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PE Compressive strength at the point E of the P-M interaction diagram 

Ry Overstrength coefficient for the nominal yield stress in the steel 

Ru Overstrength coefficient for the nominal ultimate stress in the steel 

T Torsion force 

V Shear force 

Vn Nominal shear strength 

Zc Plastic section modulus of concrete 

Zs Plastic section modulus of steel
Zsr Plastic section modulus of reinforcement 
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SUMMARY 

 

The use of composite steel-concrete columns and beam-columns in many structural 

systems is increasing globally due to the intrinsic synergy when these materials are designed and 

detailed together properly. However, limited test data are available to justify the structural 

system response factors and comprehensive design equations in current design specifications. 

This research, through the testing of 18 full-scale, slender concrete-filled steel tube (CFT) beam-

columns, attempts to address the latter need. The circular and rectangular CFT specimens tested 

for this research are by far the longest and the most slender full-scale CFT members tested 

worldwide. These CFT specimens were subjected to a complex load protocol that includes pure 

compression, uniaxial and biaxial bending combined with compression, pure torsion, and torsion 

combined with compression. In addition, data from the hydrostatic pressure on the steel tubes 

due to the fresh concrete at casting was evaluated. The single most important contribution of this 

research is the clarification of the interaction between strength and stability in slender composite 

concrete-filled columns and beam-columns. Parallel to the experimental study, advanced 

computational analyses were carried out to calibrate material and element models that 

characterize the salient features of the observed CFT response, such as steel local buckling and 

residual stresses, concrete confinement, stability effects, strength, and stiffness degradation, 

among others. Based on the observed behavior, simplified guidelines for the computation of the 

strength and stiffness parameters for CFT columns and beam-columns are proposed for design 

purposes. 
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CHAPTER 1  

INTRODUCTION 

One of the critical decisions that face the structural designer is the selection of materials 

to be used in a civil construction. This decision is frequently based on structural and economic 

reasons, and it is supported by the designer’s judgment and experience. The central goal is to 

achieve an economic structure with good performance. 

Two materials that have been widely used in civil constructions are concrete and steel. 

The advantages of both materials are well known. Concrete is very stiff, inexpensive and has 

good fire resistance; meanwhile, steel is strong, ductile and lightweight. The “smart” 

combination of these two materials, or synergy, results in a system with a much higher efficiency 

than that of the individual components. The designation given to such systems include the terms 

hybrid, mixed or composite construction. Composite systems have been successfully used in 

columns, beams and slabs of midrise and high-rise buildings, and in piers and beams of bridges. 

The use of composite columns in many structural systems is increasing worldwide due to 

the intrinsic synergy when these materials are designed and detailed properly together. 

Composite columns provide not only many advantages in construction (i.e. speed and economy), 

but also a substantial improvement of the mechanical properties of structural members when 

compared to either steel or reinforced concrete elements. 

A composite column, if designed and detailed properly, will result in a synergistic 

behavior that highlights the best of the concrete properties (stiffness, high compressive strength, 

fire proofing) and the best of the steel properties (ductility, high tensile strength, lightweight). 

Due to this synergistic effect, less conservative behavior factors (i.e. the lateral strength 

reduction factor R, the lateral displacement amplification factor C , the overstrength factor , 

or the design strength reduction factor ) could be used as compared to those used for either 

reinforced concrete or structural steel columns. For example, if the strength reduction factor 

obtained by reliability-based analysis is =0.65 for a reinforced concrete column (ACI-318, 

2008) and =0.90 for a steel column (AISC, 2005), then the  for a composite column with 

implicit synergistic properties should be higher than these values. 
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Additional advantages of composite columns can be achieved if they are detailed as part 

of a mixed structural system. For example, if they are properly connected with the floor system 

(beams and slab), a higher strength and a better behavior can be achieved in the beam-column 

connection, thus increasing the redundancy and toughness. Once the construction complexities 

are overcome (i.e. the interdisciplinary coordination between steel and concrete workers, and 

forming of the beam-column connection), more advantages will be obtained in the construction 

process (i.e. speed construction, formwork savings, reduced loads on foundation, increased 

useful space, lower construction and maintenance costs, etc.). Moreover, as new areas of the U.S. 

are reclassified to higher seismic design accelerations and the need to limit nonstructural damage 

becomes more important, replacement of either congested concrete columns or flexible steel 

columns with composite columns is a clear solution for brand-new and existing structures. 

 

Composite columns can be made up with different configurations; some of these are 

shown in Figure 1.1. While there is great variety in these configurations, composite columns 

have been classified into two general types in terms of the position of steel and concrete. These 

are: 

 Encased or steel reinforced concrete (SRC) elements, where the steel section is embedded 

or encased by the concrete; in other words, the concrete section is reinforced by a rolled 

or a built-up steel section. 

 Concrete-filled steel tubes (CFT), where the steel is a rolled or built-up hollow section 

filled with concrete. 
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(iv) Partially encased cross-sections 

Figure 1.1. Some possible cross-sections configurations in composite columns 

(ii) CFT cross-sections 

(i) SRC cross-sections 

(iii) Combined SRC-CFT cross-sections 
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Composite columns, either as SRCs or as CFTs, offer different advantages to the 

structural engineer. Some of these advantages include, but are not limited to: 

 Optimal location of steel section: Due to its location at the periphery of the cross section, 

the steel in CFTs has an optimal distribution that increases the strength and stiffness of 

the element. In SRC configurations, the column is ideally located for fast erection. 

 Fast construction of the structure: As illustrated in Figure 1.2 through Figure 1.4, the 

steel columns are erected and connected to the floor system to support the construction 

loads (beams, girders, metal deck, etc.). This is followed by the casting of the concrete 

slabs and columns in the lower levels, while the steel structure erection may continue in 

upper levels. Once the concrete has hardened, and thus the composite action has been 

developed, the system can achieve its final strength and stiffness to support the 

designated gravity and lateral loads. 

 Higher flexural strength in embedded beam-column connections of SRCs: Since the steel 

beam – steel column connection in SRC elements is embedded in a massive reinforced 

concrete section, the rotational stiffness of the steel connection is increased by the loads 

transferred between the beam and concrete in the embedded zone. In addition, the 

bending moment that can be sustained by the connection is higher than that capacity 

given by the initial steel connection or beam section alone. 

 Delay of the steel local buckling: In composite cross-sections, the steel column (either as 

compact, non-compact or slender section) is stiffened by the contact with the hardened 

concrete, delaying or avoiding local buckling of the steel. Thus, the local buckling is 

delayed until the steel-concrete contact is lost (i.e. if the concrete cracks or a separation 

of concrete-steel occurs). Even if the concrete cracks, the delay of local buckling in CFT 

sections will still occur since the concrete expands and bears against the steel tube, 

maintaining the concrete-steel contact. Since the concrete core forces all local buckling 

modes outward, thinner steel sections may be used that still ensure the yield strength will 

be reached in the tube before buckling occurs. 

 Higher confinement in the concrete: The steel column section adds confinement to the 

concrete core, which induces an increment in strength and ductility in the concrete. Due 
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to the shape of the section and the higher hoop stresses than can be achieved, circular 

CFT cross-sections provide a higher confinement than either rectangular CFT and SRC 

cross-sections. This confinement is also influenced by the diameter-to-thickness (D/t) 

ratio of the tubes.  

 Savings in the construction costs: Constructions costs may be reduced due to the fast 

erection and an optimal design. Because of its higher strength, a composite column is 

lighter than a typical RC column with a similar strength, which reduces the loads on and 

cost of the foundation, the cost and amount of reinforcement bars, and thus the cost of 

construction. The steel section, which act as formwork and is stiffened by the concrete in 

CFT columns, is much lighter than a conventional steel column, which also reduces 

substantially the steel costs. Finally, the beam-column connections can be designed as 

efficiently (or even better) as a conventional steel or concrete column. 

 Fireproofing: In SRC cross-sections, the concrete works as a fireproofing to the steel 

section. 

 

Figure 1.2. Construction process for a building with SRC columns (Viest et al. 1997) 
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(1) 

 
(2) 

 
(3) 

 
(4) 

 
(5) 

 
(6) 

Figure 1.3. Erection and construction process for the first four stories of a building with SRC 

composite columns (Martinez-Romero 2003) 

 

Figure 1.4. Floor system of a building with CCFT columns (Davids and Merriel, 2004) 
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1.1. Background and Motivation 

Even though composite columns in buildings and other systems have been widely used 

for more than 50 years and their use is increasing worldwide, it is still very common in practice 

to either neglect the synergetic contribution of either the steel or the concrete or to treat the 

synergetic action is a simplistic manner. In other words, a composite column is treated as an 

equivalent steel or concrete one, a practice that is in most cases unduly conservative. Efficient 

use of composite columns requires that differences in behavior between composite and steel or 

concrete columns be incorporated clearly into the design process. 

In ultimate strength design for seismic forces, it is customary to design based on elastic 

models for reduced forces and larger deformations. The reduced forces and larger deformations 

come from a series of so-called system factors (R for the forces and Cd for the deformations). In 

the absence of extensive field experience with composite building subjected to ultimate loads or 

laboratory data on large composite substructures, code committees and practitioners have 

assumed behavior factors for composite systems by analogy to similar concrete or steel systems. 

Consequently, the estimation of the inter-story drifts and force distribution in the frames in many 

cases is probably inaccurate. The determination of appropriate system behavior factors will 

improve the accuracy in the calculation of lateral inelastic forces, displacements and inter-story 

drifts. 

Current code provisions (i.e. AISC, 2005; ACI-318, 2008; EC-4, 2004; AIJ, 2001; etc.) 

have filled many gaps in the design of composite elements such as columns. However, in the 

author’s opinion, there still exist some knowledge gaps in their behavior in areas such as the 

effective stiffness under lateral forces, instability effects in slender beam-columns, and the steel-

concrete contact interaction effects, among others. 

At the present time is still difficult to predict the maximum structural response of a frame 

system with composite columns based on a typical frame analysis. Fiber Analysis (FA) or Finite 

Element Analysis (FEA) can be used to get a better response prediction; however, their 

application in conventional high-rise buildings is neither practical nor very common yet. 

For these reasons, the development of design parameters or behavior factors applicable 

solely to composite systems incorporating SRC and CFT columns is needed. It is important that 

these factors also satisfy the limit cases, or in other words, with a smooth transition to concrete 
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factors when the steel ratio is very low, and vice versa, a smooth transition to steel factors when 

the steel ratio is very high. To reach these goals, it is essential to conduct a comprehensive 

experimental program that includes the tests of slender and full-scale beam-columns and slender 

cross-sections to fill the gaps in the experimental databases, and thus, account for the effects that 

do not affect short beam-columns or compact sections. This experimental program is the primary 

objective of the research reported herein. 

The development of guidelines for composite frames will have immediate practical 

impact on construction for either constructing new structures or retrofitting old structures. In the 

next four sections, the work to be accomplished as part of this dissertation is described from 

different points of view.  This is followed by a summary of expected original contributions.  

 

1.2. Problem definition 

Use of composite and mixed systems in low to moderate height construction in seismic 

areas of the United States is not common. The primary reason for this is that while some current 

design codes allow their use, there are major gaps in the provisions due to lack of targeted and 

coordinated prior research on composite columns and frames using U.S construction practices. 

Few design codes worldwide have developed provisions to design composite columns with 

robust reliability. AISC (2005), Eurocode 4 (2004) and AIJ (2001) are some of the codes with a 

good understanding in the behavior of composite columns. However, there remain some 

uncertainties in the behavior of such elements, such as: 

 Behavior of slender beam-columns: Due to all the structural benefits and the synergy 

effects on composite construction, CFT columns tend to have smaller concrete cross 

sections than concrete-only columns, and lighter (thinner or smaller) steel cross-sections 

that steel-only columns. Thus, frames with composite columns (as well as with concrete 

or steel columns) are susceptible to buckling due to second order effects, either P-for 

braced frames or P- for unbraced frames. Consequently, stability effects have to be 

accounted in the analysis process; in these calculations the effective stiffness (EIeff) has 

an important role in the accuracy of these calculations. Current EIeff  have been derived 

mostly from curve fitting to data and do not represent a robust mechanical representation 

of actual behavior.  
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 Effective stiffness for lateral forces: Analysis programs still assume, in most cases, linear 

elastic (bar or frame) elements to assemble a global stiffness matrix. The solution of the 

equations results in the calculation of the lateral displacements (or drifts). A main 

concern using this approach for the analysis of composite frames is the accuracy in 

displacements because of the assumptions made for either the effective Young’s modulus 

(Eeff) or the effective lateral stiffness (EIeff). The use of fiber elements (instead of linear 

elements) will provide a more accurate approach for the structural analysis but a more 

complex problem to solve, especially if an irregular multistory 3D-frame is going to be 

analyzed.  For this reason, some structural engineers, in the absence of good supporting 

information on effective stiffness, have assumed conservatively for analysis and design 

purposes the stiffness as that of either reinforced concrete or steel.  A very careful set of 

experiments is needed to generate EIeff for both the cases of columns subjected to axial 

loads and beam-columns subjected to lateral loads. 

 Effective torsional stiffness in 3D frame analysis: Like the shear strength, research for 

torsional strength has not been widely explored for CFT columns. Consequently, it is not 

clear what the effective participation for each component to resist torsional loading is. 

Like flexural rigidity, this research will evaluate an effective torsional rigidity and will be 

presented in simplified design equations for CCFTs and RCFTs. The predicted equivalent 

torsional rigidity will allow to better account for the effects on structural asymmetries or 

irregularities on 3D frame analyses with CFT columns. 

 Shear strength: The knowledge gaps on the investigation of the shear strength in 

composite columns are also reflected in the code provisions with few details on the 

calculation of this parameter. Specifications currently require designers to take the shear 

strength of either the steel component or the concrete component, or a superposition of 

those with reduced values. Again, in this case, little or no solid data is available to 

validate these recommendations. 

 Bond stress between concrete and structural steel: Many of the CFT columns benefits 

depend on the steel-concrete interaction. Since the steel used in composite columns has a 

smooth surface, it is expected that low bond strength arise in the link between steel and 

concrete unless shear studs are provided. The benefits of a higher concrete confinement 

and the delay in the steel local buckling may be drastically reduced due to relative 
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differences in lateral strains or slip between the steel and the concrete surfaces. Very little 

data is available on this topic. 

This research intends to address a number of these issues primarily from an experimental 

standpoint and at the element level.  The data generated herein will be used in a companion 

dissertation focused on behavior of frames and development of system behavior factors. 

  

1.3. Scope and Objectives 

The main objectives of this research are to develop experimental data to: 

 Evaluate the effect of the wet concrete in the steel tubes during the casting 

 Determine the critical load of slender composite CCFT and RCFT full-scale columns 

with different boundary conditions. 

 Determine a number of points of the axial load-moment (P-M) interaction diagram for 

composite CFT beam-columns. 

 To obtain the experimental response of CFT beam-columns under cyclic lateral forces, 

and from this, both evaluate the strength and ductility of the composite specimens for 

seismic loading and identify limits states that characterize the response. In addition, this 

research pursues the evaluation and the degradation of the stiffness in the composite 

element throughout the load protocol. 

 To evaluate the strength and torsional stiffness of CFT specimens under cyclic torsional 

loading.  

The experimental data will be used to: 

 Improve the analytical prediction of structural systems with CFT elements through 

evaluation and calibration of both material constitutive models and element models. 

 Provide recommendations for the construction and the design of circular and rectangular 

composite CFT elements. 
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1.4. Methodology 

In order to achieve the previous objectives, an experimental and an analytical research 

program will be conducted. The experimental program is carried out utilizing state-of-the-art 

equipment for the testing of 18 CFT full-scale, fixed-free specimens subjected to a set of 

different loading conditions. 

The following methodology is used to achieve the objectives described in the previous 

section: 

 Wet concrete effects: Instrumentation for measuring the effect of the wet concrete 

consists of rosette strain gauges for measuring both longitudinal and transverse strains at 

points where highest values of strains are expected. Strains are tracked during different 

stages of the testing, starting from before the concrete is cast into the tubes and ending 

after the last load case in the load protocol. 

 Experimental buckling load: Each of the specimens is subjected to an incremental vertical 

displacement until reaching the maximum axial capacity. The columns are tested as 

vertical cantilevers; depending on the desired boundary conditions, the horizontal DOFs 

are either in displacement control or in force control. 

 P-M interaction values: For this case, the specimen is subjected to a constant gravity load 

and a progressive lateral top displacement. As the displacement grows in a given 

direction, and so the P effects, the lateral strength starts to flatten out (maximum 

capacity), then decreases (up to when failure occurs), and eventually the displacements 

are reversed to stabilize the system. Thus, P-M values coupled to the maximum capacity 

and the failure states are rededuced by imperfections, and then compared to the analytical 

predictions. 

 Response to seismic loading: For this case, the specimen is subjected to constant gravity 

load and incremental cyclic lateral top displacements. The direction of these 

displacements are both unidirectional and bidirectional, so uniaxial and biaxial response 

can be evaluated. Moment-curvature response reflects the change between cycles and 

load cases, so the degradation in both strength and stiffness will be tracked throughout 

the load protocol. 
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 Torsional loading: In this case, the specimen is controlled with a monotonic top twisting. 

Experimental values from the torsion-twisting curve, such as the torsional strength and 

stiffness, are calibrated to simplified equations. 

 Improve analytical models: Analyses based on fiber elements (using the software 

OpenSees, 2010) are performed with the aim of improving the prediction of the observed 

experimental response. The evaluation and calibration of both material constitutive 

models and the structural model that best reflects the test conditions are essential to 

developing better simulation tools for these structural elements. 

 

1.5. Brief research project description 

To implement the methodology described above, a work plan, comprising seven main 

tasks, was devised. Each of these phases is described briefly below. 

Review of the previous experimental and analytical research on CFTs 

Previous research studies will provide a guide on what has been done and what is needed 

to be investigated on CFT members, and so avoid research duplication and keep focus on where 

the knowledge gaps are. This review includes both analytical and experimental research studies 

on CFT columns and beam columns subjected to monotonic and cyclic loads. Review of the 

experimental past research will help in the evaluation of the test data gaps and for the update of 

the experimental databases. 

Review of the available experimental databases on CFTs 

Review of the existing experimental CFT databases (Leon et al., 2005; Goode, 2007; 

Gourley et al., 2008) will allow the identification of the test data ranges, limits and gaps. This 

review will include the identification of data ranges and gaps for the geometry of previous CFT 

specimens such as the specimen length (L), the cross-section shape (rectangular vs. circular, 

weak vs. strong axis, etc.) and the cross-section sizes (D, b, h, t, available cross-sections). In 

addition, it will identify ranges and gaps for the materials strength and properties (fc’, Fy, width-

thickness ratios, etc.), the load test protocol (monotonic, cyclic, concentric or eccentric 

compression, uniaxial or biaxial bending, torsion, etc.), the boundary conditions, and any other 

test conditions (i.e. instrumentation used, testing rates, etc.). The available databases collected 
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are going to be merged and updated with the most recent experimental data so a unified database 

can be used to find the data gaps. The selection of the CFT specimens to be tested in this 

research is going to be based on the identification of gaps from this unified and updated 

database, and on the observations from the review of previous research studies. 

Preliminary analysis of postulated CFT specimens 

Once a preliminary selection of CFT specimens and other main parameters (i.e. boundary 

conditions, load cases, etc.) has been made, key results are calculated based on both the 

simplified models from AISC (2005) Specifications and from computational methods based on 

Fiber Analysis (FA) and/or Finite Element Analysis (FEA). These key results include the 

analytical determination of the cross-section strength to axial force, bending moment, and the P-

M interaction diagram. Stability reduction due to second order effects are determined from 

computational analyses that account for geometric and material non-linearities, as well as other 

behavior effects (i.e. concrete confinement and steel local buckling and residual stresses). 

In addition, analyses for the secondary elements (i.e. base plates, bolted and welded 

connections, and the capacities for crosshead, the strong floor and the strong wall) are performed 

to guarantee the occurrence of the expected failure mode. Complementary analyses are 

performed to account for loads during the construction (i.e. hydrostatic pressure in steel tubes 

due to the casting of wet concrete) or during the erection or connection to the testing machine; all 

of these may affect the behavior during the testing. The idea behind of all these analyses is to 

have a better understanding of the behavior of the CFT specimens before, during and after the 

testing, and avoid unexpected failures. 

Development of the experimental work plan 

Based on the preliminary analyses results and the laboratory constraints, details of the 

CFT test matrix will be finalized and the whole work plan developed (i.e. construction, 

instrumentation, testing, etc.). As mentioned before, identification of the critical points from the 

preliminary analyses with postulated load cases will give information about what type and where 

the instrumentation is needed. On the other hand, these analyses will also help to identify key 

load cases such that neither the lab capacities are exceeded or wasted, nor early or unexpected 

failures take place. In addition to the construction, instrumentation and testing details, there is 
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also of the need to develop a careful data management plan, a risk-hazard management plan, and 

a post-mortem investigation plan. 

Execution of the experimental program 

A comprehensive experimental program is planned to be conducted for this research at 

the Multi-Axial Sub-assemblage Testing (MAST) laboratory at the University of Minnesota, a 

NEES facility. The experimental program consists of testing a series of 18 full-scale circular and 

rectangular concrete-filled steel tube (CFT) beam-columns subjected to a very complex load 

protocol. The CFT specimens proposed for this research will be the world largest beam-columns 

tested in an experimental program. Additional information about the CFT specimens, the 

instrumentation and the testing plan are explained with more detail in the following chapter. 

Advanced computational analyses 

Parallel to the experimental study, advanced computational analyses are performed. 

Analytical models that account for the geometric and material non-linearities and the effects of 

the steel-concrete contact interaction (i.e. concrete confinement or the steel local buckling) are 

calibrated and verified with the experimental results. In addition, the computational models are 

calibrated to follow the accumulation of damage and the strength-stiffness degradation observed 

in the experimental tests. The calibrated analytical models will be used to establish guidelines on 

the computation of equivalent composite beam-column rigidity to be used in seismic analysis 

and design of composite frames, and eventually for parametric studies aimed at developing 

system response factors (i.e. R, C, , ) for composite frame structures with CFT columns. 

Development of analysis and design recommendations 

Based on the results from the experimental tests and the computational analyses, 

qualitative and quantitative analysis and design recommendations will be provided. In addition, 

preliminary work to prepare or augment design recommendations for the use of advanced 

materials and composite action in brand-new or existing structure will be presented. 
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1.6. Dissertation outline 

This dissertation is organized into the following chapters: 

 CHAPTER 2 describes briefly a review of the previous investigation on composite CFT 

columns and beam-columns. Previous experimental and analytical research studies and 

their main contributions are summarized and commented upon. 

 CHAPTER 3 describes in detail the experimental setup used in the 18 CFT specimens 

tested in this project. The MAST laboratory capabilities, a description of the specimens, 

the instrumentation plan, the pre-test settings and the load protocol are documented in 

this chapter. 

 CHAPTER 4 discusses the effects of the wet concrete during its casting into the steel 

HSS tubes. The strain measurements in the steel exterior walls are compared with those 

strains obtained from closed-form solution and with those obtained from finite element 

analyses under hydrostatic pressure. The effects of the wet concrete in the steel local 

buckling are also documented in this chapter. Recommendation to minimize the effects 

on CFT members are given at the end of this chapter. 

 CHAPTER 5 discusses the results and the issues associated with the buckling loads 

obtained experimentally. These results are compared with predictions based on the 

specifications and computational simulations. 

 CHAPTER 6 presents experimental values of the axial load and bending moment 

capacity (P-M) extracted from the uniaxial and biaxial bending tests, and these are 

compared with the P-M interaction diagrams obtained from the specifications.  

 CHAPTER 7 discusses the experimental cyclic flexural response to lateral forces of the 

composite CFT specimens under load cases with unidirectional and bidirectional 

bending. The experimental response is compared with predictions based on 

computational analyses. The evolution of the effective flexural rigidity of the composite 

specimens within the load protocol is also presented in this section. 

 CHAPTER 8 presents an evaluation of different limit states reach during the entire 

loading testing. Occurrence of the first yielding in compression and tension in the steel, 

the start of development of local buckling in the steel tube, and estimation on the 
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occurrence of the concrete crushing is discussed in this Chapter. In addition, this chapter 

presents the results of the obtained plastic hinge lengths and the post-mortem or forensic 

analysis of the CFT specimens tested in this project. 

 CHAPTER 9 discusses the torsional response of the CFT specimens. The torsional 

stiffness obtained experimentally is compared with that obtained for the concrete and the 

steel independent components. Recommendation to determine the torsional strength and 

rigidity on CFT members are given at the end of this chapter. 

 CHAPTER 10 proposes an approach to estimate the axial and flexural capacity of CFT 

members. This methodology includes observations obtained from the experimental test 

data collected and analyzed in this project and the observations from other studies. 

 CHAPTER 11 gives general conclusions and recommendations obtained in this research. 

 APPENDIX A documents some results as the concrete mix design, the concrete cylinders 

tests and the steel coupons tests. 

 APPENDIX B summarizes the main experimental results obtained in the tests for each 

specimen during each load case. 

 

1.7. Original contributions 

The present research project is distinctive in many ways. Some points that make this 

project unique include: 

 Providing qualitative and quantitative recommendations to evaluate and minimize the 

effects of the wet concrete pressure in the steel tubes during the pouring. 

 Completing a comprehensive experimental program that consisted of testing 18 circular 

and rectangular CFTs, with an extensive and advanced instrumentation, and subjected to 

a very complex load protocol. All these will make possible to fill many of the gaps found 

in the experimental CFT databases. These results are expected to become the benchmarks 

by which future analytical models for composite beam-columns will be evaluated. 

 Selecting a test matrix unique for (1) the length and the slenderness of the specimens (the 

world largest CFT columns and beam columns), (2) the use of the larger and thinner 
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fabricated HSS cross-section sizes (low width-thickness ratios D/t or h/t), and (3) the 

range in material properties. This research will provide much needed data to calibrate 

material constitutive models and the element models for composite structures. 

 Improving the analytical prediction for strength and deformation capacity of CFT 

columns and beam-columns with fiber-based or finite-based analysis with respect to: 

 Second order analysis accounting for geometric and material non-linearities 

 Cyclic behavior of beam-columns with strength and stiffness degradation 

 Accumulated damage accounting for effective confinement and local buckling 

 Improving the analytical prediction for strength and deformation capacity of CFT 

columns and beam-columns with simplified design equations, including: 

 Effective flexural (EIeff) and torsional rigidity (GJeff) for 3D frame analysis 

 Critical load (Pn) and column curves (Pn-) for slender columns 

 P-M interaction diagrams for both cross-sections and beam-columns 

 Developing a design procedure for CFT columns with compatible transition from 

reinforced concrete to steel elements, and vice versa. Also, include some 

recommendations for design procedure on composite frames with CFT columns subjected 

to gravity and seismic load conditions. 

In summary, this research project provides a unique set of data that can and has been used 

to verify advanced computational models and provide support for the development of both 

simplified and advanced analysis techniques for composite CFT members.  

In addition, this research study is an effort at (1) developing new fundamental 

knowledge, (2) improving our understanding of composite beam-column behavior, (3) extending 

design ranges, (4) providing calibration data, and (5) improving the accuracy of the response 

prediction on concrete-filled tube members. 

The author expects that, based on the results and conclusion obtained in this research 

project, CFT members have an immediate practical impact on analysis, design and, as a 

consequence, on construction on composite frames system for either constructing new structures 

or retrofitting old structures. 
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CHAPTER 2  

PRELIMINARY RESEARCH STUDIES 

2.1. Previous experimental research studies 

2.1.1. Introduction 

Even though there have been numerous experimental test series for composite columns in 

the past, in particular for CFT elements, most of the documentation in the specialized literature is 

limited to columns with certain characteristics (i.e. small cross-sections, short elements, small 

D/t ratios, conventional strength materials, etc). Specimens with these characteristics are the only 

viable option when the capabilities of the laboratory equipment are limited, making the testing of 

full-scale specimens impractical. The results from specimens with lower slenderness but a wide 

range of cross-section sizes have been useful for the quantification of the cross-section strength 

and behavior of short elements, where the length effects do not have a critical impact. In turn, 

data results from slender specimens, which are mostly made of small cross-section sizes and 

tested in a horizontal position, have been useful for parametric studies accounting for the length 

effects and effective confinement of CFT columns and beam-columns. However, the 

extrapolation to elements with sizes closer to those used in practice for real structures may not be 

entirely correct and the conclusions from these research efforts may need to be adjusted 

accordingly. 

This section reviews some of the previous research that focused on the experimental tests 

of CFT elements. Innovations, principal contributions and main conclusions of selected previous 

research studies relevant to this work are briefly discussed.  There is no intent to provide a 

complete summary of all efforts; such summaries are available elsewhere (Aho, 1997; Kim, 

2005; Leon et al., 2005; (Goode 2007); Gourley et al., 2008). 

Table 2.1 summarizes chronologically the material and geometric properties of CFT 

specimens tested in previous experimental research studies. The information in this table was 

extracted from the collected databases (Leon et al., 2005; Goode, 2007; Gourley et al., 2008), 

which will be discussed in the following section. 
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Table 2.1. Summary of experimental studies in CFT columns and beam columns 

Reference Type KL 

(ft) 

tube size (in) 

(D) or (b)x(h) 

wall thickness 

(in) 

Max D/t 

or     h/t 

fc’ 

(ksi) 

Kloppel and  

Goder (1957) 
CCFT 2.8 – 7.6 3¾ – 8½ 1/8 – ½ 55 3 – 4 

Salani and  

Sims (1964) 
CCFT 5 1 – 3 1/32 – 3/32

 55 3 – 4 

Chapman and  

Neogi (1966) 

CCFT 1.3 – 6.8 5 – 14 1/16 – 3/8
 78 3 – 9.6 

RCFT 1.3 4.5x4.5 3/16, 
3/8

 25 4.6 

Furlong (1967) 

CCFT 

3 
4.5, 5, 6 1/16, 

3/32, 
1/8

 98 
3 – 6.6 

RCFT 4x4, 5x5 3/32, 
1/8, 

3/16 46 

Gardner and 

Jacobson (1967), 

Gardner (1968) 

CCFT 0.5 – 7.5 3 – 62/3 
1/16 – 3/16 65 2.6 – 6.3 

Knowles and 

Park (1969) 

CCFT 

0.8 – 5.7 
3¼, 3½ 1/16, 

1/4
 60 5.4 – 6 

RCFT 3x3 1/8
 21 5 – 6.8 

Neogi, Sen and 

Chapman (1969) 

CCFT 4.6 – 10.9 5 – 62/3 
1/16 – 3/8

 78 2.7 – 9.7 

RCFT 1.3 4.5x4.5 3/16 – 3/8
 24 4.7 

Janss and  

Guiaux (1970) 
CCFT 1.7 – 14.3 33/4 – 82/3 

1/8 – 1/4
 36 4.5 

Janss (1974) 

CCFT 3.9 – 5.3 10.8 – 16 3/16 – 3/8
 81 4 – 5.5 

RCFT 4.3 – 4.6 13x13 3/16 – 7/16
 72 4 – 4.5 

Bridge (1976) RCFT 7, 10 6x6, 8x8 1/4 – 7/16
 21 4.5 – 5.1 

Zhong (1978) CCFT 0.8 – 16.4 33/4 – 191/2 
3/32 – 1/2

 84 3.2 – 7.9 

Tang (1978) CCFT 1.4 – 4.9 4.2 1/8
 35 5.4 

Tomii and Sakino 

(1979a, 1979b) 
RCFT 1.0 4x4 3/32, 

1/8, 
3/16

 43 3 – 4.6 

SSRC Task 

Group 20 (1979) 
CCFT 3.4 – 7.6 33/4 – 81/2 

5/32 – 1/4
 53 3 – 4.3 

Cai (1981) CCFT 2.3 – 12.1 61/2 
3/16

 33 4, 5.5, 6 

Tang et al. (1982) CCFT 0.5 – 6.5 3 – 11.8 1/16 – 7/16
 100 3 – 8 

Zhou (1983) CCFT 6.7 – 9.7 4, 53/16 
5/32 – 7/32

 30 3.6, 5.4 

Zhong (1983) CCFT 1.1 – 5.3 4¼ 1/16 – 7/32
 57 3.1, 4.5 

Cai and Jiao (1984) CCFT 0.9 – 12.1 33/4 – 12.6 3/32 – 1/2
 102 3.9 – 6.8 

Cai and Gu (1985) CCFT 1.1 – 18.2 41/4 
1/8

 27 4.2 

Wang and  

Yang (1985) 
CCFT 0.9 51/4 

3/32 – 1/4
 55 2.5, 3.9 

Sakino et al. (1985) CCFT 0.7 4 1/32 – 1/4
 192 2.6, 5.4 

Sakino et al. (1985) CCFT 0.7 4 1/32 – 1/4
 192 2.6, 5.4 

Chen et al. (1988) CCFT 0.6 – 2.2 2 – 6½ 1/8 – 3/16
 38 4.8 

Pan (1988) CCFT 8 – 11.9 6½ 3/16
 38 6.3 
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Table 2.1. Summary of experimental studies in CFT columns and beam columns (cont) 

Reference Type KL 

(ft) 

tube size (in) 

(D) or (b)x(h) 

wall thickness 

(in) 

Max D/t 

or     h/t 

fc’ 

(ksi) 

Lin (1988) 

CCFT 

1.6, 2.6 
6 

1/32 – 3/32
 

214 3, 5 

RCFT 6x6, 6x8 284 3.3, 5.1 

Sakino and  

Hayashi (1991) 
CCFT 0.8, 1.2 7 1/8 – 3/8

 58 3.2, 6.6 

Bergmann (1994) RCFT 3.3, 13.1 
7x7,  

10¼x10¼ 
5/16

 35 13.4 

Matsui et al.  

(1995, 1997) 

CCFT 2.2 – 16.3 6½ 3/16
 40 

4.6 – 5.9 
RCFT 2 – 14.8 6x6 3/16

 33 

Shakir-Khalil (1996) RCFT 9.6 – 16.1 4x6 3/16
 33 5.2 – 6 

Inai and  

Sakino (1996) 
RCFT 1.2 – 3.2 

several square 

sizes 
3/16 – 3/8

 72 3.7 – 13.2 

Roeder and  

Cameron (1999) 
CCFT 2.7 – 6.3 10¼ – 23¾ 1/4 – 1/2

 108 6.4 –6.9 

Bridge and  

O’Shea (1997, 2000) 
CCFT 1.8 – 2.2 6½, 7½ 1/32 – 1/8

 220 5.5 – 16.5 

Nakahara and 

Sakino (1998) 
RCFT 2 8x8 1/8 – 1/4

 63 17.3 

Varma (2000) RCFT 4 12x12 1/4,
 3/8

 50 16 

Seo and Chung 

(2002); 

Seo, Tsuda and 

Nakamura (2002) 

RCFT 1.6 – 12.3 5x5 1/8
 40 9.3 – 14 

Mursi et al. (2003) RCFT 9.9 
4.7, 6.7, 8.7, 

10.6 
3/16

 52 3 

Han and  

Yao (2003) 

CCFT 1 – 6.6 4 – 8 
1/8

 
65 3 – 6.8 

RCFT 1.8 – 7.7 
several  

rect. sizes 
134 2.7 – 8.5 

Lam and Williams 

(2004) 
RCFT 1.0 4x4 5/32 – 3/8

 23 3.6 – 11.5 

Hardika and 

Gardner (2004) 
RCFT 5.9 8x8 3/16 – 3/8

 44 6.4 – 14 

Han and  

Yao (2004) 

CCFT 6.6 8 
1/8

 65 6.8 
RCFT 2, 7.6 8x8 

Ghannam 

et al. (2004) 

CCFT 7.2, 8.1 41/3 – 6.5 
3/32 – 3/16

 
58 

1.5 – 4.8 
RCFT 6.6, 8.2 

4x4, 4x8, 

5½x5½, 3½x6 
48 
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2.1.2. Review of previous experimental studies on CFT columns and beam-columns 

Kloppel and Goder performed the first documented experimental research on CCFTs in 

1957. This research, originally published in German, is cited in English by Knowles and Park 

(1970) and Roik and Bergmann (1989), who also described the experimental results and other 

details. These authors performed collapse load tests on hollow and concrete-filled steel tubes. 

Three tests were examined in detail, with stresses and strains in both the steel and concrete 

tabulated for incremental values of concentric load. Based on the experimental data analysis, 

these authors established the initial design formulas for CFT columns. 

One of the first comprehensive experimental research study using both CCFT and RCFT 

columns and beam-columns was published by Furlong (1967), who tested CFT specimens with 

both concentric and eccentric loads. Based on this experimental data, design equations were 

proposed to estimate the ultimate strength of beam-columns. In addition, the concrete-steel 

interaction was taken into accounted explicitly for the first time.  Furlong observed that the two 

materials behave independently of one another at strains below 0.001, where the Poisson's ratio 

of concrete is lower that of steel; this difference in lateral expansion resulted in a non-contact 

state between these two materials at low levels of strain. As strains increased, the concrete 

expanded laterally at a greater rate than the steel, and above 0.001, the concrete Poisson ratio 

began to approach that of steel and, as a consequence, the steel starts providing confinement to 

the concrete. Simultaneously, the concrete core stabilizes the steel wall of the tubes, preventing 

premature local buckling and allowing the tube to attain its full yield capacity. Data from these 

tests also show that creep had an influential effect on the specimen behavior. 

Tomii and Sakino (1979a) conducted an experimental research on square CFT specimens 

to determine moment-curvature (M-) relationships. Under a constant axial load, moment was 

applied to the section in uniformly increasing amounts. In addition to the very detailed 

experimental study, the authors proposed analytical equations to estimate the ultimate moment of 

a RCFT section. Analytical moment-curvature (M-) relationships were developed and 

compared to the experimental results. The concentrically loaded columns produced strengths in 

excess of those calculated analytically, a fact that these authors attributed to differences in the 

estimated concrete strength. Columns subjected to both axial load and bending moment 

displayed behavior that was highly dependent on the D/t ratio and the magnitude of the axial 
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load, especially in the inelastic range of strains. Moment-curvature (M-) plots show an increase 

in ductility with a decrease in D/t ratio. Specimens with D/t=24 behaved in a ductile manner, 

while columns with D/t=44 and high axial load had a falling branch in the M- diagram. Even 

though this last set of columns failed in a rather brittle manner, the tension side of the steel tube 

still yielded. It was suggested that the ductility increase as the D/t ratio decreased was due 

largely to the lateral confinement of the concrete by the steel.  

In Tomii and Sakino (1979b), additional square CFT tests were reported in five series. 

Each series contained different material properties and h/t ratios, and the parameters evaluated 

were the shear span ratio (a/h) and axial load ratio (P/Po). The tubes were annealed to remove 

residual stresses and the specimens were tested with double fixed boundary conditions (K=0.5). 

This research indicated a negligible effect due to the a/h ratio. It was also observed that for 

specimens with a high axial load ratio (P/Po = 0.5), after a certain amount of decrease in the 

lateral strength, the hysteretic loops tended to stabilize and even showed a slight increase in 

lateral resistance. The authors attributed this to a transformation in shape of the buckled tube 

(from square to circular-like), which effectively increased the amount of confinement of the 

concrete and resulted in the stabilization of the hysteretic loops. A considerable amount of axial 

shortening was observed for columns with a P/Po of 0.5 due to the combination of steel local 

buckling and concrete crushing. The experimental ultimate moment was 1.0 to 1.2 times the 

calculated value by the method described in Tomii and Sakino (1979a, 1979b); the authors 

suggested that this was due to a combination of strain hardening in the steel tube and moment 

gradient effects in the confined concrete at the critical section. 
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2.1.3. Brief comparison of CFT specimens previously tested 

Before the present research, the tallest CFT specimens tested and documented in the 

specialized literature were conducted by Cai and Gu (1985) for CFTs with 18.2 feet of effective 

length and 4¼ inches of diameter, and by Shakir-Khalil and Al-Rawdan (1996) with 16.1 feet of 

effective length and 4x6 inches of cross-section size. Cai and Gu’s results on slender columns 

show elastic buckling failures that were well predicted by the Euler’s formulation; they also 

mentioned that the behavior of slender CCFTs is highly influenced by all the initial 

imperfections (i.e. the out-of-straightness and the loading eccentricity). For RCFTs, Shakir-

Khalil and Al-Rawdan (1996) reported lower strength with an increase in length due to local 

buckling, that generally took place on the longer side of the tubes.  After testing, the concrete 

was reported crushed but with a good integrity. 

At the present time, the specimens with the biggest circular CFTs cross-section size have 

been conducted by Luksha and Nesterovich (1991) using spiral welded tubes with 40.2 inches of 

diameter and 10 feet of effective length. Two types of failure were observed in this study: (1) 

small diameter specimens, for which failure is characterized by the local buckling of the steel 

and the crushing of the concrete; (2) large diameter specimens, for which failure was reported as 

a shear failure. In turn, the previous biggest square CFT cross-section was conducted by Janss 

(1974) with 13x13 inches of size and 4.36 feet of effective length.  For rectangular CFT shapes, 

Han and Yao (2003) tested tubes with 14.2x9.4 inches of size and 4.7 feet of effective length. 

In contrast, the specimens with the highest width-thickness ratio documented were 

performed by O'Shea and Bridge (1997) for CCFTs with a D/t ratio equal to 221, and by Lin 

(1988) for RCFTs with an h/t ratio equal to 284. Both studies used special tubes with 
1
/32 inches 

in thickness, 7½ inches diameter, and 2.2 feet of effective length in the CCFTs, and 6x8 in. and 

2.6 feet of effective length in the RCFTs. 

On the other hand, specimens that have been filled with high performance concrete 

include those tested by O'Shea and Bridge (1997) using concrete with a compressive strength of 

16.5 ksi in CCFTs, and those tested by Nakahara and Sakino (2000) and Varma (2000) in RCFTs 

with concrete strengths of 17.3 and 16 ksi, respectively. 
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2.1.4. Review of previous experimental studies on CFTs under torsional loading 

Although few CFT specimens have been tested under torsional loading, in general, it is expected 

a good performance due to the position of the steel tube at the perimeter of the CFT cross-

section. Additionally, circular CFT’s behavior is excellent due to the shape of the circular steel 

tube. Among the few studies of experimental studies of circular CFTs under torsion are those 

reported by Lee et al. (1991) and u et al. (1991) 

u et al. (1991) 

u et al. (1991) 

Xu et al. (1991). 

Lee et al. (1991) tested short CCFTs under monotonic and cyclic torsional loading with 

and without compression; results of this study show higher torsional resistance in the CCFTs 

with higher compression loads. 

Xu et al. (1991), in contrast, tested short (L=7D), medium (L=13D) and long (L=20D) 

CCFTs under torsional loading, also with and without compression; the diameter of these 

specimens were 3½ and 4½ inches. These authors reported non-abrupt torsional failures at 

rotation angles of 5, 9, and 14 degrees for the short, medium, and long columns, respectively. 

Contrary to Lee et al.’s results, the ultimate torsional moment resistance decreased with an 

increase in the axial load ratio, so the highest torsional moment was attained in the pure torsion 

case. The characteristic failure mechanism was a cracking of the concrete followed by a 

propagation of the cracks along the length of the tube in a spiral pattern. 

Lack of experimental data is evident for rectangular and square CFT specimens under 

torsional loading. Chapter 8 of this thesis closes this gap by showing the experimental results 

obtained for both CCFTs and RCFTs under torsional loading. 
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2.2. Compiled experimental databases 

 

2.2.1. Previous compilation of experimental databases 

There have been several large-scale efforts to compile an experimental database that 

summarizes the principal results of composite columns tests, either as CCFT, RCFT or SRC 

cross-sections, and/or as columns or beam columns tests. The first effort of this type was by an 

SSRC committee in 1979 (SSRC Task Group 20, 1979), which reported a collection of 179 tests 

that included 73 tests on axially loaded CFTs, 30 tests on axially loaded SRCs, 32 test on 

eccentrically loaded CFTs and 44 tests on eccentrically loaded SRCs. As a result of this database 

analysis, this SSRC committee proposed a design specification for composite columns which 

was adopted in the Chapter I of the LRFD Specification in AISC (1986). 

Three years later, Roik and Bergmann (1989) collected experimental data from 208 tests 

reported at the time in the specialized literature, and used this database for the development and 

calibration of the Eurocode specifications EC-4 (1992) for composite columns. 

In the mid 1990s, a research team guided by Galambos gathered experimental test results 

on composite columns with the purpose to investigate through Monte-Carlo simulations 

reliability indices for CFT and SRC columns designed by the existing EC-4 (1992) Eurocode 

(Sulyok and Galambos 1995) and the AISC (1993) LRFD Specifications (Lundberg and 

Galambos 1996). This database contained data for 389 available tests that included 119 tests on 

CFT columns and 128 CFT beam columns, and 59 tests on SRC columns and 83 SRC beam 

columns. All the data compiled was for tests with monotonic loads, and the material and 

geometric properties, as well as the experimental peak strength are reported. 

In 1996, Aho and Leon collected a database for SRC, CCFT and RCFT columns and 

beam columns. Insofar as materials and geometric properties were concerned, there were no 

other specific limitations on the database. In total, this research reported nine databases, six for 

SRC, CCFT and CFT columns and beam columns, and three for those data (mainly coming from 

shear critical specimens tested cyclically in Japan) that had parameters that could not be 

compared with the rest of the data. These databases were used for the evaluation of the existing 

AISC-LRFD Specifications (AISC, 1993) and Eurocode (EC4, 1992), and their corresponding 
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reliability indices. Additionally, the data analysis aided the authors in developing design 

equations, which eventually were used as the base of the current AISC Specifications (AISC, 

2005).  In 2005, Kim and Leon added new information and edited these databases, resulting 

again in six databases for SRC, CCFT and RCFT of columns and beam columns. These updated 

databases were used in the evaluation of the current AISC Specifications (AISC, 2005) and 

Eurocode (EC4, 1994). 

Kawaguchi et al. (1998) compiled an experimental database for CFT beam-columns from 

tests conducted in Japan. The collected data included monotonic and cyclic loads and 

documented material and geometric properties, experimental stiffness, and strengths and 

deformations associated to the peak and other characteristic levels (i.e. post-peak strength 

dropped 5%, maximum rotation reached the 1/100 value). Based on the experimental data, these 

authors developed analytical models for the calculation of the flexural strength and the rotational 

capacity of CFT beam-columns. Four years later, Nishiyama et al. (2002) gathered data from 

tests conducted in Japan as part of the U.S.-Japan Cooperative Research Program on Composite 

and Hybrid Structures. This database included test results for specimens under monotonic and 

cyclic loads, and was divided for both CCFTs and RCFTs in (1) centrally-loaded stub-columns, 

(2) eccentrically-loaded stub columns, (3) beam-columns, and (4) sub-assemblages. The database 

also reported material and geometric properties, calculated stiffness, period of vibration and 

costs, among other particular information of each test. Based on this collected data, the authors 

developed design formulas to calculate the strength and deformation capacities of CFT elements. 

Another team that gathered experimental results and collected them in databases from 

2001 was led by Hajjar (Gourley et al., 2008). Gourley and Hajjar (1993) is the first version of a 

synopsis for CFT beam-columns subjected to monotonic and cyclic loads. This database has 

been updated and refined with more data in later versions in 1995, 2001 and 2008 (Gourley et 

al., 2008). The latest compilation in Gourley et al. (2008) provides a summary of the behavior 

and experimental work of concrete filled steel tube members, connections, and frames that are 

reported in detail in the literature. These published studies have been summarized with an 

emphasis on experimental setup and properties, analytical methods presented, and key results 

from the work under various loading conditions. 
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More recently, Goode published online in 2006 a database for CFT columns and beam 

columns, with an update in 2007 (Goode 2007). His first database compilation was divided in 

short (L/D<4) and long elements, in columns (no moment) and beam-columns (with uniaxial or 

biaxial bending moment with and without a preload), and for circular, rectangular and polygonal 

cross-section shapes. Goode’s latest updated compilation published online in 2007 

(http://web.ukonline.co.uk/asccs2) is composed of 13 databases that summarize the experimental 

results of 1819 CFT specimens. This database has been used by Goode and Lam (2008) for the 

evaluation of the strength predicted by the Eurocode EC-4 (2004); the comparison between the 

experimental strength and the EC-4 prediction in this studies have shown good predictions in 

general for CFTs, except in RCFTs with concrete above 75 MPa (10.9 ksi) of strength where the 

EC-4 prediction has underestimated the experimental strength. 

 

2.2.2. Gaps in the experimental databases 

One of the premises for the selection of the test matrix in the present research was the 

election of specimens that fill gaps with respect to the available experimental data. This 

motivated an analysis of the existing data to find out where the gaps were and what parameters 

should be accounted to fulfill this goal. To accomplish this objective, the databases compiled by 

Leon et al. (2005), Goode (2007) and Gourley et al., 2008 were joined and edited into a “unified 

database”. The so-called “unified database” used in this research excludes duplicated data, and 

those “suspicious” tests data where inconsistencies where found or correspond to specimens that 

do not share the main database characteristics (i.e. steel only specimens, concrete only 

specimens, cross sections with a non-circular or non-rectangular geometry, etc). In addition, this 

database was updated with new data published up to 2009. Thus, this refined database included 

results for 1387 CCFTs (from which 912 are columns and 475 are beam-columns), 826 RCFTs 

(with 524 columns and 302 beam-columns) and 267 SRCs (with 119 columns and 148 beam-

columns). 

The following figures summarize the analysis of the unified database for composite SRC, 

CCFT and RCFT columns and beam-columns. Although this dissertation focuses in CFT cross-

sections only, the results from SRC tests are also given for future reference. 
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In Figure 2.1, histograms of the experimental data from both columns and beam-columns 

are shown with respect to the slenderness parameter (), the concrete strength (fc’), the steel yield 

stress (Fy), the longitudinal steel ratio (s=As/A), the D/t ratio for CFTs, the h/t ratio for RFCTs, 

and the reinforcement steel ratio for SRCs (sr=Asr/A). 

A comparison of the experimental strength normalized with the analytical column curve 

as given by the Chapter I in the AISC 2005 Specifications (Pexp/Po) are illustrated for RCFT 

columns (Figure 2.2), CCFT columns (Figure 2.3) and SRC columns (Figure 2.5). These figures 

show a big dispersion, mainly for short columns.  This big dispersion is justified by the 

confinement effects that are influenced by the depth-thickness ratio and the size of the cross-

section, among other uncertainties. 

Figure 2.4 shows the normalized experimental strength obtained for CCFT beam-

columns with different slenderness parameter (). For reference, the continuous line represents 

the P-M interaction diagram of a steel element as described by equations H1-1a and H1-1b in the 

AISC 2005 Specifications. As illustrated in these figures, the slenderness, which impact second 

order moments, reduce the P-M strength as expected. 
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   (i) Circular CFT cross-sections  (ii) Rectangular CFT cross-sections  (iii) SRC / encased cross-sections 

 
(a) Number of tests vs. the Slenderness parameter () 

 
(b) Concrete strength fc’ (ksi) 

 
(c) Yield stress Fy (ksi) 

 
(d) Steel ratio s = As/A (%) 

 
 (e) D/t ratio (f) h/t ratio  (g) Reinforcement ratio sr=Asr/A (%) 

Figure 2.1. Histograms obtained from the unified database 
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Figure 2.2. Experimental vs. analytical column curve for RCFTs 
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Figure 2.3. Experimental vs. analytical column curve for CCFTs 
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 (i)  > 0.5 (ii) 0.5 >  > 1.0 (iii) 1.0 < < 1.5 

Figure 2.4. Normalized experimental strength obtained for CCFT beam-columns for different 

slenderness parameter () ranges. 
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Figure 2.5. Experimental vs. analytical column curve for SRCs 
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All these plots clearly show where the lack of experimental data is or, conversely, what 

parameters have been explored in most of the experimental tests. In summary, and as illustrated 

in these figures, most experimental data is concentrated in: 

 Short and intermediate slender columns (<1.5), a range where the inelastic buckling 

strength governs. 

 Mainly normal strength concrete (fc’ < 4 ksi). 

 Conventional yield stress (36 ksi < Fy < 50 ksi) in the steel. 

 Low D/t ratios in CFT specimens (D/t < 20). 

 Low steel reinforcement ratio in SRC specimens ( < 1%). 

 

These observations guided the selection of CFT specimens with the following 

characteristics for this experimental work: 

 Slender columns (>1.5) were preferable, to study a range where the second order effects 

are higher and elastic buckling strength governs. 

 CFTs filled with moderate strength concrete (fc’ = 5 ksi) and high strength concrete (fc’ = 

12 ksi). 

 Section with the highest D/t ratios available in the HSS steel market. 

 A wide variety of HSS cross-sections, from tubes with small cross-section size where the 

slenderness and so the second order effects dominate, up to tubes with the highest 

available cross-section size that are common in real civil constructions. 

 Specimens with a length that can be handle in the laboratory (17’6” < L < 26’6”). 

 Specimens with a strength that can be achieved in the laboratory (Pn < 1320 kips, MD < 

8000 kip-ft, V < 880 kips). 

 

The final selection and discussion of the experimental CFT test matrix used in this 

research is shown in Chapter 3. 



33 

2.3. Concrete casting effects 

Similarly to conventional steel frame construction, buildings with CFT columns are 

commonly constructed with the erection of continuous columns that stretch over a number of 

stories, followed by the connection to the girder-beam system and the metal deck. In composite 

system with CFTs, the casting of the concrete in columns is a critical task in the construction 

process since the pre- and post-construction sequence, as well as the final strength and stiffness 

of the composite element, depends on this task. Thus, a careful concrete casting is needed to 

ensure good quality and integrity of the concrete and the composite element once this hardens. 

The common process to cast-in-place the concrete in practice is either casting the 

concrete through the hollow section at the top (Figure 8.a), or pumping the concrete from a cut 

opening close to the bottom (Figure 8.b). Each of these approaches offers different advantages, 

but the main purpose of both pursues the same goal, the integrity of the concrete. Modern 

pumping concrete techniques reduce concrete segregation, but they require a repair (plug 

welded) for the pump opening once the concrete hardens. Pouring concrete from the top avoids 

the hassle of cutting and repairing the steel tube, but it may require a careful concrete placement 

to avoid segregation and voids. This can be solved introducing the pumping hose as deep as 

possible into the tubes so as to minimize the dropping distance, and/or using special concrete (i.e. 

Self-Consolidating Concrete, SCC) that minimizes segregation. Either the casting or the pumping 

techniques have the same issues as regards to vibration of conventional concrete. Since SCC 

does not require vibration, this special concrete is advantageous for the casting of composite 

CFT members. 

When the concrete is placed into the steel tubes (with either technique), the concrete 

introduces hydrostatic pressures on the walls that force the steel tube to distort. This radial 

expansion can be critical for rectangular shapes under a high hydrostatic pressure (i.e. casting of 

either long columns, or bottom columns when several upper stories are also being cast). 

In high-rise buildings, concrete casting for several stories is common to speed up the 

construction process, but the amount of hydrostatic pressure coming from the wet concrete can 

be significant, even when the connected beams restrain the expansion at each story. The pressure 

between stories swells the tubes, with this distortion being critical in the lower columns. The 

practical solution to avoid this issue is adding temporal braces or lateral reinforcement to 



34 

minimize the expansion (Figure 6.b and 7.b). Eventually, the concrete sets with the shape given 

by the steel tube acting as a formwork, and finally the concrete hardens and the elements start 

working in composite action. 

  
(a) Pouring (Bergmann et al., 1995) (b) Pumping (Uy and Das, 1999) 

Figure 2.6. Concrete filling procedure on site of a RCFT 

  

Figure 2.7. Hydrostatic pressure from wet concrete and temporal reinforcement in RCFTs that 

reduces the radial expansions (Uy and Das, 1999) 

Analytical investigation of the wet concrete effects has been previously reported by Uy 

and Das (1997, 1999) through a folded plate finite element approach for thin-walled steel boxes 

with and without a temporal lateral reinforcement. The variables investigated by these authors in 

their parametric study included: number of simultaneous stories being casted (Ns), number of 

equally-distributed braces between floor stories (Nb), h/t ratios, and boundary conditions. 
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Figure 2.8 shows the results for the estimated lateral deflection in a double-pinned square 

steel-box column (L=4 m, h=150 cm, h/t=40) with different amounts of lateral braces (Nb) and 

wet concrete pressure from the upper stories (Ns). As expected, their results for the estimated 

lateral deflection are reduced with closer brace spacing and increased for higher spacing when 

simultaneously cast with upper stories. These authors pointed out that, as shown in Figure 2.9, 

the maximum lateral deflection in the lower columns moves from a low position towards the 

column mid-span with an increase in the number of simultaneous upper stories being cast. 

 

For this research, the effects of the wet concrete are also investigated. The results of the 

experimental results are shown in Chapter 4. 

 

 

Figure 2.8. Lateral deflection estimated by Uy and Das (1999) for a double-pinned square steel-

box column with different lateral brace spacing (Nb) and upper story pressure (Ns) 
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Figure 2.9. Deflected shape tendency in RCFTs (adapted from Uy and Das, 1999) 
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2.4. Previous analytical research studies 

2.4.1. Material constitutive models 

When CFT columns are subjected to compression force, both the steel tube and the 

concrete core expand laterally due to Poisson’s effect. In the early stages, the steel tube expands 

at a greater rate than the concrete core since its Poisson’s ratio (s ≈ 0.3) is larger than the 

corresponding value in the concrete (c ≈ 0.2). However, as the loading continues the rate of 

lateral expansion, the concrete core starts developing micro-cracks that increase the rate of its 

lateral expansion until, eventually, the radial contact interaction between the steel and the 

concrete occurs, thus developing a confinement pressure on the concrete and a hoop stress in the 

steel. This interaction vanishes on those spots when the steel-concrete contact is lost due to some 

flexural buckling, steel local buckling, or any other loading or effects that tend to reduce the 

composite action on the member. This steel-concrete interaction is more difficult to track with 

more complex loading protocols (i.e. cyclic loading), and so a comprehensive formulation on the 

constitutive materials is needed to better estimate the overall response. 

The accuracy of the analytical response prediction of CFT members and structures 

depends strongly on the ability of the constitutive relations to provide realistic estimations on its 

monotonic and cyclic behavior.  Initial analytical studies on CFT members used the available 

material constitutive models initially developed for reinforced concrete only and structural steel 

only without the steel-concrete composite interaction between these two materials that accounts 

for the salient features of CFT members. 

For simplicity, elastic-perfectly-plastic or rigid-plastic models (Figure 2.10) were initially 

used for both the steel and concrete in order to estimate the maximum strength of composite 

cross-sections (i.e. Roik and Bergmann, 1992). The use of these simplistic models, demonstrated 

an accurate estimation in the ultimate capacity of CFT cross-sections trough simplified equations 

that have been adopted in many code provisions for design purposes (i.e. AISC, 2005; EC-4, 

2004, AIJ, 2003). The application of the set of equations developed based on the rigid plastic 

model is also known as the plastic stress method. 
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Figure 2.10. Fully-plastic stress distribution in composite cross-sections 

When the entire non-linear response is of interest, more complex uniaxial stress-strain 

curves are needed. The application of the material properties using their actual stress-strain 

curves and the assumption that plane section always remains plane is also known as the strain 

compatibility method. 

In the literature, numerous of constitutive relations have been derived as explicit 

functions of stress and strain and are commonly utilized in nonlinear analysis of steel and 

reinforced concrete structures (i.e. Ramberg and Osgood, 1943; Menegotto and Pinto, 1973; 

Balan et al., 1998 to give but a few examples). 

In addition, numerous research studies have focused on the stress-strain response of 

reinforced concrete, and some are relevant to the response of CFT members such as those 

developed by Kent and Park (1971), Popovics (1973), Chen and Chen (1975), Sheikh and 

Uzumeri (1982), Mander et al. (1988), Collins and Mitchell (1990), Saatcioglu and Razvi (1992), 

Chang and Mander (1994), Amer-Moussa and Buyukozturk (1990), Cusson and Paultre (1995), 

Attard and Setunge (1996), Lee and Fenves (1998), Palermo and Vecchio (2003), Grassl and 

Jirasek (2006), among others. For structural steel, the relation between stress and strain has been 

associated through a set of hardening and flow rules (Dafalias and Popov, 1975; Cofie and 

Krawinkler, 1985; Mizuno et al., 1992; Shen et al., 1995). Cyclic characteristics of these 

formulations are modeled by introducing internal variables and incorporating them with the 

constitutive relations. 
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Table 2.2 shows a list of some available constitutive material models developed for 

reinforced concrete members, steel members, and CFT members. Even though the references 

listed in this table is not comprehensive, it gives an idea of the diversity of the models that can be 

applicable in CFT members. 

Table 2.2. Some material constitutive models in the literature developed for CFT 

Members Reference Comment 

Reinforced 

Concrete 

Kent and Park (1971) 
Composed by a function up to the peak stress, and a bilinear 

function for the post-peak 

Popovics (1973) Continuous function for the pre- and post-peak 

Mander et al. (1988) 
Confinement due to the lateral reinforcement is accounted in 

circular and rectangular sections 

Chang and Mander (1994) 
Confinement, cracking, degradation for monotonic and cyclic 

behavior is modeled 

Steel 

Menegotto and Pinto 

(1973) 

Smooth elastic-to-plastic transition, elastic unloading, isotropic 

and kinematic hardening, and Bauschinger effects 

Shen et al., 1995 

Smooth elastic-to-plastic transition, elastic unloading, isotropic 

and kinematic hardening, Bauschinger effects, stiffness and 

strength degradation, and local buckling 

Mizuno et al., 1992 

Plasticity model with yield plateau, reduction of elastic range, 

movement of bounding lines, decrease and disappearance of 

yield plateau during cyclic loading 

CFT 

Elremaily and 

Azizinamini (2002) 

Chang-Mander model used for concrete and elastic-perfectly-

plastic model used for steel 

Sakino et al. (2004) 
Concrete model proposed with confinement effects. Elastic-

perfectly-plastic used for steel with a softening for local buckling 

Nakahara et al. (1998)) 
Stress-strain relationships for concrete with confinement and 

steel tubes with local buckling 

Susantha et al. (2001) 
Uniaxial stress–strain relationship for the concrete confined by 

various shaped steel tubes 

Varma (2000) 

Stress–strain curves for steel and concrete were obtained from 

FEA, implicitly accounting for the effects of local buckling and 

biaxial stresses in the steel tube and the confinement in concrete 

Hatzigeorgiou (2008) 

Monotonic stress–strain relationship for confined concrete is 

proposed. Elastic-perfectly-plastic model was used to model the 

steel 

Tort and Hajjar (2007) 
Based on Chang-Mander for concrete, Mizuno and Shen for 

steel, with adjustments for RCFTs 

Denavit and Hajjar (2010) 
Based on Chang-Mander for concrete and Shen for steel, with 

adjustments for CCFTs 
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The constitutive models adopted to simulate the monotonic and cyclic behavior of CFT 

members should be comprehensive enough to capture the characteristics that have influence on 

the overall response. Among the desired features recommended by Hajjar (2000) for the concrete 

constitutive model to capture the response of CFT members are: 

 Smooth transition from elastic to plastic response, following the monotonic compressive 

envelope in the pre- and post-peak range 

 Capture of the effective tensile response and the cracking opening-closing effects under 

cycling loading 

 Increment in ductility and strength due to the confinement effects in the concrete as a 

consequence of the contact with the steel tube 

 Elastic unloading following the load reversal. However, the elastic stiffness degrades due 

to the concrete crushing and cracking with monotonic or cyclic loading 

 Decreasing in the size of the elastic zone in cycling loading due to the concrete crushing 

and cracking 

 Complex strength and stiffness degradation rules as a result of cyclic loading 

Among the desired features for the steel constitutive model to capture the response of 

CFT members, as recommended by Hajjar (2000), are: 

 Smooth transition between elastic and plastic response, rather than formation of a 

significant yield plateau 

 Elastic unloading following the load reversal 

 Bauschinger effect causing a reduction in the yield stress when the direction of strain 

changes 

 Decreasing elastic zone and gradual stiffness reduction as a result of a cyclic loading 

 Gradient of the yield stress along the perimeter of the steel tube 

 A bounding stiffness that is attained near the end of the tests due to the stabilizing action 

of the steel tube 

 Residual stresses as a consequence of the manufacturing process of the steel. 

 When cold-formed steel tube sections are used, the effects of the cold-forming process 

must be considered 

 Local buckling of the steel tube 
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 Steel fracture may be neglected in CFTs since these are robust members that rarely 

fracture until very late in cyclic loading histories or with an extremely high load and 

displacement condition 

The following section briefly describes some of the uniaxial constitutive models 

developed for CFT members. 

 

2.4.1.1. Sakino et al. (2004) 

Sakino and Sun (1994) proposed a unified stress-strain model for concrete confined by 

steel tubes and/or conventional hoops. Based on this model, Sakino et al. (2004) enhanced this 

constitutive materials model for circular and rectangular CFT members accounting for 

confinement, local buckling, and biaxial stresses. The latter model was based on empirical data 

calibration of centrally loaded short CFT columns, as part of fifth phase of the U.S. – Japan 

Cooperative Earthquake Research Program. The proposed stress-strain envelope for both 

concrete in compression and the structural steel are shown in Figure 2.11 and Figure 2.14, 

respectively. 

 

 

Figure 2.11. Stress-strain ( curves obtained from the Sakino model for a 5 ksi strength 

concrete confined by a steel tube with different width-to-thickness ratios. 



42 

Equation 2.1 describes the monotonic  curve for concrete proposed by Sakino et al. 

(2004), which is in terms of the effective hoop stresses (re) and the peak concrete strength. 
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The effective hoop stresses (re) and the peak strength values for circular CFTs are: 
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Correspondingly, for rectangular CFTs the values are: 
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In the previous equations, u is a factor that accounts for the scale effects of the structural 

members. This factor was calibrated with experimental tests (Figure 2.12) of both circular and 

rectangular concrete sections as: u = 1.67 (D - 2t)
-0.112

. 
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Figure 2.12. Scale effect factor on compressive strength of circular plain concrete columns 

Figure 2.13 shows  curves obtained with the Sakino concrete model for a 5 ksi 

strength concrete that is confined by circular and rectangular steel tubes with width-to-thickness 

ratios (D/t, b/t) of 50 and 100, respectively. As shown in this figure, confinement improves 

strength and ductility in circular CFTs but only ductility in rectangular CFTs. 

  

 

(a) Circular CFT (b) Rectangular CFT 

Figure 2.13. Stress-strain ( curves obtained from the Sakino model for a 5 ksi strength 

concrete confined by a steel tube with different width-to-thickness ratios. 
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Conversely, steel tubes in CFT members are proposed to be modeled through an 

unsymmetrical  curve with yielding stress equals to 1.09Fy in tension and 0.89Fy in 

compression that satisfies biaxial stresses with the Von Misses yield criteria, where Fy is the 

nominal yield stress of the steel. Depending on the width/thickness ratio, local buckling in 

RCFTs can be handled by a descending branch of the  curve at a critical strain. A careful 

calibration of the experimental data is needed to obtain the strain when local buckling takes 

place. Sakino model postulates that the strain at local buckling in CCFTs is reached at high 

values of strain, and therefore, local buckling effects can be neglected. This approach is tied to 

the Japanese design requirements for width/thickness ratios, which preclude this failure mode. 

 

 
(a) Circular CFT (b) Rectangular CFT 

Figure 2.14. Stress-strain () for the steel tubes used with the Sakino model 

 

2.4.1.2. Tort and Hajjar (2007) and Denavit and Hajjar (2010) 

A three-dimensional distributed plasticity beam element formulation was developed for 

rectangular CFTs by Tort and Hajjar (2007) and for circular CFTs by Denavit and Hajjar (2010). 

Similar to the Sakino model, these two references utilize uniaxial cyclic constitutive models for 

the concrete core and steel tube that account for the salient features of each material, as well as 

the interaction between the two, including concrete confinement, concrete tensile strength, and 

local buckling of the steel tube. Robust hysteretic rules for the non-linear cyclic response were 

adopted in these comprehensive models. 
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The concrete material models used in both references are based in the model proposed by 

Chang and Mander (1994) and Tsai (1988), with improvements to better predict the concrete 

response to monotonic and cyclic loading of all possible cases for RCFTs (Tort and Hajjar, 2007) 

and CCFTs (Denavit and Hajjar, 2010). 

The monotonic response in compression as proposed by Chang and Mander (1994) is 

defined by the Equation 2.5, where the parameter D() is defined by the Equation 2.6: 
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The parameters n and r depend on the concrete strength and stiffness. The parameter for 

the post-peak factor in compression (r) is given by: 
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The peak stress (fcc) and the corresponding strain (cc) of concrete confined by the steel in 

RCFTs are equal to those obtained for unconfined concrete. The strain at the peak stress (c) for 

unconfined concrete (applicable to RCFTs) is given by Chang and Mander (1994) as: 
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The strain at the peak stress (cc) for confined concrete (applicable to CCFTs) is given by 

Richart et al. (1929) as: 
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For CCFTs, the peak stress (fcc) as proposed by Mander et al. (1988) is equal to: 
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The confinement pressure (fl) in CCFTs proposed by Denavit and Hajjar (2010) is: 
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The initial concrete stiffness used in this model is defined as: 

  (2.12) 

Figure 2.15 illustrates the strength of confined concrete (fcc) by a circular steel tube with 

given wall slenderness ratios (= D/t) as obtained from Equation 2.10 calibrated by Denavit and 

Hajjar (2010), and from Equation 2.3 proposed by Sakino et al. (2004). The values in this figure 

are obtained assuming an unconfined concrete of 5 and 12 ksi of strength, and the steel tube with 

a nominal yielding stress of 42 ksi. This figure shows higher values of confined concrete strength 

from the Sakino’s equation. As seen in Figure 2.15, Denavit and Hajjar’s calibration illustrates 

no influence on the concrete strength when the CCFT cross-section is composed by circular 

tubes with D/t ratios greater than 79; according to Equation 2.11, the confinement pressure (fl) 

above this value becomes zero and so the concrete is controlled by its unconfined strength. 
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 (a)  fc’ =5 ksi, Fy = 42 ksi (b)  fc’= 12 ksi, Fy = 42 ksi 

Figure 2.15. Confined concrete strength (fcc) vs. wall slenderness ratio (= D/t) of circular steel 

tubes from the calibration by Sakino et al. (2004) and by Denavit and Hajjar (2010) for CCFTs 
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Figure 2.16 shows the monotonic and cyclic stress-strain response implemented in Tort 

and Hajjar (2007) for the concrete core in RCFTs. The robustness of the hysteretic rules in 

cycling loading is illustrated in Figure 2.16.b through a complex determination of the hysteretic 

loops in the confined concrete by the rectangular tube and its tension strength. 

 

 
 (a) Monotonic response (b) Cyclic response 

Figure 2.16. Stress-strain constitutive model implemented in Tort and Hajjar (2007) for the 

concrete core in RCFTs 

 

Similarly, Figure 2.17 shows the backbone stress-strain curve implemented in Denavit 

and Hajjar (2010) for the concrete core in CCFTs. The influence of the concrete strength filled 

into tube with a given diameter-thickness ratio (constant D/t=50) is shown in Figure 2.17.a. In 

turn, the influence of the confinement effects is shown in Figure 2.17.b, where a CCFT cross-

section hold the same concrete strength (fc’ = 50 MPa) and is confined by tubes of different D/t 

ratios (30<D/t<80). As illustrated in the Figure 2.17.b, the peak stress increased as the 

confinement increased with D/t decrements; the strain ductility also increase with lower D/t 

values. 
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 (a) Influence of the concrete strength (b) Influence of the D/t ratio 

Figure 2.17. Stress-strain constitutive model implemented in Denavit and Hajjar (2010) for the 

concrete core in CCFTs 

With respect to the steel component, the stress-strain backbone curves used by Tort and 

Hajjar (2007), and Denavit and Hajjar (2010) are based on the incremental bounding surface 

formulation proposed by Shen et al. (1995), with modifications for CFT members to better 

account for local buckling, residual strains and the hysteretic rules in the non-linear cyclic 

response. The improved rules on this cyclic plasticity model reproduce elastic unloading, 

decreasing elastic zone, Bauschinger effect, bounding stiffness and local buckling degradation. 

According with Tort and Hajjar (2007) and Denavit and Hajjar (2010), the initiation of 

the local buckling starts at a strain given by: 
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Where the factor R is given by: 
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The previous equations, calibrated with experimental data of CFT tests available in the 

literature, can be rewritten in terms of the yielding strain (y) and the wall-slenderness ratio () of 

the steel tube as shown in Equation 2.15.  
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This pair of equations is plotted in Figure 2.18, with the wall-slenderness ratio (= D/t 

or h/t) vs. the strain at occurrence of local buckling normalized with the strain at yielding. The 

corresponding limiting wall-slenderness ratios (p) in AISC (2010) for compact filled-tubes are 

marked in this figure. These limits intersect the local buckling strain of these calibrations at 

about one and three times the yielding strain for RCFTs and CCFTs, respectively. These 

comparisons suggest a reasonable limit p for RCFTs, while the limit for CCFTs is quite 

conservative. 

0 50 100 150 200 250
0

1

2

3

4

5

CCFT

RCFT

0.15 s

y

E

F

2.26 s

y

E

F

lb/y

  

Figure 2.18. Wall-slenderness ratio vs. strain at occurrence of local buckling  



50 

Once the local buckling strain calculated with the previous equation has been exceeded, 

the stress-strain curve decays with a degradation slope calculated as: 
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The previous descending branch becomes constant once the residual stress is achieved 

with a value defined as: 
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In turn, the residual stresses are accounted in these formulations with an initial plastic 

strain, which is given by: 
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Figure 2.19 illustrates the backbone curves for the steel component for RCFTs (Tort and 

Hajjar, 2007) and CCFTs (Denavit and Hajjar, 2010). In Figure 2.19.a, local buckling for a 

rectangular tube cross-section is shown by the descending branch at the strain lb, with a slope of 

Ks, until the constant stress frs is achieved. In Figure 2.19.b, a set of stress-strain curves is shown 

that shares the same yielding strength, but different values of the wall slenderness (D/t) in 

circular cross-sections. This figure illustrates compressive yielding and full plasticity without 

local buckling for the case with D/t=30, and yielding and partial plasticity for the case with 

D/t=60 (compact cross-sections). In addition, Figure 2.19.b displays a descending branch at the 

yielding for the case with D/t=90 (non-compact cross-sections), and a descending branch before 

yielding for the cases with D/t=120 and 150 (slender cross-sections). 

Figure 2.20 compares the Shen’s constitutive model, which includes the enhancements 

implemented by Denavit and Hajjar (2010), with a coupon tension test performed for a sample 

taken from one of the specimens tested in this research. The material and geometric properties 

measured (Fy, Fu, Es) in the coupon test were used in the definition of the analytical model. With 

the aim of illustrating as reference the influence of local buckling in the analytical model, the 

tensile stress-strain obtain in the coupon test were also plotted in the compression side where a 
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cyclic response is illustrated. In addition, Figure 2.20 shows the analytical model for different 

load history paths. All these cases illustrate that the analytical model follow the coupon test 

envelope in tension within a low range of strains (<0.005). This range of strains, however, is 

wide enough to obtain a good part of the non-linear response of the element since the concrete 

cracking in tension, the steel local buckling, and concrete crushing in compression occur 

generally within this range. 

Besides the material non-linearities, these authors also developed an element to account 

for the geometric nonlinearities. For this purpose, a distributed-plasticity mixed finite element 

formulation was used to allow for accurate modeling of both geometric and material 

nonlinearities with a favorable balance of computational efficiency and accuracy. 

The distributed plasticity mixed beam finite element formulations developed previously 

by Tort and Hajjar (2007) was intended for the analysis of rectangular CFT members with slip 

between the steel tube and concrete core included. In turn, Denavit and Hajjar (2010) developed 

a similar element for the analysis of circular CFT members. Previously, Nukala and White, 2004 

developed an element for the analysis of steel structures with section warping included. 

 

  
 (a) RCFT (Tort and Hajjar, 2007) (b) CCFT (Denavit and Hajjar, 2010) 

Figure 2.19. Monotonic Shen  model for the steel component in CFTs 
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  (ksi)  (ksi) 

 
  

(a) Monotonic in low strains (b) Incremental cyclic in low strains 

  (ksi)  (ksi) 

 
  

(c) Monotonic in large strains (d) Incremental cyclic in large strains 

Figure 2.20. Shen  model for steel vs. coupon test 

 

The material and element models developed by Tort and Hajjar (2007) and Denavit and 

Hajjar (2010) described in this section will be used to obtain the analytical response of the 

rectangular and circular CFT specimens tested in this project. For these analyses, the software 

OpenSees (2010) is used via a compiled version by Denavit and Hajjar (2010) with material 

models and mixed elements developed explicitly for CCFT and RCFT composite members, as 

well as the standard material and element models already built-in and developed in OpenSees. 

