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SUMMARY 

 
 

A common metaphor for visual attention is the spotlight (Posner, 1980).  It 

follows from the spotlight metaphor and other similar models (e.g., zoom-lens model; 

Eriksen & Yeh, 1985) that attention can, according to task-demands, be constricted into a 

focused beam (i.e., analogous to selective attention) or dilated to encompass a larger 

breadth (i.e., analogous to divided attention).  It is currently unclear how variations in 

perceptual load of a display affect the FFOV.  Lavie (1995; Lavie et al., 2004) proposed 

that the critical determinant of selective attention (i.e., a constriction of the FFOV) was 

the perceptual load imposed by the task—selective attention is a necessary outcome of 

limited perceptual processing capacity.  Age-related differences in perceptual processing 

capacity (e.g., Maylor & Lavie, 1998) may then explain observed age-related differences 

in FFOV size (e.g., Ball, Beard, Roenker, Miller, & Griggs, 1988).  The current study 

examined how perceptual load and aging affected the FFOV.  Younger and older 

participants viewed brief displays in which they engaged in two tasks:  the first task was a 

perceptual load manipulation, while the second task was a measure of the FFOV.  

Multiple measures of peripheral task performance suggest that the size of the FFOV for 

older adults’ was significantly reduced by increasing perceptual load and this effect of 

load was greater with increasing distance from fixation.  As predicted from the perceptual 

load model, when perceptual load of the task increased, perceptual sensitivity for the 

distant peripheral task decreased for older adults.  This decrease was greater when the 

task was farther from fixation—indicative of a shrinking spotlight.  However, for younger 

adults, increasing load did not affect peripheral task performance.  This age-related 
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difference may be attributable to older adults’ reduced perceptual processing capacity.  

The current results support the notion that older adults’ reduced perceptual processing 

capacity may be one cause of their reduced FFOV.  Limitations of the current study as 

well as future research are discussed. 
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CHAPTER 1 

INTRODUCTION 

 

Dividing attention (i.e., time-sharing) to more than one area of the visual field is 

an important ability that underlies many of our daily activities.  One determinant of time-

sharing efficiency between two or more visual tasks may be whether an individual has 

sufficiently distributed his or her attention across both tasks.  If the distribution of 

attention is too focused on one of the tasks, performance in the other task may suffer. 

The functional field of view (FFOV) is a measure of the breadth of attention over 

the visual field.  Existing research has examined how various task factors affect the 

FFOV, for instance, how cognitive load of a task affects the FFOV (e.g., Williams, 

1989).  In general, increasing cognitive demand of the primary task has been shown to 

reduce performance on the secondary task.  This has been taken as evidence of a 

reduction in the size of the FFOV due to cognitive load.  However, cognitive load has 

often been defined very broadly in the literature.  Many studies that purportedly 

manipulated cognitive load have manipulated working memory load (e.g., a memory 

search task).  How perceptual load affects the FFOV is less clear.   

The difference between perceptual and working memory load can be illustrated 

with an example: looking for a specific computer file among many other files (high 

perceptual load) versus trying to remember the name of a specific file and the folder in 

which it was stored (high working memory load).  The difference between perceptual 

load and working memory load is related to the stage of information processing on which 

the task places the most demand.  A task that is high in perceptual load places heavy 
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demands on visual processing capacity (early in information processing) while a task that 

is high in memory load places demands on the working memory system (later in the 

stream of information processing; post-perceptual processes). 

Increasing the number of items to be searched in a display (i.e., the display set 

size) is one operational definition of increased perceptual load.  However, relative 

perceptual load can also be manipulated by keeping display set size constant, and 

changing the difficulty of the search task (e.g., target/distractor similarity; Duncan & 

Humphreys, 1989).  In an easy search task, where the target and distractor are highly 

dissimilar, the perceptual load is low because little processing is required to detect the 

target (Lavie & Cox, 1997).  However, in a more difficult search task, where the target 

and distractor are highly similar, the perceptual load is relatively higher because more 

perceptual processing is required to detect the target among the similar distractors. 

The role of perceptual load on the distribution of attention (i.e., FFOV) can be 

hypothesized based on existing models of attention.  The perceptual load model of 

attention (Lavie, 1995; Lavie et al., 2004) suggests that increases in the perceptual load of 

a primary task may reduce the FFOV, thereby potentially causing secondary task 

performance to suffer.  This is due to perceptual processing capacity being exhausted by 

a perceptually demanding primary task leaving no spare perceptual processing capacity 

available for the secondary task.  This may be functionally equivalent to a constriction of 

the FFOV.  The result is that people will not be able to efficiently divide attention 

between two visual tasks.  On the other hand, a primary task that is low in perceptual load 

would leave spare perceptual processing capacity that can be devoted to other tasks in the 
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visual field.  This would be functionally equivalent to a broad distribution of attention 

(i.e., large FFOV) which could facilitate the performance of multiple visual tasks. 

However, other research has suggested the non-intuitive possibility that two 

unrelated tasks may be better time-shared when they are separated rather than when they 

are close to each other (e.g., McCarley, Mounts, & Kramer, 2004; Weinstein & Wickens, 

1992; Wickens 2002).  The multiple resource model of attention (Wickens, 2002) 

suggests that time-sharing efficiency would be increased with increasing separation of 

tasks because separate resources potentially serve different areas of the visual field.  As 

long as two tasks draw upon different resources (i.e., tasks are widely separated) a high 

level of performance can be maintained in each task.  However, when two visual tasks 

are in close proximity, they compete for similar resources leading to a performance 

decrement in either task. 

 

The Functional Field of View (FFOV) as the Size of Visual Attention 

 

The functional field of view (FFOV) is the visual area in which one can extract 

useful information without eye or head movements (Sanders, 1970); essentially, the size 

or scope of attention (Rantanen & Goldberg, 1999).  Different researchers sometimes use 

different terms to describe the same concept.  For example, researchers interested in 

studying reading use the term perceptual span to describe “the region of the visual field 

from which useful information can be acquired during a given eye fixation” (e.g., 

Henderson & Ferreira, 1990, p. 417).  Other researchers use the term useful field of view 

(UFOV) to describe the “total visual field area in which useful information can be 
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acquired without eye and head movements” (Ball, Beard, Roenker, Miller, & Griggs, 

1988, p. 2210).  In the current paper, FFOV is synonymous with the above terms to 

describe the area in which one can extract information within an eye fixation, which will 

be inferred to be the scope of attention. 

In a typical FFOV experimental paradigm (e.g., Williams, 1989) participants are 

engaged in a primary task and simultaneously presented with a secondary task of 

identifying or localizing a “target” presented some distance away from central fixation 

(i.e., the fovea).  To prevent participants from scanning the display, the stimulus duration 

is usually below the speed at which participants can initiate and complete a saccade.  

FFOV is operationalized as the accuracy at which one can locate or identify stimuli that 

are presented at varying distances or eccentricities from the fixation point.  Studies have 

shown that the size of the FFOV, inferred from secondary task performance, varies with 

task demands (Chan & Courtney, 1993, 1994; Ikeda & Takeuchi, 1975; Mackworth, 

1965, 1976; Rantanen & Goldberg, 1999; Sanders, 1970; Scialfa, Kline, & Lyman, 1987; 

Sekuler & Ball, 1986; Williams, 1982, 1989, 1995). 

 

Cognitive/Memory load and the FFOV 

 

Increasing mental load of the primary task has been shown to decrease secondary, 

peripheral task performance (i.e., reduce the size of the FFOV).  Even the simple 

presence of a foveal stimulus has been shown to reduce the FFOV (Leibowitz & Appelle, 

1969).  Ikeda and Takeuchi (1975) found that the ability of younger individuals to detect 

and localize (report the location of) peripherally presented stimuli was reduced in the 
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presence of a cognitively demanding foveal task.  This was suggestive of a shrinking of 

the FFOV in the presence of a foveal task. 

Williams (1982, 1989, & 1995) manipulated mental load by using a foveally 

presented Sternberg memory search task (Sternberg, 1975).  In this task, participants 

memorized a set of letters (the memory search set) and determined whether a single letter 

on the display matched the letters that were memorized.  Williams’ found that under low 

mental load conditions (i.e., a memory set size of 2), the FFOV, as measured by 

peripheral task localization accuracy, was unaffected.  That is, participants were able to 

detect and localize peripherally presented stimuli across 5 degrees of visual angle.  

However, under conditions of high mental load (a memory set size of 6), participants’ 

performance on the peripheral task decreased with increasing distance from the fixation 

point—indicating a reduction in the size of the FFOV. 

Another mental load manipulation that has been shown to affect the FFOV is a 

mental addition task.  Chan and Courtney (1998) examined how different “cognitive 

loads” affected the FFOV.  Participants in their task were presented with two single-digit 

numbers in the central portion of the display.  The task was to add the two numbers 

together while simultaneously looking for a target letter presented at varying distances to 

the right or left of the summation task.  Chan and Courtney found that under low levels of 

cognitive load (adding 1 and 2) participants were able to detect the peripheral target at all 

distances.  However, under conditions of high cognitive load (adding 8 and 7) they found 

that peripheral task performance gradually got worse with increasing distance. 
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Perceptual load and the FFOV 

 

Studies that have examined the relationship between cognitive/memory workload 

and the FFOV have reasonably shown that increasing demand affects the FFOV.  

However, studies that have manipulated perceptual load of the central task have found 

inconsistent effects on the FFOV (Sekuler & Ball, 1986; Ball, Beard, Roenker, Miller, & 

Griggs, 1988).  Sekuler and Ball (1986) manipulated load of the primary central task by 

having participants determine if a cartoon face was smiling or frowning.  They found that 

this central task manipulation had no effect on peripheral target localization performance 

for younger and older adults across a display that subtended 15 degrees of visual angle 

(from the center to the edge).  However, this null finding may have been due to the 

relative ease (i.e., low perceptual load) of even the high load condition task (determining 

whether faces were smiling or not). 

In another study that used a perceptual load manipulation, Ball et al (1988) had 

three levels of load.  In the lowest load, participants had to determine if a cartoon face 

was present or absent, in the intermediate load condition, participants determined if a 

cartoon face was smiling or frowning, and in the highest load condition, participants 

compared whether two cartoon faces were the same or different.  They found that 

increasing central task demand led to decreasing performance in the peripheral 

localization task in displays that subtended 30 degrees.  Seiple, Szlyk, Yang, and 

Holopogian (1996) subsequently replicated this finding.  However, compared to the 

Sekuler & Ball (1986) study, the study by Ball et al (1988) utilized shorter display 

durations (90 ms versus 125 ms) and larger displays (30 degrees of visual angle versus 
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15).  Thus, it is uncertain whether effects on the FFOV were due to increased perceptual 

load or shorter stimulus durations.  Brief stimulus durations have been shown to reduce 

the size of the FFOV (e.g., Williams, 1989). 

To summarize, the effect of primary task memory load on the FFOV seems to be 

consistent across different studies; that is, increasing memory load reduces the FFOV.  

