
Using Animation to Design, Document

and Trace Object-Oriented Systems

Technical Report GIT-GVU-92-12

John J. Shilling

John T. Stasko

Graphics, Visualization, and Usability Center

College of Computing

Georgia Institute of Technology

Atlanta, GA 30332-0280

E{mail: fshilling, staskog@cc.gatech.edu

Abstract

Current diagramming techniques for the development and documentation of object-oriented

designs largely emphasize capturing relationships among classes. Such techniques cannot

capture full designs because the static nature of class relationships makes them inadequate

for describing the dynamics of object collaboration. Other techniques attempt to diagram

dynamic behavior but are limited by their media to producing essentially passive description

of dynamic operations. What is still needed is a technique that models message ordering,

changing visibility and temporal object lifetimes in a manner that is concise and immediate.

We have developed an approach in which developers use animation to develop and capture

object-oriented designs. This allows developers to design object-oriented scenarios in the

way that they visualize them: by animating the actions of the objects in the scenario.

The same animation then acts as the documentation for the design. Its playback makes

immediately evident the temporal relationship of object messages, object creation, object

destruction, and changing object visibility. Our technique is supported as part of a suite of

object-oriented development tools we call GROOVE.

1



1 Introduction

A key problem to be addressed in the design of object-oriented systems is how object

instances collaborate to implement globally visible behaviors. A naive view of the semantics

of an object-oriented system focuses only on the class hierarchy, class visibility and the

interfaces of individual classes. These forms of documentation are inadequate by themselves

because of their static nature. They do not provide direct information on how a system will

actually operate. They merely provide information on how classes in the class hierarchy

are formed and how they may relate to each other during execution. For self-contained

service classes this is su�cient but for frameworks and applications much more information

is needed. The use of a String object, for instance, may be understood based only upon

its interface but even seemingly self-contained classes such as Set and Bag depend on an

equality operator that may be overloaded by the objects they contain. A framework or

application can embody a well de�ned collaboration between a large number of classes. The

fundamental problem is that static documentation has di�culties illustrating how instances

of classes collaborate at run-time to implement tasks not speci�c to a single class.

Developers need to understand how their classes will interact with frameworks, and

they need to describe how tasks required of their system are going to be implemented as

a collaboration among object instances. They need tools for understanding and describing

dynamic behavior.

Currently, developers often document how the core tasks of a system are implemented

as a collaboration among classes by drawing protocol diagrams. A typical protocol diagram

will show a set of object instances with arrows drawn between instances representing mes-

sages. The messages are labeled to show the operations invoked and numbered to show

order. A narrative accompanies the diagram to explain what is being accomplished in the

diagram, to identify when objects are created and destroyed, and to describe changes in

object visibility. Such diagramming is an attempt to show dynamic behavior with a static

media. Compromise techniques such as message numbering must be used to introduce time.

Since any object that is to receive a message must be present in the diagram, it is up to

the narrative to describe when objects are created or destroyed and when object instances

come into and out of visibility for other object instances. This approach clearly fails to

provide the clarity and conciseness required of good documentation.

Booch [Boo91] combines object diagrams without explicit ordering with timing diagrams

which show the ordering of messages in a diagram. Several timing diagrams may be associ-

ated with a single object diagram to show how di�erent scenarios may unfold based on the

same underlying object structure. The e�ect of using an object diagram with a particular

timing diagram is much the same as the protocol diagram described above. The timing

diagram adds a notion of relative time that messages are expected take to complete and

time spent processing between message sends. The fact that a single object diagram may

have several timing diagrams gives 
exibility, but it also means that a user must look at

two di�erent pieces of documentation to understand the operation of a protocol.

Rumbaugh, et. al.[RBP+91], introduce scenarios and event traces into the dynamic

modeling component of the Object Modeling Technique. A simple scenario describes a

sequence of events that will occur in an existing or proposed system. It identi�es events and

gives them an ordering. An event trace gives further structure to the scenario by associating

2



the events with sender and receiver objects. In the event trace we see the information that

was captured above and some of the same limitations. Objects and message ordering are

identi�ed but the dynamics of object lifetimes and visibility are not.