-0.04 -0.02 0 0.02 0.04
-80

-60

-40

-20

0

20

40

60

80
Material Relationship

Strain

S
tr

e
s
s

 

 

Shen model

Coupon Test

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

-60

-40

-20

0

20

40

60

Material Relationship

Strain

S
tr

e
s
s

 

 

Shen model

Coupon Test

0 0.05 0.1 0.15 0.2 0.25
0

20

40

60

80

100
Material Relationship

Strain

S
tr

e
s
s

 

 

Shen model

Coupon Test

-0.2 -0.1 0 0.1 0.2
-80

-60

-40

-20

0

20

40

60

80
Material Relationship

Strain

S
tr

e
s
s

 

 

Shen model

Coupon Test



53 

2.4.2. Comparison of constitutive models applicable to CFTs 

As commented before, there are many options to account for the material properties of 

CFT members. Some of these were originally developed for reinforced concrete members or 

steel-only members, but have been adapted to CFT composite members. The main differences in 

all these models are the assumptions in the parameters that influence the stress-strain envelope, 

and mainly on the hysteretic rules and the strength-stiffness degradation on the cyclic non-linear 

response. 

Figure 2.21 shows the cyclic response of different uniaxial stress-strain models that may 

be applicable to predict the response of the concrete components in CFT members. The concrete 

models shown in Figure 2.21.a to Figure 2.21.b are already integrated in the latest version of 

OpenSees (2010) that incorporate both unconfined and confined reinforced concrete. 

The monotonic concrete model in Figure 2.21.e proposed by Sakino et al. (2004) was 

implemented in the OpenSees source code (Appendix C) using the same cyclic rules that were 

programmed in the Concrete04-Popovics model. 

The concrete model shown in Figure 2.21.f was implemented by Denavit and Hajjar 

(2010) based on the Chang-Mander model and, as commented before, with enhancements to 

account for the concrete confinement and the non-cyclic response in CFT members. With 

exception of the model shown in Figure 2.21.a, all the material models shown in Figure 2.21 

account for the tension capacity of concrete. 

The material properties and parameters that origin the stress-strain curves in Figure 2.21.e 

and Figure 2.21.f correspond to those obtain for a CCFT integrated by a steel tube HSS20x¼ A-

500 Gr. B, and the confined concrete in-fill with 5 ksi of strength. The material properties and 

parameters that origin the stress-strain curves in Figure 2.21.a to Figure 2.21.b were adopted to 

mimic the confined concrete response of the CCFT obtained in Figure 2.21.e and Figure 2.21.f.  

As can be noticed in these figures, the stress-strain response with the Chang-Mander 

model (Figure 2.21.f) illustrates the more complex and robust uniaxial response in cyclic 

loading. 
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  (ksi)  (ksi) 

 
  

 (a) Concrete01, Kent-Scott-Park (b) Concrete02, linear tension softening 

  (ksi)  (ksi) 

 
 

 (c) Concrete03, non-linear tension softening (d) Concrete04, Popovics 

  (ksi)  (ksi) 

 
  

(e) Sakino (f) Chang-Mander 

Figure 2.21. Different stress-strain model available for concrete in CFTs 
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Similarly, Figure 2.22 shows the cyclic response of different uniaxial stress-strain models 

that may be applicable to predict the response of the steel component in CFT members. In 

addition, this figure shows the stress-strain curve obtained from a coupon test of a sample taken 

from one of the specimens tested in this research. To illustrate the influence of local buckling in 

the analytical model, the tensile stress-strain obtain in the coupon test were also plotted in the 

compression side. 

 

Figure 2.22.f shows the implementation of the Shen model by Denavit and Hajjar (2010) 

to the steel component in CFTs, with enhancements to account for local buckling, residual 

strains, and non-cyclic response; this figure was obtained for a steel tube which D/t=86. With 

exception of the Shen model, all the material models shown in Figure 2.22 are integrated in the 

latest version of OpenSees (2010).  

 

The curve in Figure 2.22.e is an elastic-perfectly plastic material shifted to account for 

biaxial stresses as proposed by Sakino et al. (2004). 

 

The model in Figure 2.22.d and Figure 2.22.f exhibit softening after the local buckling 

strain in compression is exceeded.  

 

The model in Figure 2.22.b, and without a smoother transition the models in Figure 

2.22.a and Figure 2.22.c, follow with some accuracy the monotonic tensile response of the 

coupon test, although none of these include the local buckling effects.  

 

As noticed in all these figures, the stress-strain response with the Shen model (Figure 

2.22.f) illustrates the more complex and robust uniaxial response for cyclic loading within the 

strain interval shown, with a good prediction of the monotonic envelope in tension, and with a 

rational degradation due to the local buckling in compression. 
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  (ksi)  (ksi) 

 
  

(a) Steel01, elastic-plastic (b) Steel02, Giuffré-Menegotto-Pinto 

  (ksi)  (ksi) 


  

(c) Hardening (d) Hysteretic (tri-linear) 

  (ksi)  (ksi) 

 
  

(e) Sakino, CCFT (f) Shen, CCFT with D/t=86 

Figure 2.22. Different stress-strain models available for steel in CFTs 
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2.4.3. Fiber-based analysis 

Fiber element analysis have been widely used to understand and predict the behavior of 

steel (i.e. White, 1986; Liew and Chen, 2004; etc.), reinforced concrete (i.e. Taucer et al., 1991; 

Izzuddin et al., 1994; Spacone and Filippou, 1995; etc.) and composite steel-concrete elements. 

Table 2.3 summarizes briefly a number of analytical studies that have looked at fiber analysis of 

composite elements. This table is not meant to be comprehensive: however, it gives an idea of 

the maturity and breath of the approach. 

Fiber element analysis is a numerical technique which models a structural element by 

dividing it into a number of two-end frame elements, and by linking each boundary to a discrete 

cross-section with a grid of fibers (Figure 2.23). The material stress-strain response in each fiber 

is integrated to get stress-resultant forces and rigidity terms, and from these, forces and rigidities 

over the length are obtained through finite element interpolation functions which must satisfy 

equilibrium and compatibility conditions. 

 

Figure 2.23. Frame element with ends coupled to fiber cross-sections 

Integration points

Frame 

element

Fiber cross-section
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Table 2.3. Summary of analytical studies with fiber analysis in composite elements 

Reference Applied to: Brief comments 

Tomii and  

Sakino (1979) 

CCFT and RCFT 

cross-sections 
Calibrated fiber M- results with experimental results adjusting - 

curve in concrete, keeping steel as elastic-perfectly-plastic. 

 

Elnashai and 

Elghazouli (1993) 

 

SRC 

beam-columns 

Developed a non-linear model for SRC frame structures subjected to 

cyclic and dynamic loads, accounting for geometric nonlinearities, 

material inelasticity, confinement effects in concrete, and local 

buckling and cyclic degradation in the steel. The model is calibrated 

and compared with experimental data. 

Ricles and  

Paboojian (1994) 

SRC 

beam-columns 

Analyzed SRC beam-columns with fiber analysis, which accounted 

for strain compatibility, material nonlinearity, and confinement effects 

using the Mander model. 

 

Hajjar and  

Gourley (1996) 

 

RCFT 

cross-sections 

Developed a polynomial expression to represent a 3D axial-bending 

interaction equation for square CFT cross-sections. This polynomial 

equation was fitted based on results from nonlinear fiber element 

analysis. 

 

El-Tawil and  

Dierlein (1999) 

 

SRC 

cross-sections 

Compared experimental and fiber-based results of monotonic M- 

curves. From the fiber-based model, interaction curves were obtained 

for 3 SRC cross-sections with different steel ratios, which were 

compared with the ACI and AISC strength. 

Lakshimi and 

Shanmugan (2000) 

CFT 

beam-columns 

Used fiber models to predict behavior of biaxially-loaded CFT beam-

columns and axially-loaded slender CFT columns.  

Uy 

(2000) 

CFT 

columns 

Used fiber models in CFT columns with thin-walled steel tubes. 

Buckling and post-buckling behavior were incorporated through a 

finite strip method and an effective width approach. 

 

Aval et al. 

(2002) 

 

CCFT and RCFT 

beam-columns 

Developed a fiber element accounting for bond/slip interaction 

between concrete and steel (due to the difference between axial 

elongation and curvatures). The effect of semi- and perfect bond is 

investigated and compared with experiments. 

Fujimoto et al. (2004) RCFT 

cross-sections 
Used the empirical - curves developed by Nakahara-Sakino-Inai in 

fiber analysis to predict monotonic M-curves. 

Inai  

et al. (2004) 

RCFT 

cross-sections 
Used the empirical - curves developed by Nakahara-Sakino-Inai in 

fiber analysis to predict cyclic M- curves. 

 

Varma (2000) 

 

RCFT 

beam-columns 

Adapted and implemented - curves for both high strength steel and 

concrete to predict the response of square CFT elements. These curves 

were adapted from results of 3D finite element analyses, which 

implicitly accounts for local buckling of the steel tube, transverse 

interaction between steel and concrete infill, and confinement of the 

concrete infill. 

Lu et al. 

(2006) 

RCFT 

cross-sections 
Obtained M- curves and interaction P-Mu diagrams, which accounted 

for residual stresses in the steel and confinement effects in concrete, as 

well as the material nonlinearity. 

Choi  

et al. (2006) 

RCFT 

cross-sections 

Developed a parametric study to determine the P-M interaction 

diagram varying with the b/t and fc’/Fy ratios. 

Kim and  

Kim (2006) 

RCFT 

beam-columns 
Compared fiber-based cyclic M- and force-displacement (F- 

curves with those obtained experimentally. 

 

Liang 

(2008) 

 

 

RCFT 

cross-sections 

Determined P-M interaction diagrams for short CFT beam-columns 

assuming material nonlinearity. Fiber element results are compared 

with experimental data and existing solutions. Evaluated the influence 

of steel ratios, fc’ and Fy. 
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There are several advantages which justify the use of fiber analysis. Some of these 

advantages include but are not limited to their ability to handle: 

 Complex cross-sections: A fiber cross-section can have any general geometric 

configuration formed by sub-regions of simpler shapes; geometric properties of the more 

complex section are calculated through the numerical integration. 

 Tapered elements: Since the length of the fiber is not considered, the cross-section 

defined at each of the two ends can be different, and therefore, the response of tapered 

members can be roughly estimated. Precision can be increased with more integration 

points. 

 Complex strength-strain behavior: Since each fiber can have any stress-strain response, 

this technique allows modeling nonlinear behavior in steel members (steel  and 

residual stresses), reinforced concrete members (unconfined and confined concrete , 

and steel reinforced ), and composite members. 

 Accuracy and efficiency: Since each fiber is associated to a given uniaxial stress-strain 

() material response, higher accuracy and more realistic behavior effects can be 

captured by a fiber-based model than in a frame-based model, and at less computing time 

than for a 3D finite-based model. 

As described previously, the uniaxial  curve can directly account for the material 

nonlinearity under monotonic or cyclic loads or displacements, and the residual stresses in the 

structural steel members. However, some researchers have calibrated, based on experimental or 

analytical 3D finite-based results (i.e. Varma, 2000; Tort and Hajjar, 2007), the uniaxial  to 

account for additional behavior effects like: 

 Confinement effects in the concrete due to either steel reinforcement (as in RC or SRC 

cross-sections) or a steel tube (as in CFT cross-sections). Concrete confinement in CFT 

elements remain while the steel-concrete contact is present. 

 Local buckling in steel tubes through a degradation of the compressive  beyond the 

corresponding strain (lb) when local buckling take place. Local buckling in CFT 
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elements can be reached when the steel is highly stressed and the steel-concrete contact is 

lost. 

Stability effects through geometric nonlinearity and initial imperfections can be captured 

directly within the frame-based analysis. In turn, slip between concrete and steel has been 

modeled in the frame-based formulation by adding degrees-of-freedom (i.e. Hajjar et al., 1998; 

Aval et al., 2002; Tort and Hajjar, 2007). 

 

2.4.4. Finite Element Analysis 

Finite Element Analysis (FEA) is a numerical technique that models a structural system 

by a set of appropriate finite elements (1D, 2D or 3D) interconnected at the exterior nodes, and 

all together models the entire system as accurate as possible. Nodes will have the desired degrees 

of freedom that may include translations, rotations, and for special applications, higher order 

derivatives of displacements. When the nodes displace, they will drag the elements along in a 

certain manner dictated by the element formulation, so the displacements at any point in the 

element can be interpolated from the nodal displacements through the finite element 

interpolation or shape functions, which must satisfy equilibrium and compatibility conditions as 

well. 

 

Several advantages justify the use of finite element analysis. Some of these advantages 

include but are not limited to their ability to handle: 

 Complex 3D geometries: 1D, 2D or 3D elements may be used to generate any 2D or 3D 

shape of any structural system. 

 True material non-linearity: Since the analysis account for size and shape changes, true 

stress-strain “” values are used in the calculations instead of the engineering stress-

strain ()eng values. 

 Geometric nonlinearity and initial conditions (like residuals stress or strains, out-of-

plumbness, out-of straightness, etc.) may be included in the model. 
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 Definition of surfaces in contact allows giving a better modeling of the true steel-concrete 

interaction. In composite columns, for example, the normal and tangential contact 

interaction between the steel and concrete’s surfaces may allowed to account directly for 

effects which in fiber analysis are indirectly implicit in the uniaxial . Thus, as long as 

the steel-concrete remain in contact, neither local buckling, loss of confinement, nor slip 

can take place. 

Accounting for contact in finite element analysis may include but are not limited to their 

ability to handle: 

 Confinement directly provided by the normal pressure between the surfaces in contact; 

modification in the uniaxial  curve is not needed. 

 Local buckling of the steel tube is delayed until loss of normal contact takes place. 

 Slip or unbonding in concrete-steel surfaces takes place when tangential contact is lost. 

 Wear can be predicted in mechanical parts with friction or relative motion between 

contact surfaces, mainly when these are subjected to high cycle fatigue. 

Since the model may have a large amount of elements, computing time or resources are 

an important issue to consider. In order to obtain good accuracy without excessive processing, 

the following is often recommended: 

 Symmetry or anti-symmetry conditions are exploited in order to reduce the size of the 

system. Compatibility of displacements of many nodes can be imposed via constraint 

relations; proper support constraints are imposed with special attention paid to nodes on 

symmetry axes. 

 The element mesh should be fine enough in order to have acceptable accuracy. To assess 

accuracy, the mesh is refined until results show little change. For higher accuracy, the 

elements’ aspect ratio should be as close to unity as possible and smaller elements can be 

used over the parts of higher stress gradient. 

Since the computing time and resources are high demanded in this type of analyses, 

fewer research studies have used this technique to obtain the response of CFT members. A 

summary of some of the available literature using the FEA approach is given next. 
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Varma (2000) derived strain curves for the steel and concrete from three-dimensional 

nonlinear finite element analyses of the CFT failure segments (Figure 2.24). As a result, the 

finite element model-based stress–strain curves implicitly account for the effects of local 

buckling and biaxial stresses in the steel tube and the confinement of the concrete infill (Figure 

2.25). 

 
(i) 3D finite element model for a segment of CFT 

 

 
(ii) Longitudinal stresses in steel tube and concrete infill 

Figure 2.24. Model and results from the FEA presented by Varma (2000) 
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(i) Compression stress–strain curves for concrete extracted in different layers 

 

 
(ii) Compression stress–strain curves for steel extracted at walls and corners 

Figure 2.25. Stress-strain curves obtained from FEA (Varma, 2000) 
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Perea and Leon (2004) evaluated the effects of confinement in short columns based on a 

finite element analyses using the software ABAQUS (2010). For this purpose, a cylinder of 

concrete confined by a steel tube was analyzed. The steel tube is modeled by 20-join 3D solids 

(C3D20R) and an elastoplastic stress-strain curve with a yielding stress of Fy=42 ksi. The 

concrete is modeled by 8-joint 3D-solids (C3D8R) and 6-joint wedges (C3D6), and a monotonic 

stress-strain curve as proposed by Popovics (1973) with plain or unconfined properties and fc’=5 

ksi of strength. After assembling the CFT element (Figure 2.26.a), interaction of steel-concrete 

surfaces in contact was defined by the normal-hard contact model, which allows separation but 

avoids overclosure; a small adjustment zone was defined to avoid inaccuracy due to the 

numerical noise range. 

 

The loading in the composite cylinder was applied in two steps: 

 

(1) A pre-compression on the steel tube only. Three cases of pre-compression were 

considered in the study. 

(i) No preload in the steel tube (s=0);  

(ii) A preload compression in the steel tube such that the maximum 

strains in the tube reach the yielding strain of the steel (s=y=Fy/Es); 

(iii) A high preload compression in the steel tube such that the 

maximum strain in the steel tube reached five times the yielding strain 

(s=5y). The deformation shape of the cylinder under this pre-

compression is illustrated in Figure 2.26.b.i. 

 

(2) After the pre-compression on the steel is achieved and sustained, a monotonic 

compression only on the concrete core was applied until the concrete reached a large degree of 

strength softening. The deformation shape of the cylinder under the constant pre-compression 

applied on the steel tube in step 1 and the maximum compression on the concrete core are 

illustrated in Figure 2.26.b.ii. 
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 (i) Preload in steel only (ii) Compression in concrete 

a) Finite element model b) displaced shape (10X amplification) 

Figure 2.26. Finite element model of a CFT cylinder, and its displaced shape of the CFT with a 

preload in the steel tube followed by a compression force in the concrete 

 

 

The results of the hoop stresses in the concrete confined by the steel tube, and the 

corresponding  for confined concrete proposed by Sakino et al. (2004) are illustrated in 

Figure 2.27. 

 

As seen in Figure 2.27.a, the concrete-steel contact in the tube increases the hoop stresses 

as the compression force increments. As seen in Figure 2.27.b.i, the cases with an initial preload 

in the steel tube produce an initial separation (or a contact delay) which is eventually closed as 

the compression in the concrete makes it expand and then go back in contact; however, as soon 

as the steel and concrete surfaces are in contact, the  tends to go from the plain concrete 

curve to the confined concrete curve. Notice that both maximum hoop stresses and maximum 

confined strength from FEA are very close to those estimated with the empirical equations 

proposed by Richart (1928). Sakino’s prediction is very similar in strength and ductility to the 

 curve when the tube had an initial preload in the steel. 
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 r (ksi)   (ksi) 

 
          0.0              0.2             0.4               0.6              0.8      1.0 
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a) Hoop stress vs. Normalized compression b) Uniaxial stress-strain () 

 

Figure 2.27. Variation of the hoop stresses with the compression force, and the uniaxial stress-

strain () obtained from the finite element analysis. 

 

 

The conclusions from this study state that 3D finite element analysis with contact models 

can deal with the salient features of CFTs in a straightforward manner. Definition of contact 

surfaces between concrete and steel allows a more realistic interaction within these materials, 

and therefore, confinement, local buckling and triaxial stresses can be directly integrated in the 

behavior (with no influence on the material model). More computing resources and time will be 

required by this 3D-FEA than with other modeling and analysis techniques (i.e. concentrated or 

distributed plasticity analysis). 
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CHAPTER 3  

EXPERIMENTAL PROGRAM 

A comprehensive experimental program was conducted for this research. The 

experimental program consisted in testing 18 full-scale concrete-filled steel tube (CFT) beam-

columns subjected to a very complex load protocol. These complex full-scale tests were possible 

due to the capabilities of the Multi-Axial Sub-assemblage Testing Laboratory (MAST), a part of 

the NEES Collaboratory (Hajjar et al., 2002). At the time this program was conducted, these 18 

CFT specimens were the most slender and longest CFT columns and beam-columns tested in the 

world as far as the author knows. 

 

3.1. MAST Laboratory 

The Multi-Axial Sub-assemblage Testing system (MAST), shown in Figure 3.1, consist 

of a stiff steel crosshead in the shape of a cruciform connected to the strong floor with four 

vertical actuators and connected to the L-shaped strong wall with four horizontal actuators (two 

in each wall). 

The eight actuators are connected at the ends to the crosshead and the strong floor/wall 

using swivels with low-friction bearings. Each vertical actuator has a static load capacity of ±330 

kips and ±20 inches of piston stroke. In turn, each horizontal actuator has a load capacity of 440 

kips and ±16 inches of piston stroke. The configuration of a typical actuator is illustrated in 

Figure 3.2 (MTS Systems Corporation). 

Thus, the MAST system has the capability of controlling the top 6 DOFs independently 

with a total capacity of Pz = 1320 kips in vertical force, Fx = Fy = 880 kips in shear, and a 

maximum stroke of ±20 and ±16 inches respectively for the horizontal and the vertical 

displacement. A summary of the overall MAST system capacity is condensed in Table 3.1 

(Hajjar et al., 2002). The information in this table is referenced to the MAST coordinate system 

that is shown in Figure 3.3.a; this coordinate system is used as reference in all the data presented 

in this research. Schematics drawings of the MAST system with a CCFT and a RCFT connected 

to the crosshead are shown in Figure 3.3.b and 3.3.c. 
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Table 3.1. Capacity of the MAST system 

(a) Total System Capacity 

Component Capacity 

Vertical Forces: ±1,320 kips 

Lateral Forces: ±880 kips 

Lateral Displacements: ±16 inches 

Vertical Displacements: ±20 inches 

Subassemblage size (W x L x H): 20’-0" x 20’-0" x 28’-9” 

(b) Non-concurrent Capacities of MAST DOFs 

Axis  DOF - Degree of Freedom  Load  Stroke / Rotation 

X  Translation  ± 880 kips ± 16 inches 

 Rotation  ± 8,910 kip-ft  ± 7 degrees 

Y  Translation  ± 880 kips ± 16 inches 

 Rotation  ± 8,910 kip-ft  ± 7 degrees 

Z  Translation  ± 1,320 kips ± 20 inches 

 Rotation  ± 13,200 kip-ft  ± 10 degrees 

(c) Capacity of each actuator 

Type  Vertical Actuator Horizontal Actuator 

Quantity: 4 4 

Static load capacity:  ±330 kips ±440 kips 

Piston stroke:  ±20 inches ±16 inches 

Swivels at actuator ends:  Low-friction hydrostatic  

bearings, ±30° travel 

Low-friction mechanical U-

joint style swivels, ±25° travel 

 

The MAST system is driven by a sophisticated MTS controller that enables multi-axial 

cyclic static tests of large-scale structural sub-assemblages. The six-degree-of-freedom (DOF) 

control technology employed by the MAST system advances the current state of technology by 

allowing the experimental simulation of complex boundary effects through its multi-axial 

capabilities, which can impose multiple-degree-of-freedom states of deformation and load 

(Hajjar et al., 2002). The controller seamlessly converts the 6-DOF space into drive commands 

for each of the eight actuators, accounting for geometric nonlinearity. The HCC controller 

provides mixed-mode control, which allows each DOF to be controlled either in displacement or 

force control. Moreover, the controller can slave any DOF to any combination of other DOFs. 
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Figure 3.1. Multi-Axial Sub-assemblage Testing system (MAST) 

 

 

Figure 3.2. Typical configuration of MTS actuators 
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(a) Coordinate system of the MAST Lab (plan view) 

 

(b) 3D view with a CCFT (c) 3D view with a RCFT 

Figure 3.3. Schematic drawings of specimens placed at MAST 
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3.2. Description of specimens 

The test matrix selected aims to fill gaps found in the available experimental databases 

(Leon et al., 2005; Goode; 2007).  Specimens with different steel tube shapes, high h/t ratios and 

lengths, and filled with normal and high strength concrete were preferred. Due to constructability 

constraints when casting the tubes, self consolidating concrete (SCC) was used in this project to 

avoid concrete segregation and vibration issues. Table 3.2 presents a summary of the selected 

test matrix along with nominal properties of the CFT specimens tested. t. In total, these tests 

represent 20 kips of steel in weight and 22 cubic yards of self consolidating concrete in volume. 

Table 3.2. Test matrix of the CFT specimens with nominal values 

Specimen Length Steel section D/t Fy fc’ 

Name (ft) HSS D x t  (ksi) (ksi) 

1C5-18-5 18 HSS5.563x0.134 45 42 5 

2C12-18-5 18 HSS12.75x
1
/4 55 42 5 

3C20-18-5 18 HSS20.00x
1
/4 86 42 5 

4Rw-18-5 18 HSS20x12x
5
/16 67 46 5 

5Rs-18-5 18 HSS20x12x
5
/16 67 46 5 

6C12-18-12 18 HSS12.75X
1
/4 55 42 12 

7C20-18-12 18 HSS20.00x
1
/4 86 42 12 

8Rw-18-12 18 HSS20x12x
5
/16 67 46 12 

9Rs-18-12 18 HSS20x12x
5
/16 67 46 12 

10C12-26-5 26 HSS12.75x
1
/4 55 42 5 

11C20-26-5 26 HSS20.00x
1
/4 86 42 5 

12Rw-26-5 26 HSS20x12x
5
/16 67 46 5 

13Rs-26-5 26 HSS20x12x
5
/16 67 46 5 

14C12-26-12 26 HSS12.75x
1
/4 55 42 12 

15C20-26-12 26 HSS20.00x
1
/4 86 42 12 

16Rw-26-12 26 HSS20x12x
5
/16 67 46 12 

17Rs-26-12 26 HSS20x12x
5
/16 67 46 12 

18C5-26-12 26 HSS5.563x0.134 45 42 12 

 

Material and geometric properties were measured for all the specimens and are shown in 

Table 3.3. As seen in this table, the measured length (L) of the steel tubes (not including the base 

plates) exceeded the requested nominal length by 
1
/2 to 2

3
/4 inches. The averaged values of the 

measured thickness (t) on the steel tubes equaled the design thickness reported by the 

manufacturer. 
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Concerning the material properties for the steel, a set of three coupon samples were 

extracted and tested in tension for each heat used in the tube manufacture as reported by the 

manufacturer. The yield and ultimate stress obtained from the coupon tests are also reported in 

Table 3.3, as well as the Young’s modulus results, which averaged very close to the nominal 

value (Es = 29,000 ksi). 

In addition, concrete properties were obtained from testing of cylinders made at the time 

of the concrete casting. The casting of the specimens was arranged in four groups due to logistic 

with the testing sequence. These groups are: (1) specimens 1 to 5, (2) specimens 6 to 9, (3) 

specimens 10 to 13, and (4) specimens 14 to 18. A set of 40 cylinders were made for each 

casting group, from which compression and split cylinder tests were performed to obtain the 

concrete strength and stiffness at different ages. Average values of the compressive strength at 

the 28
th

 day (fc’) and at the day of the test (fc) are presented in Table 3.3, as well as the tensile 

strength (ft) and the Young’s modulus (Ec) obtained from the cylinder tests. 

Table 3.3. Test matrix of the CFT specimens with measured values 

Specimen Length thickness Fy Fu Es fc’ fc ft Ec 

name L t (in) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) 

1C5-18-5 18’ 
1
/2” 0.124 55.6 70.7 28,135 5.5 5.5 1.10 4,000 

2C12-18-5 18’ 
1
/2” 0.233 48.9 64.7 28,886 5.5 5.6 1.10 4,000 

3C20-18-5 18’ 1
1
/2” 0.233 47.6 68.3 29,045 5.5 5.8 1.10 4,000 

4Rw-18-5 18’ 2” 0.291 53.0 72.8 29,352 5.5 5.9 1.10 4,000 

5Rs-18-5 18’ 2” 0.291 53.0 72.8 29,352 5.5 5.9 1.10 4,000 

6C12-18-12 18’ 
1
/2” 0.233 48.9 64.7 28,886 12.7 13.2 1.65 6,070 

7C20-18-12 18’ 1
7
/8” 0.233 47.6 68.3 29,045 12.7 13.2 1.65 6,070 

8Rw-18-12 18’ 2
5
/8” 0.291 53.0 72.8 29,352 12.7 13.3 1.65 6,070 

9Rs-18-12 18’ 2
5
/8” 0.291 53.0 72.8 29,352 12.7 13.3 1.65 6,070 

10C12-26-5 26’ 1” 0.233 48.6 68.1 29,038 7.3 7.9 0.60 5,000 

11C20-26-5 26’ 2
3
/4” 0.233 44.3 69.2 29,254 7.3 8.1 0.60 5,000 

12Rw-26-5 26’ 1
1
/4” 0.291 58.9 77.4 29,024 7.3 8.2 0.60 5,000 

13Rs-26-5 26’ 1
3
/4” 0.291 55.5 73.2 29,033 7.3 8.3 0.60 5,000 

14C12-26-12 26’ 1
1
/2” 0.233 55.5 66.8 28,763 11.5 11.6 0.76 5,800 

15C20-26-12 26’ 2” 0.233 42.5 65.8 29,027 11.5 11.6 0.76 5,800 

16Rw-26-12 26’ 1
1
/4” 0.291 55.2 73.4 29,078 11.5 11.7 0.76 5,800 

17Rs-26-12 26’ 1
1
/2” 0.291 55.1 71.9 29,020 11.5 11.7 0.76 5,800 

18C5-26-12 26’ 
5
/8” 0.124 55.6 70.7 28,135 11.5 11.7 0.76 5,800 
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The material and geometric properties summarized in Table 3.3 are used in the analysis 

and prediction calculations for comparison to the experimental data obtained in this study.  

Appendix B shows more details about the materials used in this project, including the 

stress-strain curves obtained from the steel coupon tests, and the details on the proportioning in 

the concrete mixes. 

Concerning the construction of the specimens, the steel tubes were cut at the shop 

(LeJeune Steel, Minneapolis, MN)) and welded with complete penetration welds to base plates at 

both ends. These base plates are designed in order to connect the full-scale specimens to the 

strong floor and to the crosshead. The plates were analyzed and designed based on a capacity 

design approach to avoid an early failure in the connection or base plate welds. Relatively thick 

plates were used to ensure that rigid boundary conditions could be approximated. Finite element 

analyses were also conducted to check the strength and the deformations of the base plates, the 

weld sizes and the entire connection. Figure 3.4 illustrates a distribution of the stresses obtained 

from the FEA. The location of the bolts connecting the specimen to the MAST equipment was 

predetermined by the location of the loading points in the testing machine. Thus, these base 

plates may not reflect typical practice. The final design details of the CFT specimens are shown 

in Figure 3.5 to Figure 3.8.  

Once the tubes were fabricated, they were shipped and stored at  the MAST Laboratory 

for the concrete casting and curing prior to testing. The specimens with 18 feet of length were 

sent and tested first; once this group was tested and disposed of, the second set of specimens with 

26 feet of length was brought in for casting and testing. 

In order to provide storage and support during the casting prior the testing, the specimens 

were secured, as shown in Figure 3.4.a, to a braced frame with a work platform to provide a 

work space during the concrete casting. As commented before, self consolidated concrete (SCC) 

was used in this project to avoid segregation and vibration issues since the concrete was pumped 

and dropped from the hose introduced inside the tubes from the top; this filling process is 

illustrated in Figure 3.4.b.  More details about the concrete casting are discussed in Chapter 4. As 

an illustration of the following steps, Figure 3.4.c and Figure 3.4.d shows specimens before and 

during the testing; more details about the pre-test settings and the load protocol in the testing is 

described in the following sections. 
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 a) CCFT20x0.25 Specimen b) RCFT20x12x0.3125 Specimen 

Figure 3.4. Finite Element Analysis performed for the base plates 
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Figure 3.5. Circular CFT specimen with an HSS5.563x0.134 

 

Figure 3.6. Circular CFT specimen with an HSS12.75x0.25 

18’0” or 26’0” 

18’0” or 26’0” 

18’0” or 26’0” 

18’0” or 26’0” 
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Figure 3.7. Circular CFT specimen with an HSS20x0.25 

 

Figure 3.8. Rectangular CFT specimen with an HSS20x12x0.3125 

18’0” or 26’0” 

18’0” or 26’0” 

18’0” or 26’0” 

18’0” or 26’0” 



77 

 
 (a) Specimens stored ready for casting (b) Filling of the steel tubes with SCC 

 
 (c) Specimen connected ready for testing (d) Specimen during the testing 

Figure 3.9. Photographs taken before and during the concrete casting and testing 
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3.3. Instrumentation plan 

As noted before, in the MAST system the crosshead is connected to a set of actuators, 

which are instrumented with built-in (MTS/Lebow) load cells and magnetostrictive 

(Temposonic) linear position sensors that allow measuring the acting force and the relative 

displacement in each of the actuators. From these measurements, calculation of the resultant 

crosshead forces, moments, displacements and rotations associated with the horizontal and 

vertical axes are obtained by the controller and stored in the DAQ system. 

The MAST Data Acquisition (DAQ) system is based on the National Instruments SCXI 

high performance data acquisition platform. The key features include: (1) simultaneous sampling 

of 172 voltage channels at ±10 V and 248 channels of quarter bridge 120 ohm strain gauge input; 

(2) sampling rate of up to 10 Hz for all channels; (3) lowpass filtering at 2 Hz for voltage 

channels and 10Hz for strain channels; (4) 16-bit A-to-D conversions; (5) software-controlled 

shunt and null-offset calibration of all strain channels, which provides wiring checks and allows 

better use of measurement range;  and (6) integrated wiring system. In addition to collecting 

sensor data, the DAQ system collects feedback from the control system through analog outputs 

of the MTS controller, and 3D positional information through the Metris DMM metrology 

hardware (see data path diagram). The DAQ software was locally developed for controlling 

National Instruments hardware. 

The instrumentation on the specimens consisted of: 

 Strain gages for measuring both longitudinal and transverse strains. The strain gages were 

placed in three (in some cases, four) faces of the exterior steel wall of the tubes. At least 

three measurements at the same level of the column allow the complete calculation of 

strain within the cross-section assuming plane sections remain plane. Details about 

location and layout of the strain gages on the specimens are shown in Figure 3.10. 

 LVDTs for measuring relative displacements (elongation of shortening) along the 

specimen. As with the strain gages, LVDTs were placed in three faces to allow the 

calculation of the relative displacement in any point within the cross-section assuming 

plane sections remain plane. LVDTs were attached to the specimen through a set of 

brackets bolted and studs welded to the steel (Figure 3.11). 
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 String-pots for measuring lateral displacements and obtaining the displaced profile in 

both horizontal axes. Location and layout of the string-pots in the specimens are shown in 

Figure 3.12. 

 LEDs for measuring the position change of a set of points. These measurements are 

captured by the Krypton system (Metris K600 Dynamic Measuring Machine, DMM). 

The layout of the LED target points on the specimens is shown in Figure 3.13. 

Additional calculated channels were obtained from the measured data. Some of these 

calculations include, but are not limited to: 

 Moments at the base, and at different points along the specimen 

 Rotations and curvatures at different cross-sections 

 Evolution of the displaced shape of the column and deformations in selected segments. 

 Stresses at different positions trough the cross-section and the specimen length. 

 

 

Figure 3.10. Details of strain gages on the specimens 
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Figure 3.11. Details of LVDTs on the specimens 

 

Figure 3.12. Details of string pots on the specimens 
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Figure 3.13. Kripton LEDs on the specimens 

 

The MAST Laboratory has one Metris Dynamic Measuring Machine (DMM) system. 

The system consists of a camera, infrared Light Emitting Diodes (LEDs), and control hardware 

and software. The key features include: (1) 3D position detection of up to 81 LEDs at 100Hz 

(expandable up to 256 LEDs) in the camera's 17 m^3 field of view; (2) ~± 0.0008” resolution; 

(3) synchronization of data samples and archives using TTL signals fed from the NI DAQ 

system (see data path diagram); (4) ability to perform as-built verifications of specimens, to 

generate metadata associated with sensor locations, and to measure 3-D displacements of the 

structural surface; and (5) measurement noise (1σ)= 0.00039 in. 

 

In addition, 8 still cameras and 8 video cameras distributed in 4 robotic towers were used 

to capture images and videos of the whole specimen and some interest points during the entire 

test (Figure 3.14). All the numeric and visual data were also streamed online by the interface 

Real-time Data Viewer (RDV) which allowed the PI’s to observe and analyze the live time-

synchronized data remotely. These data was also stored at the NEES Central Repository. 



82 

 

 

Figure 3.14. Robotic towers for video and photo collection at MAST 

 

 

 

Figure 3.15. Example of the data streamed online trough RDV and Webex. 
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3.4. Pretest settings 

The pretest setup in the CCFT specimens for each tests had the following sequence: 

 Moving of the specimen to the center of the testing machine: 

In this step, the crosshead was moved (usually to the NW corner of the lab) so the 

overhead crane could move the specimen as close as possible to the center of the testing 

machine. This was followed by a temporal connection of the column base plate to the 

strong floor. Then, the crosshead was moved directly above the test specimen, bolts were 

temporarily installed to the crosshead, the temporal base connection released and finally, 

the crosshead was used as a crane to move the specimen to the center position. 

 Final connection and tensioning of the base plate to the strong floor: 

The base plate was connected rigidly to the strong floor with threaded rods (ASTM A193 

Grade B7) and super nuts (with multi-jackbolt stud tensioners, ASTM A193 Grade B7) 

that were pre-tensioned up to 60% of the ultimate capacity. The amount, size and layout 

of the threaded rods were constrained by the strong floor layout, but they were optimally 

designed to guarantee a rigid base; FE analyses (as illustrated in Figure 3.4) under critical 

conditions of axial load and bending confirmed low values of stresses and deformations 

(i.e. uplift or twisting). 

 Surveying of the out-of-plumbness and the out-of-straightness with respect to the X and Y 

axes (Figure 3.14). Two approaches were used: 

1. Plum bob – Getting the profile from the relative distance between a plumb bob 

(attached to the top plate) and the closest normal point to the specimen. 

2. Theodolite – Getting the initial imperfection from the relative distance between a 

reference vertical line (defined by the transit) and the closest normal point to the 

specimen. 

As consistent measurements were obtained from the two approaches, the specimen 

profile then was assumed as the average of both measurements. Chapter 5 shows the 

initial profile measured for each case. Because out-of-straightness has a great influence 

on the results, these measurements are essential to the post-processing of the data. 
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 LVDTs and string potentiometers calibration: 

These devices were calibrated before every test. Correlations between voltage and 

displacement measurements in LVDTs and string potentiometers at multiple positions 

(i.e. zero, half range and full range) was performed for every test. 

 Instrumentation mounting and connecting: 

Strain gages, LVDTs, LEDs and string potentiometers were mounted to the specimen and 

connected to the DAQ system at this stage. 

 DAQ setup: 

The crosshead and the instrumentation connected to the DAQ were configured with the 

corresponding conversion factors. 

 Offsets: 

With all the instrumentation connected to the DAQ, data started being recorded with 

offsets or baseline corrected. At the starting step, the instrumentation measurements for 

the crosshead position and the string potentiometers were set such that their values 

matched the specimen profile surveyed in a previous step. The rest of the instrumentation 

measurements were set nominally to zero (varying within the resolution range). All the 

displacements were set according to the MAST coordinate system and relative to the top-

center of the bottom plate or the center of the cross section (Figure 3.1.b). 

 Final connection and tensioning of the top plate to the crosshead:  

Threaded rods to the top crosshead were tensioned until 60% of the yield stress was 

reached. The connection process created forces and moments that were monitored and 

recorded. As illustrated in following sections, the forces made during the connection were 

higher for the specimens with a higher flexibility. One specimen at this stage connected 

to the strong floor and the crosshead and ready for testing is shown in Figure 3.4.c. 

 Removal of the forces and moments induced during the connection:  

The crosshead was moved until the system came back to the initial state of zero forces 

and moments. The data taken during this process was named LC0. 
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3.5. Load protocol 

The CFT specimens were subjected to a complex load protocol that consisted of a series 

of different load cases. Each of these load cases addresses the measurement of different 

parameters. Some of these parameters are: 

 Buckling load of the CFT columns accounting for the effectiveness of the composite 

stiffness on the stability effects with given boundary conditions. The post-processing of 

this data is analyzed and discussed in Chapter 5. 

 Determination of the maximum flexural capacity under different gravity conditions that 

allow the determination of the P-M interaction diagram for CFT beam-columns. The 

results related to the extraction of some experimental set of points for the P-M interaction 

diagram are presented in Chapter 6. 

 Determination of the cyclic behavior response of the beam-columns for the calibration of 

the computational analysis. The cyclic loading response of the specimens due to constant 

axial load and cyclic lateral forces is documented and discussed in Chapter 7. 

 Evolution of the flexural (EIeff) and torsional (GJeff) stiffness. The discussion on the 

evolution of the flexural and torsional rigidities are documented and analyzed in Chapter 

7 and Chapter 9, respectively. In addition, Chapter 7 shows the results from the load 

cases under uniaxial and biaxial cyclic bending loading, and Chapter 9 presents the 

results from the torsional cyclic loading. 

 Determination of some limits state such as steel yielding and local buckling, cracking and 

crushing of concrete, as well as and the plastic hinge length developed in cyclic loading. 

The post-processing analysis of the experimental data collected and the determination of 

such limit states are are presented in Chapter 8. 

In order to achieve these targets, different load cases were used. The type and number of 

cycles for each depends on the particular characteristics and the desired information in each 

specimen. 

The following section is a summary of the four load cases that constitute the basis for the 

load protocol used in this experimental research. In the following chapters, the nomenclature 

LC1 to LC4 is used to refer to these particular load cases. 
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3.5.1. LC1 – Incremental axial compression until buckling 

 This initial load case (or LC1) consists of driving the crosshead in displacement control 

with an incremental downward vertical displacement (z) at a fixed rate of 0.04 
in

/min, and in load 

control by holding zero top forces and moments so the specimen tip moves free in lateral 

translation () and rotation (). Since the base is rigidly connected to the strong floor and top 

DOF’s are controlled as mentioned, the full-scale specimens will behave as a slender fixed – free 

member with an effective length of K=2 (Figure 3.16). Since the rigidity in the circular 

specimens is equal in any direction, both principal translations (x and y) and rotations (x and 

y) were controlled as free in the CCFTs (Kx = Ky = 2).  The rigidity is different in the two 

perpendicular directions in the case of the RCFTs, and so the Y-axis was kept fixed (y = y = 0) 

and only the X-axis was controlled free (Kx = 2, Ky = 0.5). All the specimens are subjected to this 

LC1 with at least two repetitions or cycles under fixed-free conditions, except in the weakest 

specimens (1C5-18-5, 18C5-26-12) where the boundary conditions were set as fixed-fixed 

(K=0.5) in order to have a strength less closer to the system resolution and avoid issues with the 

control on these flexible specimens. 

 At the beginning of the load case, the cross-head holds zero forces and moments, and its 

position matches the values of the measured out-of-plumbness (o). The horizontal forces and 

moments will be controlled around zero (varying within the noise level) during the entire load 

case in order to keep the fixed-free condition. 

 Once the crosshead starts moving downward at a fixed rate of 0.04 
in

/min, both the vertical 

reaction (P) and the lateral top displacement () start increasing. As a consequence, a second 

order bending moment at the base (M=P) increases to maintain equilibrium. Eventually, the 

column reaches the buckling limit state at the critical load (Pn) and, since the system is in 

displacement control, the vertical force P starts decreasing to maintain equilibrium. Once the 

critical buckling load (Pn) is reached, the crosshead will be moved upward to unload the 

specimen up to zero force. The described path axial force and moment at the base (P-M) during 

this load case is schematically illustrated in Figure 3.16. As reference, this figure also shows 

schematic representation of the interaction diagrams for a cross-section and a beam-column, 

highlighting the reduction in axial strength due to stability effects on slender columns with 

imperfections.  
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 Among the parameters intended to address with this load case LC1 are: 

 Experimental determination of the buckling critical load (Pn) and its relationship to the 

initial imperfections (o). 

 Evaluation of the effective flexural stiffness (EIeff) of the composite column from the 

buckling load achieved and the measurements of the moment-curvature at the base. 

 Calibration of the analytical buckling strength obtained with the design equations of the 

AISC Specification. 

 Calibration of the analytical models to improve their ability to predict the full response 

(forces, displacements, strains) with the incorporation of the salient behavioral features of 

CFT members (i.e. confinement, residual stresses, local buckling, etc.). 
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Figure 3.16. Expected column response with LC1 under an incremental axial displacement on 

the CFT specimens with the initial out-of-plumbness 
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3.5.2. LC2 – Unidirectional lateral displacement with constant gravity force 

3.5.2.1. Monotonic displacement with reversal at the maximum lateral strength 

 The application of a desired gravity load (P < Pn) while the top position is held at zero 

displacement is the preliminary step to the main motion in LC2. Right after the load P is preset 

and maintained, the second load case (or LC2) consists of driving the specimen tip sideways 

while it is under the given constant gravity load (P). The motion of the crosshead during this load 

case (in fact, during all the LC2 and LC3 types) took place with a fixed rate of 1 
in

/min in the axis 

of motion, although in some cases a rate of 1.5 
in

/min was used. 

 Similar to the previous load case, the rotations () at the top are controlled during the 

entire load case as free (or with moments at the top equal to zero). The motion at the top follows 

the axis delineated by the path in the previous load case LC1, which follows the axis defined by 

the initial imperfection in the CFT specimens and the X-axis in the RCFTs. 

 

 As the specimen starts moving sideways, the lateral strength of the specimen will be 

activated as demanded. For this particular case, the reversal of displacement will take place when 

the lateral strength of the specimen slightly passes its peak value (Fmax), when incipient 

instability is detected. At the peak, the critical section at the base is loaded in flexure by the 

overturning moment (≈Fmax∙L) plus the second order component (P). Since this load case is in 

displacement control, an increment in displacement after the peak results in a decrease of the 

lateral force to maintain equilibrium. Also, decreasing the displacement would unload F as well, 

and then activate the lateral strength in the opposite direction. Calibration of the P-M interaction 

diagram may be possible through a set of different pairs of the maximum stable moments at each 

sustained axial load; inclusion of the moments consumed by the imperfections is needed in the 

calibration, and this may be possible with the results from LC1 and/or its calibration. 

 

 Figure 3.17 describes schematically the axial force – moment path on LC2 and the 

expected reversals (blank squares). As reference, this figure also shows a representation of the 

interaction diagrams for a cross-section and a beam-column, highlighting the unusable flexural 

capacity due to stability of the slender beam-column. 
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 Among the parameters intended to address with load case LC2 are: 

 Experimental determination of the net flexural uniaxial capacity for different levels of 

gravity force (experimental P-M set points, uniaxial bending). 

 Comparison with the analytical interaction diagrams obtained with the design equations 

of the AISC Specifications. 

 Experimental determination of the effective flexural stiffness (EIeff) of the composite 

column from the lateral force –displacement and moment-curvature responses. 

 Calibration of the analytical models to fully predict the full response (forces, 

displacements, strains, local buckling occurrence) of these slender beam-columns. 

 The first half of specimens was tested with this LC2 type and with different values of 

gravity force (P), each with two cycles up to both positive and negative peaks. The remaining 

half was tested with the variant explained in the next section. 
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Figure 3.17. Expected column response with LC2 under a constant axial load, incremental 

uniaxial lateral displacement, and reversals at the peak lateral strength 
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3.5.2.2. Incremental cyclic displacement with reversal at a target displacement 

 This type is a variant of the previous LC2 used for the second half of specimens. As for 

the first half of the specimens, this case starts with the application of the desired gravity load, 

followed by a cyclic sideways movement as illustrated in Figure 3.18.a. This motion also follows 

the axis delineated by the path in the previous load case LC1, which is the axis of initial out-of-

plumbness in the circular specimens, and the X axis in the rectangular specimens (Figure 3.18.b). 

 Same than in the previous LC2 type, the lateral motion of the specimen tip was controlled 

with input commands that moves the crosshead from the origin position to the target 

displacement with a fixed rate of the order of 1 
in

/min in the axis of motion, although this rate was 

increased to 1.5 
in

/min in some cases where no negative influence was expected. The purpose of 

the higher rate aims to save time of testing of the order of 50%, and it was only used occasionally 

in those load cases under a low axial loading (P under the balance point) and in those specimen 

with the larger cross-sections such as the CCFTs with 20” diameter, or the RCFTs oriented in the 

strong axis. 

 

 The difference with the previous case is that the reversals for this LC2 type occurs at 

desired drifts, whether or not this displacement is before or after the peak lateral capacity. Thus, 

the displacement path was cyclic with reversals mostly from 1% to the maximum stroke of the 

MAST system (between 4% to 6% drift) with increments of 1% of drift. Figure 3.18 shows the 

cyclic response (M-, F-, M-, M-) during LC2 with reversals at every 1% of incremental 

drifts. 

 

 Among the parameters intended to address with this LC2 type are those of the previous 

LC2 type (with reversal at peak lateral capacity), plus the following characteristics. 

 Evaluation of the strength and stiffness degradation. 

 Progression of the steel local buckling and its interaction with previous limit states (i.e. 

steel yielding in compression and tension) 
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3.5.3. LC3 – Multidirectional lateral displacement with constant gravity force 

3.5.3.1. Monotonic displacement with reversals at the peak lateral capacity 

 This third load case LC3, used for the first half of specimens, is similar to the uniaxial 

load case LC2 with reversal at peak capacity, with the difference that the path of motion is 

multidirectional along different probes around the specimen (Figure 3.19.a, b, c). The purpose of 

this LC3 type is the determination of the interaction surface (Mx-My) for different values of 

compression force (P) such that analytical 3D interaction diagrams can be calibrated with 

experimental data (Figure 3.19.d, e). Similar to the 2D interaction diagram, inclusion of the 

moments consumed by the imperfections is needed in the calibration and this may be possible 

with the results from LC1 and/or its calibration. 

 Figure 3.19.b shows the displacement path used primarily in the first half of the 

specimens. This LC3 type started by holding the desired gravity load P, followed by a probe 

moving laterally from point 0 towards point 1 at a rate of 1.0 to 1.5 
in

/min in the axis of motion, 

and with reversal at the peak lateral capacity (blank circle) with the same lateral motion rate (1.0 

to 1.5 
in

/min). The reversal stops near the midpoint towards the zero position, and then the 

specimen was moved along the diamond path shown, with a new probe towards point 2. This 

process continues with the same speed rate for the 8 probes, and finally completing the diamond 

cycle and returning to the starting point 0. This 8-probe path was used from the specimens 4 to 8. 

Likewise, specimen 3 used a similar path with 16-probes around the diamond. Specimen 9 was 

controlled with a set of main probes, each with different sub-probes paths as shown in Figure 

3.19.c. 

 The union of the lateral strength peaks for all the probes (represented by the blank circles 

from point 1 to 8) delineates the interaction surface in either the displacement space (as shown in 

Figure 3.19.b and c) or in the moment space (as shown in Figure 3.19.d and e). All the latter 

processes are repeated for up to 3 different compression loads. 

 Among the parameters intended to address with this LC3 type are: 

 Experimental determination of the net flexural biaxial capacity for different levels of 

gravity force (experimental P-Mx-My set points, biaxial bending). The shape of the 

biaxial interaction surface (Mx-My) may be controlled by the cross-section type, the axial 



93 

load level in the column, and the accumulated degradation experienced from previous 

probes or load cased. 

 Calibration of the analytical interaction diagrams obtained with the design equations of 

the AISC Specifications. 

 Evaluation of the effective flexural stiffness (EIeff) associated to the different axis of 

motion. 

 Calibration of the analytical models to be able in predicting the 3D full response (forces, 

displacements, strains) of these slender beam-columns. The analytical response must be 

able to predict the accumulated damage response (i.e. steel local buckling, concrete 

crushing and cracking) and the corresponding degradation. 
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Figure 3.19. Expected response under a constant axial load and biaxial lateral displacement 

towards different probes with reversals at the peak lateral strength. (a) Free body diagram. (b) 

Displacement path of the top with 8 probes. (c) Displacement path of the top with 1 probe and 

different sub-probes. (d) Interaction surface Mx-My. (e) 3D P-Mx-My interaction diagram. 
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3.5.3.2. Incremental cyclic displacement turning around once the target displacement is reached 

 This LC3 type was used for specimen 8 and the second half of tests (specimen 10 to 12). 

In contrast to the biaxial load case LC3 with reversal at peak capacity, in this LC3 the reversals 

take place at target drift levels (/L) as shown in Figure 3.20.b, starting from 1% in both positive 

and negative sides, with increments of 1% up to the maximum stroke of the system (which varies 

from 4 to 6% drift). Same than before, the crosshead and the specimen tip are driven at a fixed 

speed rate of the order of 1.0 
in

/min (and up to 1.5 
in

/min. in few cases). Figure 3.20 also shows the 

cyclic response (M-, F-, M-) during LC3 with reversals at every 1% of incremental drifts. 

 Among the parameters intended to address with this LC3 type are those of the previous 

type (with reversal at peak lateral capacity), plus the following characteristics. 

 Evaluation of the strength and stiffness degradation. 

 Progression of the damage (i.e. steel local buckling) and its interaction with previous 

limit states (i.e. steel yielding in compression and tension). 
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Figure 3.20. Expected column response with LC3 under a constant axial load and cyclic biaxial 

lateral displacement towards different drift targets 
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3.5.4. LC4 – Final load case set 

 After the previous three load cases, with all the different cycles and cases, a final load 

case is applied to finalize the load protocol. The intention of this final load case was to extend 

the amount of damage until an irreversible failure (i.e. steel fracture) took place. Fracture in the 

steel was never observed in any test, even when different load paths were applied to target this 

failure. 

 The following section summarizes different choices used for the latest load case. In some 

cases, combinations of these were used to increase the damage. 

3.5.4.1. Repetition of some previous load cases 

 In some cases, the previous load cases LC1, LC2 or LC3 was repeated with and/or 

without the same previous conditions; these conditions include but are not limited to the 

corresponding boundary or control conditions (i.e. fixed-fixed K=0.5), load or displacement 

values (i.e. different gravity loads P, or different target drifts), etc. 

3.5.4.2. Monotonic twisting with constant gravity force 

 This LC4 type, used for the first half of specimens, consists in twisting the specimen by 

rotating the crosshead towards the maximum rotations of the system (≈±10º). In order to evaluate 

the effect of the axial force on the torsion strength, this twisting load case was applied with no 

compression force (pure torsion) and 20% of the squashing strength (P=0.2Po), and the lateral 

displacements and top bending rotations were held at zero. Figure 3.21 shows schematically the 

torsion-twisting response expected during this LC4 type. 

 Among the parameters intended to address with this LC3 type are: 

 Experimental determination of the torsional capacity with and without presence of axial 

compression force. 

 Experimental determination of the effective torsional stiffness (JGeff) of the composite 

column from the torsion moment –rotation response. 

 Calibration of the analytical models to be able in predicting the 3D full response (i.e. 

torsion, twisting, strains) of these slender beam-columns. 
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3.5.4.3. Monotonic uniaxial or biaxial displacement towards the maximum system stroke 

 This load case LC4 type, used for the second half of specimens, has the intent to induce 

the highest possible damage in the specimen through a motion of the top towards the maximum 

possible displacement of the system (the four corners) and with a very high axial gravity load. 

Figure 3.22 shows schematically the path-displacement path during this LC4 type, driving the 

specimen with the probes towards the points 1 to 4. 

 Among the parameters intended to address with this LC3 type are: 

 Evaluation of the highest strength and stiffness degradation in these slender specimens. 

 Calibration of the analytical models to be able in predicting the final response. 

P

T

T

z

Expected behavior

Observed behavior

-10 -5 0 5 10
-500

-400

-300

-200

-100

0

100

200

300

400

500

T (kip-ft)

z (deg)

T (kip-ft)

Z (kip-ft)

 

Figure 3.21. Expected column response with LC4 under a constant axial load and incremental 

torsional displacement towards the maximum system rotation 
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Figure 3.22. Final displacement path under a high constant axial load and incremental lateral 

displacement towards the maximum system translation 
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CHAPTER 4  

WET CONCRETE EFFECTS 

4.1. Introduction 

Evaluation of the wet concrete acting on the tube as a hydrostatic pressure was discussed 

early in this project since the experimental program included very long columns, large cross-

sections and very thin steel tubes. Chapter 2 discussed some of the available research studies on 

the concrete casting effects as well as common practices for cast-in-place CFT columns. These 

descriptions indicated that casting effects could have potentially large impacts on the behavior of 

these specimens.   

In this chapter, the effects of the wet concrete during the casting are discussed. The 

stresses, strains and deformations are first calculated based on closed-form solutions and Finite 

Element Analyses (FEA).  These analytical results are then compared with the experimental 

measurements obtained during casting. The influence of the initial deformations and transverse 

stresses created by the hydrostatic pressure on the steel local buckling are discussed. Finally, 

design recommendations for handling casting effects are proposed. 

 

4.2. Analytical prediction 

4.2.1. Closed-form solutions in circular tubes 

The closed-form solution for circular tubes under hydrostatic pressure (or thin-walled 

pressurized vessels) is well known, and can be found in any strength of materials book (i.e. 

(Timoshenko 1930); (Budynas 1999)). The solution is based on the equilibrium of forces at the 

cross-section as shown in Figure 4.1. From this figure, values of the elastic transverse stresses 

(t) and deformation () for thin-walled circular pressures vessels can be obtained with the aid of 

Equations 4.1 and 4.2. 
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Figure 4.1. Free body diagram of a half circular tube with internal pressure 
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where D is the diameter of a circular tube, t is the wall thickness, and Es is the Young’s modulus 

of the steel. The hydrostatic pressure is p = wc∙Lp, where wc is the unit weight of the wet or fresh 

concrete (≈ 150 lb/ft
3
 for normal weight concrete) and Lp is the height of the linear pressure at 

the point of interest. 

4.2.2. Analytical solutions for rectangular tubes 

Closed-form solution for rectangular pressure vessels is not as simple as for circular 

shapes. One approximate solution is assuming plate bending behavior on the steel walls; this 

assumption will be illustrated in the next section with results obtained from finite element 

analysis. Based on plate bending theory (Budynas, 1999; Young and Budynas, 2001), equations 

for the calculation of the elastic transverse stresses (t) and deformations () for rectangular steel 

tubes under hydrostatic pressure can be can be approximated with Equations 4.3.a and 4.4. 
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In the previous equations h is the width of the rectangular cross-section, t is the wall 

thickness, and Es is the Young’s modulus of the steel. The hydrostatic pressure (p=wc∙Lp) 

depends on the unit weight of the wet or fresh concrete (wc ≈ 150 lb/ft
3
 for normal weight 

concrete) and the high of the linear pressure of interest (Lp). The stiffness parameters 1 and 2 

are related to the geometry and the effective boundary conditions of the steel walls.  For 

conventional HSS tubes these can be approximated with the following equations derived 

assuming plate bending theory: 

For the stresses at the ends of the longer face on the rectangular tube: 
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 For the stresses at the middle of the longer face on the rectangular tube: 
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 Deformation at the middle of the longer face of the rectangular tube: 
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where hc and bc are, respectively, the longer and the shorter inner widths of the rectangular cross-

section ( hc = h - 2t  ;  bc = b - 2t ). The stresses and deformations of the shorter face are lower 

than those estimated for the longer side; these can be estimated by switching the cross-section 

size dimensions in Equation 4.7. The calculation of the stresses and the deformation is strictly 

valid if the stresses, either at the ends or the center, are lower than Fy. If the stresses are within 

the elastic range, the corresponding strains can be calculated be the Hooke’s law as: t = t ∙ Es. 

4.2.3. Finite Element Analysis 

In order to verify the effects of the concrete casting in the 18 and 26 feet long CFTs, 

FEAs were performed using the software ABAQUS (2010) for the circular and rectangular steel 

shapes used in this research. The steel tubes were modeled with quadratic isoparametric solids 

(20-node bricks, C3D20R) with a size that ensures 5 nodes trough the thickness and an aspect 

ratio lower than 12.5. The hydrostatic pressure applied on the internal steel walls was calculated 
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based on the column height and the concrete unit weight (Figure 4.2). Typical contour stresses of 

transverse stresses are plotted in Figure 4.3. Table 4.1 shows a summary of the results from the 

analysis. 

   

Figure 4.2. F.E. Model of a steel tube under hydrostatic pressure 

  
(a) Circular tube (b) Rectangular tube 

Figure 4.3. Contour of transverse stresses at the L/4 bottom of the HSS from FEA 
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Table 4.1. Maximum analytical response of steel tubes under hydrostatic pressure 

Steel shape 
L 

(ft) 

t 

(ksi) 

t 

(x10
-6

) 



(in)

HSS5.563x
1
/8 

18 0.425 15 0.00005 

26 0.614 21 0.00007 

HSS12.75x
1
/4 

18 0.490 17 0.00013 

26 0.708 25 0.00019 

HSS20x
1
/4 

18 0.730 25 0.00024 

26 1.132 39 0.00045 

HSS20x12x
5
/16 

18 25.90 893 0.188 

26 36.13 1246 0.241 

 

As summarized in the Table 4.1, very low response values were obtained for the circular 

tubes, even for the longer columns or the thinner cross-sections. Results obtained with the FEA 

on the circular specimens matched closely those calculated from closed-form solution of thin-

wall cylindrical pressure vessels. Transverse stresses obtained with FEA exhibited plate bending 

behavior since the stresses across the tube thickness remained constant. The calculated values 

indicated no concerns due to the fluid concrete in the circular cross-sections, so no additional 

action was taken for the construction of the CCFTs. 

The opposite case occurred for the rectangular tubes, where the maximum computed 

transverse stresses and strains reached nominal yield values up to 60% and 80% of the for the 

shorter (L=18 ft) and the longer (L=26 ft) HSS tubes, respectively. The maximum response in 

the rectangular HSS20x12x
5
/16 was located in the longer 20” side and between 2 to 2.5 feet from 

the base. The contour of transverse stresses through the thickness (at the cross-section where the 

maximum values were obtained) is illustrated in the Figure 4.4. As shown in this figure, bending 

stresses are linearly distributed through the thickness, with maximum tension stress at the center-

external fiber and about the same tension stress value at both extreme-internal fibers of the 20” 

wall. Linear distribution of the transverse stresses, varying from tension to compression and 
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passing through zero at the central node, confirm primarily bending behavior in the plates as 

initially assumed. The outward deflection in the longer 20” walls due to the internal concrete 

pressure reduced and induced inward deflection in the shorter 12” walls. In case no action is 

taken, the concrete would take the shape of the deflected tube when it hardens. 

FEA results on the rectangular specimen showed some dependency with the mesh size. 

Solutions converged with a fine mesh. The results from these analyses were well approximated 

with those obtained from simple calculations assuming bending behavior of the tube walls 

(Equations 4.1 and 4.2). 

 

 

Figure 4.4. Distribution of maximum transverse stresses in the rectangular cross-section 
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4.3. Experimental investigation 

4.3.1. Construction of the specimens 

Based on the analytical results, the following actions were taken for the construction of 

the rectangular CFTs. 

 Installation of rosettes or cross strain gages at critical points so transverse strains 

could be measured during the concrete casting and the hardening process. 

Measurements of transverse strains during the casting process allow comparisons of 

the experimental response with that predicted from the analyses. 

 Installation of temporary braces in some tubes at the critical sections (as described in 

Table 4.2 and shown in Figure 4.5), so the expansion due to the internal pressure can 

be reduced. These temporary braces consisted of two angles (ASTM A36, 4x4x5/16 

inches) in contact with the longer 20 in. sides, and tensioned with two threaded rods 

(ASTM A193 Grade B7, ¾ in. diameter) along the shorter 12 in. sides (Figure 4.5). 

This temporary lateral reinforcement intended to diminish the expansion of the 

rectangular steel tubes during the casting, thus reducing the difference in shape 

between the assumed perfect rectangular column and the actual deflected shape after 

hardening. As illustrated in Figure 4.5, the braces were located at the bottom from 1 

to 4 feet at every foot. 

Table 4.2. Braces plan for the RCFTs 

Specimen Notes 

4-Rw-18-5 
This specimen was not braced, so expansion took place as expected and calculated (see 

Table 4.1). Strains were measured since casting until hardening of concrete (3 days). 

5-Rs-18-5 

This specimen was braced before the concrete casting. These braces were removed just 

before the specimen testing (147 days). Strains were measured since casting until 

hardening of concrete (3 days). 

8-Rw-18-12 

 

9-Rs-18-12 

These specimens were braced about one and a half hours after the concrete was poured 

into the steel tubes. These braces were removed just before the specimens testing (92 

days and 103 days, respectively). Strains were measured during the concrete casting, 

during the braces installation, and until the concrete hardening (5 days). 

12-Rw-26-5 

13-Rs-26-5 

16-Rw-26-12 

17-Rs-26-12 

All these specimens were braced before the concrete casting. These braces were removed 

once the concrete hardens (3 days after casting). Strains were measured during the 

concrete casting and after the braces were removed (5 days). 
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 (a) Plan view (b) Transverse view (c) Longitudinal view 

 

  
 (d) 5Rs-18-5 (e) 12Rw-26-5 (f) 13Rs-26-5 

Figure 4.5. Distribution of temporal braces to restrain expansion due to the casting 
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4.3.2. Strain gages and principal strain and stress computation 

As commented in the Chapter 3, specimens were extensively instrumented with uniaxial 

strain gages; in some critical points, cross or rosette strain gages were placed. All these strain 

gages are Tokyo Sokki waterproofed foil gages (WF series). Single strain gages were placed 

such that longitudinal strains due to either axial forces or bending were measured; cross and 

rosette strain gages were placed such that both longitudinal and transverse strains were measured 

(Figure 4.6). In rosette strain gages, a third component at 45° is also measured to make the 

calculation of the principal strains (1, 2) and its direction () possible (Equations 4.8 and 4.9, 

respectively). If the principal strains are lower than the yield strain (y = Fy / Es), then the 

principal stresses (1, 2) and the von Mises (VM) stresses can also be computed with Equations 

4.11, 4.12 and 4.13, respectively. 

    
(a) Single strain gage (b) Cross strain gage (c) Rosette strain gage 

 WFLA-3-11 WFCA-3-11 WFRA-3-11 

Figure 4.6. Strain gages Tokyo Sokki WF series 
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4.3.3. Experimental strains measured during the concrete casting 

As shown in Table 4.2, specimens 4-Rw-18-5 (without the bracing restrainers) and 5-Rs-

18-5 (with the bracing restrainers) were filled with concrete and the transverse strains were 

measured for 3 days. Figure 4.7 shows the transverse strains and stresses measured during the 

concrete casting for the restrained (4-Rw-18-5) and the non-restrained (5-Rs-18-5) cases and at 

the point where the critical value was expected (on the 20” face at 2’ 6” from the base) for these 

18 feet long specimens. As shown in this figure, the concrete started and finished being cast 

between 0.8 to 0.9 hr, so the hydrostatic pressure increased the transverse strain at this points up 

to 720 micro-strains (for the non-restrained case) and 470 micro-strains (for the restrained case). 

This figure illustrates the benefit of the bracing system, which reduced the level of maximum 

strains and stressed by about 35%. Strains were measured from casting until hardening of 

concrete (3 days), but the braces in the specimen 5-Rs-18-5 were removed just before the 

specimen testing (147 days). 

Figure 4.8 shows the transverse strains and stresses measured during the concrete casting 

on the 20” face at 2’ 6” from the base for the specimens 8-Rw-18-12 and 9-Rs-18-12. As shown 

in this figure, the concrete started and finished being cast between 1.9 to 2.0 hrs and, since both 

columns did not have the braces, the hydrostatic pressure increased the transverse strain up to 

740 micro-strains. One to two hours later, the 3 braces (at 1, 2 and 3 feet from the base) were 

placed in each of these two 18 feet long specimens, reducing the transverse strains to 425 micro-

strains. Again, the benefit of the bracing system reduced the level of maximum strains and 

stressed by about 43%. Strains were measured during the concrete casting, during brace 

installation, and until the concrete hardened (5 days). These braces were removed just before the 

specimens testing (92 days and 103 days, respectively). 

Figure 4.9 shows the average transverse strains and stresses measured during the concrete 

casting at 1’ 6” and 2’ 6” from the base on the 20” face for specimens 12-Rw-26-5, 13-Rs-26-5, 

16-Rw-26-12, 17-Rs-26-12. The concrete started being cast between 0.5 to 2.0 hrs and, since all 

these 26 feet long columns had the braces on (at 1, 2, 3 and 4 feet from the base), the hydrostatic 

pressure increased the transverse strains between 203 and 676 micro-strains. From the FEA 

without the restrainers, 1246 micro-strains were calculated for these specimens, and so the 

bracing system reduced the level of maximum strains between 46 to 84%. 



108 

 (x10
-6

)  T (ksi) 

700 

600 

500 

400 

300 

200 

100 

0 

 

20.3 

17.4 

14.5 

11.6 

  8.7 

  5.8 

  2.9 

  0.0 

 time (hours)  

(a) Initial 3 hours during the concrete casting 

 (x10
-6

) 

 
time (hours) 

(b) Entire record 

Figure 4.7. Transverse strains measured during the casting on the 20” face at 2’ 6” from the 

base for the specimens 4-Rw-18-5 (restrained) and 5-Rs-18-5 (non-restrained). 
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Figure 4.8. Transverse strains and stresses measured during the concrete casting on the 20” 

face at 2’ 6” from the base for the specimens 8-Rw-18-12 and 9-Rs-18-12. 
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Figure 4.9. Average at 1’ 6” and 2’ 6” from the base of the transverse strains and stresses 

measured during the concrete casting on the 20” face for the 26 feet long RCFTs. 

The variability in the strains shown in Figure 4.9 is attributed to the different values of 

pretension given when the braces were placed. Strains were measured during the concrete casting 

and until the concrete hardened (3 days), and then the braces were removed; strains kept being 

measured until the 5th day. As shown in Figure 4.9(b), a small increment of the transverse strains 

occurred (at about the 73
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 hour) when the braces were removed. 

1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

 

 

12-Rw-26-5

13-Rs-26-5

16-Rw-26-12

17-Rs-26-12

10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

 

 

12-Rw-26-5

13-Rs-26-5

16-Rw-26-12

17-Rs-26-12



111 

4.3.4. Observations during the tests 

As discussed previously, braces were placed at the rectangular tubes in order to reduce 

the expansion due to the wet concrete pressure, except in one specimen (4-Rw-18-5) where the 

braces were not installed on purpose.  As predicted for this non-restrained case, the maximum 

expansion induced an initial out-of-straightness in the steel walls; this expanded shape was also 

taken by the concrete once it hardened. Once compressive and bending loads were applied for 

LC1 through LC4, this initial out-of-straightness grew more rapidly than for other sections, such 

as the column base, that saw higher bending demands. Thus, it was not surprising that on this 

non-restrained specimen, deformations during casting led to a higher position of the local 

buckling during the LC1 through LC4 tests as shown in Figure 4.10(b). The two rectangular 

specimens shown in Figure 4.10 correspond to the final state of these specimens at the end of the 

load protocol test, contrasting the effects of the wet concrete pressure in regard to the steel local 

buckling elevation. 

 

 
(a) 9-Rs-18-12, restrained for casting (b) 4-Rw-18-5, non-restrained for casting 

Figure 4.10. Local buckling position at the end of the testing 
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This observation suggests also an effect on the strength, as the local buckling will 

develop earlier if exists a significant initial out-of-straightness in the steel walls of RCFTs due to 

manufacturing process, transportation, erection and, particularly in RCFTs, due to the concrete 

casting. The detrimental effect on the strength is expected to be higher for larger initial 

imperfections at the end of the casting and hardening of concrete. 

 

 

4.4. Recommendations to minimize the effects of the wet concrete pressure 

In order to control the amount of imperfection and an earlier development of the local 

buckling, the following recommendations are suggested: 

 Limit the maximum transverse stress in rectangular steel tubes during the casting to 

values below the nominal yielding stress reduced by a safety factor (); a safety 

factor in the order of 2 is recommended. The maximum expected stress due to the 

hydrostatic pressure of wet concrete during casting may be estimated by: 
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 Limit the maximum expansion in the steel tube during the casting to an imperfection 

no greater than L/2000, where L is the inter-story length. The maximum expansion 

due to the hydrostatic pressure of wet concrete at the pouring may be estimated by: 
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The previous limits may be met by satisfying one or more of the following possible 

solutions: 

 Increasing the thickness (t) of the steel tubes or the wall slenderness ratio (h/t). 

 Decreasing the amount of hydrostatic pressure (p) by reducing the concrete lift 

heights. 

 Adding temporary stiffeners in those positions where the limitations above are not 

satisfied. These stiffeners should be placed before the casting and they are 

recommended to stay in-place for 7 days, when the concrete reaches 80% of the 

specified fc’, or when the concrete hardens. The recommended spacing of the 

temporary stiffeners is no larger than either the column base (b) or the column width 

(h). The recommended stiffened length is 1/3 of the concrete lift heights. The 

stiffeners should be placed without adding normal forces to the steel walls, or without 

inducing inward deformation 

 

In case either stresses or deformations in rectangular CFT cross-sections exceed the 

recommended limits given by Equations 4.14 and 4.15, the cross-section should be treated as 

slender type section since this would be susceptible to an earlier local buckling. 
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CHAPTER 5  

BUCKLING CAPACITY 

5.1. Introduction 

One of the primary goals of this research is the experimental determination and 

verification of the buckling capacity or critical load of composite CFT columns. This goal is 

targeted through the first load case (LC1) of the load protocol employed in this project, which 

consisted of a monotonic downward displacement of the composite specimens with its natural 

initial imperfection; the load was reversed once the compressive capacity was exhausted.  

Although utilizing state-of-the-art equipment and controllers, the experimental 

measurement of the flexural buckling loads was challenging. Unexpected difficulties were 

encountered to extract reliable values of the buckling loads due to large initial imperfections and 

other issues related to the testing system (i.e. frictional forces in the actuators and clevises, 

system compliance, a limit in the axial capacity, and issues with the control of the DOFs). Thus, 

successful extraction of the buckling loads required that behavior of the loading system be 

characterized through integration of data from different sensors and careful processing of the raw 

data measured directly from the tests.  This procedure is described in this Chapter, which is 

organized as follows: 

 Section 5.2 presents a summary of the AISC (2010) Specifications and some 

theoretical concepts behind the design equations that are specified to calculate the 

nominal critical load capacity (Pn) of CFT columns. The material and geometric 

limitations in the specifications are discussed too. 

 Section 5.3 shows details of the testing set-up, as well as the raw data measured 

during the load case LC1. A direct comparison of the maximum axial loads from 

the raw data collected in the tests is made with the expected axial load from the 

specifications. 

 Section 5.4 discusses some of the unexpected difficulties in the extraction of 

reliable data for the buckling load of the tested CFT specimens. In this section, the 

data is evaluated and processed in more detail, and final values of the buckling 

loads where extracted from this processed data. 
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 Section 5.6 presents results of computational analysis that aims to calibrate and 

predict behavior observed during the tests. Calibration of column curves from the 

models is also documented. 

 Section 5.7 shows the results of the measured moment-curvature at the critical 

cross-section in LC1.  From these plots, values of the effective flexural stiffness 

(EIeff) are extracted and evaluated with the goal of improving the accuracy of the 

calculations for the buckling critical load. 

 

 

 

5.2. Buckling load by the AISC Specifications 

In late 2005, the American Institute of Steel Construction issued its most recent 

Specification for Structural Steel Buildings ANSI/AISC 360-05 (AISC, 2005) and its Seismic 

Provisions ANSI/AISC 340-05 (AISC, 2005b). The changes for 2005 included the unification of 

both allowable strength design (ASD) and load and resistance factor design methods (LRFD) for 

steel (rolled and hollow structural sections), composite members (columns, beams, slabs), and 

connections. The recent revisions to those editions (AISC, 2010; AISC, 2010b) include a 

complete revamping of the methodologies for assessing stability of framed structures that include 

the use of the nominal load approach, new provisions for composite structures (i.e. updated 

material requirements), and new design provisions for fire. 

This section presents a brief summary of Chapter I.2.2 (Design of Composite Members, 

Axially Loaded Members, and Filled Composite Columns) of the AISC (2010) Specifications. 

Analytical computation of the critical load, as recommended by the AISC (2010), assumes 

the following: 

 The compressive capacity of the CFT column shall be determined by the limit state of 

flexural buckling governing by either inelastic or elastic buckling for short and slender 

columns, respectively. 

 Some cross-section limitations shall be satisfied, such as: 
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1. Cross-sectional area of the HSS tube shall comprise at least 1 percent of the total 

composite cross-section; previous specifications did not address sections with 1 to 4 

percent steel. 

2. The maximum with-thickness ratio shall not exceed               for RCFTs and 

             for CCFTs.  These limits are higher than those for conventional HSS 

steel-only columns (by 61% and 36%, respectively), and recognize the delay in local 

buckling due to the steel-concrete contact interaction. 

 In addition, some material limitations shall be satisfied, The concrete compressive strength 

must be higher than 3 ksi and lower than 6 ksi for lightweight weight concrete and 10 ksi for 

normal concrete, respectively. The lower limit of 3 ksi and the upper limit for lightweight 

concrete (6 ksi) encourage the use of good quality concrete, while the upper limit of 10 ksi 

was imposed to restrict the strength calculations related to brittle failure modes. Higher 

strength concrete is permitted if appropriate testing and analyses are conducted (Commentary 

AISC, 2005c).These material limitations reflect the range of material properties available 

from experimental testing (Commentary AISC, 2005c; Ziemian, 2010; Hajjar, 2000; 

Shanmugam and Lakshmi, 2001; Leon et al., 2005; Goode, 2007). 

 The compression capacity also includes the effects of some initial residual stresses in the 

steel members resulting from the manufacturing or the welding process. The amount of the 

accumulated initial residual stresses and its distribution in the steel member may have a wide 

dispersion. Previous studies, including different cross-section shapes and sizes, different steel 

types, and different manufacturing process, have confirmed a small reduction on the critical 

load due to residual stresses (Bjorhovde, 1972; Ziemian, 2010). 

