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CHAPTER I
INTRODUCTION

In applications of the theory of Lebesgue integration to the
study of integral transforms, ordinary and partial differential equations,
and integral equations, the need frequently arises to approximate func-
tions in the efp spaces by functions possessing certain regularity
properties. In particular it is often desirable to approximate functions
in the dfp spaces by step-functions, by continuous functions of compact
support, and by differentiable functions. The most useful type of approxi-
mation is an approximation in the sense of the norm of aﬁp, Thus one may
be interested in showing that a family of "well-behaved" functions is dense
in the space d?pg Isolated occurrences of theorems of this general nature
are to be found in the literature. However, most of these results deal
only with the space dgl (El, A, p) where El is one-dimensional Euclidean
space and p is Lebesgue measure. The object of Chapters II and III is
to prove, under more general hypotheses on the measure space (X, A, u),
that various classes of functions are dense in Cfp (X, A, p) for 1 < p<e,

In Chapter II it is shown that the c¢lass of simple functions is dense
in dfl(x, Ay p) for an arbitrary measure space (X; A, p). The measure
space is then specialized to (Eq, A, p) where pu 1is a Lebesgue-Stieltjes
measure in Eq, The concept of Lebesgue-Stieltjes measure is defined and
the measure-theoretic results necessary to the understanding of Chapters

IT and III are presented, It is then shown that the family of continuous



functions of compact support, the family of step-functions, and the family
of pelynomials of compact suppert are dense in cfl (Eq, Ay Bl

The theorems of Chapter Il are extended to J:p spaces for 1 { p<=™
in Chapter II1. The separability of the metric spaces Cﬂp (Eq, A, B} for
1 {p<w and p a Lebesgue-Stieltjes measure in Eq is then deduced.
Finally, the family of functions which are in ¢ and are of compact
support is proved to be dense in cfp (Eq3 Ay g) for 1 < p<e® and p
Lebesgue measure in Eq.

The object of Chapter IV is to deduce an integral representation for
all bounded linear functionals on ‘fp (X, A, p) for 1 < p <o, Most of
the theorems giving representations for bounded linear functionals on
Banach or Hilbert spaces are due to F. Riesz, and theorems of this type
are referred to as Riesz representation theorems. 1In order to deduce the
desired theorems, certain results from measure theory are needed. The
Radon-Nikodym theorem is proved through the use of the Riesz representation

theorem for bounded linear functionals on the Hilbert space &4, (X, A, ).

2
This proof is particularly interesting in the context of Chapter IV since
the Radon-Nikodym theorem is the key to the proof of the Riesz represen-
tation theorem for 5Qp (X, A, u). The desired integral representation for
bounded linear functionals is then proved under mild restrictions on the
measure space (X, A, p). As a corollary to the Riesz representation
theorem, it is shown that the Banach space of all bounded linear functionals
on .gb (X, A, p) for 1 < p <o is isometrically isomorphic to the space

1

£ (X, i where +==1,
Cq,,P-) q

el Lo



CHAPTER 11
APPROXIMATIONS OF SUMMABLE FUNCTIONS

In this chapter certain measure-theoretic concepts are briefly dis-
cussed. In particular the notion of Lebesgue-Stieltjes measure in Eq
(g-dimensional Euclidean space) is introduced. It is then shown that
summable functions on arbitrary measure spaces can be approximated, in a
certain average sense, by simple functions. It is further shown that
Lebesgue-Stieltjes summable functions can be approximated, in this average

sense, by continuous functions, step-functions, and polynomials.
’ ’ P ¥ poly

Definition 2.1. If X 1is a nonempty set, A 1is a d-algebra of sets of

X, and p 1is a measure with domain A, the triple (X, A, u) 1is called

a measure space.

Remark. In this and the succeeding chapters, it will always be assumed,
unless the contrary is specifically stated, that A is complete for the
measure . However, no further restrictions on (X, A, p) are tacitly
assumed. In particular (X, A, p) is not generally assumed to be o-fin-
ite.

In order to obtain the desired approximation theorems, the measure

space must be specialized,

Definition 2.2. Let (3 denote the Borel d-algebra of sets in Eq {the
minimal o-algebra containing the family of all open sets). A Borel

measure in E is a measure E defined on @ and such that p(K) <



for every compact set K C:Equ

Let A be the family defined as follows:

A set A C:Eq is in A if and only if there are sets E, M, and N
such that A=EUN, E, Me @, NCM, and p(M) = O,
For each A =EUNe A with E and N as above, define the

set function § by
p(a) = R(E) .

Theorem 2.3. The family A 1is a o¢-algebra of sets in Eq, poois
a measure on A, and A is complete for .

A proof may be found in Halmos (cf. [4], p. 55).

Remark. The measure W 1is called the completion of E.

Definition 2.4, If a measure p is the completion of a Borel mea-

sure [ 1in Eq, and if A 1s the family described above, then

the measure p  with domain A is called a Lebesgue-Stieltjes measure

in E_.
q
It is clear that Lebesgue measure in Eq is a Lebesgue-
Stieltjes measure. Several important properties of Lebesqgue mea-

sure are also shared by the more general [ebesgue-Stieltjes

measures. One such property is regularity, which is now discussed.

Definition 2.5. Let C denote the family of all compact subsets of Eq

and let UL denote the family of all open sets in Eq, Let (Eq, Ay 1)



be a (not necessarily complete) measure space.

(i) A set A e A is outer regular with respect to p if

h(a) = inf{p(u) t ACUely .

(ii) A set A e A 1is inner regular with respect to p if

p(A) =sup{um): A:)CEC}.

A set A e A 1s reqgular if it is both inner and outer regular. A measure

B is regular if every set A e A 1is regular,

Theorem 2.6. Every Borel measure W in Eq is regular,

The proof may be found in Halmos (cf. [4], p. 228).

Corollary 2.7. A Lebesgue-Stieltjes measure in Eq is regular.

Proof. Let p be a Lebesgue-Stieltjes measure in Eq with domain A
and let A e A. By definition of A there are sets E; M, and N with
E, Me@ such that A =E\N, NCM, pu(a) = u(E), and p(N) = p(M) = O.

I1f p{A) < @, Theorem 2,6 implies that for any & > 0 there exist sets

ul and U, in U4 such that UlD E, UQDMDN,
. " _E _E
pia) = p(E) > pUy) - 3 w(Uy) - 5,
and
= 4 S 0 - E . E
0 - p’(M) > I"L(UQ) 2 I‘L(UQ) 2 o
Thus A=E{N C"_UlU Uy el and

p(A) > plu) + p(U,) - e 2plu ) u,) - e



Hence, if p{A) <, then
p(A) = inf {p(V) : A CU eV,

If p{A) = ©, outer regularity of A follows at once from the fact
that E_ e U

q

For inner regularity let A, E, and N be as before, Suppose first
that p{A) <=, Let e > 0O be given, By Theorem 2.6 there is a set C e(

such that C CE and
k(C) > p(E) - ¢

But ADE_DC and

It

p{(C) = p(c) > p(E) - ¢ = p(A) - ¢ .

Thus, if p(A} <= |

i

n(a) = sup {p(C) : ADCel},

If p(A) = p(E) = +o, then let M > O be given. By the regularity of

L, there is a set C el such that ¢ CECA and

p(C) =p(Cc) > M.,

Thus
p(A) = sup {p(C) 1 ADC e({} = +w

and } is inner regulargl
At this stage it is thus known that if p is a Lebesgue-Stieltjes

measure in Eq with domain A, then:



(i) A 1is a ¢-algebra containing all Borel sets.
(i1) A 1is complete for .
(iii) For each compact set C C:Eq, p(C) < =,

(iv) p is totally o-finite.

(v) B 1is a regular measure,

In this and the succeeding chapter; most of the results concern-
ing approximations of summable functions will be proved for functions
summable relative to a Lebesgue-Stieltjes measure in Eq. In the proofs
of these theorems, essential use will be made of properties (i) - (v).
Ho;ever, aside from these, no other results from the theory of Lebesque-
Stieltjes measure will be used. For this reason nothing essential to the
later development would be lost if one assumed that properties (i) - (v)
were the defining properties of a Lebesgue-Stieltjes measure in Eq. The
earlier discussion which has been outlined could then be ignored.

Other approaches to Lebesque-Stielties measures appear in the
literature.

The most common approaches are through interval functions [13] or
through distribution functions [10], [11]. A discussion of the logical
interrelations between the various approaches will not be attempted here.

For a discussion of this subject, reference may be made to Morgan (cf.

[91).

Definition 2.8. Let (X, A, p) be a measure space. A function f is

a measurable simple function on X if and only if there are pairwise

disjoint measurable sets Al,ono, An and distinct complex numbers

8,3s00,a such that; for each x & X
1 n ?
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where

1 if xe Ay,

i 0 if x4 Ay

Theorem 2.9. Let (X, A, p) be an arbitrary measure space, and let f
be an extended-real-valued function defined on X (i,e., f: X— E;)
which is summable over X. For any given e > 0 there exists a mea-

surable simple function g : X — E1 such that

f [f - g| dp < e
X

Moreover, g is summable over X, and

m {x s g(x) # O} < o,

+
Proof. Let & > O be given. Define the functions f and f as

follows: for xeg X

+ f(x) if f(x) >0

f{x) = 3
0 if f(x) < o0

_ 0 if f(x) >0

f (X) = o
-f(x} if f{x) <O

+ -
Then f = f - f , By a well-known property of measurable functions (cf.