An interesting design technique from our point of view is the use of CRC cards as

described by Beck and Cunningham [BC89]. In this work designers are encouraged to

physically animate a design as they narrate it:

We encourage learners to pick up the card whose role they are assuming while

\executing" a scenario. It is not unusual to see a designer with a card in each

hand, waving them about, making a strong identi�cation with the objects while

describing their collaboration.

Our work is in this same spirit. We want to give users as natural a way as possible for

describing the animation in their designs.

The techniques described above recognize the need for the description of dynamic behav-

ior but are limited by the media on which they must be used. The diagramming techniques

of both Booch and Rumbaugh can be extended easily to show object lifetimes. Showing the

changes in object visibility is not as direct but may be modeled through separate diagrams

or by showing visibility events.

The basic premise of this work is that we can do better if we look to a di�erent presen-

tation paradigm. Through the use of animation we seek to activate humans' keen pattern-

matching and visual perception systems. Graphical animation is a dense, rich information

medium that can convey large amounts of information rapidly in an easy-to-comprehend

fashion. The animation tools we have developed are intended to trigger the mental connec-

tions and relationships that must be present for understanding.

2 Overview

2.1 Purpose

The suite of tools we are developing helps software engineers design, develop, document,

understand, and evaluate the execution of their code through dynamic program visualiza-

tions. At the center of our system is a visual design tool called GROOVE (GRaphical

Object-Oriented Visualization Environment) that allows programmers to visually specify

both the static structure of a program and the run-time dynamics and protocols. Pro-

grammers specify system structure and operations through menus and direct manipulation

operations. Figure 1 shows a view of this tool being operated. Here, a programmer has

laid out classes and instances, along with method invocations de�ning a protocol. The pull-

down menu at the top provides many program design and speci�cation commands such as

\Class create," \Instance create," \Function invoke," etc. The visual entities can either be

positioned manually for each command or an automatic layout facility can be utilized. All

entities subsequently can be selected with the mouse and dragged to new positions.

The system allows design sessions to be stored in script �les and replayed later as ani-

mations. In this way, we provide a form of dynamic visual documentation that transcends

3



Figure 1: The GROOVE program speci�cation and design editor. Here, a programmer has

created classes and instances and has begun to de�ne a message protocol.

static textual or picture explanations. In understanding an object-based protocol or sce-

nario, the sequencing of events is absolutely critical. Because animation shows changes over

time, it is better suited for capturing a designer's intentions and work.

As a designer interacts with the visual presentation shown in Figure 1, the system

also automatically generates and updates an accompanying code template (shown in a

neighboring window) that corresponds to the design. The code can, at any point, be written

to a �le and used as the basis for subsequent development. This feature, in addition to its

practical utility, is a valuable educational aid for students learning object-oriented design.

They can focus on the important concepts (with visual reinforcement) and not be hindered

by numerous syntactic errors that traditionally accompany learning a new language.

Our suite of tools also supports run-time animation of an executing program. When the

system generates the design session code as described above, it also can add visualization

hooks to the code, and it can generate a \shadow" version of the �le containing graphics

4



description code. When this shadow �le is compiled and linked to the primary code �le(s),

subsequent program execution activates the graphics views that represent program entities

and behaviors. These facilities will be described in more detail later in the paper.

2.2 Visualization Paradigm

All of the tools in our system are based upon a common graphical paradigm which uses

a unique combination of shape, color, and animation to portray object-oriented programs

and protocols. For instance, the shape of a graphical element is used to depict the type

of the program entity being depicted. Classes are represented by \upside-down" isosceles

triangles. Arrows from the bottom of a triangle (class) to the top of another class represent

the inheritance relationship. Class views can either be compressed (the simple triangle) or

expanded, which shows the instance data and methods of the class. In Figure 1 the shape

class view has been expanded. Instances are represented by circles in the visualization

paradigm and functions by 
at rectangles. The name of a program entity is centered on

its graphical object. To specify messaging, users select with the mouse an object and its

method to be invoked. We show an arrow grow out from the current context and strike the

target object. On message return, we animate the arrow back to its point of origin.

Our visualization paradigm di�ers from many others in that it does not concurrently

present the relationships between all program entities. When viewing a program, system,

or protocol depiction with many objects, instantaneous display of all relationships can

quickly lead to an information overload. Just showing the di�erent class hierarchies within

a program, perhaps by connected lines and color, might be successful. But when one also

tries to concurrently show other relationships such as those between class and instances,

instance-to-instance visibility, or language-speci�c notions such as friendship in C++, a

display can quickly become a tangled web of lines, shapes, and colors.