 Last but not least, the element shall not exceed the allowable fabrication and erection 

tolerances given by the Standard ASTM A6 (2009) or the AISC Code of Standard Practice 

(AISC, 2005d) for the steel components, and the Specifications for Tolerances for Concrete 

Construction and Materials ACI-117 (2006) for the concrete components. The maximum 

initial out-of-straightness (o) by the Standard ASTM A6 (2009) is limited for hot rolled W 

shapes to 1/8” for each 10 feet of length (L/960 exactly or L/1000 nominally) or 1 mm for 

each meter of length (L/1000), and 1/8” for each 5 feet of length (L/480 or L/500 nominally) 

or 2 mm for each meter of length (L/500) for S, M, C, MC, L, T, Z and HSS shapes. The 

AISC Code of Standard Practice (AISC, 2005d) allows, as illustrated in Figure 5.1(a), a 
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maximum out-of-plumbness o=L/500 (7.13.1.1 in AISC, 2005d), and a maximum out-of-

straightness o=L/1000 (6.4.2 in AISC, 2005d). The tolerance on deviations from plumb in 

ACI-117 (2006) is, as shown in Figure 5.1(b), limited to: (a) 0.3%L (or L/333) if the member 

length (L) is below 27’9”, (b) 1 inch if the member length is between 27’9” and 83’4”, (c) 

L/1000 if the length is between 83’4” and 500’, and (d) 6” for element lengths above to 500’. 

All these Specifications are consequently applicable to composite members and, in 

particularly for CFTs elements.  The final initial imperfections are limited by the 

imperfection of the steel component plus some possible deformations during the erection and 

the concrete pouring processes. 

Several previous research studies have proved the high influence of the initial imperfection 

on the buckling load capacity (Timoshenko and Gere, 1972; Bjorhovde, 1972; White and 

Hajjar, 1997; Ziemian, 2010). Thus, AISC equations E3-2 and E3-3 for the flexural buckling 

stress on steel members were established (since AISC, 1999) based on the SSRC-P2 column 

curve (Ziemian, 2010) that accounted for an average initial out-of-straightness of L/1470 

observed statistically by Bjorhovde (1972) or L/1500 observed by Fukumoto et al. (1983). 

These design equations were also adapted for composite members since the AISC 

Specification published in 1999. Thus, imperfections higher than the limits adopted in the 

AISC Specifications will result in lower capacities of the flexural buckling load. 

Unfortunately, there are no analytical equations where the value for the initial imperfection is 

explicitly expressed. Some Specifications or guidelines have suggested the use of multiple 

column curves (i.e. EC3 2005, EC4 2004 and CSA 2009) so the dispersion due to the initial 

imperfection and the manufacturing process can be implicitly accounted in the statistical 

analysis. A previous methodology that accounted for initial imperfection effects proposed 

reducing the strength with either a reduction strength factor () or a safety factor ().  An 

example of the latter is the CRC column curve (Ziemian, 2010) for steel columns, which has 

its basis in the tangent modulus theory with a safety factor that depends on the slenderness. 

Since in practice the straightness and plumbness are controlled and limited by the Standards 

(i.e. ASTM A6, 2009; AISC, 2005d; ACI-117, 2006), developments of analytical equations 

with geometric imperfections explicitly expressed are not practical for design purposes. 
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(a) AISC Code of Standard Practice (AISC, 2005d) (b) ACI-117 (2006) 

Figure 5.1. Column tolerances as specified in the AISC and the ACI Specifications 

Thus, nominal compression capacity of a CFT column (Pn) can be calculated as: 
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The cross-section compressive strength (Po) and the Euler load (Pe) are computed by: 
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The concrete contribution (Acfc') to the compressive strength is affected by the 

effectiveness coefficient C2, classically assumed by the ACI as 0.85 for reinforced concrete 

members (Section 10.2.7 in ACI-318, 2008). This value was taken by the AISC (2010) for 

RCFTs but increased to 0.95 for CCFTs, recognizing the higher confinement in circular shapes 

(Commentary AISC, 2005c; Leon and Aho, 2002). Some research studies (i.e. Sakino et al., 

2004; Chang and Mander, 1994, etc) or other specifications (i.e. Eurocode EC-4, 2004; AIJ, 

2000) suggest a higher effectiveness for the confined concrete, especially for short columns with 

low D/t ratios. AISC chose to ignore this effect for simplicity. 

Both the critical load and the Euler load depend on the given boundary conditions in the 

column. For ideal boundary conditions (i.e. “fixed” or “pinned” support), Table 5.2 has been 

commonly used to get both the theoretical and suggested values of the effective length factor (K), 

even when in practice this support types are developed only under idealized conditions. The 

AISC (2005) Specifications has proposed alternative approaches, such as the direct analysis 

method (DAM), to avoid the use of effective length.  However, such approach has not been 

explored extensively in composite columns in general. For the testing of the columns in this 

project, ideal boundary conditions will be simulated through a very rigid connection of the base 

plate to the strong floor at the bottom, and controlled degrees of freedom (DOFs) at the top with 

the top plate connected to the crosshead. In order to get test data in the slender column range, the 

control of the DOFs at the top will be mostly as “free” (K=2) with input commands in force 

control holding values of top forces and moments to zero. In some specimens and particular load 

cases, other boundary conditions may be used and documented accordingly. 

 
Figure 5.2. Theoretical and suggested K factors for different BCs (AISC Commentary, 2005) 
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The flexural effective stiffness (EIeff) in Equation 5.3 also accounts for the contribution of 

the component materials (steel, reinforcement and concrete). The concrete contribution to the 

effective stiffness is given by a C3 coefficient that depends on the structural steel ratio and is 

related to the influence of cracking and creep on the lateral buckling resistance (Commentary 

AISC, 2005c; Viest et al., 1997). Thus: 

 

3eff s s s sr c cEI E I E I C E I  
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9.026.03 













sc

s

AA

A
C  

 

(5.5) 

(I2-15, AISC-10) 

 

As described in the AISC Commentary (AISC, 2005c), these design equations were 

calibrated with the available experimental data, and adopted to provide a smooth transition from 

and to steel-only and concrete-only elements. 

Concerning the flexural effective stiffness (EIeff), most specifications concur that this is 

the summation of the stiffness of each component, with a reduction mostly in the concrete 

component to account for cracking. Thus, ACI-318 (2008) accounts for the stiffness of steel and 

20% of the concrete and a reductive factor d for sustained axial loads (Equation 5.6). 
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(10-23, ACI318-08) 

 

In turn, the Eurocode EC4 (2004) provides two equations. Equation 5.7 is given for the 

determination of the slenderness () and the elastic critical force (Pn). Equation 5.8, instead, is 

given for the determination of internal forces on second order analysis; the factor of 0.9 in 

Equation 5.8 is roughly equivalent to that in the calculation of the effective stiffness used on the 

Direct Analysis Method (DAM) in the AISC (2010) Specifications for steel members. 
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Equation (5.1), which is similar to the one used for steel members in the AISC (2010) 

Spec., is valid in the inelastic buckling range (when / 2.25o eP P  or / 1.5o eP P   ), and for 

a second interval in the elastic buckling range where a reduced Euler load is used. The reductive 

factor 0.877 in the Euler load for the elastic buckling interval was proposed to account for 

geometric imperfection effects (White and Hajjar, 1997; Ziemian, 2010). On the other hand, the 

expression for the inelastic buckling range was obtained by curve fitting experimental data 

(Bjorhovde, 1972; Ziemian, 2010). Thus, the total reduction factor ( /n oP P  , Equation 5.9) on 

a column that accounts for initial imperfection, residual stresses, geometric and material non-

linearities and stability effects is illustrated in Figure 5.3. 
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Figure 5.3. Column curve by the AISC (2010) Specifications 
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5.3. Experimental results from the raw data 

As described before, the first load case in all the tests was intended to determine the 

critical axial load. All the specimens were connected to the strong floor through a fixed 

connection that restrained the displacements and rotations at the bottom of the column. At the 

top, most specimens had forces and bending moments controlled by the crosshead, ideally forced 

to be zero.  In other words, the top was controlled as free displacement – free rotation, giving a 

fixed-free column (K=2). Some specimens were also controlled in either free displacement – 

fixed rotation (K=1.0), fixed lateral displacement – free rotation (K=0.7), or fixed lateral 

displacement – fixed rotation (K=0.5). Figure 5.4 illustrates all these cases of boundary 

conditions (BC’s), as well as other variables such as the initial of out-of-plumbness (o), the 

initial of out-of-straightness (o), the crosshead induced forces and displacements at the top, and 

the resultant reactions at the fixed base. As discussed in the following sections, the bending 

moment at the base (M2) is the contribution of the first order moments induced by the crosshead 

(M1) and the overturning (F∙L), plus the moment induced by the second order effects (P).  

Internal bending moments along the length will be influenced by the P effects as well. 

 
(a) K = 2.0 (b) K = 1.0 (c) K = 0.7 (d) K = 0.5 

Figure 5.4. Definition of out-of straightness (o), out-of-plumbness (o), and the different 

boundary conditions for the buckling load case. 
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Figure 5.5 illustrate the initial geometric profile at the beginning of LC1 for all 

specimens; the maximum out-of-straightness (o) and out-of-plumbness (o) are reported in 

Table 5.1 The imperfections as shown in Figure 5.5 were measured from the column surveying 

at the points the string pots were placed, and these discrete measurements are connected 

assuming linear transition between points to get an approximation of the geometric profile. 

Table 5.1 also summarizes the material and geometric properties for each specimen, and 

the results of the maximum experimental compressive load (Pexp) obtained in each LC1 test; this 

maximum experimental capacity obtained from the raw data is normalized with the squash 

capacity (Po, Equation 5.2) and plotted vs. the slenderness parameter  in Figure 5.6. For these 

results, the following observations and notes apply:  

 The buckling load (Pn) and the slenderness parameter () for each specimen were 

calculated as described in the AISC (2010) Specifications. These results were 

obtained based on averaged measured material properties (fc’, Fy), measured 

geometric properties (L, o, o as shown in Figure 5.5), and assumed ideal boundary 

conditions (K). However, experimental and the analytical buckling loads may have 

discrepancies due to different assumptions as will be explained in the following 

section. 

 The axial capacity of the crosshead system (1320 kips) was reached before the 

buckling load on the specimens 3, 5, 7 and 9. In a following section, some 

extrapolation methodologies will be explored to estimate to buckling critical load of 

these specimens. 

 These results correspond to the fixed-free controlled case (K=2), except in specimens 

1 and 18 where fixed-fixed BC’s were controlled (K=0.5). In addition, except for the 

specimen 1 and 18, the buckling load case started with imperfection at the first step 

matching the initial imperfection as delivered. The buckling load case with K=0.5 for 

the specimens 1 and 18 (with normalized initial out-of-straightness starting at 0.045% 

and 0.074%, respectively) was applied later in the load protocol, and thus the 

normalized imperfection started respectively at 0.711% and 0.196% instead. 
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 Length (ft) Length (ft) 

 
 Initial imperfection Initial imperfection 
 (a) CCFTs, L=18ft (b) RCFTs, L=18ft 

 

 Length (ft) Length (ft) 

 
 Initial imperfection Initial imperfection 
 (c) CCFTs, L=26ft (d) RCFTs, L=26ft 

Figure 5.5. Initial profile shape at the beginning of the loading case LC1 
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Table 5.1. Maximum experimental axial loads obtained from the raw data 

Specimen   fc   Fy     L o/L o/L     Pn  Pexp 

# – name (ksi) (ksi) (ft, in)   (%)   (%) -    - (kip) (kip) 

1C5-18-5   5.5 55.6 18’ 
1
/2” 0.000 0.711

*
 0.5 0.90   166    129 

18C5-26-12 11.7 55.6 26’ 
5
/8” 0.000 0.196

*
 0.5 1.51   140    141 

2C12-18-5   5.6 48.9 18’ 
1
/2” 0.376 0.035 2 1.55   393    427 

6C12-18-12 13.2 48.9 18’ 
1
/2” 0.197 0.049 2 1.90   472    581 

10C12-26-5   7.9 48.6 26’ 1” 0.322 0.020 2 2.38   207    362 

14C12-26-12 11.6 55.5 26’ 1
1
/2” 0.213 0.023 2 2.72   216    386 

3C20-18-5   5.8 47.6 18’ 1
1
/2” 0.438 0.084 2 1.05 1469 >1320

+
 

7C20-18-12 13.2 47.6 18’ 1
7
/8” 0.449 0.039 2 1.30 2190 >1320

+
 

11C20-26-5   8.1 44.3 26’ 2
3
/4” 0.700 0.121 2 1.61   992    802 

15C20-26-12 11.6 42.5 26’ 2” 0.522 0.076 2 1.78 1080  1127 

4Rw-18-5   5.9 53.0 18’ 2” 0.615 0.029 2 1.38   939  1070 

8Rw-18-12 13.3 53.0 18’ 2
5
/8” 0.828 0.010 2 1.65 1124    961 

12Rw-26-5   8.2 58.9 26’ 1
1
/4” 0.084 0.084 2 2.14   501    791 

16Rw-26-12 11.7 55.2 26’ 1
1
/4” 0.193 0.100 2 2.30   534  1140 

5Rs-18-5   5.9 53.0 18’ 2” 0.037 0.036 2 0.88 1501 >1320 
+
 

9Rs-18-12 13.3 53.0 18’ 2
5
/8” 0.360 0.036 2 1.04 2209 >1320 

+
 

13Rs-26-5   8.3 55.5 26’ 1
3
/4” 0.216 0.030 2 1.35 1199  1320 

17Rs-26-12 11.7 55.1 26’ 1
1
/2” 0.523 0.019 2 1.46 1323  1120 

(+) MAST axial capacity (1320 kips) reached before getting the buckling strength. (*) The initial out-of-

straightness (o/L) before testing for the specimens 1 and 18 were 0.045% and 0.074%, respectively; the 

values stated in this table correspond to the out-of-straightness at the beginning of the load case. 

 

As seen in Figure 5.6, the AISC (2010) analytical column curve and some maximum 

experimental values do not concur. The experimental values below the column curve are either: 

(a) Those specimens (i.e. 3, 5, 7 and 9) where the MAST axial capacity was reached 

before the buckling load, or  

(b) Those specimens that had a very large initial imperfection (i.e. 1, 8, 11 and 17). 

On the other hand, the experimental values above the column curve, which occurs mainly 

on the specimens with the higher slenderness (>2), are mainly due to: 

(a) An initial double-curvature deflected shape (i.e. 5, 12 and 16, see Figure 5.5) and 

(b) Parasitic top forces and moments added by the crosshead, which increased the axial 

capacity (i.e. specimens 10, 12, 14 and 16). 

In the next section, more details are discussed about the discrepancies between the 

experimental and the analytical critical loads. 
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Figure 5.6. Maximum experimental load ratios (Pexp/Po) from the raw data 

Note from Table 5.1 that the normalized initial out-of-straightness (o/L) in most 

specimens before testing was within the limit 1/1000 (or 0.1%) given by the Standards. 

However, as shown in Table 5.1 and Figure 5.5, the normalized initial out-of-plumbness limit 

(o/L=1/500=0.2%) in the Standards was exceeded in more than the half of the experimental 

samples. 

In real frame structures, the imperfection in out-of-plumbness (o) may be reduced in the 

field (only if the out-of-straightness limit is not exceeded) in order to connect these columns with 

the beam system. In frames with composite CFT columns, the steel components are commonly 

erected and connected first (which reduces some of the out-of-plumbness), and then the concrete 

is cast into the steel tubes so it hardens with the shape of the steel columns connected. 

In this experimental test program, obtaining the buckling loads with the original 

imperfections was a more attractive option since: 

(1) The concrete was poured and hardened with the initial imperfection of the steel 

component after fabrication and transportation. 
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(2) No initial stresses were added to either concrete or the steel portions due to 

adjustments of the imperfections. 

(3) These are the true imperfections for these long and slender columns. 

(4) The analytical calibration for these large imperfections is more challenging and has 

been less explored in the past. 

Unless some calibration is used, the disadvantage of using the initial imperfection 

without adjustment is the lack of a direct comparison option between the experimental buckling 

loads and the one obtained from analytical equations calibrated with standard imperfections. In 

the next section, some methodologies will be discussed to correct and compare experimental 

results with the analytical predictions. 

Figure 5.7 shows the axial force vs. midspan distortion paths (P vs. /L) obtained for 

circular specimens 1C5-18-5 and 18C5-26-12 that were tested as fixed-fixed column (K=0.5) and 

for both all the entire load case and the first loading path. Similarly, the axial force vs. drift paths 

(P vs. /L) are shown in Figure 5.8 to Figure 5.11 for the CFTs tested as fixed-free cantilever 

columns (K=2). The maximum compression loads (Pexp) and the initial imperfection, both 

reported in Table 5.1, are also included in these figures. Note in Figure 5.7(a) to Figure 5.11(a) 

that the second buckling load cycle (or higher) of the experimental P- or P- path tended to go 

back to the previous peak point and continue along the P-M envelope. 

 P (kip) P (kip) 

 
/L /L 

 (a) Entire load case (b) First loading cycle 

Figure 5.7. Compressive loading vs. midspan distortion for the C5 set of CCFTs 
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 P (kip) P (kip) 

 
 /L /L 

 (a) Entire loading case (b) First loading cycle 

Figure 5.8. Compressive loading vs. Drift for the C12 set of CCFTs 
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 /L /L 

 (a) Entire loading case (b) First loading cycle 

Figure 5.9. Compressive loading vs. Drift for the C20 set of CCFTs 
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 P (kip) P (kip) 

 
 /L /L 

 (a) Entire loading case (b) First loading cycle 

Figure 5.10. Compressive loading vs. Drift for the Rw set of RCFTs 
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 (a) Entire loading case (b) First loading cycle 

Figure 5.11. Compressive loading vs. Drift for the Rs set of RCFTs 
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Figure 5.12 shows the axial force vs. midspan moment paths (P vs. MCL) obtained for  

specimens 1C5-18-5 and 18C5-26-12 tested with double fixed BC’s (K=0.5). Similarly, the axial 

force vs. base moment (P vs. M2) are shown in Figure 5.13 to Figure 5.16 for the CFTs tested 

with fixed-free BC’s (K=2). Note in these figures than the moment returns to zero or the initial 

value when the total axial load was removed. In addition, in those cases when a second buckling 

load cycle (or higher) was applied, the experimental P-M path tended to go back to the previous 

peak point and follow the P-M envelope. This tendency is clearly shown in Figure 5.13(a), 

Figure 5.13(b), Figure 5.14, Figure 5.15(a), Figure 5.15(b) and Figure 5.16(c). 

 

The base moment (M2) and the midspan moment (MCL) illustrated in these figures were 

calculated based on equilibrium as the summation of the applied cross-head moments (M1), the 

overturning moments (F∙L) from potential crosshead horizontal forces, and the second order 

moments due to the initial imperfection. These second order moments, calculated as P for the 

base moment (M2) and as P for the midspan moment (MCL), are the primarily contribution to 

the total moment in this loading case. For the fixed-free (K=2) case with a perfect control (F=0, 

M1=0), the base moment (M2) is equal to just the second order moments due to the initial 

imperfection (P). 

 

The axial force – bending moment P-M interaction diagrams based on the AISC (2010) 

Specification obtained for the composite cross-section and the composite beam column (with 

stability reduction) are also illustrated in Figure 5.12 to Figure 5.16. The maximum compression 

load from the tests (Pexp) and the analytical buckling load from the Specs. (Pn), both reported in 

Table 5.1, are also illustrated in these figures. However, as clarified below, the experimental 

moment (total value) and the analytical moment (net value) cannot be compared directly unless 

they are adjusted so both experimental and analytical show either net or total values. Chapter 6, 

which is related to P-M interaction diagrams, illustrates adjusted experimental net values that can 

be directly compared with those obtained analytically. 
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For design purposes, the P-M interaction diagrams from the Spec. are net values (net M2) 

obtained as the total second order moment (M2) reduced by those moments induced only by the 

initial imperfections (either P or P). As a consequence, the P-M diagrams from the 

specifications implicitly account for initial imperfections effects (as well as the steel residual 

stress), even if the analysis neglect this geometric non-linearity. This approach simplifies 

substantially the design procedure, since there is no need to include initial geometric 

imperfections (and residual stresses) in the analysis model. Additional details about analytical P-

M interaction diagrams are discussed in Chapter 6. 

 

 

 

 P (kip) P (kip) 

 
 MCL (kip-ft) MCL (kip-ft) 

 

(a) Specimen 1-C5-18-5 (b) Specimen 18-C5-26-12 

 

Figure 5.12. Compressive loading vs. midspan moment (P-MCL) for the C5 set of CCFTs 
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 P (kip) P (kip) 

 
 M2 (kip-ft) M2 (kip-ft) 

 

(a) Specimen 2-C12-18-5 (b) Specimen 6-C12-18-12 

 

 

 P (kip) P (kip) 

 
 M2 (kip-ft) M2 (kip-ft) 

 

(c) Specimen 10-C12-26-5 (d) Specimen 14-C12-26-12 

 

Figure 5.13. Compressive loading vs. base moment (P-M2) for the C12 set of CCFTs 
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 M2 (kip-ft) M2 (kip-ft) 

 

(a) Specimen 3-C20-18-5 (b) Specimen 7-C20-18-12 

 

 

 P (kip) P (kip) 

 
 M2 (kip-ft) M2 (kip-ft) 

 

(c) Specimen 11-C20-26-5 (d) Specimen 15-C20-26-12 

 

Figure 5.14. Compressive loading vs. base moment (P-M2) for the C20 set of CCFTs 
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 P (kip) P (kip) 

 
 M2 (kip-ft) M2 (kip-ft) 

 

(a) Specimen 4-Rw-18-5 (b) Specimen 8- Rw-18-12 

 

 

 P (kip) P (kip) 

 
 M2 (kip-ft) M2 (kip-ft) 

 

(c) Specimen 12- Rw-26-5 (d) Specimen 16- Rw-26-12 

 

Figure 5.15. Compressive loading vs. base moment (P-M2) for the Rw set of RCFTs 
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 M2 (kip-ft) M2 (kip-ft) 

 

(a) Specimen 5-Rs-18-5 (b) Specimen 9-Rs-18-12 
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(c) Specimen 13-Rs-26-5 (d) Specimen 17-Rs-26-12 

 

Figure 5.16. Compressive loading vs. base moment (P-M2) for the Rs set of RCFTs 
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5.4. Differences between analytical and experimental maximum loads 

As mentioned earlier, the main purpose of this load case was a direct measurement of the 

buckling load for CFT columns. However, as illustrated in Figure 5.6, there were some 

differences between the analytical and the experimental values. Some of these differences are 

related to the special characteristics and uncertainties of the CFT specimens, and others are 

related to the testing setup. 

 

Among the main reasons related to the testing setup that explain differences between the 

experimental and the analytical maximum axial load capacities are: 

 System compliance. The crosshead is driven by the MAST system through a 

controller (HCC) that converts input commands of the 6 DOFs at the crosshead center 

to drive commands for each actuator. The algorithm used by the controller neglects 

any possible deformation in the system itself, included the crosshead, the connections, 

and the supports. Tests and finite element analyses conducted for the crosshead have 

indicated deformations that are not properly accounted by the controller in the 

computation of the driven commands. This issue makes the axial deformation 

response calculated by the controller inaccurate and unusable since part of this 

measured data corresponds to deformation developed in the system and part 

deformation in the specimens. 

 Friction in the actuator clevises. The large vertical load actuators have very carefully 

machined bearings at the clevis pins to eliminate as much of the friction as possible.  

Tests conducted without any specimens in place indicate that this friction is on the 

order of 1800 lbs total in each horizontal direction or 900 lbs in each actuator. This is 

small compared to the lateral load capacity of the system and would be negligible for 

specimens, such as concrete or masonry walls, that are laterally stiff.  However, for 

slender column specimens as they approach buckling, this level of restraint at the top 

represents a large proportion of their lateral resistance, so the resulting hysteresis 

loops appear to have much more energy dissipation than they should. As soon as the 

load reverses from a peak, this friction needs to be overcome in order to move the 

specimen in the opposite direction. 
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 Lack of perfect control for the DOFs.  As described before, the 6 DOF’s at the top for 

the Specimens 2 to 17 were in vertical displacement control with horizontal forces 

(Fx, Fy) and top moments (Mx, My) in load control such that both forces and moment 

are kept at zero (fixed base and free top condition, or effective length K=2). However, 

as the system approached the idealized capacity as a fixed-free specimen, the 

controller began to impose extraneous forces in the opposite direction of motion, and 

thus increased the maximum load. 

 Limit on axial compressive capacity: As described earlier, the system is limited to a 

vertical axial capacity of 330 kip per actuator, or 1320 kip of total capacity. The 

capacity of some specimens, even when the large slenderness and imperfections, were 

expected to exceed the capacity of the crosshead. 

 Other influencing factors such as a possible inclination of the gravity force with 

respect to the vertical axis. 

 

Among the main reasons related to the CFT specimens that explain differences between 

the experimental and the analytical maximum axial load capacities are: 

 Initial imperfections. The calculation of the critical load in the AISC (2010) assumes 

that the initial geometric imperfection will be lower than those limits and tolerances 

(o/L=1/500=0.2% or o/L=1/1000=0.1%) given by the Standards (i.e. ASTM A6, 

2009; AISC, 2005d; ACI-117, 2006). Thus, design equations in the Spec. were tuned 

and calibrated with geometric imperfection ratios within the tolerances (o/L=1/750 

or o/L=1/1500). As shown in Figure 5.5 and Table 5.1, the initial imperfections were 

exceeded in most specimens and, for some specimens, the geometric imperfection 

was significantly larger. 

 Effective stiffness. The equivalent stiffness (EIeff) as calculated in the AISC (2010) 

(Equation 5.4) is an approximation of the “true” effective stiffness. Exact calculation 

of the EIeff is not trivial, since this parameter is highly dependent of the level of 

cracking and confinement in the concrete, the initial stress or strain field in the steel 

tube, and even the value of the compressive load in the element. 
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 Effective confinement in concrete: Even though the AISC equations give considerable 

credit to the circular sections due to confinement, differences were expected in the 

CFTs buckling capacity due to this parameter. 

 Other influencing factors such as the contribution of ignored loads such as the self 

weight of the specimen, the crosshead and/or the actuators. 

The following section gives more details of the previous issues, and how all these were handle in 

order to extract the more reasonable behavior response of the full-scale and slender CFT 

specimens tested in this research project. 

 

 

 

 

 

5.4.1. System compliance 

The MAST system, as discussed before, is an assemblage of a “rigid” steel crosshead 

connected to vertical and horizontal actuators that transfer forces to the strong floor and the L-

shaped strong walls. The actuators are pinned connected in both ends to the crosshead and to the 

strong L-shaped walls and floor through low-friction swivels. The crosshead is driven by a 

servo-hydraulic control system (HCC). This controller converts the input commands of the 6 

DOFs in either displacement or force control (mixed mode) into drive commands for each of the 

eight actuators; according to the manufacturers, this conversion process accounts for the 

geometric nonlinearity (http://nees.umn.edu/facilities/mast.php). Unfortunately, details in the 

algorithm of the HCC conversion are not public (Bergson, 2010), and so the overall system 

compliance is not accurately known. 

During the first stages of the data analysis in this research project, an incompatibility 

between the axial loads and the axial deformations of the CFT specimen was noticed. At this 

team’s request, an experimental determination of the relative vertical displacement in the 

crosshead was performed internally by the MAST personnel (Bergson et al., 2010). This test 
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consisted in driving the crosshead in force control up and down in 3 cycles inducing vertical 

compression and tension forces on a steel column placed vertically (no out-of-plumbness). The 

movement crosshead was controlled with the by Z‐force DOF (degree of freedom) in force 

control and all other DOF’s in displacement control. The steel column (W12x90, L= 18’3”) was 

put through 3 cycles of compression and tension in the Z direction at ±750 kips (about 60% of 

the system axial capacity) with a rate of 2 kip/second; the other DOF’s were locked out with the 

displacement fixed (x = y  = x = y = z = 0). 

 In order to verify the relative vertical displacement measured at each actuator and the 

computed value at the crosshead center by the controller, a set of eight string pots (with 2 inches 

of range) connected to the strong floor and to the bottom of the crosshead. Four string pots were 

located 3 ft. from the center of the crosshead (one on each arm) and the other four were located 

near the vertical actuators at 8’ 3” from the center of the crosshead (or about 2’ 3” from the 

center of each actuator). A cross-section of the instrumentation setup is schematically illustrated 

in Figure 5.17. 
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Figure 5.17. Instrumentation setup to verify the crosshead compliance 
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In addition, a set of six strain gauges were placed in the flanges at the midspan of the 

steel column. The maximum vertical shortening of the column is calculated then by the product 

of the average maximum strain (from the six strain gauges) times the column length (= L). 

Since the column is elastic with the given loading conditions, the expected theoretical shortening 

is also computed with the mechanic-based equation (= PL / EA); with an axial load P=750 kip, 

a column length L=18’ 3”, a steel Young’s modulus E=29000 ksi, and a cross-sectional area 

A=55.8 in
2
, the theoretical maximum shorting results as = 0.102 in. This value is closed to the 

average shortening of 0.096 in. obtained in the column from the strain gauges. 

 

 

Table 5.2 summarizes all the downward vertical deflections measured for the crosshead 

at the time the column is under 750 kip of axial compression force. The data shown in this table 

is an average of the readings while holding at each peak of the three cycles; the data is consistent 

between cycles. The measured vertical displacement values from the four actuators, the eight 

string pots, and the strain gauges are shown in this table; it also shows the global displacement 

computed by the controller (HCC). The averaged values within cycles for the corresponding 

point locations along the crosshead are illustrated in Figure 5.18. 

 

 

As clearly illustrated by Table 5.2 and Figure 5.18, the crosshead has deflections that are 

not considered in the computed value by the controller, which assumes a rigid plane motion in 

the calculations. For the particular case of the compliance test presented in this section, the 

deflection computed by the controller is more than twice the real shortening in the column, with 

a relative vertical deflection (r) in the crosshead of 0.11 inches. The MAST team reported as 

conclusion in this report that the global Z‐displacement data computed by the controller does not 

include the deformation of the crosshead, nor any other system compliance considerations (i.e. 

force train, swivel bearings, connections, and strong floor/walls). 
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Table 5.2. Deflections of the compliance test at 750 kips of compression 

(a) North-South direction 

Cycle 

Measurements of the local Z vertical displacement 
Global Z 

displacement 

computed by 

Controller 

South Center North 

Actuator 
External 

string pot 

Internal 

string pot 
Column 

Internal 

string pot 

External 

string pot 
Actuator 

1 0.205 0.158 0.127 0.094 0.118 0.150 0.205 0.205 

2 0.205 0.160 0.130 0.096 0.118 0.152 0.205 0.206 

3 0.205 0.160 0.130 0.097 0.118 0.152 0.204 0.205 

(b) East-West direction 

Cycle 

Measurements of the local Z vertical displacement 
Global Z 

displacement 

computed by 

Controller 

East Center West 

Actuator 
External 

string pot 

Internal 

string pot 
Column 

Internal 

string pot 

External 

string pot 
Actuator 

1 0.206 0.150 0.120 0.094 0.120 0.178 0.206 0.205 

2 0.206 0.148 0.119 0.096 0.119 0.180 0.206 0.206 

3 0.206 0.149 0.119 0.097 0.120 0.179 0.206 0.205 

 

Deflection (in) 

 
Crosshead span (ft) 

Figure 5.18. Crosshead deflections along the span from averaged measurements in compliance 

test (relative vertical displacement, r=0.11 in) 
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Similar values of crosshead deflections were computed by Dexter (French et al., 2004) 

through analysis with the finite element method (FEM) of the crosshead with a stiff column 

attached to the bottom center and under critical loading conditions expected from the actuators. 

The stress distribution and the displacement shape of four of these critical cases are illustrated in 

Figure 5.19. This figure also shows the maximum relative crosshead deformation (r) obtained 

from the FEM analysis. 

 

 
(a) All vertical actuators down (r=0.10 in) (b) One set of horizontal actuators (r=0.09 in) 

 

 
(c) All actuators combined (r=0.14 in) (d) Vertical actuators unsymmetrical (r=0.12 in) 

Figure 5.19. FEM analysis for the crosshead under critical conditions 
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Although the deformation of the crosshead is relatively small (0.15 inches in the worst 

case), this amount of deflection has a very significant impact on the measured response of the 

specimen connected to the crosshead. For the compliance test reported herein, the controller 

reported a global vertical displacement of about twice the real shortening of the specimen. 

As shown in Figure 5.20, preliminary analysis on the CFT specimens tested in this 

research project present fairly similar observations, with an expected axial deformation within 

40% to 60% of that computed by the controller based on the measured displacements in the 

actuators. In this figure, the curve in red is the experimental response reported by the controller, 

the black curves are extrapolated measurements (maximum end minimum) of the overall 

shortening based on the LVDT data along the length, and the blue curve is what is calculated 

from computational analysis. As seen in this figure, the controller is reporting about twice what 

is expected based on the other measurement channels and the analysis; the shortening computed 

in the analysis and extrapolated form the LVDT data is consistent.Unfortunately then, there is a 

difference in the data between the global vertical displacement history and the real axial 

deformation on the specimens. 

The fact that the axial displacement is overestimated by the controller by not extracting 

the system compliance in the computation makes this measured response unusable. This issue 

impacts mainly the analytical prediction during the load case LC1, which was driven under 

incremental axial displacement control with the zero top forces and moments. The measured 

axial displacement computed by the controller cannot be used neither as input in computational 

analysis, nor for comparisons with the output shortening response computed in analysis under 

axial loading. 

The impact on the overestimated experimental axial displacement for subsequent load 

cases is not as critical is in LC1. For the load case LC2 to LC4, the top DOFs were driven under 

constant axial load control and incremental horizontal displacement control. Therefore, 

computational analysis can be performed with constant axial load and the target horizontal 

displacement as input data. The computed axial deformation from the analysis and the measured 

vertical displacement reported by the controller will not match thought, and the differences can 

be assumed as the total additional deformation developed in the system. 
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Figure 5.20. Experimental vs. analytical axial-lateral displacement 

5.4.2. Frictional forces in the clevises 

General features of the MTS actuators used in the MAST system are documented in 

Chapter 3. These actuators have in both ends swivels with low-friction hydrostatic bearings at 

the clevis pins that are supposed to eliminate as much of the friction as possible. However, 

preliminary analysis of the experimental data measured in the CFT specimens suggested the 

presence of frictional forces that have a significant impact in the weakest specimens. 

In order to evaluate how much friction is developed by the system, a test was conducted 

with driven commands in the crosshead without any connected specimen in place. The crosshead 

is driven in displacement control with the X and Y displacement and rotation records obtained 

during the entire loading protocol applied in the Specimen 2C12-18-5. 
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The experimental data response of Specimen 2 during LC1 is reported in this Chapter, 

while the load cases LC2 and LC3 are documented in more detail in Chapter 6. As summary, 

Specimen 2 was initially subjected to a pure compression loading (LC1) with a controlled rate of 

0.04 inches/min of vertical displacement. In turn, LC2 and LC3 was subjected in constant axial 

load follow by driven commands to move the top along the X axis (in LC2), and along different 

probes around the X-Y plane (in LC3); the input commands of lateral motion in both LC2 and 

LC3 was applied with a rate of 1 inch/min in the X, Y or resultant direction. 

The entire top displacement and rotation history recorded in the testing of the specimen 2 

(illustrated in Figure 5.19.a) was used as input commands to drive the system without a specimen 

in place (crosshead and actuators only) and at the same testing rate (0.04 in/min vertically, 0.1 

in/min horizontally) without any other specimen element connected to it. The displacement and 

rotation paths corresponding to each load case in the protocol are labeled in this figure.  The 

forces and moments calculated and reported by the controller of the system only (without any 

specimen connected) are shown in Figure 5.19.b. 

As a side note, the self weight of the crosshead is 94 kips (http://nees.umn.edu), and the 

effective weight in the system (crosshead and tributary weight of actuators) is about 100 kip; 

during its construction stage, design constraints of the crosshead included a weight limit not to 

exceed the 100 kip capacity of the crane such that the crosshead could be lifted by the crane 

(French et al., 2004). 

In addition, the expected noise level in the system assuming an effective resolution of 12 

bits is about 0.22 kip of lateral force (880/2
12

) and 2.18 kip-ft of top bending moment 

(330x27/2
12

); thus, forces and moment beyond the noise level are due to friction forces in the 

clevises. 

As observed in Figure 5.19.b, the computed forces and moments (blue path) exceed 

values expected within the resolution system (red dashed circle), introducing into the system a 

maximum of 1.875 kip in force and 28.875 kip-ft in moment, and so a moment/force ratio of 

about 15.4 ft. These lateral frictional forces are small if rigid specimens are tested, but they 

become significant in very flexible specimens. As an example, the expected base moment with 

these frictional forces is the order of 33% flexural capacity of the specimen 2C12-18-5. 
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Figure 5.21. Data reported by the controller from the empty crosshead test 

The 1.8 kip of friction force is equivalent to the inertial force developed in a system of 

100 kip of weight that is driven from 1 in/min to the rest condition in an assumed interval of 

0.0024 sec; in other words, this is equal to: 

 
100 kip 1 in min

1.8 kip
0.0024 s

W V
F ma

g t g

   
      

   
 (5.10) 
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5.4.3. Initial imperfections 

The large initial out-of-plumbness as imperfection in most of the specimens at the 

beginning of the load case LC1 is another reason that contributes in the differences between the 

analytical buckling load prediction and the maximum experimental load capacity measured. In 

the cases with a higher out-of-plumbness as imperfection, the buckling load is reduced as a 

consequence of a second order component (P) consumed as flexure. This is schematically 

illustrated in Figure 5.22 with three cases of out-of-plumbness. As shown in this figure, the 

critical load (Pcr) expected for a vertical and straight element (o=0) is higher than the nominal 

axial capacities (Pn) for a moderate (o>0) or a larger (o>>0) out-of-plumbness. This figure 

illustrates how the nominal load is reduced (from Pcr to Pn) as a consequence of a second order 

component (M=P) consumed as flexural bending. 
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Figure 5.22. Effect of out-of-plumbness on the axial load capacity 
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However, the critical load can be highly influenced not only by the out-of-plumbness 

(o), but also by the out-of-straightness (o) and, in general, by the complex initial deflected 

shape. Figure 5.23 shows possible variations in the initial deflected shape in cantilever columns 

taken from ASCE (1997).  

 

Figure 5.23. Initially imperfect shapes for cantilever columns (ASCE, 1997) 

The reduction in the axial capacity due to the out-of-plumbness was illustrated in Figure 

5.22. However, as commented above, the expected axial capacity in some cases can be higher 

under special initial imperfection conditions. This was the case of the Specimens 5, 12 and 16 in 

this research project. These three specimens have in common the following characteristics: 

(1) The specimens are RCFTs, and their initial imperfection shape is in double curvature 

as shown in Figure 5.24. 

(2) They have a high out-of-straightness (o) compared to its out-of-plumbness (o). The 

ratio o/o in Specimens 5, 12 a 16 have values of 0.97, 1.00 and 0.52, respectively; 

the remaining specimens have a ratio below the 0.25 value with an average of f 0.11. 

(4) None of these three specimens exceeds the tolerances for imperfection (o<L/1000; 

o<L/500) limited in the standards. 
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P

 
 (a) Idealized shape (b) Measured initial imperfection values (in) vs. column length 

Figure 5.24. Initial deflected shape 

It was observed during the tests of these specimens (with the initial shape as shown in 

Figure 5.24) that the displacement measured by the string pots near the midspan increased 

initially with a higher rate that the corresponding displacement measured at the column tip. In 

other words, the deflected shape of these specimens was developed between the buckled shape in 

Figure 5.4(c) with theoretical K=0.7 and the buckle shape in Figure 5.4(a) with K=2.0.  

For the specimen 12, the second cycle of LC1 was performed with a forced change in the 

shape from that shown in Figure 5.24(a) or Figure 5.23(IV) to a shape similar to that shown in 

Figure 5.23(VII). This change of shape was achieved through driving the top in displacement 

control with no axial load until a the target deflected shape as in Figure 5.23(VII) was met, and 

thus developing an effective length for the second cycle close to as fixed-free or K=2. This 

change of shape also induced a moment at the base as seen in Figure 5.15(b) with no axial load.  

The latter adjustment in the initial deflected shape was not performed in the Specimens 5 

and 16. In these specimens, a lower effective length factor is more appropriate due to the initial 

deflected shape as in Figure 5.24(a). 
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Although specimens 5 and 16 were controlled as base-fixed and top-free (K=2), the 

double curvature as initial shape reduces the effective length (K<2) and so the maximum 

experimental capacity was higher than that expected for the ideal BCs. This behavior type was 

also observed in the analyses performed by ASCE (1997), where the computed axial strength for 

the cases III and IV shown in Figure 5.23 were considerably higher than the strength of the cases 

II, V, VI, VII. This reference does not present effective length factors for each independent 

imperfection case. However, the following results present a rough estimation of the equivalent K 

for the imperfection case IV; this case is close to the imperfections shape of specimen 5 an16. 

Advanced analyses of steel columns with all the imperfections cases illustrated in Figure 

5.23 are documented in ASCE (1997). The results show different axial load capacities for each 

imperfection case. This reference concluded that the AISC column curve is not premised on a 

particular (or unique) set of imperfection parameters, and remarks that the out-of-plumbness (o) 

has a more significant effect on the strength than the out-of-straightness (o). 

The analyses reported by in ASCE (1997) were calibrated for a cantilever (K = 2) steel 

column of A36 (Fy = 36 ksi, Es = 29000 ksi) and a W8x31 cross-section. The length was set such 

that the slenderness parameter with the latter conditions was equal to one (=1). Thus, the ratio 

L/r used in the analysis is given by: 

 
1 29000

14.191
2 36

s

y

EL

r K F





 
   

 
 (5.11) 

The axial capacity reported for the imperfection case shown in Figure 5.23(IV) is equal to 

0.801 times the squashing capacity (Py). Thus, the equivalent slenderness parameter for the case 

IV is equal to: 

 
2

0.658 0.801          0.728n

y

P

P

      (5.12) 

 Therefore, based on these results, the effective length factor for the case IV is of the order 

of 1.46 as obtained for the calculation below: 
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    (5.13) 
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Thus, an effective length factor as K=1.5 was adopted for the specimens 5 and 16 due to 

the imperfection shape with double curvature as shown in Figure 5.24(a). The adopted effective 

length factor presents more appropriate results to account for the initial deflected shape with 

double curvature as shown in Figure 5.24(a). With the adopted K value, the slenderness 

parameter () changed from 0.88 to 0.66 for the specimen 5Rs-18-5, and from 2.30 to 1.72 for 

the specimen 16-Rw-26-5 as shown in Table 5.3. 

 

Table 5.3. Experimental buckling loads in specimens with adjusted effective length 

Specimen  AISC (2010) Max. test ratio 

   Pn (kip) Pexp  (kip) Pexp / Pn 

5Rs-18-5 1.5 0.66 1731 1320 
+
 0.76 

16Rw-26-12 1.5 1.72   949 1140 1.20 

(+) MAST axial capacity (1320 kips) reached before getting the buckling strength 
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5.4.4. Lack of perfect control of the DOFs 

Even thought the CFT specimens were controlled during LC1 as fixed-free cantilever 

columns (idealized as shown in Figure 5.25.a.), it was observed during this load case that the 

controller began to impose extraneous forces as the system approached the buckling capacity of 

the specimen. The additional top forces and moments that were imposed in the opposite direction 

of motion violate the free top condition. As a consequence, the boundary conditions (BCs) 

changed to a column that can be idealized as shown in Figure 5.25.b. with a fixed-base and 

lateral and rotational springs at the top. These springs can be calibrated to include forces an 

moments in the model that increased proportionally to the axial load, or proportionally to the top 

lateral displacement and rotation. 

  
(a) BCs with a low axial load (b) BCs with a high axial load 

 K=2.0, F=M1=t=r=0 0.5<K<2.0, F≠M1≠t≠r≠0 

Figure 5.25. Fixed-free and fixed-spring boundary conditions 
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The amount of additional top forces and moments observed during the tests was 

significant and, in general, these disturbing top actions started when the vertical force reaches the 

expected critical load with fixed-free BCs, and increased until the maximum axial load is 

reached. 

Table 5.4 shows a summary of the resultant top forces and moments at the peaks during 

LC1. As shown in this table, lateral forces (F) and top moments (M1) exceeded what was 

expected as noise for both the lateral force (0.22 kip) and moment (2.18 kip-ft), being these 

additional lateral forces and bending moments larger as the axial load approaches the columns 

buckling capacity. 

Table 5.4. Maximum lateral forces (Fmax) and top bending moments (M1max) during LC1 

 Peak gravity force Peak lateral force Peak bending moment 

Specimen Pmax F M1 P Fmax M1 P F M1max 

 kip kip kip-ft kip kip kip-ft kip kip kip-ft 

2C12-18-5 427 0.54 5.4 370 0.70 5.6 401 0.56 8.1 

3C20-18-5 1400 0.18 5.0 1400 0.95 4.6 1160 0.05 18.9 

4RW-18-5 1070 0.55 6.9 751 1.20 12.6 752 1.06 14.3 

5RS-18-5 1320 0.09 1.0 457 0.27 0.3 1310 0.09 2.3 

6C12-18-12 581 1.23 14.2 575 1.54 16.8 574 1.44 18.5 

7C20-18-12 1321 0.28 1.2 1198 0.31 4.5 1198 0.31 4.5 

8RW-18-12 961 0.66 9.7 671 1.06 9.8 949 0.93 13.2 

9RS-18-12 1320 0.08 0.0 1280 0.08 2.9 1280 0.08 2.9 

10C12-26-5 362 1.70 11.3 360 1.86 12.2 352 1.78 13.8 

11C20-26-5 802 0.58 6.3 525 0.80 8.2 577 0.72 10.3 

12RW-26-5 724 0.25 1.0 418 0.44 0.9 451 0.25 2.3 

13RS-26-5 1320 0.38 6.7 1310 0.40 8.7 1310 0.40 8.7 

14C12-26-12 386 1.39 17.0 373 1.50 18.8 376 1.34 19.4 

15C20-26-12 1127 0.99 2.0 1102 2.71 5.5 1080 2.24 10.6 

16RW-26-12 1140 1.49 6.1 1050 6.17 2.6 1070 4.04 29.8 

17RS-26-12 1120 0.33 0.5 1110 1.24 1.5 1030 0.10 6.0 
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The relationship among all the collected data was evaluated in order to explore possible 

interaction between the axial load capacity and other measured response.  Thus, a number of the 

data channels plotted versus time are shown in Figure 5.26 to Figure 5.28 for the Specimens 

10C12-26-12, 14C12-26-12 and 15C20-26-12, respectively. These figures include key data on 

the controller and on the specimens’ instrumentation. The responses in time domain plotted in 

these figures are: 

 (a) vertical load and displacement,  

(b) horizontal X and Y top displacements,  

(c) horizontal X and Y top forces,  

(d) top X and Y rotations,  

(e) top X and Y bending moments; and,  

(e) maximum compressive and tensile strains at a cross-section near the base 

As illustrated in (c) and (e) of these figures, both forces and moments were able to be 

controlled and held at zero when the axial force in the specimen was still low, and thus keeping 

an ideal fixed-free boundary conditions (K=2) as illustrated in Figure 5.25.a. However, these 

figures also show incremental lateral forces and bending moments as the gravity reaches an 

instability condition, and thus higher axial loads were achieved as these parasitic top forces and 

moments tended to stabilize the columns. The additional forces and moment at the top essentially 

changed the boundary conditions similar to those illustrated in Figure 5.25.b. 

As marked in (e) from Figure 5.26 to Figure 5.28, the maximum compressive and tensile 

strains at the critical section near the bottom increase proportionally with the axial load. Note 

that the compressive strain at the critical cross-section reaches a peak value about the same time 

the controller start adding forces and moments at the top, and eventually this strain response 

shows and inversion from compression to tension at about the same time the maximum 

compressive load was reached. Although not necessarily so, the point when the transition of 

boundary conditions occurs appears to be close to the point where the longitudinal compressive 

strains reach a peak. 
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(a) Normalized vertical compression force and displacement vs. time 

 
(b) Horizontal X and Y top displacement vs. time (min) 

 
(c) Horizontal X and Y top forces vs. time (min) 

 
(d) X and Y top rotations vs. time (min) 

 
(e) X and Y top moments vs. time (min) 

 
(f) Normalized maximum tensile and compressive strains at 6” from the base 

Figure 5.26. Histories of test response for the Specimen 10-C12-26-5 
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(a) Normalized vertical compression force and displacement vs. time 

 
(b) Horizontal X and Y top displacement vs. time (min) 

 
(c) Horizontal X and Y top forces vs. time (min) 

 
(d) X and Y top rotations vs. time (min) 

 
(e) X and Y top moments vs. time (min) 

 
(f) Normalized maximum tensile and compressive strains at 6” from the base 

Figure 5.27. Histories of test response for the Specimen 14-C12-26-12 
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(a) Normalized vertical compression force and displacement vs. time 

 
(b) Horizontal X and Y top displacement vs. time (min) 

 
(c) Horizontal X and Y top forces vs. time (min) 

 
(d) X and Y top rotations vs. time (min) 

 
(e) X and Y top moments vs. time (min) 

 
(f) Normalized maximum tensile and compressive strains at 6” from the base 

Figure 5.28. Histories of test response for the Specimen 15-C20-26-12 
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Figure 5.29 shows the first loading path of the axial load (P) vs. the lateral force (F) 

obtained for the most slender specimens 10C12-26-5 and 14C12-26-12 during the load case 

LC1; this experimental response was filtered and smoothed for an ease evaluation. It can be 

clearly observed in this figure that, again, the lateral force remain low (nominally at zero) with 

lower axial loads. However, as the specimen approaches the column buckling capacity expected 

as fixed-free, the lateral force starts increasing appreciably with a higher rate, an eventually 

exceeding the noise level in lateral force (880/2
12

 = 0.22 kip) represented in this figure as the 

grey area. As indicated in Figure 5.29, the axial load strength related to the point when the 

control is no longer satisfied (Pctrl) is a better assessment of the nominal critical load capacity 

(Pn) for the fixed-free column (K=2) as predicted by the AISC (2010). At the time perfect control 

is not longer justifiable, a transition of boundary conditions from those represented on Figure 

5.25.a to those on Figure 5.25.b also occurs; beyond this time, the ideal fixed-free boundary 

conditions are no longer valid, and so the maximum load is now coupled to a system with a 

lower effective length coefficient (0.5<K<2.0). As shown in this figure, the final maximum 

capacity in these two specimens is about 75% higher than the ideal fixed-free case as a 

consequence of the top lateral forces and moments added by the controller. 

 P (kip) P (kip) 

Pctrl = 222 k 

400

350

300

250

200

150

100

50

0

350

300

250

200

150

100

50

0
0             0.2            0.4           0.6            0.8              10           0.2         0.4          0.6          0.8            1

Pn = 207 k

Pn = 216 k

Pexp = 362 k
Pexp = 386 k

Pctrl = 225 k

Noise 

interval Noise 

interval

Lost of control

DOFs in control

Lost of control

DOFs in control

 
 F (kip) F (kip) 

 (a) Specimen 10C12-26-5 (b) Specimen 14C12-26-12 

Figure 5.29. Axial force (P) vs. lateral force (F) of the most slender specimens 
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Similarly to the previous figure, the first loading paths of the axial load (P) vs. the lateral 

force (F) obtained for all the specimens during LC1 are shown from Figure 5.30 to Figure 5.34. 

In these plots, the raw data varying within the noise interval is represented by the green signal 

and its filtered response is represented by the blue smooth curve. As before, these figures show 

that the system kept control (within the noise level interval) until a certain value of axial load, 

but then violated the input control commands when disturbing lateral forces were added by the 

controller with higher axial loads. 

From the plots shown in Figure 5.30 to Figure 5.34, approximate axial loads (Pctrl) where 

the system lost an ideal free-top control erere extracted and summarized in Table 5.5 for each 

specimen. Even though these extracted loads (Pctrl) are still approximate values, they represent 

the best reasonable experimental measurement of the column with fixed-free ideal boundary 

conditions. 
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 F (kip) F (kip) 

 (c) Specimen 1C5-18-5 (d) Specimen 18C5-26-12 

Figure 5.30. Axial force (P) vs. lateral force (F) of the CCFTs with 5.5 in. of diameter 
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 P (kip) P (kip) 

 
 F (kip) F (kip) 

 (a) Specimen 2C12-18-5 (b) Specimen 6C12-18-12 

 

 P (kip) P (kip) 

 
 F (kip) F (kip) 

 (c) Specimen 10C12-26-5 (d) Specimen 14C12-26-12 

 

Figure 5.31. Axial force (P) vs. lateral force (F) of the CCFTs with 12.75 in. of diameter 
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 P (kip) P (kip) 

 
 F (kip) F (kip) 

 (a) Specimen 3C20-18-5 (b) Specimen 7C20-18-12 

 

 P (kip) P (kip) 

  
 F (kip) F (kip) 

 (c) Specimen 11C20-26-5 (d) Specimen 15C20-26-12 

 

Figure 5.32. Axial force (P) vs. lateral force (F) of the CCFTs with 20 in. of diameter 
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 P (kip) P (kip) 

 
 Fx (kip) Fx (kip) 

 (a) Specimen 4Rw-18-5 (b) Specimen 8Rw-18-12 

 

 P (kip) P (kip) 

 
 Fx (kip) Fx (kip) 

 (c) Specimen 12Rw-26-5 (d) Specimen 16Rw-26-12 

 

Figure 5.33. Axial force (P) vs. lateral force (F) of the RCFTs oriented in weak axis 
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 P (kip) P (kip) 

 
 Fx (kip) Fx (kip) 

 (a) Specimen 5Rs-18-5 (b) Specimen 9Rs-18-12 

 

 P (kip) P (kip) 

 
 Fx (kip) Fx (kip) 

 (c) Specimen 13Rs-26-5 (d) Specimen 17Rs-26-12 

 

Figure 5.34. Axial force (P) vs. lateral force (F) of the RCFTs oriented in strong axis 
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Table 5.5. Extracted axial loads at the time the system lost ideal control 

 

Specimen 

AISC 

(2010) 

Maximum 

experimental 

Maximum 

controlled 

 

ratio 

  Pn  (kip) Pexp  (kip) Pctrl  (kip) Pctrl / Pn 

1C5-18-5 0.90   166    129 129 0.78 

18C5-26-12 1.51   140    141 141 1.00 

2C12-18-5 1.55   393    427 400 1.02 

6C12-18-12 1.90   472    581 500 1.06 

10C12-26-5 2.38   207    362 222 1.07 

14C12-26-12 2.72   216    386 225 1.04 

3C20-18-5 1.05 1469 1320 
+
 NA NA 

7C20-18-12 1.30 2190 1320 
+
 NA NA 

11C20-26-5 1.61   992    802 802 0.81 

15C20-26-12 1.78 1080  1127 1100 1.02 

4Rw-18-5 1.38   939  1070 950 1.01 

8Rw-18-12 1.65 1124    961 961 0.85 

12Rw-26-5 2.14   501    791 540 1.08 

16Rw-26-12 1.72   949  1140 1000 1.05 

5Rs-18-5 0.66 1731 1320 
+
 NA NA 

9Rs-18-12 1.04 2209 1320 
+
 NA NA 

13Rs-26-5 1.35 1199  1320 1200 1.00 

17Rs-26-12 1.46 1323  1120 1120 0.85 
(+) MAST axial capacity (1320 kips) reached before getting the buckling strength 

 

As shown in the Table 5.5, the maximum controlled loads extracted with the approach 

described previously are much closer in general to the expected nominal load as calculated by 

the AISC (2010). 

 

However, the experimental P-F path response obtained in some specimens remains in 

control for the entire load case; the latter is the case of the specimens 3, 5, 7 and 9 where the 

buckling load was not met (NA) since the test stop at the MAST maximum axial capacity. For 

these cases, another methodology will be used to extrapolate the buckling load capacity based on 

the earlier axial load response. This methodology is presented in the following section, and those 

results complement the values obtained in this section. 
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5.4.5. Specimens with axial load strength above the MAST capacity 

It has been documented in the previous tables that the crosshead ran out of capacity 

before the buckling loads were reached in the shortest circular specimens with 20 inches 

diameter (3C20-18-5 and 7C20-18-12) and the shortest rectangular specimens with free 

translation towards the strong axis (5Rs-18-5 and 9Rs-18-12). In this section, an estimation of 

the buckling load based on the experimental compressive path obtained during the tests of these 

specimens is given. In the literature, there are methodologies that aim to estimate the unstable 

load based on the response with a lower load.  Southwell (Horton et al., 1971) noticed than the 

lateral displacement – axial load ratio (/P or /P) keep a linear relationship with the lateral 

displacement ( or ). He also noticed than the slope of that linear relationship is the inverse 

value of the buckling load. Similar linear relationships (Horton et al., 1971) were found by 

Ayrton and Perry (1/P vs. 1/), and by Donnel (P vs. P/). 

In order to calibrate the accuracy of these approaches, these methods were also used in 

the remaining tests. 

The first method, commonly referred as the Southwell plot, was initially developed by 

Ayrton and Perry in 1886, but later independently rediscovered by Southwell in 1932, and 

reexamined by Donnell in 1938. Horton et al. (1971) present an historical review of this 

approach in its three available forms (Ayrton-Perry, Southwell and Donnell forms), as well as its 

derivation and some experimental validation. This method assumes that the first order terms in 

the series expansion solution derived for columns buckling elastically are predominant (so 

second order terms are neglected), and thus the axial force and the relative displacements can be 

represented by a linear relationship, where the elastic critical load is implicitly included 

(Timoshenko, 1961); a linear relationship will not be exhibit if the second order terms are 

considerable. This linear relationship can be plotted in different forms, as those illustrated in 

Figure 5.35 and suggested by Ayrton-Perry (1/P vs. 1/), Southwell (/P vs. ) or Donnell (P vs. 

P/). From these forms, the elastic buckling load is given by either the inverse of the initial 

abscissa from the Ayrton-Perry form, the reciprocal of the slope from the Southwell form, or the 

y-intercept from the Donnell form. 
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Figure 5.35. Linear relationship in columns with elastic buckling 

 

As mentioned before, the previous approach (from now on just called Southwell or secant 

approach) is only valid in the elastic buckling range when both forces and displacements keep a 

linear relationship. Besides, this correlation is held linear only when relative displacements ( 

are used (no linear with the absolute displacements: +o), and thus the effects of the initial 

imperfection (o) are not included. Therefore, the application of this method is limited only to 

the determination of the Euler load (PE). 

 

The second method proposed in this research is based on the fact that, in either the elastic 

or the inelastic buckling ranges, the critical load is given when the tangent slope in the P- curve 

reach zero. Thus, the plot axial force (P) vs. P- tangent (dP/d) is proposed (Figure 5.36.c) for 

the determination of the buckling load that accounts for the geometric imperfection and the 

material non-linearities (i.e. yielding in the steel, cracking and crushing in the concrete. Figure 

5.36.a). Similar to the Donnell form (Figure 5.36.b), where the secant P- is used for the 

estimation of the Euler load (PE), the critical load (Pn) from the tangent form is defined by its y-

intercept or when the tangent becomes zero. 
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 (a) P- curve (b) Donnell (secant) form (c) Tangent form 

Figure 5.36. Proposed tangent form for elastic and inelastic buckling of columns 

 

In this approximate method (from now on just called the tangent approach), the 

relationship P-dP/d tends to be linear when the column remains elastic (elastic buckling range 

and low axial loads in the inelastic buckling range). In addition, geometric imperfections are 

included since the P- slope follows the path defined by the initial imperfection (no matter if it is 

used relative  displacements or absolute +o displacements). As the load increases beyond the 

elastic limit for short columns within the inelastic buckling range, material nonlinearities (i.e. 

steel yielding, concrete cracking and crushing) change the tangent and the buckling load 

estimated linearly. Even if approximate, this method has some advantages over the Southwell 

plot. Figure 5.37 shows the application of the tangent plot using the analytical results obtained 

with fiber analysis for a circular CFT column with nominal strength parameters (HSS20x0.25, 

Fy=42 ksi, fc’=5 ksi, o=L/500) and different slenderness. In these figures, Pcr is the buckling 

load obtained from the analysis represented by the continuous line, and PT is the estimated load 

based on the tangent plot defined by two lower loads (0.6Pcr and 0.8Pcr) and represented by the 

dashed line. The prediction of the buckling load based on this method for these cases is 

reasonable (<5.5%), except for the shortest column (L=9 ft, =0.49) shown in Figure 5.37.a. 
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 P (kip) P (kip) 

 
 dP/d (x10

4
) dP/d 

(a) L= 9 ft, =0.49 (b) L= 18 ft, =0.97 

 

 P (kip) P (kip) 

 
 dP/d dP/d 

(a) L= 26 ft, =1.41 (b) L= 55 ft, =2.98 

 

Figure 5.37. Application of the tangent form on CCFTs with different slenderness 
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Figure 5.38 shows the influence of the initial imperfection on the analytical results for the 

mentioned cross-section (CCFT 20x0.25) with a length of L=18 ft (=0.97). The initial 

imperfections selected are L/250=0.864 in, L/500=0.432 in, and L/1000=0.216 in. As seen in this 

figure, the P-dP/d curves tends to be linear for low axial loads, but the slope changes when the 

axial load approaches the instability load. Changes in the slope seem to be lower for larger initial 

imperfections, where geometric nonlinearities are predominant. The predictions using the tangent 

form for these three cases are not exact (error<6%), however, the critical load predictions (Pn) 

with this methodology are more accurate than the predictions obtained with the secant or the 

Southwell plot that are more related to the Euler load (PE). 

 

P (kip)

dP/d

 

Figure 5.38. Application of the tangent form on a CCFT with different imperfections 
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As mentioned at the beginning of this section, the application of the secant plot (or 

Donnell form, variant of the Southwell plot) and the tangent plot (proposed in this research) 

allows to rough estimate the buckling load for those cases (specimens 3, 5, 7 and 9) when the 

load history firstly reached the 1320 kip of maximum axial capacity of the testing system. 

Figure 5.39 shows the results of the application of the secant and the tangent plots for the 

latter cases (specimens 3, 5, 7 and 9). In this figure, the blue thick lines represent a filtered and 

smoothed record of the raw data denoted by the green thin lines. Additionally stated in this figure 

are the maximum load (Pmax) applied in the test and the y-intercept of the secant plot (PS, rough 

estimator of the PE) and the tangent plot (PT, rough estimator of the Pn or Pcr); the points used for 

the calculation of the slopes and the extrapolated line to the y-intercept are included in these 

plots. 

As observed in Figure 5.39, the smoothed experimental data do not exhibit a clear linear 

relation. This may be attributed to the influence of the second order terms in the series expansion 

solution. Nevertheless, this approach may be seen at a first approach to rough estimate the 

experimental axial load capacity in these specimens where the buckling instability was not met 

during the test. 

A summary of the buckling load capacities obtained from Figure 5.39 are shown in Table 

5.6. In this table,  and Pn are respectively the slenderness parameter and the buckling capacity 

calculated with the AISC (2010) Specifications, Pexp is the maximum experimental axial load 

applied on the specimens, PS is an estimator of the Euler load obtained with the secant plot, and 

PT is an estimator of the buckling load capacity (Pn) obtained with tangent plot. 

 

Table 5.6. Summary of the maximum axial loads obtained for the specimens where buckling was 

not reached in the test 

 AISC (2010) Tests Southwell Tangent  

Specimen  Pn Pexp PS PT PT / Pn 

 - (kip) (kip) (kip) (kip) ratio 

3C20-18-5 1.05 1469 1320 1918 1478 1.01 

7C20-18-12 1.30 2190 1320 2025 1791 0.82 

5Rs-18-5 0.66 1731 1320 1800 1705 0.98 

9Rs-18-12 1.04 2209 1320 3300 1918 0.87 
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(a) Specimen 3C20-18-5 (b) Specimen 7C20-18-12 

 

 P (kip) P (kip) 
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4
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(c) Specimen 5Rs-18-5 (d) Specimen 9Rs-18-12 

 

Figure 5.39. Application of the tangent and the secant form on the CCFT specimens that did not 

buckle with the full compressive capacity of the MAST system 
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5.5. Experimental buckling loads from processed data 

The previous section shows the maximum axial loads obtained for each specimen from 

the raw data; however, the direct extraction of these results showed significant inconsistencies 

with analytical results. As a consequence, the source of these inconsistencies where explored and 

discussed and, when possible, reasonable values of the buckling loads where extracted from the 

processed data. In this section, the experimental buckling loads extracted for each specimen from 

the processed data are presented and summarized. 

 

In section 5.4.4, it was observed that the controller lost perfect control by violating the 

free top control with non-zero forces and moments that increased at about the buckling load of 

the ideal BCs. Thus, this methodology was used to define the maximum controlled load in each 

specimen. These extracted loads summarized in Table 5.5, represent the best direct measurement 

for the column with the ideal support conditions. 

The latter methodology cannot be used in those specimens where the MAST capacity was 

reached before the specimen buckling load (Specimens 3, 5, 7 and 9). Instead, another method 

presented in section 5.4.5 (called tangent plot) was used in order to calculation by extrapolation 

the axial buckling load value from the measured and available data with lower axial loads. The 

extrapolated buckling load values are reported in Table 5.6. 

In addition, in section 5.4.3 discussed the results of two specimens (5 and 16) that 

developed a higher load capacity due to an initial imperfection shape in double curvature. For 

these cases, an effective length factor of K=1.5 was adopted to account for these effects as shown 

in Table 5.3. 

Table 5.7 shows a summary of the corrected critical load values that were reported in 

Table 5.3, Table 5.5 and Table 5.6. The summarized buckling load values shown in Table 5.7 are 

normalized with its squash capacity (Po, Equation 5.2) and plotted vs. the slenderness parameter 

() in Figure 5.39; for comparison purposes, the analytical AISC (2010) column curve and the 

Euler and plastic limits are also included in this figure. 
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Table 5.7. Experimental buckling loads from the processed data 

 

Specimen 

 AISC 

(2010) 

Maximum 

raw data 

Adjusted 

critical load 

 

ratio 

 K  Pn  

(kip) 

Pexp  (kip) Pcr, (kip) Pcr / Pn 

1C5-18-5 0.5 0.90   166    129 129 0.78 

18C5-26-12 0.5 1.51   140    141 141 1.00 

2C12-18-5 2.0 1.55   393    427 400 
a
 1.02 

6C12-18-12 2.0 1.90   472    581 500 
a
 1.06 

10C12-26-5 2.0 2.38   207    362 222 
a
 1.07 

14C12-26-12 2,0 2.72   216    386 225 
a
 1.04 

3C20-18-5 2.0 1.05 1469 1320 
+
 1478 

b
 1.01 

7C20-18-12 2.0 1.30 2190 1320 
+
 1791 

b
 0.82 

11C20-26-5 2.0 1.61   992    802 802 0.81 

15C20-26-12 2.0 1.78 1080  1127 1100 
a
 1.02 

4Rw-18-5 2.0 1.38   939  1070 950 
a
 1.01 

8Rw-18-12 2.0 1.65 1124    961 961 0.85 

12Rw-26-5 2.0 2.14   501    791 540 
a
 1.08 

16Rw-26-12 1.5 1.72   949  1140 1000 
a
 1.05 

5Rs-18-5 1.5 0.66 1731 1320 
+
 1705 

b
 0.98 

9Rs-18-12 2.0 1.04 2209 1320 
+
 1918 

b
 0.87 

13Rs-26-5 2.0 1.35 1199  1320 1200 
a
 1.00 

17Rs-26-12 2.0 1.46 1323  1120 1120 0.85 
(+) MAST axial capacity (1320 kips) reached before getting the buckling strength 

(a) Experimental axial load given at the instant the controller added significant top forces a moments. 

(b) Axial load extrapolated from the tangent plot 

 

 

Contrary to the values plotted in Figure 5.6, the buckling loads processed in Figure 5.39 

are more consistent with the boundary conditions used in the test and with the expected 

analytical values. The dispersion still observed in Figure 5.39 is due to differences with the 

initial imperfections. 

 

The next section present results from advanced computational analysis that aims to 

predict the column response of the CFT specimens. 
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Figure 5.40. Experimental critical load ratios (Pexp/Po) from processed data 
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5.6. Advanced computational analysis 

In order to clarify the differences between the maximum experimental axial capacity and 

the prediction with the AISC Specification, advanced computational analyses are also performed. 

The analyses presented in this section are carried out with the software OpenSees (2010) 

with a special version compiled by Denavit (2010) that, in addition to the standard OpenSees 

framework, includes comprehensive constitutive material models and robust 3D distributed-

plasticity beam element formulations calibrated and developed by Tort and Hajjar (2007) for 

RCFTs and Denavit and Hajjar (2010) for CCFTs. 

Thus, the specimens tested in this project were modeled with the following 

characteristics. 

 The concrete core was modeled with the Chang and Mander (1994) model as adapted by 

Tort and Hajjar (2007) for RCFTs and Denavit and Hajjar (2010) for CCFTs. 

 The concrete compressive strength used in the analysis corresponds to the measured 

strength obtained from the test of cylinders at the day of testing; these results are 

summarized in Chapter 3. The Young’s modulus and the tensile strength of the concrete 

are implicitly calculated in the Chang-Mander model; however, these calculated values 

are very close to those obtained from the concrete cylinder tests. 

 The steel tube was modeled with the Shen et al. (1995) model as adapted by Denavit and 

Hajjar for CCFTs and Tort and Hajjar for RCFTs. 

 The steel yield stress, ultimate stress, and the Young’s modulus used in the analyses 

correspond to the measured parameters obtained from the coupon tests. These results are 

also summarized in Chapter 3. 

 The geometric and the cross-section properties (as the member length, thickness and 

diameter or base and width) correspond to those values measured and summarized in 

Chapter 3. 

 The specimen was subdivided into 6 and 7 sub-members for the specimens with 18 and 

26 feet of length, respectively. The integration points are defined at those points where 

the instrumentation (i.e. string pots, strain gages) was placed along the specimen. 
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 In addition, the coordinates of the integration points between sub-members correspond to 

the initial out-of-straightness and out-of-plumbness measured at the surveying. These 

imperfections were summarized in Table 5.1 and illustrated in Figure 5.5. 

 The members were modeled with the mixed 3D finite beam element developed by 

Denavit and Hajjar for CCFTs and Tort and Hajjar for RCFTs. Since there was no 

evidence of slip between the concrete and steel surfaces in contact during the test, slip 

effects were ignored in the analysis. 

 The boundary conditions are assumed fixed at the base and free at the bottom, and 

therefore the effective length factor is K = 2. 

 In regard to the loading conditions, two sets of considerations were used. The details and 

results of these two loading conditions are presented below. 

5.6.1. Monotonic compression loading with no parasitic forces 

Initially, a monotonic compression force was applied until achieving the maximum 

capacity, followed by the unloading up to zero axial load. This loading condition intended to 

determine the axial load capacity of the specimens with ideal fixed–free boundary conditions. 

Differences between the experimental and analytical response is expected since: 

 The parasitic forces and moments induced by the crosshead when the axial load 

approaches the buckling capacity are not included in the analysis. Thus, higher 

differences are expected in the high axial load range; nonetheless, very similar response 

is expected in the test and the analysis in the lower axial load range. 

 Due to the fact that the disturbing forces and moment are not included in the model, and 

the top is modeled as fixed-free, the applicable effective length factor is equal to K = 2 in 

all the specimens analyzed in this section (specimens 2 to 17). 

 There is no limit in the level of axial load in the analysis as occurs in tests which were 

limited by the MAST capacity of 1320 kip in axial load. 

 Since the unloading takes place in the analysis and the test under different conditions 

(forces, moments, displacements), the descending branch of these responses may not be 

consistent. 

 A second cycle in the analysis is not presented since the residual displacement in the 

analysis may not correspond to the residual in the test. 
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Comparison between the experimental response and the analytical prediction with the 

characteristics and assumptions stated above are shown from Figure 5.41 to Figure 5.48. The 

following observations can be made from these figures: 

 The analytic prediction follows reasonably the experimental path in the initial range with 

low axial loads. 

 The parasitic forces and moments created by the crosshead near the instability load are 

the main cause of difference between the analytical and experimental curves in the high 

axial load range. This is the case of the high-slender specimens 4, 6, 10, 12, 14 and 16, 

where the analytical prediction predicts consistent the initial response, but start diverging 

when the load approaches the buckling load. For these specimens, the disturbing forces 

added by the controller changes the boundary conditions during the test in high axial 

loads, and so the experimental response ends with a higher axial capacity. In turn, the 

experimental response ends with the lower load that corresponds to the ideal fixed-free 

configuration assumed in the model. 

 The analytical nominal axial capacity obtained in those specimens where the system ran 

out of capacity, and thus the specimens did not buckle, is an accurate prediction if the 

system would have not had such limit and no additional parasitic forces would have been 

triggered. This is the case of the specimens 3, 5, 7 and 9, where the experimental curves 

reach the 1320 kip of peak capacity of the system, but the analytical curve keep 

increasing until the buckling capacity is met. 

 Since the analytical and experimental reach the peak load with different conditions 

(forces, moments, displacements), the descending branch of these responses are not 

consistent as expected. 

Even thought there exists some differences in these responses since the model and the test 

are subjected to different conditions (i.e. the disturbing top forces and moments), the analysis 

performed in this section presents in some cases a strong correlation in those cases where the 

controller handled an appropriate control of the top as free. In contrast, a weak correlation is 

observed in those specimens where the disturbing forces are high compared to its lateral 

capacity, which is the case of the specimens with the highest slenderness. 
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P (kip) P (kip) 

  
  (in) M (kip-ft) 

(a) Axial force vs. Top displacement (b) Axial force vs. Base moment 

Figure 5.41. Experimental response vs. Analytical prediction for the Specimen 2C12-18-5 
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(a) Axial force vs. Top displacement (b) Axial force vs. Base moment 

Figure 5.42. Experimental response vs. Analytical prediction for the Specimen 6C12-18-12 
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  (in) M (kip-ft) 

(a) Axial force vs. Top displacement (b) Axial force vs. Base moment 

Figure 5.43. Experimental response vs. Analytical prediction for the Specimen 10C12-26-5 
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(a) Axial force vs. Top displacement (b) Axial force vs. Base moment 

Figure 5.44. Experimental response vs. Analytical prediction for the Specimen 14C12-26-5 
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  (in) M (kip-ft) 

(a) Axial force vs. Top displacement (b) Axial force vs. Base moment 

Figure 5.45. Experimental response vs. Analytical prediction for the Specimen 3C20-18-5 
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Figure 5.46. Experimental response vs. Analytical prediction for the Specimen 7C20-18-12 
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P (kip) P (kip) 

  
  (in) M (kip-ft) 

(a) Axial force vs. Top displacement (b) Axial force vs. Base moment 

Figure 5.47. Experimental response vs. Analytical prediction for the Specimen 11C20-26-5 
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(a) Axial force vs. Top displacement (b) Axial force vs. Base moment 

Figure 5.48. Experimental response vs. Analytical prediction for the Specimen 15C20-26-12 
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  (in) M (kip-ft) 

(a) Axial force vs. Top displacement (b) Axial force vs. Base moment 

Figure 5.49. Experimental response vs. Analytical prediction for the Specimen 4Rw-18-5 
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(a) Axial force vs. Top displacement (b) Axial force vs. Base moment 

Figure 5.50. Experimental response vs. Analytical prediction for the Specimen 5Rs-18-5 
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(a) Axial force vs. Top displacement (b) Axial force vs. Base moment 

Figure 5.51. Experimental response vs. Analytical prediction for the Specimen 8Rw-18-12 
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(a) Axial force vs. Top displacement (b) Axial force vs. Base moment 

Figure 5.52. Experimental response vs. Analytical prediction for the Specimen 9Rs-18-12 
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(a) Axial force vs. Top displacement (b) Axial force vs. Base moment 

Figure 5.53. Experimental response vs. Analytical prediction for the Specimen 12Rw-26-5 
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(a) Axial force vs. Top displacement (b) Axial force vs. Base moment 

Figure 5.54. Experimental response vs. Analytical prediction for the Specimen 13Rs-26-5 

0 2 4 6 8
0

100

200

300

400

500

600

700

800

 

 

Experiment

Analysis

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

 

 
Cross-section capacity

Beam-column capacity

Experiment

Analysis

0 0.5 1 1.5 2 2.5 3 3.5
0

200

400

600

800

1000

1200

1400

 

 

Experiment

Analysis

0 200 400 600 800
0

500

1000

1500

2000

2500

 

 
Cross-section capacity

Beam-column capacity

Experiment

Analysis



185 
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(a) Axial force vs. Top displacement (b) Axial force vs. Base moment 

Figure 5.55. Experimental response vs. Analytical prediction for the Specimen 16Rw-26-12 
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(a) Axial force vs. Top displacement (b) Axial force vs. Base moment 

Figure 5.56. Experimental response vs. Analytical prediction for the Specimen 17Rs-26-12 
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The buckling loads (E[Pn]) obtained from this set of computational analyses are 

summarized in Table 5.8. In this table, the experimental values previously extracted from the raw 

and processed or adjusted data are also shown. In addition, this table shows the effective length 

factor (K), the slenderness parameter () and the buckling load (Pn) that is obtained with the 

AISC (2010) Specifications.  