Theorem 1, Appendix), there exist sequences {gn+} and {Qn'} of



nonnegative measurable simple functions on X such that

[le]
—
I~
@
n
Ta
1
[{e]
(Fal
[ KA
-y
-

9, < 95 € a0 €9 € .00 £,

f+(x) for each xe¢ X ,

—
[
=

o
3
+
——
o
~—
1

and

lim g_ (x) = f (x} for each xe X.
n=, o n

+
By the Lebesgue dominated convergence theorem, since [f - g

and |f - g | <],

+ +
lim £ - g | d = ©
n-+ec J; n
and
1im [f" - g | dp = 0.
n-+w J; n

Choose integers Nl and N2 such that

+ + €
e - g  law <5

X 1
and
J |£7 - g, |ds < £.
X Ny 2
Then g = 9N+ - gN‘ is a measurable simple function on X and

2



J

+ + - -
- glaw <[ 167 - g taw + ] £ - g o
X 1 X

X 2

Since gNI and QN; are summable over X (by comparison with

+ -
f  and { respectively), g 1is summable over X. Now let

Al’ A2, eeoy An be pairwise disjeint measurable sets such that

n
g = EI a, K
i Ay
i=1

n
n
where ai % 0 for any 1. If u-{x : g(x) % O} = B [\v)Aé] = Z:H(A
i=1 .
i=1

then p(Ai) = oo for some i. But, it then follows that

J {g| du > j la.| dp = {a,} H(Ai) = o,
X Ai 1 1

and g 1is not summable, a contradiction,'
In the case of an arbitrary measure space, little more can be
said about approximations. Thus, in the remainder of this chapter,

attention will be restricted to a Lebesgue-Stieltjes measure in Eq

defined earlier in this chapter.

Definition 2.10, Let f : Eq — E;' be given. The function f has

10

;)

as

compact support if and only if there exists a compact set K C:Eq such

that
f(x) = 0 for every xe Eq - K.

The set K 1is called a support for f.

[ e]

2
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Theorem 2.11. Let p be a Lebesgue-Stieltjes measure in Eq and let

f Eq - Ef be p-summable over Eq, For any € > 0 there exists a

function g : Eq - E1 which is continuous on Eq, which has compact

suppert, and which is such that
J° f - gl dp <€

E
9

Proof. The argument is in three parts,
Case 1. Suppose that f = KA’ where A 1is a bounded measurable set.
Let I be a compact interval such that I A and let €& > 0O be given.

By the regularity of pu, there exists an open set G DA such that

£

p(G) < p(a) + 5 .

It may be supposed that G 1% (the interior of 1) since otherwise
G could be replaced with G (\Io. Again by regularity there exists a

closed set F (CA such that
3
W(F) > ula) - §
Thus
k(G - F) = p(G) - p(F) < e .
For each x& E_, let
g
. c \ c
h(x) = dist (x, G} = inf {7|x -yl :yegG }

where G° = Eq - G. If xe¢€ Gc, then h(x) = 0. Moreover, if x is

such that h(x) = 0, then for any & > 0, there exists vye 6% such
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that |y - x| < 5. But then x is a limit point of the closed set G
that is, x¢ G°. Thus h(x) = 0 if and only if x e G°. Now let n
be a positive integer. By definition of infimum, if x e I, there

exists 2z € GC such that
[x - z| < h(x) + % .

It ye I, then

B L]

hly) <y =zl <y - x| + [x - z[ < ]y-x| + h{x) +
Thus
hiy) - h(x) < |y - x| + % .
If x and y are interchanged in this argument, it follows that
h(x) - h(y) < |y - x| + 1.
Since this is true for each positive integer n,
Ih(x) - hiy)]| < |y - x| for all x, ye I .

Thus h 1is continuous on 1. But h vanishes outside G C:Io, s0
that h{x) =0 for x in E_ -1 or x in the boundary of I. Hence
h is continuous on all of Eq.

The set F found above is compact, and therefore h assumes its

minimum value A on F. Let x e F be such that h(x*¥) =\ =

min {h(x) : X e F} . Since x*§¢ GC, h(x*) = A > 0. For each xe¢ Eq,

define

o

hix) = % min {:K, h(x)} .



13

Note that h(x) =1 if xe F and h{x) =0 if xe G°. As the minimum
of two continuous functions, R is continuous on Eq and is hence mea-
surable. Since h 1is nonnegative, G < h(x) <1 for every xeg E_.

q
Thus

|h - K, |dy = Ih - K, ldp + h - K, |dp + Ih - K, |du
A N AR LA

-]

|E-KA[dp_<_f 1de =p(G-F)<e.
G-F G-F

Since h has compact support I, the proof for Case 1 is complete,
Case 2. Suppose that f 1is a finite-valued measurable simple function
vanishing outside a compact interval 1I. Thus let Al"'"’An be pair-

n
wise disjoint measurable sets such that U) Aj(: I and let
j=1

Let & > 0 be given. The argument of Case 1 applies to K, for each
J

jo Thus, for each j, let hj be a function, continuous on Eq and

vanishing outside I, such that

h, - K, | dp < = .
IE j Aj (|ajr+ 1} n

Therefore,
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Moreover, h = a.h, 1is continuous on Eq and has compact support 1.

J ]
1

W [™~7]>o

J
Case 3. Let f be summable over Eq. Since f is almost everywhere
finite, there is no loss of generality in assuming that f is finite-

valued, For n =1,2,..., let

W= {x :|xi|g n, i=1,2,..., q} .

Define the sequence {fﬁ} as follows: for n=1,2,... and xc¢e Eq’

let
fn(x) = f(x) Kwn(x) .
Then
lim f (x) = f(x)
n-+cw
and

£,001 € 1600

for each x e Eq. By the Lebesque dominated convergence theorem,

lim ]f - f | de = 0.
n-+ o IEq n

Let & > 0 be given and choose N such that

E
[ -aia < §

For this fixed N, fN(x) =0 for xe Eq - WN where WN is a closed



1%

interval. By Theorem 2.9 there is a finite-valued measurable simple

function h such that

e
IE £, - hl o < 5
q

{(clearly h may be assumed to vanish outside W, since fN(x) =0 for

X E Eq - WN).

By Case 2 a function g continuous on Eq with compact support
I can be chosen so that
€
f [h - gl dn < 3

E
q

Thus

[ lf-gldust E

E
q q q

1
L)
=
jo N
=
+
—s
m
™
=
[
e
Q.
b=

wim
wim
wlm

The function g 1is therefore of the desired type.I
Other approximation theorems can now be deduced from Theorem 2.11.

Certain preliminary results are necessary.

Definition 2.12. A complex-valued function f defined on Eq is a step-
function if and only if there are finitely many pairwise disjoint finite
intervals Il’ ceay In in Eq and complex numbers @ yeery A such

that
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Theorem 2,13, Let J be a finite closed interval in Eq. There is a
countable collection & of step-functions, defined on Eq and vanish-
ing outside J, with the following property. For any continuous complex-
valued function f on J and any e > 0, there exists a function g e(§

such that

[£(x) - g{x}]| < e
for each x ¢ J.

Proof. Let J be a compact interval in Eq. Consider the countable
family 11 = {Pl,.,., Pn,.o.} of partitions of J where P divides
J

J into 29 equal subintervals J Let cBn(n = 1,2,...)

a1 Jngreeer Jppan -

be the family of all step-functions defined on Eq which vanish on Eq -J
and which have constant rational real and imaginary parts on each of the

sets J Jn2’ ooey Jn2qn° Each (Sn contains only a countable number

nl’

(2]
of functions. If £ = U gn, then # 1is also a countable collection
n=1

of step-functions which vanish on Eq - I
Let & > 0 be given, and let f be any complex-valued function
continuous on J. Then { 1is uniformly continuous on J, so there exists

a & > 0 such that
[£(x) - ()] < §

if x, yeJ and-« |x - y| <&. From [ select a partition P, for

which
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sup {|x -yl + %, vy Jnk’ k=1,..., 2qn:} < b,

From each of the intervals Jnk(k = 1,004, Qqn) select a point X,

Define the step-function h by

fF{x,) if xeJ, (k=1,..., 29",
h(x) - {j k nk

0 if x & J.

From 3 select a function g such that
3
In(x) - g(x)f <3

for each x ¢ Eq. Then, if xe J, x¢ Jnk for exactly one kj; thus,

for each such x,

[£(x) - g(x)] < Jf(x) - h{x)]| + |h{x) - g{x)]

since |x - xk| < b,

Theorem 2.14. Let p be a Lebesque-Stieltjes measure in Eq and let

f Eq — E; be u-summable over Eq. For any & > 0 there exists a

step-function g : Eq — El such that

f |f - a] dn < ¢
E
q

Proof. Let & > 0 be given., By Theorem 2.11 there is a continuous

function h : Eq — E1 with compact support K such that
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£
IE £ - h] ou <5
q

Let J be a compact interval containing K. Since h 1s continuous

on E h 1s continuous on J. By the preceding theorem there 1s a

q’

step-functicen g : Eq — E1 such that, for each x ¢ J,

InGx) - 9| < zmmH D

and such that g{x) = 0 for xe Eq - J. Thus, for xce Eq - J,
[h(x) - g(x)] = 0.

Therefore,

J

lf-glaps [ e-nlaw+[ |n-qfa
E E
q q q

E

—E‘-l

] L

£ _ e
<S4 fj h - gl dp < S+

Theorem 2.11, together with the Weierstrass approximation theorem,

can now be used to deduce still another approximation theorem.

Theorem 2.15. Let p be a Lebesque-Stieltjes measure in Eq and let

1

function g : Eq — El and a compact set K such that:

£ 2 Eq ~— E" be p-summable over Eq. For any & > O there exists a

(i) For x = (xl, Xopeeos xq) e K, g{x) = p(x) where p is a

polynomial in X159 Xpyeooy xq.