To address this problem, we utilize the concept of a current focus to drive the display.

Any program entity in the display can become the current focus. Within the program

speci�c tool, this is accomplished simply by selecting the entity's representation with the

mouse. When describing a protocol, the object last receiving a message becomes the focus.

Once an entity has become the focus, all other objects update their view to re
ect their

relationship to the focus entity. If an entity has no relationship or link to the focus entity,

its view is a simple black outline of its shape surrounding its name. If an entity is somehow

related to the focus, we use a combination of visual attributes to depict that relationship.

One of the most natural visual attributes to use in a display is color. We use color to

represent the di�erent class hierarchies within a program. The di�erent base classes receive

a unique dark color to distinguish them from other classes. As subclasses are derived, their

hue remains the same as their base class, but they become lighter (less saturation). Instances

also are drawn in the appropriate color to indicate the class from which they originate. We

envision presenting classes derived via multiple inheritance with a \zebra-stripe" e�ect.

We utilize other visual attributes and notations to represent further relationships be-

tween program entities. For example, visibility between instances is represented by draw-

ing a larger broken circumference around any instance visible to a current focus instance.

Friendship in C++ is shown by drawing an icon of an open hand coming out of a class

representation.

5



Figure 2: A GROOVE program speci�cation the same as shown in Figure 1 except that

focus has been shifted to the \window" class. Note how the other object representations

update to illustrate their relationship to the focus entity.

As mentioned above, the ampli�ed visual attributes of an entity are only shown with

respect to its relationship to the current focus. For instance, if the current focus is a class,

related entities are classes above or below it in the inheritance hierarchy, instances with

members received from the class, and friend classes and functions. Table 1 below lists the

relationships and visual attributes we currently support for a C++ tool. In Figure 1, focus

has been placed on the \polygon" class. In Figure 2, focus is on the \window" class, and

in Figure 3 focus is on instance \i2."

These visual attributes are useful for depicting static attributes of programs. To repre-

sent the dynamic behavior of programs, however, more is needed. In particular, we utilize

animation to re
ect run-time behavior and protocols. What exactly constitutes an ani-

mation is di�cult to de�ne|some would consider a deliberate shu�e among colors for an

object to be an animation. We support much more dynamic activities such as objects mov-

6



Figure 3: Focus has now been shifted to the instance \i2," and the view of class \shape"

has been compressed.

Current focus Related entity Entity's depiction (visual attribute)

Class Itself Dark color, bold outline

Base class(es) Light color, inheritance connection arrows

Derived class(es) Light color, inheritance connection arrows

Instance of the class Light color, bold outline

Instance of a derived class Light color

Friend class or function Hand icon

Instance Itself Dark color, bold outline

Its class Light color, bold outline

Classes it inherits from Light color

Visible instances Double, broken outline

Function Itself Bold outline

Table 1: Graphics representations as relating to a current focus program entity.

7



ing about a window in a smooth, continuous manner. This provides a true sense of motion,

dynamics, and change.

The most direct use of animation in our visual paradigm is in illustrating message tra�c

between instances. When an instance's method is invoked, we show an arrow smoothly

growing out from the current focus to that instance. The arrow is labeled with the name

of the message sent. When the method returns, the arrow is slowly \recalled" to its point

of origination. If desired, the system can leave a ghost of the arrow as a history of the

messages sent. Also planned, but not yet implemented, are the abilities to \carry" other

objects such as parameters and return values along with the message, and to indicate

from which class a member function invocation is bound. This second capability could be

visualized by \lighting up" the classes that an instance derives �elds from. Relatively simple

notions such as these can provide substantive contributions to specifying and understanding

run-time program actions.

We currently use other forms of animation to provide even further information. When

object instances are created and constructed, they originally form within a class and

smoothly move out of the class to take a position in the program's display. When instances

are destroyed, a special \delete" message moves into the display, strikes the instance, and

then the instance 
ares to red and disappears. As the run-time protocol changes and dif-

ferent functions are invoked, instance visibilities dynamically update to re
ect the current

state.

