right hand side problem can be easily represented as the affine image of a

simple solid Y = Yn in a Euclidean space (the subspace of Sn comprised of matrices with zero trace) under

an explicitly given affine mapping y 7→ Ay + a, and that the image of Y under this mapping belongs to the

cone of negative semidefinite matrices, i.e., belongs to our Ξ. Setting h(y) = 0 when y ∈ Y and h(y) = +∞
otherwise, we get a Fenchel-type representation

f(x) = sup
y

[〈x, Ay + a〉 − h(y)]

which shows that f minus-matches Ξ. Invoking Theorem 4.3.1, we conclude that, say, the Ellipsoid algorithm

with certificates induces a polynomial time approximation algorithm for minimizing f over Xn, the approx-

imation factor being > 2/π. Passing from minimizing f to maximizing −f , this result can be reformulated

in a more natural form, specifically, as follows:

For every α′ > 2/π, there exists an efficient approximation algorithm with approximation factor

α′ which allows us to maximize within the factor 2/π the sum of the k smallest eigenvalues of

a symmetric matrix running over the (heavily computationally intractable!) convex set Xn —

the convex hull of dyadic matrices uuT with ‖u‖∞ ≤ 1.

3in order to be consistent with our previous notation, we are forced now to denote matrices by lowercase
letters.
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CHAPTER V

DECOMPOSITION OF LINEAR PROGRAMS

5.1 Motivation

Consider a large scale Linear Programming program

Opt = min
x=[x1;x2]





cT
1 x1 + cT

2 x2 :

A11x1 + A12x2 ≤ b1

A21x1 + A22x2 ≤ b2

‖x‖∞ ≤ R





(78)

with n = n1 + n2 variables x = [x1; x2], and m = m1 + m2 linear inequality constraints,
where the sizes of A11, A12 and A21 are, m1 × n1, m1 × n2 and m2 × n1 respectively. Note
that the bounds on variables ‖x‖∞ ≤ R, which we add for technical reasons, are of no real
importance from the practical viewpoint, since R can be arbitrarily large. We assume that

(1) It is relatively easy to solve Linear Programming problems of the form

min
x1

{
cT x1 : A11x1 ≤ b, ‖x1‖∞ ≤ R

}
(79)

For example, A11 can be a block-diagonal matrix with a large number N of rela-
tively small diagonal blocks, so that (79) is just a collection of independent small LP
programs. 1

(2) The number of linking constraints m2 is ¿ the total number of constraints m in (78),
and the number of linking variables n2 is ¿ the total number of variables n in (78).

The question is, how can we exploit the specific structure of (78) in order to accelerate
its solution. This is the question we intend to address in this chapter. In section 5.2 we
address two well known cases of the outlined situation where we do know how to act — one
where there are no linking constraints , and one where there are no linking variables. The
general case where both linking variables and linking constraints are present is considered
in section 5.3.

1By no means is this the only situation which meets our criteria of an easy to solve Linear Programming
problem. In fact the only general criteria is that both the Primal and the Dual LPs can be solved quickly.
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5.2 Two Well Known Cases

5.2.1 Case A: No Linking Constraints

Consider the case where there is no linking constraints, that is, m2 = 0. In this case, we
can define the convex function

f(x2) = min
x1

{
cT
1 x1 + cT

2 x2 : A11x1 + A12x2 ≤ b1, ‖x1‖∞ ≤ R
}

and replace the problem of interest with an equivalent problem

min
x2:‖x2‖∞≤R

f(x2). (80)

According to assumption (1), it is relatively easy to check, given x2, whether x2 ∈ Dom f ,
and if so, to compute f(x2) and a subgradient f ′(x2) of f2 at x2. Indeed, to this end one
should solve the LP program

min
x1

{
cT
1 x1 : A11x1 ≤ b1 −A12x2, ‖x1‖∞ ≤ R

}
, (81)

which by our assumption is easy. If this problem is solvable, then x2 ∈ Dom f , and the
optimal solution x1(x2) to the LP (81), along with an optimal solution y1 = y1(x2) to its
associated dual problem

max
y1

{
[A12x2 − b1]T y1 : [A11]T y1 + c1 = 0, y1 ≥ 0

}

allows us to compute f(x2), and f ′(x2) according to

f(x2) = cT
1 x1(x2) + cT

2 x2 = yT
1 [A12x2 − b1] + cT

2 x2, f ′(x2) = [A12]T y1 + c2.