(ii) For x ¢ Eq - K, g(x) = 0.
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(iii) f |f - gl dp < e
E
q

Procf, Let ¢ > 0 be given. By Theorem 2.11 there is a function

h : Eq —» E continuous on Eq with compact support K, such that

1’

E
JE [T - hldu< .
q

Since h is continucus on the compact set K, the Welerstrass approxi-
mation theorem guarantees the existence of a polynomial p defined on

Eq such that, for each x e K,

InG - e < gy F T

Now define a function g as follows:

g(x} = p(x) if xe K,

= 0 if xe E - K .
q

The function g satisfies (i) and {(ii}. Clearly g 1is measurable.

Thus

E

f If—gldnsf If-hldu+f |h - g| dp
E
q q

€ £ €
<5+ JK bh =} du < 5+ 5

!
™
.

.
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CHAPTER III
APPROXIMATIONS 1IN Lp SPACES

In this chapter the approximation theorems of Chapter II are
extended to the Lp spaces (1 < p < ®), It is shown in addition
that functions in Lp (Eq, A, p), for p Lebesgue measure, can be
approximated by functions of compact support which have derivatives of all
orders. This result is of considerable practical importance {(cf. [6],
[15]).

Certain of the notions of Lp space theory will first be sur-
veyed briefly (details may be found in [5] or [16]). Recall that a mea-

sure space {X, A, p) 1is tacitly assumed to be complete for the measure

T

Definition 3.1. Let p be a real number such that 1 < p < o. Let

(X, A, p) be a measure space. A complex-valued function f defined on
X is in Lp(X, A, p) if the functions Re(f) and Im(f) are measur-
able {(i.e., f is measurable) and |f|® is summable over X (relative

to p).

Definition 3.2. Let (X, A, p) be a measure space. A complex-valued

function f defined on X is in L_ {X, A, p} if {f 1is measurable and

if there is a real number M such that

p{x: ]f(x)|>M} = 0.
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The number M 1is called an essential upper bound for f.

Definition 3.3. For f & Lp (X, Ay, p), 1 < p <o, the symbol

Hf”p denotes the number

1
i, = (J 6P e

For fe L (X, A, p), [fll, denotes the number
[I£ll = inf {jM : M is an essential upper bound for f} .

In order to circumvent certain difficulties arising from the fact
that it is possible to have Hf”p = ”ng even though f(x) = g(x) does
not hold for every x e X, the following definitions are customarily

made.

Definition 3.4. let 1 < p<ow and let f, ge Lp (X, A, p). If

N
f(x) = g(x) almost everywhere on X, write f ~ g. Then define f by

£ ={'g=geLp(X,A,u), f~g}-

N
Definition 3.5. Let 1 < p € . The set of all equivalence classes f

for fe Lp (X, A, p)} is denoted by cﬁp (X, A, B).

Fad
Definition 3.6. For 1 < p <o~ and fe¢ éfp(X, A, p), define the norm

”f”p to be the number
”?”p = ”f”p for any f ¢ £,

With these definitions it is well-known that, for 1 < p < e,

cﬁp(x, Ay, o} is a normed linear space. Furthermore, if the function
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d : X x X —» El is defined by

a(f, 8) = IIf -8l (1)

for each ?, S e:ﬁp (X, A, p), then d 1is a metric on dﬁp (X, A, p)o
It can then be shown (cf. [5], [16]) that, for 1< p < =, dﬁp(x, A, 1)
is a complete metric (linear) space.

In addition to these concepts, the standard inequalities of Holder

and Minkowski will be used.

Remark. The symbols Lp(X, Ay, p)  and <%p(x, Ay g) will be shortened

to Lp and fip, respectively, when no confusion seems possible. If only
functions which are extended—real-valuedﬁare to be considered, then the
spaces will be designated by real Lp and real égp,

The theorems of Chapter 11 will now be generalized,

Theorem 3.7. Let (X, A, ) be an arbitrary measure space and let
l1<p<e, If fe¢ Lp(X,-A, ), then for any & > 0 there is a measur-
able simple function g« Lp(x, A, $) such that

(i) |If - ng <e and

(11) 1 {x:g(x) £0) <.

Proof. Case 1. Suppose that f 1is nonnegative on X. Then there is a
sequence {gn} of nonnegative measurable simple functions on X such

that
9, (x) < g5(x) < vuo £ F(x)

and

13 (x) = f£{(x)
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for each x & X (cf. Theorem 1, Appendix). Thus |f - gnlp < |£(P

for each n=1,2,... . By the Lebesque dominated convergence theorem

lim f If - g [P au = 0.
n+*eoc X n

Let & > 0 be given and choose an integer N such that

I If-gNlpdlL(Epo

X
The function Y is a simple function, and = is in real Lp since
0 < =N < f. By an argument analogous to that used in Theorem 2.9, it

follows that
m {x : gN(x) £0) <,

Case 2. Let f Dbe an extended-real-valued function defined on X and
write f = f+ - f. Let £ > 0 be given. By Case ) applied to f+ and

f-, there are simple functions 9 and 95 in real I.p such that

g% - ol < € and JIf - ol <5.

Moreover, p { x : g, (x}) # 0; < e and pi{x: g,(x) #0: < o There-
1 2

fore, by Minkowski's inequality
- oy - gl <" =gl + 16 - gl <e
1 2/lly = p 2l'p ’

The function g = 9, - 9, is a measurable simple function with the
desired properties.

Case 3. lLet f be a complex-valued function on X. Let ¢ > 0O be given.
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By Case 2 applied to Re(f) and Im(f), there are simple functions 9,

and 9, in Lp such that
e €
lRe(f) - gl"p <% and |[Im(f) - 92”p < 3 -

The functions 9, and 95 vanish outside sets of finite measure. By
an argument analogous to that of Case 2, it follows that g = 9 + 192
is a measurable simple function in Lp possessing properties (i) and
(ii).

|

Attention now will be restricted to a Lebesgue-Stieltjes measure

in E._.

Theorem 3.8. Let 1 < p< e and let p be a Lebesgue-Stieltjes mea-
sure in Eq. If fe Lp(Eq, A, p), then, for any & > O there is a
function g & Lp(Eq, A, u) such that
(i) g 1is continuous on Eq ,
(ii) g has compact support, and

(ii1) ||t - g”p <e .

Proof. Case 1. Suppose first that f 1is in real Lp. For n=1,2,..,

let

W= {x : Ixil <n, i=1,2,... q}

and define fn by

fn(x) f(x) if x¢ W~ and [f(x}] < n,

0 otherwise,

For each x, lim f (x) = f(x); thus 1lim |f - f [P = 0. Since
n n
N = o n—+* o™
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{f - £ |P < |£]P for each n,
Y R

lim J £ - £ )P ds = 0
n—=+eo “E n

by the Lebesgue dominated convergence theorem. Let € > O be given

and choose an integer N such that

£ - fN”p < % . (2)

Let this N be held fixed. Since fN is summable over Eq, for any

n > 0 there is, by Theorem 2.11, a function h, continuous on Eq and

of compact support, such that
”fN = h”]_ < 1.
Now consider the function g defined by

min { h(x), N} if h(x) >0,

H

g(x)

1l

ma x { h{x), - N} if h{x)< 0.

It is asserted that g 1is continuous and that lfN(x) - g{x)| < lfN(x)— h(x)|
for each x ¢ Eq. The continuity is clear since h 1is continuous on Eq'
For the inequality several possibilities must be considered. Let v e Eq.

If |h(y)}| < N, then g(y) = h(y) and there is nothing to prove. If

h(y) > N, then g(y) = N. Since |fN(x)| < N for each x,

0 < gly) - f(y) and
faly) - £, = 9ly) - £,(y) < hly) - f(y)

< Inly) - £y (0]
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If h{y) < -N=g{y), then 0< f (y) - g{y) and

[, (y) - aly)| = £ (y) - aly) < £ {y) - h(y)

< iy} - n(y)l .

Thus |fN(x) - g{x)| < IfN(x) - h(x)| for each x¢ Eq; consequently

By definition g has compact support, and [g(x)| < N for each x¢& Eq.
Since 1 < p < w, P < (NP7 for each xe (0, 2N] CE,.

But 0 < |fN - g| < 2N; thus

£, - alPt ¢ (@0P

N

or, equivalently,

- g|P Pl g
[fy - ol < (@)P7° |1 - g

Therefore,

-1 -1
[ 1 - al® an < NPT gy - ally < (200P7 0
E
q

Now choose 1 = (2N)l-p (%)p . Then

(K3 < % . (3)

v oAl

By Minkowski's inequality and Inequalities (2) and (3), it fol-

lows that

f - < If - f + || f,, -
16 = all, < 15 = flly + ey - ol

< + = £ .

N|m
N ™
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Recall that g is continuous on Eq and of compact support.
Case 2, The extension to complex-valued functions f 1s immediately

obtained if Case 1 is applied to Re(f) and Im(f),l

Theorem 3.9. Let 1 < p< e and let QL be a Lebesgue-Stieltjes mea-
sure in Eq, There is a countable collection é of step-functions with
the following property. If f ¢ Lp (Eq, A, p) and € 1is a positive

number, then there is a functicen g eﬁ such that

£ - < e.
( gllp €

Proof. For n =1,2,... let

W = {x : [xil <n, 1=1,2,000, q} .

By Theorem 2.13, to each wn there corresponds a countable family ﬁn
of complex-valued step-functions which vanish outside Wn° Moreover,
by the same theorem, it is known that én may be chosen in such a way
that, for any complex-valued function h continuous on Wn, there is

a function in élj which approximates h wuniformly on Wn. Now let
£ ©
= ) gn and let f ¢ Lpo By Theorem 3.8 there is, given ¢ > 0,
n=1

a function h e Lp such that h 1is continuous on Eq, h has compact

support K, and

£

||f-h||p < 5.