3 Example Scenario

In this section we walk through two di�erent examples that are intended to motivate the

dynamic information provided by our animated approach to design documentation. The

examples are based on actual object-oriented systems but are selected for their conciseness

in presenting the bene�ts of animation.

3.1 Dynamic Object Visibility and Lifetimes

The example used in this section is the design of a login protocol for an interactive system.

The basic assumption is that there is a workstation in an interactive system on which a user

can login and begin work. Access to the workstation is controlled through a guard object

(an instance of the Guard class). The guard object has visibility to a database of valid users

which is modeled as a dictionary of user objects, keyed by user id. The initial state of the

scenario is illustrated in Figure 4.1

The scenario is initiated by sending the loginUser message to the guard object. In

response to this message the guard object creates an instance of the LoginWindow class and

sends it the getUserIdAndPassword message. The dynamics of these events are

� The receipt of the loginUser message and in response:

1. The creation of a LoginWindow object instance,

1We utilize diagrams rather than GROOVE window dumps here simply to conserve space.

8



Figure 5: Login Scenario: Getting Login Information

2. Establishment of visibility for the instance and

3. Transmission of the getUserIdAndPassword message to the instance.

Figure 5 shows that the guard object is still in the process of implementing the loginUser

message (the original message) and the animation has been suspended while the LoginWin-

dow is processing the getUserIdAndPassword message.

The return value from the getUserIdAndPassword message is two strings representing a

user id and a password. The mainline scenario is that the guard object retrieves a user object

from the user object dictionary, asks the user object whether the password provided is valid

and, if it is, deletes the LoginWindow object and asks the user object to start execution.

Statically the Guard class has visibility to the User class but dynamically the Guard object

instance does not have visibility to any User object instance at the beginning of the scenario.

Visibility to a single User object instance is established when the User Dictionary returns

a User instance as a result of a query. The guard can begin sending messages to the user

object once it attains visibility. An important dynamic behavior which is made clear by the

animation is that the LoginWindow object is deleted before the start message is sent to the

user object. Figure 5 shows an animation snapshop as the LoginWindow is being deleted.

There are two possible branches in this animation: The user id may not be valid or

the password may not be valid for a particular user. If the user id is not valid then the

guard creates an instance of ErrorWindow, sends it the displayError message, deletes the

ErrorWindow, and re-synchronizes with the protocol by sending the getUserIdAndPassword

message to the LoginWindow.

If the user Id is valid but the password is not then the guard deletes the user object,

9



Figure 7: Login Scenario: Invalid User Id

10



and then displays the error and resynchronizes as above.

Two key ingedients missing in this animation scenario are the depictions of parameters

and return values. One possibility for this addition is to show a small (textual) function

information window in the corner of the display which is updated appropriately. This

solution lacks ties into the existing visualization, however, so that showing an object as a

parameter would not be possible.

3.2 Understanding Method-To-Message Binding

An important part of designing the behavior of an individual class is understanding how an

instance of the class will interact with itself. A common example of this is in understanding

how the components of each class in an object's class hierarchy are initialized. This is a

typical walking up exercise. Abstract classes can be de�ned which reference behaviors they

expect to be de�ned in their subclasses (the Collection class of Smalltalk-80, for example).

In this case the self-reference protocol is dropping down the hierarchy. Even without self

reference it can often be useful for a developer to understand which class in an object's

hierarchy will respond to a particular message. This is particularly important when methods

may be selectively rede�ned and dynamically bound.

As mentioned brie
y earlier, we plan to have GROOVE help developers understand

message-to-method binding by utilizing the class presentations from which an object inherits

�elds. When a message is received, the class bindings for receipt of the message could be

sequentially \lit up" (not unlike the \Christmas tree" lights for beginning an auto race) to

indicate which class' function was actually utilized. This makes clear where in the class

hierarchy a message will bind and nicely illustrates self-referential protocols which walk up

or drop down the hierarchy.

4 System Design

GROOVE is implemented in C++ on top of the X11 Window System. Each of the two

main components, the graphical depiction and its corresponding code, are encapsulated by

a class, GraphView and CodeView respectively. When a user invokes a new command such

as Add Member Function from the pull-down menu at the top of the window, the user

interface portion of the system prompts the user for the appropriate parameters. In this

case, the user will pick the class to receive the member function by selecting the class with

the mouse. The speci�cs of the member function, such as name, return type, access, etc.,

are speci�ed through a dialog box.