Conversely if the problem (81) is unsolvable (which, since the feasible set of the problem
clearly is bounded, can happen only if the problem (81) is infeasible), we will receive, via
the General Theorem on Alternative, an infeasibility certificate y1 = y1(x2) such that

y1 ≥ 0 & yT
1 [A12x2 − b1] > ‖[A11]T y1‖∞;

in this case, the linear form 〈[A12]T y1, ·〉 is nonzero and separates x2 from the feasible
domain X2 of (80). Thus, (80) is naturally equipped with both a Separation oracle, and a
First Order oracle, and as such can be solved by a black box oriented method for convex
minimization; by assumption, the dimension of this problem n2 is ¿ the dimension of (78),
which can make this outlined approach highly preferable to a direct attack on (78) with an
LP solver.

Note that after a feasible ε-optimal solution x2 to (80) is found, we automatically have at
our disposal an ε-optimal feasible solution [x1(x2);x2] to the problem of interest.

Note that one of the most popular implementations of this scheme is the classical Benders

decomposition, see, e.g., [5].
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5.2.2 Case B: No Linking Variables

Now consider the case where there are no linking variables, that is, n2 = 0. One well-known
way to utilize the resulting structure is to use the well-known Dantzig-Wolfe decomposition
which is intrinsically linked to the revised Primal Simplex Method, see, e.g., [5]. Another
standard way to handle (78) with no linking variables is to use Lagrangian decomposi-

tion, that is, to associate with (78) its partial dual problem (where we dualize the linking
constraints) – which we write down in the minimization form

min
y2≥0

f(y2), f(y2) = max
x1

{−[c1 + [A21]T y2]T x1 : A11x1 ≤ b1, ‖x1‖∞ ≤ R
}

+ bT
2 y2. (82)

Observe that f(y2) is an everywhere finite convex function which can be easily equipped
with a First Order oracle, since by our assumption the parametric LP problem specifying f

is relatively easy to solve. Indeed the LP associated with (82) can be rewritten as min{dT x1 :
A11x1 ≤ b1, ‖x1‖1 ≤ R} where d = c1 + [A12]T y2. Denoting by x1(y2) an optimal solution
to the optimization problem

max
x1

{−[c1 + [A21]T y2]T x1 : A11x1 ≤ b1, ‖x1‖∞ ≤ R
}

, (83)

we have
f(y2) = −[c1 + [A21]T y2]T x1(y2) + bT

2 y2, f ′(y2) = b2 −A21x1(y2). (84)

In many cases we can find a finite upper bound L on, say, the ‖ · ‖1-norm of an optimal
solution to (82) and thus reduce this problem to a convex minimization on a simple solid,
which we can solve by a black box oriented method (see e.g. section 2.1.1). Since the
dimension m2 of (82) is small when compared to the sizes of the problem of interest (78),
this approach can be more attractive than a direct attack on (78) with an LP solver.

Note that the Lagrange decomposition approach requires us to solve the nontrivial problem
of recovering a good approximate solution to the problem of interest (78) from a good
approximate solution to the problem

−Opt(L) := min
y2∈B

f(y2), B = BL =

{
y2 : y2 ≥ 0,

m2∑

i=1

[y2]i ≤ L

}
(85)

(which is nothing but the problem (82) with an added bound on variables). Observe that
by Weak Duality −Opt(L) ≤ Opt for all L. One of the ways to resolve this problem is to
use accuracy certificates; to this end, we have proved the following result:
Proposition 5.2.1. Assume that n2 = 0 and that (85) is solved by an algorithm with
accuracy certificates. By construction of the First Order oracle for the objective of this
problem, at every productive step t of this algorithm, the search point being yt

2 ∈ BL, we
have at our disposal a point

xt
1 = x1(yt

2) ∈ Argmax
x1

{−[c1 + [A21]T yt
2]

T x1 : A11x1 ≤ b1, ‖x1‖∞ ≤ R
}

.
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Now let τ be a step such that the accuracy certificate ξτ associated with the corresponding
execution protocol Pτ =

{{yt
2, et}τ

t=1, Iτ , Jτ

)
is well defined. Setting

x̂τ
1 =

∑

t∈Iτ

ξτ
t xt

1,

we get an approximate solution to the problem of interest (78) such that

A11x̂τ
1 ≤ b1 & ‖xτ

1‖∞ ≤ R,

A21x̂τ
1 ≤ b2 + L−1[Opt + εcert(ξτ |Pτ ,BL) + R‖c1‖1]1

cT
1 x̂τ

1 ≤ Opt + εcert(ξτ |Pτ ,BL),

(86)

where 1 is the all-ones vector of dimension m2.