Let N be an integer such that K C‘Wn and let n > O be given, By

definition of the family ) there is a step-function g e EgN (and

N’

hence in o ) such that
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Ih(x) - g(x)| < n

for each x ¢ WN' Outside WN note that g{(x) = h(x) = 0. Hence
j Ih - gfP ap = I (h - g|P du < 9P u(WN) .
W

Eq \

Choose 1n such that q[p(WN)]% < By Minkowski's inequality

£
5

e - ol <05 - nl+ I - ol
1
<5 o+ alem)IP

< € .
|

This theorem points out an important fact about the topology of

the Banach space dﬂp (E., Ay ).

q

Definition 3.10. Let (X, d) be a metric space. If there exists a

set D C X such that for any & > 0 and any x & X there isa ye D
for which d{x, y) < e, then D 1is dense in (X, d). If there is a

countable set D (CX which is dense in X, then (X, d) is separable.

Corollary 3.11. Let 1 <p <= and let p be a Lebesgue-Stieltjes

measure in Eq. The space &ip(x, Ay #), with the metric d defined

by Equation (1), is separable.

Proef. 1In view of Theorem 3.9, it remains only to show that each g ed
is in L_. This is immediate since g vanishes outside a compact set
and assumes only a finite number of finite values.l

The most important theorem of this chapter will now be discussed.
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Several lemmas will be given first in order to simplify the argument as

much as possible.

Definition 3.12. Let f be a complex-valued function defined on Eq.

If Re{f) and Im{f) have derivatives of all orders everywhere in Eq,

then f is in C  on Eq; i.e., fe & on Eq. The same terminology

applies to real-valued functions,

Define the function o : Eq —-"E1 by

o(x) = el/lx|2 -] if x| <1, (4)

= 0 if x| >1.

Lemma 3.13. The function ¢ defined in Equation (4) is in C  on Eq'

Furthermore, if | 1is Lebesgue measure in Eq, then f fofdu > O.
E

q
Proof. Define the function f : El - El by
i
t .
f(t) = e if t<o,
= 0 if t>0.

Define the function g : Eq —* E., by
-1 for each x ¢ Eq.

Then, for each x¢ Eq s

o(x) = flg(x)] .

Clearly g« c¢® on Eq; thus, in virtue of the chain rule, o ¢ ®

on Eq provided that f ¢ ¢ on E It is easy to see that f  has

lo

derivatives of all orders except perhaps at t = 0. 1In fact
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1

fr(t) = - JE et if t<0 and f'(t) =0 if t > 0. To show that
t

£'(0) exists, let h < 0. Then

1
£(h) - £(0) _ "
h h °
1 .
Replace h by - % to obtain
1 -k
(k) f (- 1) - £(0)] = - ke™" .
From elementary analysis it is known that lim t° et -0 for any
t—» o
fixed real a, Thus
(- 1y - £(0)
. f(h) - £(0 . k
lim = = 1im 1
h-*o" k=+e - =
k
=-1lim ke ¥= 0
ke

Evidently

m | HLZE@)

h-*o h

and hence f'(0) = 0., For n =2, 3,... the proof that f(n)(O) exists

oo

and is zero is analogous. Thus f & C  on El. It follows that o e o

on E .
q

By definition of ¢, o(x) >0 for |[x| <1 and g(x) = 0 for

Ix] > 1. Since the set D = {x : x| < f} has positive Lebesgue measure,

f lo| dp = f o > 0.
£ D
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Let p be Lebesgue measure in qu Define the function

u : Eq---D-E1 by

u(x) = 9lx) for each x ¢ E (5)

where o is the function defined in Equation (4). Then [|uH1 =1,

ueC on Eq by Lemma 3.13, and u and each of its derivatives are

zero for x e Eq - {x s x| < 1} o Thus u and each of its derivatives

are uniformly continuous con Eq,

In Lemmas 3.14 and 3.15 it is assumed that p is Lebesgue mea-

sure in E .
q

Lemma 3.14. Let g : Eq - E1 be continuous on Eq and have compact

support K. Let u be the function defined by Equation (5). For any

h > 0 define the function u Eq — El by

o (x) = [ alx = by) ly) () (6)
q

o

for each x ¢ qu Then, feor any h > G u, € C on Eq and u has

compact support K(h).

Proof. Let h > 0O be fixed., It must first be shown that uh is well

defined. Define the function Fh H Eq % Eq — E1 by

Fh(x, y} = g(x - hy) u(y) .

The function defined on Eq % Eq by g{x - hy) 1is continuous since it

is a composition of continuous functions. The function defined by u(y)
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is also continuous on Eq b Eq, and thus Fh is continuous. Hence,

for fixed x, Fy is measurable. Now, since g vanishes outside K and
since uly) = 0 for |y| > 1, F.(x, y) = 0 unless there exists a vy
with |y|] €1 and an x such that x - hy ¢ K. Suppose Fh(x,y) £ 0

and let z = x - hy ¢ K. Then

'8 ~ o~
dist. (x, K} = inf {d(x, x) : x¢ K}

Let K(h) = { x : dist. (x, K) < h}. It follows that F (x, y) = O unless

x ¢ K(h) and [y| < 1. Therefore, u, defined by

uy () =jE Fr(x, y) dr(y)
q

is finite-valued and vanishes outside the compact set K(h).

oo
h € C on Eqﬂ let 2z = x - hy. By

a linear change of variable {cf. [8], p. 196), it follows that

It must now be shown that u

u (x) = n7 IE 9(2) u(XE) du(2)
q

h [ aly) uEED) duly)
E
q

let e, = (1, O, O,:.., O) be a unit vector in E_. For some real
1 q

number k # O, consider the expression
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U (x + ke, ) - U (x)
o} 1 h
H(x) = k

x + ke, -y _
u( ) - u(h)

h™4 IE a(y) . | du(y).
q

o

Since ueC on E Taylor's formula (cf. [1], p. 124) asserts that

qﬂ
for each x g Eq and for each fixed vy e Eq .

X -y + kel x-y K x-y
u (=) - u(F*H) = ¢ D (55)
k2 5 x -y + erl
+ -3 D1 u ( o )
Z2h

for 0< 8 <1, But, since szu is uniformly continuous on Eq, there

is a number M such that, for each x, vy e Eq’

X =y + kel _
U( h )-u(x_hx) 1 ﬂ
k -5 o ) -
x -y + 8ke
5 0fu (— l)s'l'kz_’M'
2h h

Let € > 0 be given and let |k| be chosen such that |k| M h_q-2”ng <e
(recall that h > 0 1is fixed). Thus, for such values of k and for each

x e E
q’

_ D,u (F)
M) =% [ e APy | <

q
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h~d ‘[ lg(y)| ” -t n du(y)

< h9 Lkzlmngul < e .
h

This shows that for each x ¢ E

Dju (%)
u (x) = h q_r aly) = duly)
Fa

To show that Dluh is continuocus on Eq, let > 0 be given. Let

X € Eq and let & > 0O be such that for each fixed vy ¢ Eq

Dlu (X_I;Y) - Dlu (Z_;\Y) < hq+1 'ng'"f?—:

whenever z ¢ Eq and |5i5 | < & (this makes use of the uniform con-

tinuity of Dlu). Then, for |x - z] < sh,

D.u (IZX) - D,u TE:X)
h h jdu(y)

IE g(y)[l - L

q

IDluh(x) - Dluh(z)| =n9

P AR S— f lﬂl}-—'—dp )< .

lall, + 1

A similar argument shows that Djuh exists and is continuous for

j =2, 3, +o45, 9. This is sufficient to ensure that u, is differentiable
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In 2 similar manner it can be shown that u, possesses derivatives
of arbitrary order on E and that these derivatives can be calculated

by differentiation inside the integral sign.

1
support K. For any h > 0 1let the function up s Eq — El be defined

Lemma 3.15., Let g : Eq —* E be continuous on Eq and have compact

by Equation (6). Then, if 1 < p <,

It
o

lim Jlg- uf|
h—-*o b p

Proof. The function g 1is uniformly continuous on Eq' Thus, for any
given n > 0, there isa & > 0 such that, if x, ye Eq and |hy| < o,

lg(x) - g(x - hy)| < n. Recall that
f udp = I [u| dp =1

and that uf(y) = 0 unless y ¢ F = {y : |yl € l} o Thus, if y e F
and h < 3, then |hy|] < h< & and |g(x) ~ g(x - hy)| < n . In Lemma
3.14 it was shown that Uy s for each h > 0, has compact support

K(h) = {_x : dist (x, K) < h} . Note that K(h;) Ck{(h,) if h; < h,.

1

Thus, since g(x) =0 for x ¢ Eq - K,

p
IE g - ulPaw = [ Ja-u P
a K JK(h)

Let x ¢ Eq and let h < min{a, 1). Then h < 3, K(h)C K(1), and



[ ote-ulPa= [ 190 -] otx -ty uly) aw1® aw(o)
q KUK(1) fq

= [ a0 - atx - my)] uly) a1’ ap(x)
KUK(1) Fq

[ FaN

[ 1660 - st - )l Tty auty) " aulx)

I~
Ce—r Ce——

e )] awo
F

2P opk Uk(1)) .

1A

Thus, for any given € > O, choose n such that P p(KUJK(1)) < ¢P.
Then, for h < min (3, 1),
- u ( € a
g = wlly "

The proof of the desired approximation theorem is now straightforward.

Theorem 3.16. Let 1 < p <o and let p be Lebesgue measure in Eq.

If fe Lp (Eq, A, p), then for any €& > 0 there is a function
Ue Lp (Eq, A, p) such that
(i) Ue C on E_,
q
(ii) U has compact support, and

(1i1) | - U]l <

Proof. Case 1. Suppose f is in real Lpu tet € > O be given.