From there, the user interface portion of the system invokes the EventReceive function of

the GraphView and CodeView objects. Currently, each component maintains an abstract

representation of the program being built.2 The GraphView, for example, maintains lists

of all visible entities, all classes, all instances, and so on. Each internal object contains

�elds storing its relationships to other objects. For instance, a class needs to reference its

2We are exploring the use of a common abstract model of the program which both components can query

in database-style fashion. It is unclear whether the overhead introduced by an extra layer such as this will

hinder performance of the GraphView, in which speed is of critical concern.

11



Figure 8: High-level overview of GROOVE's system con�guration.

base classes, derived classes, instances, friends, etc. An overview of GROOVE's system

con�guration is shown in Figure 8.

We implement the graphics and animation portion of GROOVE using a derivation of

the path-transition animation paradigm[Sta90]. The paradigm allows us to query image

positions and construct paths between any pair of these positions. Finally, movement

actions, images sliding along the pertinent paths, allow us to create the animations.

5 Run-time Visualization

5.1 Animation of Existing Systems

The animation techniques used in GROOVE can be used not only for designing protocols

but also for viewing the run-time behavior of an existing system. This can be useful for

understanding the behavior of an undocumented system or for understanding whether a

system follows expected messaging patterns.

In order to animate an existing system we must augment it with GROOVE animation

machinery. This is currently done by processing the C++ source �les and augmenting

each member function with additional source.3 The most important thing to know for the

3This parsing capability is extremely di�cult without the equivalent of a full compiler. Currently, our

12



purposes of animation is when member functions are entered and exited. We accomplish

this by introducing an additional object instance into each member function as the �rst

declaration in the source of the function implementation. C++ semantics ensure that this

object instance is created when the function is entered and is destroyed when the function

exits. The sole purpose of the object instance is to record member function entry and

exit. The constructor for the object generates a member function entry event which the

animation system displays as a message send from the current object focus to this object.

The current object focus becomes the object receiving the message. We know that the

method has exited when the destructor is called for the tracing object that was introduced.

The destructor for that object informs the animation system that the member function has

exited. The system allows new objects to either be placed manually or to be automatically

positioned. Currently, the automatic layout algorithm is quite primitive, and it is one area

ripe for future improvement.

In the code that follows we show a source �le after it has been augmented for animation.

The animation script adds animation headers at the top of the source and TraceObj objects

(instance of the TraceMethod class) in each method.

#include "animatelib.h"

#include "groove.H"

#include "grooveview.H"

#include "trace.H"

#include <stdio.h>

#include <stdlib.h>

#include <strings.h>

#include "String.H"

String::String(void)

{

TraceMethod _TraceObj("String", "String(void)", this);

s = NULL;

}

String::~String(void)

{

TraceMethod _TraceObj("String", "~String(void)", this);

if (s != NULL)

delete s;

}

String &

String::operator=(String &aString)

{

TraceMethod _TraceObj("String", "operator=(String &aString)", this);

if (&aString == this)

return *this;

else

return operator=(s);

}

...

Even with this relatively simple example we can see how animation can help in pro-

gram debugging. Consider the member function String::operator=(String &aString).

techniques are rather limited{we use AWK to parse the source �les.

13



The expected behavior of this member function is that it will send a message to itself to

implement the assignment operator. If the argument is also the receiver, however, then

the member function simply returns a reference to itself without sending the additional

message. This di�erence in behavior would be di�cult to notice in a debugger trace but

the di�erent visual pattern will be immediately noticeable.

6 Further Related Work

Cunningham and Beck created a system for diagraming object-oriented computations, pri-

marily displaying message passing and inheritance among Smalltalk classes[CB86]. They

used a box (class) and arc (message) notation in order to help teach object-oriented pro-

gramming. Although they brie
y experimented with adding dynamic behavior, their system

displayed static imagery without timing or sequencing information.