However, the role of perceptual load manipulations is less consistent.  FFOV as a 

function of perceptual load has been less studied by researchers, and in studies that do 

manipulate perceptual load, the results are inconsistent, with some studies showing 

effects on the FFOV and other studies not showing effects.  The inconsistency of 

perceptual load effects on the FFOV could be due to methodological differences such as 

how perceptual load was induced, the stimulus display durations, and whether visual 

distractors were used in the display.  Visual distractors constitute a kind of perceptual 

load manipulation. 

 

Visual Distractors and the FFOV 

 

In addition to mental load, the presence of distractors is a critical factor 

determining one’s distribution of attention (e.g., Mackworth, 1976).  Distractors are items 

in the display that are irrelevant to the task (i.e., items that are not the target).  Mackworth 

(1976) suggested that constriction of FFOV is a way to cope with visual overload brought 

on by displays with many distractors.  In a visual display with many distractors, we 

deliberately constrict our attentional scope to make it easier to find potential targets.  

Sekuler and Ball (1986) manipulated the presence of distractors in the target localization 
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task (no distractors or 47 distractors) and found that when distractors were present, older 

adults had more difficulty with the task (i.e., reporting the location of the target) while 

younger adults were not significantly affected.   

However, when distractors were not present within the secondary task both 

younger and older adults were able to localize and identify peripherally presented 

information across displays as wide as 15 degrees (Sekuler & Ball, 1986; Scialfa, 

Thomas, & Joffe, 1994).  Scialfa, Kline, and Lyman (1987) examined whether the 

amount of distractors, and not simply the presence or absence of distractors, made a 

difference in peripheral target localization performance.  In their study, they manipulated 

the amount of distractors by presenting peripheral targets that were either flanked by 

distractors (low noise condition), or embedded in a row of distractors (high noise 

condition).  They found, similar to Sekuler and Ball (1986) that older adults were greatly 

affected by the presence of noise, but also older adults’ performance in the peripheral 

target identification task was worse as a function of the amount of noise compared to 

younger adults.   

Most studies that have examined the role of distractors in the FFOV have 

manipulated either the presence or absence of distractors (e.g., Sekuler & Ball, 1986; Ball 

et al, 1988) or the amount of distractors (e.g., Scialfa, Kline, & Lyman, 1987).  Most 

previous studies have also used distractors evenly spaced throughout the display (e.g., 

Scialfa, Kline, & Lyman, 1987) or distractors embedded within a secondary task (e.g., 

Ball et al, 1988) so that the number of distractors necessarily increases as distance from 

central fixation increases.  When the amount of distractors (a perceptual load 

manipulation) and eccentricity (distance from fixation) is confounded, it is difficult to 
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determine the relative contributions of each of these factors to task performance and the 

scope of attention. When distractors are used throughout the display, it becomes difficult 

to understand how perceptual load might affect the spatial distribution of attention.  

However, the role of perceptual load on the FFOV can be inferred from existing models 

of attention. 

 

Models of Attention and their Relation to the FFOV 

 

Perceptual load model 

 

Lavie’s perceptual load model (1995; Lavie et al., 2004) is an attempt to explain 

why some studies show evidence of early selection and other studies show evidence of 

late attentional selection.  Proponents of the early selection view of attention believe that 

attentional selection occurs at the perceptual processing stage of information processing.  

Selected (i.e., attended) stimuli then enter working memory for further processing.  

Unselected stimuli are not further processed.  Late selection theorists believe that 

everything in a display is perceptually processed, and enters working memory.  It is here 

in working memory where attentional selection occurs.  The critical difference between 

early and late selection views is at what stage attentional selection occurs (i.e., perception 

or working memory). 

Lavie (1995; Lavie et al., 2004) has presented a hybrid model of attention that 

attempts to resolve the early versus late controversy.  The perceptual load model proposes 

that early selection is observed under task conditions where a person’s perceptual 
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processing capacity is exceeded; that is, early selection is a necessary outcome of limited 

perceptual processing capacity.  Under conditions of low perceptual load, relevant and 

irrelevant information (i.e., distractor items) is perceptually obligatorily processed until 

perceptual capacity is exhausted.  This information enters working memory where 

attentional selection takes place (late selection). 

Of course, a critical component of the model is the definition of perceptual load.  

Lavie and colleagues (1995; 2004) have operationalized perceptual processing load as 

either the number of items in the display (i.e., display set size), or keeping display set size 

constant and changing the type of processing required.  For example, searching for a 

target among 2 distractors is less perceptually demanding than searching for a target 

among 6 distractors.  Similarly, a feature search (searching for a target that varies on one 

dimension) is less perceptually demanding that a conjunction search (searching for a 

target that varies on two dimensions).  Lavie and colleagues (1995, 1997, 2003, and 

2004) have manipulated many different operational definitions of perceptual load and 

found that when perceptual load was defined as being “high” (e.g., more items in display) 

adjacent distractors did not interfere with responding.  This finding is compatible with a 

reduction in the size of the FFOV due to high perceptual load. 

Maylor and Lavie (1998) have found that perceptual load was also a determinant 

of selective attention in older adults.  However, because of older adults’ reduced initial 

perceptual processing capacity, older adults’ attention was more selective at lower 

perceptual loads.  That is, selective attention (i.e., which is consistent with a constriction 

of the FFOV) occurred at lower levels of perceptual loads for older adults than for 

younger adults.  However, under the lowest level of perceptual load (when capacity was 
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presumably not exhausted), both younger and older adults were affected by adjacent 

distractors which could be interpreted as a wide FFOVhat encompassed targets and 

distractors in the display. 

A strong inference from the perceptual load theory is that for attention to be 

efficiently divided between two tasks (the opposite of selective attention), perceptual load 

of one of the tasks must NOT approach or exceed the upper limit of available capacity.  

More specifically, if a primary task is low in perceptual load (and thus does not exhaust 

perceptual processing capacity) spare processing capacity will be available for the 

secondary task.  This is functionally consistent with a wide FFOV.  Conversely, if a high 

perceptual load primary task exhausts perceptual processing capacity, there will be no 

spare capacity available for the secondary task.  Performance in the secondary task will 

suffer.  This is consistent with a shrinking of the FFOV. 

 

Four-dimensional multiple resource model 

 

The multiple resource model (Wickens, 2002) predicts that successful time-

sharing between any two tasks is dependent on the extent to which two tasks share 

particular task dimensions.  The task dimensions are processing stages, processing codes, 

perceptual modalities, and visual channels.  The processing stages dimension refers to 

what stage of information processing a task primarily relies on (perception, cognition, or 

responding).  Two tasks that share similar processing stages (e.g., two tasks that require 

cognition) may interfere with each other while two tasks that do not share processing 

stages (e.g., one task that requires cognition with another task that requires responding) 
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will not interfere with each other.  The processing codes dimension refers to whether the 

task is primarily spatial or verbal in nature.  If two tasks are of different codes (i.e., one 

task is spatial, one task is verbal), they are less likely to interfere.  For example, a manual 

tracking task (e.g., following a target with a joystick) is less likely to interfere with a 

verbal task (e.g., making a vocal response).  

Similarly, two tasks that place demands on the same modality (e.g., two auditory 

tasks) may interfere with each other more than two tasks that place demands on different 

modalities (e.g., one visual task and one auditory task).  The exception is with the visual 

modality.  Some research has shown that within the visual modality, there appears to be 

two relatively independent channels that may draw upon unique resources (focal/ambient 

channels; e.g., Weinstein & Wickens, 1992).  When two different tasks are distributed 

between the focal and ambient visual channels, time-sharing of the two tasks may be 

more efficient (e.g., Horrey & Wickens, 2004).  Then, in a sense, distance between tasks 

can be a resource that supports efficient time-sharing. 

A focal/ambient distinction within the visual system is neurologically plausible 

due to the different ways the foveal and peripheral areas of the retinal are represented in 

the visual cortex.  Carrasco, McElree, Denisova, and Giordano (2003) present evidence 

consistent with a focal/ambient distinction in the visual field.  In their study, they found 

that stimuli (Gabor patches) presented in the ambient channel (9 degrees of visual angle 

from central fixation) were processed faster than stimuli presented closer to central 

fixation (4 degrees of visual angle).  They attributed this speed advantage in the ambient 

channel to the way the visual cortex is structured.  Because the fovea (the focal channel) 

has a larger representation in the visual cortex (i.e., more neural tissue) than the periphery 
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(ambient channel), more integration of information must occur for stimuli presented in 

foveal regions of the retina.  On the other hand, stimuli presented in the periphery do not 

undergo as much processing because there is less cortical area devoted to this region of 

the retina. 

Recent evidence that may support the focal/ambient visual channel distinction in 

older adults comes from two studies.  McCarley, Mounts, and Kramer (2004) found that 

as two target stimuli became closer in a display, task accuracy to detect a target was 

reduced while Hahn and Kramer (1995) found that older adults, when pre-cued, were 

able to divide attention in two widely separated tasks (tasks separated by 12 deg of visual 

angle).  In McCarley, Mounts, and Kramer’s study, participants were searching a display 

for two targets of varying distances from each other.  The participant’s task was to 

determine if the two targets were the same or different.  Task response time (i.e., “same” 

or “different”) in this dual-task was faster when the two targets were farther apart than 

when the two targets were closer together.  The authors attributed this to “localized 

attentional interference” or the phenomena of suppression of stimuli that is near other 

stimuli that have been selected for processing.  

Further evidence that may support the focal/ambient distinction comes from a 

study by Hahn and Kramer (1995) where younger and older participants were able to split 

their attention between two distant locations.  When participants were pre-cued to the 

locations of potential targets, they were able to effectively ignore distractors that occurred 

elsewhere in the display.  Taken together, these different studies suggest that when the 

two simple tasks are closer together, attentional (not sensory; McCarley et al, experiment 

2) interference results in decreased task performance.  When the tasks are separated, less 
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interference is observed.  McCarley, Mounts, and Kramer’s results nicely fit within 

Wicken’s (2002) focal/ambient distinction—when two tasks are presented in close 

proximity they compete for the same resource, which could slow responding.  When 

tasks draw upon different resources, performance in one task may be independent of 

performance in the other task.  Similarly, Hahn and Kramer’s study that used large 

distances between tasks could have allowed the two tasks to be processed in different 

visual channels, and potentially drawing upon different “pools” of resources. 

We can make relatively straightforward predictions based on the multiple 

resource model.  If we assume that focal and ambient visual channels constitute 

independent visual channels, time-sharing performance between two visual tasks will 

primarily depend on how close the two tasks are to each other—as the tasks move farther 

apart, they are more likely to draw upon separate resources compared to when they are 

near.  Unlike the perceptual load model, the multiple resource model predicts that 

variations in perceptual load of a task should not interfere with secondary task 

performance as long as the secondary task utilizes a different resource (i.e., is far away 

from the primary task). 



 

 15

CHAPTER 2 
 

OVERVIEW OF THE STUDY 
 
 
 

The current study was designed to examine how systematic variations in the 

perceptual load of a primary task, eccentricity, and age affect the FFOV.  A novel 

contribution of the current studies was the use of signal detection analysis in the study of 

the FFOV.  Using signal detection analysis allowed the computation of separate 

sensitivity and response bias statistics.  Traditional use of overall accuracy as a measure 

of performance may reflect a mixture of varying sensitivity, response bias, or both.  