By Theorem 3.8 there exists a function g : Eq‘—+ El such that

g is continuous on Eq, g has compact support K, and
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It - g”p < %o For any h > 0O consider the function wu =~ defined by
Equation (6). Each function u € C on Eq and each has compact

support K{(h} by Lemma 3.14. Furthermore, by Lemma 3.15, there is a

& > 0 such that g - uth < % whenever 0 < h < &, Let h bea

positive number such that hl < 3 and define U = Uy e Then U ¢ c
1

on Eq’ U has compact support, and

I Ul <N - el g - Ul < e s

Clearly U 1is in real Lp since it is bounded and has compact sup-

port.
Case 2, If f e Lp, then apply Case 1 to Re{(f) and Im(f)o.

No mention has; as yet; been made of the possibility of approxi-
mating functions in L_. Indeed, results similar to those of Theorem
3.8 and Corollary 3.1l do not hold for gn(Eq, A, ) if p is an arbi-
trary Lebesgue-Stieltjes measure in Eq, Consider the following example.

Let p be Lebesgue measure in Ela For each a ¢ El let fa be the

characteristic function of the set {x : xe B, xD a} . Then Hfaun =1

17
for each a ¢ El; thus each fa e L. Suppose that E 1s a subset of

L, which is dense in L_j; i.e. suppose that for any e > 0 and any

fel, there isa ge L  such that lIf - gl| < e. Thus, for ¢ =

OS] Loy

and for each a ¢ Els there must be a function 9, ¢ E such that
e, - o,ll, <

e, - 9.l <

These functions are all necessarily distinct since, if

N o
°

and b e E, with b # a,

1

] L

ey - g b, 2 e, - €0 - e, - sl >1 -2 =
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Hence E is uncountable. Moreover, if g 1is any function such that

. 1 1 1
"fa - gl[Jo < 5 then gf{x} < 5 for almost all x < a and g(x) > 5

for almost all x > a. Thus g cannot be continuous. Therefore, if

B 1is Lebesgue measure in E then

18
(1) gn(El, A, ) 1is not separable, and
(ii) no family of continuous functions is dense in HD(EI, Ay )
Hence Theorem 3.8 and Corollary 3.11 cannot be extended to L_ (Eq, A, p)
for all Lebesgue-Stieltjes measures,
Finally, it should be noted that Theorem 2.15 could be extended
to L (Eq9 A, p) for 1< p <=, The proof would be quite simple if

p
Theorem 3.8 were used.
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CHAPTER IV
REPRESENTATION THEOREMS IN Lp SPACES

This chapter is primarily concerned with establishing the Riesz
representation theorem for bounded linear functionals defined on A
spaces (1 < p < w). The proof makes use of the Radon-Nikodym theorem
in an essential way. Thus the Radon-Nikodym theorem is deduced first.
The proof given is based on the Riesz representation theorem for linear

functionals on a Hilbert space.

Definition 4.1. Let V be a linear space over the field K of com-

plex numbers (or over the field R of real numbers). A complex-valued

(or real-valued) function F defined on V 1is called a linear functional

if

Flax + By) = aF(x) + pF(y)

for every x, y e V and every a, B & K (or R).

Defipition 4.2. If V is a normed linear space over K (or R), if

F 1is a linear functional on V, and if there is a real number M such
that |F(x)| < M lIx]] for each x & V, then F 1is called a bounded

linear functicnal. If F 1is a bounded linear functional on V, the num-

ber [IF|| defined by

[IE]l = inf { M : |F(x)| < M ||x]] for every x e V}' (1)

is called the norm of F.
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Definition 4.3. Let V be a normed linear space over K (or R). The

*
collection of all bounded linear functionals on V 1is denoted by V

and is called the conjugate (or dual) space of V.

Theorem 4.4, If V is a complete normed linear space (Banach space)
over K (or R), then v¥ is alco a complete normed linear space over
K (or R) with the norm defined by Equation (1}. Moreover, for each
I«

The proof is straightforward and will not be given here.

2

FeV"' and each x & vy |F(x)] < |IF!

Theorem 4.5. A linear functional F on a normed linear space V is

bounded if and only if it is continuous.

Proof. If there is a number M such that |F(x)| < M [[x]] for every

x e V, then |[F(x) - F(y)| = |F(x - y)| < M]|x - yl| for each x, y e V.

Thus F 1is continuous on V. Conversely, suppose that F 1is continuous
on V. If F 1is not bounded, for each positive integer n there is an

x, &V such that [F{x )| > nllx_

. Since F(A) = 0, X #6 for any n
x

(8 1is the zero element of V). Thus y = and for each n

n
e V
"ol ]

1
Fly )| = - JF(x)] > 1. (2)
P = T T
n
However, ”yn” = % and, by the continuity of F, lim ]F(yn)| = |F(8)| = 0.
n - o

This contradicts Inequality (2)am
A special case of the Riesz representation theorem for bounded
linear functionals on a Hilberi space will now be stated. The proof of

Riesz's theorem for any Hilbert space is quite elementary and may be found
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in Halmos (cf. [3], p. 31). The theorem in question was also proved by

M. Frechét and is often called the Riesz-Frechét theorem.

Theorem 4.6. (Riesz representation theorem). Let (X, A, p) be a
(complete) measure space. Let F be a (complex) bounded linear functional
on the Hilbert space ‘ﬁb (X, A, p). Then there is a unique 6‘e¢£2(x, A, 1)

'l

such that, if i efﬁ2(x, A, p) and geg, fef,

F(?} = j f gadu
X

(a is the complex conjugate of g}.
In preparation for the Radon-Nikodym theorem, certain measure-

theoretic concepts will now be discussed.

Definition 4.7. Let X be a nonempty set and let A be a o-ring of

subsets of X such that L}{A t Ae A} = X. A signed measure is an

extended-real-valued, countably additive set function p defined on A
such that p{p) = 0 and such that | assumes at most one of the value

+o0 and ~oo., A complex measure is a set function yu defined on A such

that, for each A e A, p(A) = ul(A) + iu2(A) where L, and p, are
signed measures on A.

A result of fundamental importance in the theory of signed measures
is the Jordan decomposition of a signed measure. This result will now be

stated for the case of interest here.

Definition 4.8. Let | be a totally finite signed measure on a o¢-algebra

A of subsets of X, For every A e A let
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p(a)

H

sup{u(E) : ADE g A} and

p(A) = - inf {u(E): ADE e A} .

Theorem 4.9. (Jordan decomposition of a signed measure). Let p be a
totally finite signed measure on a dg-algebra A of subsets of X. Then
pt oand pT are totally finite measures on A and p = p' - p .

The proof may be found in Halmos (cf. [4], pp. 122-3) or in

Hewitt {(cf. [5], pp. 274-6).

Definition 4,10, Let (X, A, p) be a measure space and let v be a

complex measure on A. The complex measure v 1is absolutely continuous

with respect to u, in symbols v << p, if v(A) = O whenever A g A

and u(A) = 0.

Theorem 4,11, Let (X, A, p) be a measure space.

(i) If v 1is a totally finite signed measure on A and
+ - + -
v=v -v, then v < p if and only if v <« p and v <K u.
(ii) If v 1is a complex measure on A, then v << p 1if and

only if Re(v) << p and Im{v) <« p.

Proof. (i) Let v = v - v  be a totally finite signed measure on A.
If v+ <« p and v« By then clearly v << p. Thus suppose v << p.
Let A e A and suppose p{(A) = 0. Since A is complete for ,

L(E) = 0 for every E e A such that E(CA. Thus v(E) = 0 for every

such E g A, By Definition 4.8

v+(A) = sup { v(E) +: ADE ¢ Af .
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Hence vT(A) = 0 and v < p. Similarly, from the definition of v,
it follows that v << j.
(ii) If v is a complex measure on A and A e A, then

v(A) = 0 if and only if Re(v{A}) = 0 and 1Im{v(A)) = Oal

Definition 4.12. If (X, A, u) 1is a measure space, and if f and g

are two functions defined on X such that p({x : f(x) # g(x)}) =0,

then f =g modulo u.

Theorem 4.13. {Radon-Nikodym theorem). let (X, 4, £) be a totally

finite measure space. If v 1is a totally finite signed measure on A
which is absolutely continuous with respect to p, then there exists a

finite-valued p-summable function g on X such that

v{a) = f g du for every A g A.
A

The function g is unique in the sense that if
v(Aa) = I h du for every A g A,
A

then g = h modulo p.

E;ggiol Case 1. First suppose that v 1is a totally finite measure on
A such that v << p. Define the totally finite measure A on A

by A(A) = p(A) + v(A) for each A e A. If Ax(A) =0 and B CA,

then p(A) = 0 and v(A) = 0. Since A is complete for p, p(B) = O.
Since v << p, it follows that v(B) = 0. Thus A(B) =0 and A is

complete for X\. For any f e L. (X, A, \)

o

lThis proof is due to J. von Neumann [12]a
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el R

fx €] ox < fifll, iz, = Q£ V(0T < = (3)

by Holder's inequality and the total finiteness of A. Thus

L, (X, &, \)C Ll(X, Ay, N). If f 1is any A-summable function, then

5

[ e < ftaws [ qsfav =] Jfl o <o
’ X X X
and, similarly,

IHEIRTE

X

For each f‘scAQ (X; A, A} define the functional F by
PN ~
F{f) = f f dv for any fe f.
X

By Inequality (3) it follows that

1
B(F)] < ([X ] v < ‘[X ] an < [ 001 Pl

for each T eJiz (X, A, A}, Thus F 1is a bounded linear functional
on cﬁQ (X, Ay X). By Theorem 4.6 there exists a unique § :062 (X, A, \)

such that

F(f) = f f gd. for each T 5e<2 (X, Ay N)o
X

Hence there is a function g ¢ L, (X, A, A) such that

f f dv = j fog dh for each f e L(X, A, \) . (4)
X X

Moreover, g 1is unique modulo X.
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For any set Aef, K, &L, {X, A, N); thus

It
t_)
=
p=1
al
Q.
?J

Ix KA dv

H

jA Re(g) dn - i IA Im{g) dn

Therefore

I Im(g) dx = 0 for every A g A.
A

It follows that Im(g) = O modulo X (cf. Theorem 3, Appendix). Redefine
Im(g) on the set where it is nonzero so that Im(g(x)) = O for each

x £ X. Now consider the sets Al = {x : g{x) < O} and A2 = {x 1 g(x) > L}.