In addition, let ỹ = [ỹ1; ỹ2; ỹ+; ỹ−] ≥ 0 be the vector of optimal Lagrange multipliers for
(78), so that

cT
1 x1 + ỹT

1 [A11x1 − b1] + ỹT
2 [A21x1 − b2] + ỹT

+[x1 −R1] + ỹT
−[−x1 −R1] ≡ Opt∀x1. (87)

When ` := L−∑m2
i=1[ỹ2]i > 0, then, in addition to the second relation in (86), we have

A21x̂τ
1 ≤ b2 + `−1εcert(ξτ |Pτ ,BL)1 (88)

Proof. Let x̂τ
1 be as stated in Proposition. Then

i. Clearly A11x̂τ
1 ≤ b1 & ‖x̂τ

1‖∞ ≤ R holds since by construction x̂τ
1 is a convex combi-

nation of feasible solutions to (83).

ii. We have for every y2 ∈ BL:

εcert(ξτ |Pτ ,BL) ≥ ∑τ
t=1 ξt〈et, y

t
2 − y2〉 [definition of εcert]

≥ ∑
t∈Iτ

ξt〈f ′(yt
2), y

t
2 − y2〉 [since 〈et, y

t
2 − y2〉 ≥ 0 for t 6∈ Iτ ]

=
∑

t∈Iτ
ξt〈b2 −A21xt

1, y
t
2 − y2〉 [see (84)]

=
∑

t∈Iτ
ξt

[〈b2 −A21xt
1, y

t
2〉 − 〈b2 −A21xt

1, y2〉
]

=
∑

t∈Iτ
ξt

[
f(yt

2) + cT
1 xt

1 − 〈b2 −A21xt
1, y2〉

]
[see (84)]

=
∑

t∈Iτ
ξtf(yt

2) + cT
1 x̂τ

1 − 〈b2 −A21x̂τ
1 , y2〉

whence, taking into account that f(yt
2) ≥ −Opt(L) for t ∈ Iτ ,

〈A21x̂τ
1 − b2, y2〉 ≤ Opt(L) + εcert(ξτ |Pτ ,BL)− cT

1 x̂τ
1 . (!)
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Relation (!) holds true for all y2 ∈ BL; recalling what BL is and maximizing the left
hand side in (!) over y2 ∈ BL with

∑
i(y2)i = L, we get

Lmaxi[A21x̂τ
1 − b2]i ≤ Opt(L) + εcert(ξτ |Pτ ,BL)− cT

1 x̂τ
1

≤ Opt(L) + εcert(ξτ |Pτ ,BL)− ‖c1‖1R

which is nothing but the second relation in (86). Setting in (!) y2 = 0, we get

cT
1 x̂τ

1 ≤ Opt(L) + εcert(ξτ |Pτ ,BL).

Taking into account that by weak duality Opt ≥ sup
y2≥0

[−f(y2)] ≥ sup
y2∈BL

[−f(y2)] =

Opt(L), we arrive at the third relation in (86).

iii. To prove (88), we can assume w.l.o.g. that the set K = {i : [A21x̂τ
1 − b2]i > 0} is

nonempty, since otherwise (88) is evident. Setting in (87) x1 = x̂τ
1 and taking into

account the first relation in (86), we get

cT
1 x̂τ

1 + ỹT
2 [A21x̂τ

1 − b2] ≥ Opt ≥ Opt(L),

so that
Opt(L)− cT

1 x̂τ
1 ≤ ỹT

2 [A21x̂τ
1 − b2],

which combines with (!) to imply that for all y2 ∈ BL one has

〈y2, A
21x̂τ

1 − b2〉 ≤ εcert(ξτ |Pτ ,BL) + ỹT
2 [A21x̂τ

1 − b2]

≤ εcert(ξτ |Pτ ,BL) + [
∑m2

i=1[ỹ2]i]maxi[A12x̂τ
1 − b2]i.

Let µ := maxi[A12x̂τ
1 − b2]i = [A12x̂τ

1 − b2]i∗ , so that the above relation reads

〈y2, b2 −A21x̂τ
1〉 ≤ εcert(ξτ |Pτ ,BL) + µ

[
m2∑

i=1

[ỹ2]i

]
.

Setting the i∗-th coordinate of y2 to the value L, and the remaining coordinates – to
the value 0, we get from the latter inequality

µL ≤ εcert(ξτ |Pτ ,BL) + µ

[
m2∑

i=1

[ỹ2]i

]
,

and (88) follows.