When perceptual load is manipulated, do differences in secondary task performance 

reflect changes in observer sensitivity (e.g., due to a reduction in perceptual attention 

resources), or a change in response bias?  

Previous research examining task-related factors that affect the FFOV have not 

specifically controlled perceptual load demands of the task and thus it is difficult to say 

how perceptual load might affect the FFOV.  The current study was designed to test two 

models of visual attention that make different predictions concerning the role of 

perceptual load, age, and distance between tasks on the FFOV. 

Additionally, the current study examined how aging and perceptual load interact 

to affect the FFOV.  Physiological changes in the visual system due to aging can cause 

blurring of the retinal image (Artal, Ferro, Miranda, & Navarro, 1993) which could 

require the recruitment of additional perceptual processing capacity to adequately 

perceive stimuli.  To exacerbate older adult’s visual perceptual processing difficulties, 

aging is associated with reduction in processing capacity; that is, older adults, in general, 
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have less processing capacity (e.g., Crossley & Hiscock, 1992; Maylor & Lavie, 1998; 

Tsang & Shaner, 1998).  If a task is reliant on perceptual processing, older adults may be 

at a greater disadvantage because they require more perceptual processing capacity and 

they have less of this capacity than younger adults do.  Finding such a pattern would lend 

further support to the idea that perceptual load is a critical determinant of the size of the 

FFOV.  This pattern of results would also suggest that age-related decrements in the 

FFOV may be, at least in part, due to age-related differences in perceptual capacity.   

However, age-related differences in perceptual capacity may not manifest itself as 

age-related differences in the FFOV because older adults may be able to compensate for 

their reduced perceptual capacity by using different strategies, or ways of doing the task.  

Older adults may adopt a different resource allocation strategy (i.e., focusing on one task 

to the detriment of the other task).  To control potential individual and age-related 

differences in resource allocation strategies, participants in the study will be told to focus 

on the primary task.   

Predictions from Lavie’s perceptual load model (Lavie, 1995, Lavie et al., 2004) 

suggest that relative perceptual load imposed by the primary task will determine 

secondary task performance; a high perceptual load primary task will lead to low 

secondary task performance.  Specifically, low secondary task performance should be 

manifested as a reduced sensitivity to detect stimuli.  Presumably, the high perceptual 

load primary task will consume all available attentional capacity, leaving none for the 

secondary task.  A low perceptual load primary task will lead to high secondary task 

performance because spare attentional capacity that is not used by the primary task will 
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be available for the secondary task.  This pattern of data is consistent with the conception 

of visual attention as drawing upon a single resource “pool.” 

However, the multiple resource model (Wickens, 2002) makes different 

predictions.  The multiple resource model suggests that different areas of the visual field 

may draw upon independent resources leading to the counterintuitive prediction of better 

time sharing with increasing distance between the primary and secondary tasks.  If the 

primary and secondary tasks compete for the same resource (i.e., both tasks are located 

close to each other) performance in one task will be dependent on the extent to which the 

other task does not exhaust capacity.  However, if two visual tasks are located far apart, 

they no longer compete for resources, instead they utilize separate resources; in which 

case, performance in one task may be to some extent independent of performance in the 

other task.  This hypothesis has yet to be directly tested. 

The current study is designed to examine the effect of perceptual load 

manipulations on FFOV.  To isolate the effect of varying perceptual load on the FFOV, 

distractors will not be throughout the display, but instead limited to the center portion of 

the display.  Moreover, in the primary task, the number of distractors will be kept 

constant across experimental conditions.  The study is also designed to examine the 

alternate possibility that different areas of the visual field may independently support task 

performance (i.e., no interference between tasks in different areas of the visual field).   

For this task context, depending on which model of attention is correct, there may 

be two distinct patterns of results.  Varying perceptual load may lead to a change in the 

size of the FFOV (as measured by secondary task performance).  A primary task that 

induces a high perceptual load may result in reduced secondary task performance because 
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all perceptual processing capacity will be exhausted, leaving no spare capacity available 

to process the secondary task.  A low perceptual load task may result in an increased 

FFOV (better secondary task performance) because spare perceptual processing capacity 

is available to process the secondary task.   

The alternate hypothesis is that instead of perceptual load, eccentricity (i.e., 

distance between the primary and secondary task) will determine performance in the 

secondary task.  As the secondary task increases in distance from the primary task, 

performance will be better than when the secondary task is closer to the primary task.  As 

distance between the tasks increases, there is a higher likelihood that they will be drawing 

up on separate resources (i.e., focal and ambient resources).  These hypotheses are 

discussed further in the Predicted Results section below. 

 

Method 

 

Participants 

 

Two age groups of participants completed this study:  Nineteen younger adults 

(aged 18-22, M = 20.1, SD = 1.3) and twenty-two older adults (aged 65 to 75, M = 69.7, 

SD = 3.2).  Five older adults were excluded because their primary task hit rate was lower 

than two standard deviations from the older adult group average.  The subsequent 

analyses are of the remaining 17 older adults (aged 65 to 75, M = 69.7, SD = 2.9). 

The younger adults were recruited from introductory psychology courses at the 

Georgia Institute of Technology and were offered course credit or $20 for two hours of  
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participation.  The older adults were recruited from the surrounding metropolitan area 

and were paid $30 for three hours of participation.  Older adult participants were 

screened over the phone to ensure that they were generally in good health and did not 

suffer from any ophthalmologic disease or condition that would affect vision.  

Additionally, general health information was collected before the study.  Participant’s 

visual status was checked again by examining their self-reported health information form.  

None of the younger or older participants reported conditions that could have affected 

visual acuity (e.g., glaucoma or recent cataract surgery).  General participant 

characteristics are presented in Table 1.  There were no age-related differences in near 

vision acuity; both age groups had normal near vision.  Younger adults had better far 

vision acuity than older adults.  Younger adults also scored higher in the digit symbol 

substitution test (a measure of speed) and the reverse digit span (a memory measure).  

However, the older adults had a higher vocabulary score than younger adults. 

 

Table 1 
 
Participant characteristics 

Younger adults  Older adults 
n = 19  n = 17 

 M SD  M SD 
Age 20.1 1.3  69.7 2.9 
Near vision1 20/21.3 2.3  20/22.1 4.0 
Far vision1* 20/18.6 7.8  20/25.5 7.8 
Digit symbol substitution2* 78.9 12.4  61.4 9.2 
Shipley vocabulary test2* 31.6 1.9  35.9 5.1 
Reverse digit span3* 10.6 1.7  9.0 3.6 
Note.  1Snellen visual acuity; 2Number of completed items (scale ranged from 0 to 40); 
3Number of digits recalled in the correct order.  * Indicates significant age group 
difference (p < .05). 
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Materials 

 

Ability tests 

 

Three standardized cognitive ability tests were used to describe the participants in 

this study.  The tests were the Digit Symbol Substitution (Wechsler, 1981; a measure of 

perceptual speed), the Shipley Vocabulary Test (Shipley, 1940; a measure of crystallized 

intelligence), and the Reverse Digit Span (Wechsler, 1997; a measure of working 

memory). 

 

Equipment 

 

IBM-compatible computers (3.2 GHz Pentium 4, 1 GB RAM) connected to 19 

inch cathode-ray tube displays were used in the current study.  The refresh rate was set at 

85 Hz.  At this refresh rate, a complete scan of the display occurred every 11.77 ms.  This 

interval constituted the potential error rate of all stimulus displays (i.e., displays were 

presented “display time +/- 11.77 ms”).  All stimulus displays were created with E-prime 

Version 1.1 for Windows XP (Schneider, Eschman, & Zuccolotto, 2002). 

 

Task 

 

 Participants engaged in a dual task visual search of extremely brief displays.  The 

primary task, always located in central fixation, was a search for a pre-defined letters 
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embedded in distractors.  Participants simultaneously searched the peripheral areas of the 

display for a star that appeared in random locations.  Each task is described in further 

detail below. 

 

Central letter search task (primary task) 

 

The central letter search task was a modification of that used by Maylor and Lavie 

(1998).  A single target letter (H, K, V, W, X, or Z; subtending 0.6° × 0.5° of visual 

angle) appeared with equal probability at one of the six possible positions in a six-letter 

row (subtending 3.7° × 0.5° of visual angle) located in the center of the display.  The 

background was black while the letters were white.  The target letter was embedded in a 

low or high perceptual load letter set.  In the low perceptual load condition, the target 

letter was embedded in a row of a single type of distractor repeated five times (H, K, V, 

W, X, or Z).  An example of a low perceptual load central task would be “WWXWWW”.  

The target is the letter X and the distractors are the letters W.  This is operationalized as a 

low perceptual load task because search of the target letter should be relatively easy due 

to the perceptual grouping of the distractors (Duncan & Humphreys, 1989).  In this kind 

of search condition, the target letter X should be relatively easy to distinguish from the 

distractor letters.  This is contrasted with an example of a high perceptual load task, 

“KVXWHZ”.  In this case, the heterogeneity of the distractors will make search of the 

target, the letter X, relatively difficult (Duncan & Humphreys, 1989).   

The central task stimuli used by Maylor and Lavie (1998) contained consistently 

mapped targets and distractors.  That is, the letter X or N was always a target while the 



 

 22

letters Z, K, H, Y, or V were always distractors.  To assure that search for targets in the 

central task remained a controlled, effortful process throughout the study and to prevent 

the formation of an automatic attention response to a consistently mapped target 

(Schneider & Shiffrin, 1977), targets and distractors were variably mapped.  That is, a 

potential target or potential distractors were drawn from the same pool of letters (H, K, V, 

W, X, or Z).  A target on one trial served as a distractor in another trial, and vice versa.  

Only 50% of the trial letter sets (target embedded in distractors) contained a valid target 

letter.  When a target was not present in a high load trial, one of the distractor letters was 

repeated in a non-consecutive position (e.g., the target is X, the letter set is “KVZWHZ”).  

In the previous example, the target letter X is not present and the letter Z is used twice to 

fill in the remaining position.  When a target was not present in a low load trial, a random 

letter that was not the target was substituted (e.g., the target is X, the letter set is 

“WWZWWW”).  In this case, the target letter X is not present, and was replaced with the 

letter Z.  Each of the potential letters (H, K, V, W, X, or Z) had an approximately equal 

likelihood of serving as a target or distractor on a particular trial. 

 

Peripheral star detection task (secondary task) 

 

In addition to the central task the participants simultaneously localized a white 

star (“*”; subtending 0.5° × 0.5° of visual angle) that was displayed either in a near or far 

ring around the central task.  The star could appear in one of 16 locations (Figure 1g) that 

were evenly spaced along the intersections of two imaginary circles and the four cardinal 

directions and the four oblique directions.  After stimulus presentation (central and 
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peripheral stimuli), the participant’s responses were to indicate whether the central task 

target letter was present, and, if present, the location of the peripheral star.  All responses 

were made with the mouse placed in the dominant hand. 