Table 5.8. Buckling loads from computational analysis 

 

Specimen 

 AISC 

(2010) 

Maximum 

raw data 

Adjusted 

critical load 

Analytical 

critical load 

 

ratio 

 K  Pn (kip) Pexp (kip) Pcr, (kip) E[Pn] (kip) E[Pn]/Pn 

2C12-18-5 2.0 1.55   393    427 400 
a
 429.5 1.09 

6C12-18-12 2.0 1.90   472    581 500 
a
 540.4 1.14 

10C12-26-5 2.0 2.38   207    362 222 
a
 262.2 1.27 

14C12-26-12 2,0 2.72   216    386 225 
a
 285.1 1.32 

3C20-18-5 2.0 1.05 1469 1320 
+
 1478 

b
 1486.7 1.01 

7C20-18-12 2.0 1.30 2190 1320 
+
 1791 

b
 2168.7 0.99 

11C20-26-5 2.0 1.61   992    802 802 825.3 0.83 

15C20-26-12 2.0 1.78 1080  1127 1100 
a
 1146.2 1.06 

4Rw-18-5 2.0 1.38   939  1070 950 
a
 901.7 0.96 

8Rw-18-12 2.0 1.65 1124    961 961 946.2 0.84 

12Rw-26-5 2.0 2.14   501    791 540 
a
 601.1 1.20 

16Rw-26-12 2.0 2.30   534  1140 1000 
a
 673.0 1.26 

5Rs-18-5 2.0 0.88 1501 1320 
+
 1705 

b
 1521.0 1.01 

9Rs-18-12 2.0 1.04 2209 1320 
+
 1918 

b
 1877.5 0.85 

13Rs-26-5 2.0 1.35 1199  1320 1200 
a
 1275.9 1.06 

17Rs-26-12 2.0 1.46 1323  1120 1120 1126.9 0.85 
 (+) MAST axial capacity (1320 kips) reached before getting the buckling strength 

(a) Experimental axial load given at the instant the controller added significant top forces a moments. 

(b) Axial load from the tangent plot 

 

As seen in this table, the ratio E[Pn]/Pn still shows some scattering with the Specifications 

that are still attributed to the dispersion of the initial imperfections; however, these analytical 

response follows fittingly the AISC column curve as shown in Figure 5.57. This figure shows the 

slenderness parameter () in the horizontal axis and the predicted buckling load normalized with 

the squashing capacity (Po) in the vertical axis. Similarly, Figure 5.58 shows the final 

experimental and analytical column curves that are obtained, respectively, from the adjusted 

experimental data and the computational analysis presented in this section. This concluding 

figure illustrates a reasonable column behavior of the CFT columns, with a relatively low 

dispersion as a consequence of the variance in each specimen imperfection. 
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Figure 5.57. Critical load ratios (Pexp/Po) from computational analysis 
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Figure 5.58. Experimental and analytical critical load ratios and AISC column curve 
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5.6.2. Step-by-step analysis 

Except for the loading conditions, the assumptions in this set of analysis are the same to 

those stated before in 3.6.1. This analysis set intends to follow the same experimental response as 

collected during this load case LC1. 

As reminder, LC1 was performed in CFT specimens with the base fixed and the top 

controlled by the crosshead with an incremental vertical displacement downward while the 

lateral forces, bending moments and twisting displacement were fixed to zero; these ideal 

conditions were considered in the previous analysis set, and still some differences were observed 

for the output response (axial strength, lateral deflection and base moments). However, as 

discussed before, the differences are mainly due to a lack of control in the crosshead during the 

test that modifies the specimen response in high axial load range. Even the resolution noise in 

lateral force (±0.22 kip) and bending moment (±2.18 kip-ft) are considerable in the weakest and 

the most slender specimens. This is even worst when additional crosshead forces and moments 

are added to the member. 

Thus, in this analysis set the top of the column is driven with the displacements and 

forces recorded during LC1. Unfortunately, the vertical displacement history computed by the 

controller in the bottom center of the crosshead cannot be applied since it is unknown the 

contribution on the real shortening in the element and the system compliance (i.e. deformations 

in the crosshead, force train, swivel bearings and connections). A discussion of the crosshead 

deflection was made in a previous section in this Chapter, where it was observed that about 40% 

to 60% of the computed global displacement corresponded to the effective shortening in columns 

under pure compression placed in the crosshead center; this percentage depends on the axial 

rigidity and the pressure size, so the assumption of a constant reduction factor for analysis 

purposes would be inaccurate. 

The LVDT data is also useless since the relative shortening was measured only in some 

segments along the specimen (5 ft at bottom and 1 ft at the top). In addition, the vertical 

displacement calculated from the strain gauge data may be inaccurate since a considerable 

amount of strain during this LC1 is due to parasitic moments induced by the crosshead at the top, 

as well as second order flexure at the base as a consequence of the large out-of-plumbness. 
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On the other hand, the application of the lateral forces and bending moments coming 

from the crosshead are not ideal since the level of noise on these histories are still relatively high 

in the most slender and the weakest specimens. A smoothing process on these stories may 

alleviate the uneven response, but some inaccuracies may be obtained with a high smoothness. 

 

 

Based on the above mentioned caveats, the instantaneous vertical force and lateral 

displacement was chosen as a step-by-step input as loading conditions for the following analysis 

set; this input data will be useful also during the following load cases (LC2 and LC3). Addition 

of the lateral displacement is intended to account for the real directionality of the specimen as a 

consequence of the imperfections and the crosshead forces (frictional and parasitic forces). The 

critical axial load response cannot be predicted since the instantaneous experimental axial force 

is applied as input; the latter is a consequence of an over predicted displacement computed by the 

controller due to the system compliance. However, the inclusion of this input aims to obtain a 

more accurate overall response such as the base moment. 

 

 

Comparison between the experimental axial force – base moment path and its analytical 

prediction from these step-by-step analyses with the assumptions previously stated are shown 

from Figure 5.59 to Figure 5.62. As shown in these figures, the analytical prediction follows 

reasonably well the experimental P-M path in the loading path. However, the analytical moment 

predictions after the peak axial load are over predicted compared to those measured in the tests. 

These additional moments come from additional lateral forces over-predicted in the analysis after 

the maximum axial load. These additional lateral forces and moments in the post-peak do not 

vanish during unloading and thus the unloading analytical P-M paths are shifted but parallel to 

the unloading path in the tests, and they remain as residuals when the total axial load is released. 
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(a) Specimen 2C12-18-5 (b) Specimen 6C12-18-12 

 

(c) Specimen 10C12-26-5 (d) Specimen 14C12-26-12 

Figure 5.59. Experimental response vs. Analytical prediction for the C12 Specimens 
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(a) Specimen 3C20-18-5 (b) Specimen 7C20-18-12 

 

(c) Specimen 11C20-26-5 (d) Specimen 15C20-26-12 

Figure 5.60. Experimental response vs. Analytical prediction for the C20 Specimens 
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(a) Specimen 4Rw-18-5 (b) Specimen 8Rw-18-12  

 

(a) Specimen 12Rw-26-5 (b) Specimen 16Rw-26-12 

Figure 5.61. Experimental response vs. Analytical prediction for the Rw Specimens 
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(a) Specimen 5Rs-18-5 (b) Specimen 9Rs-18-12 

 

(a) Specimen 13Rs-26-5 (b) Specimen 17Rs-26-12 

Figure 5.62. Experimental response vs. Analytical prediction for the Rs Specimens 
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5.6.3. Column curves with ideal conditions 

The axial load capacity that was obtained in the tests from the processed data was 

collected and documented in Section 5.5. In Section 5.6.1, buckling load capacities were 

obtained from computational analysis; both the experimental and analytical responses were 

illustrated at the end of Section 5.6.1, and the buckling loads show to follow fittingly the column 

curve of the Specifications. However, the extracted and computed buckling loads presented some 

dispersion as a consequence of the large distribution of the initial out-of-plumbness and the 

initial out-of-straightness that was measured in every specimen. 

In this section, buckling loads are again computed with the models calibrated in Sections 

5.6.1 and 5.6.2. These analyses are performed in cantilever CFT columns with different lengths. 

Analytical column curves are obtained from these analyses and then compared with the column 

curve of the AISC (2010) Specifications. 

The analyses in this section use the same assumptions that in Sections 5.6.1, except for 

the material properties and the initial imperfections. Nominal material properties are used for 

these analyses; in addition, the initial imperfections given in the model are defined by the shape 

function illustrated in Figure 5.63 this shape-function has been widely used in the calibration of 

classic stability solutions (i.e. Timoshenko 1961). This function defines the out-of-straightness 

() through a cosine function that is in terms of the column length (L) and the out-of-plumbness 

(o). In these analyses, an out-of plumbness of KL/1500 and KL/1000 were assumed; since K=2, 

this limits are L/750 and L/500, respectively. The first value is related to the average 

imperfection that was used in calibration of the column curve in the AISC Specifications 

(Bjorhovde 1972; SSRC 1998). The second value is related to the maximum tolerance allowed in 

the Standards (i.e. ASTM A6, 2009; AISC, 2005d; ACI-117, 2006). 

The results of these analyses are illustrated from Figure 5.64 to Figure 5.66. In these 

figures, the buckling load obtained in the analysis for each column length is plotted vs. the 

effective length (KL), with blue circles with KL/1500 of out of plumbness, and with red circles 

with KL/1000 of out-of-plumbness. The AISC column curve is included in these plots as a 

continuous black curve, where the cross-section strength (or the maximum axial force when 

KL=0) is calculated with Equation 5.2 and the effective length (KL) from Equation 5.3. 
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Figure 5.63. Shape function used to represent the initial imperfection 

These figures show in general a good fitting of the analytical curves with the column 

curve of the Specifications. The larger differences are for shorter columns, and they are related to 

the different confinement effects considerations in the concrete, and different maximum stress 

and local buckling occurrence in the steel tubes. A confined concrete strength (fcc) that is equal or 

greater that the concrete strength (fc’) is implicit in the constitutive concrete model and so in the 

analytical curves, while the Specifications uses a value of 0.95fc’ in CCFTs and 0.85fc’ in 

RCFTs. The confinement effects have a much lower impact in the elastic buckling range where 

the analysis and the Specifications show a good correlation. In addition, the steel model used in 

the analysis is a curve with smooth transition from the yielding (Fy) to the ultimate stress (Fu); 

the stress in compression has a softening if the local buckling conditions are met. In turn, the 

Specifications assumed a stress equal to the yielding stress (Fy) in both tension and compression, 

and there is no softening due to local buckling. Nevertheless, the column curve of the current 

AISC Specifications is, in most cases, a lower bound of the analytical results, except for the 

rectangular column case with the buckling oriented in the weak axis. This is justified by the local 

buckling occurrence in the analysis that is not considered in the CFT design equations. 

The analytical curves with KL/1500 (L/750) and KL/1000 (L/500) of out-of-plumbness do 

not present significant differences. Thus, a column curve calibrated with either imperfection is 

valid and with negligible practical implications. 
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Figure 5.64. Analytical column curves for a CCFT cross-section with 12.75 inches of diameter 
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Figure 5.65. Analytical column curves for a CCFT cross-section with 20 inches of diameter 
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Figure 5.66. Analytical column curves for a RCFT cross-section 
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5.7. Experimental extraction of the effective stiffness 

Experimental moment vs. curvature (M2-) response histories at critical cross-sections 

from the buckling loading case (LC1) are illustrated in Figure 5.67 to Figure 5.71. The 

experimental moments shown in these figures are computed at the critical cross-section from the 

member equilibrium with the crosshead data; in turn, the curvature is computed from the strain 

gauge data placed at the critical cross-section. The critical cross-section is located: 

(a) Near the base for the specimens tested as fixed-free (K=2, specimens 2 to 17) 

(b) In the midspan for those specimens tested as fixed-fixed (K=0.5, specimens 1 and 18). 

 

Also in these figures, elastic tangent stiffness in the loading (EIexpL) and in the unloading 

(EIexpU) branches are also shown, as well as the effective flexural stiffness (EIeff) calculated from 

the AISC (2010) Specifications and the corresponding experimental-to-analytical ratios. All 

these values are summarized in Table 5.9. As noted in this table, the coefficient related to the 

concrete contribution to the total flexural stiffness (C3) ranges for the 18 CFT specimens between 

0.69 and 0.77. 

 

Both tangent stiffness in the loading and the unloading characterize elastic behavior. 

However, as noted in Figure 5.67 to Figure 5.71, the experimental stiffness values extracted from 

the unloading show less dispersion than those extracted from the loading branch; the high 

dispersion in the loading data is a consequence of data issues and calculations with very low data 

values. 

 

The elastic stiffness extracted from the unloading data varies from 0.73 to 1.62 of the 

corresponding stiffness obtained with the AISC Specifications, with an average of 1.1 and a 

standard deviation of 0.20. 

 

More details of these extracted stiffness values in this section for this load case LC1 will 

be evaluated and discussed integrally with other load cases in Chapter 9. 
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Table 5.9. Effective flexural stiffness extracted from moment-curvatures during LC1 

Specimen AISC (2010) Experimental Ratios 

 C EIeff 

(kip-in
2
) 

EIexpL 

(kip-in
2
) 

EIexpU 

(kip-in
2
) 

EIexpL 

/ EIeff 

EIexpU 

/ EIeff 

1C5-18-5 0.77 341885 302763 405202 0.8856 1.1852 

18C5-26-12 0.77 396485 432367 434111 1.0905 1.0949 

2C12-18-5 0.74 8509246 8630078 10781215 1.0142 1.2670 

6C12-18-12 0.74 10229509 6877299 7923266 0.6723 0.7746 

10C12-26-5 0.74 9367575 6956923 8351287 0.7427 0.8915 

14C12-26-12 0.74 9803547 11731905 7149629 1.1967 0.7293 

3C20-18-5 0.69 40315751 43355559 55151947 1.0754 1.3680 

7C20-18-12 0.69 50555345 18228235 54453162 0.3606 1.0771 

11C20-26-5 0.69 45410137 35159252 50355301 0.7743 1.1089 

15C20-26-12 0.69 49207024 59373195 79799030 1.2066 1.6217 

4Rw-18-5 0.75 21081046 21865261 21867369 1.0372 1.0373 

8Rw-18-12 0.75 24832498 24983976 27596355 1.0061 1.1113 

12Rw-26-5 0.75 22738774 52458353 20996302 2.3070 0.9234 

16Rw-26-12 0.75 24214058 33967481 28415197 1.4028 1.1735 

5Rs-18-5 0.75 51297809 51297809 51297809 1.0000 1.0000 

9Rs-18-12 0.75 62147773 70599870 67194172 1.1360 1.0812 

13Rs-26-5 0.75 56209690 62477071 61409086 1.1115 1.0925 

17Rs-26-12 0.75 60389479 76290029 68433358 1.2633 1.1332 
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 (c) Specimen 1C5-18-5 (d) Specimen 18C5-26-12 

Figure 5.67. Moment-Curvature from LC1 for the C5 set 
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Figure 5.68. Moment-Curvature from LC1 for the C12 set 
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Figure 5.69. Moment-Curvature from LC1 for the C20 set 
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Figure 5.70. Moment-Curvature from LC1 for the Rw set 
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Figure 5.71. Moment-Curvature from LC1 for the Rs set 
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CHAPTER 6  

P-M INTERACTION DIAGRAMS 

6.1. Introduction 

The main goal of this chapter is the evaluation of the axial load vs. bending moment 

capacity or P-M interaction diagrams for the CFT beam-columns tested, with emphasis on the 

stability effects that influence the behavior of slender members. 

In order to achieve this goal, the material will be presented as follows: 

 Section 6.2 is a brief summary on the determination of interaction P-M interaction 

diagrams for CFT cross-sections and beam-columns as given in the current AISC 

(2010) Specifications, as well as some of the theory behind these Specifications. 

 

 Section 6.3 introduces a methodology that discusses the extraction of experimental or 

analytical values for the maximum axial load vs. bending moment response obtained 

with an uniaxial and biaxial bending loading as those used in this research project. 

 

 Section 6.4 presents of the experimental test response and the P-M capacity plots 

extracted from the uniaxial and biaxial tests. The set of P-M experimental points in 

this section and their comparison with the AISC (2005) prediction are used to 

calibrate design equations that take into consideration the stability effects in slender 

beam-columns. 

 

 Section 6.5 presents results from computational analyses that aim to obtain P-M 

capacities to be used for comparisons with those extracted from the tests. The set of 

P-M analytical points in this section are also compared with the AISC (2005) 

prediction. 

 

 Section 6.6 presents a brief review of the main results and the conclusion observed 

from the evaluation presented in this Chapter. 
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6.2. P-M interaction diagram by the AISC Specifications 

There are two methods allowed in the AISC Specifications (2010) for the determination 

of the interaction diagrams of composite cross-sections. These methods, first introduced in the 

2005 version (AISC 2005a), have been widely used for reinforced concrete sections in the USA, 

and the ACI-318 code has allowed their use since 1963. These methods are: 

(1) Plastic stress distribution method: This method, illustrated in Figure 6.1, aims to 

obtain the ultimate capacity of the cross-section assuming that both steel and concrete 

have reached their nominal plastic capacity, as there is little remaining strength in the 

section beyond this point.  This method is a simplification of the strain compatibility 

method and assumes either an elastic-perfectly-plastic or fully plastic stress-strain () 

relationship as a material constitutive model for both the steel and concrete.  No strain 

hardening or degradation either in strength or in stiffness is contemplated in this method. 

The yield stress of the steel in both compression and tension is the nominal Fy. The 

rectangular compressive block stress assumed for the concrete is taken as having an 

equivalent stress equal to 0.85fc’ (the same that has been given by ACI-318 for reinforced 

concrete cross-sections) for SRCs and RCFTs.  This value is increased to 0.95fc’ in 

CCFTs to account for the superior confinement effect by the circular tube. The 

contribution of the concrete in tension is neglected. The current AISC procedure does not 

reduce the size of the compression block to that of an equivalent one as the ACI 

procedures do (1 factor).
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Figure 6.1. Plastic stress distribution method 
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(2) Strain compatibility method:  In contrast to the plastic stress distribution method, this 

approach allows the constitutive material  models for both the concrete and the steel 

to be assumed in a more generalized form, as long as they represent the material behavior 

as supported by experimental tests. The stresses in the cross-section then are defined by 

the  model used under the assumption that plane sections remain plane, as shown in 

Figure 6.2, with an ultimate strain in the concrete of c=0.003. Since any constitutive  

material models validated by tests and analytical investigations are allowed, including 

models that allow higher ductility due to the confinement effects, the usual strain limit of 

0.003 of compression in concrete (c) may be adjusted. 
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Figure 6.2. Strain compatibility method 

A single combination of P and M can be calculated by taking the maximum concrete 

strain (c), a linear distribution of strains across the section, and the corresponding stresses from 

the  material model.  By sweeping the position of the neutral axis through the cross section, a 

set of continuous points of resultant forces and moments (P-M) can be calculated. This set of 

points are illustrated in Figure 6.3 by the continuous curve, which defines the P-M interaction 

diagram obtained for the cross-section with the strain compatibility method for the case where 

c=0.003. If elastic-perfectly-plastic or fully-plastic  behavior is chosen as constitutive 

material models for both the steel (with Fy as plastic stress) and concrete (with a plastic stress of 

0.85fc’, or 0.95fc’ for CCFTs), the continuous curve obtained with the strain compatibility 

method passes over the AISC (2005) anchor points A-E-C-D-B obtained with the plastic stress 

distribution method assuming key positions of the neutral axis. 
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Figure 6.3. P-M interaction diagrams obtained with the plastic stress method and the strain 

compatibility method 

Figure 6.4 shows the contribution of the individual materials (steel and concrete) to the 

overall strength (composite) for three different RCFTs varying from a steel-dominant to a 

concrete-dominant cross-section using the fully plastic stress method.  Note the symmetry of the 

concrete contribution (with no tensile strength) about a value equal to half of its compression 

capacity (P = Pc/2 = 0.85fc’Ac/2) and that of the steel about the no axial load line (P=0). Figure 

6.4.c is a good example of the synergic effects when these materials are combined as evidenced 

by the increasing axial capacity of the concrete component and the flexural capacity with the 

steel component.  For this composite cross-section, the transition to the fully plastic interaction 

diagram is shown in Figure 6.5 for the steel component and in Figure 6.6 for the concrete 

component.  Key locations of the plastic neutral axis (PNA) and the compression side (shaded) 

are shown in these figures as well.  In Figure 6.5, the effect of the concrete increases the pure 

axial capacity by Pc=0.85fc’Ac, while for the balance point this increment is Pc/2 of axial load 

capacity and 0.85fc’Zc/2 of moment capacity; the derivation and components of these expressions 

are shown in the next section.  Figure 4 shows a similar diagram but emphasizing the influence 

of the steel; in this case, the effect seems to be greater on the bending rather than the axial 

moment capacity. 
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 (a) HSS20x20x

5
/8, fc’ = 5 ksi, Fy = 46 ksi (b) HSS20x20x

1
/4, fc’ = 12 ksi, Fy = 46 ksi 
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(c) HSS20x20x

5
/16, fc’=5 ksi, Fy = 46 ksi (s = 5.74%) 

 

Figure 6.4. Components of the interaction diagram: fully-plastic stress method to RCFTs 
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Figure 6.5. Transition of the plastic interaction diagram from the steel component on CFTs 

 

Figure 6.6. Transition of the plastic interaction diagram from the concrete component on CFTs 
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Based on the plastic stress distribution method, simplified equations for characteristic 

cases on simple cross-sections (symmetric and simple reinforcement distribution) are available in 

the AISC Design Examples (2005). The characteristic or anchor points for conventional 

composite cross-sections evaluated by AISC include the following cases: 

 Point A is the column case, when there is no bending, and so the cross section is in pure 

compression. The value of compression PA is equal to the squash load Po. As shown in 

Figure 6.5 and Figure 6.6, for CFTs with no longitudinal reinforcement, this capacity is 

equal to the superposition of the steel and the concrete capacities. 

2 'A o s c s y c cP P P P A F C A f      (6.1) 

The coefficient C2 proposed in AISC (2005) is 0.85 for RCFTs and 0.95 for CCFTs. 

 Point B is the beam case when, contrary to the previous case, there is no axial force and 

the cross-section is in pure bending. The pure bending moment (MB) is the plastic 

moment of the cross-section (also referred to as Mo). 

 Point D is the balanced case for the beam-column, when both the steel yields and the 

concrete crushes simultaneously. This point (PD, MD) corresponds to the highest plastic 

bending capacity (MD) of the cross-section, which occurs when the plastic neutral axis 

(PNA) is located at the centroidal axis. As shown in Figure 6.5 and Figure 6.6, the 

strength for CFTs (with no reinforcement) is equal to the concrete capacity axially and 

the superposition of steel and concrete flexural capacity for flexure. 

2 '

2 2

1
'

2

c c c
D

D s c s y c c

P C A f
P

M M M Z F Z f

 

   

 (6.2) 

 As illustrated in Figure 6.5 and Figure 6.6, Point C has mirrored stresses to those of the 

pure bending point where, after some algebraic operations, it can be shown that this point 

(PC, MC) is defined for CFTs with no reinforcement by the concrete capacity (Pc) and the 

moment of pure bending capacity (MB). 

2 'C c c c

C B

P P C A f

M M

 


 (6.3) 
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 Point E is an optional intermediate case between points A and C. For some cross-sections 

with certain geometries, the point E is very close (but always above) the straight line 

between the points A and C. This point E is useful mainly for SRC under weak axis 

bending and CFTs dominated by the steel contribution, where there is a non-linear 

transition between the points A and C. 

Thus, the union of those characteristic neutral axis locations, or anchor points, by straight 

lines, as illustrated in Figure 6.7 and Figure 6.8 by the dash-dot multiline A-E-C-D-B or A-C-D-

B, defines the P-M interaction diagram obtained for the cross-section with the plastic stress 

distribution method. For asymmetric or more complex cross-sections, the strain compatibility 

method should be used.  Even for that case, however, the overall shape of the interaction diagram 

does not change significantly from those shown in these figures. 

Using either the plastic stress distribution or the strain compatibility method for the P-M 

interaction diagram of the cross-section, the axial capacity should be multiplied by a reduction 

factor ( that accounts for the stability effects (i.e. the geometric and material non-linearities, 

the initial imperfection and the steel residual stresses) on the P-M interaction diagrams of beam 

columns. The stability reduction factor (PnPo) is calculated for the pure compression 

condition (Figure 6.7), where the squash load (Po) at point A is reduced by Equation 5.1 to the 

critical load (Pn) at the point A. As illustrated in Figure 6.7, the point C obtained with the stress 

distribution method is also reduced by  to the points C. In addition, all the calculated points 

from A to C should be also reduced by the  factor. Since the reduced balance point D drops 

outside of the P-M cross-section envelope, the bulge defined by C-D-B is neglected and replaced 

with a straight line defined by C-B. Thus, the P-M interaction diagram of the beam-column from 

the plastic stress distribution method is defined by the points A-E-C-D (discontinuous line for 

the beam-column strength in Figure 6.8), or simply by the bilinear A-C-D interaction diagram 

(called P-M Simplified in the AISC-05 Specifications). As shown in Figure 6.8 (continuous curve 

for the beam-column strength), the set of points between A and C obtained with the strain 

compatibility method should be reduced by the stability factor  to A and C, respectively, and a 

straight line from D to C (without the bulge) drawn to complete the diagram. The P-M 

interaction diagram for composite beam-columns is then defined by the shaded area shown on 

Figure 6.7 and Figure 6.8. Depending on whether LRFD or ASD is used, the P-M envelope 
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circumscribed by A-C-D then is reduced by the corresponding strength reduction factors 

(cb) or the safety factors (cb) for design purposes. The P-M 

interaction diagram by the AISC Specifications for composite beam-columns was established 

based on calibration with previous experimental data (Leon, Kim and Hajjar, 2007). 

 
 (a) Axial strength reduced for stability (b) P-M interaction diagram 

Figure 6.7. Reduction by the AISC (2005) Specifications on the P-M cross-section by the stability 

effects factor  to get the P-M strength on composite beam columns 

 

Figure 6.8. P-M interaction diagram for composite cross-sections (stocky columns) and beam 

columns (reduced by stability effects) by the AISC (2005) Specifications 
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6.3. Methodology for the determination of the P-M interaction diagram of beam-columns 

As illustrated previously, the envelope of the maximum axial-flexural strength of the 

cross-section only accounts for the material non-linearity (i.e. yielding, strain hardening, residual 

stresses). However, as the element increases in length, stability effects (or the geometric non-

linearities) reduce the beam-column capacity. 

The determination of the interaction diagram for a beam-column is defined then by the 

envelope of its maximum stable capacity when the axial force and flexural bending are acting 

simultaneously. This maximum stable capacity can be obtained by increasing both the P and M 

loading components simultaneously (as in path A in Figure 6.9), or increasing one component 

holding the second one (as in path B in Figure 6.9), or a combination (as in path C in Figure 6.9) 

until an unstable condition arises (i.e. an abrupt displacement or failure). Figure 1.9 implies load 

path independency in the determination of the P-M interaction diagram of beam-columns. For 

reasons associated with controlling the test, holding the gravity load at a constant value and then 

increasing the bending moment up to the latest stable condition (as either in path B or C in 

Figure 6.9) was chosen for this research and used for both the experiments and the second-order 

inelastic analyses. From now, this approach is called the maximum stable moment method. 
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Figure 6.9. P-M paths to approach the beam-column capacity 
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The maximum stable moment method is schematically illustrated in Figure 6.10 and 

Figure 6.11. Suppose we have straight fixed-free beam-column with a given length, as that 

illustrated in Figure 6.10 – case 1, with no initial out-of-plumbness and subjected to a constant 

gravity force (P, between zero and the buckling load Pcr). If this beam-column is then subjected 

to an incremental lateral force Fe, as illustrated in Figure 6.10 – case 2, the base would be 

subjected to an overturning or first order moment, approximately equal to FeL, plus a second 

order moment given by Pe. This total second order moment M2e can be resisted elastically by 

the beam column if the lateral load is relatively low. However, as the lateral force increases, 

plasticity at the base starts being distributed as concrete cracks and crushes and the steel yields 

and strain hardens. This plasticity grows due to the overturning moment, and this growth is 

accelerated by the P moment. At some point, as shown in Figure 6.10 – case 3, the beam-

column runs out of capacity so it cannot carry additional lateral force beyond a peak force Fp. At 

this peak lateral load, the cross-section may not be fully plasticized, so there is some remaining 

capacity at the cross-section level.  However, the beam-column is in a condition where, given the 

sustained compression force, a small increment of lateral force would abruptly increase the 

lateral displacement, resulting in failure. Under a sustained axial load, a stable conditions could 

be maintained only if the lateral force is decreased by either (a) unloading the lateral force, or (b) 

shifting the control from load to displacement, which tends to have a reduction on the lateral load 

with higher displacements as shown in Figure 6.10 – case 4. For the second case, even though 

the overturning is decreasing in the post-peak range, the Pmoment would be increasing at a 

higher rate such the base moment would eventually reach the cross-section capacity (Mcs for the 

given axial load P). 

For the tests carried out in this research, the second case (option (b) above) was used.  

Thus, given an axial load P on a beam-column with given length L, the maximum safe moment 

(M2p) is governed by the stability of the element through its maximum capacity to lateral forces 

(case 3 in Figure 6.10). If this process is repeated with different values of sustained axial forces 

(P) on a beam-column with the same length (L), the envelope or the interaction diagram axial 

force – stable moment (P-M2p) can be defined for the beam-column as shown in Figure 6.11 

(curve with the label beam column total strength). Figure 6.11.b also shows the bending diagram 

for this fixed-free beam-column (Figure 6.11.a), where the first order moment (FL) and the 

second order moments (P and P) are illustrated. Figure 6.11.c shows the contribution of the 
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overturning moment (FL) and the second order moment (P) at the base (critical cross-section 

for this case) for different values of axial loads (P). In addition, Figure 6.11.c. illustrates the 

extreme cases for pure bending, when there is no second order moment due to the absence of 

axial load, and the pure compression case with no imperfections, when there is no capacity for 

lateral forces because the column force is equal to the buckling load (Pcr) of the straight column. 

 
 (1) (2) (3) (4)  (1) (2) (3) (4) 
 (a) Evolution of the loading – displacement history (b) Lateral force – lateral displacement curve 

Figure 6.10. Beam column under axial-flexural loading 
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Figure 6.11. Reduction in the P-M interaction diagram to account stability effects 
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As previously said, the P-M interaction diagram (from the strain compatibility method) 

for a cross section in Figure 6.11.c (continuous black curve A-E-C-D-B) takes into account the 

material non-linearities (i.e. concrete cracking and crushing, and steel yielding and residual 

stresses). With the maximum stable moment method, the P-M interaction diagram for a beam-

column in Figure 6.11.c (continuous blue curve) includes also the geometric nonlinearities. Thus, 

the stability effects reduced the cross-section capacity for straight beam-columns from Po to Pcr 

in axial capacity and by Mufc in flexural capacity (Figure 6.11). Mufc is the unusable flexural 

capacity between the cross-section and the beam column strength due to stability effects, and it is 

proportional to the axial load. 

This approach allows a clear separation of the contributions of the geometric 

imperfections, taken as the combined effects of 0 (initial out-of-plumbness) and 0 (initial out-

of-straightness), to the experimental results. Moreover, since these combined effects lead to high 

moment amplifications as the peak lateral load is approached, the use of the MAST testing 

system allows for a clear separation of these components, as the forces (P and F) and the 

displacement () are tracked independently. It is important to keep in mind that the actual 

imperfections reported in Chapter 5 (See Figure 5.4) are very different from those used for 

design purposes by AISC. Thus extreme care will be needed when trying to compare these 

experimental results to predicted, or design values, given by AISC. This issue is addressed in 

detail in a following section. 

As discussed in Chapter 5, initial imperfections (controlled by tolerances in codes) reduce 

the axial load capacity on columns. Figure 6.12 is an adjustment of Figure 6.11 that includes the 

effects of the initial out-of-plumbness. Following the same approach, the axial load P now 

applied on an element with given length L and initial out-of-plumbness o. As shown in this 

figure, the application of the desired axial load follows the P-Mimp path indicated with the 

continuous red line going from zero to the maximum stable capacity Pnimp. After this 

maximum stable condition is reached, the P-M path softens following the beam-column P-M 

interaction diagram. As defined in Chapter 5, Pn is the nominal pure compression load of the 

column with a given out-of-plumbness, and Pcr is the critical buckling load of a straight column. 

Following the load path C in Figure 6.9, the maximum stable capacity can be reached by 

incrementing the axial load to the target value (P<Pn) on the column with the initial imperfection 
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moment, and then by holding P while moving towards the incipient instability point by 

increasing F or the lateral displacement. The total capacity following this path C would be the 

same than that obtained with the path B in Figure 6.9 on the straight column case. Notice than 

the imperfections reduces the usable moment by consuming some of the available moment. The 

net, or usable, moment (shaded area in Figure 6.13.a) is then given by the flexural capacity 

between the total moment and the moment consumed by the initial imperfection.  In other words, 

the net moment is equal to the total stable strength reduced by the moment used by the 

imperfection (shaded area in Figure 6.13.b). Ideally, with an initial imperfection equal to the 

maximum tolerable value (L/750 to L/500 for out-of plumbness, L/1500 to L/1000 for out-of-

straightness), the resultant P-Mnet interaction diagram should be compatible with the P-M 

Simplified diagram (A-C-D in Figure 6.8) proposed by the AISC (2005) Specifications. 

In this research, the terms P-Mtotal or total beam-column strength refer to the maximum 

strength reduced by the stability of straight elements, and the terms P-Mnet or net beam-column 

strength refers to the maximum strength reduced by the stability of elements with imperfection. 
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Figure 6.12. Reduction in the P-M interaction diagram to account initial imperfection 
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(a) Total strength (b) Net strength 

Figure 6.13. Total vs. Net P-M interaction diagrams 

 

The methodology of reducing the total strength by the imperfection effects was originally 

applied in steel beam-columns to calibrate the interaction equations (H1) of the AISC 

Specifications (Suroveck-Maleck and White, 2004). The total strength was obtained from second 

order inelastic analysis on a number of sensitive benchmark frames with straight elements. These 

analyses, performed by Kanchanalai in 1977 (Suroveck-Maleck and White, 2004), accounted for 

the spread of yielding and residual stresses (Figure 6.14.a). The effects of the initial imperfection 

were separately accounted afterward by reducing to the total strength (M2/Mp), for each level of 

gravity, the second order imperfection moments of a pinned-pinned column with a given 

imperfection (Figure 6.14.a). The resultant differences for each level of gravity are net moments 

(net M2/Mp) where the used up flexure by the imperfection has been removed, and then obtaining 

the net or available capacity (Figure 6.14.b). 
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Based on the latter results, Figure 6.15 shows different components of the P-M 

interaction diagram in steel members. In this figure, the cross section capacity is the curve 

delineated by the anchor points at unity in both axial force and moment. It also includes the P-M 

diagram obtained from the second order inelastic analyses of steel beam-columns, and the P-M 

path from second order inelastic analyses of a steel column. These curves clearly define 4 area 

components: 

(1) A zone where steel beam-column is unstable due to gravity loads, i.e., the zone above 

the critical loading Pn (light grey area) 

(2) A region of available flexural capacity in the cross-section but unusable for the beam-

column due to member stability effects (dark gray area). Segments 1 and 2 are 

together the total reduction due to the stability effects. 

(3) A region of flexural capacity consumed by the imperfections (aqua blue area) 

(4) The residual area that is the net P-M capacity in the beam column reduced for 

stability, residual stress and imperfections (yellow area). 

 

 
 (a) Reduced for stability and residual stress (b) Reduced for imperfection in addition to (a) 

Figure 6.14. P-M interaction diagram used for calibration of steel beam columns (ASCE 1997) 
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Figure 6.15. Components of the P-M interaction diagram for steel members 

 

The previous components are also identifiable for composite members as illustrated in 

Figure 6.16, where the net P-M capacity in composite beam-columns is the P-M capacity of the 

cross-section reduced by the areas of instability due to gravity loading (light grey area) and 

unusable flexural capacity (dark grey area), as well as the capacity consumed by the initial 

imperfections (aqua blue area). The bulge that characterizes P-M interaction diagrams of 

composite members due to the concrete contribution to the strength is also reduced by these 

unusable areas as well. In Chapter 10, design equations are proposed to obtain the P-M diagram 

of composite beam columns from the cross-section reduced by the total unusable capacity. 
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Figure 6.16. Components of the P-M interaction diagram for composite members 
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6.4. Experimental tests 

As previously defined, load cases LC2 and LC3 aimed to extract experimental interaction 

set of values of the axial load – bending moment (P-M) response so that comparisons could be 

made to predictions from advanced analytical models and design equations.  

Load cases LC2 and LC3 were described in Chapter 3. However, as summary, the 

specimens in these load cases were under vertical force control with a constant axial load and 

horizontal displacement control with incremental lateral displacement until a target displacement 

is met. Thus, uniaxial bending was enforced for LC2 through moving the top of the specimen 

along one axis (as shown in Figure 6.17), while biaxial bending was used for LC3 by driving the 

top in the two horizontal axes (as shown in Figure 6.18).  

y

0  

y

0

 
  x 0 x 

 (a) Unidirectional in X only (b) Initial imperfection direction 

 RCFT Specimens CCFT Specimens 

Figure 6.17. Horizontal displacement path at the top during LC2 
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 Specimens 2 to 7 Specimen 9 Specimens 8 and 10 to 18 

Figure 6.18. Horizontal displacement path at the top during LC3 
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Table 6.1 summarizes the control of the DOFs at the crosshead during these load cases. 

In most cases, the top rotations were set as free boundary conditions (or zero moments) and, with 

the base fixed, the effective length factor in these cases tends to a value of two (K=2). In a few 

cases, the top rotations were controlled also as fixed (=0) and so the effective length factor in 

these cases tends to a value of one (K=1). Unless specified as K=1 for the cases with fixed 

rotations, all the results in this section correspond to the default or the top free rotation condition 

(K=2). 

 

Table 6.1. DOFs controlled during LC2 in the CCFT specimens 

   DOF 

Load CFT Factor Force / Displacement Moment / Rotation 

Case Specimen K X Y  RX RY RZ 

LC2 

Circular  x→target y→target Fz=P x=0 y=0 z=0 

Rectangular  x→target y=0 Fz=P x=0 y=0 z=0 

Both  x→ target y→target Fz=P x=0 y=0 z=0 

LC3 

Both  x→target y→target Fz=P x=0 y=0 z=0 

Both  x→target y→target Fz=P x=0 y=0 z=0 

 

With respect to the uniaxial path in LC2, the motion of the top follows the same axis 

delineated during the previous load case LC1. Thus, during LC2 the top of rectangular specimens 

were moved along the X-axis only (with DOFs in Y-axis fixed) as shown in Figure 6.17.a. For 

circular specimens, both X-axis and Y-axis were moved along the axis delineated by LC1 (or by 

the axis delineated by the initial imperfection) as schematically illustrated in Figure 6.17.b. The 

target displacement (target) in some specimens was defined by the peak lateral force, while for 

others this was a desired level of drift, varying in these cases mostly from 1% to the maximum 

stroke capacity of the testing system (stroke) and in most cases with increments of 1%. 
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The explored paths for the top displacement during the biaxial load case LC3 are shown 

in Figure 6.18. 

 

In order to obtain the P-M interaction surface for specimens 2 to 7, the top was moved as 

illustrated in Figure 6.18.a along different probes until a peak lateral force in either X or Y was 

reached. Once the target was met for each probe, the top was moved back and then moved 

through a diamond path for the following probe with a different angle, and this process repeated 

around until the diamond path was completed. 

 

For the specimen 9, a path illustrated in Figure 6.18.b was used to obtain also the P-M 

interaction surface that consisted of different set of probes and sub-probes; similar to the 

diamond shape path, the top was moved back once the peak force was reached followed by the 

next sub-probe or a new probe. 

 

For specimens 8 and 10 to 18, the path illustrated in Figure 6.18.c (eight-shape) was used 

to evaluate the post-peak behavior; this path consisted of an incremental displacement (as 

percentage of drift) in both X and Y axes until the maximum stroke of the MAST system is 

achieved. 

 

Table 6.2 recaps the load-displacement conditions imposed in the specimens during LC2 

and LC3. In this table, the effective length factor in the direction of motion (K), the gravity load 

(P), and the motion shapes of the tip imposed by the crosshead are summarized for each 

specimen. Also, this Table summarizes when the load reversal takes place. As seen in this table, 

the first half of specimens (from 1 to 9) were run with probes for which reversals in the direction 

of motion occurs at the peak of the lateral capacity (Fmax), or when the tangent slope in the force-

displacement response becomes zero. For the second half set (specimens 10 to 18), the load 

reversal occurs at a target drift, starting mostly at ±1% drift and incrementing it in 1% steps up to 

the max stroke capacity of the MAST system (between 4 to 6% drift). 
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Table 6.2. Motion shapes of the top, gravity loads, and reversal events at LC2 and LC3 

Specimen 
LC2 LC3 

K P (kip) Shape Reversal K P (kip) Shape Reversal 

1C5-18-5 2 
15 

30 
Figure 6.17.a 

Fmax 

X only 
none 

2C12-18-5 2 

300 

200 

100 

Figure 6.17.a 

Fmax 

X only 

2 cycles 

2 
250 

150 

Figure 6.18.a 

8 probes 

Fmax/probe 

X or Y 

3C20-18-5 2 
1000 

500 
Figure 6.17.b 

Fmax 

X or Y 

2 cycles 

2 

1250 

750 

250 

Figure 6.18.a 

16 probes 

Fmax/probe 

X or Y 

4Rw-18-5 2 
600 

300 
Figure 6.17.a 

Fmax 

X only 

2 cycles 

2 

750 

450 

150 

Figure 6.18.a 

8 probes 

Fmax/probe 

X or Y 

5Rs-18-5 2 
1000 

500 
Figure 6.17.a 

Fmax 

X only 
2 

750 

250 

Figure 6.18.a 

8 probes 

Fmax/probe 

X or Y 

6C12-18-12 2 
300 

150 
Figure 6.17.b 

Fmax 

X or Y 

2 cycles 

2 

375 

225 

75 

Figure 6.18.a 

8 probes 

Fmax/probe 

X or Y 

7C20-18-12 2 
1000 

500 
Figure 6.17.b 

Fmax 

X or Y 
2 1250 

Figure 6.18.a 

8 probes 

Fmax/probe 

X or Y 

8Rw-18-12 2 
600 

300 
Figure 6.17.a 

Fmax 

X only 
2 800 

Figure 6.18.a 

8 probes 

Fmax/probe 

X or Y 

9Rs-18-12 2 
1200 

400 
Figure 6.17.a 

Fmax 

X only 
2 800 

Figure 6.18.b 

6 main probes 

Fmax/probe 

X or Y 

10C12-26-5 2 
200 

100 
Figure 6.17.b 

1 to max 

@1% drift 
2 

150 

50 
Figure 6.18.c 

1 to max 

@1% drift 

11C20-26-5 2 
600 

300 
Figure 6.17.b 

1 to max 

@1% drift 
2 

450 

150 
Figure 6.18.c 

1 to max 

@1% drift 

12Rw-26-5 2 
400 

200 
Figure 6.17.a 

1 to max 

@1% drift 
2 

300 

500 
Figure 6.18.c 

1 to max 

@1% drift 

13Rs-26-5 2 
400 

800 
Figure 6.17.a 

1 to max 

@1% drift 
2 

300 

500 
Figure 6.18.c 

1 to max 

@1% drift 

14C12-26-12 

2 
100 

200 
Figure 6.17.b 

2 to max 

@2% drift 
2 150 Figure 6.18.c 

1 to max 

@1% drift 

1 
300 

450 
Figure 6.17.b 

2 to max 

@2% drift 
1 300 Figure 6.18.c 

1 to max 

@1% drift 

15C20-26-12 2 
400 

800 
Figure 6.17.b 

1 to max 

@1% drift 
2 

200 

600 
Figure 6.18.c 

1 to max 

@1% drift 

16Rw-26-12 2 
200 

400 
Figure 6.17.a 

1 to max 

@1% drift 
2 

300 

500 
Figure 6.18.c 

1 to max 

@1% drift 

17Rs-26-12 2 
400 

800 
Figure 6.17.a 

1 to max 

@1% drift 
2 

200 

600 
Figure 6.18.c 

1 to max 

@1% drift 

18C5-26-12 1 
15 

25 
Figure 6.17.b 

1 to max 

@1% drift 
1 20 Figure 6.18.c 

1 to max 

@1% drift 
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6.4.1. Uniaxial bending 

This section describes the extraction of experimental P-M stable limits obtained during 

the uniaxial loading cases (LC2). The extracted results are schematically represented in Figure 

6.19. In this figure, the cross-section P-M strength calculated with the fully plastic stress method 

is illustrated by the thin dashed line passing through points A-C-D-B. The P-M strength of the 

beam-column with reduction due to the stability effects as required by the AISC (2005) are also 

illustrated by tick dashed line passing through points A-C-B (Simplified P-M). In addition to 

these analytical capacities for the composite cross-section and beam-column, this figure shows 

the expected test response. The experimental results included on this plots are: 

(1) The P-M path from the pure compression loading (LC1) up to a given level of gravity 

force. The second order moment illustrated in this path is developed as a consequence of 

the initial imperfection. The moment that corresponds to the point when target 

compression load is reached is represented by the label Mimp as a cyan square. As a 

reminder, this initial second order moments (Mimp) corresponds to the experimental initial 

imperfection, which were not necessarily equal or lower than the maximum allowed 

imperfections imposed by the codes. As illustrated in Chapter 5 (see figure 5.4), most of 

the specimens exceeded the limit in out-of-plumbness, and thus care must be taken when 

interpreting the experimental results vs. a design value that is taken as the result of the 

tested conditions (i.e. high imperfections, accumulated degradation and damage from 

previous load cases, and cyclic loading). 

(2) The P-M path from the uniaxial bending loading (LC2) up to a total second order 

moment at incipient buckling (Mtotal). This moment is illustrated as a blank square in 

Figure 6.19(a) and is extracted from the uniaxial loading (LC2) at the point where, with a 

sustained compression load, the maximum lateral force F or the maximum first order 

moment M1≈FL is reached as shown in Figure 6.19(b). Examples of how these total 

moments were obtained from the experimental tests during the load case LC2 with 

reversals at (a) peak load and (b) at target drifts are shown in Figure 6.20. In this figure, 

the first order, the P and the total second order experimental moments at the base vs. the 

lateral displacement are plotted, where the corresponding moments related to the 

incipient buckling failure are also indicated. 
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 (a) extraction of P-M Interaction points (b) incipient buckling 

Figure 6.19. Schematic illustration of the extraction of P-M Interaction points from the uniaxial 

loading (left), and schematic definition of the limit point at the incipient buckling (right) 
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(a) LC2 with reversals at peak load (b) LC2 with reversals at target drifts 

Figure 6.20. Definition of the limit point at the incipient buckling from experimental data 

 

(3) The net second order moment (Mnet) accounts for the initial imperfection. This moment is 

obtained as the total moment due to the maximum overturning strength, minus the 

moment due to the initial imperfection; in other words: Mnet=Mtotal-Mimp.  

The value of this net moment, represented in the following figures as a black square, 
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depends on the amount of imperfection in the member. Calibration of the net moments 

with an ideal imperfection (as KL/1500 of initial out-of-plumbness) defines the 

interaction diagram for beam-columns with stability reduction due to the geometric non-

linearities in non-vertical members. 

Figure 6.21 to Figure 6.24 illustrate the experimental axial force – second order moment 

paths (P-M2 path) obtained during the pure axial loading case (LC1, cyan line) and the uniaxial 

bending loading case (LC2, blue lines). From these histories, the moment due to the imperfection 

(Mimp, cyan square), the total usable moment (Mtotal, white squares) and the net usable moment 

(Mnet, black squares) are extracted for each case. For comparison purposes, the extracted 

experimental P-M values are compared with the P-M interaction diagrams obtained with the 

AISC (2005) Specifications for both the cross-section (thin-black with white circles) and the 

beam-column with slenderness reduction (thick-black with black circles). 

The following points must be made with reference to Figure 6.19 to Figure 6.24: 

 Since the reversal of the lateral loading takes place just after passing the peak force, the 

experimental base moment does not necessarily reach the cross-sectional strength. In 

other words, the ends of the moment paths at given axial load (blue lines) do not 

necessarily achieve the cross-sectional P-M (thin line), and so they cannot be directly 

compared. 

 As described before, the total moments (white squares) represent the point of incipient 

instability due to combined material and geometric nonlinearity for flexure and axial 

compression loading. These experimental values correspond to the maximum strength to 

the overturning or first order moments (≈FL), with the corresponding second order 

moments (P). The amount of the second order moment (P obviously depends on the 

total displacement (), which increases from the initial imperfection (o) to a larger value 

of when the target gravity (P) is reached (moment used up by imperfections), and then 

from here to a maximum after the maximum lateral force (F) is reached. 

 The net moment (black squares), calculated as the total second order moment (white 

squares) minus the initial imperfection moment (cyan squares), is the effective moment at 

the incipient instability of the non-straight composite member due to combined material 

and geometric nonlinearity for flexure and axial compression loading. This net moment 
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depends primarily on the amount of initial imperfection; thus the net moment tends to be 

closer to the total moment in straight members; higher reductions occur as the 

imperfections increase. As intended by AISC (2005) through the P-M interaction 

diagrams for beam-columns (thick line), the calibration of the net moment within the 

tolerances allowed in practice construction will delimit the amount of reduction for 

imperfection. 

The results shown from Figure 6.21 to Figure 6.24 are summarized in Table 6.3 and 

illustrated in Figure 6.25 with normalized values, using the AISC (2005) buckling strength (Pn) 

for axial loads and the corresponding pure bending strength (MB) for moments. Since the 

normalized interaction point PC/Pn depends on the contribution of the concrete strength in the 

composite section, which varies for each specimen, the average, the upper bound and the lower 

bound for this AISC point are shown Figure 6.25. In addition, the normalized values of 

experimental net moments for each axial load level are also included in Figure 6.25, showing 

these results for each type of CFT cross-section. Based on these results, the following 

observations can be highlighted: 

 In general, the experimental net moments are close to the moment predicted by the AISC 

(2005) Specifications. Excluding some particular cases, the ratio of the experimental net 

moments over the AISC strength with stability reduction (Mnet/MAISC) varies from 0.70 to 

1.27, with an average of 1.0 and a standard deviation of 0.19 (Table 6.3, Figure 6.25). 

 Variability on this ratio is consequence of the simplicity of the AISC approach in keeping 

constant the moments below the axial force PC. In addition, the net moments obtained 

experimentally and illustrated in this section are related to the true imperfection of the 

specimens that, as mentioned in the previous chapter, there is a significant variability on the 

imperfections being very small (as in the specimen 5-Rs-18-5) or very large (as in the 

specimen 17-Rs-26-12). 

 As illustrated in Figure 6.25.b, most of the non-slender members had Mnet/MAISC ratios larger 

than 1.0 (Figure 6.25.c), while most of the slender specimens had lower ratios than 1.0 

(Figure 6.25.d). This behavior suggests a change in the shape of the P-M interaction diagram 

for beam-columns such that the slenderness is implicit in the moment values, and thus in the 

P-M shape. 
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 P (kip) P (kip) 

 
 M (kip-ft) M (kip-ft) 

 (a) Specimen 2-C12-18-5 (b) Specimen 6-C12-18-12 

 

 P (kip) P (kip) 

 
 M (kip-ft) M (kip-ft) 

 (c) Specimen 10-C12-26-5 (d) Specimen 14-C12-26-12 

 

Figure 6.21. Extraction of P-M Interaction points from the uniaxial loading LC2 on the circular 

CFTs with 12.75 inches of diameter. 
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 P (kip) P (kip) 

 
 M (kip-ft) M (kip-ft) 

 (a) Specimen 3-C20-18-5 (b) Specimen 7-C20-18-12 

 

 P (kip) P (kip) 

 
 M (kip-ft) M (kip-ft) 

 (c) Specimen 11-C20-26-5 (d) Specimen 15-C20-26-12 

 

Figure 6.22. Extraction of P-M Interaction points from the uniaxial loading LC2 on the circular 

CFTs with 20 inches of diameter. 
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 P (kip) P (kip) 

 
 M (kip-ft) M (kip-ft) 

 (a) Specimen 4-Rw-18-5 (b) Specimen 8-Rw-18-12 

 

 P (kip) P (kip) 

 
 M (kip-ft) M (kip-ft) 

 (c) Specimen 12-Rw-26-5 (d) Specimen 16-Rw-26-12 

 

Figure 6.23. Extraction of P-M Interaction points from the uniaxial loading LC2 on the 

rectangular CFTs oriented in the weak axis 
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 P (kip) P (kip) 

 
 M (kip-ft) M (kip-ft) 

 (a) Specimen 5-Rs-18-5 (b) Specimen 9-Rs-18-12 

 

 P (kip) P (kip) 

 
 M (kip-ft) M (kip-ft) 

 (c) Specimen 13-Rs-26-5 (d) Specimen 17-Rs-26-12 

 

Figure 6.24. Extraction of P-M Interaction points from the uniaxial loading LC2 on the 

rectangular CFTs oriented in the strong axis 
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Table 6.3. Summary of extracted P-M interaction points from the uniaxial loading LC2 

Specimen  LC P P/Pn Mtotal Mnet MAISC Mnet 

 
 

 
(kip) 

 
(kip-ft) (kip-ft) (kip-ft) /MAISC 

2C12-18-5 1.55 
2a 300 0.76 128.3 104.1 105.1 0.99 

2b 200 0.51 152.3 136.3 183.3 0.74 

6C12-18-12 1.89 
2a 300 0.63 181.8 168.0 197.8 0.85 

2b 150 0.32 197.9 190.0 197.8 0.96 

10C12-26-5 2.38 
2a 200 0.97 43.9 22.4 18.5 1.21 

2b 100 0.48 160.5 141.1 188.3 0.75 

14C12-26-12 2.69 
2a 100 0.45 158.5 154.2 219.9 0.70 

2b 200 0.91 103.3 90.5 73.0 1.24 

3C20-18-5 1.06 
2a 1000 0.68 581.9 453.4 468.7 0.97 

2b 500 0.34 583.9 535.1 468.7 1.14 

7C20-18-12 1.30 
2a 1000 0.46 757.9 634.9 498.9 1.27 

2b 500 0.23 669.0 626.7 498.9 1.26 

11C20-26-5 1.62 
2a 600 0.61 507.2 334.7 451.0 0.74 

2b 300 0.30 499.4 445.3 451.0 0.99 

15C20-26-12 1.78 
2a 800 0.74 453.0 310.3 445.0 0.70 

2b 400 0.37 457.2 397.5 445.0 0.89 

4Rw-18-5 1.38 
2a 600 0.64 560.2 470.5 334.2 1.41 

2b 300 0.32 586.7 550.0 436.0 1.26 

8Rw-18-12 1.65 
2a 600 0.54 516.4 395.9 450.2 0.88 

2b 300 0.27 557.5 508.6 450.2 1.13 

12Rw-26-5 2.14 
2a 400 0.80 258.7 241.9 240.6 1.01 

2b 200 0.40 438.5 424.7 489.4 0.87 

16Rw-26-12 2.30 
2a 200 0.38 475.1 465.0 466.2 1.00 

2b 400 0.75 214.4 195.6 370.8 0.53 

5Rs-18-5 0.89 
2a 1000 0.67 828.8 820.7 472.6 1.74 

2b 500 0.33 817.9 815.7 662.9 1.23 

9Rs-18-12 1.04 
2a 1200 0.54 990.3 853.1 710.2 1.20 

2b 1200 0.54 990.3 853.1 710.2 1.20 

13Rs-26-5 1.35 
2a 400 0.33 849.2 821.6 712.9 1.15 

2b 800 0.67 509.9 449.9 602.0 0.75 

17Rs-26-12 1.46 
2a 400 0.30 835.8 768.4 728.9 1.05 

2b 800 0.60 585.6 398.9 728.9 0.55 
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 P/Pn Mnet/MAISC 

 
 M/MB  

 (a) Normalized P-M interaction diagram (b) Slenderness vs. the normalized net moment 

 P/Pn P/Pn 

 
 M/MB  

 (c) Shorter specimens (<1.7) (d) Slender specimens (>1.7) 

 P/Pn P/Pn 

 M/MB  

 (e) Mnet/MAISC≤1.0 (f) Mnet/MAISC>1.0 

Figure 6.25. Experimental net moments normalized to the AISC strength 
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6.4.2. Biaxial bending 

 This section describes the extraction of experimental P-M stable limits obtained during 

the biaxial loading cases (LC3) illustrated in Figure 6.18. These values are extracted similarly to 

those extracted for the uniaxial bending case, using the approach that was schematically 

illustrated in Figure 6.19 for the 2D case. This approach applied to the 3D case is also 

schematically illustrated in Figure 6.26 for the displacement path shown in Figure 6.18.a. 

contour of max. 

lateral strength

x

y

lateral displacement path

peak force

maximum 

displacement

contour of max. 

displacement
 

(a) Determination of the maximum lateral strength with a fixed axial load; its contour delineate 

the interaction surface in the displacement space. 

contour of 

Mtotal=M1+M2=FL+P

2x

2y

Mimp

Mtotal

3D P-M biaxial

interaction surface

Mnet=Mtotal+Mimp

 
(b) Determination of the net moments and the interaction surfaces in the moment space 

Figure 6.26. Illustration of the interaction surface from the biaxial loading (LC3) 
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The lateral displacement path of the column tip that was used for specimens 2 to 7 is 

shown in Figure 6.26.a. In these specimens, the tip was driven through different probes until the 

maximum lateral strength for each probe was reached. The contour of peak forces delineated by 

the probes defines an interaction surface in the displacement space. 

 

The experimental results for the second order moments (blue path), the moments due to 

the imperfection (cyan path – cyan squares), and the extracted net moments (black squares – red 

dashed line), are shown from Figure 6.27 to Figure 6.31. The P-M interaction diagrams for the 

cross-section (thin ellipse) and beam-column (thick ellipse) obtained with the AISC (2005) are 

also shown in these figures.  In Figure 6.27 to Figure 6.31, the beam-column interaction diagram 

(thick ellipse) is the analytical predictor for the experimental net moments (black squares). 

 

As shown in Figure 6.27 to Figure 6.31, the AISC (2005) prediction of the stability 

reduction in beam columns presents for some specimens a strong correlation, as in the specimens 

3-C20-18-5 and 6-C12-18-12.  However, a weak correlation is obtained for the specimens 2-

C12-18-5, 4-Rw-18-5 and 5-Rs-18-5. As clearly illustrated in Figure 6.30 and Figure 6.31, the 

worst prediction occurs in the weak axis of RCFTs; this bad prediction in weak axis of RCFTs is 

consequence of the accumulation of damage through the progression of the steel local buckling 

as well as the low confinement in the concrete. 

 

These figures shown in general a relative symmetry in the interaction surfaces, with a 

trend to a circular surface for the CCFTs and to an elliptical surface for the RCFTs. Based on 

these experimental results, a future reevaluation of the shape and the size of the AISC interaction 

surface for slender beam-columns is needed. 

 

The interesting point in comparing the analytical predictor and the experimental values 

measured is not only in looking at how close or far they are, but also at the in-plane shape due to 

different axial load levels and due to damage accumulation in the latest loading cases. 
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 (a) P = 250 kip (b) P = 150 kip 

 

Figure 6.27. Extraction of P-M Interaction points for the Specimen 2C12-18-5 from LC3 
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(a) P = 375 kip (left side in 3D, right side in 2D) 

 

 
 (b) P = 225 kip (c) P = 75 kip  

 

Figure 6.28. Extraction of P-M Interaction points for the Specimen 6C12-18-12 from the biaxial 

bending loading LC3 
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(a) P = 1250 kip (left side in 3D, right side in 2D) 

 

 
 (b) P = 750 kip (c) P = 500 kip 

 

Figure 6.29. Extraction of P-M Interaction points for the Specimen 3C20-18-5 from the biaxial 

bending loading LC3 
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(a) P = 750 kip (left side in 3D, right side in 2D) 

 

 
 (b) P = 450 kip (c) P = 150 kip 

 

Figure 6.30. Extraction of P-M Interaction points for the Specimen 4Rw-18-5 from the biaxial 

bending loading LC3 
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 (a) P = 750 kip (left side in 3D, right side in 2D) 

 

 
(b) P = 250 kip (left side in 3D, right side in 2D) 

 

Figure 6.31. Extraction of P-M Interaction points for the Specimen 5Rs-18-5 from the biaxial 

bending loading LC3 
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For specimen 9Rs-18-12, the lateral displacement path was similar to that shown in 

Figure 6.18.b. For this loading case, the maximum lateral strength was identified for each probe 

and subprobes, indicating its incipient instability due to combined material and geometric 

nonlinearity. These limit points are shown in Figure 6.32 as black dots, and connecting the limit 

points from the various subprobes creates experimental interaction surfaces in the displacement 

space or, with the same limit points, corresponding experimental interaction surfaces can be 

created in the moment space (Figure 6.33). Each individual interaction surface represents a slice 

of the biaxial interaction surface at the applied axial load and at the state of the column following 

the main probe. The applied axial load remained constant throughout all the main probe/sub 

probe sets, thus the differences in the interaction diagrams can be attributed to the changing state 

of the specimen as the loading progressed. Addition experimental and analytical investigation of 

this specimen with this loading case has been discussed with more detail in Denavit et al. (2010). 

Subprobe 1

Subprobe 2

Subprobe 3

Subprobe 4

Subprobe 5

Subprobe 6

 
Figure 6.32. Displacement of the beam-column top, Specimen 9Rs-18-12 (Denavit et al., 2010) 

Subprobe 1

Subprobe 2

Subprobe 3

Subprobe 4

Subprobe 5

Subprobe 6

 
Figure 6.33. Experimental interaction surface (adapted from Denavit et al., 2010) 
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For specimens 7, 8, and from 10 to 18, the biaxial loading cases (LC3) are like those 

illustrated in Figure 6.18.c. This loading case aims to reach target values with displacement 

growing incrementally for each cycle or loop. Extraction if net moments and interaction surfaces 

are more challenging in this loading case since this was executed in two quadrants only. 

The cross-sectional strength (thin ellipse) and the beam-columns strength (thick ellipse), 

calculated based on the AISC (2005) Specifications, are compared from Figure 6.34 to Figure 

6.41 with the biaxial total bending moment (blue path) and the initial imperfection moments.  

  
 (a) Specimen 10C12-26-5, P = 150 kip (b) Specimen 10C12-26-5, P = 50 kip 

  
 (c) Specimen 14C12-26-12, P = 150 kip (d) P = Specimen 7C20-18-12, 1250 kip 

Figure 6.34. Biaxial moment path for the specimens 10-C12-26-5 and 14-C12-26-12 during LC3 
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No general conclusions are extracted from these figures, aside from the comment that 

they appear to reflect reasonable results since the total moment path is inside the cross-sectional 

strength; there are no points extracted at the case the beam-column passes from a stable to an 

unstable configuration, and so the beam-column strength is not calibrated from these results. 

 

 
 (a) Specimen 11C20-26-5, P = 450 kip (b) Specimen 11C20-26-5, P = 150 kip 

 
 (c) Specimen 15C20-26-12, P = 200 kip (d) Specimen 15C20-26-12, P = 600 kip 

Figure 6.35. Biaxial moment path for the specimen 15-C20-26-12 during LC3 
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 (a) Specimen 8Rw-18-12, P = 800 kip (b) Specimen 9Rs-18-12, P = 800 kip 

Figure 6.36. Biaxial moment path for the specimens 8Rw-18-12 and 9Rs-18-12 during LC3 

 

 

 

 

 
 (a) P = 300 kip (b) P = 500 kip 

Figure 6.37. Biaxial moment path for the specimen 12-Rw-26-5 during LC3 

-1000 -500 0 500 1000

-1000

-500

0

500

1000

Moment X (kip-ft)

M
o
m

e
n
t 

Y
 (

k
ip

-f
t)

-500 0 500
-1000

-800

-600

-400

-200

0

200

400

600

800

1000

Moment X (kip-ft)
M

o
m

e
n
t 

Y
 (

k
ip

-f
t)

-500 0 500

-800

-600

-400

-200

0

200

400

600

800

Moment X (kip-ft)

M
o
m

e
n
t 

Y
 (

k
ip

-f
t)

-500 0 500

-800

-600

-400

-200

0

200

400

600

800

Moment X (kip-ft)

M
o
m

e
n
t 

Y
 (

k
ip

-f
t)



248 

 
 (a) P = 300 kip (b) P = 500 kip 

Figure 6.38. Biaxial moment path for the specimen 13Rs-26-5 during LC3 

 

 

 

 
 (a) P = 300 kip (b) P = 500 kip 

Figure 6.39. Biaxial moment path for the specimens 12-Rw-26-5 (blue path) and 13-Rs-26-5 (red 

path) during LC3 
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 (a) Specimen 16, P = 300 kip (b) Specimen 16, P = 500 kip 

  
 (c) Specimen 17, P = 300 kip (d) Specimen 17, P = 600 kip 

Figure 6.40. Biaxial moment path for the specimens 16-Rw-26-12 and 17-Rs-26-12 during LC3 

(a) P = 300 kip 

Figure 6.41. Biaxial moment path for the specimens 16-Rw-26-12 (blue) and 17-Rs-26-12 (red) 
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6.5. Determination of the interaction diagrams using computational analyses 

Analytical interaction diagrams can be obtained using the same methodology that was 

described in section 6.3. In this section, the results of a set of analyses that were developed 

earlier in this research are presented in the form of P-M interaction diagrams; these diagrams are 

compared with the P-M diagrams obtained with the AISC Specifications for CFT cross-sections 

and beam-columns. 

The prototypes beam-columns used in these analyses have the following characteristics. 

 CCFT cross section (labeled C20) is an HSS20x
1
/4 that is filled with concrete of 5 ksi 

of strength. 

 RCFT cross-section (labeled Rs) is an HSS20x
5
/16 that is filled with concrete of 5 ksi 

of strength. 

 A length of 18 feet and 26 feet was selected for both cross-section types. 

 The members are idealized as straight and inclined cantilever beam-columns with 

fixed-free boundary conditions (K=2) and with an initial out of plumbness of L/500. 

 The concrete is modeled as (1) with a rigid plastic model (EPP) as idealized in the 

plastic stress distribution method as used in the AISC Specifications, and (2) with the 

concrete model proposed by Sakino as described in Chapter 2. In the rigid plastic 

model, the plastic stress was assumed as 0.85fc’ and 0.95fc’ for the RCFT and CCFT 

cross-sections, respectively. 

 Similarly, the steel is modeled as (1) with a rigid plastic model (EPP) as idealized in 

the plastic stress distribution method as used in the AISC Specifications, and (2) with 

the steel model proposed by Sakino model as described in Chapter 2. 

Similarly to the loading path used in the experimental test, these analyses are subjected to 

a desired initial axial loading (lower than the critical loading) that develops a P-M path, where 

the moments are used up as a consequence of the initial imperfection; the total imperfection 

moment is stored as Mimp once the target axial loading P is reached. Then, holding the gravity 

loading, a lateral force at the top is applied and later stopped once the system reaches its 

maximum lateral strength; at this peak strength, the total moment at the base (Mtotal) in the 

cantilever beam column is calculated including the peak overturning moment and the 

corresponding second order P moment. Finally, the net stable moment (Mnet) extracted from the 
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analyses is the difference between the total moment and the moment used up by the 

imperfection.  

 

The latter process is repeated for different target loads P, and the set of points extracted 

are used to create the P-M Interaction diagram. Figure 6.42 shows these results with both axial 

loads and moments normalized with the corresponding pure axial (Po) and pure bending (Mo) 

capacity. The corresponding AISC simplified bilinear P-M diagram (AISC A-C-B) proposed 

for slender beam-columns, as well as the cross-section strength based on fiber analysis and the 

AISC 2005 Specifications (AISC Interaction A-E-C-D-B) are also compared in these figures. 

These results expose the following observations: 

 The simplified bilinear AISC beam column strength is, for the shorter beam-columns, 

conservative and a lower bound of the capacity obtained in the analyses. Chapter 5 

shows that for short members, the analytical prediction in the buckling load (Pn) is 

larger than in the AISC Specifications. In addition, the bulge that is developed in the 

cross-section capacity due to the concrete contribution is kept in short beam-columns.  

 However, as the slenderness increases, the unusable flexural capacity due to 

instability and the imperfection boost up and, as a consequence, the net moment 

reduces significantly. This reduction will be reflected mainly in the flexural capacity, 

and the shape may be changed to: (1) a P-M diagram with a small or lacking any 

bulge, or (2) a diagonal line from the buckling capacity Pn to the pure flexural 

capacity Mo, or (3) a convex shape. Thus, in slender beam-columns, the AISC 

prediction may be larger than what is expected based on these models. The latter 

conclusion was also observed in the experimental data extracted from the tests in 

section 6.4. 

 Confinement effects accounted through the Sakino model induces higher compressive 

and flexural strength at the cross-section level and for beam-columns, but such 

compressive over strength vanished for intermediate and slender beam-columns. 
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 P/Po P/Po 

 
 M/Mo M/Mo 

(a) C20 section, EPP model (b) Rs section, EPP model 

 

 P/Po P/Po 

 
 M/Mo M/Mo 

(c) C20 section, Sakino model (d) Rs section, Sakino model 

 

Figure 6.42. P-M interaction diagrams for the composite CFT beam columns 
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6.6. Conclusions 

In this chapter, extraction of the axial and flexural capacities from the tests and from 

some analyses was performed. For the experimental tests, the load cases were selected in the 

load protocol to obtain a set of P-M points of the interaction diagrams, for both uniaxial bending 

through LC2 and biaxial bending through LC3. The axial load levels used in the load protocol 

were applied between the anchor points C and D, interval where the maximum moment is 

developed in the interaction diagram and the axial loading of columns in practice is very 

common. 

A methodology that has being approved and used in the calibration of steel members in 

the AISC Specifications (ASCE 1997; SSRC 2010) was discussed and applied in the extraction 

of axial and flexural capacities for CFT specimens tested and the prototypes analyzed in this 

project. 

The total capacity of the specimens for the given axial load level (P-Mtotal) extracted from 

the tests has implicit the reduction of the unusable flexural capacity due to the instability effects. 

In addition, the net capacity for the given axial load (P-Mnet) has in addition the reduction of the 

unusable flexural capacity that is consumed by the imperfections. 

The net moments extracted from the test specimens in the shorter specimens drop outside 

of the bilinear simplified diagram of the AISC for beam-columns, which underestimates the P-M 

capacities of the shorter specimens around the anchor point at D by assuming a vertical line 

between the points C-B. The purpose of neglecting the bulge with this vertical line in the AISC 

Simplified diagram was intended to be conservative through a lower bound, and this 

simplification was supported by the available experimental data at the time (AISC 2005, Leon 

and Hajjar 2008). 

The shape of the bilinear simplified diagram is less conservative in beam-columns with 

intermediate slenderness; however, for slender beam-columns (as the specimens tested in this 

research), the AISC simplified diagram overestimates the net moments capacities and is no 

longer conservative. The low net moment values are consequence of the substantial flexural 

capacity that is lost due to the large imperfections that were extracted from LC1. However, many 

of these points are still unconservative even if the imperfections are neglected. This 
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unconservative behavior in slender beam-columns suggests a change in the design equations for 

the calculation of P-M interaction diagrams that serves both short and slender beam columns. 

Similar conclusions on the behavior type as described above were observed in both 

uniaxial and biaxial bending. Extracted total and net moments in some specimens under biaxial 

bending show circular interaction surfaces in CCFTs and elliptical interaction surfaces in 

RCFTs. The latter was primarily observed in the earlier probes; however, as the load protocol 

progresses, the interaction surfaces exhibited reduction in size and changes in shape. This 

reduction is significant in RCFTs and in the axis related to the weak orientation as a consequence 

of the progression of large amount of deformation and degradation due to local buckling in the 

steel and loses of confinement in concrete. 

In addition, similar observations and behavior type that was discussed above for the 

experimental tests were obtained in the computational analysis. Even though more calibration 

with the computational analysis is needed for slender beam columns, the conclusions stated in 

this section seems consistent. 

Based on the results observed in this section, Chapter 10 proposes design equations that 

aim in the determination of the P-M interaction diagram for CFT cross-sections and beam-

columns. The beam-column capacity as proposed in Chapter 10 includes the unusable capacity 

due to both stability effects and imperfections. 
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CHAPTER 7  

RESPONSE TO LATERAL FORCES AND 

EVOLUTION OF THE FLEXURAL RIGIDITY 

7.1. Introduction 

In Chapter 6, loading cases LC2 and LC3 were used to extract experimental values for 

the P-M interaction diagrams. In this chapter, these loading cases are used again to evaluate the 

response of composite CFT beam-columns to lateral forces, as well as the evolution of the 

flexural rigidity for each specimen through the entire loading protocol. These load cases were 

explained with detail in Chapter 3 and Chapter 6. 

The main purpose of this chapter is the extraction and evaluation of the effective stiffness 

EIeff associated with these composite members. The evolution of the member stiffness is 

analyzed with respect to the influence of the applied gravity load and its degradation through the 

loading protocol. To back track the rigidities, some experimental responses will be evaluated in 

Section 7.2. Section 7.2.1 presents the lateral force – column drift response obtained for each 

specimen; the maximum level of drifts reached at the test is highlighted for both the 

unidirectional loading LC2 and the bidirectional loading LC3.  Similarly, Section 7.2.2 presents 

the moment – curvatures response at the critical cross-section near the base. 

Finally, Section 7.3 analyzes the evolution of the effective stiffness (EIeff) extracted from 

both the lateral force – drift response (presented in Section 7.2.1) and the moment – curvature 

response (presented in Section 7.2.2). The effective stiffness (EIeff) that was extracted in Chapter 

5 from the pure compression loading (LC1)  is also included in this analysis.  

Finally, Section 7.4 shows the results obtained from computational analysis under the 

same loading conditions that were applied in LC2 and LC3. The analytical response is also 

compared with the experimental results. 
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7.2. Experimental tests 

7.2.1. Lateral force – column drift response (F-) 

Lateral force (F, kip) vs. Drift (/L, %) curves obtained experimentally for the uniaxial 

load cases (LC2) are shown in Figure 7.2 through Figure 7.20, and for the biaxial load cases 

(LC3) in Figure 7.21 through Figure 7.37. The titles of these figures indicate the specimen name, 

the sustained gravity load on the specimen, and the effective length factor expected based on the 

controlled boundary conditions. In addition, these figures state the displacement path used (i.e. 

diamond-shape or eight-shape) and the unloading criterion (i.e. reversal at peak force, or reversal 

at desired target). All the uniaxial and biaxial load case types are described in Chapters 3 and 5, 

but as summary, these load cases start when the specimens are moved to zero displacement in 

both X and Y direction, and then the desired compression load is imposed. 

Figure 7.2 to Figure 7.10 show the lateral force – drift response along the axis of motion 

obtained from the two cycles with the uniaxial loading case (LC2) and reversals at the peak 

force. This loading case type was applied to the first half of specimens (specimens 1 to 9), and 

the following observations can be made about these figures: 

 Except for Specimen 1, these specimens exhibit a positive stiffness slope until the peak 

where this slope becomes zero. This peak force is the maximum lateral strength of the 

beam-column and beyond this point the specimen becomes unstable due to combined 

material and geometric nonlinearities; the stability of the specimen is maintained beyond 

the peak since the lateral DOFs are in displacement control. The set of points at where the 

specimen reaches its maximum lateral capacity were used to obtain experimental values 

of the interaction diagram as shown in Chapter 5. 

 In Specimen 1, the slope is negative since the axial load applied initially was close or 

exceeded its buckling capacity, and therefore, no additional lateral force could be resisted 

by the specimen in this condition; again, stability of the specimen is maintained since the 

lateral DOFs are in displacement control. 

 Since few cycles are applied and the peak force was not exceeded, there is little or no 

strength and stiffness degradation as expected. The drift at the peak depends on the 

sustained axial load, reaching larger drifts with lower axial load as a consequence of the 

P effects. 
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 During the testing of these specimens, and once the peak lateral force was reached with a 

speed rate of 1 in/min of lateral motion, the controller was set to “Pause” so new input 

commands for driving the crosshead in the opposite direction could be input.  However,  

instantaneous with this pause, the lateral force exhibited an instant reduction of the lateral 

force on the order of 1 to 2 kips, and a similar amount of lateral force reduction once the 

“Pause” was removed and the specimen driven in the opposite direction. As 

schematically illustrated in Figure 7.1, a total force relaxation of about 2 to 4 kips was 

observed at the point of displacement reversals, exhibiting a very stiff response in this 

pause interval that is likely due to the system friction rather than the specimen rigidity. 

This relaxation on the lateral force at reversals was also observed in all the types of the 

uniaxial and the biaxial loading cases (LC2 and LC3). 

Force relaxation 
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(about twice the 

friction forces)
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Figure 7.1. Force relaxation at the testing pauses (schematic) 

 

Denavit and Hajjar (2010) accounted for the system friction with rigid-plastic spring at 

the column tip, with 1 kip of strength and placed at the top in the transverse X and Y 

directions. The analytical response with these spring elements is similar to the obtained 

experimental response, but it develops hysteresis loops with higher energy dissipation 

than that expected without the system friction. 
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Figure 7.11 to Figure 7.20 show the lateral force – drift cyclic response along the motion 

axis obtained from the uniaxial loading case (LC2) where the reversals were set at a target drift, 

mostly 1% of drift increment to the max stroke. This loading case type was applied to the second 

half of specimens (specimens 10 to 18), and the following notes can be made about these figures: 

 In general, all these figures show a good cyclic behavior, especially when the sustained 

axial load is lower than the axial load at the balance point (PC/2). In these cases, larger 

drifts were obtained before the maximum peak response was reached. For the cases with 

higher sustained axial loads, the peak force was met earlier with lower drifts as a 

consequence of the P effects. 