5.3 General Case

Now consider the general case, when there are both linking variables and linking constraints.
To the best of our knowledge, the only decomposition scheme proposed for this case is “cross
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decomposition” originating from T.J. Van Roy [42, 43], see also [45, 13, 14, 15, 16, 36] and
references therein. In this scheme, essentially, one alternates iteratively between the Benders
and the Lagrange decompositions. To the best of our understanding, no complexity results
for this scheme are known. 2

5.3.1 Assumptions and Approach

Consider the Lagrange function of problem (78), assuming that both linking constraints
and linking variables exist. This bilinear function is:

Ψ(x1, x2, y1, y2) = 〈c1, x1〉+〈c2, x2〉+〈y1, A
11x1+A12x2−b1〉+〈y2, A

21x1+A22x2−b2〉 (89)

This function leads us naturally to consider the bilinear convex-concave saddle point prob-
lem equivalent to problem (78).

inf
x=[x1;x2]∈X1×X2

sup
y=[y1;y2]≥0

Ψ(x1, x2, y1, y2), (90)

where X1 = {x1 : ‖x1‖∞ ≤ R}, and X2 = {x2 : ‖x2‖∞ ≤ R} are simple solids. Assume,
as is usually the case, that we can shrink the y-domain of this saddle point problem, which
is a nonnegative orthant, to a direct product Y = Y1 × Y2 of two simple solids which are
“large enough” to ensure that the saddle point problem

min
x=[x1;x2]∈X1×X2

max
y=[y1;y2]∈Y1×Y2

Ψ(x1, x2, y1, y2) (91)

is equivalent to (90) and thus – to the LP of interest (or approximates (90) “well enough”).

Assumption. At the beginning of this chapter we have assumed that it is easy to solve
the LPs of the form min

x
{cT x1 : A11x1 ≤ b, ‖x‖∞ ≤ R}. From now on we modify this

assumption, specifically, assume that

A: Given x2 ∈ X2, y2 ∈ Y2, it is easy to solve the saddle point problem

min
x1∈X1

max
y1∈Y1

{
Ψ(x1, x2, y1, y2) = 〈c + [A11]T y1, x1〉 − 〈b, y1〉

}
,

[
c = c1 + [A12]T y2, b = b1 −A12x2

] (92)

Note that the original assumption is nothing but the modified one with Y1 = Rm1
+ . For

our machinery to work, we need Y1 to be bounded, this is where the modification comes
from. Note also that in typical situations where the unmodified assumption holds true, so

2This being said, note that the primary motivation and application of cross decomposition is the Mixed
Integer version of (78), where the linking variables x2 are subject to additional constraints of integrality.
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is the modified one, provided that Y1 is chosen properly. For example, this is so in the case
considered in section 5.1, where the problem minx1∈X1{cT x1 : A11x1 ≤ b, ‖x1‖∞ ≤ R} is
just a collection of a large number of independent of each other LPs, or, which is the same,
x1 = [x11; ...; x1K ] is a collection of a large number K of components x1k with dimensions
low as compared to n1, and A11 is block-diagonal: A11x1 = [A11

1 x11; A11
2 x12; ...; A11

K x1K ],
with the dimensions of the blocks A11

k x1k low as compared to m1. In this case, choosing Y1

as a large box:
Y1 = {y = [y11; ...; y1K ] : 0 ≤ y1k ≤ Rk[1; ...; 1]}

with the blocks y1k in y1 corresponding to the blocks A11
k x1k in A11x1, the saddle point prob-

lem in A decomposes into K independent low dimensional bilinear saddle point problems
of the form

min
x1k,‖x1k‖∞≤R

max
y1k:0≤y1k≤Rk[1;...;1]

[〈pk, x1k〉+ 〈qk, y1k〉+ 〈y1k, A
11
k x1k〉

]
,

thus making assumption A quite realistic.

Approach. On a closer inspection, Assumption A says that it is easy to build the First
Order oracle for the (clearly convex-concave) function

Ψ̃(x2, y2) = min
x1∈X1

max
y1∈Y1

Ψ(x1, x2, y1, y2),

so that the saddle point problem

min
x2∈X2

max
y2∈Y2

Ψ̃(x2, y2) (93)

(which, by assumption, is of dimensions much smaller than those of the problem of interest)
is well suited for solving by a black-box-oriented method, like NERML or perhaps even the
Ellipsoid method3.

When the sizes of (93) are small as compared to those of (91) and elimination of x1, y1, that
is, computing the first order information for Ψ̃, is cheap, the outlined approach can be com-
putationally much more attractive than a direct attack on (90) (or, equivalently, on (78)).
Note that with this approach, we in fact simultaneously eliminate both linking variables

and linking constraints (and do it just once), in a sharp contrast to cross decomposition,
where we iteratively eliminate, in an alternating fashion, either linking variables, or linking
constraints.