Figure 1 illustrates the event sequence for one trial.  Participants first saw a 

display asking them if they are ready to proceed to click a mouse button (Figure 1a).  

After the participant clicked a mouse button, a display indicated to the participant the 

target letter they should be looking for in the center of the screen (Figure 1b).  After 

clicking a mouse button, a white fixation dot appeared in the center of the display (Figure 

1c).  The fixation dot subtended 0.5° × 0.5° of visual angle.  After 750 ms, the central and 

peripheral tasks were displayed concurrently (Figure 1d).  The central task was to search 

for the previously defined target letter among the other distractor letters.  The peripheral 

task was to report the position of the star.  The star appeared with equal likelihood in one 

of 16 locations along two imaginary circles.   

The radii of the two levels of eccentricity on which the peripheral star can occur 

subtended 5.4° and 16.4° of visual angle from fixation.  On a given trial condition, the 

participant saw one of nine displays.  The central task was either absent or present.  When 

present, the task was either a high or low in perceptual load while the peripheral task was 

absent, present-near, or present-far.  After 140 ms, a random black and white noise mask 

was displayed for 750 ms (Figure 1e).  The purpose of the noise mask was to obliterate 

any remaining image on the phosphors of the cathode-ray tube, as well as to eliminate 

any iconic memory of the stimulus display.  After the noise mask, two consecutive 

response screens were displayed.  In the first response screen (Figure 1f), the  



 

 24

Figure 1.  Event sequence for one trial (not drawn to scale and shown in reverse 
contrast). 

A. Participant clicks mouse to proceed 

B. Participant clicks mouse to proceed 

C. Fixation dot (750 ms) 

D. Central and peripheral stimulus (140 ms) 

E. Random noise mask (750 ms) 

G. Peripheral task response.  Participants saw 24 identical 
white boxes.

F. Central task response 
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participant made their central task response (“Yes”, “No”, or “Blank Center”) using the 

mouse to click on their choice.   

After the participant indicated a central task response, a display of 24 identical 

white boxes appeared (Figure 1g).  At the center of this response screen was a button 

labeled, “No Star”.  While the peripheral task could only occur in any of the 16 peripheral 

target locations previously described, 8 additional boxes were added to the far ring.  The 

extra boxes are shown as gray squares in Figure 1g.  Pilot testing revealed that younger 

participants were more accurate in identifying the star appearing in the far ring than in the 

near ring.  This was most likely due to the wider spacing between potential target sites in 

the far ring.  Because there was more space between boxes in the far ring, it was easier to 

guess the correct peripheral target position if the participant was aware of which quadrant 

of the screen the star occurred.  The extra eight boxes were added to equate difficulty 

between the near and far ring peripheral target localization performance.  Subsequent 

pilot testing revealed that performance in the near and far rings was equated.  The 

participant responded by using the mouse to click on the box in which the previously 

presented target occurred. 

After the participant responded, the next screens displayed feedback for both the 

center and peripheral task.  If the central task response (“yes”, “no”, or “blank center”) 

was correct, the participant saw a display with the sentence, “Central task:  Correct” in 

green.  If the central task response was incorrect, the display read, “Central task:  

Incorrect” in red. 

If the peripheral task response was correct, the display read, “Target task:  

Correct” in green, if incorrect, the display read, “Target task:  Incorrect” in red.  Each 
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feedback display was presented for 1500 ms.  The trials started over with a display asking 

if the participant was ready to start the trial.  After each 54-trial block, participants 

received block-level feedback display indicating their center and peripheral task accuracy 

as well as a break notification.  To enforce the breaks between blocks, the study required 

experimenter intervention to proceed. 

 

Design and Procedure 

 

The study was a 3 (central task load:  absent, low perceptual load, or high 

perceptual load) × 3 (peripheral task eccentricity:  absent, near, or far) × 2 (age group:  

younger, older) factorial with central task load and peripheral task eccentricity as within 

subject factors while age group (younger and older) was a between subjects grouping 

variable.  The dependent variable was primary task response (“Yes”, “No”, or “No Star”) 

and peripheral task location (position of the star).  Appendix A illustrates how the trials 

were distributed over display types.  The 432 trials were randomly distributed across 

eight experimental blocks of 54 trials each. 

Upon arriving at the laboratory, participants read and signed an experimental 

consent form.  They then completed the demographics forms and completed the visual 

tests outlined in the materials section of this paper.  After completing the consent, 

demographics, vision screening, and ability tests, participants started the experiment.  If 

participants reported no previous experience with a computer mouse, they were given the 

opportunity to practice using a mouse in a task that was similar to the way the mouse was 

utilized in the study (instructions for the mouse practice located in Appendix B).  
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Participants were seated approximately 21 inches from the display.  Viewing distance 

was stabilized with a chin rest.   

The study was divided into three main phases, of which only data from blocks 1 

to 8 of phase 2 was analyzed.  In the first phase (single-task phase), participants 

completed 48 trials of a central task only condition.  The main purpose of this phase was 

to provide extensive practice in the central letter search task.  Because of the extremely 

brief stimulus durations extensive practice was required.  Another benefit of extensive 

practice in the center letter search was that it instilled in the participants the importance 

of this task over the later introduced peripheral task.  In the second phase of the study, 

participants engaged in the dual-task study where they had to complete the central and 

peripheral task simultaneously.  This phase of the study involved 432 trials distributed 

over eight blocks as well as a “re-run” block (block 9) that re-displayed all the error trials 

from the previous eight blocks.  A break of at least 5 minutes was required at the end of 

each block.  The third and final phase (single-task phase) was 48 trials of center-task only 

trials. 

Participants were given oral and computer-based instructions at the beginning of 

each of the three phases of the study (Appendix C, D, and E).  Before the first phase of 

the study (48 trials of center-task only), participants were given five trials of practice on 

the task.  After completing the first phase of 48 single-task trials, participants were 

required to take a 5-minute break.  Before starting the second phase of the study (dual-

task phase) they were told that they were about to start a task that required them to do two 

things at once.  They were given oral and computer-based instructions on the central task 

(target present or absent) and the peripheral task (target localization task).  Participants 
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were encouraged to try their best on both tasks; however, emphasis was placed on the 

central task.  Participants were given 6 trials of practice in the dual-task.  After the 

practice tasks, the experimenter answered any remaining questions and again emphasized 

the central task.  All participants were required to take a minimum 5-minute break after 

each block.  The beginning of the last phase (center-task only block) was preceded by 

computer-based instructions that reminded the participant as to the nature of the task.  

The general procedure is outlined in Appendix F. 

 

Hypotheses 

 

Table 2 illustrates the potential patterns of data from this study.  The table 

represents the potential patterns of peripheral task sensitivity by central task load (no 

load, low load, high load) and peripheral task eccentricity (near, far).  

If FFOV is conceptualized as the spatial distribution of attention in the visual 

field, the perceptual load model suggests that as the perceptual load of the central task 

increases (and perceptual processing capacity reduces), peripheral task sensitivity will 

decrease due to a reduction in the size of the FFOV, or distribution of attention.  This is 

because the high perceptual load central task consumes perceptual processing capacity, 

leaving less available to process the peripheral task (i.e., attention becomes selective).  

More specifically (Figure 2), in the high load condition, sensitivity for the peripheral 

localization task should be relatively low (compared to the single-task baseline) in both 

near and far positions.  When the central task is low in perceptual load, peripheral task 
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sensitivity should be relatively high for the near and far positions.  This is because there 

is spare perceptual processing capacity available to process the peripheral task. 

Additionally, the study will examine how aging interacts with perceptual load to 

affect peripheral task performance (i.e., FFOV).  Aging is associated with a reduction in 

perceptual processing capacity (Maylor & Lavie, 1998).  Because older adults have less 

initial perceptual processing capacity, a lower level of perceptual load may exhaust their 

capacity relative to younger adults.  When perceptual load of the task is low, both 

younger and older adults will be able to process the peripheral task, but older adults may 

be less sensitive than younger adults because they have less initial capacity (Figure 2).  

The predicted effect of age on sensitivity within the low perceptual load condition 

reflects the different initial perceptual processing capacities between younger and older 

 
Table 2. 
 
Peripheral task sensitivity predictions 
  Central Task Load 
  No central task Low perceptual load High perceptual load 

Perceptual load hypothesis: 
Sensitivity reduced 

(low load should have small effect 
on peripheral task sensitivity 

compared to baseline) 

Perceptual load hypothesis: 
Sensitivity reduced 

(high load should have large effect 
on peripheral task sensitivity 

compared to baseline ) 

N
ea

r Near task 
baseline Multiple resource hypothesis: 

Sensitivity reduced 
(low load should have small effect 

on peripheral task sensitivity 
compared to baseline; peripheral 
task drawing on focal resources) 

Multiple resource hypothesis: 
Sensitivity reduced 

(high load should have large effect 
on peripheral task sensitivity 

compared to baseline peripheral task 
drawing on focal resources) 

Perceptual load hypothesis: 
Sensitivity reduced 

(low load should have small effect 
on peripheral task sensitivity 

compared to baseline) 

Perceptual load hypothesis: 
Sensitivity reduced 

(high load should have large effect 
on peripheral task sensitivity 

compared to baseline ) 

Pe
rip

he
ra

l T
as

k 
Lo

ca
tio

n 

Fa
r Far task 

baseline Multiple resource hypothesis: 
Sensitivity slightly reduced 

(because of the distance between 
tasks, no effect of load; peripheral 

task drawing on ambient resources) 

Multiple resource hypothesis: 
Sensitivity slightly reduced 

 (because of the distance between 
tasks, no effect of load; peripheral 

task drawing on ambient resources) 
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adults.   

When perceptual processing load is high, leaving little attentional capacity to 

process the center and peripheral task, both age groups will be less sensitive to the 

peripheral task (i.e., both age groups will attend selectively to the central task).  Even 

though older adults may have less initial processing capacity, if the task can sufficiently 

exhaust capacity for younger adults, performance (i.e., sensitivity) may be similar for 

younger and older adults under conditions of high load. 

In sum, the predictions that follow from the perceptual load model (Lavie, 1995, 

Lavie et al., 2004) are a main effect of perceptual load on peripheral task sensitivity.  

High perceptual load should lead to reduced peripheral task sensitivity while low 

perceptual load leads to relatively better peripheral task sensitivity.  The model also 

predicts an interaction between age and perceptual load on peripheral task performance 

such that the high perceptual load condition should not result in age differences in 

peripheral task performance while the low perceptual load condition should result in age 

differences in peripheral task performance.  The difference is due to the initial perceptual 

processing capacity differences between younger and older adults.  The relative size of 

visual attention under low and high levels of perceptual load is illustrated in Figure 3a 

and 3b. 

According to the perceptual load model there should be no effect of eccentricity 

(near or far) on peripheral task sensitivity.  These results would suggest that the 

perceptual load imposed by the task critically determines the FFOV.  A finding of no 

differences between peripheral task distances (near or far) as a function of load would 

also show that the constriction of attention due to perceptual load demands may not be  
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Figure 2.  Predicted results from Perceptual Load Model:  Peripheral task performance 
by central task load, peripheral task location, and age. 
 