 Higher degradation is observed for those specimens under high gravity load and when the 

reversals took place in the post-peak interval at higher drifts. 

 As for the previous figures, a very stiff response is exhibited at the reversals as a 

consequence of the system friction, where the lateral force reduces instantly on the order 

of 1 to 2 kip. 

Figure 7.21 to Figure 7.25 show the lateral force – drift response along the X and Y axis 

obtained from the biaxial loading case (LC3) where the diamond shape displacement pattern was 

used. This load case was described in Chapters 3 and 5. As summary, a set of 8 probes (16 

probes in Specimen 3) around the specimen were applied. The reversals for each probe were 

made at the peak force in either the X or Y direction. Between the reversals and the consecutive 

probe, the specimen was driven back partially and then move along a diamond in order to reduce 

the amount of testing time. This loading case type was applied in the specimens 2 to 6. 

As for the uniaxial case, the peak force at each probe is the maximum lateral strength of 

the beam-column in a given direction. The set of points at where the specimen reaches its 

maximum lateral capacity were used to obtain experimental values of the interaction surfaces 

that were presented in Chapter 5. The following observations can be made about these figures: 

 Since the compression loading applied is lower than the buckling capacity, a positive 

stiffness slope is developed until the peak force is met in either X or Y direction. 

 As for the uniaxial case, the drift at the peak depends on the sustained axial load, 

achieving smaller drifts with higher axial loads as a consequence of the P effects. 
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 Since one cycle was applied in each probe and the peak force was not exceeded in either 

X or Y direction, there is no strength and stiffness degradation observed in the CCFTs.  A 

slight amount of degradation was noted in the RCFTs; this fact validates the interaction 

surfaces that were obtained in Chapter 5. 

 Due to the symmetric shape in CCFTs, similar strength and the stiffness were obtained 

for both the X and Y direction. However, lower peak strength and lower stiffness were 

obtained in the weak axis of RCFTs as expected. 

Figure 7.26 to Figure 7.36 show the lateral force – drift cyclic response along the X and 

Y axis obtained from the biaxial loading case (LC3) where the eight-shape displacement pattern 

was used. This load case is described in Chapters 3 and 5. As summary, reversals were set at a 

target drift, mostly 1% of drift increment to the max stroke. This loading case type was applied 

in the specimen 7, 8 and 10 to 18. The following observations can be made about these figures: 

 Higher degradation is observed for those specimens under high gravity load and when the 

reversals took place in the post-peak interval with at higher drifts. 

 Due to the symmetric shape in CCFTs, similar strength and the stiffness were obtained 

for both the X and Y direction. However, lower peak strength and lower stiffness were 

obtained in the weak axis of RCFTs as expected. 

 In these figures, a very stiff response is exhibited at the reversals. In these cases, the 

change in lateral force with no change in displacement is not only due to the system 

friction; the main reason for this stiff is due the motion type of this load case. For 

example, in the first ramp,  motion is induced only along the X-axis (holding zero 

displacement in Y); once the desired drift is reached in the X direction, the controller is 

set to hold this displacement and then displace the specimen along the Y-axis only the 

until the desired drift. Here, again, the Y displacement is held and the specimen is driven 

back to zero displacement in X. Finally, again holding zero displacement in X, the 

specimen is  driven back to zero displacement in Y. This process is then repeated in the 

negatives X and Y sides, and then both repeated with another target drift. Thus, at the 

ramps when the specimens is moved in one axis and held in the other, one of the response 

will exhibit change in force without change in displacement, but without this meaning a 
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rigid stiffness in the specimens for this interval. Instead, the stiffness of the specimen is 

related to the part of response when both lateral forces and drifts are changing. 

Finally, Figure 7.37 show the lateral force – drift cyclic response along the X and Y axis 

obtained in the Specimen 9 from the biaxial loading case (LC3) where the probe-subprobe type 

was used. This load case is described in Chapters 3 and 5. As summary, reversals were set in this 

loading type at the peaks of lateral strength in either X or Y direction for each probe or subprobe. 

This load case also aims to obtain the interaction surface and minimizing the testing time. This 

response also shows lower peak strength and lower stiffness in the weak axis of this RCFT. More 

details about the post-processing response obtained for this specimen with this load case are 

presented in Denavit et al. (2010). 

From all these figures, the slopes at the first unloading path in both positive and negative 

sides are extracted. These slopes are extracted during the motion ramps in order to avoid the stiff 

values measured at the pauses as a consequence of the friction in the system. For the RCFT 

specimens, the stiffness was extracted according to its orientation (stiffness in weak axis for the 

Rw group, and strong axis stiffness for the Rs group); this criterion was also used in the biaxial 

load cases. The stiffness values extracted from these figures are reported in Section 7.3. 
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F (kip) F (kip)  F (kip) 

 
Drift (%) Drift (%) Drift (%) 

  (a) P=300 kip (b) P=200 kip (c) P=100 kip 

Figure 7.2. Lateral force (F, kip) vs. Drift (/L, %) from the uniaxial load cases (LC2, reversal 

at peak force) for the Specimen 2C12-18-5 
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 (a) P=300 kip (b) P=150 kip 

Figure 7.3. Lateral force (F, kip) vs. Drift (/L, %) from the uniaxial load cases (LC2, reversal 

at peak force) for the Specimen 6C12-18-12 
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 (a) P=1000 kip (b) P=500 kip 

Figure 7.4. Lateral force (F, kip) vs. Drift (/L, %) from the uniaxial load cases (LC2, reversal 

at peak force) for the Specimen 3C20-18-5 
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Figure 7.5. Lateral force (F, kip) vs. Drift (/L, %) from the uniaxial load cases (LC2, reversal 

at peak force) for the Specimen 7C20-18-12 
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X Drift (%) X Drift (%) 

 (a) P=600 kip (b) P=300 kip 

Figure 7.6. Lateral force (F, kip) vs. Drift (/L, %) from the uniaxial load cases (LC2, reversal 

at peak force) for the Specimen 4Rw-18-5 
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Figure 7.7. Lateral force (F, kip) vs. Drift (/L, %) from the uniaxial load cases (LC2, reversal 

at peak force) for the Specimen 8Rw-18-12 
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Fx (kip) Fx (kip) 

 
X Drift (%) X Drift (%) 

 (a) P=1000 kip (b) P=500 kip 

Figure 7.8. Lateral force (F, kip) vs. Drift (/L, %) from the uniaxial load cases (LC2, reversal 

at peak force) for the Specimen 5Rs-18-5 
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Figure 7.9. Lateral force (F, kip) vs. Drift (/L, %) from the uniaxial load cases (LC2, reversal 

at peak force) for the Specimen 9Rs-18-12 
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 (a) P=15 kip (b) P=30 kip 

Figure 7.10. Lateral force (F, kip) vs. Drift (/L, %) from the uniaxial load cases (LC2, K=1) for 

the Specimen 1C5-18-5 
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Figure 7.11. Lateral force (F, kip) vs. Drift (/L, %) from the uniaxial load cases (LC2, K=1) for 

the Specimen 18C5-26-12 
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 (a) P=200 kip (b) P=100 kip 

Figure 7.12. Lateral force (F, kip) vs. Drift (/L, %) from the uniaxial load cases (LC2, reversal 

at desired drift) for the Specimens 10C12-26-5 
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Figure 7.13. Lateral force (F, kip) vs. Drift (/L, %) from the uniaxial load cases (LC2, reversal 

at desired drift) for the specimen 14C12-26-12 
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 (a) P=600 kip (b) P=300 kip 

Figure 7.14. Lateral force (F, kip) vs. Drift (/L, %) from the uniaxial load cases (LC2, reversal 

at desired drift) for the Specimen 11C20-26-5 
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Figure 7.15. Lateral force (F, kip) vs. Drift (/L, %) from the uniaxial load cases (LC2, reversal 

at desired drift) for the Specimen 15C20-26-12 
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X Drift (%) X Drift (%) 

 (a) P=400 kip (b) P=200 kip 

Figure 7.16. Lateral force (F, kip) vs. Drift (/L, %) from the uniaxial load cases (LC2, reversal 

at desired drift) for the Specimen 12Rw-26-5 
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Figure 7.17. Lateral force (F, kip) vs. Drift (/L, %) from the uniaxial load cases (LC2, reversal 

at desired drift) for the Specimen 16Rw-26-12 
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Fx (kip) Fx (kip) 

 
X Drift (%) X Drift (%) 

 (a) P=400 kip (b) P=800 kip 

Figure 7.18. Lateral force (F, kip) vs. Drift (/L, %) from the uniaxial load cases (LC2, reversal 

at desired drift) for the Specimen 13Rs-26-5 
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Figure 7.19. Lateral force (F, kip) vs. Drift (/L, %) from the uniaxial load cases (LC2, reversal 

at desired drift) for the Specimen 17Rs-26-12 
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 F (kip) 

 
Drift (%) 

Figure 7.20. Lateral force (F, kip) vs. Drift (/L, %) from the uniaxial load case (LC2, K=1) for 

the Specimen 14C12-26-12 (P=300 kip) 
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 (a) P=1250 kip (b) P=750 kip (c) P=250 kip 

Figure 7.21. Lateral force (F, kip) vs. Drift (/L, %) from the biaxial load cases (LC3, diamond-

shape) for the Specimen 3C20-18-5 
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 (a) P=250 kip (b) P=150 kip 

Figure 7.22. Lateral force (F, kip) vs. Drift (/L, %) from the biaxial load cases (LC3, diamond-

shape) for the Specimen 2C12-18-5 
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 (a) P=375 kip (b) P=225 kip (c) P=75 kip 

Figure 7.23. Lateral force (F, kip) vs. Drift (/L, %) from the biaxial load cases (LC3, diamond-

shape) for the Specimen 6C12-18-12 
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 (a) P=750 kip (b) P=450 kip (c) P=150 kip 

Figure 7.24. Lateral force (F, kip) vs. Drift (/L, %) from the biaxial load cases (LC3, diamond-

shape) for the Specimen 4Rw-18-5 
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Figure 7.25. Lateral force (F, kip) vs. Drift (/L, %) from the biaxial load cases (LC3, diamond-

shape) for the Specimen 5Rs-18-5 
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 F (kip) 

 
 Drift (%) 

 (a) P=1250 kip 

Figure 7.26. Lateral force (F, kip) vs. Drift (/L, %) from the biaxial load cases (LC3, eight-

shape) for the Specimen 7C20-18-12 
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Figure 7.27. Lateral force (F, kip) vs. Drift (/L, %) from the biaxial load cases (LC3, eight-

shape) for the Specimen 8Rw-18-12 (P=800 kip) 
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Figure 7.28. Lateral force (F, kip) vs. Drift (/L, %) from the biaxial load cases (LC3, eight-

shape) for the Specimen 10C12-26-5 
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Figure 7.29. Lateral force (F, kip) vs. Drift (/L, %) from the biaxial load cases (LC3, eight-

shape) for the Specimen 14C12-26-12 
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Figure 7.30. Lateral force (F, kip) vs. Drift (/L, %) from the biaxial load cases (LC3, eight-

shape) for the Specimens 11C20-26-5 
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Figure 7.31. Lateral force (F, kip) vs. Drift (/L, %) from the biaxial load cases (LC3, eight-

shape) for the Specimen 15C20-26-12 
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 (a) P=300 kip (b) P=500 kip 

Figure 7.32. Lateral force (F, kip) vs. Drift (/L, %) from the biaxial load cases (LC3, eight-

shape) for the Specimen 12Rw-26-5 
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Figure 7.33. Lateral force (F, kip) vs. Drift (/L, %) from the biaxial load cases (LC3, eight-

shape) for the Specimen 13Rs-26-5 
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 (a) P=300 kip (b) P=500 kip 

Figure 7.34. Lateral force (F, kip) vs. Drift (/L, %) from the biaxial load cases (LC3, eight-

shape) for the Specimen 16Rw-26-12 
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Figure 7.35. Lateral force (F, kip) vs. Drift (/L, %) from the biaxial load cases (LC3, eight-

shape) for the Specimen 17Rs-26-12 
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 F (kip) 
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Figure 7.36. Lateral force (F, kip) vs. Drift (/L, %) from the biaxial load case (LC3, K=1, 

eight-shape) for the specimens 18C5-26-12 (P=20 kip) 
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Figure 7.37. Lateral force (F, kip) vs. Drift (/L, %) from the biaxial load cases (LC3, probe-

subprobe) for the Specimens 9Rs-18-12 (P=800 kip) 
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7.2.2. Moment – curvature response (M-) 

In this section, the experimental moment-curvature (M-) responses for the critical cross-

sections near the base of the CFT specimens are presented. For the uniaxial load cases (LC2), the 

in-plane moment and curvature in the direction of motion are obtained and shown in Figure 7.38 

to Figure 7.53. For the biaxial load cases (LC3), the bending moments and cross-section 

curvatures corresponding to both X and Y directions are presented in Figure 7.54 to Figure 7.66. 

The components of the moments at the base are calculated as the top moment 

components plus the cross product of the arm vector (d) times the force components (F). This is: 

 
base topM M M d F     (7.1) 

The arm vector (d) defines the distance between the centroid of the column base and the 

centroid of the column top. The moment at the base thus comprises the first order (Mtop + FL) 

and the second order moment (P) components. 

The curvature (), on the other hand, is calculated based on the measurements of the three 

strain gages located near the bottom (6 inches from the base plate). Assuming plane sections 

always remain plane, the strain at any point of the cross-sections and the corresponding 

curvatures are estimated based on the three measured values on the plane. Even though these 

responses were extracted carefully, in few cases (mainly for the latter load cases) the strain 

gauges were subjected to very large strains as a consequence of the steel local buckling; this fact 

invalidates the assumption that states that plane sections remain plane. 

However, as generally observed in all these figures, the M- curves exhibit good behavior 

from cycle to cycle within the same load case, with only some minor strength loss and moderate 

stiffness degradation. In general, the M- response seems consistent, except in few cases where 

strange slopes (mainly in LC3) are exhibited likely due to high strains as a consequence of the 

local buckling. In addition, the response from LC3 in some cases is difficult to clarify due to the 

complexity of these loading types. 

 

Figure 7.38 to Figure 7.45 show the moment – curvature response obtained from the two 

cycles with the uniaxial loading case (LC2) and reversals at the peak force. As reminder, this 



280 

loading case type was applied to the first half of specimens (specimens 1 to 9). Since few cycles 

are applied and the M-response is limited by the peak lateral force, there is no evidence of 

accumulated damage (i.e. steel local buckling) and then there is no strength or stiffness 

degradation in these responses as expected. As a consequence, these responses exhibit a positive 

stiffness with no softening.  

Figure 7.46  to Figure 7.53 show the moment – curvature cyclic response obtained from 

the uniaxial loading case (LC2) where the reversals were set at a target drift, mostly 1% of drift 

increment to the max stroke. This loading case type was applied to the second half of specimens 

(specimens 10 to 18). In general, all these figures show good cyclic behavior with very low 

degradation and no softening, even when those cases with high compressive load. During this 

load case, only the specimen 17 exhibited strange slopes as seen in Figure 7.53, likely due to 

high strains as a consequence of the local buckling. 

Figure 7.54 to Figure 7.58 show the moment – curvature response along the X and Y axis 

obtained from the biaxial loading case (LC3) where the diamond displacement pattern with a set 

of probes around the specimen was used, and where reversals for each probe were made at the 

peak lateral force in either X or Y direction. This loading case type was applied in specimens 2 

to 6. Since one cycle was applied in each probe and the peak lateral force was not exceeded in 

either X or Y direction, there is no strength and stiffness degradation observed in CCFTs, slight 

degradation in the strong axis of RCFTs, and moderate to high degradation in the weak axis of 

RCFTs. Due to the symmetric shape in CCFTs, similar strength and stiffness were obtained for 

both the X and Y direction. However, lower moment capacity and lower stiffness were obtained 

in the weak axis of RCFTs, as expected. 

Figure 7.59 to Figure 7.67.a show the moment – curvature cyclic response along the X 

and Y axis obtained from the biaxial loading case (LC3) where the eight-shape motion with 

reversals target drifts was used. This loading case type was applied in the specimen 7, 8 and 10 

to 18. Contrary to the previous cases, higher degradation is observed for those specimens at large 

curvatures, mainly in weak axis of RCFTs. Due to the symmetric shape in CCFTs, similar 

strength and the stiffness were obtained for both the X and Y direction; however, lower capacity 

and lower stiffness were obtained in the weak axis of RCFTs. In these figures, strange slopes are 

exhibited due the motion type of this load case in which  the top was moved in one longitudinal 
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direction while holding fixed the other transverse direction, and then switching to the opposite 

case. The strange slopes can also be attributed to large amount of local buckling deformation 

(mainly in weak axis of RCFTs) where the “sections remain plain” assumption is perhaps no 

longer valid. 

Finally, Figure 7.67.b shows the moment – curvature cyclic response along the X and Y 

axis obtained in the Specimen 9 from the biaxial loading case (LC3) where the probe-subprobe 

type was used. Similar to the other RCFT cases, lower moment capacity and lower stiffness were 

obtained in the weak axis. 

In addition to the M- curves, the experimental flexural stiffness (EIexp) is extracted from 

these curves as the slope at certain locations. In general these correspond to the unloading region 

from peak load as that is considered to be the more “elastic” region of the plot. The slope and the 

selected points for the EIexp are calculated in both the positive and negative sides of the loops. 

For the RCFT specimens, the stiffness was extracted accordingly to its orientation (stiffness in 

weak axis for the Rw group, and strong axis stiffness for the Rs group); this criterion was also 

used in the biaxial load cases. The stiffness values extracted from these figures are reported and 

analyzed in Section 7.3. 
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Figure 7.38. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 2C12-18-5 
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Figure 7.39. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 6C12-18-12 

-2 -1 0 1 2 3

x 10
-4

-200

-150

-100

-50

0

50

100

150

200

E
I e

x
p
=

8
4
8
6
5
3
6
 k

ip
-i

n
2

E
I e

x
p
=

8
5
9
8
6
8
7
 k

ip
-i

n
2

-6 -4 -2 0 2 4 6

x 10
-4

-250

-200

-150

-100

-50

0

50

100

150

200

E
I e

x
p
=

7
6
5
7
6
3
5
 k

ip
-i

n
2

E
I e

x
p
=

8
1
1
6
0
7
1
 k

ip
-i

n
2



284 

Mx (kip-ft)

y (1/in)

 
(a) P=1000 kip 

 

Mx (kip-ft)

y (1/in)

 
(b) P=500 kip 

 

Figure 7.40. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 3C20-18-5 

-2 -1 0 1 2 3 4 5 6 7

x 10
-4

-600

-400

-200

0

200

400

600

E
I e

x
p
=

2
8
9
7
8
7
0
2
 k

ip
-i

n
2

E
I e

x
p
=

4
5
3
5
5
2
2
8
 k

ip
-i

n
2

-2 0 2 4 6 8 10 12 14

x 10
-4

-600

-400

-200

0

200

400

600

E
I e

x
p
=

2
6
0
5
3
8
4
4
 k

ip
-i

n
2

E
I e

x
p
=

3
7
2
8
9
7
7
7
 k

ip
-i

n
2



285 

Mx (kip-ft)

y (1/in)

 
(a) P=1000 kip 

 

Mx (kip-ft)

y (1/in)

 
(b) P=500 kip 

 

Figure 7.41. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 7C20-18-12 
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Figure 7.42. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 4Rw-18-5 

-4 -3 -2 -1 0 1 2 3 4 5 6

x 10
-4

-600

-400

-200

0

200

400

600

E
I e

x
p
=

1
8
3
9
9
0
1
9
 k

ip
-i

n
2

E
I e

x
p
=

1
9
1
0
5
0
1
4
 k

ip
-i

n
2

-6 -4 -2 0 2 4 6 8 10

x 10
-4

-600

-400

-200

0

200

400

600

E
I e

x
p
=

1
7
6
9
6
5
3
6
 k

ip
-i

n
2

E
I e

x
p
=

1
8
1
4
8
2
2
5
 k

ip
-i

n
2



287 

My (kip-ft)

x (1/in)

 
(a) P=600 kip 

 

My (kip-ft)

x (1/in)

 
(b) P=300 kip 

 

Figure 7.43. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 8Rw-18-12 
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Figure 7.44. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 5Rs-18-5 

-4 -3 -2 -1 0 1 2 3 4 5

x 10
-4

-800

-600

-400

-200

0

200

400

600

800

E
I e

x
p
=

4
6
1
2
5
5
8
6
 k

ip
-i

n
2

E
I e

x
p
=

4
3
8
1
8
0
0
5
 k

ip
-i

n
2

-8 -6 -4 -2 0 2 4 6 8

x 10
-4

-800

-600

-400

-200

0

200

400

600

800

E
I e

x
p
=

4
0
8
3
5
4
9
1
 k

ip
-i

n
2

E
I e

x
p
=

4
0
8
7
9
5
1
6
 k

ip
-i

n
2



289 

My (kip-ft)

x (1/in)

 
(a) P=1200 kip 

 

My (kip-ft)

x (1/in)

 
(b) P=400 kip 

 

Figure 7.45. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 9Rs-18-12 
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Figure 7.46. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 10C12-26-5 
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Figure 7.47. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 14C12-26-12 
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Figure 7.48. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 11C20-26-5 
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Figure 7.49. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 15C20-26-12 
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Figure 7.50. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 12Rw-26-5 

-3 -2 -1 0 1 2 3 4

x 10
-4

-500

-400

-300

-200

-100

0

100

200

300

400

500

E
I e

x
p
=

1
7
2
7
1
9
2
8
 k

ip
-i

n
2

E
I e

x
p
=

2
7
1
1
9
3
6
6
 k

ip
-i

n
2

-3 -2 -1 0 1 2 3 4 5

x 10
-4

-500

-400

-300

-200

-100

0

100

200

300

400

500

E
I e

x
p
=

1
6
8
6
0
1
3
0
 k

ip
-i

n
2

E
I e

x
p
=

2
5
5
7
2
2
6
0
 k

ip
-i

n
2



295 

My (kip-ft)

x (1/in)

 
(a) P=200 kip 

 

My (kip-ft)

x (1/in)

 
(b) P=400 kip 

 

Figure 7.51. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 16Rw-26-12 
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Figure 7.52. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 13Rs-26-5 
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Figure 7.53. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 17Rs-26-12 
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Figure 7.54. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 2C12-18-5 
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Figure 7.55. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 3C20-18-5 
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Figure 7.56. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 4Rw-18-5 
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Figure 7.57. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 5Rs-18-5 
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Figure 7.58. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 6C12-18-12 
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Figure 7.59. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 14C12-26-12 and 7C20-18-12. 
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Figure 7.60. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 10C12-26-5 

-4 -3 -2 -1 0 1 2 3 4

x 10
-4

-150

-100

-50

0

50

100

150

E
I e

x
p
=

6
4
9
8
6
1
8
 k

ip
-i

n
2

E
I e

x
p
=

5
1
8
2
5
9
8
 k

ip
-i

n
2

 

 

M
y
-

x

M
x
-

y

-4 -2 0 2 4 6

x 10
-4

-150

-100

-50

0

50

100

150

E
I e

x
p
=

5
9
7
7
1
3
2
 k

ip
-i

n
2

E
I e

x
p
=

4
4
0
6
0
0
9
 k

ip
-i

n
2

 

 

M
y
-

x

M
x
-

y



305 

M (kip-ft)

 (1/in)

 
(a) P=450 kip 

 

M (kip-ft)

 

 (1/in)

 
(b) P=150 kip 

 

Figure 7.61. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 11C20-26-5 
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Figure 7.62. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 12Rw-26-5 
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Figure 7.63. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 13Rs-26-5 

-6 -4 -2 0 2 4 6 8 10

x 10
-4

-600

-400

-200

0

200

400

600

800

E
I e

x
p
=

1
8
7
7
9
2
4
9
 k

ip
-i

n
2

E
I e

x
p
=

2
5
9
6
6
3
5
2
 k

ip
-i

n
2

 

 

M
y
-

x

M
x
-

y

-4 -2 0 2 4 6 8 10 12 14

x 10
-4

-600

-400

-200

0

200

400

600

E
I e

x
p
=

2
7
9
6
6
7
3
2
 k

ip
-i

n
2

E
I e

x
p
=

2
3
3
9
9
9
8
2
 k

ip
-i

n
2

 

 

M
y
-

x

M
x
-

y



308 

M (kip-ft)

 (1/in)

 
(a) P=200 kip 

 

M (kip-ft)

 (1/in)

 
(b) P=600 kip 

 

Figure 7.64. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 15C20-26-12 
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Figure 7.65. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 16Rw-26-12 
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Figure 7.66. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimen 17Rs-26-12 
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Figure 7.67. Second order moment at the base (M, kip-ft) vs. Curvature (, 1/in) from the 

uniaxial load cases (LC2) for the specimens 8Rw-18-12 and 9Rs-18-12 
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7.3. Evolution of flexural rigidity 

 

The values of the flexural rigidity previously extracted from the tests are analyzed in this 

section. These values were obtained from the following responses: 

 Buckling loads (Ptest) were obtained from the processed experimental data in Section 5.5, 

as well as from computational analysis in Section 5.6. Based on this loads, values of the 

flexural rigidity (EItest) can be calculated with the current design equations by a reverse 

engineering process with the following equations: 
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log(0.658)
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log( / )

                 if     0.44
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 (7.2) 

The equations are solved for the effective stiffness given that the buckling load is known 

and equal the buckling capacity obtained in Section 5.5 or 5.6. The rigidities EItest 

obtained from the experimental processed data shown in Section 5.5 are listed in column 

(1) of Table 1.1 for the load case LC1. The rigidities obtained from the analytical 

buckling loads of Section 5.6 are in column (2) of Table 1.1 for the load case LC1. 

 Also in Section 5.7, experimental values of the elastic flexural stiffness (EItest) were 

obtained from the unloading branch from the moment-curvature (M-) curves during the 

pure compression loading case (LC1). Values of the tangent stiffness were extracted then 

from two selected points (Ma-a , Mb-b) as: 

 b a
test

b a

M M
EI

 





 (7.3) 

The rigidities EItest obtained from the loading branch of the moment-curvature response 

are shown in column (3) of Table 1.1 for the load case LC1. In turn, the rigidities 

obtained from the moment-curvature response from the unloading branch are in column 

(4) of Table 1.1 for load case LC1. 
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 In Section 7.2.1, experimental values of the elastic flexural rigidity (EItest) were obtained 

for the unloading branch from the lateral force – displacement (F-) response of the 

uniaxial (LC2) and the biaxial (LC3) loading cases (see Figure 7.2 to Figure 7.37). 

Values of the F-slope were extracted from two selected points (Fa-a , Fb-b), and for 

both positive and negative sides of the loop. 

The EItest extracted from this response is obtained as follows. The second order 

displacement (2) in the beam-column is equal to the first order displacement (1) due to 

the lateral force in the cantilever member and amplified by a factor (AF) that accounts for 

the second order effects due to the sustained axial load (Ptest). 
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2 1
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EI KL

 
 

         
    
 

 (7.4) 

In the previous equation, the first term is the first order displacement of a cantilever 

member with length (L) under a transverse force (F) and with a flexural rigidity EIexp. 

The second term, which is equal to 1/(1-P/Pe) and where Pe is the Euler load, is the 

amplification factor that accounts for the second order effects due to the axial force in a 

member with initial imperfection (W. K. Chen and Lui 1987; Timoshenko 1961). Solving 

for the flexural rigidity EItest, and writing the final equation in terms of the two extracted 

force-displacement points (Fa-a , Fb-b), the experimental stiffness can be calculated as 

follows: 
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 (7.5) 

The stiffness EItest obtained from the lateral force – lateral displacement response from 

the unloading in the positive side is shown in column (1) of Table 1.1 for the load cases 

LC2 and LC3. In turn, the stiffness obtained from the lateral force – lateral displacement 

response at the unloading in the negative side is in column (2) of Table 1.1 for the load 

cases LC2 and LC3. 
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 Similarly in Section 7.2.2, experimental values of the elastic flexural stiffness (EItest) 

were obtained from the unloading branch from the moment-curvature (M-) curves of the 

uniaxial (LC2) and the biaxial (LC3) loading cases (see Figure 7.38 to Figure 7.66). 

Values of the tangent stiffness were extracted from two selected points (Ma-a , Mb-b) as 

in Equation 7.2, and for both positive and negative sides of the loop. 

The rigidities EItest obtained from the moment-curvature response at the unloading in the 

positive side are shown in column (3) of Table 1.1 for the load cases LC2 and LC3. Also, 

the rigidities obtained from the moment-curvature response at the unloading in the 

negative side are listed in column (4) of Table 1.1 for the load cases LC2 and LC3. 

 

The averaged flexural rigidities (EItest) obtained for the same loading case from different 

responses are shown in the fifth column of Table 1.1. The maximum standard deviation of the 

averaged stiffness is of the order of 40% the corresponding averaged value.  

 

As seen in Table 1.1, the averaged rigidities range from 0.37 to 0.98 of the summation of 

the steel (EsIs) and the concrete (EcIc) stiffness (gross stiffness), with the highest values in the 

first load cases and descending for the latter load cases; for the load case LC1 the averaged 

rigidities vary from 0.70 to 0.98 of the gross stiffness. The steel (EsIs) and concrete (EcIc) 

stiffness are listed in Table 7.2. 

 

In addition, the averaged rigidities range from 0.47 to 1.23 of the effective stiffness (EIeff) 

calculated with the AISC (2010) Specifications, again being larger for the first load cases and 

with lower values for the final load cases; for the load case LC1, the averaged rigidities vary 

from 0.88 to 1.23 of the effective stiffness obtained with the Specifications. The effective 

stiffness (EIeff) obtained from the AISC (2010) Specifications obtained for each specimen is 

listed in Table 7.2. 
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As reminder, the effective stiffness by the AISC (2010) Specifications is given by:  

 
3eff s s c cEI E I C E I   (7.6) 

where the stiffness coefficient for the concrete in CFTs is equal to: 

 3 min 0.6 2 ,    0.9s

s c

A
C

A A

 
  

 
 (7.7) 

The final column in Table 1.1 is the calibration of the parameter C3,test obtained from the 

averaged test rigidities. This parameter is obtained as: 

 
3,

test s s
test

c c

EI E I
C

E I


  (7.8) 

 

Figure 7.68 to Figure 7.71 illustrate the C3,test coefficients obtained from the experimental 

rigidities and their variation with: 

(a) The gravity load of each load case (P) 

(b) With the sequence during the testing. 

 

These figures also include in dashed line the C3 coefficients calculated with the AISC 

(2010) Specifications using Equation 7.7. The C3 coefficients calculated for each specimen are 

also listed in Table 7.2, as well as the steel ratio (s = As / A) and the slenderness parameter (). 

Table 7.2 also summarizes, for each specimen, the C3,test coefficient obtained from the load case 

LC1, the average value from the set of load cases LC2, and the average value from the set of 

load cases LC3. 

The comparisons of the evolution of the experimental rigidities or the C3 coefficients 

with the gravity load (P) and the loading sequence aim to determine whether or not the rigidity 

changes are mainly because of the dependency with the sustained axial load or the boundary 

conditions, or because the degradation due to accumulated damage from previous load cases. 

Even when contributions are expected from all these causes, these results show a higher impact 

of the degradation due to the previous loading cases. 
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Although there is a considerable dispersion of the C3 coefficients in Figure 7.68 to Figure 

7.71, they show in general a higher contribution of the concrete during the first load case LC1, 

where the C3,test value has an average of 0.81 during LC1 as seen in Table 7.2. This can be 

attributed to the absence of damage in the concrete during this load case, when cracking and 

crushing are inexistent or at a minimum. 

As the load protocol progresses, the concrete cracking extends and this is reflected in a 

lower participation of the concrete in the rigidity, where the C3,test value has an average of 0.41 

during the load case LC2 and an average of 0.27 during LC3 as seen in Table 7.2. As a 

consequence of a higher accumulated damage (exhibited as steel local buckling) observed in the 

RCFTs during the latest load cases, the C3,test values are lower that the corresponding values in 

the CCFTs. As seen in Table 7.2, the C3,test average coefficients in CCFTs are equal to 0.42 

during LC2 and 0.30 during LC3; for the RCFTs, these coefficients are 0.40 during LC2 and 

0.25 during LC3. 

For the latest load cases (i.e. LC3) in some specimens, the C3,test coefficient resulted in 

small or trivial values. This indicates a negligible contribution of the concrete to the stiffness as a 

consequence of a very high damage of the core concrete, as well as in the steel tube. 

The effect of the boundary conditions is another factor that has an influence on the value 

of the C3 coefficients. For example, Figure 7.68.d illustrates the C3,test values of the Specimen 

14C12-26-12 varying with the load sequence. The first set of load cases LC2a, LC2b and LC3 in 

this specimen were controlled as fixed-free with an effective length factor of K=2; however for 

the second set, the load cases LC2a’, LC2b’ and LC3a’, the DOFs were controlled with fixed top 

moments or with an effective length factor of K=1. The change in boundary conditions in this 

specimen not only makes it stronger and stiffer, but also increased the concrete contribution on 

the stiffness by increasing the C3 coefficient. 

Figure 7.72 shows, for each load case set, the variation of the averaged C3 coefficients 

presented in Table 7.2 with the steel ratio () and the slenderness parameter (). The dashed line 

plotted with the steel ratio () is the C3 coefficient obtained with the Equation 7.7. In turn, the 

dashed line plotted with the slenderness parameter () represents the average of the shown data. 
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The following observation can be highlighted from this figure: 

 There seems to be no clear correlation between the C3 coefficient with either the 

slenderness parameter () or the steel ratio (). 

 Even when the C3 coefficients calculated with the Equation 7.7 given in the AISC (2010) 

Specifications present reasonable values with the specimens used, Figure 7.72.a does not 

show a clear tendency between the steel ratio () and the contribution of the concrete to 

the effective stiffness (C3). 

 The dispersion of the C3 coefficients is higher in the latest load cases, where the standard 

deviations resulted equal to 0.09 in LC1, 0.14 in LC2 and 0.19 in LC3. The 

corresponding average C3 coefficients are 0.81 in LC1, 0.41 in LC2 and 0.27 in LC3. 

 As seen in Table 7.2, the lower C3 coefficients during LC3 correspond to the longer 

specimens with 26 feet of length, where an average of 0.13 is obtained. For the shorter 

specimens with 18 feet of length, the averaged C3 coefficient is similar to the value in 

LC2 and equal to 0.42. 

 Even when the dispersion is considerable, a final average of the coefficient C3=0.80 for 

the rigidity in the critical load calculation, and C3=0.40 for the rigidity in the lateral 

response calculation seem appropriate. Thus, the following equations are proposed for the 

calculation of the effective flexural stiffness of composite CFT members. 

For the calculation of the buckling load capacity of CFT columns:  

 0.80eff s s c cEI E I E I   (7.9) 

For the lateral and flexural capacity of CFT beam-columns: 

 0.40eff s s c cEI E I E I   (7.10) 

Equation 7.10 assumes that only the concrete has a reduction in the stiffness, which is 

possibly inaccurate once the steel buckles locally (as in the load case LC3). For this case, the 

equation below is proposed in those cases where the steel is susceptible to buckle locally (as in 

non-compact or slender steel tube sections). 

  0.85 0.40eff s s c cEI E I E I   (7.11) 
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The latter expression is equal to the Equation 7.10 reduced by a factor of 0.85. This factor 

was obtained as the average of the ratio between the experimental stiffness obtained in the load 

case LC3 and the expected stiffness using the Equation 7.10. This in other words is equal to: 

 3

3

0.40
0.85LC

test

n s s c c

LC

EI

E I E I

n





 (7.12) 

where nLC3 is the number of data values in the load case LC3 for the average calculation. 

 

Equation 7.9 and 7.11 are similar to the Equations 6.40 and 6.42 in the Eurocode EC-4 

(2004) to calculate the effective flexural stiffness. The equations given in the EC-4 are: 

For the determination of the slenderness parameter and the elastic critical load:  

 0.60eff s s c cEI E I E I   (7.13) 

 For the determination of internal forces: 

  0.90 0.50eff s s c cEI E I E I   (7.14) 

 

Similarly, the ACI-318 (2008) proposes a similar Equation (Eq. 10.23) in Section 10.13-5 

for the calculation of the elastic critical load on composite cross-sections. This equation is given 

by: 
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c c
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d

E I
EI E I


 


 (7.15) 

where d is a factor that accounts for the reduction of stiffness of columns due to sustained axial 

load on the concrete. The effective flexural stiffness in Equation 7.15 is used to calculate the 

Euler load, and this load to obtain the moment amplified to account for the second order effects. 
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Table 7.1. Flexural rigidity (EIexp) extracted from the measured response 

Specimen 
Load  

case 

Flexural rigidity (EI test, kip-in
2
) 

C3,test 
(1) (2) (3) (4) Average 

2C12-18-5 

LC1 8664359 9303356 8630078 10781215 9344752 0.93 

LC2a 9216198 9174770 9456473 10044645 9473022 0.96 

LC2b 8214573 8721742 10270089 9830857 9259315 0.91 

LC2c 5961924 6022063 8826942 9227256 7509546 0.52 

LC3a 8817993 9357550 10014835 8493258 9170909 0.89 

LC3b 6637477 7787402 8592190 7935844 7738228 0.57 

3C20-18-5 

LC1 40868363 41397148 43355559 55151947 45193254 0.86 

LC2a 36539926 40460560 28978702 45355228 37833604 0.61 

LC2b 25837209 23553074 26053844 37289777 28183476 0.27 

LC3a 44385620 42040711 37808655 43108359 41835836 0.75 

LC3b 33732964 34388341 30728484 35634365 33621038 0.46 

LC3c 24611216 19797521 NA NA 22204369 0.06 

4Rw-18-5 

LC1 21394262 19803215 21865261 21867369 21232527 0.77 

LC2a 18752228 19762963 18399019 19105014 19004806 0.54 

LC2b 15242456 14649144 17696536 18148225 16434090 0.27 

LC3a 22623966 23034419 24048404 20555444 22565558 0.91 

LC3b 15325346 15508304 15112719 18333789 16070040 0.23 

LC3c 14469864 13067576 17975119 16804843 15579350 0.18 

5Rs-18-5 

LC1 47350922 53514784 51297809 51297809 50865331 0.74 

LC2a 45886687 48733728 46125586 43818005 46141001 0.57 

LC2b 32862805 32987150 40835491 40879516 36891240 0.24 

LC3a 37450195 39667645 NA NA 38558920 0.30 

LC3b 30714799 27902549 37222816 50905515 36686420 0.23 

6C12-18-5 

LC1 10830449 11705549 8877299 8923266 10084141 0.72 

LC2a 9511554 9731319 8486536 8598687 9082024 0.57 

LC2b 5529328 5536487 7657635 8116071 6709880 0.22 

LC3a 9719566 9092469 10185223 11290706 10071991 0.72 

LC3b 7402654 6515300 7804915 7705651 7357130 0.32 

LC3c 5685369 5408503 8105364 8412785 6903005 0.25 

7C20-18-12 

LC1 49289006 49866585 NA 54453162 51202918 0.71 

LC2a 39420522 43925315 40019720 29933029 38324647 0.41 

LC2b 22232177 25036607 34585845 28770100 27656182 0.16 

LC3a 45663187 47558680 27182290 22605884 35752510 0.35 

8Rw-18-12 

LC1 21226759 22899853 24983976 27596355 24176736 0.71 

LC2a 18532375 19843051 20839752 24847209 21015597 0.49 

LC2b 14464455 14091215 20870381 21994189 17855060 0.28 

LC3a 18293401 20034043 21470012 16851676 19162283 0.36 

9Rs-18-12 

LC1 57402005 55759260 70599870 67194172 62738827 0.77 

LC2a 43264029 48709985 49649810 37109611 44683359 0.34 

LC2b 30757122 31345722 38266642 35250470 33904989 0.08 

LC3a 36240571 37111911 48101976 56104082 44389635 0.33 
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Table 7.1 Flexural rigidity (EIexp) extracted from the measured response (cont.) 

Specimen 
Load  

case 

Flexural rigidity (EIexp, kip-in
2
) 

C3,test 
(1) (2) (3) (4) mean 

10C12-26-5 

LC1 10050839 11870855 6956923 8351287 9307476 0.73 

LC2a 9463474 11032586 8881012 6217167 8898560 0.66 

LC2b 5446886 5423381 5053555 5565775 5372399 0.03 

LC3a NA NA 6498618 5182598 5840608 0.11 

LC3b 4556513 5468390 5977132 5406009 5352011 0.02 

11C20-26-5 

LC1 46716942 47783656 45159252 50355301 47503788 0.75 

LC2a 47835489 48123420 32113720 38763853 41709121 0.59 

LC2b 26599637 29680010 30529657 39191667 31500243 0.30 

LC3a 32168268 28123647 22623162 18215771 25282712 0.13 

LC3b 23851474 23682204 20184102 19660375 21844539 0.03 

12Rw-26-5 

LC1 24487056 27257721 22458353 20996302 23799858 0.84 

LC2a 23031639 29401090 17271928 27119366 24206006 0.87 

LC2b 15264819 14954234 16860130 25572260 18162861 0.37 

LC3a 16065003 17443739 NA NA 16754371 0.26 

13Rs-26-5 

LC1 56288316 61193637 62477071 61409086 60342028 0.87 

LC2a 38883271 38040080 38142923 41370730 39109251 0.26 

LC2b 45896274 47532504 38679436 40325189 43108351 0.38 

LC3a 33753334 31690561 28779249 25966352 30047374 0.00 

LC3b 37127812 34547538 27966732 23399982 30760516 0.02 

14C12-26-5 

LC1 10219232 12948902 11731905 7149629 10512417 0.85 

LC2a 5548725 6096777 5000571 6127449 5693380 0.11 

LC2b NA NA 5672096 5207635 5439866 0.07 

LC3a NA NA 5571639 4842631 5207135 0.03 

LC2a’ 8206163 6296562 10527073 11355253 9096263 0.63 

LC2b’ 8145907 7965721 NA NA 8055814 0.47 

LC3a’ 7189101 6172223 NA NA 6680662 0.26 

15C20-26-12 

LC1 50120181 52225229 59373195 79799030 60379409 0.96 

LC2a 28064101 26759031 33411347 34078900 30578345 0.24 

LC2b 42489455 41645216 30891355 23832967 34714748 0.34 

LC3a 26849740 25180584 21212423 18545955 22947176 0.06 

LC3b 35773410 39749660 23708060 21828052 30264796 0.24 

16Rw-26-12 

LC1 25507350 25518127 28967481 28415197 27102039 0.96 

LC2a 15479360 15848960 24377613 17780768 18371675 0.33 

LC2b 20175973 19838826 23272748 17860130 20286919 0.47 

LC3a 16775526 17026660 NA NA 16901093 0.23 

LC3b NA NA NA NA NA NA 

17Rs-26-12 

LC1 50869066 51182456 76290029 68433358 61693727 0.78 

LC2a 44192966 43610730 40952462 NA 42918720 0.32 

LC2b 48661507 52857239 NA NA 50759373 0.51 

LC3a 30821872 30523019 34999860 43451489 34949060 0.12 

LC3b 39579656 40299404 NA 17007786 32295615 0.06 
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 P (kip) C3 

 
 C3 Loading sequence 

(a) Specimen 2C12-18-5 

 P (kip) C3 

 
 C3 Loading sequence 

(b) Specimen 6C12-18-12 

 P (kip) C3 

  
 C3 Loading sequence 

(c) Specimen 10C12-26-5 

 P (kip) C3 

 
 C3 Loading sequence 

(d) Specimen 14C12-26-12 

Figure 7.68. Flexural rigidity for the circular specimens with 12 inches of diameter 
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 P (kip) C3 

 
 C3 Loading sequence 

(a) Specimen 3C20-18-5 

 P (kip) C3 

 
 C3 Loading sequence 

(b) Specimen 7C20-18-12 

 P (kip) C3 

 
 C3 Loading sequence 

(c) Specimen 11C20-26-5 

 P (kip) C3 

 
 C3 Loading sequence 

(d) Specimen 15C20-26-12 

Figure 7.69. Flexural rigidity for the circular specimens with 20 inches of diameter 
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 P (kip) C3 

 
 C3 Loading sequence 

(a) Specimen 4Rw-18-5 

 P (kip) C3 

 
 C3 Loading sequence 

(b) Specimen 8Rw-18-12 

 P (kip) C3 

 
 C3 Loading sequence 

(c) Specimen 12Rw-26-5 

 P (kip) C3 

 
 C3 Loading sequence 

(d) Specimen 16Rw-26-12 

Figure 7.70. Flexural rigidity for the rectangular specimens oriented in the weak axis 
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 P (kip) C3 

 
 C3 Loading sequence 

(a) Specimen 5Rs-18-5 

 P (kip) C3 

 
 C3 Loading sequence 

(b) Specimen 9Rs-18-12 

 P (kip) C3 

  
 C3 Loading sequence 

(c) Specimen 13Rs-26-5 

 P (kip) C3 

  
 C3 Loading sequence 

d) Specimen 17Rs-26-12 

Figure 7.71. Flexural rigidity for the rectangular specimens oriented in the strong axis 
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Table 7.2. Averaged concrete contribution factor (C3,test) to the effective stiffness 

Specimen 
=  

As / A 
 EIs EIc 

AISC (2010) C3,test 

EIeff C3 LC1 LC2 LC3 

2C12-18-5 7.2% 1.55 5185068 4470840 8509246 0.74 0.93 0.80 0.73 

3C20-18-5 4.6% 1.05 20529095 28588714 40315751 0.69 0.86 0.44 0.42 

4Rw-18-5 7.6% 1.38 13831863 9635036 21081046 0.75 0.77 0.40 0.44 

5Rs-18-5 7.6% 0.88 30331694 27866490 51297809 0.75 0.74 0.40 0.26 

6C12-18-5 7.2% 1.90 5185068 6784500 10229509 0.74 0.72 0.40 0.43 

7C20-18-12 4.6% 1.30 20529095 43383374 50555345 0.69 0.71 0.29 0.35 

8Rw-18-12 7.6% 1.65 13831863 14621168 24832498 0.75 0.71 0.38 0.36 

9Rs-18-12 7.6% 1.04 30331694 42287399 62147773 0.75 0.77 0.21 0.33 

10C12-26-5 7.2% 2.38 5212352 5588550 9367575 0.74 0.73 0.34 0.07 

11C20-26-5 4.6% 1.61 20676817 35735893 45410137 0.69 0.75 0.45 0.08 

12Rw-26-5 7.6% 2.14 13677296 12043795 22738774 0.75 0.84 0.62 0.26 

13Rs-26-5 7.6% 1.35 30002047 34833113 56209690 0.75 0.87 0.32 0.01 

14C12-26-5 7.2% 2.72 4983488 6482718 9803547 0.74 0.85 0.32 0.15 

15C20-26-12 4.6% 1.78 20516373 41453636 49207024 0.69 0.96 0.29 0.15 

16Rw-26-12 7.6% 2.30 13702743 13970803 24214058 0.75 0.96 0.40 0.23 

17Rs-26-12 7.6% 1.46 29988613 40406411 60389479 0.75 0.78 0.42 0.09 

Average (all the CFTs) 0.81 0.41 0.27 

Average (CCFTs) 0.82 0.42 0.30 

Average (RCFTs) 0.80 0.40 0.25 

Average (CFTs with 18 feet of length) 0.78 0.42 0.42 

Average (CFTs with 26 feet of length) 0.84 0.40 0.13 
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 C3 C3 

 
  = As / A  

(a) Pure axial loading (LC1 only) 
 

 C3 C3 

 
  = As / A  

 (b) Combined axial and uniaxial bending (LC2 only) 
 

 C3 C3 

 
  = As / A  

 (c) Combined axial and biaxial bending (LC3 only) 
 

Figure 7.72. Average of the C3 parameter obtained for each specimen (squares) and for all the 

specimens (dashed line) 
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7.4. Advanced computational analysis 

In this section, advanced computational analyses are performed for the calibration of the 

material and element models and contrast the experimental and the analytical responses. 

The analyses presented in this section are carried out with the software OpenSees (2010) 

with a special version compiled by Denavit (2010) that, in addition to the standard OpenSees 

framework, includes comprehensive constitutive material models and robust 3D distributed-

plasticity beam element formulations calibrated and developed by Tort and Hajjar (2007) for 

RCFTs and Denavit and Hajjar (2010) for CCFTs. 

 

Thus, the specimens are modeled with the following characteristics. 

 The geometric and the cross-section properties (as the member length, thickness and 

diameter or base and width) correspond to those values measured and summarized in 

Chapter 3. 

 

 The specimen was subdivided into 6 and 8 sub-members for the specimens with 18 and 

26 feet of length, respectively. The integration points are defined at those points where 

the instrumentation (i.e. string pots, strain gages) was placed along the specimen. 

 

 In addition, the coordinates of the integration points between sub-members correspond to 

the initial out-of-straightness and out-of-plumbness measured at the surveying. These 

imperfections were summarized in Table 5.1 and illustrated in Figure 5.5. 

 

 The members are modeled with the mixed 3D finite beam element developed by Denavit 

and Hajjar for CCFTs and Tort and Hajjar for RCFTs. Since there was no evidence of 

significant slip between the concrete and steel surfaces in contact during the test, slip 

effects were ignored in the analysis. 

 

 The boundary conditions are assumed fixed at the base and free at the bottom, and 

therefore the effective length factor is K = 2. 
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 The top DOFs of the members are driven as in the tests; this is with the same 

compression force and horizontal X and Y displacement and X and Y rotations that were 

recorded during the uniaxial load cases (LC2). Consideration of the step-by-step lateral 

displacement is intended to account for the real directionality of the specimen. 

 

 The concrete compressive strength used in the analysis corresponds to the measured 

strength obtained from the test of cylinders at the day of testing; these results are 

summarized in Chapter 3. The Young’s modulus and the tensile strength of the concrete 

are implicitly calculated in the Chang-Mander model; however, these calculated values 

are very close to those obtained from the concrete cylinder tests. 

 

 The concrete core was modeled with the Chang and Mander (1994) model as adapted by 

Tort and Hajjar (2007) for RCFTs and Denavit and Hajjar (2010) for CCFTs. 

 

 The steel yield stress, ultimate stress, and the Young’s modulus used in the analyses 

correspond to the measured parameters obtained from the coupon tests. These results are 

also summarized in Chapter 3. 

 

 The steel tube was modeled with the Shen et al. (1995) model as adapted by Denavit and 

Hajjar for CCFTs and Tort and Hajjar for RCFTs.  The only modification in the original 

steel models is the strain that corresponds to the initiation of the local buckling. The local 

buckling strains that are calibrated and presented in Chapter 8 are used in these analyses 

instead of the values obtained with the original formulation. This change has a minor 

effect in the CCFTs since the Equation proposed by Denavit and Hajjar (2010) and the 

one proposed in Chapter 8 do not have a significant difference. However, higher 

differences are obtained in the RCFTs, in which the strain given by Tort and Hajjar 

(2007) predicts a very early development of the local buckling as seen in Figure 7.73.a; 

the experimental results in RCFTs indicate a later occurrence of the local buckling, which 

is more reasonable predicted by the proposed equation in the Chapter 8 for RCFTs as 

illustrated by Figure 7.73.b. 
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Figure 7.73. Experimental vs. Analytical response with a different initiation of steel local 

buckling for the Specimen 4Rw-18-5 during the first loading cycle in LC2b 

The analyses presented in this section are performed in a fresh model at the beginning of 

the first uniaxial load case LC2a, but with continuous step-by-step response until the end of the 

uniaxial loading case (LC2b or LC2c). This assumption ignores possible damages developed 

during LC1 in these analyses; however, no significant damage (i.e. steel local buckling) was 

observed from the outside during the load case LC1. The continuous step-by-step consideration 

during the LC2 intends to consider accumulated damage within this uniaxial loading case, in 

which at least 60% of the tested specimens buckle locally. Future analyses with the entire load 

protocol, from LC1 to LC4, are recommended to calibrate the effective accumulated damage 

within load cases. 

Comparisons of the experimental response with the analytical prediction are shown from 

Figure 7.76 to Figure 7.91. The compared selected responses are:  

(i) The lateral force vs. the top displacement (F-)  

(ii) The base moment vs. the top rotation (M2-). 
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As shown in Figure 7.76 to Figure 7.91, the analytical prediction (strength, deformation 

and stiffness) in general follows reasonably well the experimental response, in some cases with a 

high correlation and in others with a weak correlation. In addition, the following observation can 

be noted from these figures: 

 With respect to the stiffness, the larger difference between the analytical and the 

experimental response is observed at the start of motion and mainly on the load reversals. 

During the testing, pauses were made between ramps in order to introduce the new input 

commands to drive the crosshead to the next target displacement; pauses were also 

helpful for taking photos and explore for possible damages on the exterior of the 

specimen (i.e. local buckling). However, right immediately the system stopped and holds 

on pause (in lateral displacement control and in vertical force control), the lateral force 

reported by the controller drops an amount of dF with values around 1 to 2 kip, as 

observed experimentally with the variation of time in Figure 7.74. This reduction of the 

lateral force is attributed to the frictional forces that vanish when the system is in pause. 

As seen in Figure 7.74, the amount of frictional forces decreases again when the 

specimen is moved in the opposite direction, and so the jump in lateral force at the each 

reversals (total pause) is about twice the amount of frictional forces (2dF) developed in 

the system (with a total about 2 to 4 kip at reversals). As seen schematically in Figure 

7.75, the reduction of the total lateral force at the reversals (or at pauses) show signs of a 

very high stiffness that does not correspond to the specimen; instead, this is attributed to 

the accumulation of the system friction within the pause. The relaxation of the lateral 

force at the displacement pause exposes a significant response difference mainly in those 

specimens with the higher flexibility, low lateral capacity, and high axial load. 

 Concerning the lateral force, and based on the latter discussion, differences between the 

experimental response in the order of the friction system (about 2 kips) are expected 

between the analytical and the experimental response. In addition, other factor may 

impact to increase or decrease such differences such as variability in the material and 

geometric properties and the assumptions in the structural model. However, the analytical 

response shows, in general, a well predicted response by the analyses with small 

differences with respect to the experimental response. Similar observations are applicable 

to the base moment response that is reasonably well predicted by the analyses. 



331 

2100 2200 2300 2400 2500
2

3

4

5

6

7

8

Peak force F

 Pause 

Stop of loading motion 

at target displacement

Start of 

unloading 

motion

dF

dF

L
at

er
al

 F
o

rc
e 

 (
 F

 )

 Motion Motion

1 kip

100 sec

Input of the next 

driven commands

 
Time  ( t ) 
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Figure 7.75. Force relaxation at the testing pauses (schematic) 
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(a) LC2a, P = 300 kip 
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(b) LC2b, P = 200 kip 
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(c) LC2c, P = 100 kip 

Figure 7.76. Experimental vs. Analytical response for the Specimen 2C12-18-5 during LC2 
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(a) LC2a, P = 1000 kip 
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(b) LC2b, P = 500 kip 

 

Figure 7.77. Experimental vs. Analytical response for the Specimen 3C20-18-5 during LC2 
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(a) LC2a, P = 600 kip 
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(b) LC2b, P = 300 kip 

 

Figure 7.78. Experimental vs. Analytical response for the Specimen 4Rw-18-5 during LC2 
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(b) LC2a, P = 1000 kip 

 

 F (kip) M2 (kip-ft) 

  
 (in)  (deg) 

(c) LC2b, P = 500 kip 

 

Figure 7.79. Experimental vs. Analytical response for the Specimen 5Rs-18-5 during LC2 
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(a) LC2a, P = 300 kip 
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(b) LC2b, P = 150 kip 

 

Figure 7.80. Experimental vs. Analytical response for the Specimen 6C12-18-12 during LC2 
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(a) LC2a, 1000 kip 
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(b) LC2b, P = 500 kip 

 

Figure 7.81. Experimental vs. Analytical response for the Specimen 7C20-18-12 during LC2 

-4 -2 0 2 4

-20

-10

0

10

20

30

 

 

Experiment

Analysis

-1.5 -1 -0.5 0 0.5 1
-600

-400

-200

0

200

400

600

 

 

Experiment

Analysis

-6 -4 -2 0 2 4 6
-30

-20

-10

0

10

20

30

 

 

Experiment

Analysis

-1.5 -1 -0.5 0 0.5 1 1.5
-500

-400

-300

-200

-100

0

100

200

300

400

500

 

 

Experiment

Analysis



338 

 F (kip) M2 (kip-ft) 
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(a) LC2a, P = 600 kip 

 

 F (kip) M2 (kip-ft) 

  
 (in)  (deg) 

(b) LC2b, P = 300 kip 

 

Figure 7.82. Experimental vs. Analytical response for the Specimen 8Rw-18-12 during LC2 
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(a) LC2a, P = 1200 kip 
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(b) LC2b, P = 400 kip 

 

Figure 7.83. Experimental vs. Analytical response for the Specimen 9Rs-18-12 during LC2 
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(a) LC2a, P = 200 kip 
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 (in)  (deg) 

(b) LC2b, P = 100 kip 

 

Figure 7.84. Experimental vs. Analytical response for the Specimen 10C12-26-5 during LC2 
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(a) LC2a, P = 600 kip 
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(b) LC2b, P = 300 kip 

 

Figure 7.85. Experimental vs. Analytical response for the Specimen 11C20-26-5 during LC2 
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(a) LC2a, P = 400 kip 
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(b) LC2b, P = 200 kip 

 

Figure 7.86. Experimental vs. Analytical response for the Specimen 12Rw-26-5 during LC2 
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(a) LC2a, P = 400 kip 

 

 F (kip) M2 (kip-ft) 

  
 (in)  (deg) 

(b) LC2b, P = 800 kip 

 

Figure 7.87. Experimental vs. Analytical response for the Specimen 13Rs-26-5 during LC2 
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(a) LC2a, P = 100 kip 

 F (kip) M2 (kip-ft) 

  
 (in)  (deg) 

(b) LC2b, P = 200 kip 

 F (kip) M2 (kip-ft) 
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(c) LC2a’, P = 300 kip, K = 1 

Figure 7.88. Experimental vs. Analytical response for the Specimen 14C12-26-5 during LC2 
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Figure 7.89. Experimental vs. Analytical response for the Specimen 15C20-26-12 during LC2 
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Figure 7.90. Experimental vs. Analytical response for the Specimen 16Rw-26-12 during LC2 
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Figure 7.91. Experimental vs. Analytical response for the Specimen 17Rs-26-12 during LC2 
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Computational analyses for the biaxial load case (LC3) were performed for some 

specimens, and only some selected results are presented in the following figures. The analyses 

were performed similarly to those in LC2, with the specimens under constant axial load (vertical 

displacement control) and with the step-by-step experimental story motion for the lateral 

displacements and the bending rotations (lateral displacement control). These analyses do not 

account for the accumulated damage developed in the previous load cases (LC1 and LC2). 

However, even when the accumulated damage from previous loading was ignored in these 

analyses, the obtained responses seems to be consisted with the measure response from the tests. 

Consideration of the accumulated damage and the frictional forces of the system are highly 

recommended for future calibrations. 

Fx (kip)

x (in)

M2y (kip-ft)

y (deg)

 

Figure 7.92. Experimental vs. Analytical response for the Specimen 3C20-18-5 during the 

biaxial load case LC3b (P=750 kip, 16 probes around the Specimen) 
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Figure 7.93. Experimental vs. Analytical response for the Specimen 11C20-26-5 during the 

biaxial load case LC3a (P=450 kip, figure eight) 
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7.5. Conclusions 

In this chapter the uniaxial and the biaxial loading cases (LC2 and LC3) were used to 

evaluate the response to lateral forces of the tested composite CFT specimens. In addition, the 

evolution of the member stiffness was analyzed with the influence of the applied gravity load, 

and its degradation through the loading protocol (from LC1 to LC3) with different experimental 

responses (i.e. the force-displacement path, or the moment-curvature curves, among others). 

Finally, results obtained from computational analysis under the same loading conditions were 

shown and compared with the experimental results. 

The evaluation of the flexural rigidities extracted from the test results exhibited some 

variability, mainly as the damage in the concrete core and the steel tubes progressed through the 

load protocol. Even with this dispersion, interesting results were extracted from the analysis of 

this data. A brief summary of the observations includes: 

 The averaged values of the flexural rigidities extracted from the response during the pure 

compression loading case (LC1) were very close to the values predicted by the AISC 

(2005, 2010) Specifications.  

 However, the averaged values do not show any proportionality with the steel ratio in the 

cross-section ( = As/A), as indicated in the AISC Specifications by presenting the C3 

coefficient in terms of the steel ratio. In addition, neither does the slenderness parameter 

of the column () showed proportional variation with the test data. Instead, a constant 

averaged coefficient of C3 = 0.80 is proposed for the determination of the buckling load 

capacity of a CFT column. In other words: 

0.80eff s s c cEI E I E I   (7.16) 

 Similarly, averaged values of the flexural rigidities were also extracted from the response 

during the uniaxial and biaxial loading cases (LC2 and LC3). This is a unique set of data 

since this intends to give a simplified equation that approaches the expected rigidity for a 

beam-column under seismic loading (i.e. combined constant axial load and cyclic 

uniaxial or biaxial lateral load). As expected, the scatter of the data increased as the 

damage progressed on the specimen; even with some dispersion is exhibited, the 

following equations are proposed for the determination of the effective stiffness of a CFT 
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beam-column under seismic loading, and for the evaluation of lateral and flexural 

capacity based on frame analysis. 

When local buckling is not expected (as in compact cross-sections), the effective flexural 

capacity may be approached with: 

 0.40eff s s c cEI E I E I   (7.17) 

On the other hand, when the steel tube is susceptible to local buckling, the following 

equation is suggested to obtain the expected effective flexural capacity as: 

  0.85 0.40eff s s c cEI E I E I   (7.18) 

 

Finally in this section, results from the advanced computational analyses were presented 

in order to enhance the calibration of the material and element models, and compare and contrast 

the experimental and the analytical responses. In general, the responses obtained from the 

analyses shows reasonable predictions with respect to the experimental measured responses. 

However, it was pointed out that additional forces are included in the experimental response as a 

consequence of the friction forces in the system. The main influence of these frictional forces is 

an increment of the lateral strength capacity, and a very high unloading stiffness at the reversals. 

The frictional forces seem to have a higher impact in those specimens with the higher flexibility, 

low lateral capacity, and high axial load. 
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CHAPTER 8  

EVALUATION OF LIMIT STATES 

8.1. Introduction 

In this chapter, significant limit states are extracted from the experimental tests. These 

include limit states that can be directly measured, such as the first yielding in the steel 

components and some which can only be detected indirectly, such as the steel local buckling and 

the concrete crushing. In the context of this chapter, “failure” is defined as reaching a limit state, 

regardless of whether it is associated with an incipient collapse, large loss of load carrying 

capacity, or large deformations. 

In Section 8.2, a discussion on the steel local buckling is presented. The limits on the 

steel wall-slenderness that have been accepted in the AISC (2010) Specifications to avoid or 

minimize the local buckling failure are described. Then, the theoretical formulas obtained for the 

determination of the local buckling of plates are presented. In addition, previous empirical 

calibrations to characterize the initiation of local buckling are also shown.  Finally in this section, 

the extraction and calibration of the first occurrence of the local buckling within the load 

protocol in the 18 specimens tested for this project are presented. Based on this calibration, an 

update of the empirical equations are presented and compared with previous equations; also, 

wall-slenderness limits to control the local buckling failure that are based on the updated 

empirical equations are obtained and presented. 

In Section 8.3, first occurrence of the steel yielding, concrete crushing and steel local 

buckling are extracted and indicated in the empirical response obtained within the load protocol. 

In Section 8.4, the plastic hinge lengths are determined and presented based on the 

maximum curvature within the load protocol through the column length. 

Section 8.5 shows the post-mortem or forensic analysis of the CFT specimens tested in 

this project. This analysis is based on a physical review on the steel and concrete  

Finally, Section 8.6 presents a brief summary of the main results obtained in this Chapter. 
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8.2. Local buckling 

8.2.1. Introduction 

One of the important limit states in steel column and beam-column design is the local 

buckling of the plate components.  Local buckling is defined as a premature failure of a steel 

member due to the local out-of-plane deformations of, at least, one of the plate components 

under compressive stresses; this type of failure is controlled by the plate slenderness () often 

quantified by its width-thickness ratio (D/t, h/t, b/t). This premature failure does not govern on 

compact cross-sections with low slenderness ratios (D/t ≤ p); compact sections can achieve 

plastic stresses over the entire cross-section without an evidence of local buckling deformation. 

This is not the case for non-compaction steel sections (D/t > p), where the plate components are 

susceptible to buckle locally with lower stresses as illustrated by Figure 8.1.a. In turn, slender 

steel sections (D/t > r) can exhibit local buckling failure when only elastic compressive stresses 

are present. The local buckling failure can be prevented with lower wall slenderness ratios or by 

adding elements to the plates such that local deformation is reduced by the additional 

components. Stiffeners plates, encasement, and fillers can be used for this purpose. 

The synergy effects on CFT members due to the steel and the concrete interaction were 

described in Chapter 1. As illustrated in Figure 8.1, one of the benefits of this interaction is the 

prevention of the inward deflection of the steel plates susceptible to local buckling due to the 

contact with the rigid concrete. As illustrated in Figure 8.1.b, the points of steel-concrete contact 

in CFT members restrain the plate components of the steel section in the inward direction, with 

the plate slenderness reduced as a consequence; this increment in the wall slenderness may 

change a steel non-compact or a slender section to compact or semi-compact section type if the 

cross-section is concrete-filled. The fact that the concrete forces the buckling of the tube outward 

provides two main advantages (Hajjar, 2000): 

 When buckling occurs, the distance between the top and bottom flanges of the steel tube 

increases rather than decreases (as it would without the concrete core). This effect 

prevents the section modulus from decreasing significantly. 

 The concrete tends to spread the local buckling over a larger region, mitigating severe 

strain concentrations which tend to cause cracking. 
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Figure 8.1. Local buckling failure (Leon et al., 2007) 

 

8.2.2. Wall slenderness limits in the AISC Specifications 

Although the beneficial effect of the concrete-infill in delaying local buckling in 

composite members has long been understood and incorporated empirically into design, it was 

first formally recognized and implemented in the 2005 edition of the AISC Specifications (Leon 

et al., 2007). In this edition, the limits for composite members were higher than those set for 

empty tubes classified as compact sections by 36% and 61% for circular and rectangular shapes, 

respectively.  Composite non-compact and slender filled-tubes were recently incorporated in the 

2010 edition. Table 8.1 shows a summary in matrix form of the wall-slenderness or width-

thickness limits adopted in the AISC (2005) and AISC (2010) for both steel and composite 

hollow tubes under pure compression and flexure. 

The limits shown in Table 8.1 are primarily based in experimental calibrations with tests 

data of plates under compressive stresses and known geometry and boundary conditions. In 

addition, they also reflect the application of theoretical derivations of the buckling load capacity 

with ideal conditions. An example of the later is the change in the format of the limits for 

circular tubes from one based on        in the original 1986 LRFD specification to one using 

       today. 
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Table 8.1. Wall slenderness limits in the AISC Specifications for steel and composite sections 

Shape Type Section 
AISC (2005) AISC (2010) 

Compression Flexure Compression Flexure 

Circ. 

HSS 

 

 

CFT 

Compact 

p 
0.15 s

y

ED
t F
  0.15 s

y

ED
t F
  0.09 s

y

ED
t F
  

Non-compact 

r 
NA 0.19 s

y

ED
t F
  0.39 s

y

ED
t F
  

Steel 

Compact 

p 
NA 0.07 s

y

ED
t F
  NA 0.07 s

y

ED
t F
  

Non-compact 

r 
0.11 s

y

ED
t F
  0.31 s

y

ED
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  0.11 s

y

ED
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  0.31 s

y

ED
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Rect. 
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Compact 

p 
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y
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y
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y
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NA 3.00 s
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y
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p 
NA 
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y

Eh
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1.12 s

y
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NA 

2.42 s

y
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t F
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y
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Non-compact 

r 

1.40 s

y
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t F


 

1.40 s

y
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y
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Table 8.2 shows the classification of the cross-sections of the test specimens according 

with their width-thickness ratios ( = D/t, b/t or h/t) and the wall-slenderness limits specified by 

the AISC (2010) summarized in Table 8.1. The limits tabulated in Table 8.2 are obtained with 

nominal strength and stiffness parameters for A500, Gr. B steel; these are 29,000 ksi for the 

Young’s modulus and 42 ksi in the circular tubes and 46 ksi in the rectangular tubes for yield 

stresses. According to Table 8.2, all the CFT specimens tested are in the compact category for 

both compression and bending, except for the specimens of the C20 group with non-compact 

sections subject to flexure, and the specimens of the Rw group with non-compact sections subject 

to axial compression. As reminder, the “Rw” and “Rs” labels stand for RCFTs oriented and 
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tested in the weak and the strong axis, respectively, during the load cases LC1 (pure 

compression) and LC2 (uniaxial bending). 

Table 8.2. Classification of the steel cross-section in terms of the wall slenderness 

Group Specimen Steel D/t Compression Uniaxial bending Cross-section  

or set Name cross-section h/t p r p r classification 

C5 
1C5-18-5 

18C5-26-12 
HSS5.563x0.13 45 104 131 62 269 Compact 

C12 

2C12-18-5 

6C12-18-12 

10C12-26-5 

14C12-26-12 

HSS12.75x1/4 55 104 131 62 269 Compact 

C20 

3C20-18-5 

7C20-18-12 

11C20-26-5 

15C20-26-12 

HSS20x1/4 86 104 131 62 269 
Non-compact 

bending 

Rw 

4Rw-18-5 

8Rw-18-12 

12Rw-26-5 

16Rw-26-12 

HSS20x12x5/16 69 57 75 75 176 
Non-compact 

compression 

Rs 

5Rs-18-5 

9Rs-18-12 

13Rs-26-5 

17Rs-26-12 

HSS20x12x5/16 41 57 75 75 176 Compact 

 

 

 

8.2.3. Theoretical wall slenderness limits in circular tubes 

The theoretical formula for the critical stress at which local buckling occurs in hollow 

circular tubes under compressive loading is given by the Equation 8.1. However, experimental 

tests have developed earlier failures with critical stresses around 40 to 60% of this theoretical 

value (Young and Budynas, 2001). As for similar results for other types of buckling failures, 

these lower values are attributed to initial imperfections and residual stresses on the plate 

components. 
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 (8.1) 



356 

By using a Rayleigh-Ritz method, Bradford et al. (2002) derived a closed-form solution 

for the local buckling stress of thin-walled circular tubes with a rigid infill. The theoretical 

solution applicable to CCFTs resulted in buckling stresses higher by a factor of           with 

respect to the stresses derived for steel hollow sections as shown by the Equation 8.2. 
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cr
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 (8.2) 

As illustrated in Figure 8.2, Bradford et al. (2002) calibrated their analytical solution with 

a limited number of experimental data, where a wall slenderness limit of 125 for tubes with yield 

stress equal to 250 MPa was proposed for non-compact sections (Equation 8.3). This equation 

gives a non-dimensional limit as set in Equation 8.4. 
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Fy MPaD
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 (8.3) 
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 (8.4) 
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Figure 8.2. Buckling strength calibration of CCFTs by Bradford et al. (2002) 

8.2.4. Theoretical wall slenderness limits in rectangular tubes 

The analytical solution for rectangular plates under compression and supported along the 

edges is given by the Equation 8.5 (Young and Budynas, 2001).  
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 (8.5) 

When the plate is simply supported along each edge with no out-of-plane restrains, the 

critical stress can be obtained with k = 4 and the corresponding buckling shape is the one shown 

in Figure 8.1.a. Thus, the theoretical width-thickness limit for steel slender cross-sections can be 

obtained by letting Fcr = Fy and assuming s = 0.3 as in the Equation 8.6. 
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 (8.6) 

Calibration to existing data for plates results in lower values than the theoretical limit 

above since the analytical derivation does not include the initial imperfection effects and residual 

stresses on the plate components. The calibration with tests data for steel rectangular hollow 

tubes has led to the limit of            (SSRC, 1998), which has been adopted in the AISC 

Specifications. 

Uy and Bradford (1996) re-derived Equation 8.5 with different boundary conditions on 

the edges and with a rigid restraining surface in one side of the plate. The solution with simply 

supported edges and a rigid restraining surface in one plate is given by the Equation 8.5 with the 

factor k=10.3; previous derivations with similar conditions have resulted in buckling coefficients 

of 10.67 (Timoshenko and Gere, 1972) and 9.33 (Faxen, 2000). In the AISC (2010), a buckling 

coefficient of k=10.0 was adopted for slender composite cross-sections (Zhang and Varma, 

2009), and so assuming s=0.3 and Fcr = Fy, Equation 8.5 is simplified as in 8.7. 

 2

9
3s s

cr

y

E Eb
F

t Fb

t

  
 
 
 

 (8.7) 

Based on available experimental data and other studies, the limit for non-compact RCFTs 

in AISC (2005, 2010) was set as            (Leon et al., 2007). 

 

The previous limits adopted in AISC (2005, 2010) are about 47% higher than the 

corresponding limits adopted by the Japanese specifications of the AIJ (2001) as shown in Figure 

8.3 (Sakino et al., 2004). These limits are given by            for slender (or type 2) 

rectangular filled-tubes, and            for non-compact (or type 1) composite sections. 
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Figure 8.3. Critical stress in hollow and filled rectangular tubes in the AIJ (2001). Figure 

adapted from Sakino et al. (2004) 

 

 

8.2.5. Previous empirical calibrations on the initiation of local buckling 

The constitutive material models proposed by Sakino et al. (2004) for both CCFTs and 

RCFTs were summarized in Chapter 2. Sakino’s model incorporates some of the salient features 

of CFT members, and one of these features is the initiation of the local buckling and the 

analytical prediction of the post-buckling response. This model postulates that local buckling in 

circular tubes is reached at high values of strain, and therefore, local buckling effects can be 

neglected; this approach is tied to the Japanese design requirements for D/t ratios which basically 

preclude this failure mode with circular shapes. For RCFTs, in turn, this model assumes that 

local buckling takes off at a fixed value of strain (lb). For RCFTs with compact tubes (or type 

1), local buckling develops at a strain lb given by the following equation. 
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where the factor s is defined by: 
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(8.9) 

According to this model, local buckling occurs at the yield strain (lb=y) for non-compact 

sections (or type 2), and at a strain within the elastic range for slender sections (or type 1) by. 
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(8.10) 

The previous equations can be rewritten and grouped in terms of the yielding strain (y) 

and the wall slenderness ratio (=h/t) as: 
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(8.11) 

As summarized also in Chapter 2, Tort and Hajjar (2007) and Denavit and Hajjar (2010) 

have calibrated constitutive models for the steel component in RCFTs and CCFTs with 

experimental data. These references have also proposed the initiation of the local buckling at a 

strain given by: 
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(8.12) 

where the normalized slenderness factor R is given by: 
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(8.13) 

The calibration documented by Tort and Hajjar (2007) is based on a fit curve of 23 tests of 

RCFT columns loaded in monotonic compression. The coefficient of variation of the fitted curve 

is R
2
=0.61. This set of collected data and its calibration is shown in Figure 8.4. 

1.483.14lb
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 Experimental data
(monotonic column tests)

 

Figure 8.4. Calibration of the strain at local buckling by Tort and Hajjar (2007) 

The calibration reported by Denavit and Hajjar (2010) is based on a fit curve of six data 

tests of CCFT specimens. The coefficient of variation of the fitted curve is R
2
=0.92. This set of 

collected data and its calibration is shown in Figure 8.5. 
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Figure 8.5. Calibration of the strain at local buckling by Denavit and Hajjar (2010) 

 

Equation 8.12 can be rewritten in terms of the yielding strain (y) and the wall-slenderness 

ratio () of the steel tube as shown in Equation 8.14. 
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1.48 0.26
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(8.14) 

 

Equation 8.11 by Sakino et al. (2004) and Equation 8.14 by Tort-Hajjar (2007) and 

Denavit-Hajjar (2010) are plotted in Figure 8.6 with the wall-slenderness ratio (= D/t or h/t) vs. 

the strain at occurrence of local buckling normalized with the strain at yielding. The 

corresponding limiting wall-slenderness ratios (p) in AISC (2005, 2010) for non-compact filled-

tubes are marked in this figure. The three calibrated curves and the p limits shown in Figure 8.6 
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were obtained with nominal strength parameters (Es=29000 ksi, Fy=42 ksi for circular tubes, and 

Fy=46 ksi for rectangular tubes). 