Rumbaugh uses state diagrams (also called statecharts[Har87]) as part of dynamic mod-

els for describing the states that an object instance can enter and how the states change

in response to events. The objectcharts of Coleman, Hayes, and Bear [CHB92] extend the

notion of statecharts to include the e�ect of transitions on attributes and to take into con-

sideration messages and subtyping. Both sets of authors suggest that the aggregate state of

a system be viewed as the union of the statecharts (or objectcharts) of the object instances

in the system. We view objectcharts as a useful design and speci�cation technique that is at

a lower detail level than we currently support. We also feel the techniques will be enhanced

by the ability to animate the state changes that can occur within the operation of a system.

Kleyn and Gingrich sought to go beyond static displays by examining the dynamic be-

havior of object-oriented systems written in a Common Lisp-style language[KG88]. Their

GraphTrace tool illustrated structural and behavioral views of object-oriented systems by

recording message tra�c for subsequent replay. The tool's displays mainly involved graph

diagrams consisting of nodes and arcs. Animation, however, was restricted to simply high-

lighting and annotating graph nodes. B�ocker and Herczeg provide more extensive animation

of Smalltalk-80 traces with the Track system[BH90]. Track allows programmers to visually

specify message tracing as a debugging aid. At execution time, the system presents an

animation of the messages sent between objects. These systems give animation of existing

programs, but they fail to give an emphasis to the proactive use of animation in the design

of object-oriented systems.

The commercial system ObjectCraft[HS91] supports graphical design of object-oriented

programs with post-design code generation. GROOVE di�ers from ObjectCraft via our

\on-the-
y," rather than post-design, code generation and our inclusion of animation to

specify program dynamics.

7 Summary

Various groups have taken di�erent approaches to diagramming and documenting dynamic

object-oriented system behavior, but their e�orts have been limited by the underlying tech-

nology on which they are based. Advances in program animation techniques have allowed

14



us to construct a tool which facilitates designers describing the dynamics of their systems

in a medium which naturally re
ects the manner in which they are conceived. With such a

tool we move past the paradigm of what-you-see-is-what-you-get to what-you-want-to-see-is-

what-you-get-to-see. The use of animation in documentation also provides high information

density allowing systems dynamics to be described succinctly with high comprehension. We

have embodied our animated design and documentation techniques in an object-oriented

system development tool called GROOVE.

One �nal note: The description of GROOVE in this paper su�ers from the very problem

that the system is designed to address! We are using a static medium (paper and text) to

describe a dynamic, time-changing entity. To truly appreciate the capabilities GROOVE

o�ers, the system must be seen live.

References

[BC89] Kent Beck and Ward Cunningham. A laboratory for teaching object-oriented

thinking. In Proceedings of the ACM OOPSLA '89 Conference, pages 1{6, New

Orleans, LA, October 1989.

[BH90] Heinz-Dieter Bocker and Jurgen Herczeg. What tracers are made of. In Proceed-

ings of the ECOOP/OOPSLA '90 Conference, pages 89{99, Ottawa, Ontario,

October 1990.

[Boo91] Grady Booch. Object Oriented Design with Applications. Benjamin Cummings,

1991.

[CB86] Ward Cunningham and Kent Beck. A diagram for object-oriented programs.

In Proceedings of the ACM OOPSLA '86 Conference, pages 361{367, Portland,

OR, September 1986.

[CHB92] Derek Coleman, Fiona Hayes, and Stephen Bear. Introducing objectcharts or

how to use statecharts in object-oriented design. IEEE Transactions on Software

Engineering, 18(1):9{18, January 1992.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science of

Computer Programming, 8:231{274, 1987.

[HS91] Paul Harmon and Brian Sawyer. ObjectCraft: A Graphical Programming Tool

for Object-Oriented Applications. Addison-Wesley, Reading, MA, 1991.

[KG88] Michael F. Kleyn and Paul C. Gingrich. GraphTrace - understanding object-

oriented systems using concurrently animated views. In Proceedings of the ACM

OOPSLA '88 Conference, pages 191{205, San Diego, CA, September 1988.

[RBP+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and

William Lorensen. Object-Oriented Modeling and Design. Prentice Hall, New

York, NY, 1991.

[Sta90] John T. Stasko. The Path-Transition Paradigm: A practical methodology for

adding animation to program interfaces. Journal of Visual Languages and Com-

puting, 1(3):213{236, September 1990.

15