It will be shown that p(Al) = u(Az) 0. From Equation (4) it follows

that

jK dv=f1< g dx
x A x A3

I
—
=

e

gdp + f K, g dv
: A,
J X 1

for j = 1,2, Since each term is finite,

jKA (1-g)dv=f K, gdu for j=1,2, (5)
X 73 X3

Cn A g(x) < 03 thus



It follows that j g dy =0 = f (-g) du. Hence p(Al)
A

1 1
(cf. Theorem 2, Appendix). On A

o> [ (1-a)av=] gauzplr) 20,
Ao Ao :

Thus p(A,) = 0. Since Alfw A, =® and since v <<,
MA U AL = p(a LA +v(a L Ay) = 0.

Hence 0 < g{x) < 1 for almost all x e X (relative to
g on a set of zero measure in such a way that 0 < g{(x)
x e X,

Let f be any nonnegative measurable function on

sequence {fn} by

f{x) if f{(x) < n,

£ {x)

it
o

if f{x) > n .

A

<1

XG

for each x e X and each n = 1,2,... » For n = 1,2,...,

46

0

g(x) > 1y by Equation (5)

Redefine

for all

Define the

foe L (X, Ay \) C:Ll(X, Ay ), and thus fn is summable with respect

n 2
to each of A\, p, and v. By Equation (4)

‘f £ dv = f f 9 ds +fxfngdu,

and therefore

I

X

£ (1 - g) dv = Ix f, g ds forn=1,2,...
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Since {fn (1 - g)} and {fn g} are nondecreasing sequences of nonnega-

tive measurable functions, it follows by the monotone convergence theorem

that

fx F(1 - g) dv = jx f g dp (6)

(each integral may have the value + ).
Let g, = T—%—a . The function g_ is nonnegative and finite-
valued since 0 < g(x) < 1 for each x ¢ X. Moreover, g, 1s measur-
K
A

able. For any A e A let f = T - g ° Then f is nonnegative and

measurable; by Equation (6)

Kp K

A
jx T g (1 - g)dv = J‘ T g dp .

Thus wv(A) = I 9, dp for each A e A.
A

Since v(X) < e, it follows that

I g du = v(X) < o,

y ©

and 9, is thus yu-summable. This completes the proof in Case 1 except
for uniqueness. This will be handled in the more general case,

Case 2. Suppose that v 1is a totally finite signed measure on A
such that v << p. By Theorem 4.9, v =v - v where vt and v°
are totally finite measures on A. By Theorem 4,11 it follows that
v« b and v << p. Thus by Case 1 there are finite-valued p-

summable functions g+ and g  such that
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and

v (A) = Jﬁ g du for each A g A
A

Hence for each A € A,

va) = [ g g e
A

To show uniqueness, suppose that g and h are any two finite-

valued p-summable functions for which

via) = j g du = r h du for each A & A,
A A

Then, since v 1is totally finite ,

I (g - h) du =0 for each A e A,
A

Thus g = h modulo p (cf. Theorem 3, Appendix)gl
The Radon-Nikodym theorem can be extended to a totally o-finite
space (X, A, p) if v 1is a totally o-finite measure on A. However,

generalizations of this nature are not needed here. It is, however,

necessary to extend Theorem 4.13 to allow v to be a complex measure,

Corollary 4.14. Let (X; A, p) be a totally finite measure space, If

v is a totally finite complex measure on A which is absolutely contin-

uous with respect to p, then there exists a complex-valued p-summable
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function g on X such that
v(A) = .[ gdye for each A g fi.
A

The function g is unigque modulo p.

Proof. By definition of a complex measure, there are totally finite

signed measures and on A such that v = vy + i Vs If

Y1 Vo

v <, then v, << p and << p. By Theorem 4.13 there are finite-

1 Vo

valued p-summable functions 9 and 9, such that

@ = | g
A

and

vQ(A) = IA 9, du  for each A 4.

The function g = 9 + i 9 clearly serves as a suitable function for

v. Since 9 and 9, are unique module § and since vy and v, are

unique, g 1s unique module p.

4]

Let (X, A, p) be a measure space. Let p be a real number such

that 1 £ p <, and define the number g as follows:

. . 1 1
q-= E‘%}f if 1< p<o (i.e., o + q =1)3
g = o™ if p:l

With q related to p in this way, the study of the space d£p(x, Ay )
leads, in a natural way, to consideration of the space Jéq(x, Ay p). This

relationship can be seen; for example, in Holder's inequality. The
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remaining theorems of this chapter point to another natural relationship

between and .
p 54q

Theorem 4.15. Let (X, A, p) be an arbitrary measure space and let

1 < p <™, For every g edﬂq(x, A, p)s 1 < g <, the functional F

defined for ’f’eg’ip(x, A, p) by

F(f) = [ fga (7)
X

is a bounded linear functional. Moreover, ”ﬁﬂq = |[Fil for 1< g < =,

°

If (X, A, p) is totally g-finite, then [g| = [IF]
Proof. Let F be defined on «ﬂp by Equation (7). If 1< p <
and ?ga%p, then

FOL< [ 151 ol dw < el

by Hoélder's inequality. Thus F is a bounded linear functional on d<p

for 1 < p <= (the linearity of F follows from that of the integral).

o

Moreover, I|Fll € Hquc It remains to show that Hg”q < JIF

Define the measurable function h on X by

nto = LBl s o< gro) < (8)

= 1 if Jg(x)| = 0 or e,

Let (X, A, pu) be an arbitrary measure space and let 1 < p <%, Let

f = hlg[q-lc The function f is measurable, and
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1
g

. [r (g )p [ \; y P
et \jx El nl” o ) lall P -

I

Thus f ¢ Lp and f 1s in the domain of F. Furthermore, since

E = {x : |g(x)| = q% 13 of measure zero,
F(F) = 1919 g du - 191%7! hg dy
IX IX-E
<[ TelTew = Ml *
X-E
Hence
|
a . £ = P
Il @ = (RGP < el el = e ol P -
q - 2
If HGHq?(Oy then NFH_Z“qu P ”9F|qa 1€ ||9||q=0, then

it is evident that |[IF|| > ”g”qe

Now let p =1, q == and let (X, A, p) be a totally o-finite
measure space, If p(X) =0, then |lgll, = 0 < l[F[l. Thus suppose that
p(X) > 0. Suppose also that there is an & > 0 such that Jgll, > [[Fll +¢.
If E = {rx : |g(x)| > NIF]} + %}‘, then W(E) > 0 since otherwise

lgll, < IIFIl + €. let A be sets of finite positive measure

19 A2ﬂ
o

such that X = lu}Aig Then there is an integer k such that
i=1

0 < p(Ef1A) <. For some such k let A= E[1A and let f =K.

Then f e L and

19

ol = [ el owz [ (WEl+ ) du

AV

(IFl+5) w(a) .
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If h is the function defined by Equation (8), then [h(x)| =1 for

each x € X, Thus |[f| he Ly, and
N
J“ |fq] dp = f |f] hg dp = E([f|h)
X x
< el Irnliyp = IFIL p(a) .

Hence, if HgHcn > |Fl| + e,

UIFll +5) w(a) < Ngall, < MR wa) .

Since 0 < p(A) <o, it must follow that [F| + % < |IFll. Thus there

isno & >0 forwnich flall, > IFl + 5 ieer, lall, < UFl. g

Theorem 4.16. {Riesz representation theorem). Let (X, A, p) be an

arbitrary measure space and let p be a number such that 1 < p < e,

ko -~
If F ecﬁp (X, A, p), then there exists a unique g séiq(x, A, k) such
that

(i) for every ) e&ep(x9 Ay @)

N
F(f) = ‘f fg dy, and
X

A
i3 F = o
(11) [I¥l el
Remark. The proof to be given here is essentially based on that to

be found in [14],

Proof. Case 1. Suppose that (X, A, p) 1is such that A e A only if
p(A) =+ or p(A) = 0. Let f be defined on X and suppose that

A= {x : | f(x)] > 0} has nonzero measure. For n = 1,2,,.., let
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A = {x | f(x)] > %} . There is some integer N such that p(AN) # 03

for, if not,

Thus p(AN) = ®, and

v

1
8

R P L A ac

N

Hence f ¢ Lp. It follows that f ¢ Lp only if [|f{x)] = 0 almost

¥ *-—- o = =
everywhere. Therefore, 5fp = {8‘},(fp = {9}, and g =8 eifq {8 }
satisfies (i) and (ii).
Case 2. Suppose that (X, &4, p) is such that there exists an A e A

¥*

for which 0 <p(A)< o. Let F be a (fixed) member of dfp . Now

(A, " pA) is a totally finite measure space if A, 1is the family

A
of measurable subsets of A and pA(E) = p(E) for each E e AA' If
Be A, then Kje Lp(x, A, ). Thus define the complex-valued set
function A\ on AA by
A(B) = F(QB) for each B € AA‘

Let Bl’ B2,.,. be a disjoint sequence of measurable subsets of A,

=]
and let B = U Bi' If hn is the characteristic function of
1
! n
B, for n=1,2,...,
. i
i=l
then 0 < Kg - h < Ky and lim h_ = KB' By the Lebesgue dominated
n n oo
convergence theorem, lim HKB - hn"p = 0, By Theorem 4.5 F is

N+
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continuous on jqp' Thus

A(B) = F(K) = lim F(h )
n oo
n
= lim FC( ) = 1lim Z F(I}EB )
n-+oo UBi n-+ox =1 1
i=1
o
= z A (B, )
i=1

Hence X\ is countably additive on A Since A(®) = F{(P) = 0 and

A’

A(A) <o, A is a totally finite complex measure on A Moreover, if

Al
Be A, and w(B) = 0, then

A(B) = F(K.) = F(R) = 0O .