As observed in Figure 8.6 the two proposed curves for the local buckling strain in RCFTs 

present very close values. However, the curve by Tort and Hajjar (2007) is a continuous 

function, while the proposed by Sakino et al. (2004) is a tri-linear curve for the three wall-

slenderness types. In addition, this figure shows the non-compact wall-slenderness limits (p) 

established in AISC (2005, 2010) intersecting the local buckling strain of these calibrations at 

about one and three times the yielding strain for RCFTs and CCFTs, respectively. Theoretically, 

the wall slenderness limit for slender sections (r) should correspond to a critical stress equal to 

yielding stress, or in other words, when the ratio lb/y=1. 
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Figure 8.6. Wall-slenderness ratio vs. strain at occurrence of local buckling 

 The initiation of the local buckling in the stress-strain curves in compression as obtained 

by the previous equations is also illustrated in Figure 8.7. The stress-strain response measured in 

coupon tests (with no local buckling allowed) is also included in this figure as a reference. The 

analytical stress-strain curve is obtained from the corresponding material and geometric 

properties (i.e Fy, Fu, Es, D, t) measured from the coupon tests; the samples used in the coupon 
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tests were taken from the specimens tested in this project. As observed in Figure 8.7, the 

analytical prediction on the initiation of local buckling is expected at a strain of 0.0130 for the 

HSS5.563x0.134 tubes, 0.0104 for the HSS12.75x1/4 sections, 0.0056 for the HSS20x1/4 tubes, 

and 0.0012 for the HSS20x12x5/16 rectangular sections. 
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(c) HSS20x1/4 (d) HSS20x12x5/16 

Figure 8.7. Local buckling deformation at the end of the test for the C5 group 

8.2.6. Experimental extraction of local buckling from the experimental tests 

Accurate calibration of the pre, occurrence and post-local buckling behavior is one of the 

key parameters in any robust model for member response. As described in Chapter 2 and the 

previous section, local buckling has been primarily introduced in the steel material constitutive 
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model. Current models for CFTs (i.e. Sakino et al. 2004, Tort and Hajjar 2007, Denavit and 

Hajjar 2010) have degradation rules once a limit strain in compression is exceeded (lb). 

This section shows the determination of the local buckling initiation (lb) measured in the 

CFT specimens that are tested in this research project.  

Determination of the first occurrence of local buckling during the tests was performed 

through a physical evaluation of the steel specimens after each major ramp of motion; 

unfortunately, this evaluation could not be performed within a ramp for safety reasons and time 

constraints. 

In addition, observation of the images captured by the eight still cameras and eight video 

cameras towards different views and angles of the specimen were monitored during the entire 

testing; however, local buckling from these images was not clearly visible until the specimen 

exhibited a relatively large amount of local deformations. Sometimes, even with a physical 

observation from a very near distance, local buckling was is clearly evident unless the steel 

surface is patted down to feel the local buckling. 

Another instrumentation device for tracking possible local buckling occurrence 

monitored during the entire testing were (a) the out-of-plane coordinates of the LED sensors 

captured by the Krypton laser camera, and (b) the amount of longitudinal strain from the three 

strain gauges placed at each cross-section and along the member. As reminder, the strain gauges 

in each cross-section were placed in the North, South and West external faces of the steel tubes, 

and along the member (see Chapter 3 for more details about the instrumentation). Assuming that 

plane sections remain plane, the three discrete points at each cross-section are sufficient to define 

a plane of strains within the cross-section and, from this strain distribution, the maximum strain 

in compression and tension can be obtained for each cross-section. 

During the load case LC1, a physical observation was performed only at the end of the 

unloading ramp when a low axial load was sustained. Unfortunately, the inspection was not 

possible at the maximum peak load for safety reasons. The specimen at this peak axial force 

tended to drive sideway since the crosshead was set in horizontal force control. However, local 

buckling during LC1 was not observed from the set of cameras, from direct observation of the 

specimen from a distant and safe position, or from the out-of-plane LED readings by the Krypton 

camera. 
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In addition, the maximum longitudinal strain measured during LC1 for the 18 specimens 

was lower than the expected lb strains calculated with the Equation 8.11 and Equation 8.12 that 

were discussed in the previous section. From these empirical equations, the expected strains at 

which local buckling were expected (lb) are above five times the yielding strain in the CCFTs, 

about three times the yielding strain in RCFTs oriented in the strong axis (Rs group), and just 

above the yielding strain in the RCFTs oriented in the weak axis (Rw group). Only for the latter 

Rw group, the maximum strain measured at LC1 was quite close to the expected lb strains; 

however, careful analysis of the photographic record and the out-of-plane deformations from the 

LED readings do not show any evidence of local buckling in these specimens neither at the peak 

axial load nor at the peak lateral deformation during LC1. 

During the subsequent load cases (LC2, LC3 and LC4), physical evaluation of the steel 

tubes was performed at the end of each principal ramp of motion, especially when local buckling 

was expected, observed or measured through simultaneous evaluation of the strain gauge data, 

the Krypton record, and the photographic images. At the time local buckling was first detected, 

both the load case and the ramp at which this local buckling deformation occurred were 

documented accordingly. Local buckling does not appear to have occurred in three particular 

specimens (2C12-18-5, 6-C12-18-12 and 18C5-26-12) for any of the load cases applied. 

Based on the ramp motion and the load case reported at the time of testing, a careful 

examination of the photo images gallery and the out-of-plane coordinate readings from the 

Krypton data within the ramp was performed in order to get a more accurate time of the first 

local buckling occurrence. This information was also related with the maximum compressive 

strain calculated at the nearest cross-section that locally buckled. As noted earlier, the maximum 

computed strain in the cross-section is computed from three measured strain data within the 

cross-section assuming plane strain remains plane. 

Table 8.3 summarizes, for each specimen, the extracted maximum compressive strain at 

which the local buckling initially occurred (lb_test) within the documented load case, and its 

normalized value with the yielding strain (lb_test/y). In addition, this table contains wall-

slenderness (wD/t or h/t) and its normalized slenderness parameter (R) as defined by the 

Equation 8.13. The strains reported in this table for the specimens that did not locally buckled 

correspond to the maximum longitudinal values obtained in the entire load protocol. 
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Table 8.3. Strain at the first occurrence of local buckling during the testing 

SPECIMEN 
Load  

case 

Slenderness 

wD/t, h/t 

R 

Eq. 8.13 
lb_test lb_test/y 

1C5-18-5 LC4 45 0.086 0.0272 14.19 

*
18C5-26-12 NA

*
 45 0.086 0.0052 2.71 

*
2C12-18-5 NA

*
 55 0.092 0.0077 4.57 

*
6C12-18-12 NA

*
 55 0.092 0.0054 3.20 

10C12-26-5 LC4 55 0.092 0.0180 10.74 

14C12-26-12 LC3c 55 0.105 0.0155 8.10 

3C20-18-5 LC2a 86 0.141 0.0083 5.09 

7C20-18-12 LC3a 86 0.141 0.0074 4.51 

11C20-26-5 LC3a 86 0.131 0.0101 6.61 

15C20-26-12 LC2b 86 0.126 0.0093 6.35 

4Rw-18-5 LC2a 69 2.938 0.0030 1.64 

8Rw-18-12 LC3a 69 2.938 0.0025 1.37 

12Rw-26-5 LC3a 69 3.097 0.0026 1.28 

16Rw-26-12 LC3a 69 3.000 0.0023 1.21 

5Rs-18-5 LC2a 41 1.763 0.0065 3.57 

9Rs-18-12 LC2a 41 1.763 0.0058 3.16 

13Rs-26-5 LC2a 41 1.804 0.0075 3.92 

17Rs-26-12 LC2a 41 1.798 0.0062 3.26 

*
 Local buckling did not occur. 

The normalized empirical strains at the initiation of local buckling (lb_test/y) vs. the 

normalized slenderness parameter (R) are plotted in Figure 8.8 for the CCFT specimens and in 

Figure 8.9 for the RCFTs. The data used by Denavit and Hajjar (2010) and Tort and Hajjar 

(2007) in the calibration of the local buckling initiation for CCFTs and RCFTs, respectively, is 

included in these figures (as red diamonds), as well as their proposed empirical curve-fitting 

equations (as red dashed curve). The initial local buckling strains determined empirically in the 

present research project are indicated in Figure 8.8 as blue circles for the CCFTs, and in Figure 
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8.9 as blue rectangles for the RCFTs; the blank circles in Figure 8.8 indicate those specimens 

where local buckling did not occur. For reference, the specimen number is also indicated next to 

the marker. 
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Figure 8.8. Calibration of the local buckling initiation for CCFTs 
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Figure 8.9. Calibration of the local buckling initiation for RCFTs 

 

Based on the empirical data obtained in these tests, an update of empirical equations for 

the local buckling initiation is proposed. The proposed equations are included in Figure 8.8 and 

Figure 8.9 as a dashed-blue curve; all the element components are properly labeled in these 

figures. 
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As seen in Figure 8.8 and Figure 8.9, the proposed empirical equations predict lower 

strains (or conservative) than those extracted in this project, but higher (or unconservative) than 

those reported in previous empirical data. Differences in CCFT members are not considerable as 

those differences obtained in the RCFT specimens. The larger dispersion in the RCFTs is a 

consequence of the large disparity on the initial imperfections of the plate components and some 

additional outward deformation as a consequence of the hydrostatic pressure of the wet concrete. 

As noted in the experimental description, the RCFTs tested in this project were braced at critical 

sections in order to diminish the expansion in the tubes when these were casted. No additional 

details about these differences are explored, but more exhaustive evaluation of all the available 

data and their parameters (L, b, d, t, p, r, R, bracing, imperfections, etc.) is highly 

recommended for future research. 

The limits for slender filled tubes (r) are obtained from the empirical calibration 

equations (Equation 8.14) when the local buckling strain reaches yielding (lb=y or lb/y=1). 

These limits are given by: 
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(8.16) 

Limits for non-compact filled tubes (p) from the empirical calibration equations 

associated to local buckling strains are propose as four times yielding in circular filled tubes 

(lb/y=4) and two times yielding in rectangular filled tubes (lb/y=2); the higher limit in CCFTs 

is justified by the higher performance of the circular tubes. These limits are: 

 

0.15  for CCFTs

2.12 for RCFTs

s

y

p

s

y

E

F

E

F

 

 

(8.17) 

The latter propose ranges aim to establish reliable and consistent limits with the current 

AISC Specifications. The limits p and r stated above are very close to the limits defined in the 

AISC (2010) for CFT cross-sections that are shown in Table 8.1. 
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The limits proposed above for CFTs under both compression and flexure loading that 

delimits compact, non-compact and slender cross-sections in CFT columns and beam-columns 

are illustrated in Figure 8.10 and Figure 8.11. 
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Figure 8.10. Proposed limits for compact, non-compact and slender sections in CCFTs 
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Figure 8.11. Proposed limits for compact, non-compact and slender sections in RCFTs 
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The results shown above correspond to the initiation of local buckling. However, once 

local buckling started, the amount of local deformation progressed through the loading protocol. 

The final local buckling deformation of the 18 CFT specimens tested in this project after 

completing the load protocol is shown from Figure 8.12 to Figure 8.15. The following 

observations can be made from these images. 

 As a consequence of a low diameter-thickness ratio in the CCFTs with 5.563 and 12.75 

inches of diameter (45 and 55, respectively), the amount of local buckling is either low 

(as in specimens 1, 10, 14) or inexistent (as in specimens 2, 6, and 18). Differences in the 

final accumulated amount of local buckling in these specimens are due to differences in 

the strain demands in the applied load protocol. 

 As expected due to the shape and the large wall-slenderness ratios, local buckling in 

RCFTs exhibited a much higher amount of local deformation. 

 During LC2, local buckling was developed earlier in RCFTs oriented in weak axis than 

the RCFTs oriented in strong axis; however, once the LC3 was completed, both weak and 

strong axis cases exhibited similar amount of local deformation. 

 

(a) 1C5-18-5 (b) 18C5-26-12 

Figure 8.12. Local buckling deformation at the end of the test for the C5 group 
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(a) 2C12-18-5 (b) 6C12-18-12 

  

(c) 10C12-26-5 (d) 14C12-26-12 

Figure 8.13. Local buckling deformation at the end of the test for the C12 group 
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(a) 3C20-18-5 (c) 11C20-26-5 

  
(b) 7C20-18-12 (d) 15C20-26-12 

Figure 8.14. Local buckling deformation at the end of the test for the C12 group 
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(a) 4Rw-18-5 (b) 5Rs-18-5 

  
(c) 8Rw-18-12 (d) 9Rs-18-12 

Figure 8.15. Local buckling deformation at the end of the load protocol in RCFTs 
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(a) 12Rw-26-5 (b) 13Rs-26-5 

  
(c) 16Rw-26-12 (d) 17Rs-26-12 

Figure 8.15. Local buckling deformation at the end of the load protocol in RCFTs (cont.) 
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 Local buckling deformation during the torsional loading (LC4) progressed diagonally in 

the RCFTs, mainly on their wider plates; this effect can be seen in Figure 8.15.b for the 

specimen 5Rs-18-5. No out-of-plane deformation was observed due to the torsional 

loading in the CCFTs. 

 Figure 8.15 illustrates differences in the position of the local buckling, being at higher 

elevation in specimen 4 (which was not braced at the concrete casting, and so wet 

concrete pressure increased the imperfections of the steel tube), or being at a lower 

position in specimens 9 or 17 (which were braced to avoid the expansion due to the wet 

concrete pressure). As commented in Chapter 4, the position of local buckling in height is 

influenced by the amount and position of initial imperfections of the plate components 

and the outward deflection created by the hydrostatic pressure of the wet concrete. 

 As summarized in Table 8.3, most specimens locally buckled under the load case LC2 

(compression with uniaxial bending) and, in few cases, local buckling occurred with 

higher strain demands during either LC3 (biaxial bending) or LC4 (as in the specimen 1). 

Specimens 2, 6 and 18.did not exhibited local deformation due to their small D/t ratios 

and the low demand/capacity ratio. 

 The mechanism observed of the local buckling during LC2 is schematically illustrated in 

Figure 8.16, where the specimen is under constant axial load and cyclic lateral force (in 

the X direction for the RCFTs and the imperfection direction in CCFTs). 

At some point during the first cycle with positive bending (as in Figure 8.16.a), the axial 

stress in the plate in compression exceeded its buckling capacity, and so deformation was 

developed in the outward direction. Depending on the concrete strength and the demand 

of axial stress, the concrete inside likely cracked in the tension side and possibly crushed 

in the compression side; the concrete in compression may spread the local buckling 

deformation either completely or partially if the concrete crushed, or remain undamaged 

if the confined concrete strength was not exceeded. 

As shown in Figure 8.16.b, similar behavior is exhibited in the cycle with the negative 

bending, where the new plate in compression buckled locally if the critical capacity was 

exceeded. The stresses on the concrete in the compression side start with closing the 

cracks that were likely developed in the previous cycle, and eventually, spread the local 

buckling if the crushed capacity is exceeded. On the other hand, the plate that first 
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buckled in the previous step is now under tension loading in this cycle, and so its local 

deformation diminishes when the stresses passes from compression to tension; local 

buckling deformation in the steel tube is totally or partially recovered when the 

accumulated damage is not significant. The local buckling in the two extreme plates was 

not necessarily developed in the same elevation due to differences on the axial shortening 

exhibited in each plate. 

As illustrated in Figure 8.16.c, residual local buckling deformation remained in the cross-

section at the end of the testing when the bending moment and the axial load is 

completely removed; the amount of the residual deformation depends on the accumulated 

damage due to the demand in strain and the number of cycles. 
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 (a) Positive bending (b) Negative bending (c) Completely unloaded 

Figure 8.16. Development of local buckling during the load case LC2 (uniaxial bending) 

 Differences in the amount and position of local deformation were also observed in the 

circular tubes filled with different concrete strengths. For those circular tubes filled with 

high strength concrete, local buckling developed in more than one cross-section as 

observed in Figure 8.13.d for specimen 14C12-26-12, and in Figure 8.14.c and 8.14d for 

the specimens 7C20-18-12 and 15C20-26-12, respectively.  Multiple locations of local 

buckling were not the observed in tubes filled with normal concrete strength, where local 

buckling developed only in the critical cross-section. 

The effect of multiple cross-sections with local buckling in the circular tubes filled with 

high strength concrete is attributed to the effective distribution of the surfaces in contact 

as a consequence of the higher rigidity in high strength confined concrete. 
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Tubes filled with lower concrete strengths and lower confinement cracked and crushed 

earlier with lower loading, and when this occurs, the concrete spread the steel local 

buckling as illustrated in Figure 8.17.a. With a higher load, the damaged zone in both the 

steel and concrete increases in size. 

In contrast, tubes with large D/t ratios and filled with high strength concrete may develop 

earlier local buckling without significant damage in the concrete. When this occurs, the 

steel tends to develop inward deflection near the local buckling, but this is restraint by the 

contact with the rigid concrete. With a higher load, the steel may exhibit additional 

outward local buckling deflection as illustrated schematically in Figure 8.17.b in different 

cross-sections until the concrete crushes; at this moment, all the developed local 

deformations in the steel and concrete increase in size with additional loading. 
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 (a) Normal strength concrete (b) Tendency in high strength concrete 

Figure 8.17. Local buckling mechanism in CCFTs with normal and high strength concrete infill 

Recall that in these specimens, there are not shear studs or any other anchorage element 

to maintain the steel and concrete together; the concrete was poured inside the tubes and 

hardens with the given shape, and so they were barely in contact at the beginning of the 

test.  The steel-concrete surfaces in contact develop frictional forces in the longitudinal 

and transverse direction, a negligible adhesion force when the steel-concrete surfaces 

have a tendency to separate in the normal direction, and a rigid (or hard) normal contact 

when they remain connected. 



380 

8.3. Identification of limits states 

 

At the time of the testing in each specimen, several measured responses were monitored 

simultaneously. These observed responses included media records (as photo or videos) and data 

records (measurements from the entire instrumentation).  The strain gages were monitored in 

order to identify in which load case the first yielding occurs, and from these then focus on the 

first occurrence of local buckling. The first occurrence of local buckling was discussed in detail 

in Section 8.2. 

 

In this section, limit states are identified on the experimental response of the 18 CFT 

specimens tested in this project. The identification of these limit states is extracted from the 

history of the maximum compressive and tensile strains in the critical cross-section that is 

assumed as a plane section.  

 

Due to the fixed-free boundary conditions (K=2) most commonly used to control the 

specimens, the strain gauges near the base were primarily the ones that registered the maximum 

compressive and tensile strain values. In those specimens controlled as fixed-fixed (specimen 1, 

2 and 14, K=1), high values of strains were also measured at the cross-section near the top. 

 

The maximum strains within the cross-section are calculated based on the three strain 

gages placed at the external walls in each -section by assuming linear distribution of the strains 

on the plane section. Table 8.4 summarizes the maximum compression (sc) and tension (st) 

strains normalized with the yielding strain (y) of the steel tube that are obtained within the load 

cases LC1 and LC2; the slenderness parameter () is also included in this table. 
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Table 8.4. Summary of the maximum strains measured within load cases LC1 and LC2 

Specimen 

yielding  

strain 

y 

Max. strain at LC1 Max. strain at LC2 

Compr. 

sc / y 

Tension 

st / y 
LC 

Compr. 

sc / y 

Tension 

st / y 

2C12-18-5 1.55 0.0017 -0.7381 +0.2122 

2a 

2b 

2c 

-0.8125 

-1.0147 

-1.4894 

+0.3974 

+0.8545 

+2.0765 

6C12-18-12 1.90 0.0017 -1.5442 +1.0979 
2a 

2b 

-1.6407 

-2.3145 

+1.1250 

+3.1218 

10C12-26-5 2.38 0.0017 -0.8163 +0.6374 
2a 

2b 

-1.3459 

-1.3413 

+1.1311 

+1.6038 

14C12-26-12 2.72 0.0019 -0.6334 +0.5423 

2a 

2b 

2a’ 

-1.6952 

-1.0877 

-18.2914 

+2.9580 

+1.4985 

+23.7483 

3C20-18-5 1.05 0.0016 -1.1980 
*
 +0.1052 

*
 

2a 

2b 

-5.0858 

-8.4683 

+3.2817 

+9.1744 

7C20-18-12 1.30 0.0016 -1.6437 
*
 +0.6311 

*
 

2a 

2b 

-4.0674 

-4.4842 

+11.0385 

+3.4073 

11C20-26-5 1.61 0.0015 -1.2717 +0.6220 
2a 

2b 

-2.8421 

-3.7748 

+2.8270 

+5.7679 

15C20-26-12 1.78 0.0015 -0.9629 +0.1459 
2a 

2b 

-7.3937 

-5.9857 

+9.1846 

+2.6146 

4Rw-18-5 1.38 0.0018 -2.2599 +1.0828 
2a 

2b 

-2.6593 

-2.9297 

+1.5236 

+3.9463 

8Rw-18-12 1.65 0.0018 -1.0486 +0.8309 
2a 

2b 

-1.0545 

-0.8888 

+1.3744 

+3.8448 

12Rw-26-5 2.14 0.0020 -0.6158 +0.6549 
2a 

2b 

-0.9258 

-1.0534 

+1.5511 

+1.9691 

16Rw-26-12 2.30 0.0019 -0.7143 +0.1934 
2a 

2b 

-0.8387 

-0.8293 

+2.1103 

+1.7897 

5Rs-18-5 0.88 
*
 0.0018 -0.5005 

*
 +0.0000 

*
 

2a 

2b 

-3.7856 

-4.5089 

+1.8376 

+6.0907 

9Rs-18-12 1.04 
*
 0.0018 -0.6521 

*
 +0.0440 

*
 

2a 

2b 

-5.6490 

-7.0915 

+2.7935 

+11.8765 

13Rs-26-5 1.35 0.0019 -0.8074 +0.1098 
2a 

2b 

-4.0516 

-5.4449 

+5.6221 

+4.3356 

17Rs-26-12 1.46 0.0019 -1.1020 +0.5400 
2a 

2b 

-3.3302 

-8.9447 

+7.9362 

+16.692 

1C5-18-5 0.90 0.0019 -3.7576 +1.3323 

2a 

2b 

4a 

-0.4626 

-0.5243 

-14.1877 

0.1443 

0.2484 

13.1320 

18C5-26-12 1.50 0.0019 -1.2666 0.4470 
2a 

2b 

-1.2659 

-1.3076 

3.6680 

3.4100 

Note: (*) The system did not buckle since the system reaches and reverses at the maximum axial 

capacity (1320 kip). 
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The limit states identified in this section correspond to: 

 First yielding in compression (yc) and tension (yt) on the steel tube: These limit states 

are identified when the corresponding maximum compressive and tensile strains in the 

outside of the steel cross-section reach the yielding strain (yc = yt = Fy / s) calculated 

by the Hooke’s law. The yield stress and the Young’s modulus are obtained from the 

coupon tests presented in Chapter 3 and Appendix A. 

 Concrete crushing (cc): This limit state is calculated with an interpolation of the 

measured strains on the steel cross-section. Since a plane section hypothesis is assumed, 

the maximum strains in the concrete are the same than the maximum strains in the inside 

of the steel tube. Thus, crushing concrete was identified when the maximum compressive 

strain reach a certain strain value (cc). This crushing strain was assumed as: 
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                      for RCFTs
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(8.18) 

The latter equation is the tangent stiffness of the concrete attributed to Hognestad (Park 

and Paulay 1975). For CCFTs, the confinement is accounted by the term in parenthesis as 

proposed by Sakino et al. (2004) 

 Initiation of local buckling in the steel tube: This limit state is identified when the 

corresponding maximum compressive strain in the outside of the steel cross-section 

reaches the local buckling strain (lb) calculated by the empirical equations (Eq. 8.14) that 

are calibrated in Section 8.2. These equations are: 
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(8.19) 

Again, the geometric and material properties used are those measured and reported in 

Chapter 3 and Appendix A. 
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Figure 1.18 to Figure 1.35 show, for each specimen, two of the key responses with the 

first occurrences of the any of the limit states. The key responses selected are any two of the 

following: 

 P-M2 path during LC1. When a limit state is achieved while the CFT column was under 

the pure compression loading, the axial force vs. the base moment is plotted, as well as 

the corresponding exceeded limit or limits; this response is not shown in those cases 

where no limit was exceeded during this load case. 

 F- path during LC2. During the uniaxial loading case with the CFT specimen under 

constant axial load and cyclic lateral displacement (LC2), the resultant lateral force vs. 

the resultant lateral displacement in the direction of the motion is plotted. Similarly, the 

response values at the exact instant the limit states are suppose to be exceeded are 

indicated on these figures. 

 P-z path. The axial force vs. the axial displacement response was chosen only for 

specimen 1 since the uniaxial and biaxial load cases (LC2 and LC3) were not used in this 

specimen; instead, pure compression loading (LC1) and a repetition of this (LC4) was 

applied to this specimen, which was controlled as fixed-fixed (K=1).  

 

 

The following observations can be highlighted from these figures: 

 As theoretically expected, inelastic buckling failure occurred in the specimens 1, 3, 4, 7, 

17 and 18, which all have a slenderness parameter under the 1.5 limit ( < 1.5). This fact 

is confirmed by Figures 22-23, 26, 33-35 (a), where the buckling load was reached in 

LC1 with yielding in compression on the steel tube and/or crushing on the concrete core.  

However, inelastic buckling failure also occurs in specimens 6, 8 and 11, which 

slenderness parameters are among 1.5 and 1.9.  This failure type is attributed, as 

discussed in Chapter 5, to the change of the top boundary conditions as a consequence of 

the frictional forces and lack of control in the system. The support changes in these 

specimens tend to reduce the effective length factor K under the 1.5 limit, and so within 

the inelastic buckling range. 
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 On the other hand, the elastic flexural buckling failure is achieved in the slender CFT 

specimens ( > 1.5). This is confirmed for specimens 2, 10, 12, 14, 15 and 16, where the 

buckling load was reached in LC1 without yielding on the steel tube or without crushing 

on the concrete core. 

Specimens 5 and 7, with slenderness parameter of 0.88 and 1.04 respectively, are 

exempted from this trend since the system ran out of axial capacity (1320 kip), and so 

hence yielding did not occur. In addition, the slender parameter in Specimen 13 (=1.35) 

is close to the 1.5 limit and then either elastic or inelastic buckling can govern in this 

case. 

 The strains of the first local buckling (lb) occurrence in the steel tube shown in these 

figures are calculated with Equations 8.14 or 8.19, both derived from the data calibration. 

However, the values obtained with these equations are a lower bound of the true local 

buckling strains reported (see Figure 8.8 and Figure 8.9). Due to the latter, the local 

buckling may have occurred earlier than reported in these figures. This is the case of the 

Specimen 4 and 8, where local buckling during LC1 is not reported in Section 8.2, but 

calculated with Equation 8.20 to be within LC1. 

 As seen in these figures, the occurrence sequence of the evaluated limit states starts in 

general with yielding in the steel tube in compression and then in tension, follows by 

crushing in the concrete core, and finally with local buckling in the steel tube in the 

CCFTs and the RCFTs oriented in the strong axis; due to a high wall-slenderness ratio in 

the RCFTs oriented in the weak axis, the local buckling in these specimens occurred right 

after yielding and before concrete crushing. 

This sequence is result of the strain values associated to each limit states, which ranges 

between 0.0015 to 0.002 for steel yielding, and around 0.003 to 0.004 for the concrete 

crushing. In turn, the steel local buckling occurs at strain values above 0.0023 in RCFTs-

weak axis, 0.0058 in RCFTs-strong axis, and above 0.0074 in CCFTs. 

First occurrence of compression yielding over tension yielding is due to the compressive 

axial load (P) sustained on the specimens. 

As discussed in Section 8.2 and observed in Figures 8.26 to 8.32, RCFTs oriented in the 

weak axis are more susceptible to developed local buckling right after the steel yields in 

compression, and right after the concrete crushing in the RCFTs strong axis oriented. 
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 F (kip) F (kip) 

  
  (in)  (in) 

 (a) LC2b, P=200 kip (b) LC2c, P=100 kip 

Figure 8.18. Occurrence of limit states in the specimen 2C12-18-5 

 P (kip) F (kip) 

  
 M2 (kip-ft)  (in) 

 (a) LC1 (b) LC2a, P=300 kip 

Figure 8.19. Occurrence of limit states in the specimen 6C12-18-12 
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 F (kip) F (kip) 

  
  (in)  (in) 

 (a) LC2a, P=200 kip (b) LC2b, P=100 kip 

Figure 8.20. Occurrence of limit states in the specimen 10C12-26-5 

 F (kip) F (kip) 

  
  (in)  (in) 

 (a) LC2a, P=100 kip (b) LC2a’, P=200 kip, K = 1 

Figure 8.21. Occurrence of limit states in the specimen 14C12-26-12 
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 P (kip) F (kip) 

  
 M2 (kip-ft)  (in) 

 (a) LC1 (b) LC2a, P=1000 kip 

Figure 8.22. Occurrence of limit states in the specimen 3C20-18-5 

 P (kip) F (kip) 

 
 M2 (kip-ft)  (in) 

 (a) LC1 (b) LC2a, P=1000 kip 

Figure 8.23. Occurrence of limit states in the specimen 7C20-18-12 
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 P (kip) F (kip) 

  
 M2 (kip-ft)  (in) 

 (a) LC1 (b) LC2a, P=600 kip 

Figure 8.24. Occurrence of limit states in the specimen 11C20-26-5 

 F (kip) F (kip) 

  
  (in)  (in) 

 (a) LC2a, P=400 kip (b) LC2b, P=800 kip 

Figure 8.25. Occurrence of limit states in the specimen 15C20-26-12 
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 P (kip) F (kip) 

  
 M2 (kip-ft)  (in) 

 (a) LC1 (b) LC2a, P=600 kip 

Figure 8.26. Occurrence of limit states in the specimen 4Rw-18-5 

 P (kip) F (kip) 

  
 M2 (kip-ft)  (in) 

 (a) LC1 (b) LC2a, P=600 kip 

Figure 8.27. Occurrence of limit states in the specimen 8Rw-18-12 
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 F (kip) F (kip) 

  
  (in)  (in) 

 (a) LC2a, P=400 kip (b) LC2b, P=200 kip 

Figure 8.28. Occurrence of limit states in the specimen 12Rw-26-5 

 F (kip) F (kip) 

  
  (in)  (in) 

 (a) LC2a, P=200 kip (b) LC2b, P=400 kip 

Figure 8.29. Occurrence of limit states in the specimen 16Rw-26-12 
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 F (kip) F (kip) 

  
  (in)  (in) 

 (a) LC2a, P=1000 kip (b) LC2b, P=500 kip 

Figure 8.30. Occurrence of limit states in the specimen 5Rs-18-5 

 F (kip) F (kip) 

  
  (in)  (in) 

 (a) LC2a, P = 1200 kip (b) LC2b, P=400 kip 

Figure 8.31. Occurrence of limit states in the specimen 9Rs-18-12 
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 F (kip) F (kip) 

  
  (in)  (in) 

 (a) LC2a, P = 400 kip (b) LC2b, P=800 kip 

Figure 8.32. Occurrence of limit states in the specimen 13Rs-26-5  

 P (kip) F (kip) 

  
 M2 (kip-ft)  (in) 

 (a) LC1 (b) LC2a, P=400 kip 

Figure 8.33. Occurrence of limit states in the specimen 17Rs-26-12 
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 F (kip) F (kip) 

 
  (in)  (in) 

 (a) LC2a, P = 15 kip, K=1 (b) LC2b, P=25 kip, K=1 

Figure 8.34. Occurrence of limit states in the specimen 18C5-26-12 

 P (kip) P (kip) 

 
 Z (in) Z (in) 

 (a) LC1, K=1 (b) LC4, K=1 

Figure 8.35. Occurrence of limit states in the specimen 1C5-18-5 
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8.4. Experimental plastic hinge lengths 

Experimental determination of the plastic hinge lengths (Lp) may be of interest for 

calibration of concentrated plasticity models, where the implementation of the plastic hinge 

length is needed as input data to calculate in the analysis the plastic rotations and the rotation 

ductility. The plastic hinge length is defined, as illustrated in Figure 8.36, as the segment length 

that exceed either the elastic moment (My) or the elastic curvature (y). 

 
Figure 8.36. Schematic determination of the plastic hinge length (Paulay and Priestley, 1992) 

 

Several empirical and analytical equations obtained for structural steel and reinforced 

concrete members have been proposed in the literature. Most of the proposed equations relate the 

plastic hinge length as a function of the effective depth of the cross-section (diameter D in 

circular shapes or tubes, and h in rectangular shapes or tubes) and the length between the 

maximum moment and zero. 

The plastic hinge length (Lp) can be obtained analytically as illustrated in Figure 8.37 

from the linear relation between the member length and its moment distribution. This 

relationship concludes in an analytical equation that depends on the ratio yielding moment over 

plastic moment (My/Mp). For steel members, this equation can be rewritten as a function of the 

elastic over the plastic cross-section modulus (S/Z), or the inverse of the shape factor (1/ks). 
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Thus, the expected plastic hinge with this formula is 0.23L for the circular HSS tubes (ks=1.3) 

and 0.17L for the rectangular HSS tubes (ks=1.2). 

 
1

1 1 1
y

p

p s

M S
L L LL

M Z k

    
               

 (8.20) 

 

L
p

L

1

1

1
1

p

p y

y

p

p

p

p

s

L LL

M M

M
LL

M

S
L L

Z

L L
k




 
   

 

 
  

 

 
  

 

M

My Mp

 L
 –

 L
p
 

 
 (a) Column (b) Moment diagram 

Figure 8.37. Derivation of the plastic hinge length in a cantilever beams 

 

The empirical Equation 8.21 was proposed by Sawyer (Paulay and Priestley, 1992) to 

obtain the plastic hinge length of concrete members, where D is the effective depth and L is the 

distance between maximum and zero moment (equal to the member length in cantilever 

members). This equation assumes a ratio of yielding moment over plastic or ultimate moment 

equal to My/Mp=0.85, and a plastic extension of ¼ of the effective depth (D). 

 0.25 0.075pL D L   (8.21) 
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Even though it is not the main goal of this project to perform a comprehensive study on 

plastic hinge lengths, the redundancy in the instrumentation permits a first rough estimation of 

the plastic hinge length for CFT members. In this project, the curvature approach from the 

experimental instrumentation and the physical observation of the spread of damage in the 

exterior tube are used as a first approach to handle the hinge length determination. 

For this purpose, the curvatures extracted from the strain gauges data along the column 

length are illustrated from Figure 8.39 to Figure 8.43. As reminder, three strain gauges were 

placed in the exterior wall of steel tube at the north, south and west faces and at different cross-

section locations along the specimens. Assuming that plane sections remain plane, the three 

values in each cross-section are used to compute the strain in the east face. The strain values 

placed in each cardinal direction are then used to compute the X (north-south) and Y (east-west) 

curvatures for each cross-section. The values illustrated in these figures correspond to the 

absolute values of the X and Y curvatures in the cross-sections along the member at the instant 

of maximum top deflection during the load case stated in the captions. The selected load cases in 

these plots correspond to the latest case in the load history with high curvatures and consistent 

strain gauge data.  Strain data in some latest cases may not be reliable (mainly near the member 

bottom) due to saturated measurements or detached strain gauges as a consequence of excessive 

local buckling. Note that the calculated absolute X and Y curvatures in these figures are 

represented by discrete points that are connected with smooth dashed lines; this curvature 

variation with the length may not correspond to the true distribution, specially at near the 

member top where a low density of strain gauges through the length were placed. 

Figure 8.39 to Figure 8.43 also illustrate with a thick dash line rough values of the 

estimated curvature in the CFT cross-section corresponding to the yielding occurrence in the 

steel component (y). As schematically illustrated in Figure 8.38.b, an accurate determination of 

the yield curvature (y) in composite cross-sections under axial force (P) and moment (M) 

depends on the effective axial loading (Ps) and bending moment (Ms) on the steel component.  

Alternatively, the yield curvature (y) can be estimated in composite beam-columns with the total 

P and M loading on the composite member but with effective axial (EAeff) and flexural (EIeff) 

rigidities; both later  cases are quite complicate since some key variables (Ps, Ms, EAeff) are 

unknown. 
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For beams under pure bending (P=0), the yield curvature is simplified as shown in  

Equation 8.22 and illustrated in Figure 8.38.a; the yield curvature in beam columns varies from 

zero in pure axial loading to the upper limit given by the value in pure bending. 
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    (8.22) 

In the previous equation, D is the depth of the cross-section related to the bending axis. 

This is equal to the diameter D in CCFTs, to the height h in RCFTs with strong axis bending, and 

to the base b in RCFTs with weak axis bending 

 

As a first pass, the upper limit of the yield curvature (y) as computed with Equation 8.22 

is selected as the limit between the elastic and the plastic ranges. This assumption is contrasted 

with the fact that the limit is compared with the X and Y measured curvature instead of the 

maximum curvature. The estimated limits are illustrated from Figure 8.39 to Figure 8.43 with the 

thick-dash vertical lines. Thus, the experimental plastic hinge lengths are defined as the segment 

length that exceeds the given limits. 

 

With this approach, the experimental plastic hinge lengths (Lp) extracted from Figure 

8.39 to Figure 8.43 are summarized in Table 8.5. This table also shows estimated values of the 

plastic hinge lengths (Lp) calculated with Equation 8.20 using the steel properties and with 

Equation 8.21 derived for concrete members. As noted in this table, plastic hinge lengths 

extracted from the tests present, in general, show values between the analytical predictions with 

Equations 8.20 and 8.21, but closer to the prediction using the steel tube properties (Equation 

8.20). 

 

According to the experimental data evaluated in this project, despite all the 

simplifications and assumptions involved in this section, the analytical prediction using the shape 

factors of the steel tube component (Equation 8.20) gives a reasonable prediction of the plastic 

hinge length for composite CFT members. 
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 (a) Pure bending in beams (b) Axial force and bending in beam-columns 

Figure 8.38. Computation of the yield curvature in the cross-section 

 

 

Table 8.5. Summary of extracted plastic hinge length 

Specimen D / t 
y (1/in) 

Eq. 7.6 

u (1/in) 

Tests 

Lp (ft) 

Tests 

Lp (ft) 

Eq. 8.20 

Lp (ft) 

Eq. 8.21 

1C5-18-5 
 

 -- 4.15 1.5 

18C5-26-12  3.0 6.00 2.1 

2C12-18-5 

 

 4.0 4.15 1.6 

6C12-18-12  4.0 4.15 1.6 

10C12-26-5  4.0 6.00 2.2 

14C12-26-12  4.0 6.00 2.2 

3C20-18-5 

 

 2.0 4.15 1.8 

7C20-18-12  4.0 4.15 1.8 

11C20-26-5  6.0 6.00 2.4 

15C20-26-12  6.0 6.00 2.4 

4Rw-18-5 

 

 4.0 3.00 1.6 

8Rw-18-12  3.0 3.00 1.6 

12Rw-26-5  3.0 4.33 2.2 

16Rw-26-12  4.5 4.33 2.2 

5Rs-18-5  3.0 3.00 1.8 

9Rs-18-12  2.5 3.00 1.8 

13Rs-26-5  4.0 4.33 2.4 

17Rs-26-12  5.0 4.33 2.4 
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 (a) 2C12-18-5, LC3b (b) 6C12-18-5, LC3c 
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 (c) 10C12-18-5, LC3b (d) 14C12-18-5, LC3a 

 

Figure 8.39. Curvatures vs. length at the peak displacement 
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 (a) 3C20-18-5, LC3c (b) 7C20-18-12, LC2 

 

 

L (ft) L (ft) 

 
 (

1
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 (c) 11C20-18-5, LC4 (d) 15C20-26-12, LC4 

 

Figure 8.40. Curvatures vs. length at the peak displacement 
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 (a) 4Rw-18-5, LC3c (b) 8Rw-18-12, LC3a 
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 (c) 12Rw-18-12, LC3b (d) 16Rw-18-12, LC3b 

 

Figure 8.41. Curvatures vs. length at the peak displacement 
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(a) 5Rs-18-5, LC3b (b) 9Rs-18-12, LC3b 
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 (c) 13Rs-18-12, LC3b (d) 17Rs-26-12, LC3b 

 

Figure 8.42. Curvatures vs. length at the peak displacement 
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 (a) 1C5-18-5, LC2 (b) 18C5-18-5, LC3, K=0.5 

Figure 8.43. Curvatures vs. length at the peak displacement for the Specimens C5 
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8.5. Postmortem evaluation 

At the end of the load protocol, the specimens were disconnected from the crosshead and 

the strong floor, and were stored in a staging area for a forensic analysis. The postmortem 

evaluation consisted in cutting the steel tubes at different places along the column. Thus, 

segments of steel plates were cut and extracted in zones where the highest local buckling 

deformation was observed (near the base in most cases), and also in those spots where there was 

no evidence of plasticity or damage (near the top). 

 

Coupon samples were obtained from the steel plates cut in the undamaged areas with the 

aim of obtaining the steel properties with tension tests. The results obtained from the coupon 

tests are presented in the Appendix A.  

 

In addition, concrete cores were extracted from the undamaged spots for future 

corroboration of the concrete properties. The concrete cores extracted, as well as the concrete 

zone around the exposed area, seemed very healthy and with no evidence of small cracks or 

voids. 

 

The segments cut in the zone where the highest damage was observed were aimed at 

determining the concrete condition behind the steel local buckling deformation. Figure 8.44 and 

Figure 8.45 shows some of the post-mortem photographs taken from specimens 7C20-18-12 and 

8Rw-18-12, respectively. When the deformed steel plates were cut and removed, it was observed 

and confirmed that the highest local buckling deformation was spread by coarse-like pieces of 

concrete, as shown in Figure 8.44.b, Figure 8.45.c and 8.45d. In addition, small cracks in the 

concrete were observed superficially in the concrete as shown in Figure 8.44.b and 8.18.c; 

however, no evidence of concrete-steel slip was observed or noticed. Once the external condition 

of the concrete was documented, the exploration of deeper cracks was carried out by removing 

the external surface of the concrete. As shown in Figure 8.44.d and Figure 8.45.e, the concrete 

cores were found to be highly confined and almost intact, with evidence of additional cracks, 

voids or similar defects. 
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(a) Local buckling deformation in steel 

 

(b) Local buckling deformation spread by the concrete 

Figure 8.44. Post-mortem images from the specimen 7C20-18-12 
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(c) Condition of the concrete in the external surface 

 

(d) Condition of the concrete in the interior core 

Figure 8.44. Post-mortem images from the specimen 7C20-18-12 (cont.) 
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(a) Local buckling deformation in steel 

 
(b) Close up to the local buckling in steel 

 
(c) Close up to the concrete deformed shape inside the steel local buckling 

Figure 8.45. Post-mortem photos from the specimen 8Rw-18-12 
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(d) Condition of the concrete in the external surface 

 

(e) Condition of the concrete in the interior core 

Figure 8.45. Post-mortem photos from the specimen 8Rw-18-12 (cont.) 
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8.6. Conclusions 

In Section 8.2, a detailed discussion on the steel local buckling was presented. The limits 

on the steel wall-slenderness that have been accepted in the AISC (2010) Specifications to avoid 

or minimize the local buckling failure are shown. Then, the theoretical formulas obtained for the 

determination of the local buckling of plates are presented. In addition, previous empirical 

calibrations to characterize the initiation of local buckling are also discussed.  Finally, in this 

section, the extraction of the first occurrence of local buckling in the 18 specimens tested for this 

project is presented. 

Based on the empirical data extracted from these tests, an update of empirical equations 

for the local buckling initiation is proposed for both CCFT and RCFTs. The proposed equation 

is: 
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From the empirical calibration equations shown above, an update of limits for slender 

filled tubes (r) and non-compact tubes are proposed as: 
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In Section 8.3, key responses during the load cases LC1 and LC2 were illustrated 

including first occurrence of the steel yielding in both compression and tension, the concrete 

crushing and steel local buckling. 
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In Section 8.4, an analysis on the plastic hinge lengths is presented based on the 

maximum curvature within the load protocol through the column length. Based in this data 

analysis, it is recommended to get the plastic hinge length as:  
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 (8.26) 

The post-mortem or forensic analysis of the CFT specimens tested in this project was 

presented in Section 8.4. To accomplish this goal, steel segments were cut in the zone where the 

highest damage was observed. When the deformed steel plates were cut and removed, it was 

observed and confirmed that the highest local buckling deformation was spread by coarse-like 

pieces of concrete. No clear evidence of significant concrete-steel slip was observed or noticed 

when the tubes were cut and open; however, the slip was not monitored or measured during the 

test, and so this note is based only on the final physical observation on the exposed specimen. 

Once the external condition of the concrete is reported, the exploration of deeper cracks was 

carried out by removing the external surface of the concrete. The concrete cores were found to 

have been highly confined and almost intact. 
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CHAPTER 9  

TORSION 

9.1. Introduction 

Evaluation of the torsional strength and stiffness of columns has an important role when 

3D analysis is performed. For composite columns, the torsional strength (Tn) and rigidity (GJ) 

have been conservatively assumed as the maximum value obtained for either the steel or the 

concrete component (the steel commonly governs), or as the superposition of reduced values of 

these components. The uncertainty in the latter approach resides in the methodology to assess the 

effective contribution of each component. 

 

Due to the position of the steel tube on the perimeter of the cross-section, it is expected to 

have a very beneficial effect on the torsional behavior of CFT members. Due to its shape, it is 

also expected that circular CFT cross-sections will have a much better performance than 

rectangular CFT cross-sections. In addition, because concrete cracking is much more severe 

under cyclic than under non-cyclic loading, the contribution of concrete to torsion is expected to 

be very low under earthquake loading as compared to gravity loading conditions. 

 

Experimental results from the eight CFT specimens that were subjected to torsion are 

evaluated and discussed in this chapter. This torsional loading case was applied at the end of the 

load protocol, so these specimens have previous damage, sometimes serious, due to the previous 

loading cycles (in particular for the RCFTs, where the damage was considerable at this point). 

 

Section 9.2 of this Chapter presents key results and conclusions of previous research 

studies related to torsional loading. Section 9.3 presents a summary of torsional design 

approaches given in some codes and specifications. Section 9.4 presents the experimental results 

obtained from the testing, and section 9.5 describes the calibration with the strength and the 

stiffness data for CFTs. Section 9.6 presents the conclusions from the observed results. 
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9.2. Previous studies 

9.2.1. Analytical research 

Although high torsional strength and rigidity are expected in CFTs, few analytical studied 

has been focused on the torsional behavior of CFTs. Some of these previous studies are 

summarized below. 

Kitada (1992) reviewed the ultimate strength and ductility of CCFTs and RCFTs under 

different types of loading, including torsion. According to this study, the ultimate torsional 

moment of a CFT section is about 1.2 times the sum of the individual torsional resistance of the 

steel and concrete. This author found that the ultimate torsional moment could be accurately 

predicted by assuming the ultimate shearing stress of concrete as 0.5fc’. As anticipated, CCFTs 

exhibited a superior ductility and a much larger ultimate torsional moment over the RCFTs. 

Han, Yao, and Tao (2007) developed a parametric study to evaluate the behavior of CFTs 

under pure torsion loads using finite element analysis (FEA). Both the steel tube and concrete 

core were modeled with eight node brick elements, and the interface between steel tube and 

concrete core was modeled with contact and Coulomb friction (=0.6). Comparison between the 

FEA and collected empirical results showed good agreement. Formulas for the calculation of the 

ultimate torsional strength and torsional moment vs. torsional strain curves were developed for 

circular and square CFTs. As shown in Figure 9.1, the results from the FEA performed by these 

authors indicate that the steel tube provides the majority of the strength and stiffness of the 

composite section in torsion; in addition, stresses are concentrated in the corners in square CFTs 

(even when the corners where modeled with the chamfers rounded), and distributed in circular 

CFTs with principal stresses at 45° of inclination with respect to the longitudinal axis.  

Using the same FE model, similar analyses are presented by Han, Yao, and Tao (2007b) 

with combined torsional loading (i.e. compression and torsion, bending and torsion, 

compression, bending and torsion). Comparison between FEA and collected empirical results 

also showed good agreement. In addition, formulas for the calculation of the ultimate torsional 

strength and torsional moment vs. torsional strain curves were developed for circular and square 

CFTs. In this paper, interaction diagrams are presented between different combined loading 

cases (such as compression and torsion, bending and torsion, compression, bending and torsion) 

as those illustrated in Figure 9.2. 
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twist

stress distribution Torsion vs. Rotation Stress vs. Rotation
 

(a) Circular CFTs 

twist

stress distribution Torsion vs. Rotation Stress vs. Rotation
 

(b) Square CFTs 

Figure 9.1. Results from FE analysis under pure torsion in CFTs by Han, Yao, and Tao (2007) 

 

 

  

 (a) Axial load (N) vs. bending moment (M) (b) Normalized NMT 3D interaction diagram  

Figure 9.2. Interaction diagrams with torsion in CFTs presented by Han, Yao, and Tao (2007b) 
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9.2.2. Experimental research 

 

As mentioned in Chapter 2, few experimental research studies have been conducted for 

composite columns under torsional loads. Some of the experimental studies with torsional 

loading in CFTs are those reported by Gong (1989), Zhou (1990), Kitada and Nakai (1991), Lee 

et al. (1991), Xu et al. (1991), Han and Zhong (1995), and Beck and Kiyomiya (2003). The steel 

tubes used in all these experimental studies are circular shapes with a maximum 5½ inches of 

diameter. 

 

Lee et al. (1991) tested short CCFTs under monotonic and cyclic torsional loading with 

and without compression. Results of this study show higher torsional resistance in the CCFTs 

with higher compression loads. 

 

Xu et al. (1991), in contrast, tested short (L=7D), medium (L=13D) and long (L=20D) 

CCFTs under torsional loading, also with and without compression. Contrary to Lee et al.’s 

results, the ultimate torsional moment resistance decreased with an increase in the axial load 

ratio, so the highest torsional moment was attained in the pure torsion case. The characteristic 

failure mechanism was a cracking of the concrete followed by a propagation of the cracks along 

the length of the tube in a spiral pattern. 

 

Lack of experimental data is evident for rectangular and square CFT specimens under 

torsional loading. The following section show additional experimental results obtained for both 

CCFTs and RCFTs under torsional loading. 
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9.3. Specifications and Codes 

There are very few provisions in the available Specifications (i.e. AISC, 2010; ACI, 

2008; EC-4, 2004; AIJ, 2001) for design for torsional loads in composite columns. The few 

provisions concerning torsion in these codes focus mainly on the lateral torsional buckling of 

composite beams. 

 

For steel beams connected with studs to a concrete slab (inverted U-frame), section 6.4 of 

the EC-4 (2004) provisions recommends the use of the torsional stiffness of the steel only for the 

calculation of the critical moment for torsional buckling (Mcr). For partially-encased steel beams 

with encasement reinforcement, the torsional stiffness can be taken as the superposition of the 

steel and 10% of the concrete stiffness. No other additional torsional provisions are detailed in 

this EC-4 (2004) document. As complement, the Eurocodes for steel (EC-3, 2004) and concrete 

(EC-2, 2004) structures give design recommendations for the calculation of torsional strength 

and stiffness in steel and concrete members, respectively. However, neither full nor partial 

superposition of the components is recognized for composite members. 

 

The Chapter I of the AISC (2010) Specifications, which focus in composite members, 

also requires the verification of torsional local buckling for composite beams. The AISC (2005) 

commentary – Chapter I, mentions that encasement in concrete encased-beams reduce drastically 

the possibility of lateral-torsional buckling and prevents local buckling of the encased steel. 

However, the AISC (2010) Specification does not give detailed guidelines of how to incorporate 

this effect into the calculations.  

 

None of the available provisions above gives recommendations about the torsional 

strength and torsional rigidity explicitly developed for composite columns. However, the 

criterion of adopting the maximum capacity (strength or stiffness) between the steel and the 

concrete component is very common and accepted in practice; design equations for the strength 

or the stiffness of independent component is well documented in available concrete and steel 

codes worldwide. 
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Chapter H in the AISC (2010) Specifications is related to torsion and combined loading 

in steel members, and section H3.1 is related to HSS cross-sections under torsion. In this section, 

the nominal torsional strength (Ts) for steel tubes can be calculated as:  

 s crs sT F C   (9.1) 

where the critical torsional stress of the steel tube depends on the wall slenderness ratio and is 

limited to Fcrs ≤ 0.6Fy. 

 

Approximate equations in a user note for the torsional constant (Cs) are also given in this 

section. Thus, for round HSS tubes: 
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s

D t t
C

 
  (9.2) 

and for rectangular HSS tubes: 

      32 4.5 4sC b t h t t t      (9.3) 

 

 The design torsional capacity is calculated from the nominal strength with a strength 

reduction factor for torsion equal to T = 0.9 for LRFD design, or with a safety factor for torsion 

equal to T = 1.67 for ASD design. 

 

 For concrete elements, the design for torsion loading is covered by the section 11.5 in 

ACI-318 (2008). Torsion may be neglected if the factored torsional moment (Tu) calculated as 

section 11.5.2 is less than a threshold value given in section 11.5.1. The verification of the 

minimum concrete cross-section size to avoid cracking and crushing in concrete under torsion is 

in section 11.5.3. In the same ACI-318 section, equation 11-21 is given for the calculation of the 

nominal torsional strength of the concrete cross-section; this equation depends only on the lateral 

reinforcement (diagonal stirrups or ties) and was developed based on the space truss analogy. 
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9.4. Experimental results 

Experimental results from the eight CFT specimens that were subjected to twisting (load 

case LC4) are evaluated and discussed in this section. As summarized in Table 9.1 (see also 

Figure 3.21 in Chapter 3), five DOF’s for this load case were in displacement control, and the Z 

vertical DOF was in force control. Thus, both X and Y displacements and rotations were set and 

fixed at zero displacements and rotations, the Z vertical force was set and fixed at the desired 

gravity load, and finally, the RZ vertical rotation (or twisting DOF) was moved to the maximum 

twisting capacity (z ≈ ±10°) of the crosshead system. 

Table 9.1. DOF’s controlled during the torsional loading 

 DOF 

Step Force / Displacement Moment / Rotation 

 X Y  RX RY RZ 

1a x=0 y=0 Fz=0 x=0° y=0° z =     0° 

1b x=0 y=0 Fz=0 x=0° y=0° z→+10° 

1c x=0 y=0 Fz=0 x=0° y=0° z→ –10° 

1d x=0 y=0 Fz=0 x=0° y=0° z→     0° 

2a x=0 y=0 Fz=0.2Po x=0° y=0° z =     0° 

2b x=0 y=0 Fz=0.2Po x=0° y=0° z→+10° 

2c x=0 y=0 Fz=0.2Po x=0° y=0° z→ –10° 

2d x=0 y=0 Fz=0.2Po x=0° y=0° z→     0° 

 

The torsional loading was applied after all the cycles and trials of the buckling loading (LC1) and 

flexural loading cases (LC2 and LC3) had been completed. Consequently, these experimental 

torsional results have implicitly incorporated previous damage due to the loading cases LC1 

through LC3.  At the beginning of the torsional loading, RCFT specimens had higher damage 

than the CCFTs specimens. This higher damage in RCFTs consisted of a high level of steel local 

buckling and severe concrete cracking and crushing at the base of the column. However, even 

with a level of lower damage, CCFTs started the torsional loading tests with some concrete 

cracks and a low level of steel local buckling as well at the base. It is expected than this initial 

damage, higher in RCFTs, results in a significant reduction of the experimental torsional 

stiffness (GJexp) as compared to the GJ that would be obtained in a brand new specimen.  

The torsional load case LC4, with and without axial load, was applied only in the 

Specimens 1 to 8. The incremental twisting was applied in a full cycle to the maximum twisting 
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capacity (z ≈ ±10°). In order to evaluate the effect of the axial force on the torsional strength, 

the torsional loading was applied without and with compression force on the column. For the 

cases with axial force, a gravity load of about 20% of the squashing load (P≈0.2Po) was selected. 

Both torsional moment (T) and twisting angle (z) are measured at the crosshead (top of 

the column). The main parameters from the available tests data during the torsional loading case 

are summarized in Table 9.2. As reminder, the ultimate torsional capacity of these CFT 

specimens was not achieved since, in all cases, the system reached the maximum twisting 

capacity that varies between 9° to 10°; for specimen 7, the pure torsion test was stopped at 7.56° 

to avoid a failure in the connections that were not designed for torsion above 500 kip-ft. Table 

9.2 also shows the steel capacity to resist torsion (Ts) as obtained with the AISC (2010) 

Specifications with the Equation 1.1, with the torsional constant Cs obtained with Equation 1.2 

for round HSS and with Equation 1.3 for rectangular HSS.  This torsional capacity of the steel 

component was obtained with the steel parameters obtained from the coupon tests. Even though 

the ultimate torsional capacity of the composite section was not achieved, the results in Table 9.2 

indicate that the torsional strength at the maximum measured torsional deformation exceeded the 

ultimate torsional capacity of the steel component with values ranging from 1.16 to 1.56; the 

latter results suggest a participation of the concrete component to the torsional capacity of the 

composite section. Calibration of the concrete participation is discussed in the following section. 

Table 9.2. Summary of results from torsional loading 

Specimen 
Axial load Values at twisting stroke Cs (in

3
) Ts (kip-ft) Texp / Ts 

Pexp (kip) Texp (kip-ft) z (deg) Eq. 1.2 & 1.3 Eq. 1.1 ratio

1C5-18-5 0 19 9.05 5.8 16 1.20 

2C12-18-5 
0 182 

9.66 57.3 140 
1.32 

250 197 1.43 

6C12-18-12 
0 181 

10.01 57.3 140 
1.32 

380 214 1.56 

3C20-18-5 
0 439 

9.67 143.0 340 
1.30 

500 495 1.47 

7C20-1812 0 445 7.56  
*
 143.0 340 1.32 

4Rw-18-5 
0 439 

9.73 134.2 356 
1.23 

700 437 1.23 

5Rs-18-5 
0 436 

9.68 134.2 356 
1.22 

700 415 1.16 

8Rw-18-12 0 458 9.43 134.2 356 1.28 

Note: (*) Pure torsion test in Specimen 7 was stopped at 7.56° of twisting rotation. 
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The torsional moment – twisting angle (T-z) curves obtained experimentally are shown 

from Figure 9.3 to Figure 9.6. From these figures, the following observations can be noticed: 

 Note that the maximum torsion obtained in the test corresponds to the reached value at the 

instant where the system ran out of twisting capacity (about z ≈ ±10°), or when the loading 

test stopped earlier with a lower twisting angle. However, in any case the ultimate torsion 

capacity was obtained, except in the specimen 1 where the torsion – rotation history 

exhibited an unexpected response. 

 There was a minor effect on the torsional strength and stiffness due to either the change in 

concrete strength (fc’=5 ksi vs. fc’=12 ksi) and the compression load (P = 0 vs. P ≈ 0.2Po). 

 The increment of the torsional strength for CCFTs with high strength concrete (fc’ = 12 

ksi) did not exceed 9% of the strength obtained for normal strength concrete (fc’ = 5 ksi). 

Because of higher damage in the concrete inside the rectangular steel tubes, this 

increment did not exceed 5% in the RCFTs. 

 On the other hand, the increment of the torsional strength with gravity load (P ≈ 0.2Po) 

on CCFT’s varies from 8% to 18% of the strength obtained without gravity (P = 0), while 

no increment was achieved for the RCFTs. 

 In regard to the stiffness, no significant differences are noticeable for either the use of 

high or normal concrete strength or the compression load level. 

 The torsion-twisting curves (T-z) have a noticeable non-linear behavior. 

T (kip-ft)

      
 z (deg)

 
Figure 9.3. Torsional loading vs. twisting angle (T-z) of the Specimen 1C5-18-5 with P=0. The 

blue curve is a filtered and smoothed response of the raw data included in green. 
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 T (kip-ft) T (kip-ft) 

 
 z (deg) z (deg) 

 (a) 2C12-18-5 (b) 6C12-18-12 

Figure 9.4. Torsional loading vs. twisting angle for the Specimens 2C12-18-6 and 6C12-18-12 
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 z (deg) z (deg) 

 (a) 3C20-18-5 (b) 7C20-18-12 (test stopped at 7.56°) 

Figure 9.5. Torsional loading vs. twisting angle for the Specimens 3C20-18-5 and 7C20-18-12 
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 T (kip-ft) T (kip-ft) 

 
 z (deg) z (deg) 

 (a) 4Rw-18-5 (b) 5Rs-18-5 

 

 T (kip-ft) T (kip-ft) 

 
 z (deg) z (deg) 

 (c) 8Rw-18-12 (d) Specimens 4, 5 and 8 

Figure 9.6. Torsional loading vs. twisting angle (T-) obtained for the Specimens 4, 5 and 8 
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9.5. Calibration of the experimental data 

The analytical solutions for circular and non circular shafts under torsion are well 

documented in several textbooks on strength of materials (i.e. Timoshenko and Gere, 1972, 

Budynas, 1999). However, as mentioned before, theoretical solutions for composite CFT 

members under torsion have not been totally covered. 

In this section, an attempt to calibrate simplified equations to calculate the torsional 

capacity and torsional rigidity of CFT cross-section with the available experimental data and 

based on the theoretical solutions are presented. In the following equations, the subscripts “s” 

and “c” will stand for the steel and the concrete components, respectively. 

The material properties needed in torsional loading are the shear modulus for the steel 

(Gs) and the concrete (Gc), and these are obtained based on the corresponding Young’s modulus 

(E) and the Poisson ratio (). Standard Poisson ratio values for the steel (s=0.3) and concrete 

(c=0.2) are assumed, while the Young’s Modulus (Es, Ec) are taken from the material tests 

previously documented. Then: 
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Concerning the geometric properties in CCFTs, the polar moment of inertia for the 

circular concrete cross-section (Jc) and the steel hollow tube (Js) of diameter (D) and thickness 

(t) can be obtained by (Young and Budynas 2001): 
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For thin circular steel tubes (or with large D/t ratios), the equation above can be 

approximated as (Young and Budynas 2001): 
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In RCFTs, the torsion constants for the rectangular concrete cross-section (Jc) and the 

steel rectangular hollow tube (Js) can be obtained in terms of the larger side (h, hc), the shorter 

side (b, bc) and the thickness (t) of the steel tube (Young and Budynas 2001): 
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9.5.1. Torsional capacity 

An accurate calibration of the ultimate torsional strength with the experimental data 

obtained in this project is challenging since, as a reminder, the maximum torsion strength 

reported for each test correspond to the torsion when the system ran out of twisting capacity. In 

addition, as shown in the previous figures, the torsion – twisting response exhibited a non-linear 

behavior that makes subjective any determination of the elastic and the ultimate torsional 

capacity. However, conservatively, the nominal maximum torsion is calibrated with the strength 

related to the maximum twisting stroke. This calibration will provide simple equations that aim 

to estimate reasonable and conservative values of the nominal twisting capacity. 

Thus, the nominal torsional capacity of the CFTs is assumed as the superposition of the 

torsion capacities of both the steel component (Ts) and the concrete component (T·Tc) as 

described by the following equation: 

 
0.6n s c y s T c cT T T F C f C      (9.11) 

where the factors Cs and Cc are the torsional constant for the steel component (see Equation 9.2 

and 9.3) and the concrete component. The critical torsional stress in the steel is taken as 60% of 

the yielding stress. 

The elastic torsional strength (Ts) for circular steel HSS tubes can be approximated as: 

 

 3
0.6

2
s y

D t D t
T F

    
  

 
 (9.12) 
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The term in parenthesis in the previous equation is a better approximation of the torsional 

constant (Cs) for the round HSS tube than that given in the AISC (2010) Specifications and 

reproduced in Equation 9.2. 

Similarly, the elastic torsional capacity (Ts) for rectangular steel HSS tubes can be 

approximated to: 

 
   30.6 2 3.86s yT F b t h t t t       (9.13) 

The term 3.86t
3
 in the previous equation takes into account the rounded chamfers at the 

corners in rectangular HSS sections. The term in brackets in the previous equation is a better 

approximation of the torsional constant (Cs) for the round HSS tube than that given in the AISC 

(2010) Specifications and reproduced in Equation 9.2. 

The two equations above are similar to that given in the AISC (2010) Specifications for 

HSS tubes (see Equation 9.1). 

For the concrete component, the torsional capacity of the circular section is given by: 
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The torsional capacity of rectangular concrete section is: 
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 (9.15) 

Calibration of the participation factor (T) for the concrete component in the torsional 

capacity of the CFT composite member can be extracted by assuming that this capacity (Tn) is 

equal (or at least very close) to the maximum experimental value (Texp) at the system twisting 

stroke (given in Table 9.2). Thus: 

 

exp 0.6 y s

T

c c

T F C

f C






 (9.16) 



425 

 Table 9.3 shows the results of the calibration as stated above. In this table, the 

participation factor of concrete in torsion (T) was obtained with the Equation 9.16, and using 

the material properties measured from the material tests reported in Chapter 3 and Appendix A. 

As seen in Table 9.3, the T factor varies in pure tension from 0.11 to 0.26 for CCFTs, and from 

0.18 to 0.33 for the RCFTs; for combined torsion and compression, this T factor varies from 

0.19 to 0.35 in CCFTs, and from 0.18 to 0.33 in RCFTs. The average values obtained for each 

case are summarized in Table 9.4; these averaged factors are used to get the expected torsional 

capacity E(Tn) of the composite CFT cross section presented in Table 9.4, which predicts the 

experimental capacity within a 10% of error. 

Table 9.3. Calibration for the torsional capacity of CFTs 

Specimen 
Pexp 

(kip) 

Texp 

(kip-ft) 
z 

(deg) 

Cs 

(in
3
) 

Cc 

(in
3
) 

 Ts 

(kip-ft) 

E(Tn) 

(kip-ft) 

E(Tn) 

/Texp 

1C5-18-5 0 19 9.05 5.6 29.5 0.24 16 18 0.95 

2C12-18-5 
0 182 

9.66 56.2 364.0 
0.26 

137 
166 0.91 

250 197 0.35 180 0.91 

6C12-18-12 
0 181 

10.01 56.2 364.0 
0.11 

137 
200 1.10 

380 214 0.19 236 1.10 

3C20-18-5 
0 439 

9.67 141.3 1463.5 
0.15 

336 
457 1.04 

500 495 0.22 513 1.04 

7C20-18-12 0 445 7.56 
*
 141.3 1463.5 0.07 

*
 336 610 1.37

 *
 

4Rw-18-5 
0 439 

9.73 134.2 507.0 
0.33 

356 
418 0.95 

700 437 0.33 418 0.96 

5Rs-18-5 
0 436 

9.68 134.2 507.0 
0.24 

356 
439 1.01 

700 415 0.18 439 1.06 

8Rw-18-12 0 458 9.43 134.2 679.2 0.18 356 496 1.08 

Note: (*) Pure torsion test in Specimen 7 was stopped at 7.56° of twisting rotation 

 

Table 9.4. Effectiveness factor (T) of the concrete in the torsion capacity 

Torsion case CCFTs RCFTs 

Pure torsion 0.17

 

0.25

 

Combined Torsion and Compression 0.25 0.25

 

 

 Even though a limited number of data is presented, these results indicate the following 

tendencies: 
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 The axial load has a higher impact in CCFTs than in RCFTs. 

 The participation of the concrete on the torsion capacity of the composite section is 

higher in RCFTs than in CCFTs. This is attributed to a higher interlock between the 

concrete and the steel shape that is developed in RCFTs.  

 In addition, the participation of the concrete on the torsion capacity of the composite 

section is lower with higher strength concrete. 

 

 

 

 

 

9.5.2. Torsional rigidity 

The definition of torsional rigidity or elastic torsional stiffness (GJ) can also be found in 

any strength of materials textbook (i.e. Timoshenko and Gere, 1972, Budynas, 1999). In general, 

this stiffness can be calculated as:  

 
z

T L
GJ




  (9.17) 

where L is the total column length between supports, T is the torsional moment for the fixed-free 

boundary conditions typically used, and z is the total twisting angle (in radians) between the 

supports, varying from zero at the fixed base to a maximum value at the top. 

The previous equation can be rewritten as below in order to get the torsional rigidity from 

the experimental torsion – twisting response. 

 

 2 1

2 1

exp

z z z

T T LT L
GJ

  

  
 

 
 (9.18) 

The latter expression is related to the slope of the torsion – twisting (T-z) curve. 

However, as shown in Figure 9.3 to Figure 9.6, the torsion-twisting response has a noticeable 

non-linear behavior. The experimental secant stiffness is highly dependent on the definition of 
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the ultimate point. In addition, the experimental tangent stiffness (calculated with Equation 9.18) 

also depends on the interval where the tangent is evaluated. 

 

This behavior is clearly illustrated in Figure 9.7, which shows the progression of the 

tangent stiffness (GJexp) obtained with Equation 9.18 from the experimental torsion-twisting 

curve (T-z) for the specimen 7C20-18-12 in pure torsion (P=0). This figure shows nominal 

values of the torsional rigidities obtained for both the steel tube (GsJs) and the concrete core 

(GcJc) using Equations 9.4 to 9.7. 

 

As for the torsional capacity, the torsional rigidity data is calibrated assuming the full 

stiffness of the steel component, and partial stiffness of the concrete component. This is 

reasonable due to the fact that the concrete loses stiffness once this component develops 

cracking. Thus, the contribution of the concrete to the torsional rigidity of the composite element 

can be obtained from the experimental rigidity of the CFTs using Equation 9.18, and the 

expected rigidities of the steel and the concrete components using Equations 9.4 to 9.7. The latter 

can be expressed as: 

 

 

eff s s

T

c c

GJ G J

G J



  (9.19) 

 

The concrete participation factor to the CFT rigidity computed with Equation 9.19 is also 

shown in Figure 9.7. This figure shows the progression of the tangent rigidity, which starts with 

the full contribution of the concrete (Figure 9.7.a), but later reduces as this cracks (Figure 9.7.b 

and Figure 9.7.c), until eventually this component vanishes completely (Figure 9.7.d) at about 

30% of maximum torsion achieved. Beyond this point, the tangent torsional rigidity is even 

lower than the steel rigidity and there is no contribution of the concrete. 

 T (kip-ft) T (kip-ft) 
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(a) z (deg) z (deg) (b) 

 

 T (kip-ft) T (kip-ft) 

 
(c) z (deg) z (deg) (d) 

 

Figure 9.7. Change of the tangent torsional stiffness (GJexp) in Specimen 7 (P=0 kip) 
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Experimental determination of the elastic torsional stiffness in the earlier range of the 

loading path may include some inaccuracies due to the high noise content when both torsion and 

twisting are being measured at small values. The elastic and a tangent stiffness can accurately be 

obtained in the unloading path with Equation 9.18, and earlier in the unloading branch to avoid 

the Bauschinger effect. Since the T-z is a non-linear curve, the value of the tangent stiffness 

depends on where this is evaluated. What is interesting in the experimental determination of the 

torsional stiffness is the evaluation of the relative contribution of the concrete and the steel to this 

parameter. Due to a higher strength and the ideal position in the cross-section, the steel 

component is expected to be the main source of torsional stiffness. Thus, the effective elastic 

torsional stiffness (GJeff) of the composite CFT cross-section can be obtained based on the 

superposition of the elastic steel stiffness and the concrete stiffness (Equation 9.19). The 

reduction factor t accounts for the initial cracking state in the concrete. 

 

Experimental determination of the effectiveness factor for the concrete in torsion (t) can 

be obtained by equating the experimental GJexp (Equation 9.2) and the effective GJeff (Equation 

9.3) torsional rigidities. The value for this t factor depends if the elastic, a secant, or a tangent 

torsional stiffness is used in the calculation. Figure 9.8 to Figure 9.13 show the T-z curves and 

the calculated experimental elastic and tangent torsional stiffness, as well as the corresponding 

effectiveness factor of the concrete torsion (t). All these values are also summarized in Table 

9.5. As seen on this table, the effectiveness factor of the concrete in torsion (t) it is related to the 

steel ratio (s=As/A), so the higher s the higher t. In addition, t depends on the cross-section 

shape, with values for RCFTs being about one third of the factor for CCFTs. Finally, the ratio of 

tangent-to-elastic stiffness obtained from the tests is about one half. The tangent value is closer 

to that we can expect under cyclic load reversals (i.e. earthquake), while the elastic value is more 

appropriate for use under sustained loads with few or none cycles or wind loads. The equations 

in Table 9.6 are proposed to estimate the t factor for different conditions. 
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Table 9.5. Experimental torsional stiffness 

Specimen Torsional GJexp GsJs GcJc 
t (#-SD-L-fc’) Stiffness (kip) (kip-ft) (deg) 

2-C12-18-5 
Non-cyclic 5911136 

4004254 3725700 
0.5118 

Cyclic 5061556 0.2838 

2-C12-18-5 
Non-cyclic 6016097 

4004254 3725700 
0.5400 

Cyclic 5057319 0.2826 

6-C12-18-12 
Non-cyclic 7020025 

4004254 5653750 
0.5334 

Cyclic 5182661 0.2084 

6-C12-18-12 
Non-cyclic 6990648 

4004254 5653750 
0.5282 

Cyclic 5530714 0.2700 

3-C20-18-5 
Non-cyclic 26520067 

15767146 23823929 
0.4513 

Cyclic 20299414 0.1902 

3-C20-18-5 
Non-cyclic 27429138 

15767146 23823929 
0.4895 

Cyclic 22441338 0.2801 

4-Rw-18-5 
Non-cyclic 17430909 

11003678 31370173 
0.2049 

Cyclic 14478774 0.1108 

4-Rw-18-5 
Non-cyclic 17100976 

11003678 31370173 
0.1944 

Cyclic 16084750 0.1620 

5-Rs-18-5 
Non-cyclic 16175255 

11003678 31370173 
0.1649 

Cyclic 14174017 0.1011 

5-Rs-18-5 
Non-cyclic 17334775 

11003678 31370173 
0.2018 

Cyclic 15574941 0.1457 

8-Rw-18-12 
Non-cyclic 16879515 

11003678 47604237 
0.1234 

Cyclic 14274249 0.0687 

 

 

Table 9.6. Equations to estimate the effectiveness factor of the concrete in torsional stiffness  

Torsional 

Stiffness 

Effectiveness factor of the concrete in torsional stiffness  

CCFTs RCFTs  

Non-cyclic 

loads 
2 0.4 1s

t

A

A


  
    

  
 

1 1
2 0.4

3 3

s
t

A

A


  
    

  
 

(9.20)

 Cyclic 
1 1

2 0.4
2 2

s
t

A

A


  
    

  
 

1 1
2 0.4

6 6

s
t

A

A
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 T (kip-ft) T (kip-ft) 

 
 z (deg) z (deg) 

 (a) 2C12-18-5, P=0 kip (b) 2C12-18-5, P= 250 kip 

 

 T (kip-ft) T (kip-ft) 

 
 z (deg) z (deg) 

 (c) 6C12-18-12, P=0 kip (d) 6C12-18-12, P= 380 kip 

 

Figure 9.8. Elastic torsional stiffness for the Specimens 2C12-18-5 and 6C12-18-12 
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 T (kip-ft) T (kip-ft) 

 
 z (deg) z (deg) 

 (a) 2C12-18-5, P=0 kip (b) 2C12-18-5, P= 250 kip 

 

 T (kip-ft) T (kip-ft) 

 
 z (deg) z (deg) 

 (c) 6C12-18-12, P=0 kip (d) 6C12-18-12, P= 380 kip 

 

Figure 9.9. Tangent torsional stiffness for the Specimens 2C12-18-5 and 6C12-18-12 
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 T (kip-ft) T (kip-ft) 

 
 z (deg) z (deg) 

 (a) P=0 kip (b) P= 500 kip 

Figure 9.10. Elastic torsional stiffness for the Specimen 3C20-18-5 
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 (a) P=0 kip (b) P= 500 kip 

Figure 9.11. Tangent torsional stiffness for the Specimen 3C20-18-5 
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 T (kip-ft) T (kip-ft) 

 
 z (deg) z (deg) 

 (a) P=0 kip (b) P=700 kip 

Figure 9.12. Elastic torsional stiffness obtained for the Specimen 4Rw-18-5 
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 (a) P=0 kip (b) P=700 kip 

Figure 9.13. Tangent torsional stiffness obtained for the Specimen 4Rw-18-5 
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 T (kip-ft) T (kip-ft) 

 
 z (deg) z (deg) 

 (a) P=0 kip (b) P=700 kip 

Figure 9.14. Elastic torsional stiffness obtained for the Specimen 5Rs-18-5 
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 (a) P=0 kip (b) P=700 kip 

Figure 9.15. Tangent torsional stiffness obtained for the Specimen 5Rs-18-5 
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 T (kip-ft) T (kip-ft) 

 
 z (deg) z (deg) 

 (a) Elastic (b) Tangent 

Figure 9.16. Torsional stiffness obtained for the Specimen 8Rw-18-12 (P=0) 
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9.6. Conclusions 

As pointed out in this chapter, the torsional strength and stiffness capacity have been 

explored in a few studies of CFT members. The amount of experimental data for torsional 

loading is still limited, and most of the available data is related with circular tubes, short 

members, and small cross-sections. In addition, design codes developed for composite member 

do not provide enough guidance to calculate neither the torsional strength nor the rigidity of 

composite members. However, these capacities are well documented in steel or reinforced 

concrete elements. 

This experimental project aims to provide more data of CFT under torsional loading. The 

specimens used in this project filled gaps with the current available data since full-scale CCFT 

and RCFT specimens (with larger cross-sections, and lengthy and slender members) were tested 

under pure torsion and under torsion with combined axial load. 

The experimental torsional response obtained from the tests of the CFT specimens points 

out the following behavior. 

 The results indicate a partial contribution of the concrete to both the torsional 

capacity and the torsional rigidity. Both the strength and the stiffness contributions 

were calibrated with the test data and design equations developed for torsion. 

 The strength response under torsion and combined axial load was slightly higher than 

the strength obtained in pure torsion only in CCFTs; due to a high damage 

accumulation in RCFTs, the torsion capacity with and without compression was very 

similar to the pure torsion capacity. 