The crucial (and nontrivial) question underlying the outlined approach is how to recover
a good solution to the problem of actual interest (91) (or, which is the same, (78)) from

3The latter is quite realistic, provided that the sizes n2 and m2 are in the range of tens; note that there
are meaningful applications where n2 and m2 are indeed in the range of tens, while m1 and n1 are in the
range of many thousands.
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a good solution to the induced saddle point problem (93). Our major goal in the sequel
is to demonstrate that when solving (93) by an algorithm with accuracy certificates, these

certificates allow to convert ε-solutions to (93) into ε-solutions of the saddle point problem

of actual interest (91) and thus – to ε-solutions to the original problem (78).

5.3.2 Induced Pairs of Saddle Point Problems

We intend to consider a situation which is an extension of the one considered in the previous
section. Specifically, we intend to investigate saddle point problems induced by larger saddle
point problems. The general setting is as follows.

Let Xi ⊂ Rnxi , and Yi ⊂ Rnyi , i = 1, 2, be solids. We associate with these solids the sets

X = X1 ×X2 ⊂ Rnx = Rnx1 ×Rnx2 , Y = Y1 × Y2 ⊂ Rny = Rny1 ×Rny2 ,

Z = X × Y ⊂ Rnz = Rnx ×Rny .
(94)

Let Ψ(z) : Z → R be a continuous function; with slight abuse of notation, we shall denote
this function also Ψ(x, y), Ψ(x1, x2, y1, y2), etc. From now on, we make the following

Assumption B. Ψ is convex in x ∈ X and concave in y ∈ Y .

Note that Assumption B is automatically satisfied when Ψ is bilinear in x, y, as it is the
case in (89) – (91).

Function Ψ gives rise to two functions as follows:

Ψ1(x1, y1) = min
x2∈X2

max
y2∈Y2

Ψ(x1, x2, y1, y2) : X1 × Y1 → R,

Ψ2(x2, y2) = min
x1∈X1

max
y1∈Y1

Ψ(x1, x2, y1, y2) : X2 × Y2 → R

Since Z is a compact set and Ψ is continuous on Z, these functions are continuous on the
respective solids Zi = Xi × Yi.
Lemma 5.3.1. Ψi(xi, yi) is convex in xi ∈ Xi and is concave in yi ∈ Yi, i = 1, 2.

Proof. Indeed, we have, that Ψ1(x1, y1) = minx2∈X2 [maxy2∈Y2 Ψ(x1, x2, y1, y2)] is concave
in y1, since the function in brackets [ ] is concave in y1 due to the concavity of Ψ(x, y) in
y. The convexity of Ψ1(x1, y1) in x1 follows via similar argument from the representation
Ψ1(x1, y1) = maxy2∈Y2 [minx2∈X2 Ψ(x1, x2, y1, y2)], where the interchange of min and max is
legitimate due to the fact that Ψ(x1, x2, y1, y2) is convex-concave and continuous in x2, y2

and X2, Y2 are convex compact sets (from now on, we skip similar justifications of swapping
the order of min and max). The proof for Ψ2(x2, y2) follows a symmetric line of arguments.
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We are about to consider two convex-concave saddle point problems

(P ) : SadValX1×Y1(Ψ1) = min
x1∈X1

max
y1∈Y1

Ψ1(x1, y1)

(D) : SadValX2×Y2(Ψ2) = min
x2∈X2

max
y2∈Y2

Ψ2(x2, y2)
(95)

which we call the problems induced by the master saddle point problem

(M) : SadValX×Y (Ψ) = min
x=(x1,x2)∈X=X1×X2

max
y=(y1,y2)∈Y =Y1×Y2

Ψ(x, y). (96)

We start with the following observation:
Proposition 5.3.1. One has

SadValX1×Y1(Ψ1) = SadValX2×Y2(Ψ2) = SadValX×Y (Ψ) (97)

and
SadSetX×Y (Ψ) ⊂ SadSetX1×Y1(Ψ1)× SadSetX2×Y2(Ψ2), (98)

where SadSetU×V (Ψ) is the set of saddle points of the function Ψ(·) on U × V .

Moreover, for every (x1, x2, y1, y2) ∈ Z one has

εsad((xi, yi)|Ψi, Xi, Yi) ≤ εsad((x, y)|Ψ, X, Y ), i = 1, 2. (99)

Proof. Let (x∗, y∗) be a saddle point of Ψ on X × Y . We have for Ψ1, that

Ψ1(x∗1, y1) = minx2∈X2 maxy2∈Y2 Ψ(x∗1, x2, y1, y2) = maxy2∈Y2 minx2∈X2 Ψ(x∗1, x2, y1, y2)