It follows that X\ << pA. By Corollary 4.14 there exists a complex-

valued summable function 9, on A  such that
(8) = F(Ry) = [ g, o, foresch BeA
N = B = o gA pA 0r eac e hy o
The function 9y is unique moduleo p . Define 9y to be zero on X - A,
Then
F(KB) = fx KBgA dp for each B ¢ AA .

By the uniqueness of g,, if A' e A and p(A') < o, then Ipr = 9y
module P on Al A,
Let A e A with 0 < p(A) <o, Let Alseass A be a disjoint

sequence of subsets of A such that u(Ai) >0 for i=1,..., n. Let



n
G =4f : f = EjaiKAa for some complex numbers CIERREY anNL. Then
i
i=1

G C:Lp and, for each f ¢ G,

n
”~ Fal
F(f) = Z aiF(KAi) = Z a; f Ka. 94 du

i

i=1 i=1 X
n

B E: 33 I 9y I -

A,
i=1 i
Define the function f ¢ G by
n F(ﬁ ) a-1 ]
£ =) : 5
= e
A, A,?
- i 3 3

where Bj is the argument of F(’IEA ), with the understanding that

j
arg(0) = 0. Since K, K, =0 if j Fk,
i "3
A
n | F(x, ) (g-1)p
P —_—d Py
”f”p - f E: (A lKA. | H
X . j j
j=1
n F(ﬁAg) q
= E: ETKT%_ u(Aj)
o j
i=1
Thus, if H?Hp £0,
F(K, ) (g-1
E: > \ e %5 Bk
F(3)] Hy) s
F(% j=1
¥l > = b
HTHP 1
p

5%
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n
; o
> =i :
Y IER, DT (wlag i P
3= ’
1
x A l-q | 9
> ) IFR T wa )t (9)
j=1 )
If [f]_ =0, then F(K, ) =0 for j =1,..., n by definition of f.
p A,

J
In this case lnequality (9) merely asserts that |[(Fj| > O.

Let A be a fixed set of finite measure, and let 95 be defined

as before. For n =1,2,... define the function 9, on X as follows:

Re(g (x)) = min (E , ) if 0¢ % < Re(g, (x)) < k

for some integer kj

o=

Re(g, (x)) = max (-

-
1
o
—r
P
ry
o
IA

for scme integer kg
Im (gn(x)) is defined analogously.

Thus 1im g _(x) = g,(x) for each x & X. MNote that each g
n=bc0 n A n

is a simple function, and each is thus of the form

Pn P,
g = z cPA?  where U A7 C A
n i A 1
. i=1
i=1
If ;L(A;I) =0 for any i and n, redefine g9, to be zero on Ain.
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In this way choose integers M_ (n =1,2,...) and relabel the disjoint

sets A;’ in such a way that p(Ain) >0 for i =1,2,.00, M and

n=1,2,... . Let xine Ai“ for 1 =1,..., M and n=1,2,... .

Then, for i =1,..., Mn and n=1,2,.,.. ,

'f elg,) du

s
()
TN
L_J
T
]
[{w]
I
[o5
~
]

lf 9,7} du

v

RE(gn(xin ))’ P(Ain

Similarly,

Im (jAngA du> \ > (10 (g (" D) w(a"™) .
i

Hence, for 1 = l,..., Mn and n = 1,2,.4.,

¢ 2 7 2
9 du. z{[ne(gn(xi“n} + |1 (gn<xi"))J } k(a)
T -

o, (") A"

[

A,
1

v

By Inequality (9) it follows that, for n = 1,2,...,

M

'n 1
B 2| ) PR o] ela ")t 9
i1 i
1
e
> lj oy o ’q (n(a,")) " 9
M 1
n,(q n, | 9
> Z lg, (x, ) uia

i=1
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Q —

M
2 Zn jx 'gn(xin)lq Kap W
i=1 i

2 gyl -

An application of Fatou's lemma results in the inequality
IEl > vimanf fofly > llgyl, -

Now, for each A e A for which p(A) <o, let H{A) = ”gAnéq.

Let
U = sup { H(A) : p(A) <o} < IENY .

If A, BeaA, ACB, and p(B) <=, then g, = 9y modulo p on A
and g, =0 on X - A, Thus H{A) < H(B). Hence a sequence { Ai}
of sets of finite measure may be chosen so that A, C:Az(::... and

o0
lim H(An) =U. Let T = UJ A and let g = lim g, (since 9, = 9,
n -+ n=1 n -k n n n+l

medulo p on A, lim g exists almost everywhere relative to p
n n oo n
and vanishes on X - T). Since {IgA Iq} is a nondecreasing sequence
n
of measurable functions, it follows from the monotone convergence theorem

that

f lg|9dp = lim lg, I = 1im H(A) = U <o
X n 4o n g n oo

Thus g ¢ Lq' Furthermore, if B C:An for some n and B e A, then

= [ e, o
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Inasmuch as |KBgA | < Kg lal ¢ L, » the Lebesgue dominated convergence
n

theorem implies that

F(K) = lim Ix Ky 9, b = fx Ky 9 dp . (10)
n

n oo

Suppose C g A 1is such that T 1C = ¢, Then

lim H(AnkJ C) = lim [H(An) + H(C)] = U+ H(C) .
n oo N —%co

By definition of U, H(C)

0O, Now let A0 e A be a set of finite

measure for which H(AO) > 0. Thus AO T #®, and KAO = KAOfTT'+ KAo’ T*

Since T (W(Ao -T)=¢, H(A -T) =0 and

Bk, . 1) = j KAO-T % -T do = O

A A - 3
Thus F(KA ) = F(KA N T). Note that KA (T lim KA [ a since
9] 0 0 n--roc 0 n

R _ p p
Ap CA,C ..o o Also observe that IKAO AT KAO f]An' < IKAO F\T' .

By the Lebesgue dominated convergence theorem, lim HKAO AT - KAOr]An”p =0,

n-»oo
Since Al r]An C:An, it follows from Equation (10) and the above discus-
sion that

F(’J&A) = F(ﬁAoﬂT) = lim F(ﬁAonAn)

n —kco

lim f K g dp .
X Ao r]An

n -*oo

Moreover, |1<AO r]An gl < KAo lal e L, because (A ) <= and ge Lq.
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Another application of the dominated convergence theorem results in the

equation

Flk, ) - f

K, g du (11)
A
0 X 0

K du =
AoﬂTg H fx

because g =0 on X - T. Now let A0 e A be a set of finite measure

for which H(Ao) = 0. As noted previously, modulo p  on

9a

9
0 n

A (VA . Hence
0 n

I

9
O

K,!\Ogd‘L =I

=g modulo p on A [)T. Since H(A ) =]lg, | = 0,
o] o] Ao Q

KAoﬂrgd“ = I

K 9, -
X Aoﬂr A, = 0.

X A

~

Moreover, F(KA

) = f Ky 9, due = 0. Hence Equation (11) is valid for
o] X o 0

any Ao ¢ A which has finite measure.
n
Let f = Z:aiKBi £ Lp where a, # 0 for any i. Since
i=1

nfnpp > Jagl w(By) for i=1,.c.,n, w(By) <® for i=1,..., n,

By Equation (11} it follows that

n n
Ty ~
F(f) E:ai F(KB.) = E: a, I KBo g du
i=1 ! = !

il

f fgadp . (12)
X

Now let f ¢ L . By Theorem 3.7 there is a sequence {fnt} of measur-

able simple functions such that 1im [[f - £ [ = 0 and
n oo ne

n {x : fn(x) # O} <> for n=1,2,... - By Equation (12), for

n = 1,2,.0. ,



61

F(fn) = J% f, g du .

” ~
Since F is continuous on & , lim F(fn) = F(f) . The functional G
n oo

defined on ;fp by

~
G(f) = j fgdt for fed
X P

is also continuocus by Theorem 4.15. Thus

lim j flgop = f fgde .
n % “ X X

~
Hence, for each f scﬁp ’

F(?) = I f gds .
X

Since g e Lq, it follows from Theorem 4.15 that ”gﬂq = IF].
To show that the 9§ ecﬂq determined by g 1is unique, suppose

that 95 9, ¢ Lq and

F(f) = j fgldp = I ngdp for each f ek .
X

¥ P
From Theorem 4,15 it follows immediately that [|F|| = Hngq = ”92”q'
Thus al = 62..
*
Te deduce a result analogous to that of Theorem 4.16 for éfl , it

is necessary to restrict the measure space (X, A, ) further. An example
*

to show that Theorem 4.16 cannot be extended without modification to 551

may be found in [14]. 1t is sufficient, however, to require that

(X, A, p) be totally g-finite,
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Theorem 4,17, Let (X, A, ) be a totally g¢-finite measure space.