 
 
 
 
 

  
Figure 3a.  Perceptual load model:  
Hypothesized size and shape of visual 
attention in a low central task load 
condition.  Attention is broadly distributed 
over the visual field. 

Figure 3b.  Perceptual load model:  
Hypothesized size and shape of visual 
attention in a high central task load 
condition.  Attention is constricted toward 
fixation. 
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graded (with attention falling off gradually from fixation; Laberge & Brown, 1989), but 

instead may be global over the entire visual field.  However, with only two levels of 

eccentricity, the current study may not be sensitive enough to determine whether changes 

in the FFOV are graded or global. 

The multiple resource model makes critically different predictions (illustrated in 

Figure 4) compared to the perceptual load model.  If the central and peripheral task 

(localization task) share resources (i.e., are close to each other) performance in the 

peripheral task will be relatively low.  This is because participants will be told to 

emphasize the central task.  If the central and peripheral task do not share resources (i.e., 

are in different areas of the visual field), peripheral task performance will be relatively 

good compared to when the tasks are close.  It is hypothesized that as the distance 

between the center and peripheral task is reduced, peripheral task accuracy will be lower 

(compared to the single-task baseline).  However, when the peripheral task is in the far 

position, peripheral task accuracy will be better relative to the near position.  The drop in 

sensitivity seen in the far ring from “no center task” to “lower load” represents the “cost 

of concurrence” (Navon & Gopher, 1979), or the additional resources required for time-

sharing two tasks compared to a single task (the no center task condition). 

The predictions regarding the effect of age on the FFOV from the multiple 

resource model are less clear.  No research has been conducted that specifically examines 

the focal/ambient distinction and how age-related changes in vision and attention would 

affect the resource pools.  The previous research that has been conducted in paradigms 

similar to the current one (e.g., Hahn & Kramer, 1995; McCarley et al, 2004) suggest that 

older adults may have preserved focal and ambient attentional resources available to  
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Figure 4.  Predicted results from Multiple Resource Model:  Peripheral task 
performance by primary task load, peripheral task location, and age. 
 
 
 
 
 
 

 
Figure 5a.  Multiple-resource model:  
Hypothesized size and shape of visual 
attention in a low load primary task 
condition.  Notice the large diameter of 
attention, as well as the outer ring 
representing separate resources. 

Figure 5b.  Multiple-resource model:  
Hypothesized size and shape of visual 
attention in a high load primary task 
condition. 



 

 34

support performance when the tasks are far apart (Hahn & Kramer, 1995).  However, 

when tasks are close to each other, there may be attentional interference due to resource 

competition, and this interference is greater for older adults (e.g., McCarley et al, 2004). 

To summarize the multiple resource model predictions, there should be a main 

effect of eccentricity (e.g., near or far) on peripheral task sensitivity such that when tasks 

are close to each other, sensitivity for the peripheral task will be reduced.  When the 

central and peripheral tasks are further apart, peripheral task sensitivity will be better 

relative to when they are closer together.  The hypothesized distribution of attention, 

from the multiple resource model, is illustrated in Figures 5a and 5b. 

 There are no specific hypotheses regarding response bias and the literature does 

not provide guidance toward making specific predictions.  Under conditions of 

uncertainty (either due to age or experimental manipulations) participants could respond 

conservatively (i.e., less likely to report peripheral target was present) or liberally (i.e., 

more likely to report peripheral target present).  Given that participants were urged to 

focus on the central task, participants of both age groups may adopt a liberal response 

criterion for the peripheral task.  On the other hand, there may be age differences such 

that older adults, who in previous visual search studies exhibit conservative response bias 

(Batsakes & Fisk, 2000), may exhibit a conservative bias while younger adults exhibit a 

liberal response bias. 
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CHAPTER 3 

RESULTS 
 
 
 

Overview of Analyses 

 

To review the study design, the central task was the means by which perceptual 

load of the display was manipulated.  The central task was always located at central 

fixation.  The peripheral star detection task was the indirect measure of the breadth of 

attention, or FFOV.  The peripheral task involved correctly localizing a star presented at 

various locations along one of two rings around the fixation point. 

Signal detection methods were used to examine how changes in the perceptual 

load of the display, the location of the stimuli, and the observer’s age affected the 

distribution of visual attention over a display (i.e., FFOV).  Previous studies that have 

examined the FFOV have used measures of performance (e.g., proportion correct, error 

rate) that confound sensitivity and response bias (i.e., they reflect a mixture of sensitivity 

and response bias).  Thus, it is difficult to determine, by using overall percent correct or 

error rate, whether person- and task-related changes in the FFOV are moderating changes 

in the distribution of attention (that would be manifested primarily in changes in 

perceptual sensitivity) or changes in response criteria.  Therefore, signal detection 

methods, in addition to an analysis of hit and false alarm rates, were used to compute 

separate measures of sensitivity and response bias as a function of experimental 

conditions and age group. 
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How aging and level of perceptual load might affect the distribution of attention is 

suggested by two theories of visual attention.  Perceptual load theory suggests that 

perceptual load of the display is the critical determinant of the size FFOV.  As the 

perceptual load of the display increases, attentional resources are consumed which results 

in a constriction of the FFOV (analogous to a constriction of the spotlight of attention).  

This should lead to a corresponding decrease in sensitivity to detect targets that are 

presented farther away from fixation (i.e., as the breadth of attention decreases like a 

spotlight, far targets become more difficult to perceive).  Lavie and colleagues (e.g.,  

Lavie et al., 2004) have found that this withdrawal of attention due to increasing 

perceptual load manifests itself as ease of ignoring peripheral distractors in a response 

competition paradigm (i.e., selective attention). 

The four-dimensional multiple resource model (Wickens 2002) suggests that 

independent resources (i.e., focal/ambient) serve different areas of the visual field to 

potentially support dual-task performance (one focal task, one ambient task).  Thus, 

perceptual load differences in the display may not necessarily affect performance in other 

areas of the display because separate resources support performance in different areas of 

the visual field.   

In the current study, the effect of perceptual load on the FFOV was examined by 

analyzing the participant’s perceptual sensitivity to detect a peripherally presented star 

and bias in responding.  The critical analysis was to determine how peripheral task 

sensitivity and bias were affected by the a) central task perceptual load, b) the location of 

the peripheral task (i.e., distance from fixation, or “eccentricity”), and c) age.  According 

to perceptual load theory, increases in the perceptual load central task should lead to 
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decreased perceptual sensitivity to detect peripherally presented stimuli.  Additionally, 

perceptual sensitivity should also be affected by age.  Older adults are presumed to have 

less initial processing capacity than younger adults (Maylor & Lavie, 1998).  This should 

lead to the observation of a main effect of age—older adults will be less sensitive to 

detect a target than younger adults will.  The multiple resource model would predict no 

change in perceptual sensitivity to detect a stimulus based on perceptual load, but would 

predict a change in sensitivity with location of the peripheral task.  Sensitivity for the 

peripheral task should be better farther from central fixation compared to nearer. 

Five older adults were excluded from all analyses because their hit rate was more 

than two standard deviations below the mean of the age group.  Removing these five 

older adults only altered the statistical significance of one effect: a three-way interaction.  

Repeated measures analysis of variance (ANOVA) was used to compare performance by 

age group and experimental conditions.  The criterion of statistical significance was .05.  

ANOVA tables for each of the analyses are located in Appendix I.  When proportion data 

are illustrated in a graph (e.g., hit rate), the actual proportions are illustrated in the graph, 

however, statistical tests were carried out on the arc-sine-transformed data.  The 

transformation was necessary to more closely approximate a normal distribution (Zar, 

1974). 

The results from the study are presented in two main sections, each answering a 

different question.  The first section contains the analyses of the hits, false alarms, and 

signal detection statistics for the central letter search task data.  The goal of these 

analyses is to determine if the manipulation of perceptual load was successful—recall 

that the central task was how perceptual load was manipulated, in which case central task 
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letter search performance should decrease with increasing perceptual load (i.e., letter 

search difficulty should be affected).   

The second section contains the analyses of the hits, false alarms, and signal 

detection statistics for the peripheral task data.  Recall that the peripheral task was the 

indirect measure of the FFOV. 

 

Central task:  Letter Search Task 

 

Hits and False Alarms 

 

Central task hit rate (proportion of trials that were correctly identified as having a 

target letter) and false alarm rate (proportion of trials incorrectly identified as having a 

target letter) are illustrated in Figure 6 as a function of load (lower load, or higher load) 

and age group (and in Table H1).   

Although the main effects of age, F(1,34) = 12.42, MSE = .23, and load, F(1,34) = 

8.67, MSE = .04, were significant, age significantly interacted with load.  The load 

manipulation had different effects for each age group, F(1,34) = 8.41, MSE = .04, with 

load having a slight but significant beneficial effect on hit rate for the older adults, but no 

significant effect for the younger adults.  The complete ANOVA table is presented in 

Table I1. 

However, older adults’ false alarm rate was significantly higher than younger 

adults, F(1, 34) = 56.31, MSE = 1.75.  More false alarms occurred in the higher load  
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condition than the lower load condition, F(1, 34) = 25.95, MSE = .49.  The complete 

ANOVA table is presented in Table I2. 

To summarize, older adults’ hit rate was lower and false alarm rates higher than 

for younger adults.  The central task perceptual load manipulation had no effect on 

central task hit rate for younger adults suggesting that even the higher load condition was 

relatively easy for the younger adults.  Increasing central task perceptual load also 

resulted in an increase in hit rate for the older adults.  However, increasing perceptual 

load resulted in increased false alarm rates for both age groups. 

The slightly higher hit rate due to higher perceptual load among older adults, and 

no effect on hit rate for younger adults is puzzling, but may be readily explainable 
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Figure 6.  Central task hits and false alarms by age group, perceptual load 
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through signal detection analyses.  If older adults relaxed their response criterion in the 

high load condition (i.e., were more willing to respond, “target present”) this would 

explain their simultaneous increase in hit rate and false alarm rate in the high perceptual 

load condition.  Similarly, if younger adults became more liberal in their responding, it 

would explain why there was no change in hit rate, but an increase in false alarm rate.  To 

explore this possibility, signal detection analyses were conducted on the central task hit 

and false alarm data. 

 

Signal Detection Analyses 

 

Using the hit and false alarm data, signal detection measures were computed for 

each participant.  Signal detection theory is a way to describe subjects’ performance 

when they must detect signals in the presence of noise or uncertainty (Green & Swets, 

1988).  The advantage of using signal detection statistics is that compared to overall 

percent correct, signal detection statistics allow us to decompose performance into two 

independent components:  sensitivity (i.e., perceptual processes affected by visual 

attention) and bias (i.e., post-perceptual processes; strategy differences). 

Traditional signal detection measures (the measures d’ for sensitivity and β for 

response bias) could not be calculated because the pattern of hits and false alarms did not 

conform to a normal distribution—a requirement for the computation of d’ and B (Green 

& Swets, 1988).  Thus, non-parametric signal detection statistics, which do not require 

normally distributed responses, were computed (A’ for d’ and B’’ for β).  For each 

participant, sensitivity to detect the central task target letter (A’) and criterion for  
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deciding the presence of a central task target letter (B’’)  were computed (Grier, 1971; 

Pollack & Norman, 1964; Stanislaw & Todorov, 1999).  The equations used to calculate 

A’ and B’’ are presented in Appendix G. 