≤ maxy2∈Y2 Ψ(x∗1, x
∗
2, y1, y2) ≤ Ψ(x∗1, x

∗
2, y

∗
1, y

∗
2),

and

Ψ1(x1, y
∗
1) = min

x2∈X2

max
y2∈Y2

Ψ(x1, x2, y
∗
1, y2) ≥ min

x2∈X2

Ψ(x1, x2, y
∗
1, y

∗
2) ≥ Ψ(x∗1, x

∗
2, y

∗
1, y

∗
2),

so that
∀(x1 ∈ X1, y1 ∈ Y1) : Ψ1(x∗1, y1) ≤ Ψ(x∗, y∗) ≤ Ψ1(x1, y

∗
1). (100)

By the standard definition of saddle points as applied to Ψ1 it follows that Ψ1(x∗1, y
∗
1) =

Ψ(x∗, y∗), (and thus that SadVal(Ψ1) = SadVal(Ψ)) which combines with (100) to im-
ply that (x∗1, y

∗
1) ∈ SadSet(Ψ1). By “symmetric” reasoning, (x∗2, y

∗
2) ∈ SadSet(Ψ2) and

SadVal(Ψ2) = SadVal(Ψ). Thus (97) and (98) are proved.
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Now let (x1, x2, y1, y2) ∈ Z. We have by (22)

εsad((x1, y1)|Ψ1, X1, Y1) = maxη1∈Y1 Ψ1(x1, η1)−minξ1∈X1 Ψ1(ξ1, y1)

= maxη1∈Y1 minξ2∈X2 maxη2∈Y2 Ψ(x1, ξ2, η1, η2)

−minξ1∈X1 minξ2∈X2 maxη2∈Y2 Ψ(ξ1, ξ2, y1, η2)

≤ maxη1∈Y1 maxη2∈Y2 Ψ(x1, x2, η1, η2)

−minξ1∈X1 minξ2∈X2 Ψ(ξ1, ξ2, y1, y2)

= εsad((x, y)|Ψ, X, Y ),

and similarly for Ψ2. (99) is proved.

5.3.3 Recovering Approximate Solutions to the Master Problem: Goal and
Assumptions

The goal. Consider a master saddle point problem (96) along with the induced problems
(95). By Proposition 5.3.1, (specifically by (99)) we can easily extract good approximate
solutions to each of the induced problems from a good approximate solution to the master
problem. The question is: To what extent is the opposite true?

Specifically, assume we have at our disposal a first-order method capable of solving to
within a desired accuracy one of the induced problems, say problem (P ), and our goal is to
extract from this solution a good approximate solution to the master problem (and thus,
by Proposition 5.3.1, to problem (D) as well). When and how could we achieve this goal?

We will demonstrate that this goal is achievable, provided that

• the first order information used by the algorithm in question satisfies some not too
restrictive technical assumptions, and that

• we have at our disposal, not only the approximate solution to (P ) to be converted
into approximate solutions to (M) and (D), but also an accuracy certificate for this
solution.

Preliminaries. We start with some technical issues. From now on, we make

Assumption C. Ψ(x1, x2, y1, y2) is not only continuous convex-concave on Z =
X × Y , but

• Ψ is differentiable in x2 ∈ X2 whenever x1 ∈ intX1, y1 ∈ intY1 and y2 ∈ Y2,

the derivative being continuous in x ∈ intX1×X2 for every y ∈ intY1×Y2;
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• Ψ is differentiable in y2 ∈ Y2 whenever x1 ∈ intX1, y1 ∈ intY1 and x2 ∈ X2,

the derivative being continuous in y ∈ intY1×Y2 for every x ∈ intX1×X2.

Under Assumption C, for every point (x = (x1, x2), y = (y1, y2)) ∈ Z with (x1, y1) ∈
intX1 × intY1, function Ψ(·, y) at the point x admits a regular subgradient Ψ′

x(x, y) –
that is a subgradient whose projection onto the subspace Rnx2 equals the gradient of the
continuously differentiable function Ψ(x1, ·, y) at the point x2.

Indeed, let xt
2 ∈ intX2 be such that xt

2 → x2 as t → ∞, and let gt be a subgradient

of Ψ(·, y) at the point xt = (x1, x
t
2) ∈ intX. By evident reasons, such a subgradient

is automatically regular. Besides this, the vectors gt form a bounded sequence, since

Ψ(ξ1, ξ2, y) is uniformly in ξ1 ∈ V Lipschitz continuous in ξ2 ∈ X2, V being a neighbour-

hood of x1 with the closure belonging to intX1, and is uniformly in ξ2 ∈ X2 Lipschitz

continuous in ξ1 ∈ V . Passing to a subsequence. we may assume that gt has a limit g as

t →∞; by construction, g is a subgradient of Ψ(·, y) at the point x, and its projection

on Rnx2 is limt→∞∇s

∣∣
s=xt

2
Ψ(x1, s, y) = ∇s

∣∣
s=x2

Ψ(x1, s, y), as required from a regular

subgradient.