If F ech*(X, A, ), then there exists a unique § e%in(x, A, k) such
that
~
(i) for every f edil (X, A, p)

F(F) = f fg du, and
X

(i1) JIE = 18l -

Proof. Case 1. Suppose that p(X) < ©, In Theorem 4,16 it was shown
*
that, for each F ecﬂp {1 < p<=), there is a complex-valued summable

function g such that
~
F(kK,) :.[ K, g d. for each A e A .
A ¥ A

*
The corresponding result for F eofl follows from this since the assump-
tion that p > 1 was not used in that portion of the proof of Theorem

*
4,16. Thus suppose that F e:%l and that g & L, is such that

(k) = I K. gds  for each A & A.
A LA

If fe Ll is a simple function, then it follows that

F(f) = f fgde .
X

Let g, = Re(g) and 9, = Im{g). For each f 1in the real space Ly

write
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where F and F are real-valued functionals. The functionals Fl

1 2
and F2 are bounded linear functionals on real c%1, It follows that,
for any simple function f in real Ll’
FA(T) = f f g, du and (13)
1 1
X
Fz(f) = IX fg,ds

Let P = {x : gl(x) > O]‘ and let f be any nonnegative function in

real L Let {fn} be a nondecreasing sequence of nonnegative mea-

lo

surable simple functions such that fl(x) < f.(x) € ... € f(x) and

2
lim fn(x} = f(x) for each x ¢ X (cf. Theorem 1, Appendix). For

n =kco
n=1,2,..., |f-~- fn|Kp < |f|; by the Lebesgue dominated convergence

theorem, 1lim j Kp | f - fn| dp = 0. Since F, is continuous on <%1,
n - X

1 _’/\‘ _
lim F (Kpfn} = F

AN b
1 K_f). The sequence {f lg |} is a nondecreasing
n o P n 1

1€
sequence of nonnegative measurable functions. Furthermore, for x e P

0 < fn(x) gl(x}, By the monotone convergence theorem and Equation (13),

fxfg d = fg, dp = lim £ g, du
X Pl IP 1 oo f; n-1

PR )
= lim F (f XK ) = F(Kf)< o,
f »co 1''np 1'p
Now X - P = {x : gl(x) < Oi}o For any nonnegative function f in real

ng an analogous argument shows that



For each nonnegative f in real Ll’

and

ral

Fay
f) = Fl(fKP) + Fl(fo_P)

IP fgl dp + jx-p fg1 du

I fg, dn .
X 1

For any f in real L write f = f+ - f . Then

1!

b
!

F.(F) = F

X = Ix f+gldp - Ix £ g du

I fgl dp , and fg1 € Ll .
X
In the same way it follows that
F(F) = [ g, o
X
for each f 1in real L.,. Thus, for each f in real Ll,

F(F)

1}
T
(]

—
il
—

-+
o]
T
——
-

f) = Ix f(g, + ig,) d

1
D
-
w
a
<

Finally, for any f e L, ,

i
—
L s
@

o
©
=

it thus follows that

fgl

64

E Ll,

(14)
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and f ge Llu

As is the proof of Theorem 4.15, define the measurable function h

by

lala] if 0< |g(x)| <=,

h(x) g(x)

= 1 if Jg(x)| = 0 or o=,

Let f, = |g|h. Then, since ge L, and |h] =1, f, e L;. Thus, since

il = p(x) <,

[ 1al® = [ fyoas = Gy < TRl iy
< {IF! du = |IF hgd
<HEn [ lalaw = Nl [ b oo an
< DR EGRY < IFIZ il < NEN w(x)

Therefore g e Lo and the function f, = |g|2 he L. For each posi-

tive integer n, define f = lgln h. By induction it follows that

°

J 1o" e < pFIm w0

For each positive integer k, let A

]
—y
b

) x)| 2 k}. Then

i(A)

[TaY

[ tel™ an

Ay

[T
—
[* R
=

A

TN w0,

If p(X) >0, then, for fixed k and for n = 1,2,...,
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Thus, if k 1is an integer for which u(Ak) > 0,

]
1i p—(—(Ak) " Sy
im nes = < X o

n -+

However, if p(Ak) >0 and k > |IF[l, the preceding inequality is con-
tradicted. Thus p(Ak) = 0 for each k > [[F[. Hence 4 {x : |g(x)] >HFﬂj =0
and flgfl, < [IF]

all, = © < lIF]l. Finally, it follows from Equation (14) and HOlder's inequal-

o If p(x) =0 and lgfl, < lFll. If p(X) =0, then

ity that |IFfl < llgll - It now follows from Equation (14) and Theorem 4.15

that the equivalence class g 1induced by g is unique.

Case 2. Suppose that (X, A, p) is totally o-finite. Let {An} be an

[e.o]
increasing sequence of sets of finite measure such that X = |J An. For
n=1

each n, (An,ﬂh, u) is a totally finite measure space if An denotes the
family of all measurable subsets of An. Thus, for n =1,2,..., there

is a unique G edh such that
[ g] [&+]

/\
F(fK = J' fK, o di  for each fe L (15)

A ) 1

n X n

and IF! > Hgnun (the restriction of F to functions vanishing outside
An is a functional having norm less than or equal to the norm of F).

Moreover, since A_ C:An+l for n = 1,2,400,
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I
C—
ia s
-~
.-
Pa
=
y
=
+
—
o
=

1
—
-
[Va]

=3

o

—
[o R
=

for each f ¢ Llo By Equation {15) and the uniqueness of 9. it follows

modulo WU on Ann Thus lim gn(x) = gk(x) for almost

n -woo

that % T %t

all xe Ay (k = 1,2,...). Let g(x) = lim gn(x) where the limit exists
ne*x

and set g(x) = 0 elsewhere. Since Hgnun < IF)} for n = 1,2,...,

lgn(x)| < |F]] for almost all x e X, Thus lim lgn(i)l = Jg(x)}| < ||F]|
n-—+tw

for almost all xe X and lgl|_ < [|Fll. Now, since g = g, modulo p on

A, it follows from Equation (15) that

k’

I~
F(fK, ) =J‘ fK, g du for each fel

k X My 1

and k = 1,2,... . Now |[fK, g| < [fg|, lim fk, g = fg, and
A = A
k k+o> k

[f - fKAk[ < |f|. Moreover, for fe L

1
beally < Il lall, < o -

By the lebesque dominated convergence theorem,

limI _
K 4o foAkgd“‘Ifgd*‘

and
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lim |f - fK, | dp = O,
k o J‘x A

Since F is continucus on Jj ’

F(f)

VA
lim F(fKA )
k —»eo k

= lim j £K
X A

gdp = f f gdp
k ¥ X

k

for each f e L,. By HBlder's inequality [|Fl| < {lgll_- Since the reverse
inequality was previously obtained, [[F|| < llgll_. Since the reverse inequal-
ity was previously obtained, |[[F} = ligll_. The uniqueness of 3 follows
immediately from Theorem 4915,.
The Riesz representation theorem cannot be extended to linear func-
tionals on a(m) {X, A, p) even if p 1is Lebesgue measure and p(X) < =,
An example illustrating this may be found in Zaanen (cf. [17], pp. 201-2),
For an arbitrary measure space (X, A, p} and 1 < p <o, the
spaces c%p¥ and dﬂq are closely related. For (X, A, p) a totally

*
g-finite measure space, there is a similar relationship between c£1 and

4”, The verification of these statements is now quite simple.

Definition 4,18. Let B and B be Banach {complete normed linear)

1 2
spaces. An isometric isomorphism of Bl into B2 is a one-to-one linear
transformation @ of B, into B, such that ”¢(x)”2 = ”x”1 for every

X € Blo If there is an isometric isomorphism of Bl onto B2, then B1

and B2 are isometrically isomorphic.

Theorem 4.19. If (X, A, .) 1is an arbitrary measure space and 1 < p < o,

then cip*(x, A, p) and r%q {X, A, p) are isometrically isomorphic.
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If (X, A, p) 1is a totally d-finite measure space, then

di*(x, A, ) and éia,(x, A, u) are isometrically isomorphic,

Proof. For 1 { p<ewo and 1< g< e, define the transformation o

from a{p* to a"\q as follows: for F Ea‘(p*, ©(F) =9 if and only if

F(?) = j f g dp for every fFed . (16)
X p

*
The transformation ¢ 1is well-defined on all of C#p by Thecrems 4.16
* Fal
and 4,17: for each F Eﬁip (1 < p <o), there is a unique g eJiq

l) =¢(F2) =§,

then clearly Fl = F2. Thus ¢ 1is one-to-one, The linearity of ¢

is evident, and it follows from Theorem 4.15 that

(1 < q < =) which satisfies Equation (16). If @ (F

lo ()] = ||auq = IF| for each F e(;'p*

~ L x
{1 {p< «), Since each g E({q generates an F ed%p, the transforma-
tion is onto d(q. Thus, &i; and qu are isometrically isomorphic for
l1<{p<ew and 1 < g if (X, A, p) 1is restricted in the way indi-

cated.
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Theorem 1. Let (X, A, p) be a measure space and let f be a nonnega-

tive measurable function on X. Then there exists a sequence {fn} of
nonnegative measurable simple functions on X such that

(i) fl(x) < f(x) < oo < f(x) for each x ¢ X, and

(11) lim f (x) = f(x) for each x ¢ X .
r ~»xo

Theorem 2. Let (X, A, p) be a measure space. Let f be a function
which is summable over a set A e A. If f 1is positive almost every-

where on A, and if

f fdp =0, then p(A) =0,
A
Theorem 3. Let (X, A, p) be a measure space., Let f be a function
which is summable over X, If .[ f do = 0 for every A g A, then
A

f{(x) = 0 for almost all x ¢ X
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INDEX COF SYMBOLS

ot infinitely differentiable functions

El* extended real line

Eq g-dimensional Euclidean space

f :+ A—B function with domain A and range a subset of B

t slﬂp equivalence class of functions (cf. p. 21)

Im(f) imaginary part of f

K complex numbers

KA characteristic function of A

Lp space of functions f with |f|P summable (cf. p. 20)
%p Banach space corresponding to L.p (cf. ps 21)

[ norm in a normed linear space

norm in %»
p

p
v+— v Jordan decomposition of a signed measure v (cf. 42)

v << complex measure v is absclutely continuous relative to
R real numbers

Re(f) real part of f

v* conjugate {or dual) of V (cf. p. 40)

(X, A, B) measure space (cf. p. 3 )
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