Signal detection measures cannot be computed when individual hit or false alarm 

values are equal to 0 (e.g., no false alarms) or 1.0 (e.g., perfect hit rate).  In the cases 

where false alarm rate was 0, 1/2N was used instead, where N was the maximum number 

of false alarms possible.  Similarly, when hit rate was 1.0, 1 – 1/2N was used where N 

was the maximum possible number of hits (Wixted & Lee, 2005). 
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Figure 7.  Central task signal detection analysis:  Sensitivity as a function of perceptual 
load and age group (A’).  Perfect sensitivity to the target letter is indicated by 1.0, no 
sensitivity is indicated by 0.5. 
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Sensitivity 

 

Central task sensitivity (A’) as a function of load and age group is represented in 

Figure 7.  In this case, sensitivity refers to the participants’ ability to detect the presence 

of the target letter within the central task when it was embedded in different perceptual 

load conditions.  The A’ statistic ranges from 0.5, indicating no sensitivity to the presence 

of the target letter (i.e., chance performance), to 1, indicating perfect sensitivity to the 

target letter.  Under conditions of high perceptual load, perception is made more difficult 

but not impossible.  Thus, the only time we should observe A’ at or near 0.5 is if the 

participant could not see anything and was responding randomly. 

The main effects of age, F(1, 34) = 52.92, MSE = .23, and load, F(1,34) = 22.49, 

MSE = .07, were significant.  However, load interacted with age such that the load had 

differing effects between the younger and older adults, F(1,34) = 6.26, MSE = .02.  Load 

had a significant effect on central task sensitivity in the younger adults but not in the 

older adults.  Means and standard deviations are presented in Table H3 and the complete 

ANOVA table is presented in Table I5. 

To summarize, changes in perceptual load altered younger adults’ central task 

sensitivity but not for the older adults’.  This is potentially problematic because a change 

in sensitivity as a function of perceptual load would have provided an experimental 

manipulation check—that perceptual load was indeed manipulated.  However, examining 

how response bias was affected by load and age provides evidence that older adults’ 

performance was affected by the manipulation of load. 
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Figure 8.   Central task signal detection analysis:  Bias as a function of perceptual load 
and age group (B’’).  Positive values indicate conservative bias, negative values indicate 
liberal bias, zero indicates no bias. 
 
 
 
Bias 

 

 Bias indicates a preference for responding in a particular way under uncertainty.  

The bias statistic, Β’’, ranges from -1 (indicating a liberal bias; more likely to respond  

“target letter present”) to +1 (indicating a conservative bias; more likely to respond 

“target letter absent”).  Bias as a function of load and age group is illustrated in Figure 8. 

The main effect of load on central task response bias was significant, F(1,34) = 

9.79, MSE = .46, indicating that as load increased, participants became more liberal in 

their responding (more likely to say a target letter was present than not).  There was no 

significant effect of age group on bias and no interaction between load and age group on 

central task bias—the change in bias was nearly equivalent across the age groups.  Both 
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age groups became more liberal in their pattern of responses as load increased which 

could be expected if increasing load has the effect of making letter search more difficult.  

As the letter search task became more difficult, participants may have been more likely to 

guess (i.e., to relax their criterion for a target present).   

Although older adults’ sensitivity in the central task was not affected by 

increasing load, load did affect older (and younger) adults’ response bias.  The means and 

standard deviations are presented in Table H3 while the complete ANOVA table is 

presented in Table I6. 

 The signal detection analyses confirm and extend the hit rate and false alarm data.  

Recall that older adults’ hit rate actually increased under high load compared to lower 

load.  The signal detection statistics show that the cause may have been a shift to a more 

liberal response criterion (more likely to respond “target present”) paired with a nearly 

constant sensitivity across levels of load. 

There were no age-related differences in response bias which indicated that both 

younger and older adults approached the task with similar strategies (e.g., older adults did 

not become differentially more conservative as the task became more difficult).  

However, the response bias did change as a function of perceptual load for both age 

groups with responding becoming more liberal as load increased—that is, under high 

load conditions, participants were more willing to respond that a target letter was present 

in the display when it was not. 

In sum, analysis of the central task show that load was successfully manipulated 

for younger adults (affecting sensitivity and bias) and for older adults (affecting only 

bias). 
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Peripheral Task:  Star Detection 

 

The peripheral task was the star localization task.  The purpose of the peripheral 

task was to indirectly assess the size of the FFOV (the breadth of attention) under varying 

levels of perceptual load.  The assumption was that if the size of the FFOV is affected by 

perceptual load and age, this would manifest itself as a decrease in localization 

performance for the peripheral task or a decreased ability to detect changes (e.g., Pringle, 

Irwin, Kramer, & Atchley, 2001).  The participant was required to localize a star that was 

briefly shown at the same time as the central task.  Participants then used the mouse to 

click on a location in which they thought the star appeared.  The star could have appeared 

randomly in 16 locations along eight “spokes.”  Hit rate did not differ between spokes 

(see Appendix K for a summary) so the eight spokes were collapsed and analyzed as two 

rings: near and far.  The criterion of statistical significance was .05.  All proportion data 

were transformed for analyses, but are illustrated in proportions. 

 

Hits and False Alarms 

 

Peripheral task hit rate and false alarm are illustrated in Figure 9 as a function of 

central task load (no load, lower, or higher), eccentricity (near or far ring), and age group 

(younger, older).  While there were many other ways to define a hit and false alarm (e.g., 

by partitioning the display into quadrants and defining a hit as a response within a 

particular quadrant of the display) the ring distinction was most appropriate given the  
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purposes of the study and the assumption that visual attention behaved as a circular 

spotlight.  

A response was considered a ‘hit’ in a particular ring if the star appeared in a ring 

and participants responded with that ring.  For example, the hit rate in the near ring was 

the total number of times the participant responded “near” divided by the total number of 

times the star was actually presented in the “near” ring.  Thus, a hit rate of 1.0 indicates 

that the participant always correctly identified the correct ring in which a star appeared.  

A false alarm is when the participant mistakenly thinks that a stimulus occurred in a 

location where it did not.  In this task, a response was considered a ‘false alarm’ when 

participants localized a star in one ring when it actually occurred in the other ring.  For 
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Figure 9.  Peripheral task hits and false alarms by central task condition (no load, lower 
load, higher load) and age group (young, old).  Error bars represent the standard error. 
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example, false alarm rate in the near ring was the total number of “near” responses when 

the star was actually present in the far ring divided by the total number of times the star 

was in the far ring.  Similarly, false alarm rate for the far ring was the total number of 

times the participant responded “far” when the star was actually in the near ring divided 

by the total number of times the star was in the near ring.  Thus, for the near ring, a false 

alarm rate of zero indicates that participants never made the mistake of saying a star 

presented in the far ring occurred in the near ring; 0 near responses / 48 occurrences of a 

far star = 0.  Similarly, for the near ring, a false alarm rate of .5 indicates that half the 

time, participants responded a star occurred in the near ring when it was actually in the 

far ring; 24 near responses / 48 occurrences of a far star = .5. 

The false alarm rate computed above is specifically for localization false alarms, 

not detection false alarms.  Specifically, this means that the trials in which no peripheral 

star was presented were not included in the false alarm calculations.  The rationale for 

computing false alarms without including trials in which there was no peripheral star was 

that since the participant responded with a ring location (near or far) and not the “no star” 

button they must have detected the star.  Thus, given the participants detected a star, what 

was their hit and false alarm rate for correctly localizing the detected star? 

However, the false alarm data were also re-computed by including trials in which 

no peripheral task was presented.  For example, false alarms for the near ring were 

calculated as the total number of times a participant responded “near” when the star was 

actually in the far ring or was absent from the display (the no peripheral task trials).  

Computing false alarms (and signal detection statistics) in this way did not lead to any 

major changes in the interpretation of the data.  That is, false alarm rate did not differ in a 
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meaningful way when false alarms were calculated to detection or localization.  This 

supports the notion that participants were not under data-limited conditions (i.e., 

sensory), but more likely resource limited conditions (i.e., attention).  For a summary of 

the results from re-computing false alarms, see Appendix L.   

The proportion data (hits and false alarms; Table H2) were transformed and 

submitted to a repeated-measures ANOVA (Table I3).  Older adults’ peripheral task hit 

rate was lower than the younger adults’ hit rate, F(1, 34) = 62.7, MSE = .72.  Also, as the 

central task perceptual load increased, hit rate in the peripheral task decreased, F(2, 68) = 

9.06, MSE = .14.  Central task perceptual load had different effects on peripheral task hit 

rate depending on the location of the star, F(2, 69) = 5.23, MSE = .03.  In the near ring, 

changes in central task load had no effect on peripheral task hit rate.  However, in the far 

ring, increases in central task load (from no load to low load) resulted in a significant 

decrease in peripheral task hit rate.   

This pattern of data is consistent with an attentional spotlight that changes size 

depending on perceptual load.  As perceptual load increases, the size of the attentional 

spotlight shrinks as attention is withdrawn from distant areas.  The result is that it 

becomes more difficult to accurately detect the presence and location of the peripherally 

presented star.  In this task, the near ring was presumably still within the scope of 

attention (hence load did not affect performance) but the far ring received less of the 

attentional spotlight as perceptual load increased. 

For false alarms, the main effects of age, F(1,34) = 40.34, MSE = .15, load, 

F(2,68) = 16.32, MSE = .07, and eccentricity, F(1,34) = 30.59, MSE = .33, were 

significant.  However, the interaction between age group and eccentricity was significant, 
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F(1,34) = 31.05, MSE = .33, because for younger adults, increasing eccentricity had no 

effect on false alarm rates but for the older adults, increasing eccentricity resulted in a 

significant increase in false alarm rate.  The interaction between load and eccentricity on 

false alarm rate was also significant, F(2, 34) = 4.72, MSE = .03, indicating that varying 

central task load significantly affected peripheral task false alarm rates in the near 

position but not in the far position.  This is consistent with the notion that with increasing 

distance from fixation, the resolving power of attention is lower, leading to more false 

alarms.  The complete ANOVA table is presented in Table I4. 

 To summarize, older adults’ hit rate was lower and false alarm rate higher than 

younger adults’.  Across both age groups, central task perceptual load only affected 

peripheral task performance in the far ring.  This pattern is supportive of a spotlight of 

attention that shrinks in the presence of a centrally located high perceptual load.  The age-

related pattern of hits and false alarms from this study replicates earlier studies that have 

examined aging and the FFOV (e.g., Ball, Beard, Roenker, Miller, & Griggs, 1988). 