We define similarly the notion of a regular supergradient Ψ′
y(x, y) in y (a supergradient of

the concave function Ψ(x, ·) at the point y such that the projection of this supergradient
onto Rny2 is the gradient of Ψ(x, y1, ·) at the point y2). Such a supergradient also exists,
provided that (x1, y1) ∈ intX1 × intY1, and (x2, y2) ∈ X2 × Y2.
Remark 5.3.1. Note that Assumption C is automatically satisfied when Ψ is convex-
concave and continuously differentiable (as it is the case, e.g., when Ψ is bilinear in x, y, cf.
(89), (91)). In this case, choosing as subgradients of Ψ w.r.t. x the corresponding partial
gradients, and similarly for supergradients of Ψ in y, we automatically end up with regular
sub- and supergradients.
Lemma 5.3.2. Given (x̄1, ȳ1) ∈ intX1 × intY1, let (x̄2, ȳ2) be a saddle point of the convex-
concave continuous function Ψx̄1,ȳ1(x2, y2) = Ψ(x̄1, x2, ȳ1, y2) on X2 × Y2, and let Ψ′

x(z̄),
Ψ′

y(z̄) be regular sub- and supergradients of Ψ in x and in y, respectively, computed at the
point z̄ = (x̄1, x̄2, ȳ1, ȳ2). Let, further, Ψ′

1,x(x̄1, ȳ1) be the projection of Ψ′
x(z̄) onto Rnx1 ,

and Ψ′
1,y(x̄1, ȳ1) be the projection of Ψ′

y(z̄) onto Rny1 . Then Ψ′
1,x(x̄1, ȳ1) is a subgradient

of the convex function Ψ1(x1, ȳ1) of x1 ∈ X1 at the point x1 = x̄1, and Ψ′
1,y(x̄1, ȳ1) is a

supergradient of the concave function Ψ1(x̄1, y1) of y1 ∈ Y1 at the point y1 = ȳ1.
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Proof. For x1 ∈ X1, we have

Ψ1(x1, ȳ1) = minx2∈X2 maxy2∈Y2 Ψ(x1, x2, ȳ1, y2) ≥ minx2∈X2 Ψ(x1, x2, ȳ)

≥ minx2∈X2 [Ψ(x̄, ȳ) + 〈Ψ′
x(z̄), x− x̄〉] [since Ψ(·, ȳ) is convex]

= Ψ1(x̄1, ȳ1)︸ ︷︷ ︸
=Ψ(x̄,ȳ)

+minx2∈X2

[
〈Ψ′

1,x(x̄1, ȳ1), x1 − x̄1〉+ 〈∇s

∣∣
s=x̄2

Ψ(x̄1, s, ȳ), x2 − x̄2〉
]

[since Ψ′
x(z̄) is regular]

≥ Ψ1(x̄1, ȳ1) + minx2∈X2

[〈Ψ′
1,x(x̄1, ȳ1), x1 − x̄1〉

]

 since x̄2 ∈ Argminx2∈X2

f(x2), f(x2) = Ψ(x̄1, x2, ȳ1, ȳ2), and f(x2) is differentiable

at x̄2, so that 〈∇s

∣∣
s=x̄2

Ψ(x̄1, s, ȳ), x2 − x̄2〉 ≥ 0 whenever x2 ∈ X2




= Ψ1(x̄1, ȳ1) + 〈Ψ′
1,x(x̄1, ȳ1), x1 − x̄1〉;

The concluding inequality says that Ψ′
1,x(x̄1, ȳ1) indeed is a subgradient of Ψ1(x1, ȳ1) in

x1 ∈ X1 evaluated at x1 = x̄1. The “symmetric” reasoning proves the “supergradient” part
of the statement.

5.3.4 Recovering Approximate Solutions to the Master Problem: Construction
and Main Result

In the above described situation, let us assume that we have access to Separation oracles
for X1 and Y1 (and thus – to a Separation oracle for Z1 = X1 × Y1). We also assume that
we have access to a Φ-oracle, where Φ : intZ1 → Rnx1 × Rny1 is the monotone mapping
associated with the convex-concave saddle point problem

max
x1∈X1

min
y1∈Y1

Ψ1(x1, y1), (101)

specifically, as follows:

Given on input (x1, y1) ∈ intX1 × intY1, the Φ-oracle

• solves the saddle point problem

min
ξ2∈X2

max
η2∈Y2

Ψ(x1, ξ2, y1, η2) (102)

and computes a saddle point (x2, y2) of this problem, along with

– the projection ex1 of the regular subgradient of Ψ(ξ, y1, y2) in ξ ∈ X

computed at the point ξ = (x1, x2), onto the space Rnx1 ;

– the projection−ey1 of the regular supergradient of Ψ(x1, x2, η) in η ∈ Y

computed at the point η = (y1, y2), onto the space Rny1 .