 As a result of the rectangular shape, the concrete contribution in torsional capacity is 

slightly higher in RCFTs attributed to the interlock interaction between the concrete 

surfaces and the steel surfaces in contact. However, the torsional stiffness is slightly 

higher in CCFTs due to a better performance in circular cross-section shapes; and an 

earlier local buckling damage in RCFTs, which is less severe in CCFTs. 

Assuming full contribution of the steel component and partial contribution of the concrete 

component, design equations are proposed to estimate both the torsional strength capacity and 

the torsional rigidity for non-cyclic and cyclic loading. These design equations predict 

reasonable values of the torsion strength and torsion stiffness. 
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CHAPTER 10  

PROPOSE METHODOLOGY FOR THE STRENGTH CALCULATION 

10.1. Introduction 

The design methodology for the determination of the axial and flexural strength of CFT 

members proposed in this section is based on: 

(1) the assumption of a plastic stress-distribution for the cross-section strength, 

(2) a reasonable reduction on the capacity due to stability effects for CFT slender 

members, and 

(3) empirical calibration equations developed in previous chapters 

Some equations and parameters in this methodology were adopted from both the current 

AISC (2010) Specifications and the ACI-318 Code (2008), but with some adjustments based on 

the results of this research and the latest knowledge on CFT member behavior. These 

modifications intend to both provide a smooth transition from all-concrete to all-steel sections 

(and vice versa) and increase the accuracy of the calculated axial and flexural capacity of CFT 

cross-sections and members as compared to current codes. 

This section summarizes a methodology to calculate the: 

 axial strength of CFT cross-sections (based in the plastic stress method), 

 axial and flexural interaction for CFT cross-sections, 

 axial strength of CFT columns, 

 CFTs incorporating a compact steel section, and 

 CFTs incorporating non-compact or slender steel plates,  

 axial and flexural interaction for CFT beam-columns 

 CFTs incorporating a compact steel section, and 

 CFTs incorporating non-compact or slender steel plates. 

Recommendations to minimize the effects of wet concrete in construction of RCFTs are 

included in Chapter 4. In addition, equations for the calculation of the torsional strength and the 

torsional stiffness of CFT cross-sections are included in Chapter 9. No additional details about 

these topics are included in this Chapter. 
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10.2. Material and geometric properties 

The methodology for the determination of the cross-section strength is based on the 

following assumptions: 

 For simplicity, the plastic stress distribution method was adopted in the derivations of the 

cross-section strength. From this computed capacity, the beam-column strength is estimated. 

If desired or possible, the cross-section strength obtained in this simplified fashion can be 

replaced by the more exact capacity obtained with the strain compatibility method. 

 The equations developed with the plastic stress method do not include the longitudinal 

reinforcing bars. However, the equations can be easily modified to include rebar in the cross-

section.  The contribution of the rebar to the strength depends on the amount and distribution 

of this reinforcement in the concrete section. 

 The steel cross-section satisfies the requirements for compact sections, and therefore, they 

can develop a fully plastic stress state as assumed with the plastic stress method.  Thus the 

plastic stress in the steel is assumed as Fy for both compression and tension. Since a fully 

plastic distribution in slender cross-sections cannot be developed due an earlier failure by 

local buckling, the strength for this case should be conservatively obtained based on an 

elastic stress distribution. 

 The equations developed for CFT cross-sections based on the plastic stress method neglect 

the low contribution of the concrete in tension, and adopt an equivalent block in the 

compression zone with a plastic stress (Fc) given by the Equation 10.1 for RCFTs and by the 

Equation 10.2 for CCFTs. 

 0.85 'c cF f  (10.1) 

 
1.558

0.85 0.85 '
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c cc c
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F t
F f f

D

 
   

 
 (10.2) 

The coefficients 0.85 in these equations are adopted from section 10.2.7.1 in ACI-318 

(2008). The second term in Equation 10.2 was proposed by Sakino et al. (2004) in order to 

account for the confinement effects provided by the circular steel component. This term 

increases the concrete compressive stress with higher values of the yield stress (Fy) and thickness 

(t) of the steel component, and with lower values of the concrete core diameter (Dc=D-2t). 
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Alternatively, the peak stress (fcc) of CCFTs can be obtained as proposed by Chang and 

Mander (1994) as: 

 17.94
0.85 0.85 ' 1.254 2.254 1 2
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 (10.3) 

where the confinement pressure (fl) in CCFTs proposed by Denavit and Hajjar (2010) is: 
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If the strain compatibility method is used, stress-strain curves from analytical or 

experimental curves can be adopted. However, peak stresses on the concrete in compression of 

about fc’ for RCFTs and fcc for CCFTs as illustrated in Figure 2.13 are recommended. 

Confinement effects can be included in the stress-strain curves for plain concrete as 

recommended by Sakino et al. (2004), Tort and Hajjar (2007), Denavit and Hajjar (2010). 

RCFTs

CCFTs

fc’

fcc’

co cc




 

Figure 10.1. Stress-strain ( curves that are typically applicable to CFTs 
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The subscripts “s” and “c” in this section stand for the steel and the concrete component. 

The subscripts “o” refers to the pure strength capacities of the composite cross-section, and the 

subscripts “b” is related to the capacity at the balance point or at the maximum moment. 

The notation used for geometric dimensions is shown in Figure 10.2, and equations for 

the calculation of geometric properties (area, plastic section modulus, and moment of inertia) of 

the concrete and the steel components are summarized in Table 10.1. For HSS cross-sections, the 

geometric properties of the steel tube can also be taken from the AISC Manual; small differences 

are possible for the moment of inertia (Is) and the plastic modulus (Zs) since the equations in 

Table 10.1 do not consider the radius of the fillets. 
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Figure 10.2. Notation in geometric dimensions for RCFTs and CCFTs 

Table 10.1. Geometric properties for CFTs 
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10.3. Axial strength of CFT cross-sections based on the plastic stress method 

The axial capacity of the composite cross-section (Po) is the superposition of the axial 

strength of each component. For CFT cross-sections consisting of only a steel tube and concrete 

infill, the axial capacity is then: 

 o s cP P P   (10.5) 

Since the tensile strength of the concrete is ignored, the tensile strength of the composite 

CFT member (T0) is the contribution of the steel component only. The negative sign in Equation 

10.5 indicates tension, and this is related to the tensile strength of CFTs without reinforcement. 

 o sT P   (10.6) 

Based on the plastic stress method, as illustrated in Figure 10.3, each strength component 

is given by: 

 s s yP A F  (10.7) 
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Figure 10.3. Plastic stress distribution of CFTs in pure compression 
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10.4. Axial and flexural strength of CFT cross-sections based on the plastic stress method 

Figure 10.4 illustrates the plastic stress distribution in the steel and the concrete in 

compression for a given position of the PNA (y) with respect to the centroidal axis of the cross-

section. This diagram of stresses is valid for any position of the PNA within the concrete section, 

or between –hc/2<y<hc/2 for RCFTs and between -Dc/2<y<Dc/2 for CCFTs. 
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Figure 10.4. Plastic stress distribution for a given position of the PNA 

 

Based on the plastic stress method, different points of the P-M interaction diagrams can 

be obtained for the cross-section by assuming the value of “y” within the concrete section. A 

more general formulation, in the form of continuous functions [Pcs(y), Mcs(y)] that depend on the 

PNA position (y), is derived next. Figure 10.5 shows with the continuous line the interval where 

the continuous functions [Pcs(y), Mcs(y)] are valid. In this figure, different positions of the PNA 

position are schematically illustrated for a CCFT cross-section highlighting in gray the zone in 

compression in both the steel and concrete portions. As shown in this figure, the limits of the 

continuous functions are defined for the cases when the PNA is at both ends of concrete section. 

However, the P-M diagram of the cross-section can be completed by calculating the pure 

compression (Po=Ps+Pc) and pure tension (To= - Ps) points. The transition at the end of the 

continuous functions and these pure axial capacities, illustrated as the discontinuous lines in 

Figure 10.5, can be assumed to be linear for purposes of design. 
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Figure 10.5. P-M interaction diagram for a CFT cross-section based on the plastic stress method 

 

As seen from Figure 10.5, the P-M interaction diagram for the cross-section is symmetric 

about the case when the PNA is located at the centroidal axis (or the balance point). At this PNA 

position, the flexural capacity (Mb) is maximum because of the superposition of the pure bending 

strength of the steel component (ZsFy) and the bending of half cross-section of the concrete 

component (ZcFc/2).  Since the tensile and compressive strength of the steel cancel each other in 

this PNA position, the corresponding axial strength is equal to half the strength of the concrete 

component (Pb=Pc/2). Due to the symmetry on the P-M cross-section, the moment Mo is the 

same at P=0 and P=Pc. (Roik and Bergmann 1992) (Roberto T Leon and Jerome F Hajjar 2008) 

documented that simplifications of strength equations are possible through stress superposition 

of different cases. They illustrated that, after some simplifications, the position of the PNA for 

the pure bending strength case (P=0, M=Mo, at yo) with a negative value is coupled to the pure 

flexural strength and an axial strength equal to only the strength of the concrete component 

(P=Pc, M=Mo, at yo). 
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The continuous function Pcs(y) that defines the axial compressive strength in terms of the 

position of the PNA (y) varying within the concrete cross-section in RCFTs is given by: 

 
  4

2 2 2
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cs c c y

h h h
P y y b F ytF y

 
       
 

 (10.9) 

 

The continuous function Pcs(y) for the axial compressive strength of CCFTs in terms of 

the position of the PNA is given by: 

      ( ) ( ) sin ( ) 0 ( ) 2cs s cP y y K y y K y             (10.10) 

where the angle (y) that defines the position of the PNA varying within the concrete cross-

section is: 
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and the concrete parameter Kc and the steel parameter Ks are: 
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The continuous function Mcs(y) for the flexural capacity for CFTs, as a function of the 

PNA position within the concrete cross-section, is defined as the superposition of the steel and 

concrete flexural capacities. 

      
1

2
cs s y c cM y Z y F Z y F   (10.14) 

 

The proposed continuous functions for the plastic section modulus of the steel Zs(y) and 

the concrete Zc(y) components also depend on the position of the PNA within the concrete cross-

section, as well as the corresponding plastic modulus about the centroidal axis that are tabulated 
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in Table 10.1. Since the tension strength is neglected in the concrete component, only half of the 

plastic cross-section is taken into account in the equations for the concrete plastic modulus. Thus, 

the continuous equations for the plastic section modulus in RCFTs are: 

 
  2

c c cZ y Z b y 
 (10.15) 
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The corresponding plastic section modulus equations for CCFTs are: 
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The proposed continuous functions passes over the key points mentioned before. At the 

balance point, the PNA is located at y=0, and then the corresponding strength from the 

continuous functions reduces to: 
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 (10.19) 
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The positions of the PNA at any point within the concrete cross-section at a desired axial 

or flexural capacity can be obtained from the continuous functions by any numerical method (i.e. 

bisection). Alternatively, for RCFTs, the position of the PNA (yi) at a given axial load (Pi) can be 

obtained as: 
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The PNA position in RCFTs with pure bending strength case (Pi= 0) can be calculated as: 
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The angle (o) related to the position of the PNA for the pure bending strength in CCFTs 

can be estimated with the equation below adapted from the AISC (2005) Specifications: 
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Alternatively, the following approximate equations can also be used to estimate the angle 

related to the position of the PNA for the pure bending strength case. 
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The PNA position for at the pure bending strength (yo) can be calculated from o as: 

 cos
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 (10.26) 

The exact value for o, however, is that which satisfies equilibrium of axial forces within 

the cross-section. In general, yo of the PNA and the pure bending strength Mo=Mcs(yo) can be 

obtained by solving for Pcs(yo)=0. 

 ( ) ( ) 0o cs o cs oM M y P y   (10.27) 

As a check, the same flexural strength (Mo) and an axial strength equal to the strength of 

the concrete component (Pc) should be obtained with the negative value “-yo”. 

 ( ) & ( )o cs o cs o cM M y P y P     (10.28) 

 

The cross-section capacity can be obtained with the continuous functions with a set of 

points (from 1 to N) within the concrete zone, complemented with the pure compression and 

tension capacities (0 and N+1). Thus, the P-M interaction diagram can be constructed with the 

N+2 computed set of points. As an example, the polygonal interaction diagram with the design 

equation in AISC (2005) can be obtained with the continuous functions with a set of 5 points; 

this set of points arranged in vector format is shown below. 
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The polygonal interaction diagram will turn into a smoother P-M interaction curve if 

more points are included and calculated with the continuous functions, mainly in the bulge zone 

where the PNA positions varies within ±yo and the corresponding axial capacities varies 

proportionally between 0 and Pc. A second example of a smoother P-M interaction diagram with 

a set of 13 total points arranged in vector format is shown below. 
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Figure 10.6 illustrates the interaction diagrams assembled from the sets of P-M points of 

the two previous examples. As a reminder, the subscripts A, B, C, and D refer to the anchor 

points in the AISC interaction diagram. The subscripts c and s, as indicated in this chapter, refer 

to the concrete and steel component, respectively, and the subscript b refers to the balance point. 

Po and To are the pure compression and tension capacities of the composite cross-section, 

respectively, and yo is the PNA position at the pure bending case (P=0, M=Mo). 
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As shown above, the equations P(y) and M(y) for the axial and flexural capacities, 

respectively, are functions of the PNA position defined by the variable y. The interaction 

diagram is then populated by the pairs of axial strength (Pi) and bending moments (Mcsi) 

calculated for the i
th

 position yi, points that were represented in vectorial form. 
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Figure 10.6. Interaction diagram from a set of P-M points for the cross-section capacity 
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10.5. Axial strength of CFT columns 

The critical load (Pn) reduced by the stability effects can be obtained with the current 

AISC (2010) Specifications given by: 

 0.658     if    0.44
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 (10.29) 

 

Equation 10.42 was proposed by Tide (1985) based on the empirical curve proposed by 

Bjorhovde (1973), and has been adopted by the AISC Specifications for steel member and 

composite members. The reduction factor 0.877 to the Euler load (Pe) in the elastic buckling 

interval accounts for initial imperfection, which is not considered by the Euler formulation. Both 

parts of this equation accounts for a nominal initial imperfection of KL/1500, where KL is the 

effective buckling length. 

 

The slenderness parameter  for composite members is given by: 
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The squash load (Po) is defined by the Equation 4. The Euler load, as a function of the 

effective flexural stiffness (EIeff) and the effective length (KL) is: 
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  (10.31) 

 

The effective flexural stiffness (EIeff) of a composite member for the calculation of the 

Euler load is the superposition of the steel rigidity (EsIs) and the concrete rigidity of the cracked 

section (EcIcr=EcIc). In Chapter 7 this equation was calibrated for pure compression loading as: 

 0.80eff s s c cEI E I E I   (10.32) 
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10.6. Axial and flexural strength of CFT beam-columns 

The approach proposed for getting the interaction diagram for beam columns consists in 

obtaining, for different values of axial forces (P), the available net moment (Mbc) through the 

reduction of the cross-sectional plastic moment (Mcs) by the total unusable moment (Mtum). The 

total unusable moment calculated in this approach intends to include those moments consumed 

by a nominal initial imperfection (Mimp) and the unusable flexural capacity moments between the 

stable and plastic capacities (Mufc). All these parameters are indicated schematically in Figure 

10.7. 
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Figure 10.7. Schematic representation of the P-M components in slender CFT members 
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Figure 10.7 illustrates schematically the axial-moment capacity available in the cross-

section (P-Mcs), which can be calculated based on either the plastic stress method (as described 

in a previous section with the continuous functions) or the strain compatibility method. For a 

straight and plumb pin-ended column, an increase in the effective length (KL) will result in the 

inability to reach the full plastification of the cross-section, as the P-M capacity is reduced by 

stability. The resultant beam column strength is also illustrated in Figure 10.7 (curve P-Mtotal). 

The area between the P-M cross-section strength and the P-M beam-column strength defines an 

unusable capacity in the member due to instability. 

Additionally, Figure 10.7 shows the axial-moment path (P-Mimp) of a column in pure 

compression with given effective length (KL) and a nominal imperfection (o). This load path 

delimits the maximum stable axial load (Pn) and the moments consumed as a consequence of the 

imperfection (Mimp). The slender member cannot exceed axial loads above Pn, and thus the P-M 

capacity above this limit is gravitationally unstable. In addition, the member spends part of the 

available capacity due to the imperfections that is no longer available for the member. This 

consumed capacity by imperfection can be estimated by multiplying the first order moment (Po) 

by the amplification factor due to second order effects. 

 1
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i e
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 (10.33) 

Besides Mimp, another unavailable capacity for the beam-column is the one previously 

defined as the “unusable flexural capacity (Mufc), which is a partial loss of the plastic capacity 

due to the slenderness effects. Thus, the usable or net available capacity (Mbc) of a slender beam-

column is then the residual area after this is reduced, parting from the plastic capacity, by the 

areas defined as: (1) gravitationally unstable, (2) unusable flexural capacity, and (3) consumed 

by imperfection; this usable or net capacity area is illustrated in Figure 10.7 in yellow, and is 

represented by the following equation: 

 0bci csi ufci impi i nM M M M P P       (10.34) 

where the subscript “i” refers to the i
th

 vector position for which the same axial strength (Pi) and 

the flexural capacities (Mbci , Mcsi , Mufci , Mimpi) are used. The moment Mcsi is the plastic flexural 

capacity of the cross-section related to i
th

 axial capacity (Pi) obtained with either the plastic stress 
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method or the strain compatibility method. Mimpi is the flexural capacity consumed by the 

imperfection when the i
th

 axial capacity (Pi) id applied; this used up capacity can be estimated 

with the Equation 10.33. Mufci is the unused flexural capacity due to the slenderness related to i
th

 

axial capacity (Pi). 

The information in Figure 10.7 is again illustrated with less detail in Figure 10.8.a, where 

the net capacity lays in the middle part (its natural form). These areas components can be 

rearranged for convenience at different positions. As illustrated in Figure 10.8.b, both the 

imperfection and the unusable reductive capacities are arranged in the left side, and then grouped 

into the “total unusable capacity” as shown in Figure 10.8.c. Both flexural components of the 

total unusable capacity (Mimpi and Mufci) vary proportionally with the axial capacity (Pi), and their 

summation goes from the origin point (P=0, M=0) to the maximum point (P=Pn, M=Mn). The 

moment Mn is the flexural strength of the cross-section coupled to the critical load (Pn). 

Assuming that both P-Mtuc path and P-Mimp path are proportional to each other, the total unstable 

capacity can be then estimated amplifying the imperfection moment (Mimpi, Equation 10.34) by 

the ratio Mn / Mimp. After some simplifications, the initial imperfection (o) is cancelled and the 

equation is reduced to: 
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and thus, the net beam-column flexural capacity for the given axial load is given by: 
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As illustrated in Figure 10.8.d, the final usable or net moment capacity for the i
th

 axial 

capacity (Pi) between 0 and Pn is equal to. 
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 (10.37) 

This equation is consistent with its limits since the net moment is equal to zero at the 

nominal critical load, and equal to Mo at the pure bending loading. 
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Figure 10.8. Schematic representation of the capacity components in different arrangements 
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10.7. Axial and flexural strength of CFT cross-sections with non-compact steel tubes 

The previous section derived equations to calculate the axial and flexural capacity of CFT 

cross-sections are based on the full plastic stress distribution approach. This hypothesis is strictly 

valid only if the steel tube is a compact section. 

The present section aims to derive equations for the calculation of the axial and flexural 

strength of CFT cross-sections with non-compact or slender steel tubes. 

 

10.7.1. Wall slenderness limits for steel sections in CFTs 

As discussed in Chapter 8, empirical equations for the local buckling initiation were 

proposed based on the empirical data obtained in these tests. These equations are given by: 
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(10.38) 

The limits for slender filled tubes (r) are obtained from the empirical calibration 

equations (Equation 10.30) when the local buckling strain reaches yielding (lb=y or lb/y=1). 

These limits are given by: 
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(10.39) 

Limits for non-compact filled tubes (p) from the empirical calibration equations 

associated to local buckling strains are propose as four times yielding in circular filled tubes 

(lb/y=4) and two times yielding in rectangular filled tubes (lb/y=2); the higher limit in CCFTs 

is justified by the higher performance of the circular tubes. These limits are: 
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(10.40) 

The latter propose ranges aims in getting reliable and consistent limits with the current 

AISC Specifications. The limits p and r stated above are very close to the limits defined in 

Chapter I of the AISC (2010) for CFT cross-sections. 

The previous equations and limits take into account the local buckling in the steel tube 

given that this is restrained by the concrete in the inward direction, but free to buckle locally in 

the outward direction. 

 

 

 

10.7.2. Interaction diagram for CFTs with slender section 

As commented before, local buckling is a premature failure of the element caused by the 

buckling of one of the plate components that integrates the cross-section. Slender plates are 

susceptible to buckle locally with elastic compressive stresses, and so the upper bound of a 

slender plate (or lower bound in a non-slender plate) is when the compressive critical stress 

equals the yield stress and the wall-slenderness ratio is equal to r. 

Figure 10.9 illustrates the distribution of the expected stresses in CFT cross-sections with 

a slender steel cross-section that is susceptible to buckle locally. The stresses are assumed 

elastic-perfectly-plastic in the steel in tension, elastic in the steel in compression with a 

maximum value equal to the yielding stress; the concrete contribution in tension is neglected 

and, for simplicity, the stresses in compression are assumed linear elastic. In this figure, the 

distribution of stresses is shown for different positions (y) of the elastic neutral axis (ENA) with 

respect to the centroidal axis of the cross-section, which is applicable when the ENA position is 

within the concrete section. 
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The corresponding compressive elastic stress in the concrete (Fc) at the time local 

buckling occurs depends on the corresponding strains () in the cross-section. In the current 

AISC (2010) Specifications, this compressive stresses in the concrete has been adopted linear 

elastic with a maximum stress assumed as a constant and equal to 0.70fc’, where the concrete 

compressive strength is limited between 3 and 10 ksi. This 0.70fc’ of max stress in the concrete 

(at the steel compressive yielding) is conservative under certain conditions, but it may become 

unconservative when the CFT section is composed by high strength concrete or low strength 

steel. To evaluate the latter, the maximum compressive stress when the steel yields can be 

obtained based on the geometric and material properties and the available models. Adopting the 

model proposed by Hognestad (Park and Paulay 1975) for plain concrete as: 
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 (10.41) 

Since the strain at the concrete when the steel yields is equal to              , and 

assuming that the strain at the crushing is        
    , the equation  above can be rewritten as: 
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 (10.42) 

where D is the total depth of the steel cross-section. 

The term in parenthesis in the equation above tends to decrease, even below the 0.7 

value, for high strength concrete and lower steel yielding strains. On the other hand, with low 

strength concrete and high strength steel, this term may be higher, and so this term is limited to 

0.85 as in the compact cross-sections. 

Equation 10.42 is adopted to calculate the maximum compressive stress (Fc) when the 

steel yield. This equation takes into account the geometric and material properties in the CFT 

cross-section and the strain distribution when the steel yields as illustrated in Figure 10.9. 

For CCFT cross-sections with non-compact steel tubes, no additional strength is 

considered in the concrete due to confinement effects. This hypothesis assumes that non-compact 

steel tubes may provide a very low confinement to the concrete infill, and so Equation 10.42 is 

valid for both RCFTs and CCFTs. 
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(a) Distribution of elastic stresses between “t/2<y≤hc/2” in RCFTs or “t/2<y≤Dc/2” in CCFTs 
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(b) Distribution of elastic stresses at y=0 
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(c) Distribution of elastic stresses between “-hc/2≤y≤0” in RCFTs or “-Dc/2≤y≤0” in CCFTs 

 

Figure 10.9. Stress distribution in a CFT cross-section composed by a slender tube ( = r), 

assuming that local buckling achieves when steel yields in compression 
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Based on the stress distribution shown in Figure 10.9, the interaction diagram P-M can be 

obtained by varying the position of the neutral axis (ENA) under these assumptions. As 

illustrated in Figure 10.10, the resultant interaction diagram can be accurately delineated by the 

union of four anchor points. These points can be obtained with the equations below for RCFTs. 

For CCFTs, the anchor points can be approximately obtained by substituting the steel dimensions 

b and h for the diameter D, and the concrete dimensions bc and hc for Dc. In these calculations, 

the maximum stress in the steel is assumed as: Fs = 0.7Fy (assuming a residual stress of 0.3Fy). 

The maximum stress in concrete Fc can be calculated by Eq. 10.42. Thus, the anchor points are 

given by the following cases: 

(1) Pure compression: For the pure compression case (My=0), the axial capacity for both RCFTs 

and CCFTs is: 

 oe s s c ceP A F A F   (10.43) 

(2) Maximum moment capacity: The maximum moment capacity is obtained when the neutral 

axis is located at the centroidal axis (y=0) as shown in Figure 10.9.b. The axial and flexural 

capacities at this point for both RCFTs and CCFTs are given by: 
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(3) Pure bending (Py=0): The pure flexure capacity can be estimated with the expression below: 
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The position of the ENA at the pure bending point (yo) can be approximated as: 

 
 2 8

c ce
oe

s c ce

A F
y

tF b F



 (10.47) 

 (4) Pure tension: For the pure tension case (My=0), the axial capacity is: 

 te s sP A F   (10.48) 

The negative sign is used for tensile forces as convention 
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The interaction P-M strength of a CFT cross-section with a slender steel tube ( = r) can 

be approximated by lines passing over the previous anchor points as shown by the dashed line in 

Figure 10.10. In this figure, the P-M interaction diagram for compact sections ( > p) is 

included as reference. 

0 0.2 0.4 0.6 0.8 1 1.2
0.5

0.25

0

0.25

0.5

0.75

1

M/Mo

P
/P

o

0 0.2 0.4 0.6 0.8 1 1.2
0.5

0.25

0

0.25

0.5

0.75

1

M/Mo

P
/P

o

compact section ( ≤  p)

slender   section
continuous 

functions

anchor 

points

P
 / 

P
o

M / Mo

(=
r  , F

s=F
y)(=

r  , F
s=0.7F

y)

(1)

(2)

(3)

(4)

 

Figure 10.10. Schematic P-M interaction diagram for a CFT with slender steel cross-section 

which wall slenderness ratio equals r 

 

The equations above are developed assuming the steel buckle locally when the 

compressive stress reaches the yielding stress (with or without residual stress), or the wall 

slenderness  is equal to r. As recommended by the AISC (2010), linear interpolation between 

the elastic ( = r) and the plastic ( ≤ p) cases can be used to obtain the axial and flexural 

capacity of CFT cross-sections when the steel tube is a non-compact section (p <  < r). 
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Table 10.1 gives a summary of the equations needed to calculate the axial and flexural 

capacity (anchor points 1, 2 and 3 of Figure 10.10) in CFT cross-sections with compact, non-

compact or slender steel section. The equations with the steel compact were derived in section 

10.8.4, and the equations related with the slender section were commented previously in this 

section. The equations for CFT cross-sections with a non-slender steel section are just linear 

interpolation of the two previous cases, and the P-M interaction diagram is the union of the final 

interpolated points. 

Table 10.2. Equations to calculate the axial and flexural capacity (anchor points 1, 2 and 3) in 

CFT cross-sections with compact, non-compact or slender steel section 

Point 
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CFT cross-section with wall slenderness ratios above the limit r may not be recommended to 

use in practice due to the following reasons: 

 The confinement in the steel tube is lower as the thickness reduces (or the wall 

slenderness ratio grows). Then, the concrete will tend to behave as plain concrete. 

 The concrete will need longitudinal and transverse reinforcement to compensate the 

low confinement provided by a slender steel tube. The additional reinforcement may 

complicate the construction process in small tubes and their connections. 
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 Local buckling will occur very early within the elastic response, and no additional 

capacity may be carried on due to the poor capacity in the unconfined concrete and 

the steel locally buckled. 

 As shown in Figure 10.11, the reduction of the CFT cross-section capacity with tubes 

from compact ( ≤ p) to slender ( = r) sections is significant, and this reduction 

will increase much higher in slender members with a large total unusable capacity as 

a consequence of the stability effects. 

The P-M interaction diagram for the CFT with slender tube illustrated in the previous 

figure has not been reduced for the stability effects. In order to account for the length effects, the 

methodology described in Section 10.6 can be used by reducing the total unusable capacity to the 

cross-section strength as stated in Equation 10.37, but with a linear transition to the point (Pn, 

Mn) as illustrated in Figure 10.11. 
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Figure 10.11. Schematic net or usable capacity in a CFT with slender steel cross-section which 

wall slenderness ratio equals r 
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10.7.3. Interaction surface at the first steel yielding 

Similarly to the previous section, this section discusses the interaction surface of CFT 

cross-sections when the steel tube reaches a first yielding in either compression or tension. 

Figure 10.12 illustrates the distribution of elastic stresses in the steel tube and the concrete in 

compression for different positions (y) of the elastic neutral axis (ENA) with respect to the 

centroidal axis of the cross-section. These free-body diagrams of elastic stresses are valid for the 

ENA position within the concrete section, and they assume that the maximum stress in the steel 

tube (either in tension or compression) is equal to an effective elastic stress given as  Fs = 0.7Fy  

if the residual stress of Fr = 0.3Fy is assumed. The maximum stress in concrete Fc can be 

calculated by Equation 10.42. 

Based on the stress distribution shown in Figure 10.12, the interaction diagram P-M can 

also be obtained by varying the position of the neutral axis (ENA) under these assumptions. The 

cases related to elastic local buckling (Figure 10.9.b and c) and first steel yielding in 

compression (Figure 10.12.b and c) exhibit the same elastic stress distribution, and then the 

equations previously developed within this range (ENA below the centroidal axis) are identical. 

As illustrated in Figure 10.13, the resultant interaction diagram can be approximately 

delineated by only the two lines connecting three anchor points. The equations for these points 

are not included in this section, but these are equal to the points 1, 2 and 4 developed in the 

previous section for both RCFTs and CCFTs. Curves of P-M diagrams at first yielding related to 

different values of the ENA position are shown in Figure 10.13 with the label “continuous 

functions” with and without assumed residual stresses. In this figure, the P-M interaction 

diagram obtained with the plastic stress method is also included as reference. 
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(a) Distribution of elastic stresses between “t/2<y≤hc/2” in RCFTs or “t/2<y≤Dc/2” in CCFTs 
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(c) Distribution of elastic stresses between “-hc/2≤y≤0” in RCFTs or “-Dc/2≤y≤0” in CCFTs 

 

Figure 10.12. Elastic stress distribution in a CFT cross-section related to the first yielding 

(either compression or tension) in the steel tube 
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Figure 10.13. Schematic P-M interaction diagram for a CFT with first yielding in the steel tube 

 

 

10.8. Application examples 

The following section includes some application examples of the methodology proposed in this 

section for the calculation of the axial and flexural capacity of given CFT cross-sections, 

columns and beam-columns. Geometric and material properties, notes and the calculations are 

stated in the examples. The first two examples are related with the calculation of the axial and 

flexural capacities of a CCFT and a RCFT with compact steel tubes. Similarly, the third example 

is related to the strength calculation of a RCFT with a non-compact steel tube. The cross-section 

and the beam column capacities are obtained in all the cases. 
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Example 1 

  

Determination of the capacity of a CCFT member 
(subscripts s and c stand for steel and concrete, respectively) 

 Geometry of the HSS steel cross-section 

 

 

Geometry of the concrete cross-section 

 

Steel properties 

 

 

Note: Equation for Ec can be replaced by experimental values 

          or any other applicable equation (i.e. ACI 363 for HSC) 

Concrete properties 

  

 ; ACI 318-08, 8.5.1 

 ; Equivalent compressive stress 

Steel section classification:  compact steel section 

   

Calculation of the geometric properties Note: The steel geometric properties can be  

replaced by those given in the AISC Manual. 
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Calculation of pure axial capacity of the cross-section 

 ; steel contribution 

 ; concrete contribution 

 ; compressive capacity of the CFT cross-section 

 ; tension capacity of the CFT cross-section 

Calculation flexural capacity at the balance point 

 
; steel contribution 

 ; concrete contribution 

 
; flexural capacity of the CFT cross-section  

  at the balance point 

Calculation of the P-M capacity of the cross-section 

Note: The given continuous functions are valid with the PNA 

position (y) within the concrete section 

  

The PNA position "y" depends on theta 

 or   

For convenience, some constants for concrete and the steel are given by: 

 
; steel component 

 ; concrete component 

Axial capacity of the cross-section 

 

Flexural capacity of the cross-section 

 ; steel component 

 ; concrete component 

; flexural capacity of the CFT cross-section  

   at any position of the PNA  
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The pure bending capacity (Mo) is given at "yo" such that P(yo)=0.  

This angle theta for the PNA position can be approximately by the following equations: 

  

 

  

 

  

 

By trial and error, a more accurate  

value of "yo" may be obtained: 
Note: The axial capacity is in compression side 

from "yo" to "hc/2" 

  
 < y <  

Check that "yo" is within the concrete: 
Then, the pure bending capacity of the cross-section is: 

   

Checking that at "-yo" the capacities are equal to Pc and Mo 

   

  

Note: The balance point is obtained at: 

   

As stated before, the balance point is also defined by: 

 ; half of the concrete axial strength 

 ; Steel and concrete flexural strength about the center 

The anchor points A to D of the P-M interaction diagram as in the current AISC (2010) are then:  
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Calculation of P-M capacities with the continuous functions 

Definition of a vector "yc" that varies from "yo" to "hc/2" 

 

   

Calculation of the axial and flexural capacities for all these PNA positions 

 

 

Adding the pure compression value 

   

Summary of results for the cross-section 

 

 

 

Plot of the P-M interaction diagram for the CFT cross-section: 
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Axial strength of a CFT column (reduction for stability) 

Column length and effective length coefficient based on the boundary conditions 

  

Calculations for the axial capacity: 

 

; effective flexural rigidity 

 ; Euler load 

 ; Slenderness parameter 

; Nominal load for the column 
 

 : ratio beam column / cross-section capacity 

Calculation of the PNA position (yn) when the axial capacity in the cross-section is equal to Pn 

check that  yn  is within the concrete (-Dc/2 < y < Dc/2) 
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Calculation of the P-M capacity of the beam column (reduction due to the stability effects) 

K and L given in the previous step are: 

  

The column strength capacity (Pn) from the previous step was given at "yn": 

   

Thus, the cross-section moment (Mn) at the axial capacity (Pn) is given by: 

 

The cross-section capacities obtained in a previous step are: 

 

 

 

The beam-column axial capacity varies from 0 to Pn 

 

 

The moment consumed by imperfection is given by: 

   

 

The total reduction moment for stability is given by: 
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Then, the available net moment in the beam-column is given by: 

 

 

The simplified P-M diagram for the beam column (as in current AISC, 2010) is: 

  

  

Plot of the P-M interaction diagram for the CFT: 

 

Figure - P-M interaction diagram for a RCFT beam-column 
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Example 2 

  

Geometry of the HSS steel cross-section 

 

 

 

 ; external radius 

 ; internal radius 

Geometry of the concrete cross-section 

 

 

Steel properties 

 

 

Concrete properties 

Note: Equation for Ec can be replaced by experimental values 

           or any other applicable equation (i.e. ACI 363 for HSC) 

  

 ; ACI 318-08, 8.5.1 

 ; ACI 318-08, 10.2.7.1 

 ; Equivalent compressive stress 

Calculation of the geometric properties 
Note: The steel geometric properties  

           can be replaced by those given  

           in the AISC Manual. 

 

         Some differences are expected 

         with these equations, mainly for 

         the Is and Zs since they are not 

         considering the radius of the fillets 

 

 

  

  

(subscript s and c stand for steel and concrete, respectively) 

Determination of the capacity of a RCFT member (strong axis bending) 

 
b 12 in

h 20 in

t 0.291in

rs 2 t 0.58in

rc rs t 0.29in

bc b 2 t 11.42in

hc h 2 t 19.42in

Fy 46ksi

Es 29000ksi

fc 5 ksi Ec_ACI363 40 ksi
fc

psi
 1000ksi 3828.43ksi

Ec 57 ksi
fc

psi
 4030.51ksi

 0.85

Fc  fc 4.25ksi

Ac bc hc 4 ( )t
2

 221.64in
2



As b h 4 4 ( ) t
2

 Ac 18.07in
2



Ic

bc hc
3



12
6966.62in

4
 Zc

bc hc
2



4
1076.31in

3


Is
b h

3


12
Ic 1033.38in

4
 Zs

b h
2



4
Zc 123.69in

3


+y

PNA
h

hc

t

bc

t t

hc/2-y

t

hc/2

b

LC

t 2t
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Steel section classification:  compact steel section 

   

Calculation of pure axial capacity of the cross-section 

 ; steel contribution 

 ; concrete contribution 

 ; compressive capacity of the CFT cross-section 

 ; tension capacity of the CFT cross-section 

Calculation flexural capacity at the balance point 

 
; steel contribution 

 ; concrete contribution 

 ; flexural capacity of the CFT cross-section  

  at the balance point 

Calculation of the P-M capacity of the cross-section 

Note: The given continuous functions are valid with  

the PNA position (y) within the concrete section 

  

Axial capacity of the cross-section 

 

Flexural capacity of the cross-section 

 ; plastic section modulus of the steel 

 ; plastic section modulus of the concrete 

 ; flexural capacity of the CFT cross-section 


b

t
41.24 p 2.12

Es

Fy

 53.23 r 3
Es

Fy

 75.33

Ps As Fy 831.09kip

Pc Ac Fc 941.98kip

Po Pc Ps 1773.07kip

To Ps 831.09 kip

Ms Zs Fy 474.13ft kip

Mc

Zc

2
Fc 190.6ft kip

Mb Mc Ms 664.73ft kip

hc

2
 y

hc

2


hc

2
9.709in

P y( )
hc

2
y









bc Fc 4 y t Fy

Zs y( ) Zs 2 t y
2



Zc y( ) Zc bc y
2



M y( ) Zs y( ) Fy
Zc y( )

2
Fc
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The pure bending capacity (Mo) is given at "yo" such that P(yo)=0. This position is given by: 

Note: The axial capacity is in compression side 

from "yo" to "hc/2"  

 < y <  

By trial and error, a more accurate  

value of "yo" may be obtained: 

Check that "yo" is within the concrete: 

  

  

Then, the pure bending capacity of the cross-section is: 

 

Note: The balance point is obtained at: 

   

As stated before, the balance point is defined by: 

 ; half of the concrete axial strength 

 ; Steel and concrete flexural strength about the center 

The anchor points A to D of the P-M interaction diagram as in the current AISC (2010) are then:  

  

  

Calculation of P-M capacities with the continuous functions 

Definition of a vector "yc" that varies from "yo" to "hc/2" 

 

   

yo

Pc

2

Fc bc 4 t Fy 
4.61 in

hc

2
 9.71 in yo 4.61in

yo 4.61585in P yo  0 kip
hc

2
 y
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2
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2
9.709in

Mo M yo  574.11kip ft
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2
470.99kip
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Paisc Po Pc
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2
0









T

 Paisc
T
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Maisc 0 Mo Mb Mo T Maisc
T

0 574 665 574( ) kip ft

size 18

i 1 size 1( ) incr

yo

hc

2










size 2











 yc
i

hc

2
 i 1( ) incr
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Calculation of the axial and flexural capacities for all these PNA positions 

 

 

Adding the pure compression value 

   

Summary of results for the cross-section 

 

 

 

Plot of the P-M interaction diagram for the CFT cross-section: 

 

Figure - P-M Cross section strength  
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Axial strength of a CFT column (reduction due to the stability effects) 

Column length and effective length coefficient based on the boundary conditions 

  

Calculations for the axial capacity: 

 

; effective flexural rigidity 

 ; Euler load 

 ; Slenderness parameter 

 ; Nominal load for the column 

 ; ratio beam column / cross-section capacity 

Calculation of the PNA position (yn) when the axial capacity in the cross-section is equal to Pn 

check that  yn  is within the concrete (-hc/2 < y < hc/2) 

 

 

   

K 2 L 18 ft

Pe


2

EIeff

K L( )
2
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Po
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Po
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Po
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Pn

Fc bc 4 t Fy 
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9.71 in
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EI eff E s I s  0.8 E c  I c   360205 kip ft 
2 
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Calculation of the P-M capacity of the beam column (reduction due to the stability effects) 

The given K and L in the previous step are: 

  

The column strength capacity (Pn) from the previous step was given at "yn": 

   

Thus, the cross-section moment (Mn) at the axial capacity (Pn) is given by: 

 

The cross-section capacities obtained in a previous step are: 

 

 

 

The beam-column axial capacity varies from 0 to Pn 

 

 

The moment consumed by imperfection is given by: 

   

 

The total reduction moment for stability is given by: 
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  Then, the available net moment in the beam-column is given by: 

 

 

The simplified P-M diagram for the beam column (as in current AISC, 2010) is: 

  

  

Plot of the P-M interaction diagram for the CFT: 

 

Figure - P-M interaction diagram for a RCFT beam-column 
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Example 3 

  

Geometry of the HSS steel cross-section 

   

Geometry of the concrete cross-section 

  

Steel properties 

   

  

Steel section classification:  non-compact steel section 

   

Concrete properties 

   

  

Calculation of the geometric properties 

 

 

  

  

  

(subscript s and c stand for steel and concrete, respectively) 
Determination of the capacity of a RCFT member (weak axis bending) 

b 20 in h 12 in t 0.291in

bc b 2 t 19.42in hc h 2 t 11.42in

Fy 46ksi Es 29000ksi ey

Fy

Es

0.00159

Fr 0.3Fy 13.8ksi Fs Fy Fr 32.2ksi


b

t
68.73 p 2.12

Es

Fy

 53.23 r 3
Es

Fy

 75.33

fc 5 ksi Ec 57 ksi
fc

psi
 4030.51ksi Fcp 0.85fc 4.25ksi

2 min
Ec ey
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1
2t
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Ec ey
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1
2t
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 0.85











0.850 Fce 2 fc 4.25ksi

Ac bc hc 4 ( )t
2

 221.64in
2



As b h 4 4 ( ) t
2
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12
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4
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12
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4


Zc
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b h
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4
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2Ic
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3
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2Is

h
78.54in

3




481 

  

Calculation of pure axial capacity of the cross-section 

  

  

  

 

Calculation of flexural capacity at the balance point 

  

 

  

  

  

 

Calculation of pure bending capacity 

  

 

 

 

Psp As Fy 831.09kip Pse As Fs 581.76kip

Pce Ac Fce 941.98kip Pcp Ac Fcp 941.98kip
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 2.99 in
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2

 t Fy
bc yo

2


2
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Moe Mbe
4

3
yoe

2
 t Fy

bc yoe
2



3
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 p  Mop Moe 

r p 
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The simplified P-M diagram (as slender section) 

  

  

The simplified P-M diagram (as compact section) 

  

  

The simplified P-M diagram (as compact section) 

  

  

Calculation of the P-M capacity of the cross-section (with continuous functions) 

Note: The given continuous functions are valid with  

the PNA position (y) within the concrete section 

  

Axial capacity of the cross-section 

 

Flexural capacity of the cross-section 

 ; plastic section modulus of the steel 

 ; plastic section modulus of the concrete 

 ; flexural capacity of the CFT cross-section 

Pr Poe Pbe 0 T Pr
T

1524 235 0( ) kip

Mr 0 Mbe Moe T Mr
T
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T
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2
 y
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M y( ) Zs y( ) Fy
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2
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The pure bending capacity (Mo) is given at "yo" such that P(yo)=0.  

This position was calculated above as: 
Note: The axial capacity is in compression side 

from "yo" to "hc/2" 
  

 < y <  

By trial and error, a more accurate  

value of "yo" may be obtained: Check that "yo" is within the concrete: 

  

  

Then, the pure bending capacity of the cross-section is: 

 

Note: The balance point is obtained at: 

0   

As stated before, the balance point is defined by: 

 ; half of the concrete axial strength 

 ; Steel and concrete flexural strength about the center 

The anchor points A to D of the P-M interaction diagram as in the current AISC (2010) are then:  

  

  

Calculation of P-M capacities with the continuous functions 

Definition of a vector "yc" that varies from "yo" to "hc/2" 
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T
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Calculation of the axial and flexural capacities for all these PNA positions 

 

 

Adding the pure compression value 

   

Summary of results for the cross-section 

 

 

 

Plot of the P-M interaction diagram for the CFT cross-section: 

 

Figure - P-M Cross section strength  
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Axial strength of a CFT column (reduction due to the stability effects) 

Column length and effective length coefficient based on the boundary conditions 

  

Calculations for the axial capacity: 

 

; effective flexural rigidity 

 ; Euler load 

 ; Slenderness parameter 

 ; Nominal load for the column 

 ; ratio beam column / cross-section capacity 

Calculation of the PNA position (yn) when the axial capacity in the cross-section is equal to Pn 

  check that  yn  is within the concrete  

(-hc/2 < y < hc/2) 

 
 

K 2 L 18 ft
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EIeff
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Calculation of the P-M capacity of the beam column (reduction due to the stability effects) 

The given K and L in the previous step are: 

  

The column strength capacity (Pn) from the previous step was given at "yn": 

   

 

Thus, the cross-section moment (Mn) at the axial capacity (Pn) is given by: 

The cross-section capacities obtained in a previous step are: 

 

  

 

 

The beam-column axial capacity varies from 0 to Pn 

 

 

The moment consumed by imperfection is given by: 

   

 

The total reduction moment for stability is given by: 
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Then, the available net moment in the beam-column is given by: 

 

 

The simplified P-M diagram for the beam column (as in current AISC, 2010) is: 

  

  

Plot of the P-M interaction diagram for the CFT: 

 

Figure - P-M interaction diagram for a RCFT beam-column 
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CHAPTER 11  

CONCLUSIONS 

11.1. Summary and Conclusions 

This research presents and discusses the results from a comprehensive experimental 

program that includes the testing of 18 full-scale concrete-filled steel tube (CFT) specimens. 

Details about this research project, motivation, objectives, and methodologies used are presented 

in Chapter 1. 

The circular and rectangular CFT specimens selected in this research project are unique 

since these are the longest and the most slender full-scale CFT members tested worldwide. In 

addition, these specimens are extensively instrumented, and they are tested under a very complex 

load protocol using a first class facility as the MAST Laboratory, part of the Network for 

Earthquake Engineering Simulation (NEES). 

The specimen’s test matrix was carefully selected to maximize the main features of the 

MAST Lab Facility and close some gaps found in the available experimental databases. These 

gaps included very long and slender specimens, large cross-sections with large wall slenderness 

ratios, and CFTs filled with high-strength concrete. Details about preliminary analytical and 

experimental studies, as well as the available collected experimental databases are summarized 

in Chapter 2. 

The CFT specimens tested in this research project are extensively and redundantly 

instrumented, especially in the critical zones where high plasticity demands are expected. Details 

of the experimental program, the testing facility, testing setup, pretest settings, description of the 

specimens, the instrumentation, and the load protocol are fully described in Chapter 3. 

As discussed in Chapter 3, the CFT specimens are subjected to an extensive load protocol 

that includes a wide-ranging of load cases that aims to extract many of the relevant 

characteristics of CFT members. These loading cases pursue to obtain the experimental specimen 

response under: 

 Hydrostatic pressure on the steel tubes when the fresh concrete is poured at the 

casting process. Results from the analysis of this test data are discussed in Chapter 4. 
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 Pure compression that aims to determine the experimental axial load capacity of CFT 

columns accounting for the stability reduction. Results from the analysis of this test 

data are explored, discussed and analyzed in Chapter 5. 

 Uniaxial and biaxial bending combined with compression that aims to determine 

experimental points of the interaction diagram of CFT beam-columns with stability 

reduction. These load cases also aim to characterize the stiffness and strength 

degradation, progression of local buckling, detailed assessment of evolution of 

damage, plastic hinge lengths, and characterization of different limit states. Results 

from the analysis of this test data are discussed in Chapters 6 to 8. 

 Pure torsion and torsion combined with compression that aims to determine the 

experimental torsional strength and stiffness of CFT members. Results from the 

analysis of this test data are discussed in Chapter 9. 

Parallel to the experimental study, advanced computational analyses are carried out to 

calibrate material and element models that characterize the salient features of the observed CFT 

response, such as steel local buckling and residual stresses, concrete confinement, stability 

effects, strength and stiffness degradation, among others. The analytical response obtained from 

the computational analysis was successfully calibrated to reproduce the measured experimental 

response discussed in Chapters 5 and 7. 

Based on the observed behavior, simplified guidelines for the computation of the strength 

and stiffness parameters for CFT columns and beam-columns are proposed in Chapter 10 for 

design purposes. This chapter includes determination of the axial and flexural strength for CFT 

cross-sections and members, integrated with compact and non-compact steel tubes. Examples 

that illustrate the application of the proposed methodology are included in this Chapter 10. 

 

11.2. Conclusions 

As commented above, extensive analyses of computational and experimental data are 

presented and discussed in this thesis with the aim of improving the prediction of strength, 

stiffness, deformation capacity, and the overall behavior of slender CFT members. A brief 

summary of specific conclusions obtained for each loading conditions are presented below. 
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11.2.1. Wet concrete effects on RCFT members 

Since this research intended to test very long CFT specimens, initial deformations on the 

steel tubes induced by the concrete during casting were contemplated in advanced for the 

constructions process and the data analysis. For this purpose, stresses and deformations in the 

steel tube under hydrostatic pressure were evaluated with closed-form analytical solutions and 

complemented with finite element analysis, as described in Chapter 4. These analytical results 

indicated that problems would arise in the RCFT specimens, unless the amount of stresses and 

deformations were limited to low values.  For this reason, stiffeners were used during casting of 

most of the RCFT specimens to control the initial deformations due to the hydrostatic pressure of 

wet concrete. During the testing of the RCFTs, adverse effects were clear in those specimens that 

were not stiffened, as the testing started with considerable initial outward deformations on the 

plates. These side effects consisted in an earlier initiation of the steel local buckling at the 

elevation where the maximum outward deflection initially occurred as a consequence of the wet 

concrete pressure. In contrast, there were very low initial deformations on the plates of those 

specimens that were stiffened properly, and then the local buckling was developed as expected at 

the critical section (near the base) and as a consequence of the wall-slenderness ratio. 

Recommendations to minimize the effects of the wet concrete pressures include simplified 

equations to estimate reasonably the maximum transverse stress and the maximum outward 

expansion that may occur in a RCFT member at the casting process, values that must not exceed 

given allowable limits. These are specifically: 
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In case either stresses or deformations in rectangular CFT cross-sections exceed the 

recommended limits above, it is recommended to classify the steel cross-section as slender type 

section since this would be susceptible to an earlier local buckling. 
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11.2.2. Nominal axial load capacity of CFT columns 

Experimental determination of the nominal axial load capacity on CFT columns was one 

the primary goals of this research.  The load case used for this purpose (LC1) consisted in 

driving the crosshead on vertical displacement control downward (pure compression), while the 

top lateral forces and moments are imposed and hold at zero in force control (free top). However 

in practice, unexpected difficulties were encountered that made the data analysis very 

challenging.  These difficulties included characterization of the effective confinement in the 

concrete, the effective flexural stiffness, large dispersion in initial out-of-straightness and out-of-

plumbness, among others.  In addition,  characterization of the system compliance, friction in the 

system, lack of perfect control for the DOFs, insufficient resolution for flexible specimens, and 

limits on the system capacity added to the difficulties. Each of these issues is discussed in 

Chapter 5, and the raw experimental data was then adjusted and processed accordingly. Results 

from the processed data seem to be more consistent with the expected values than the raw 

experimental data. 

In addition to the processed data, the experimental loading response was also contrasted 

with the results obtained from non-linear analysis of CFT specimens modeled with fiber 

elements. The analysis carefully modeled many of the salient features of CFT members such as 

the confinement effects in the concrete component, as well as the residual stresses and local 

buckling in the steel component; in addition, they include a very robust hysteretic rules as 

calibrated by Denavit and Hajjar (2010) and Tort and Hajjar (2007). The results from the 

computational analysis are consistent with the experimental response data, in some cases with a 

very strong correlation. 

Column curves for CFT columns with ideal boundary conditions (fixed-free, K=2) and 

ideal imperfections (cosine function) are obtained from computational analysis and the calibrated 

models. These column curves are then compared with the current column curve in the AISC 

(2010) Specifications. These column curves seem very strong correlated in the elastic critical 

load range, but with differences in the inelastic buckling load interval. These differences are in 

general attributed to a higher strength due to the concrete confinement assumed in the 

computational analysis, and under predicted in the Specifications. In addition for RCFTs with 

buckling towards the weak axis, the analysis exhibited a lower capacity than in the Specifications 
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due to an earlier development of the steel local buckling assumed in the model. The results from 

the computational curves do not exhibit a significant difference between the nominal KL/1500 of 

out-of-plumbness assumed in the development of the steel column curve, and the KL/2000 of 

out-of-plumbness recommended in the direct analysis method of steel members. 

 

11.2.3. P-M interaction diagrams for CFT cross-sections an beam columns 

Another main goal of this research project consisted on the determination of experimental 

set of points of the P-M interaction diagram. For this purpose, some loading cases (LC2 and 

LC3) were planned with the aim to extract some of these points from the experimental response. 

These load cases consisted of a constant compression force in load control, while the top is 

driven laterally in displacement control. The methodology used for the extraction of 

experimental P-M values of interaction has been previously used for the calibration of the 

interaction equations for steel members in the AISC Specifications and Eurocodes, using data 

obtained from second order inelastic analysis of benchmark steel frames. The maximum stable 

capacity of a beam column is defined by its maximum lateral strength (Fmax) at which the 

incipient instability condition arises. Beyond this lateral load capacity, the beam-column is on an 

unstable condition even when the critical cross-section still has some remaining capacity. Thus, a 

set of axial load (P) and base moment (M) points related to the instant when the specimen 

reached the maximum stable capacity (Fmax) are extracted and compiled as the total beam-

column capacity.  The total capacity as defined above does not incorporate the effects of the 

initial imperfections. Initial imperfections tends to increase the demand of second order effects, 

and as a result, the available first order moment capacity is reduced; therefore, the initial 

imperfections can be included as the difference between the total capacity and that capacity 

consumed by the imperfections. The resultant P-M points from the previous process are 

compiled as the net beam-column capacity. Theoretically, the net beam-column capacity is the 

maximum usable P-M capacity in the beam-column, and so the interaction diagrams for the 

beam-columns are calibrated with this final net response. 

The net moments extracted from the test specimens are then compared with the 

simplified interaction diagram proposed in the AISC (2010) Specifications for composite beam-

columns. The following observations were noted from these comparisons: 
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 In the shorter specimens, the net P-M capacities extracted from the tests drop outside 

of the bilinear simplified diagram of the AISC for beam-columns, which 

underestimates the P-M capacities of the shorter specimens around the points C-B. 

The purpose of neglecting the bulge with this vertical line in the AISC Simplified 

diagram intended to be conservative through a lower bound, and this simplification 

was supported by the available experimental data at the time. 

 The shape of the bilinear simplified diagram turned out to be less conservative in 

beam-columns with intermediate slenderness; however, for beam-columns with high 

slenderness, the AISC simplified diagram resulted unconservative with overestimated 

net capacities. 

It must be noted that the net moment capacities obtained from the experiments has a 

substantial flexural capacity lost due to the large imperfections. Nevertheless, many of these 

points are still unconservative even if the imperfections are neglected. This unconservative 

behavior in slender beam-columns suggested a change in the design equations for the calculation 

of P-M interaction diagrams that serves both short and slender beam columns. 

Similar conclusions were observed in both uniaxial and biaxial bending, as well as in the 

computational analyses. Based on the results reported in Chapter 6 about the total and net P-M 

capacities extracted for the test data, Chapter 10 proposes design equations that aim in the 

determination of the P-M interaction diagram for CFT cross-sections and beam-columns. The 

beam-column capacity as proposed in Chapter 10 takes into account the total unusable capacity 

lost due to both the stability effects and the imperfections. 

 

 

11.2.4. Flexural rigidity for CFT members 

The evaluation of the flexural rigidities extracted from the test results during the entire 

load protocol exhibited some variability, mainly as the damage in the concrete core and the steel 

tubes progressed through the load protocol. Even with this dispersion, interesting results were 

extracted from the analysis of this data. A brief summary of the observations includes: 
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 The averaged values of the flexural rigidities extracted from the response during the pure 

compression loading case (LC1) were very close to the values predicted by the AISC 

(2005, 2010) Specifications. However, the averaged values does not show any 

proportionality with the steel ratio in the cross-section ( = As/A), as indicated in the 

AISC Specifications by presenting the C3 coefficient in terms of the steel ratio. In 

addition, neither does the slenderness parameter of the column () showed proportional 

variation with the test data. Instead, a constant averaged coefficient of C3 = 0.80 was 

obtained and adopted for the determination of the buckling load capacity of a CFT 

column. In other words: 

0.80eff s s c cEI E I E I   (11.3) 

 Similarly, averaged values of the flexural rigidities were also extracted from the response 

during the uniaxial and biaxial loading cases (LC2 and LC3). This is a unique set of data 

since this intends to give a simplified equation that approaches the expected rigidity for a 

beam-column under seismic loading (i.e. combined constant axial load and cyclic 

uniaxial or biaxial lateral load). As expected, the scatter of the data increased as the 

damage progressed on the specimen; even with some dispersion is exhibited in the 

averaged test data, the following equations are proposed for the determination of the 

effective stiffness of a CFT beam-column under seismic loading, and for the evaluation 

of lateral and flexural capacity based on frame analysis. 

When local buckling is not expected (as in compact cross-sections), the effective flexural 

capacity may be approached with: 

 0.40eff s s c cEI E I E I   (11.4) 

On the other hand, when the steel tube is susceptible to local buckling, the following 

equation is suggested to obtain the expected effective flexural capacity as: 

  0.85 0.40eff s s c cEI E I E I   (11.5) 
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11.2.5. Steel local buckling in CFT members 

Extraction of the first occurrence of local buckling in the 18 specimens tested for this 

project is presented in Chapter 8. Based on the empirical data extracted from these tests, an 

update of empirical equations for the local buckling initiation is proposed for both CCFT and 

RCFTs. The proposed equations are: 

For circular concrete filled tubes (CCFTs) 
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For rectangular concrete filled tubes (RCFTs) 
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From the empirical calibration equations shown above, an update of limits for slender 

(r) and non-compact (p) filled tubes are proposed as follow: 

For circular concrete filled tubes (CCFTs) with slender steel sections
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For circular concrete filled tubes (CCFTs) with non compact steel sections 
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For rectangular concrete filled tubes (RCFTs) with slender steel sections
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For rectangular concrete filled tubes (RCFTs) with non compact steel sections 

 

2.12 s
p

y

E

F
 

 

(11.11) 



496 

11.2.6. Plastic hinge length in CFT members 

In Section 8.4, an analysis on the plastic hinge lengths is presented based on the 

maximum curvature within the load protocol through the column length. Based in this data 

analysis, the equation below proposed for steel sections presented reasonable prediction values 

of the plastic hinge length. 
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11.2.7. Torsional strength and stiffness of CFT members 

The experimental torsional response obtained from the tests of the CFT specimens points 

out the following behavior. 

 The results indicate a partial contribution of the concrete to both the torsional 

capacity and the torsional rigidity. Both the strength and the stiffness contributions 

were calibrated with the test data and design equations developed for torsion. 

 The strength response under torsion and combined axial load was slightly higher than 

the strength obtained in pure torsion only in CCFTs; due to a high damage 

accumulation in RCFTs, the torsion capacity with and without compression was very 

similar to the pure torsion capacity. 

 As a result of the rectangular shape, the concrete contribution in torsional capacity is 

slightly higher in RCFTs attributed to the interlock interaction between the concrete 

surfaces and the steel surfaces in contact. However, the torsional stiffness is slightly 

higher in CCFTs due to a better performance in circular cross-section shapes; and an 

earlier local buckling damage in RCFTs, which is less severe in CCFTs. 

Assuming full contribution of the steel component and partial contribution of the concrete 

component, design equations are proposed to estimate both the torsional strength capacity and 

the torsional rigidity for non-cyclic and cyclic loading. These design equations predict 

reasonable values of the torsion strength and torsion stiffness. 

 



497 

11.2.8. Forensic analysis 

The post-mortem or forensic analysis of the CFT specimens tested in this project was 

presented in Section 8.4. When the deformed steel plates were cut and removed, it was observed 

and confirmed that the highest local buckling deformation was spread by coarse-like pieces of 

concrete. No clear evidence of significant concrete-steel slip was observed or noticed when the 

tubes were cut and open; however, the slip was not monitored or measured during the test, and so 

this note is based only on the final physical observation on the exposed specimen. Once the 

external condition of the concrete is reported, the exploration of deeper cracks was carried out by 

removing the external surface of the concrete. The concrete cores were found to have been 

highly confined and almost intact. 

 

11.3. Impact and contributions 

The present research project is distinctive in many ways. Some points that make this 

project unique include: 

 A comprehensive experimental program that consisted of testing 18 circular and 

rectangular CFTs, with an extensive and advanced instrumentation, and subjected to a 

very complex load protocol. All these will make possible to fill many of the gaps found 

in the experimental CFT databases. These results are expected to become the benchmarks 

by which future analytical models for composite beam-columns will be evaluated. 

 A unique test matrix that includes specimens with very special characteristics, which 

includes: (1) lengthy and slenderness specimens (the world largest CFT columns and 

beam columns); (2) the use of the largest and thinnest fabricated HSS cross-section sizes 

(low width-thickness ratios D/t or h/t); and (3), a wide range of material properties such 

as high strength concrete. This research will provide much needed data to calibrate 

material constitutive models and the element models for composite structures. 

 Qualitative and quantitative recommendations to evaluate and minimize the effects of the 

wet concrete pressure in the steel tubes during the pouring. Controlling outward 

deflections is an important concern mainly in RCFTs, since an earlier failure can be 

developed if the initial plate deflections are not controlled during the casting process. 
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 Enhancement of the analytical prediction for strength and deformation capacity of CFT 

columns and beam-columns with fiber-based or finite-based analysis with respect to: 

 Second order analysis accounting for geometric and material non-linearities 

 Cyclic behavior of beam-columns with strength and stiffness degradation 

 Accumulated damage accounting for effective confinement and local buckling 

 Enhancement of the analytical prediction for strength and deformation capacity of CFT 

columns and beam-columns with simplified design equations, including: 

 Effective flexural (EIeff) and torsional rigidity (GJeff) for 3D frame analysis 

 Critical load (Pn) and column curves (Pn-) for slender columns 

 P-M interaction diagrams for both cross-sections and beam-columns 

 Development of a design procedure for CFT columns with compatible transition from 

reinforced concrete to steel elements, and vice versa. Also, include some 

recommendations for design procedure on composite frames with CFT columns subjected 

to gravity and seismic load conditions. 

 

In summary, this research project provides a unique set of data that can and has been used 

to verify advanced computational models and provide support for the development of both 

simplified and advanced analysis techniques for composite CFT members. 

 

In addition, this research study is an effort at (1) developing new fundamental 

knowledge, (2) improving our understanding of composite beam-column behavior, (3) extending 

design ranges, (4) providing calibration data, and (5) improving the accuracy of the response 

prediction on concrete-filled tube members. 

 

The author expects that, based on the results presented in this research project, CFT 

members experience an immediate increment of the number of applications in practice on the 

construction of composite and mixed frames systems with CFT members for either constructing 

new structures or retrofitting old structures. 
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11.4. Suggested topics for future research studies 

The present research study intended to include many of the main parameters that 

influenced the overall behavior of CFT members subjected to different loading conditions. 

However, there still exist some uncertainties and unexplored topics that were not included and 

studied in this project. The list below summarizes some of the topics that may be explored in 

future research studies. 

Suggested topics using the experimental data collected or the results presented in this research: 

 Calibration of computational models in cyclic loading using FEA. 

 Determination and characterization of the flexural stiffness from computation analysis. 

This includes both models using fiber elements for the cross-section definition and solid 

elements (FEA). 

 Calibration of the proposed tangent plot methodology in other structural members. 

 Calibration of the proposed methodology for the calculation of the axial, flexural and 

torsional capacities of CFT cross-sections, columns and beam-columns. 

Suggested topics not evaluated in this research that may require additional testing or analysis: 

 Shear strength of CFT cross-sections. 

 Shear – Torsion interaction diagrams. 

 Lateral torsional buckling of CFT columns and beam-columns. 

 Lateral buckling in CFT beams. 

 Experimental determination of the slip in the steel-concrete interaction surfaces. In this 

project, tangential and longitudinal relative slip was neither measured by the 

instrumentation nor considered in the analysis. 

 Calibration of frame analysis that reflects the behavior and salient features of the CFT 

members observed from the test experiments and the advanced computational analysis. 

 Determination of the seismic behavior factors for the different composite structural 

systems with CFT members. 

 Different types of connections of CFT members with other structural elements. 
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APPENDIX A 

MATERIAL PROPERTIES 

A.1.  On-site concrete filling properties 

Table A.1. Concrete mix design used for 5 ksi of nominal strength 

 

Table A.2. Concrete mix design used for 12 ksi of nominal strength 
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A.2.  Coupon test results 

 

Figure A.1. Coupon tests from the steel corresponding to the Specimens 1 and 18 

 

Figure A.2. Coupon tests from the steel corresponding to the Specimens 2 and 6 
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Figure A.3. Coupon tests from the steel corresponding to the Specimens 3 and 7 

 

Figure A.4. Coupon tests from the steel corresponding to the Specimens 4, 5, 8 and 9 
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Figure A.5. Coupon tests from the steel corresponding to the Specimen 10 

 

Figure A.6. Coupon tests from the steel corresponding to the Specimen 11 
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Figure A.7. Coupon tests from the steel corresponding to the Specimen 12 

 

Figure A.8. Coupon tests from the steel corresponding to the Specimen 13 

0

10

20

30

40

50

60

70

80

90

0% 5% 10% 15% 20% 25%

12Rw-26-a

12Rw-26-b

12Rw-26-c

0

10

20

30

40

50

60

70

80

0% 5% 10% 15% 20% 25%

13Rs-26-a

13Rs-26-b

13Rs-26-c



505 

 

Figure A.9. Coupon tests from the steel corresponding to the Specimen 14 

 

Figure A.10. Coupon tests from the steel corresponding to the Specimen 15 
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Figure A.11. Coupon tests from the steel corresponding to the Specimen 16 

 

Figure A.12. Coupon tests from the steel corresponding to the Specimen 17 
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APPENDIX B 

EXPERIMENTAL RESULTS 

This section gives a brief description and summarizes some parameters for each of the 

specimens. Besides, this section summarizes the load protocol adopted and shows some of the 

main experimental results for each CFT specimen and each load case. 

 

B.1.  Specimen 1C5-18-5 

Description: 

 Specimen number: 1 

 Composite Cross-section: CCFT 

 Steel cross-section: HSS5.563x0.134 

 Design concrete strength: 5 ksi 

 Design specimen length: 18 ft 

 Pouring date: 06/27/2008 

 Testing date: 07/29/2008 

 

Parameters: 

 Specimen length: 18’ 1/2” 

 Initial out-of-straightness: Uxo = -1.54” / Uyo = 0.01” 

 Steel yielding stress: Fy = 55.6 ksi 

 Steel ultimate stress: Fu = 70.7 ksi 

 Concrete strength at the 28th day: fc’ = 5.5 ksi 

 Concrete strength at the testing day: fc = 5.5 ksi 

 Concrete Young’s modulus: Ec = 5000 ksi 

 Concrete tensile strength: ft = 1.1 ksi 

 

 
Figure B.1. Specimen 1C5-18-5 
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Table B.1. Load protocol summary for the specimen 3C20-18-5 

 

 

LC1 – Proportional loading – several cycles, different eccentricities 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 max P 

2 Fx = 0 Fy = 0 Uz ↑ Mx = 0 My = 0 Rz = 0 P = 0 

 

 

LC2a - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 15 kips). 