However, a major limitation of studies that have used percent correct (or percent 

error) as the dependent variable is that this kind of performance measure reflects a 

mixture of perceptual/attentional contributions and cognitive biases.  Thus, it is unclear if 

aging and variations in perceptual load affected the distribution of visual attention (which 

would primarily affect perceptual sensitivity) or simply altered participants response 

strategies (bias).  For example, are age-related changes in the FFOV found in this and 

previous studies due to age-related changes in attention and perception or are older adults 

simply more cautious in responding (i.e., less likely to report a target as “present” even if 



 

 50

they saw it)?  To determine the roles of sensitivity and bias in responding, signal 

detection statistics were computed from the hit and false alarm rates. 

 

Signal Detection Analyses 

 

Sensitivity 

 

The signal detection statistics (A’ and Β’’ for sensitivity and bias, respectively) 

were computed from each participant’s hit and false alarm data.  The equations used to 

calculate A’ and B’’ are presented in Appendix G.  To review, according to the 

perceptual load theory central task perceptual load increases should cause the FFOV to 

constrict leading to decreased peripheral task sensitivity because increasing perceptual 

demands of the display utilizes limited perceptual processing capacity.  As perceptual 

processing capacity declines, the breadth of attention should shrink.  According to the 

multiple resource model, sensitivity to detect the peripheral task should be best when the 

peripheral task is presented far from the central task.  When the peripheral task is far 

away, it will presumably be drawing upon a separate visual resource—one that is not 

shared with the central task.   

If we assume that increases in perceptual load have the effect of using up 

attentional resources, this should lead to more difficulty in correctly localizing the 

peripheral task.  Thus, perceptual load manipulations should affect bias, but it is uncertain 

how bias might be affected.  For example, when it difficult to correctly localize the star  
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(due to experimental manipulations or aging) participants could adopt a bias toward 

responding that the star occurred in one ring or another.   

Figure 10 illustrates peripheral task sensitivity (A’) as a function of central task 

load and eccentricity (location in which the peripheral task appeared).  Because the three-

way interaction between load, eccentricity, and age group was significant, the significant 

main effects and 2-way interactions will not be elaborated upon (see Table I7).  The 

three-way interaction of load × eccentricity × age group interaction was significant, 

F(2,68) = 3.95, MSE = .001, indicating that load had different effects on sensitivity 

depending on the position of the peripheral task and age group.   

The source of this three-way interaction was a significant two-way interaction of 

load × eccentricity, F(2,34) = 3.78, MSE = .001, for the older adults, but not for the 
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Figure 10.  Peripheral task signal detection analysis:  Sensitivity as a function of 
peripheral task position, central task load, and age group (A’).  Perfect sensitivity is equal 
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younger adults.  As illustrated in Figure 10, for older adults increasing central task load 

had greater effects on sensitivity in the far position compared to the near position (the 

slope of the lines representing older adults’ sensitivity is steeper in the far ring compared 

to the near ring).  Follow up tests revealed that for younger adults, load and eccentricity 

had no significant effect on sensitivity.  However, for older adults, the main effects of 

load and eccentricity were significant.  The interaction between load and eccentricity was 

only significant for the older adults. 

A significant load × eccentricity among older adults (but not younger adults) is 

consistent with the perceptual load model where attention could be thought of as a 

changeable spotlight with a focus at fixation.  For older adults, when perceptual load was 

higher, there was a decrease in sensitivity and this decrease was greater with increasing 

distance from central fixation (the steeper slope in Figure 10).  For younger adults, 

peripheral task sensitivity was unaffected by load or eccentricity.  Continuing the 

spotlight metaphor, under higher perceptual load older adults’ spotlight of attention 

shrunk in size and became dimmer while younger adults spotlight of attention did not 

change.  Presumably, this is because older adults’ more limited perceptual processing 

capacity, compared to younger adults resulted in a constriction of attention toward 

fixation with increasing load.  For older adults, as perceptual processing resources were 

consumed by the central task, less was available to process the peripheral task.  The 

means and standard deviations are presented in Table H4 while the complete ANOVA 

table is presented in Table I7. 
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Bias 

 

To recall, response bias is a participant’s likelihood of responding in one way or 

another.  In the current task, response bias indicates a participant’s preference for 

responding that the peripheral target appeared in one ring or another.  The importance of 

examining how response bias was that differences in response bias as a function of load 

and age may explain the observed relationships between load and age and the FFOV.  It 

is important to distinguish whether aging and load manipulations affect sensitivity, which 

may be related to differences in visual attention, or bias, which may reflect changing 

decision criteria. 

Figure 11 illustrates the peripheral task bias as a function of central load and 

peripheral task eccentricity.  As before, the bias statistic, Β’’, ranges from -1 (indicating a 

liberal bias; more likely to respond signal present) to +1 (indicating a conservative bias; 

less likely to respond signal present).  Overall, both younger and older adults, regardless 

of experimental condition, responded conservatively (positive values of Β’’).  A 

conservative bias indicates that, in general, false alarms, or mis-identifications of the 

target ring location, were low. 

However, the interaction between eccentricity and age group was significant, 

F(1,34) = 14.41, MSE = 4.49.  The source of this interaction was a significant effect of 

eccentricity on older adults’ bias but not for younger adults.  For younger adults, response 

bias remained unchanged whether the peripheral task was presented near or far from 

fixation, whereas older adults’ response bias became more neutral (closer to 0) when the 

peripheral task was in the far ring.   
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The interaction between load and eccentricity was also significant, F(2, 68) = 

6.07, MSE = .74, indicating that in the near ring (closest to fixation), increasing central 

task load resulted in an increasingly neutral response bias (all pair-wise comparisons of 

load were significant).  However, in the far ring, increasing load had no significant effect 

on response bias.  The three-way interaction between age, load, and eccentricity was not 

significant.  The means and standard deviations are presented in Table H4.  The complete 

ANOVA table is presented in Table I8.   

To summarize, the results from the signal detection analyses of the peripheral task 

sensitivity were predicted by the perceptual load theory.  That is, the distribution of visual 

attention was critically determined by the perceptual processing demands of the display.  

However, the relationship between perceptual processing demands and the distribution of 
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Figure 11.  Peripheral task signal detection analysis:  Bias as a function of peripheral task 
position, central task load, and age group (B’’).  Positive values indicate conservative 
bias, negative values indicate liberal bias while zero is no bias. 
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attention (as measured by perceptual sensitivity) was moderated by age.  Older adults, 

who presumably had less initial perceptual processing capacity, were more greatly 

affected by perceptual processing demands of the task as evidenced by their reduced 

perceptual sensitivity.  Additionally, the load by eccentricity interaction found for the 

older adults’ perceptual sensitivity suggest a pattern of visual attention that was predicted 

by perceptual load theory (but not expected from the multiple resource model)—the 

pattern of greater sensitivity loss at greater eccentricities than nearer eccentricities for 

older adults.  The results also demonstrate the importance of perceptual load and 

perceptual processing capacity of the observer as important determinants of the size of 

the FFOV. 

In relation to the test of the perceptual load model or the multiple resource model, 

the key finding from the analysis of response bias was that increasing perceptual load 

affected response bias when the peripheral task was near fixation but not when the 

peripheral task was far from fixation.  This is supportive of a model of visual attention 

similar to a zoom-lens model (Eriksen & Yeh, 1985)—one that has a unitary focus and a 

limited spatial extent. 
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CHAPTER 4 
 

DISCUSSION 
 
 

 
A common metaphor for visual attention is the “spotlight” (Posner, 1980).  That 

is, we can think of a person’s distribution of visual attention as a spotlight that 

“illuminates” parts of the visual field making stimulus detection easier.  The size of this 

spotlight can change size depending on various task-related and person-related factors.  

For example, it has been shown that cognitively demanding tasks (e.g., Williams, 1982) 

reduce the size of the spotlight of attention.  When this happens, information located in 

the periphery is more difficult to detect and process. 

Existing research has shown that concurrent memory loads affect the breadth of 

attention, or FFOV.  That is, when a demand is placed on working memory, the FFOV is 

negatively affected.  However, the relationship between perceptual load and the FFOV is 

less clear.  Previous studies that may have manipulated memory or cognitive load left 

perceptual load uncontrolled.  Previous research has shown that the perceptual demand of 

the task may affect spatial aspects of attention.  However, no research has directly 

examined the relationship between perceptual load and the dynamics of visual attention 

(i.e., FFOV). 

The goals of the current study were to a) examine the role of perceptual load on 

FFOV, b) examine how distance between tasks affects concurrent task performance, c) 

and if/how aging affects the FFOV.  Aging may be associated with a reduction in 

perceptual processing capacity (Maylor & Lavie, 1998) which may explain why older 

adults’ FFOV is smaller than other age groups.   
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There were some unique aspects about this investigation.  First, the perceptual 

processing demands of the stimuli were rigorously controlled.  Previous studies have left 

the perceptual processing demands of the task uncontrolled (via distractors) making it 

unclear how perceptual processing demands uniquely affect the FFOV.  The current 

study controlled for perceptual processing demands by altering the search difficulty of the 

central task while leaving the number of items to be searched unchanged.  Additionally, 

distractors were limited to the central portion of the display and not distributed 

throughout the display. 

Second, target and distractors were variably mapped instead of consistently 

mapped.  Consistently mapped targets (as used in previous investigations of perceptual 

load) engender an automatic attention response, which could dilute the search difficulty 

and therefore the perceptual demands of the task.  In the current study, perceptual load 

was manipulated as search difficulty while holding constant the number of items to be 

searched. 

Third, in addition to an analysis of hits and false alarms, signal detection analyses 

were used to examine the extent of the FFOV.  The use of signal detection analyses 

allowed the separate of aspects of performance that may have been due to 

perception/attention and those aspects of performance due to decision biases.  Previous 

studies of effects of various factors on the FFOV may then be due to alterations of 

response bias and not due to aspects of attention (which would affect perceptual 

sensitivity). 
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General Summary 
 
 

  
 The current study demonstrated that for older adults, the size of the FFOV is 

critically determined by the level of perceptual load engendered by the display.  The 

three-way interaction between age, load, and eccentricity was indicative of visual 

attention that shrinks toward a unitary focus (akin to a spotlight) as perceptual load 

increased.  As predicted from the perceptual load model, when perceptual load of the task 

increased, perceptual sensitivity for the distant peripheral task decreased for older adults.  

This decrease was greater when the task was farther from fixation—indicative of a 

shrinking spotlight.  However, for younger adults, increasing load did not affect 

peripheral task performance.  This age-related difference may be attributable to older 

adults’ reduced perceptual processing capacity.  Younger adults may not have shown a 

similar pattern because the current experimental task was not perceptually demanding 

enough—they had spare perceptual processing capacity available to process both center 

and peripheral tasks. 