99



• returns the pair (x2, y2) and the vector Φ(x1, y1) = (ex1 , ey1), thus, by
Lemma 5.3.2, reporting the value at (x1, y1) of the monotone mapping
associated with the saddle point problem (101).

Assume that we have built a τ -point execution protocol Pτ = {(zt
1, e

t)}τ
t=1, where zt

1 =
(xt

1, y
t
1) are the search points, partitioned into those which are strictly feasible (zt

1 ∈ intZ1 ⇔
t ∈ Iτ ) and all the remaining search points (zt

1 6∈ intZ1 ⇔ t ∈ Jτ ). Also assume that et

is either Φ(zt
1) (this is so when t ∈ Iτ ), or et is a nonzero separator of zt

1 and Z1 (this
is so when t ∈ Jτ ). According to the construction of the Φ-oracle, this protocol can be
augmented with pairs zt

2 = (xt
2, y

t
2), t ∈ Iτ , reported by the Φ-oracle at the productive steps

(those from Iτ ). Our main result is as follows:
Theorem 5.3.1. Let B be a solid containing Z1, and let Pτ be an execution protocol which
admits an accuracy certificate ζ. Given this certificate, let us set

x̂τ
i =

∑

t∈Iτ

ζtx
t
i, ŷτ

i =
∑

t∈Iτ

ζty
t
i , i = 1, 2.

Then (x̂τ , ŷτ ) ∈ Z and

εsad((x̂τ , ŷτ )|Ψ, X, Y ) ≤ εcert(ζ|Pτ ,B), (103)

whence, by Proposition 5.3.1, also

εsad((x̂τ
i , ŷ

τ
i )|Ψi, Xi, Yi) ≤ εcert(ζ|Pτ ,B), i = 1, 2. (104)

Proof. For t ∈ Iτ , let zt = (xt
1, x

t
2, y

t
1, y

t
2) = (xt, yt). Recall that for t ∈ Iτ , et

x1
is the projec-

tion onto Rnx1 of a subgradient Ψ′
x(xt, yt) of the function Ψ(·, yt) computed at the point xt,

and the projection et
x2

of this subgradient onto Rnx2 is the vector ∇x2

∣∣
x2=xt

2
Ψ(xt

1, x2, y
t
1, y

t
2),

whence
〈et

x2
, x2 − xt

2〉 ≥ 0 ∀x2 ∈ X2, (105)

due to the fact that Ψ(xt
1, x2, y

t
1, y

t
2) attains its minimum over x2 ∈ X2 at the point xt

2.
Similarly, for t ∈ Iτ , et

y1
is the projection onto Rny1 of a subgradient −Ψ′

y(x
t, yt) of the

function −Ψ(xt, ·) computed at the point yt, and the projection et
y2

of this subgradient onto
Rny2 is the vector −∇y2

∣∣
y2=yt

2
Ψ(xt

1, x
t
2, y

t
1, y2), whence

〈et
y2

, y2 − yt
2〉 ≥ 0 ∀y2 ∈ Y2. (106)
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Let z = (x1, x2, y1, y2) = (x, y) ∈ Z. We have

−εcert(ζ|Pτ ,B) ≤ ∑τ
t=1 ζt〈et, z − zt〉

≤ ∑
t∈Iτ

ζt〈et, z − zt〉 [since et separates Z and zt for t ∈ Jτ ]

=
∑

t∈Iτ
ζt

[〈et
x1

, x1 − xt
1〉+ 〈et

y1
, y1 − yt

1〉
]

≤ ∑
t∈Iτ

ζt

[〈Ψ′
x(xt, yt), x− xt〉+ 〈−Ψ′

y(x
t, yt), y − yt〉] [by (105), (106)]

≤ ∑
t∈Iτ

ζt

[
[Ψ(x, yt)−Ψ(xt, yt)] + [Ψ(xt, yt)−Ψ(xt, y)]

]
[since Ψ is convex-concave]

=
∑

t∈Iτ
ζt

[
Ψ(x, yt)−Ψ(xt, y)

]

≤ Ψ(x, ŷτ )−Ψ(x̂τ , y) [since Ψ is convex-concave]

Thus,
∀(x ∈ X, y ∈ Y ) : Ψ(x̂τ , y)−Ψ(x, ŷτ ) ≤ εcert(ζ|Pτ ,B).

Taking the supremum of the left hand side in (x, y) ∈ Z, we arrive at (103), see (23).
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