The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy = 0 P = 15k Rx = 0 My = 0 Rz = 0 +F peak 

2 Ux ↑ Uy = 0 P = 15k Rx = 0 My = 0 Rz = 0 -F peak 

3 Ux ↑ Uy = 0 P = 15k Rx = 0 My = 0 Rz = 0 Uz = 0 

 

 

LC2b - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 30 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy = 0 P = 30k Rx = 0 My = 0 Rz = 0 +F peak 

2 Ux ↑ Uy = 0 P = 30k Rx = 0 My = 0 Rz = 0 -F peak 

5 Ux ↑ Uy = 0 P = 30k Rx = 0 My = 0 Rz = 0 Uz = 0 

 

 

LC4 – Proportional loading – several cycles, different BCs 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 var var Uz ↓ var var Rz = 0 max P 

2 var var Uz ↑ var var Rz = 0 P = 0 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Initial deflected shape Maximum lateral displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.2. Experimental results from LC1 in the specimen 1C5-18-5 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Initial deflected shape Maximum lateral displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.3. Experimental results from LC1a in the specimen 1C5-18-5 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Initial deflected shape Maximum lateral displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.4. Experimental results from LC1b in the specimen 1C5-18-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.5. Experimental results from LC2 in the specimen 1C5-18-5 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.6. Experimental results from LC4 in the specimen 1C5-18-5 
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B.2.  Specimen 2C12-18-5 

Description: 

 Specimen number: 2 

 Composite Cross-section: CCFT 

 Steel cross-section: HSS12.75x0.25 

 Design concrete strength: 5 ksi 

 Design specimen length: 18 ft 

 Pouring date: 06/27/2008 

 Testing date: 07/29/2008 

 

Parameters: 

 Specimen length: 18’ 1/2” 

 Initial out-of-plumbness: Uxo = 0.75” / Uyo = -0.32” 

 Steel yielding stress: Fy = 48.9 ksi 

 Steel ultimate stress: Fu = 64.7 ksi 

 Concrete strength at the 28th day: fc’ = 5.5 ksi 

 Concrete strength at the testing day: fc = 5.6 ksi 

 Concrete Young’s modulus: Ec = 4000 ksi 

 Concrete tensile strength: ft = 1.1 ksi 

 

 
Figure B.7. Specimen 2C12-18-5 
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Table B.2. Load protocol summary for the specimen 3C20-18-5 

 

LC1 - Incremental compression loading in three cycles until the maximum load is reached. The 

top is forced to be free at all the time. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 max P 

2 Fx = 0 Fy = 0 Uz ↑ Mx = 0 My = 0 Rz = 0 P = 0 

3 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 max P 

4 Fx = 0 Fy = 0 Uz ↑ Mx = 0 My = 0 Rz = 0 P = 0 

 

 

LC2a - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 300 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy = 0 P = 300k Rx = 0 My = 0 Rz = 0 +F peak 

2 Ux ↑ Uy = 0 P = 300k Rx = 0 My = 0 Rz = 0 -F peak 

3 Ux ↓ Uy = 0 P = 300k Rx = 0 My = 0 Rz = 0 +F peak 

4 Ux ↑ Uy = 0 P = 300k Rx = 0 My = 0 Rz = 0 -F peak 

5 Ux ↑ Uy = 0 P = 300k Rx = 0 My = 0 Rz = 0 Uz = 0 

 

 

LC2b - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 200 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 +F peak 

2 Ux ↑ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 -F peak 

3 Ux ↓ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 +F peak 

4 Ux ↑ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 -F peak 

5 Ux ↑ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 Uz = 0 

 

 

LC2c - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 100 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy = 0 P = 100k Rx = 0 My = 0 Rz = 0 +F peak 

2 Ux ↑ Uy = 0 P = 100k Rx = 0 My = 0 Rz = 0 -F peak 

3 Ux ↓ Uy = 0 P = 100k Rx = 0 My = 0 Rz = 0 +F peak 

4 Ux ↑ Uy = 0 P = 100k Rx = 0 My = 0 Rz = 0 -F peak 

5 Ux ↑ Uy = 0 P = 100k Rx = 0 My = 0 Rz = 0 Uz = 0 
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LC3 - Cyclic biaxial lateral displacements (8 probes with diamond shape) with constant 

compression force (-Fz = P = 250 and 150 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 250k Mx = 0 My = 0 Rz = 0 F peak at 

each of the 

16 probes 
2 Ux ↕ Uy ↕ P = 150k Mx = 0 My = 0 Rz = 0 

 

 

LC4a - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 300 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy = 0 P = 300k Rx = 0 My = 0 Rz = 0 +F peak 

2 Ux ↑ Uy = 0 P = 300k Rx = 0 My = 0 Rz = 0 -F peak 

3 Ux ↓ Uy = 0 P = 300k Rx = 0 My = 0 Rz = 0 +F peak 

4 Ux ↑ Uy = 0 P = 300k Rx = 0 My = 0 Rz = 0 -F peak 

5 Ux ↑ Uy = 0 P = 300k Rx = 0 My = 0 Rz = 0 Uz = 0 

 

 

LC4 - Torsion The top was twisted in displacement control. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux = 0 Uy = 0 P = 0 Rx = 0 Ry = 0 Rz ↕ +/-max. twist 

2 Ux = 0 Uy = 0 P = 250k Rx = 0 Ry = 0 Rz ↕ +/-max. twist 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Initial deflected shape Maximum lateral displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.8. Experimental results from LC1 in the specimen 2C12-18-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.9. Experimental results from LC2a in the specimen 2C12-18-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.10. Experimental results from LC3a in the specimen 2C12-18-5 



520 

  
Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.11. Experimental results from LC3b in the specimen 2C12-18-5 



521 

  
Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.12. Experimental results from LC2b in the specimen 2C12-18-5 
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Twisting Angle vs. Time Torsion Moment vs. Time 

  
Axial Force vs. Time Torsion Moment vs. Twisting Angle 

Figure B.13. Experimental results from LC4a in the specimen 2C12-18-5 

  
Twisting Angle vs. Time Torsion Moment vs. Time 

  
Axial Force vs. Time Torsion Moment vs. Twisting Angle 

Figure B.14.  Experimental results from LC4b in the specimen 2C12-18-5 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Initial deflected shape Maximum lateral displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.15. Experimental results from LC4c in the specimen 2C12-18-5 
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B.3.  Specimen 3C20-18-5 

Description: 

 Specimen number: 3 

 Composite Cross-section: CCFT 

 Steel cross-section: HSS20x0.25 

 Design concrete strength: 5 ksi 

 Design specimen length: 18 ft 

 Pouring date: 06/27/2008 

 Testing date: 10/30/2008 

 

Parameters: 

 Specimen length: 18’ 1 1/2” 

 Initial out-of-plumbness: Uxo = 0.40” / Uyo = -0.87” 

 Steel yielding stress: Fy = 47.6 ksi 

 Steel ultimate stress: Fu = 68.3 ksi 

 Concrete strength at the 28th day: fc’ = 5.5 ksi 

 Concrete strength at the testing day: fc = 5.8 ksi 

 Concrete Young’s modulus: Ec = 4000 ksi 

 Concrete tensile strength: ft = 1.1 ksi 

 

 
Figure B.16. Specimen 3C20-18-5 
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Table B.3. Load protocol summary for the specimen 3C20-18-5 

LC1 - Incremental compression loading in three cycles until the maximum load is reached. The 

top is forced to be free at all the time. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 max P 

2 Fx = 0 Fy = 0 Uz ↑ Mx = 0 My = 0 Rz = 0 P = 0 

3 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 max P 

4 Fx = 0 Fy = 0 Uz ↑ Mx = 0 My = 0 Rz = 0 P = 0 

5 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 max P 

6 Fx = 0 Fy = 0 Uz ↑ Mx = 0 My = 0 Rz = 0 P = 0 

 

LC2a - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 1000 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy ↑ P = 1000k Mx = 0 My = 0 Rz = 0 +F peak 

2 Ux ↑ Uy ↓ P = 1000k Mx = 0 My = 0 Rz = 0 -F peak 

3 Ux ↓ Uy ↑ P = 1000k Mx = 0 My = 0 Rz = 0 +F peak 

4 Ux ↑ Uy ↓ P = 1000k Mx = 0 My = 0 Rz = 0 -F peak 

5 Ux ↑ Uy ↓ P = 1000k Mx = 0 My = 0 Rz = 0 Uz = 0 

 

LC2b - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 500 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy ↑ P = 500k Mx = 0 My = 0 Rz = 0 +F peak 

2 Ux ↑ Uy ↓ P = 500k Mx = 0 My = 0 Rz = 0 -F peak 

3 Ux ↓ Uy ↑ P = 500k Mx = 0 My = 0 Rz = 0 +F peak 

4 Ux ↑ Uy ↓ P = 500k Mx = 0 My = 0 Rz = 0 -F peak 

5 Ux ↑ Uy ↓ P = 500k Mx = 0 My = 0 Rz = 0 Uz = 0 

 

LC3 - Cyclic biaxial lateral displacements (16 probes with diamond shape) with constant 

compression force (-Fz = P = 1250, 750 and 250 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 1250k Mx = 0 My = 0 Rz = 0 F peak at 

each of the 

16 probes 

2 Ux ↕ Uy ↕ P = 750k Mx = 0 My = 0 Rz = 0 

3 Ux ↕ Uy ↕ P = 250k Mx = 0 My = 0 Rz = 0 

 

LC4 - Torsion The top was twisted in displacement control. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux = 0 Uy = 0 P = 0 Rx = 0 Ry = 0 Rz ↕ +/-max. twist 

2 Ux = 0 Uy = 0 P = 500k Rx = 0 Ry = 0 Rz ↕ +/-max. twist 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Initial deflected shape Maximum lateral displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.17. Experimental results from LC1 in the specimen 3C20-18-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.18. Experimental results from LC2a in the specimen 3C20-18-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.19. Experimental results from LC2b in the specimen 3C20-18-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.20. Experimental results from LC3a in the specimen 3C20-18-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.21. Experimental results from LC3b in the specimen 3C20-18-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.22. Experimental results from LC3c in the specimen 3C20-18-5 
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Twisting Angle vs. Time Torsion Moment vs. Time 

  
Axial Force vs. Time Torsion Moment vs. Twisting Angle 

Figure B.23. Experimental results from LC4a in the specimen 3C20-18-5 

  
Twisting Angle vs. Time Torsion Moment vs. Time 

  
Axial Force vs. Time Torsion Moment vs. Twisting Angle 

Figure B.24. Experimental results from LC4b in the specimen 3C20-18-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.25. Experimental results from LC4c in the specimen 3C20-18-5 
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B.4.  Specimen 4Rw-18-5 

Description: 

 Specimen number: 4 

 Composite Cross-section: RCFT 

 Steel cross-section: HSS20x12x0.25 

 Design concrete strength: 5 ksi 

 Design specimen length: 18 ft 

 Pouring date: 06/27/2008 

 Testing date: 11/12/2008 

 

Parameters: 

 Specimen length: 18’ 2” 

 Initial out-of-plumbness: Uxo = 1.34” / Uyo = 0.20” 

 Steel yielding stress: Fy = 53.0 ksi 

 Steel ultimate stress: Fu = 72.8 ksi 

 Concrete strength at the 28th day: fc’ = 5.5 ksi 

 Concrete strength at the testing day: fc = 5.9 ksi 

 Concrete Young’s modulus: Ec = 4000 ksi 

 Concrete tensile strength: ft = 1.1 ksi 

 

 
Figure B.26. Specimen 4Rw-18-5 
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Table B.4. Load protocol summary for the specimen 4Rw-18-5 

LC1 - Incremental compression loading in three cycles until the maximum load is reached. The 

top is forced to be free at X asnd fixed at Y. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx = 0 Uy = 0 Uz ↓ Rx = 0 My = 0 Rz = 0 max P 

2 Fx = 0 Uy = 0 Uz ↑ Rx = 0 My = 0 Rz = 0 P = 0 

3 Fx = 0 Uy = 0 Uz ↓ Rx = 0 My = 0 Rz = 0 max P 

4 Fx = 0 Uy = 0 Uz ↑ Rx = 0 My = 0 Rz = 0 P = 0 

 

LC2a - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 600 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy = 0 P = 600k Rx = 0 My = 0 Rz = 0 +F peak 

2 Ux ↑ Uy = 0 P = 600k Rx = 0 My = 0 Rz = 0 -F peak 

3 Ux ↓ Uy = 0 P = 600k Rx = 0 My = 0 Rz = 0 +F peak 

4 Ux ↑ Uy = 0 P = 600k Rx = 0 My = 0 Rz = 0 -F peak 

5 Ux ↑ Uy = 0 P = 600k Rx = 0 My = 0 Rz = 0 Uz = 0 

 

LC2b - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 300 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy = 0 P = 300k Rx = 0 My = 0 Rz = 0 +F peak 

2 Ux ↑ Uy = 0 P = 300k Rx = 0 My = 0 Rz = 0 -F peak 

3 Ux ↓ Uy = 0 P = 300k Rx = 0 My = 0 Rz = 0 +F peak 

4 Ux ↑ Uy = 0 P = 300k Rx = 0 My = 0 Rz = 0 -F peak 

5 Ux ↑ Uy = 0 P = 300k Rx = 0 My = 0 Rz = 0 Uz = 0 

 

LC3 - Cyclic biaxial lateral displacements (16 probes with diamond shape) with constant 

compression force (-Fz = P = 750, 450 and 150 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 750k Mx = 0 My = 0 Rz = 0 F peak at 

each of the 

16 probes 

2 Ux ↕ Uy ↕ P = 450k Mx = 0 My = 0 Rz = 0 

3 Ux ↕ Uy ↕ P = 150k Mx = 0 My = 0 Rz = 0 

 

LC4 - Torsion The top was twisted in displacement control. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux = 0 Uy = 0 P = 0 Rx = 0 Ry = 0 Rz ↕ +/-max. twist 

2 Ux = 0 Uy = 0 P = 430k Rx = 0 Ry = 0 Rz ↕ +/-max. twist 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Initial deflected shape Maximum lateral displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.27. Experimental results from LC1 in the specimen 4Rw-18-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.28. Experimental results from LC2a in the specimen 4Rw-18-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.29. Experimental results from LC2b in the specimen 4Rw-18-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.30. Experimental results from LC3a in the specimen 4Rw-18-5 



540 

  
Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.31. Experimental results from LC3b in the specimen 4Rw-18-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.32. Experimental results from LC3c in the specimen 4Rw-18-5 
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Twisting Angle vs. Time Torsion Moment vs. Time 

  
Axial Force vs. Time Torsion Moment vs. Twisting Angle 

Figure B.33. Experimental results from LC4a in the specimen 4Rw-18-5 

  
Twisting Angle vs. Time Torsion Moment vs. Time 

  
Axial Force vs. Time Torsion Moment vs. Twisting Angle 

Figure B.34. Experimental results from LC4b in the specimen 4Rw-18-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
Axial force vs. base moments X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.35. Experimental results from LC4c in the specimen 4Rw-18-5 
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B.5.  Specimen 5Rs-18-5 

Description: 

 Specimen number: 5 

 Composite Cross-section: RCFT 

 Steel cross-section: HSS20x12x0.25 

 Design concrete strength: 5 ksi 

 Design specimen length: 18 ft 

 Pouring date: 06/27/2008 

 Testing date: 11/21/2008 

 

Parameters: 

 Specimen length: 18’ 2” 

 Initial out-of-plumbness: Uxo = -0.08” / Uyo = 0.45” 

 Steel yielding stress: Fy = 53.0 ksi 

 Steel ultimate stress: Fu = 72.8 ksi 

 Concrete strength at the 28th day: fc’ = 5.5 ksi 

 Concrete strength at the testing day: fc = 5.9 ksi 

 Concrete Young’s modulus: Ec = 4000 ksi 

 Concrete tensile strength: ft = 1.1 ksi 

 

 
Figure B.36. Specimen 5Rs-18-5 
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Table B.5. Load protocol summary for the specimen 5Rs-18-5 

LC1 - Incremental compression loading in three cycles until the maximum load is reached. The 

top is forced to be free at X asnd fixed at Y. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx = 0 Uy = 0 Uz ↓ Rx = 0 My = 0 Rz = 0 max P 

2 Fx = 0 Uy = 0 Uz ↑ Rx = 0 My = 0 Rz = 0 P = 0 

3 Fx = 0 Uy = 0 Uz ↓ Rx = 0 My = 0 Rz = 0 max P 

4 Fx = 0 Uy = 0 Uz ↑ Rx = 0 My = 0 Rz = 0 P = 0 

 

LC2a - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 1000 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy = 0 P = 1000k Rx = 0 My = 0 Rz = 0 +F peak 

2 Ux ↑ Uy = 0 P = 1000k Rx = 0 My = 0 Rz = 0 -F peak 

3 Ux ↓ Uy = 0 P = 1000k Rx = 0 My = 0 Rz = 0 +F peak 

4 Ux ↑ Uy = 0 P = 1000k Rx = 0 My = 0 Rz = 0 -F peak 

5 Ux ↑ Uy = 0 P = 1000k Rx = 0 My = 0 Rz = 0 Uz = 0 

 

LC2b - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 500 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy = 0 P = 500k Rx = 0 My = 0 Rz = 0 +F peak 

2 Ux ↑ Uy = 0 P = 500k Rx = 0 My = 0 Rz = 0 -F peak 

3 Ux ↓ Uy = 0 P = 500k Rx = 0 My = 0 Rz = 0 +F peak 

4 Ux ↑ Uy = 0 P = 500k Rx = 0 My = 0 Rz = 0 -F peak 

5 Ux ↑ Uy = 0 P = 500k Rx = 0 My = 0 Rz = 0 Uz = 0 

 

LC3 - Cyclic biaxial lateral displacements (8 probes with diamond shape) with constant 

compression force (-Fz = P = 750 and 250 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 750k Mx = 0 My = 0 Rz = 0 F peak at 

each of the 

8 probes 2 Ux ↕ Uy ↕ P = 250k Mx = 0 My = 0 Rz = 0 

 

LC4 - Torsion The top was twisted in displacement control. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux = 0 Uy = 0 P = 0 Rx = 0 Ry = 0 Rz ↕ +/-max. twist 

2 Ux = 0 Uy = 0 P = 450k Rx = 0 Ry = 0 Rz ↕ +/-max. twist 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Initial deflected shape Maximum lateral displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.37. Experimental results from LC1 in the specimen 5Rs-18-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.38. Experimental results from LC2 in the specimen 5Rs-18-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.39. Experimental results from LC3a in the specimen 5Rs-18-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.40. Experimental results from LC3b in the specimen 5Rs-18-5 
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Twisting Angle vs. Time Torsion Moment vs. Time 

  
Axial Force vs. Time Torsion Moment vs. Twisting Angle 

Figure B.41. Experimental results from LC4a in the specimen 5Rs-18-5 

  
Twisting Angle vs. Time Torsion Moment vs. Time 

  
Axial Force vs. Time Torsion Moment vs. Twisting Angle 

Figure B.42. Experimental results from LC4b in the specimen 5Rs-18-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.43. Experimental results from LC4c in the specimen 5Rs-18-5 
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B.6.  Specimen 6C12-18-12 

Description: 

 Specimen number: 6 

 Composite Cross-section: CCFT 

 Steel cross-section: HSS12.75x0.25 

 Design concrete strength: 12 ksi 

 Design specimen length: 18 ft 

 Pouring date: 09/17/2008 

 Testing date: 12/04/2008 

 

Parameters: 

 Specimen length: 18’ 1/2” 

 Initial out-of-plumbness: Uxo = 0.36” / Uyo = -0.24” 

 Steel yielding stress: Fy = 48.9 ksi 

 Steel ultimate stress: Fu = 64.7 ksi 

 Concrete strength at the 28th day: fc’ = 12.7 ksi 

 Concrete strength at the testing day: fc = 13.2 ksi 

 Concrete Young’s modulus: Ec = 6070 ksi 

 Concrete tensile strength: ft = 1.65 ksi 

 

 
Figure B.44. Specimen 6C12-18-12 
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Table B.6. Load protocol summary for the specimen 6C12-18-12 

LC1 - Incremental compression loading in three cycles until the maximum load is reached. The 

top is forced to be free at all the time. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 max P 

2 Fx = 0 Fy = 0 Uz ↑ Mx = 0 My = 0 Rz = 0 P = 0 

3 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 max P 

4 Fx = 0 Fy = 0 Uz ↑ Mx = 0 My = 0 Rz = 0 P = 0 

 

LC2a - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 300 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy ↑ P = 300k Mx = 0 My = 0 Rz = 0 +F peak 

2 Ux ↑ Uy ↓ P = 300k Mx = 0 My = 0 Rz = 0 -F peak 

3 Ux ↓ Uy ↑ P = 300k Mx = 0 My = 0 Rz = 0 +F peak 

4 Ux ↑ Uy ↓ P = 300k Mx = 0 My = 0 Rz = 0 -F peak 

5 Ux ↑ Uy ↓ P = 300k Mx = 0 My = 0 Rz = 0 Uz = 0 

 

LC2b - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 150 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy ↑ P = 150k Mx = 0 My = 0 Rz = 0 +F peak 

2 Ux ↑ Uy ↓ P = 150k Mx = 0 My = 0 Rz = 0 -F peak 

3 Ux ↓ Uy ↑ P = 150k Mx = 0 My = 0 Rz = 0 +F peak 

4 Ux ↑ Uy ↓ P = 150k Mx = 0 My = 0 Rz = 0 -F peak 

5 Ux ↑ Uy ↓ P = 150k Mx = 0 My = 0 Rz = 0 Uz = 0 

 

LC3 - Cyclic biaxial lateral displacements (8 probes with diamond shape) with constant 

compression force (-Fz = P = 375, 225 and 75 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 375k Mx = 0 My = 0 Rz = 0 F peak at 

each of the 

8 probes 

2 Ux ↕ Uy ↕ P = 225k Mx = 0 My = 0 Rz = 0 

3 Ux ↕ Uy ↕ P = 75k Mx = 0 My = 0 Rz = 0 

 

LC4 - Torsion The top was twisted in displacement control. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux = 0 Uy = 0 P = 0 Rx = 0 Ry = 0 Rz ↕ +/-max. twist 

2 Ux = 0 Uy = 0 P = 380k Rx = 0 Ry = 0 Rz ↕ +/-max. twist 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Initial deflected shape Maximum lateral displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.45.  Experimental results from LC1 in the specimen 6C12-18-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.46. Experimental results from LC2a in the specimen 6C12-18-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.47. Experimental results from LC2b in the specimen 6C12-18-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.48. Experimental results from LC3a in the specimen 6C12-18-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.49. Experimental results from LC3b in the specimen 6C12-18-12 



559 

  
Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.50. Experimental results from LC3c in the specimen 6C12-18-12 
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Twisting Angle vs. Time Torsion Moment vs. Time 

  
Axial Force vs. Time Torsion Moment vs. Twisting Angle 

Figure B.51. Experimental results from LC4a in the specimen 6C12-18-12 

  
Twisting Angle vs. Time Torsion Moment vs. Time 

  
Axial Force vs. Time Torsion Moment vs. Twisting Angle 

Figure B.52. Experimental results from LC4b in the specimen 6C12-18-12 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.53. Experimental results from LC4c in the specimen 6C12-18-12 
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B.7.  Specimen 7C20-18-12 

Description: 

 Specimen number: 7 

 Composite Cross-section: CCFT 

 Steel cross-section: HSS20x0.25 

 Design concrete strength: 12 ksi 

 Design specimen length: 18 ft 

 Pouring date: 09/17/2008 

 Testing date: 12/10/2008 

 

Parameters: 

 Specimen length: 18’ 1 7/8” 

 Initial out-of-plumbness: Uxo = -0.47” / Uyo = -0.86” 

 Steel yielding stress: Fy = 47.6 ksi 

 Steel ultimate stress: Fu = 68.3 ksi 

 Concrete strength at the 28th day: fc’ = 12.7 ksi 

 Concrete strength at the testing day: fc = 13.2 ksi 

 Concrete Young’s modulus: Ec = 6070 ksi 

 Concrete tensile strength: ft = 1.65 ksi 

 

 
Figure B.54. Specimen 7C20-18-12 
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Table B.7. Load protocol summary for the specimen 7C20-18-12 

LC1 - Incremental compression loading in three cycles until the maximum load is reached. The 

top is forced to be free at all the time. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 max P 

2 Fx = 0 Fy = 0 Uz ↑ Mx = 0 My = 0 Rz = 0 P = 0 

3 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 max P 

4 Fx = 0 Fy = 0 Uz ↑ Mx = 0 My = 0 Rz = 0 P = 0 

 

LC2a - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 1000 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy ↑ P = 1000k Mx = 0 My = 0 Rz = 0 +F peak 

2 Ux ↑ Uy ↓ P = 1000k Mx = 0 My = 0 Rz = 0 -F peak 

3 Ux ↓ Uy ↑ P = 1000k Mx = 0 My = 0 Rz = 0 +F peak 

4 Ux ↑ Uy ↓ P = 1000k Mx = 0 My = 0 Rz = 0 -F peak 

5 Ux ↑ Uy ↓ P = 1000k Mx = 0 My = 0 Rz = 0 Uz = 0 

 

LC2b - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 500 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy ↑ P = 500k Mx = 0 My = 0 Rz = 0 +F peak 

2 Ux ↑ Uy ↓ P = 500k Mx = 0 My = 0 Rz = 0 -F peak 

3 Ux ↓ Uy ↑ P = 500k Mx = 0 My = 0 Rz = 0 +F peak 

4 Ux ↑ Uy ↓ P = 500k Mx = 0 My = 0 Rz = 0 -F peak 

5 Ux ↑ Uy ↓ P = 500k Mx = 0 My = 0 Rz = 0 Uz = 0 

 

LC3 - Cyclic biaxial lateral displacements (8 shape) with constant compression force (-Fz = P = 

1250 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 1250k Mx = 0 My = 0 Rz = 0 +/-1% drift 

2 Ux ↕ Uy ↕ P = 1250k Mx = 0 My = 0 Rz = 0 +/-3% drift 

3 Ux ↕ Uy ↕ P = 1250k Mx = 0 My = 0 Rz = 0 +/-5% drift 

 

LC4 - Torsion The top was twisted in displacement control. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux = 0 Uy = 0 P = 0 Rx = 0 Ry = 0 Rz ↕ +max. twist 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Initial deflected shape Maximum lateral displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.55. Experimental results from LC1 in the specimen 7C20-18-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.56. Experimental results from LC2 in the specimen 7C20-18-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.57. Experimental results from LC3 in the specimen 7C20-18-12 
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B.8.  Specimen 8Rw-18-12 

Description: 

 Specimen number: 8 

 Composite Cross-section: RCFT 

 Steel cross-section: HSS20x12x0.3125 

 Design concrete strength: 12 ksi 

 Design specimen length: 18 ft 

 Pouring date: 09/17/2008 

 Testing date: 12/18/2008 

 

Parameters: 

 Specimen length: 18’ 2 5/8” 

 Initial out-of-plumbness: Uxo = 1.81” / Uyo = -0.63” 

 Steel yielding stress: Fy = 53.0 ksi 

 Steel ultimate stress: Fu = 72.8 ksi 

 Concrete strength at the 28th day: fc’ = 12.7 ksi 

 Concrete strength at the testing day: fc = 13.3 ksi 

 Concrete Young’s modulus: Ec = 6070 ksi 

 Concrete tensile strength: ft = 1.65 ksi 

 

 
Figure B.58. Specimen 8Rw-18-12 
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Table B.8. Load protocol summary for the specimen 8Rw-18-12 

LC1 - Incremental compression loading in two cycles until the maximum load is reached. The 

top is forced to be free at X (Kx=2) and fixed at Y (Ky=0.5). 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx = 0 Uy = 0 Uz ↓ Rx = 0 My = 0 Rz = 0 max P 

2 Fx = 0 Uy = 0 Uz ↑ Rx = 0 My = 0 Rz = 0 P = 0 

3 Fx = 0 Uy = 0 Uz ↓ Rx = 0 My = 0 Rz = 0 max P 

4 Fx = 0 Uy = 0 Uz ↑ Rx = 0 My = 0 Rz = 0 P = 0 

 

LC2a - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 600 

kips). The top was forced to have zero moments in Y and fixed rotation in X. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy = 0 P = 600k Rx = 0 My = 0 Rz = 0 +F peak 

2 Ux ↑ Uy = 0 P = 600k Rx = 0 My = 0 Rz = 0 -F peak 

3 Ux ↓ Uy = 0 P = 600k Rx = 0 My = 0 Rz = 0 +F peak 

4 Ux ↑ Uy = 0 P = 600k Rx = 0 My = 0 Rz = 0 -F peak 

5 Ux ↑ Uy = 0 P = 600k Rx = 0 My = 0 Rz = 0 Uz = 0 

 

LC2b - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 300 

kips). The top was forced to have zero moments in Y and fixed rotation in X. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy = 0 P = 300k Rx = 0 My = 0 Rz = 0 +F peak 

2 Ux ↑ Uy = 0 P = 300k Rx = 0 My = 0 Rz = 0 -F peak 

3 Ux ↓ Uy = 0 P = 300k Rx = 0 My = 0 Rz = 0 +F peak 

4 Ux ↑ Uy = 0 P = 300k Rx = 0 My = 0 Rz = 0 -F peak 

5 Ux ↑ Uy = 0 P = 300k Rx = 0 My = 0 Rz = 0 Uz = 0 

 

LC3a - Cyclic biaxial lateral displacements (8 shape) with constant compression force (-Fz = P = 

800 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 800k Mx = 0 My = 0 Rz = 0 +/-1% drift 

2 Ux ↕ Uy ↕ P = 800k Mx = 0 My = 0 Rz = 0 +/-2% drift 

3 Ux ↕ Uy ↕ P = 800k Mx = 0 My = 0 Rz = 0 +/-3% drift 

4 Ux ↕ Uy ↕ P = 800k Mx = 0 My = 0 Rz = 0 +/-4% drift 

5 Ux ↕ Uy ↕ P = 800k Mx = 0 My = 0 Rz = 0 +/-5% drift 

 

LC4 - Torsion The top was twisted in displacement control. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux = 0 Uy = 0 P = 0 Rx = 0 Ry = 0 Rz ↕ +/-max. twist 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Initial deflected shape Maximum lateral displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.59. Experimental results from LC1 in the specimen 8Rw-18-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.60. Experimental results from LC2a in the specimen 8Rw-18-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.61. Experimental results from LC2b in the specimen 8Rw-18-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.62. Experimental results from LC3a in the specimen 8Rw-18-12 
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Twisting Angle vs. Time Torsion Moment vs. Time 

  
Axial Force vs. Time Torsion Moment vs. Twisting Angle 

Figure B.63. Experimental results from LC4 in the specimen 8Rw-26-12 

  
Twisting Angle vs. Time Torsion Moment vs. Time 

  
Axial Force vs. Time Torsion Moment vs. Twisting Angle 

Figure B.64. Experimental results from LC4 in the specimen 8Rw-18-12 
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B.9.  Specimen 9Rs-18-12 

Description: 

 Specimen number: 9 

 Composite Cross-section: RCFT 

 Steel cross-section: HSS20x12x0.3125 

 Design concrete strength: 12 ksi 

 Design specimen length: 18 ft 

 Pouring date: 09/17/2008 

 Testing date: 12/29/2008 

 

Parameters: 

 Specimen length: 18’ 2 5/8” 

 Initial out-of-plumbness: Uxo = 0.82” / Uyo = -0.24” 

 Steel yielding stress: Fy = 53.0 ksi 

 Steel ultimate stress: Fu = 72.8 ksi 

 Concrete strength at the 28th day: fc’ = 12.7 ksi 

 Concrete strength at the testing day: fc = 13.3 ksi 

 Concrete Young’s modulus: Ec = 6070 ksi 

 Concrete tensile strength: ft = 1.65 ksi 

 

 
Figure B.65. Specimen 9Rs-18-12 
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Table B.9. Load protocol summary for the specimen 9Rs-18-12 

 

LC1 - Incremental compression loading in two cycles until the maximum load is reached. The 

top is forced to be free at X (Kx=2) and fixed at Y (Ky=0.5). 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx = 0 Uy = 0 Uz ↓ Rx = 0 My = 0 Rz = 0 max P 

2 Fx = 0 Uy = 0 Uz ↑ Rx = 0 My = 0 Rz = 0 P = 0 

3 Fx = 0 Uy = 0 Uz ↓ Rx = 0 My = 0 Rz = 0 max P 

4 Fx = 0 Uy = 0 Uz ↑ Rx = 0 My = 0 Rz = 0 P = 0 

 

LC2a - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 1200 

kips). The top was forced to have zero moments in Y and fixed rotation in X. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy = 0 P = 1200k Rx = 0 My = 0 Rz = 0 +F peak 

2 Ux ↑ Uy = 0 P = 1200k Rx = 0 My = 0 Rz = 0 -F peak 

3 Ux ↓ Uy = 0 P = 1200k Rx = 0 My = 0 Rz = 0 +F peak 

4 Ux ↑ Uy = 0 P = 1200k Rx = 0 My = 0 Rz = 0 -F peak 

5 Ux ↑ Uy = 0 P = 1200k Rx = 0 My = 0 Rz = 0 Uz = 0 

 

LC2b - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 400 

kips). The top was forced to have zero moments in Y and fixed rotation in X. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +F peak 

2 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -F peak 

3 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +F peak 

4 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -F peak 

5 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 Uz = 0 

 

LC3a - Cyclic biaxial lateral displacements with constant compression force (-Fz = P = 800 kips), 

and a set of 6 probes and several subprobeas each. The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 800k Mx = 0 My = 0 Rz = 0 Probe 1 

2 Ux ↕ Uy ↕ P = 800k Mx = 0 My = 0 Rz = 0 Probe 2 

3 Ux ↕ Uy ↕ P = 800k Mx = 0 My = 0 Rz = 0 Probes 3 

4 Ux ↕ Uy ↕ P = 800k Mx = 0 My = 0 Rz = 0 Probe 4 

5 Ux ↕ Uy ↕ P = 800k Mx = 0 My = 0 Rz = 0 Probe 5 

6 Ux ↕ Uy ↕ P = 800k Mx = 0 My = 0 Rz = 0 Probe 6 

 

  



576 

  
Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Initial deflected shape Maximum lateral displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.66. Experimental results from LC1 in the specimen 9Rs-18-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.67. Experimental results from LC2 in the specimen 9Rs-18-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.68. Experimental results from LC3a in the specimen 9Rs-18-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.69. Experimental results from LC3b in the specimen 9Rs-18-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.70. Experimental results from LC3c in the specimen 9Rs-18-12 
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B.10.  Specimen 10-C12-26-5 

Description: 

 Specimen number: 10 

 Composite Cross-section: CCFT 

 Steel cross-section: HSS12.75x0.25 

 Design concrete strength: 5 ksi 

 Design specimen length: 26 ft 

 Pouring date: 03/27/2009 

 Testing date: 05/18/2009 

 

Parameters: 

 Specimen length: 26’ 1” 

 Initial out-of-plumbness: Uxo = 0.79” / Uyo = -0.63” 

 Steel yielding stress: Fy = 48.6 ksi 

 Steel ultimate stress: Fu = 68.1 ksi 

 Concrete strength at the 28th day: fc’ = 7.3 ksi 

 Concrete strength at the testing day: fc = 7.9 ksi 

 Concrete Young’s modulus: Ec = 5000 ksi 

 Concrete tensile strength: ft = 0.6 ksi 

 

 
Figure B.71. Specimen C12-26-5 
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Table B.10. Load protocol summary for the specimen 10C12-26-5 

 

LC1 - Incremental compression loading in two cycles until the maximum load is reached. The 

top is forced to be free at all the time. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 max P 

2 Fx = 0 Fy = 0 Uz ↑ Mx = 0 My = 0 Rz = 0 P = 0 

3 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 max P 

4 Fx = 0 Fy = 0 Uz ↑ Mx = 0 My = 0 Rz = 0 P = 0 

5 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 P = 200k 

 

LC2a - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 200 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↓ Uy ↑ P = 200k Mx = 0 My = 0 Rz = 0 -1% drift 

2 Ux ↑ Uy ↓ P = 200k Mx = 0 My = 0 Rz = 0 +2% drift 

3 Ux ↓ Uy ↑ P = 200k Mx = 0 My = 0 Rz = 0 -2% drift 

4 Ux ↑ Uy ↓ P = 200k Mx = 0 My = 0 Rz = 0 +3% drift 

5 Ux ↓ Uy ↑ P = 200k Mx = 0 My = 0 Rz = 0 -3% drift 

6 Ux ↑ Uy ↓ P = 200k Mx = 0 My = 0 Rz = 0 Uz = 0 

 

LC2b - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 100 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 100k Mx = 0 My = 0 Rz = 0 +/-1% drift 

2 Ux ↕ Uy ↕ P = 100k Mx = 0 My = 0 Rz = 0 +/-2% drift 

3 Ux ↕ Uy ↕ P = 100k Mx = 0 My = 0 Rz = 0 +/-3% drift 

4 Ux ↕ Uy ↕ P = 100k Mx = 0 My = 0 Rz = 0 +/-4% drift 

5 Ux ↕ Uy ↕ P = 100k Mx = 0 My = 0 Rz = 0 +/-5% drift 

6 Ux ↕ Uy ↕ P = 100k Mx = 0 My = 0 Rz = 0 Fz = 0 

 

LC3a - Cyclic biaxial lateral displacements (8 shape) with constant compression force (-Fz = P = 

150 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 150k Mx = 0 My = 0 Rz = 0 +/-1% drift 

2 Ux ↕ Uy ↕ P = 150k Mx = 0 My = 0 Rz = 0 +/-2% drift 

3 Ux ↕ Uy ↕ P = 150k Mx = 0 My = 0 Rz = 0 +/-3% drift 

4 Ux ↕ Uy ↕ P = 150k Mx = 0 My = 0 Rz = 0 +/-4% drift 
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LC3b - Cyclic biaxial lateral displacements (8 shape) with constant compression force (-Fz = P = 

50 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 50k Mx = 0 My = 0 Rz = 0 +/-1% drift 

2 Ux ↕ Uy ↕ P = 50k Mx = 0 My = 0 Rz = 0 +/-2% drift 

3 Ux ↕ Uy ↕ P = 50k Mx = 0 My = 0 Rz = 0 +/-3% drift 

4 Ux ↕ Uy ↕ P = 50k Mx = 0 My = 0 Rz = 0 +/-4% drift 

 

LC4a - Incremental compression loading until the maximum load is reached. The top is forced to 

have free translation and fixed rotation (K=1). 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx → 0 Fy → 0 Fz → 0 Mx = 0 My = 0 Rz = 0 Fx=Fy=0 

2 Fx = 0 Fy = 0 Uz ↓ Rx Ry Rz = 0 P=1000k 

3 Ux ↓ Uy ↓ P=1000k Rx Ry Rz = 0 Ux=Uy=max 

4 Ux ↑ Uy ↑ P=1000k Rx Ry Rz = 0 Fx=Fy=0 

5 Fx = 0 Fy = 0 Uz ↑ Rx Ry Rz = 0 Fz = P = 0 

 

LC4b - Cyclic uniaxial lateral displacements (4 corners) with constant compression force (-Fz = 

P = 300 kips). The top is forced to have free translation and fixed rotation (K=1). 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux= ↑ Uy ↑ P = 300k Rx Ry Rz = 0 max stroke 

2 Ux ↓ Uy ↓ P = 300k Rx Ry Rz = 0 max stroke 

3 Ux → 0 Uy → 0 P = 300k Rx Ry Rz = 0 Ux=Uy=0 

4 Ux ↑ Uy ↓ P = 300k Rx Ry Rz = 0 max stroke 

5 Ux ↓ Uy ↑ P = 300k Rx Ry Rz = 0 max stroke 

6 Ux → 0 Uy → 0 P = 300k Rx Ry Rz = 0 Ux=Uy=0 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Initial deflected shape Maximum lateral displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.72. Experimental results from LC1 in the specimen 10C12-26-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.73. Experimental results from LC2a in the specimen 10C12-26-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.74. Experimental results from LC2b in the specimen 10C12-26-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.75. Experimental results from LC3a in the specimen 10C12-26-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.76. Experimental results from LC3b in the specimen 10C12-26-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.77. Experimental results from LC4 in the specimen 10C12-26-5 



590 

B.11.  Specimen 11C20-26-5 

Description: 

 Specimen number: 11 

 Composite Cross-section: CCFT 

 Steel cross-section: HSS20x0.25 

 Design concrete strength: 5 ksi 

 Design specimen length: 26 ft 

 Pouring date: 03/27/2009 

 Testing date: 05/28/2009 

 

Parameters: 

 Specimen length: 26’ 2 3/4” 

 Initial out-of-plumbness: Uxo = 0.59” / Uyo = -2.12” 

 Steel yielding stress: Fy = 44.3 ksi 

 Steel ultimate stress: Fu = 69.2 ksi 

 Concrete strength at the 28th day: fc’ = 7.3 ksi 

 Concrete strength at the testing day: fc = 8.1 ksi 

 Concrete Young’s modulus: Ec = 5000 ksi 

 Concrete tensile strength: ft = 0.6 ksi 

 

 
Figure B.78. Specimen 11C20-26-5 
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Table B.11. Load protocol summary for the specimen 11C20-26-5 

 

 

LC1 - Incremental compression loading in two cycles until the maximum load is reached. The 

top is forced to be free at all the time. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 max P 

2 Fx = 0 Fy = 0 Uz ↑ Mx = 0 My = 0 Rz = 0 P = 0 

3 Ux → Uxo Uy → Uyo P = 0 Mx = 0 My = 0 Rz = 0 Uxo, Uyo 

4 Fx → 0 Fy → 0 P = 0 Mx = 0 My = 0 Rz = 0 Fx=Fy=0 

5 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 max P 

6 Fx = 0 Fy = 0 Uz ↑ Mx = 0 My = 0 Rz = 0 P = 0 

 

 

LC2a - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 600 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy ↓ P = 600k Mx = 0 My = 0 Rz = 0 +1% drift 

2 Ux ↓ Uy ↑ P = 600k Mx = 0 My = 0 Rz = 0 -1% drift 

3 Ux ↑ Uy ↓ P = 600k Mx = 0 My = 0 Rz = 0 +2% drift 

4 Ux ↓ Uy ↑ P = 600k Mx = 0 My = 0 Rz = 0 -2% drift 

5 Ux ↑ Uy ↓ P = 600k Mx = 0 My = 0 Rz = 0 +3% drift 

6 Ux ↓ Uy ↑ P = 600k Mx = 0 My = 0 Rz = 0 -3% drift 

7 Ux ↑ Uy ↓ P = 600k Mx = 0 My = 0 Rz = 0 +4% drift 

8 Ux ↓ Uy ↑ P = 600k Mx = 0 My = 0 Rz = 0 Uz = 0 

 

 

LC2b - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 300 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy ↓ P = 300k Mx = 0 My = 0 Rz = 0 +1% drift 

2 Ux ↓ Uy ↑ P = 300k Mx = 0 My = 0 Rz = 0 -1% drift 

3 Ux ↑ Uy ↓ P = 300k Mx = 0 My = 0 Rz = 0 +2% drift 

4 Ux ↓ Uy ↑ P = 300k Mx = 0 My = 0 Rz = 0 -2% drift 

5 Ux ↑ Uy ↓ P = 300k Mx = 0 My = 0 Rz = 0 +3% drift 

6 Ux ↓ Uy ↑ P = 300k Mx = 0 My = 0 Rz = 0 -3% drift 

7 Ux ↑ Uy ↓ P = 300k Mx = 0 My = 0 Rz = 0 +4% drift 

8 Ux ↓ Uy ↑ P = 300k Mx = 0 My = 0 Rz = 0 -4% drift 

9 Ux ↑ Uy ↓ P = 300k Mx = 0 My = 0 Rz = 0 + stroke 

10 Ux ↓ Uy ↑ P = 300k Mx = 0 My = 0 Rz = 0 Uz = 0 
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LC3a - Cyclic biaxial lateral displacements (8 shape) with constant compression force (-Fz = P = 

450 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 450k Mx = 0 My = 0 Rz = 0 +/-1% drift 

2 Ux ↕ Uy ↕ P = 450k Mx = 0 My = 0 Rz = 0 +/-2% drift 

3 Ux ↕ Uy ↕ P = 450k Mx = 0 My = 0 Rz = 0 +/-3% drift 

4 Ux ↕ Uy ↕ P = 450k Mx = 0 My = 0 Rz = 0 +/-4% drift 

 

LC3b - Cyclic biaxial lateral displacements (8 shape) with constant compression force (-Fz = P = 

150 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 150k Mx = 0 My = 0 Rz = 0 +/-1% drift 

2 Ux ↕ Uy ↕ P = 150k Mx = 0 My = 0 Rz = 0 +/-2% drift 

3 Ux ↕ Uy ↕ P = 150k Mx = 0 My = 0 Rz = 0 +/-3% drift 

4 Ux ↕ Uy ↕ P = 150k Mx = 0 My = 0 Rz = 0 +/-4% drift 

 

LC4a - Incremental compression loading until the maximum load is reached. The top is forced to 

be free at all the time. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx → 0 Fy → 0 Fz → 0 Mx = 0 My = 0 Rz = 0 Fx=Fy=0 

2 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 P = 0.8Pmax 

 

LC4b - Cyclic uniaxial lateral displacements (4 corners) with constant compression force (-Fz = 

P = 300, 375 and 425 kips). The top is forced to be free at all the time. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy ↑ P = 300k Mx = 0 My = 0 Rz = 0 max stroke 

2 Ux ↓ Uy ↓ P = 300k Mx = 0 My = 0 Rz = 0 max stroke 

3 Ux → 0 Uy → 0 P = 300k Mx = 0 My = 0 Rz = 0 Ux=Uy=0 

4 Ux ↑ Uy ↓ P = 375k Mx = 0 My = 0 Rz = 0 max stroke 

5 Ux ↓ Uy ↑ P = 425k Mx = 0 My = 0 Rz = 0 max stroke 

6 Ux → 0 Uy → 0 P = 425k Mx = 0 My = 0 Rz = 0 Ux=Uy=0 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Initial deflected shape Maximum lateral displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.79. Experimental results from LC1 in the specimen 11C20-26-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.80. Experimental results from LC2a in the specimen 11C20-26-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.81. Experimental results from LC2b in the specimen 11C20-26-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.82. Experimental results from LC3a in the specimen 11C20-26-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.83. Experimental results from LC3b in the specimen 11C20-26-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.84. Experimental results from LC4 in the specimen 11C20-26-5 
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B.12.  Specimen 12Rw-26-5 

Description: 

 Specimen number: 12 

 Composite Cross-section: RCFT 

 Steel cross-section: HSS20x12x0.25 

 Design concrete strength: 5 ksi 

 Design specimen length: 26 ft 

 Pouring date: 03/27/2009 

 Testing date: 06/04/2009 

 

Parameters: 

 Specimen length: 26’ 1 1/4” 

 Initial out-of-plumbness: Uxo = 0.63” / Uyo = 0.00” 

 Steel yielding stress: Fy = 58.9 ksi 

 Steel ultimate stress: Fu = 77.4 ksi 

 Concrete strength at the 28th day: fc’ = 7.3 ksi 

 Concrete strength at the testing day: fc = 8.2 ksi 

 Concrete Young’s modulus: Ec = 5000 ksi 

 Concrete tensile strength: ft = 0.6 ksi 

 

 
Figure B.85. Specimen 12Rw-26-5 
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Table B.12. Load protocol summary for the specimen 12Rw-26-5 

 

LC1 - Incremental compression loading in two cycles until the maximum load is reached. The 

top is forced to be free at X (Kx=2) and fixed at Y (Ky=0.5). 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx = 0 Uy = 0 Uz ↓ Rx = 0 My = 0 Rz = 0 max P 

2 Fx = 0 Uy = 0 Uz ↑ Rx = 0 My = 0 Rz = 0 P = 0 

3 Fx = 0 Uy = 0 Uz ↓ Rx = 0 My = 0 Rz = 0 max P 

4 Fx = 0 Uy = 0 Uz ↑ Rx = 0 My = 0 Rz = 0 P = 0 

 

 

LC2a - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 400 

kips). The top was forced to have zero moments in Y and fixed rotation in X. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +1% drift 

2 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -1% drift 

3 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +2% drift 

4 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -2% drift 

5 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +3% drift 

6 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -3% drift 

7 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +4% drift 

8 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -4% drift 

9 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +5% drift 

10 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -5% drift 

11 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 Uz = 0 

 

 

LC2b - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 200 

kips). The top was forced to have zero moments in Y and fixed rotation in X. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 +1% drift 

2 Ux ↓ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 -1% drift 

3 Ux ↑ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 +2% drift 

4 Ux ↓ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 -2% drift 

5 Ux ↑ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 +3% drift 

6 Ux ↓ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 -3% drift 

7 Ux ↑ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 +4% drift 

8 Ux ↓ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 -4% drift 

9 Ux ↑ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 +5% drift 

10 Ux ↓ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 -5% drift 

11 Ux ↓ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 Uz = 0 
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LC3a - Cyclic biaxial lateral displacements (8 shape) with constant compression force (-Fz = P = 

300 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 300k Mx = 0 My = 0 Rz = 0 +/-1% drift 

2 Ux ↕ Uy ↕ P = 300k Mx = 0 My = 0 Rz = 0 +/-2% drift 

3 Ux ↕ Uy ↕ P = 300k Mx = 0 My = 0 Rz = 0 +/-3% drift 

4 Ux ↕ Uy ↕ P = 300k Mx = 0 My = 0 Rz = 0 +/-4% drift 

 

LC3b - Cyclic biaxial lateral displacements (8 shape) with constant compression force (-Fz = P = 

500 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 500k Mx = 0 My = 0 Rz = 0 +/-1% drift 

2 Ux ↕ Uy ↕ P = 500k Mx = 0 My = 0 Rz = 0 +/-2% drift 

3 Ux ↕ Uy ↕ P = 500k Mx = 0 My = 0 Rz = 0 +/-3% drift 

4 Ux ↕ Uy ↕ P = 500k Mx = 0 My = 0 Rz = 0 +/-4% drift 

 

LC4a - Incremental compression loading until the maximum load is reached. The top is forced to 

be free at all the time. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx → 0 Fy → 0 Fz → 0 Mx = 0 My = 0 Rz = 0 Fx=Fy=0 

2 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 P = Pmax 

 

LC4b - Cyclic uniaxial lateral displacements (4 corners) with constant compression force (-Fz = 

P = 600 kips). The top is forced to be free at all the time. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy ↑ P = 600k Mx = 0 My = 0 Rz = 0 max stroke 

2 Ux ↓ Uy ↓ P = 600k Mx = 0 My = 0 Rz = 0 max stroke 

3 Ux → 0 Uy → 0 P = 600k Mx = 0 My = 0 Rz = 0 Ux=Uy=0 

4 Ux ↑ Uy ↓ P = 600k Mx = 0 My = 0 Rz = 0 max stroke 

5 Ux ↓ Uy ↑ P = 600k Mx = 0 My = 0 Rz = 0 max stroke 

6 Ux → 0 Uy → 0 P = 600k Mx = 0 My = 0 Rz = 0 Ux=Uy=0 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Initial deflected shape Maximum lateral displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.86.  Experimental results from LC1 in the specimen 12Rw-26-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.87. Experimental results from LC2a in the specimen 12Rw-26-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.88. Experimental results from LC2b in the specimen 12Rw-26-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.89. Experimental results from LC3a in the specimen 12Rw-26-5 



606 

  
Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.90. Experimental results from LC3b in the specimen 12Rw-26-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.91. Experimental results from LC4 in the specimen 12Rw-26-5 
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B.13.  Specimen 13Rs-26-5 

Description: 

 Specimen number: 13 

 Composite Cross-section: CCFT 

 Steel cross-section: HSS20x12x0.25 

 Design concrete strength: 5 ksi 

 Design specimen length: 26 ft 

 Pouring date: 03/27/2009 

 Testing date: 06/11/2009 

 

Parameters: 

 Specimen length: 26’ 1 3/4” 

 Initial out-of-plumbness: Uxo = 0.68” / Uyo = 0.00” 

 Steel yielding stress: Fy = 55.5 ksi 

 Steel ultimate stress: Fu = 73.2 ksi 

 Concrete strength at the 28th day: fc’ = 7.3 ksi 

 Concrete strength at the testing day: fc = 8.3 ksi 

 Concrete Young’s modulus: Ec = 5000 ksi 

 Concrete tensile strength: ft = 0.6 ksi 

 

 
Figure B.92. Specimen 13Rs-26-5 
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Table B.13. Load protocol summary for the specimen 13Rs-26-5 

 

 

LC1 - Incremental compression loading in two cycles until the maximum load is reached. The 

top is forced to be free at X (Kx=2) and fixed at Y (Ky=0.5). 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx = 0 Uy = 0 Uz ↓ Rx = 0 My = 0 Rz = 0 max P 

2 Fx = 0 Uy = 0 Uz ↑ Rx = 0 My = 0 Rz = 0 P = 0 

3 Fx = 0 Uy = 0 Uz ↓ Rx = 0 My = 0 Rz = 0 max P 

4 Fx = 0 Uy = 0 Uz ↑ Rx = 0 My = 0 Rz = 0 P = 0 

 

 

LC2a - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 400 

kips). The top was forced to have zero moments in Y and fixed rotation in X. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +1% drift 

2 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -1% drift 

3 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +2% drift 

4 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -2% drift 

5 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +3% drift 

6 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -3% drift 

7 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +4% drift 

8 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -4% drift 

9 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +5% drift 

10 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -5% drift 

11 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 Uz = 0 

 

 

LC2b - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 600 

kips). The top was forced to have zero moments in Y and fixed rotation in X. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy = 0 P = 600k Rx = 0 My = 0 Rz = 0 +1% drift 

2 Ux ↓ Uy = 0 P = 600k Rx = 0 My = 0 Rz = 0 -1% drift 

3 Ux ↑ Uy = 0 P = 600k Rx = 0 My = 0 Rz = 0 +2% drift 

4 Ux ↓ Uy = 0 P = 600k Rx = 0 My = 0 Rz = 0 -2% drift 

5 Ux ↑ Uy = 0 P = 600k Rx = 0 My = 0 Rz = 0 +3% drift 

6 Ux ↓ Uy = 0 P = 600k Rx = 0 My = 0 Rz = 0 -3% drift 

7 Ux ↑ Uy = 0 P = 600k Rx = 0 My = 0 Rz = 0 +4% drift 

8 Ux ↓ Uy = 0 P = 600k Rx = 0 My = 0 Rz = 0 -4% drift 

11 Ux ↓ Uy = 0 P = 600k Rx = 0 My = 0 Rz = 0 Uz = 0 
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LC3a - Cyclic biaxial lateral displacements (8 shape) with constant compression force (-Fz = P = 

300 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 300k Mx = 0 My = 0 Rz = 0 +/-1% drift 

2 Ux ↕ Uy ↕ P = 300k Mx = 0 My = 0 Rz = 0 +/-2% drift 

3 Ux ↕ Uy ↕ P = 300k Mx = 0 My = 0 Rz = 0 +/-3% drift 

4 Ux ↕ Uy ↕ P = 300k Mx = 0 My = 0 Rz = 0 +/-4% drift 

 

LC3b - Cyclic biaxial lateral displacements (8 shape) with constant compression force (-Fz = P = 

500 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 500k Mx = 0 My = 0 Rz = 0 +/-1% drift 

2 Ux ↕ Uy ↕ P = 500k Mx = 0 My = 0 Rz = 0 +/-2% drift 

3 Ux ↕ Uy ↕ P = 500k Mx = 0 My = 0 Rz = 0 +/-3% drift 

4 Ux ↕ Uy ↕ P = 500k Mx = 0 My = 0 Rz = 0 +/-4% drift 

 

LC4a - Incremental compression loading until the maximum load is reached. The top is forced to 

be free at X (Kx=2) and fixed at Y (Ky=0.5).. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx → 0 Fy → 0 Fz → 0 Mx = 0 My = 0 Rz = 0 Fx=Fy=0 

2 Fx = 0 Uy = 0 Uz ↓ Rx = 0 My = 0 Rz = 0 P = Pmax 

 

LC4b - Cyclic uniaxial lateral displacements (4 corners) with constant compression force (-Fz = 

P = 600 kips). The top is forced to be free at all the time. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy ↑ P = 600k Mx = 0 My = 0 Rz = 0 max stroke 

2 Ux ↓ Uy ↓ P = 600k Mx = 0 My = 0 Rz = 0 max stroke 

3 Ux → 0 Uy → 0 P = 600k Mx = 0 My = 0 Rz = 0 Ux=Uy=0 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Initial deflected shape Maximum lateral displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.93. Experimental results from LC1 in the specimen 13Rs-26-5 



612 

  
Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.94. Experimental results from LC2a in the specimen 13Rs-26-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.95. Experimental results from LC2b in the specimen 13Rs-26-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.96. Experimental results from LC3a in the specimen 13Rs-26-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.97. Experimental results from LC3b in the specimen 13Rs-26-5 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.98. Experimental results from LC4 in the specimen 13Rs-26-5 
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B.14.  Specimen 14C12-26-12 

Description: 

 Specimen number: 14 

 Composite Cross-section: CCFT 

 Steel cross-section: HSS12.75x0.25 

 Design concrete strength: 12 ksi 

 Design specimen length: 26 ft 

 Pouring date: 03/27/2009 

 Testing date: 06/16/2009 

 

Parameters: 

 Specimen length: 26’ 1 1/2” 

 Initial out-of-plumbness: Uxo = 0.12” / Uyo = -0.66” 

 Steel yielding stress: Fy = 55.5 ksi 

 Steel ultimate stress: Fu = 66.8 ksi 

 Concrete strength at the 28th day: fc’ = 11.5 ksi 

 Concrete strength at the testing day: fc = 11.6 ksi 

 Concrete Young’s modulus: Ec = 5800 ksi 

 Concrete tensile strength: ft = 0.76 ksi 

 

 
Figure B.99. Specimen 14C12-26-12 
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Table B.14. Load protocol summary for the specimen 14C12-26-12 

 

LC1 - Incremental compression loading in two cycles until the maximum load is reached. The 

top is forced to be free at all the time. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 P = 150k 

2 Fx = 0 Fy = 0 Uz ↑ Mx = 0 My = 0 Rz = 0 P = 0 

3 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 max P 

4 Fx = 0 Fy = 0 Uz ↑ Mx = 0 My = 0 Rz = 0 P = 0 

 

 

LC2a - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 100 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy ↓ P = 100k Mx = 0 My = 0 Rz = 0 +2% drift 

2 Ux ↓ Uy ↑ P = 100k Mx = 0 My = 0 Rz = 0 -2% drift 

3 Ux ↑ Uy ↓ P = 100k Mx = 0 My = 0 Rz = 0 +4% drift 

4 Ux ↓ Uy ↑ P = 100k Mx = 0 My = 0 Rz = 0 -4% drift 

5 Ux ↑ Uy ↓ P = 100k Mx = 0 My = 0 Rz = 0 +stroke 

6 Ux ↓ Uy ↑ P = 100k Mx = 0 My = 0 Rz = 0 -stroke 

7 Ux ↓ Uy ↑ P = 100k Mx = 0 My = 0 Rz = 0 Uz = 0 

 

 

LC2b - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 200 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy ↓ P = 200k Mx = 0 My = 0 Rz = 0 +2% drift 

2 Ux ↓ Uy ↑ P = 200k Mx = 0 My = 0 Rz = 0 -2% drift 

3 Ux ↑ Uy ↓ P = 200k Mx = 0 My = 0 Rz = 0 +4% drift 

4 Ux ↓ Uy ↑ P = 200k Mx = 0 My = 0 Rz = 0 -4% drift 

5 Ux ↓ Uy ↑ P = 200k Mx = 0 My = 0 Rz = 0 Uz = 0 

 

 

LC3a - Cyclic biaxial lateral displacements (8 shape) with constant compression force (-Fz = P = 

150 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 150k Mx = 0 My = 0 Rz = 0 +/-1% drift 

2 Ux ↕ Uy ↕ P = 150k Mx = 0 My = 0 Rz = 0 +/-2% drift 

3 Ux ↕ Uy ↕ P = 150k Mx = 0 My = 0 Rz = 0 +/-3% drift 

4 Ux ↕ Uy ↕ P = 150k Mx = 0 My = 0 Rz = 0 +/-4% drift 
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LC1’ - Incremental compression loading in two cycles until the maximum load is reached. The 

top is forced to have free displacement and fixed rotation at all the time. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx = 0 Fy = 0 Uz ↓ Rx = 0 Ry = 0 Rz = 0 max P 

2 Fx = 0 Fy = 0 Uz ↑ Rx = 0 Ry = 0 Rz = 0 P = 0 

 

LC2a’ - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 300 

kips). The top was forced to have fixed rotations. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy ↓ P = 300k Rx = 0 Ry = 0 Rz = 0 +2% drift 

2 Ux ↓ Uy ↑ P = 300k Rx = 0 Ry = 0 Rz = 0 -2% drift 

3 Ux ↑ Uy ↓ P = 300k Rx = 0 Ry = 0 Rz = 0 +4% drift 

4 Ux ↓ Uy ↑ P = 300k Rx = 0 Ry = 0 Rz = 0 -4% drift 

5 Ux ↑ Uy ↓ P = 300k Rx = 0 Ry = 0 Rz = 0 +stroke 

6 Ux ↓ Uy ↑ P = 300k Rx = 0 Ry = 0 Rz = 0 -stroke 

7 Ux ↓ Uy ↑ P = 300k Rx = 0 Ry = 0 Rz = 0 Uz = 0 

 

LC3a’ - Cyclic biaxial lateral displacements (8 shape) with constant compression force (-Fz = P = 

450 kips). The top was forced to have fixed rotations. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 450k Rx = 0 Ry = 0 Rz = 0 +/-1% drift 

2 Ux ↕ Uy ↕ P = 450k Rx = 0 Ry = 0 Rz = 0 +/-2% drift 

3 Ux ↕ Uy ↕ P = 450k Rx = 0 Ry = 0 Rz = 0 +/-3% drift 

4 Ux ↕ Uy ↕ P = 450k Rx = 0 Ry = 0 Rz = 0 +/-4% drift 

 

LC4a - Incremental compression loading until the maximum load is reached. The top is forced to 

have free displacement and fixed rotation at all the time. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx = 0 Fy = 0 Uz ↓ Rx = 0 Ry = 0 Rz = 0 max P 

2 Fx = 0 Fy = 0 Uz ↑ Rx = 0 Ry = 0 Rz = 0 P = 300k 

 

LC4b - Cyclic uniaxial lateral displacements (4 corners) with constant compression force (-Fz = 

P = 300 kips). The top is forced to to have fixed rotations. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy ↑ P = 300k Rx = 0 Ry = 0 Rz = 0 max stroke 

2 Ux ↓ Uy ↓ P = 300k Rx = 0 Ry = 0 Rz = 0 max stroke 

3 Ux → 0 Uy → 0 P = 300k Rx = 0 Ry = 0 Rz = 0 Ux=Uy=0 

4 Ux ↑ Uy ↓ P = 300k Rx = 0 Ry = 0 Rz = 0 max stroke 

5 Ux ↓ Uy ↑ P = 300k Rx = 0 Ry = 0 Rz = 0 max stroke 

6 Ux → 0 Uy → 0 P = 300k Rx = 0 Ry = 0 Rz = 0 Ux=Uy=0 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Initial deflected shape Maximum lateral displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.100. Experimental results from LC1 in the specimen 14C12-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.101. Experimental results from LC2a in the specimen 14C12-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.102. Experimental results from LC2b in the specimen 14C12-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.103. Experimental results from LC3a in the specimen 14C12-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.104. Experimental results from LC2a’ in the specimen 14C12-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.105. Experimental results from LC3a’ in the specimen 14C12-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.106. Experimental results from LC4 in the specimen 14C12-26-12 
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B.15.  Specimen 15C20-26-12 

Description: 

 Specimen number: 15 

 Composite Cross-section: CCFT 

 Steel cross-section: HSS20x0.25 

 Design concrete strength: 12 ksi 

 Design specimen length: 26 ft 

 Pouring date: 03/27/2009 

 Testing date: 06/29/2009 

 

Parameters: 

 Specimen length: 26’ 2” 

 Initial out-of-plumbness: Uxo = 0.24” / Uyo = 1.62” 

 Steel yielding stress: Fy = 42.5 ksi 

 Steel ultimate stress: Fu = 65.8 ksi 

 Concrete strength at the 28th day: fc’ = 11.5 ksi 

 Concrete strength at the testing day: fc = 11.6 ksi 

 Concrete Young’s modulus: Ec = 5800 ksi 

 Concrete tensile strength: ft = 0.76 ksi 

 

 

Figure B.107. Specimen 15C20-26-12 
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Table B.15. Load protocol summary for the specimen 15C20-26-12 

 

LC1 - Incremental compression loading in two cycles until the maximum load is reached. The 

top is forced to be free at all the time. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 max P 

2 Fx = 0 Fy = 0 Uz ↑ Mx = 0 My = 0 Rz = 0 P = 0 

3 Fx = 0 Fy = 0 Uz ↓ Mx = 0 My = 0 Rz = 0 max P 

4 Fx = 0 Fy = 0 Uz ↑ Mx = 0 My = 0 Rz = 0 P = 0 

 

 

LC2a - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 400 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy ↓ P = 400k Mx = 0 My = 0 Rz = 0 +/-1% drift 

2 Ux ↓ Uy ↑ P = 400k Mx = 0 My = 0 Rz = 0 +/-2% drift 

3 Ux ↑ Uy ↓ P = 400k Mx = 0 My = 0 Rz = 0 +/-3% drift 

4 Ux ↓ Uy ↑ P = 400k Mx = 0 My = 0 Rz = 0 +/-4% drift 

5 Ux ↑ Uy ↓ P = 400k Mx = 0 My = 0 Rz = 0 +/-5% drift 

6 Ux ↓ Uy ↑ P = 400k Mx = 0 My = 0 Rz = 0 +/-6% drift 

7 Ux ↓ Uy ↑ P = 400k Mx = 0 My = 0 Rz = 0 Uz = 0 

 

 

LC2b - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 800 

kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy ↓ P = 800k Mx = 0 My = 0 Rz = 0 +/-1% drift 

2 Ux ↓ Uy ↑ P = 800k Mx = 0 My = 0 Rz = 0 +/-2% drift 

3 Ux ↑ Uy ↓ P = 800k Mx = 0 My = 0 Rz = 0 +/-3% drift 

4 Ux ↓ Uy ↑ P = 800k Mx = 0 My = 0 Rz = 0 +/-4% drift 

5 Ux ↓ Uy ↑ P = 800k Mx = 0 My = 0 Rz = 0 Uz = 0 

 

 

LC3a - Cyclic biaxial lateral displacements (8 shape) with constant compression force (-Fz = P = 

200 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 200k Mx = 0 My = 0 Rz = 0 +/-1% drift 

2 Ux ↕ Uy ↕ P = 200k Mx = 0 My = 0 Rz = 0 +/-2% drift 

3 Ux ↕ Uy ↕ P = 200k Mx = 0 My = 0 Rz = 0 +/-3% drift 

4 Ux ↕ Uy ↕ P = 200k Mx = 0 My = 0 Rz = 0 +/-4% drift 
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LC3b - Cyclic biaxial lateral displacements (8 shape) with constant compression force (-Fz = P = 

600 kips). The top was forced to have fixed rotations. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 600k Rx = 0 Ry = 0 Rz = 0 +/-1% drift 

2 Ux ↕ Uy ↕ P = 600k Rx = 0 Ry = 0 Rz = 0 +/-2% drift 

3 Ux ↕ Uy ↕ P = 600k Rx = 0 Ry = 0 Rz = 0 +/-3% drift 

4 Ux ↕ Uy ↕ P = 600k Rx = 0 Ry = 0 Rz = 0 +/-4% drift 

 

LC4a - Incremental compression loading until the maximum load is reached. The top is forced to 

be free at all the time. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx = 0 Fy = 0 Uz ↓ Rx = 0 Ry = 0 Rz = 0 max P 

2 Fx = 0 Fy = 0 Uz ↑ Rx = 0 Ry = 0 Rz = 0 P = 500k 

 

LC4b - Cyclic uniaxial lateral displacements (4 corners) with constant compression force (-Fz = 

P = 300 kips). The top is forced to be free at all the time. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy ↑ P = 500k Rx = 0 Ry = 0 Rz = 0 max stroke 

2 Ux ↓ Uy ↓ P = 500k Rx = 0 Ry = 0 Rz = 0 max stroke 

3 Ux → 0 Uy → 0 P = 500k Rx = 0 Ry = 0 Rz = 0 Ux=Uy=0 

4 Ux ↑ Uy ↓ P = 500k Rx = 0 Ry = 0 Rz = 0 max stroke 

5 Ux ↓ Uy ↑ P = 500k Rx = 0 Ry = 0 Rz = 0 max stroke 

6 Ux → 0 Uy → 0 P = 500k Rx = 0 Ry = 0 Rz = 0 Ux=Uy=0 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Initial deflected shape Maximum lateral displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.108. Experimental results from LC1 in the specimen 15C20-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.109. Experimental results from LC2a in the specimen 15C20-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.110. Experimental results from LC2b in the specimen 15C20-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.111. Experimental results from LC3a in the specimen 15C20-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.112. Experimental results from LC3b in the specimen 15C20-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.113. Experimental results from LC4 in the specimen 15C20-26-12 



636 

B.16.  Specimen 16Rw-26-12 

Description: 

 Specimen number: 16 

 Composite Cross-section: RCFT 

 Steel cross-section: HSS20x12x0.25 

 Design concrete strength: 12 ksi 

 Design specimen length: 26 ft 

 Pouring date: 03/27/2009 

 Testing date: 07/07/2009 

 

Parameters: 

 Specimen length: 26’ 1 1/4” 

 Initial out-of-plumbness: Uxo = -0.58” / Uyo = 0.00” 

 Steel yielding stress: Fy = 55.2 ksi 

 Steel ultimate stress: Fu = 73.4 ksi 

 Concrete strength at the 28th day: fc’ = 11.5 ksi 

 Concrete strength at the testing day: fc = 11.7 ksi 

 Concrete Young’s modulus: Ec = 5800 ksi 

 Concrete tensile strength: ft = 0.76 ksi 

 

 
Figure B.114. Specimen 16Rw-26-12 
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Table B.16. Load protocol summary for the specimen 16Rw-26-12 

 

LC1 - Incremental compression loading in three cycles until the maximum load is reached. The 

top is forced to be free at X (Kx=2) and fixed at Y (Ky=0.5). 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx = 0 Uy = 0 Uz ↓ Rx = 0 My = 0 Rz = 0 max P 

2 Fx = 0 Uy = 0 Uz ↑ Rx = 0 My = 0 Rz = 0 P = 0 

3 Fx = 0 Uy = 0 Uz ↓ Rx = 0 My = 0 Rz = 0 max P 

4 Fx = 0 Uy = 0 Uz ↑ Rx = 0 My = 0 Rz = 0 P = 0 

5 Fx = 0 Uy = 0 Uz ↓ Rx = 0 My = 0 Rz = 0 max P 

6 Fx = 0 Uy = 0 Uz ↑ Rx = 0 My = 0 Rz = 0 P = 0 

 

LC2a - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 200 

kips). The top was forced to have zero moments in Y and fixed rotation in X. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 +1% drift 

2 Ux ↓ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 -1% drift 

3 Ux ↑ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 +2% drift 

4 Ux ↓ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 -2% drift 

5 Ux ↑ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 +3% drift 

6 Ux ↓ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 -3% drift 

7 Ux ↑ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 +4% drift 

8 Ux ↓ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 -4% drift 

9 Ux ↑ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 +5% drift 

10 Ux ↓ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 -5% drift 

11 Ux ↓ Uy = 0 P = 200k Rx = 0 My = 0 Rz = 0 Uz = 0 

 

LC2b - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 400 

kips). The top was forced to have zero moments in Y and fixed rotation in X. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +1% drift 

2 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -1% drift 

3 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +2% drift 

4 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -2% drift 

5 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +3% drift 

6 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -3% drift 

7 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +4% drift 

8 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -4% drift 

9 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +5% drift 

10 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -5% drift 

11 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 Uz = 0 
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LC3a - Cyclic biaxial lateral displacements (8 shape) with constant compression force (-Fz = P = 

300 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 300k Mx = 0 My = 0 Rz = 0 +/-1% drift 

2 Ux ↕ Uy ↕ P = 300k Mx = 0 My = 0 Rz = 0 +/-2% drift 

3 Ux ↕ Uy ↕ P = 300k Mx = 0 My = 0 Rz = 0 +/-3% drift 

4 Ux ↕ Uy ↕ P = 300k Mx = 0 My = 0 Rz = 0 +/-4% drift 

 

LC3b - Cyclic biaxial lateral displacements (8 shape) with constant compression force (-Fz = P = 

500 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 500k Mx = 0 My = 0 Rz = 0 +/-1% drift 

2 Ux ↕ Uy ↕ P = 500k Mx = 0 My = 0 Rz = 0 +/-2% drift 

3 Ux ↕ Uy ↕ P = 500k Mx = 0 My = 0 Rz = 0 +/-3% drift 

4 Ux ↕ Uy ↕ P = 500k Mx = 0 My = 0 Rz = 0 +/-4% drift 

 

LC4a - Incremental compression loading until the maximum load is reached. The top is driven 

with different BCs for both X and Y. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx → 0 Fy → 0 Fz → 0 Mx = 0 My = 0 Rz = 0 Fx=Fy=0 

2 var var Uz ↓ var var Rz = 0 P = Pmax 

 

LC4b - Cyclic uniaxial lateral displacements (4 corners) with constant compression force (-Fz = 

P = 600 kips). The top is forced to be free at all the time. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy ↑ P = 600k Mx = 0 My = 0 Rz = 0 max stroke 

2 Ux ↓ Uy ↓ P = 600k Mx = 0 My = 0 Rz = 0 max stroke 

3 Ux → 0 Uy → 0 P = 600k Mx = 0 My = 0 Rz = 0 Ux=Uy=0 

4 Ux ↑ Uy ↓ P = 600k Mx = 0 My = 0 Rz = 0 max stroke 

5 Ux ↓ Uy ↑ P = 600k Mx = 0 My = 0 Rz = 0 max stroke 

6 Ux → 0 Uy → 0 P = 600k Mx = 0 My = 0 Rz = 0 Ux=Uy=0 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Initial deflected shape Maximum lateral displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.115. Experimental results from LC1 in the specimen 16Rw-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.116. Experimental results from LC2a in the specimen 16Rw-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.117. Experimental results from LC2b in the specimen 16Rw-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.118. Experimental results from LC3a in the specimen 16Rw-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.119. Experimental results from LC3b in the specimen 16Rw-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.120. Experimental results from LC4 in the specimen 16Rw-26-12 
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B.17.  Specimen 17Rs-26-12 

Description: 

 Specimen number: 17 

 Composite Cross-section: RCFT 

 Steel cross-section: HSS20x12x0.25 

 Design concrete strength: 12 ksi 

 Design specimen length: 26 ft 

 Pouring date: 03/27/2009 

 Testing date: 07/16/2009 

 

Parameters: 

 Specimen length: 26’ 1 1/2” 

 Initial out-of-plumbness: Uxo = 1.64” / Uyo = 2.22” 

 Steel yielding stress: Fy = 55.1 ksi 

 Steel ultimate stress: Fu = 71.9 ksi 

 Concrete strength at the 28th day: fc’ = 11.5 ksi 

 Concrete strength at the testing day: fc = 11.7 ksi 

 Concrete Young’s modulus: Ec = 5800 ksi 

 Concrete tensile strength: ft = 0.76 ksi 

 

 
Figure B.121. Specimen 17Rs-26-12 
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Table B.17. Load protocol summary for the specimen 17Rs-26-12 

 

 

LC1 - Incremental compression loading in three cycles until the maximum load is reached. The 

top is forced to be free at X (Kx=2) and fixed at Y (Ky=0.5). 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx = 0 Uy = 0 Uz ↓ Rx = 0 My = 0 Rz = 0 max P 

2 Fx = 0 Uy = 0 Uz ↑ Rx = 0 My = 0 Rz = 0 P = 0 

3 Fx = 0 Uy = 0 Uz ↓ Rx = 0 My = 0 Rz = 0 max P 

4 Fx = 0 Uy = 0 Uz ↑ Rx = 0 My = 0 Rz = 0 P = 0 

 

 

LC2a - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 400 

kips). The top was forced to have zero moments in Y and fixed rotation in X. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +1% drift 

2 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -1% drift 

3 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +2% drift 

4 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -2% drift 

5 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +3% drift 

6 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -3% drift 

7 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +4% drift 

8 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -4% drift 

9 Ux ↑ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 +5% drift 

10 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 -5% drift 

11 Ux ↓ Uy = 0 P = 400k Rx = 0 My = 0 Rz = 0 Uz = 0 

 

 

LC2b - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 800 

kips). The top was forced to have zero moments in Y and fixed rotation in X. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy = 0 P = 800k Rx = 0 My = 0 Rz = 0 +1% drift 

2 Ux ↓ Uy = 0 P = 800k Rx = 0 My = 0 Rz = 0 -1% drift 

3 Ux ↑ Uy = 0 P = 800k Rx = 0 My = 0 Rz = 0 +2% drift 

4 Ux ↓ Uy = 0 P = 800k Rx = 0 My = 0 Rz = 0 -2% drift 

5 Ux ↑ Uy = 0 P = 800k Rx = 0 My = 0 Rz = 0 +3% drift 

6 Ux ↓ Uy = 0 P = 800k Rx = 0 My = 0 Rz = 0 -3% drift 

7 Ux ↑ Uy = 0 P = 800k Rx = 0 My = 0 Rz = 0 +4% drift 

8 Ux ↓ Uy = 0 P = 800k Rx = 0 My = 0 Rz = 0 -4% drift 

9 Ux ↑ Uy = 0 P = 800k Rx = 0 My = 0 Rz = 0 +5% drift 

10 Ux ↓ Uy = 0 P = 800k Rx = 0 My = 0 Rz = 0 -5% drift 

11 Ux ↓ Uy = 0 P = 800k Rx = 0 My = 0 Rz = 0 Uz = 0 
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LC3a - Cyclic biaxial lateral displacements (8 shape) with constant compression force (-Fz = P = 

200 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 200k Mx = 0 My = 0 Rz = 0 +/-1% drift 

2 Ux ↕ Uy ↕ P = 200k Mx = 0 My = 0 Rz = 0 +/-2% drift 

3 Ux ↕ Uy ↕ P = 200k Mx = 0 My = 0 Rz = 0 +/-3% drift 

4 Ux ↕ Uy ↕ P = 200k Mx = 0 My = 0 Rz = 0 +/-4% drift 

 

LC3b - Cyclic biaxial lateral displacements (8 shape) with constant compression force (-Fz = P = 

600 kips). The top was forced to have zero moments. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 600k Mx = 0 My = 0 Rz = 0 +/-1% drift 

2 Ux ↕ Uy ↕ P = 600k Mx = 0 My = 0 Rz = 0 +/-2% drift 

3 Ux ↕ Uy ↕ P = 600k Mx = 0 My = 0 Rz = 0 +/-3% drift 

4 Ux ↕ Uy ↕ P = 600k Mx = 0 My = 0 Rz = 0 +/-4% drift 

 

LC4a - Incremental compression loading until the maximum load is reached. The top is driven 

with different BCs for both X and Y. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx → 0 Fy → 0 Fz → 0 Mx = 0 My = 0 Rz = 0 Fx=Fy=0 

2 var var Uz ↓ var var Rz = 0 P = Pmax 

 

LC4b - Cyclic uniaxial lateral displacements (4 corners) with constant compression force (-Fz = 

P = 600 kips). The top is forced to be free at all the time. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy ↑ P = 600k Mx = 0 My = 0 Rz = 0 max stroke 

2 Ux ↓ Uy ↓ P = 600k Mx = 0 My = 0 Rz = 0 max stroke 

3 Ux → 0 Uy → 0 P = 600k Mx = 0 My = 0 Rz = 0 Ux=Uy=0 

4 Ux ↑ Uy ↓ P = 600k Mx = 0 My = 0 Rz = 0 max stroke 

5 Ux ↓ Uy ↑ P = 600k Mx = 0 My = 0 Rz = 0 max stroke 

6 Ux → 0 Uy → 0 P = 600k Mx = 0 My = 0 Rz = 0 Ux=Uy=0 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.122. Experimental results from LC2a in the specimen 17Rs-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.123. Experimental results from LC2b in the specimen 17Rs-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.124. Experimental results from LC3a in the specimen 17Rs-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.125. Experimental results from LC3b in the specimen 17Rs-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.126. Experimental results from LC4 in the specimen 17Rs-26-12 
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B.18.  Specimen 18C5-26-12 

Description: 

 Specimen number: 18 

 Composite Cross-section: CCFT 

 Steel cross-section: HSS5.563x0.123 

 Design concrete strength: 12 ksi 

 Design specimen length: 26 ft 

 Pouring date: 03/27/2009 

 Testing date: 07/29/2009 

 

Parameters: 

 Specimen length: 26’ 5/8” 

 Initial out-of-straightness: Uxo = -0.50” / Uyo = 0.36” 

 Steel yielding stress: Fy = 55.6 ksi 

 Steel ultimate stress: Fu = 70.7 ksi 

 Concrete strength at the 28th day: fc’ = 11.5 ksi 

 Concrete strength at the testing day: fc = 11.7 ksi 

 Concrete Young’s modulus: Ec = 5800 ksi 

 Concrete tensile strength: ft = 0.76 ksi 

 

 
Figure B.127. Specimen 18C5-26-12 
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Table B.18. Load protocol summary for the specimen 17Rs-26-12 

 

LC1 - Incremental compression loading in three cycles until the maximum load is reached. The 

top is forced as (1) free translation-fixed rotation (K=1), and (2) double fixed (K=0.5). 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1a Fx = 0 Fy = 0 Uz ↓ Rx = 0 Ry = 0 Rz = 0 max P 

1b Fx = 0 Fy = 0 Uz ↑ Rx = 0 Ry = 0 Rz = 0 P = 0 

2a Ux = 0 Uy = 0 Uz ↓ Rx = 0 Ry = 0 Rz = 0 max P 

2b Ux = 0 Uy = 0 Uz ↑ Rx = 0 Ry = 0 Rz = 0 P = 0 

 

LC2a - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 15 kips). 

The top was forced to have fixed rotations. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy ↑ P = 15k Rx = 0 Ry = 0 Rz = 0 +/-1% drift 

2 Ux ↓ Uy ↓ P = 15k Rx = 0 Ry = 0 Rz = 0 +/-2% drift 

3 Ux ↑ Uy ↑ P = 15k Rx = 0 Ry = 0 Rz = 0 +/-3% drift 

4 Ux ↓ Uy ↓ P = 15k Rx = 0 Ry = 0 Rz = 0 +/-4% drift 

5 Ux ↑ Uy ↑ P = 15k Rx = 0 Ry = 0 Rz = 0 +/-5% drift 

6 Ux ↓ Uy ↓ P = 15k Rx = 0 Ry = 0 Rz = 0 +/-6% drift 

7 Ux ↑ Uy ↑ P = 15k Rx = 0 Ry = 0 Rz = 0 +/-7% drift 

8 Ux ↓ Uy ↓ P = 15k Rx = 0 Ry = 0 Rz = 0 Uz = 0 

 

LC2b - Cyclic uniaxial lateral displacements with constant compression force (-Fz = P = 25 

kips). The top was forced to have fixed rotations. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy ↑ P = 25k Rx = 0 Ry = 0 Rz = 0 +/-1% drift 

2 Ux ↓ Uy ↓ P = 25k Rx = 0 Ry = 0 Rz = 0 +/-2% drift 

3 Ux ↑ Uy ↑ P = 25k Rx = 0 Ry = 0 Rz = 0 +/-3% drift 

4 Ux ↓ Uy ↓ P = 25k Rx = 0 Ry = 0 Rz = 0 +/-4% drift 

5 Ux ↑ Uy ↑ P = 25k Rx = 0 Ry = 0 Rz = 0 +/-5% drift 

6 Ux ↓ Uy ↓ P = 25k Rx = 0 Ry = 0 Rz = 0 +/-6% drift 

7 Ux ↓ Uy ↓ P = 25k Rx = 0 Ry = 0 Rz = 0 Uz = 0 

 

LC3a - Cyclic biaxial lateral displacements (8 shape) with constant compression force (-Fz = P = 

20 kips). The top was forced to have fixed rotations. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↕ Uy ↕ P = 20k Rx = 0 Ry = 0 Rz = 0 +/-1% drift 

2 Ux ↕ Uy ↕ P = 20k Rx = 0 Ry = 0 Rz = 0 +/-2% drift 

3 Ux ↕ Uy ↕ P = 20k Rx = 0 Ry = 0 Rz = 0 +/-3% drift 

4 Ux ↕ Uy ↕ P = 20k Rx = 0 Ry = 0 Rz = 0 +/-4% drift 
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LC4a - Incremental compression loading until the maximum load is reached. The top is driven 

with different BCs for both X and Y. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Fx → 0 Fy → 0 Fz → 0 Mx = 0 My = 0 Rz = 0 Fx=Fy=0 

2 var var Uz ↓ var var Rz = 0 P = Pmax 

 

 

LC4b - Cyclic uniaxial lateral displacements (4 corners) with constant compression force (-Fz = 

P = 40 kips). The top was forced to have fixed rotations. 

Step 
DOF Stop 

Criterion X Y Z RX RY RZ 

1 Ux ↑ Uy ↑ P = 40k Rx = 0 Ry = 0 Rz = 0 max stroke 

2 Ux ↓ Uy ↓ P = 40k Rx = 0 Ry = 0 Rz = 0 max stroke 

3 Ux → 0 Uy → 0 P = 40k Rx = 0 Ry = 0 Rz = 0 Ux=Uy=0 

4 Ux ↑ Uy ↓ P = 40k Rx = 0 Ry = 0 Rz = 0 max stroke 

5 Ux ↓ Uy ↑ P = 40k Rx = 0 Ry = 0 Rz = 0 max stroke 

6 Ux → 0 Uy → 0 P = 40k Rx = 0 Ry = 0 Rz = 0 Ux=Uy=0 
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Y displacement vs. X displacement Z displacement vs. X and Y displacement 

  
Initial deflected shape Maximum lateral displacement 

  
Axial force vs. lateral displacement Axial force vs. base moments 

  
Base moment vs. base curvature Base moment vs. top rotation 

Figure B.128. Experimental results from LC1 in the specimen 18C5-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.129. Experimental results from LC2a in the specimen 18C5-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.130. Experimental results from LC2b in the specimen 18C5-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.131. Experimental results from LC3 in the specimen 18C5-26-12 
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Y Displacement vs. X Displacement Y Force vs. X Force 

  
X Moment vs. Y Moment at the top X Moment vs. Y Moment at the base 

  
Lateral Force vs. Lateral Displacement Base Moment vs. Top Displacement 

  
Base Moment vs. Top Rotation Base Moment vs. Base Curvature 

Figure B.132. Experimental results from LC4 in the specimen 18C5-26-12 
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