The current results do not support the main hypothesis derived from the multiple 

resource model; namely that performance in the peripheral task would increase as 

distance from fixation increased because of multiple resource.  Recall that this prediction 

came from the idea that different areas of the visual field were potentially served by 

separate resources: focal and ambient.  If this were the case, performance in the far ring 

should not have been affected by perceptual load variations at fixation. 
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Interpreting the Age-Related Effects and Attention 
 
 

 
The relationship between aging and the size of the FFOV is well supported in 

many studies (e.g., Ball & Sekuler, 1986; Pringle, et al., 2001) .  Only recently, however, 

have researchers begun to ask why aging may be related to a decrease in attentional 

breadth.  Maylor and Lavie (1998) found that older adults’ attention became selective at 

lower levels of perceptual load than younger adults.  They interpreted this to mean that 

older adults had less initial perceptual processing capacity than younger adults.  Because 

of older adults’ reduced initial perceptual processing capacity, even small increases in 

perceptual load, which may not have affected younger adults’ performance may have 

significantly reduced the older adults’ perceptual processing capacity (leading to selective 

attention).  Given this background, an effect of age on the size of the FFOV was expected 

(and found) such that older adults would have more restricted FFOV compared to 

younger adults at any given level of load.  Additionally, as perceptual load of the task 

increased, it was expected that older adults would experience a steeper drop in perceptual 

sensitivity compared to younger adults.  This may be due to several reasons.  First, aging 

may be associated with a reduction in a general attention resource (perceptual processing 

capacity).  Additionally, because of age-related changes in visual perception, older adults 

may need to use more of this capacity to perceive stimuli. 

 Predictions regarding age-related performance from the multiple resource model 

were not as direct.  Previous research has shown that age is associated with a general 

reduction in attentional resources (e.g., Tsang & Shaner, 1998); however, no research has 

shown whether different resources are differentially affected by age (e.g., focal/ambient 
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visual channels).  This was a distinct possibility given that focal and ambient channels 

roughly correspond to foveal and peripheral areas of the retina, and each of these areas is 

represented in different areas of the brain, which may be differentially affected by aging 

(see Raz, 2000, for a review).  In the current study, it was shown that aging is indeed 

associated with general attentional differences that contributed to poorer peripheral task 

performance (i.e., reduced FFOV) for older adults.  Given that the primary manipulation 

of perceptual load was associated with peripheral task sensitivity changes, it can be 

assumed that the attentional resource was perceptual processing capacity. 

 

Signal Detection Analysis and the FFOV 

 

 The current study utilized signal detection methods to analyze peripheral task 

performance.  Recall the major contribution of signal detection methods to the current 

study is the decomposition of performance into its sensitivity component and the 

response bias component.  Because of the nature of the perceptual load manipulation 

(specifically affecting the perceptual processing stage) perceptual load manipulations 

should have specifically affected perceptual sensitivity.  The current study showed that 

this was indeed the case; when older adults were exposed to a high perceptual load 

central task, their peripheral task sensitivity significantly decreased.  This tradeoff is 

indicative of the two tasks competing for a single resource (i.e., perceptual processing 

capacity) instead of multiple, independent resources (i.e., independent visual channels).  

For younger adults, however, load affected overall sensitivity, but not differently for 

difference distances from fixation.  
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 The response bias results may also support the perceptual load model of visual 

attention; namely the idea that increases in perceptual load should cause a constriction of 

attention (i.e., selective attention).  The analyses of response bias showed that in the near 

ring, response bias was shifted toward neutral as load increased—increases in perceptual 

load resulted in an alteration of bias.  However, in the far position, varying load had no 

significant effect on response bias.  If perceptual load does indeed affect the scope of 

visual attention, and the presence of attention affects sensitivity and response bias, the 

observed effect of load on bias could be taken as corroborative evidence, along with the 

analysis of sensitivity, that attention did change under high perceptual load.  

 

Relevance to Attention Theories 

 

Perceptual Load Model 

 

 This study was specifically designed to contrast two different models of visual 

attention.  Lavie’s perceptual load model of attention implicates the role of perceptual 

load on selective attention.  Displays of high perceptual load “exhaust” perceptual 

processing capacity, leading to selective attention that is obligatory—selective attention 

is a necessary outcome of limited perceptual processing capacity.  When perceptual 

processing capacity is exhausted, there is none left to attend to other stimuli.   

Evidence of the primary role of perceptual load as a determinant of selective 

attention comes from studies using the response competition paradigm.  In the response 

competition paradigm, observers are asked to judge the presence of a particular target in a 
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display.  The target may be flanked by response-incompatible stimuli.  The extent to 

which response time is affected is an indicator of whether participants attended to the 

flanking stimuli.  Many studies have found that under conditions of high perceptual load, 

response-incompatible flankers do not affect responding whereas under low perceptual 

load, adjacent flankers slow responding.  This has been taken as evidence that when 

perceptual load is high, there is not enough perceptual processing capacity to process 

both the main target and the distractors.  When perceptual load is low, attention 

obligatorily processes the target and the flankers. 

 The effect of perceptual load variations on the shape and size of spatial attention 

have never been fully elaborated by Lavie (but see Lavie, 2005), however, it can be 

assumed that when attention becomes selective under high perceptual load conditions 

visual attention may constrict akin to a constriction to the FFOV.  Similarly, under low 

perceptual load conditions when attention is not selective the FFOV is dilated.  This 

conceptualization is certainly consistent with the evidence from the response competition 

paradigm—under conditions of high perceptual load, the FFOV shrinks, withdrawing 

attention from potential response-compatible distractors. 

According to the perceptual load theory, if perceptual load of the display is the 

determinant of the FFOV, high perceptual load should result in a constriction of the 

FFOV toward fixation; the diameter of the spotlight of attention shrinks.  As attention 

shrinks toward fixation it should be more difficult to detect and localize peripherally 

presented stimuli.  Decreases in perceptual sensitivity to detect peripherally presented 

stimuli were assumed to be the result of a decrease in the FFOV.  In the current study, 

eccentricity, or location of the peripheral task was also manipulated.  If visual attention 
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acts as a spotlight that decreases in size with increasing perceptual load, areas of the 

display farther from fixation should show more sensitivity declines than areas that are 

closer to fixation. 

The current study showed a significant three-way interaction between age, load, 

and eccentricity.  For younger adults, sensitivity did not change as a function of load and 

eccentricity while for older adults peripheral task sensitivity depended on load.  This was 

expected under the perceptual load model of attention.  As load increased, visual 

attention becomes constricted toward fixation (i.e., FFOV shrinks).  As this happens, the 

peripheral task that is farther away will receive less attention.  Meanwhile, when the 

peripheral task is closer to fixation, it may receive relatively more attention (compared to 

the far position).  This situation is more pronounced for older adults, who may have less 

perceptual processing capacity. 

A central assumption in the current study was that selective attention caused by a 

high perceptual load task was analogous to a shrinking of the FFOV.  A constriction of 

the FFOV could be considered a kind of selective attention caused by a lack of adequate 

attentional resources.  This study has found support for the notion that selective attention 

is a necessary outcome of limited perceptual processing capacity.  In Lavie’s previous 

studies using the response competition paradigm, selective attention caused by high 

perceptual load was a desirable outcome (it reduced response competition effects) 

however, in the current dual-task study, selective attention due to load resulted in poorer 

dual-task performance (i.e., reduced sensitivity in peripheral areas of the display). 

One major issue that should be addressed is the role of working memory load on 

the FFOV.  Previous studies (e.g., Williams, 1995) showed that increasing cognitive load 
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had the effect of decreasing the extent of the FFOV.  However, this is inconsistent with 

Lavie’s perceptual load theory.  According to Lavie (Lavie, et al., 2004) demands on 

perceptual processing should lead to selective attention (i.e., constriction of the FFOV) 

but demands on working memory should lead to unselective attention (i.e., dilation of the 

FFOV).   

This difference between results from the FFOV literature and perceptual load 

literature may lie in the different methodologies used in FFOV and perceptual load 

studies.  Previous investigations of the FFOV have used a dual-task paradigm, similar to 

this study, where the participant is engaged in two unrelated tasks.  Perceptual load 

studies, however, have always used a response competition paradigm, where the goal is 

to ignore distracting peripheral stimuli and to selectively attend to a single, central task.  

Level of distraction is measured by examining how long it takes participants to respond 

with a target absent or present.  The rationale is that when peripheral distractors are 

perceived, they will compete for responding, slowing performance in the central task.  

When perceptual load is high, Lavie et al (2004) explain that the central task is 

exhausting all perceptual processing capacity leaving no capacity available to process the 

distractors.  When perceptual load is low but working memory load is increased, attention 

becomes unselective—that is, in the response competition paradigm, distractors now 

disrupt performance in a central target search task.   

Interpreting this pattern of results in terms of the dynamics of visual attention, it 

seems as if the FFOV was distributed broadly over the display encompassing the 

peripheral distractor as well as the central target search task.  This is inconsistent with 

previous studies examining the FFOV and working memory (e.g., Williams, 1989).  
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These studies show that when working memory load is increased, performance in a 

peripheral task (the measure of the FFOV) decreases.  This discrepancy may be due to 

several methodological differences between studies (e.g., how working memory load was 

created, size of displays). 

 

Multiple Resource Model 

 

 To recall, the multiple resource model suggested that different areas of the visual 

field may be served by different resources.  The focal channel corresponds to the fovea 

and in the current study represented central fixation while the ambient channel 

represented peripheral areas.  The critical hypothesis from the multiple resource model 

was that in the far location, sensitivity should be unaffected by variations in perceptual 

load of the central task.  When the peripheral task is near fixation, two tasks are drawing 

upon focal resources.  When the peripheral task is far from fixation, performance in each 

task may appear such that they are drawing upon relatively separate resources.  Thus, 

peripheral task sensitivity may be paradoxically better when located far from fixation 

compared to near fixation.  Additionally, a tradeoff between primary and secondary 

performance (indicating competition for a single resource) should not be observed in the 

far eccentricity (presumably when the tasks are not competing for similar resources). 

In the current study, the hypothesis that different areas of the visual field could 

potentially be served by different resources was directly tested.  The main hypothesis 

regarding the multiple resource model was that if focal and ambient channels constituted 



 

 66

independent processing resources, peripheral task performance in the far ring should not 

have been affected by central task perceptual load.   

When the peripheral task was near fixation (i.e., the near ring) sensitivity to detect 

it should have reduced.  However, when the peripheral task is farthest from fixation (i.e., 

the far ring) sensitivity should have been unaffected by variations in perceptual load (i.e., 

the central task).  In the current study, the focal/ambient distinction within the visual 

channel was not supported.  For both age groups, peripheral task sensitivity in the far ring 

was significantly related to the load imposed by the central task.  However, while the 

current study did not support the focal/ambient distinction in the visual channel, there are 

some caveats to the current study that limit what conclusions can be drawn in reference to 

the multiple resource model. 

 

Limitations of the Current Study 

 

One major potential limitation of the current study in reference to the multiple 

resource model is the nature of the peripheral task.  Wickens (2002) states that one of the 

major differences between the focal and ambient channel is that the focal channel is 

suited to detailed pattern-recognition and perception of fine detail while the ambient 

channel is suited to the sensing of orientation and ego-motion.  Recall that the peripheral 

task used in the current study, the measure of the FFOV, did not involve motion detection 

or ego-motion detection.  This may explain why the current study showed no benefit for 

peripheral tasks in the ambient channel.  However, the assumption that the focal and 

ambient visual channels are particularly suited to different kinds of information 
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processing may be questionable, and hence may not reflect a limitation of the current 

study.  Weinstein and Wickens (1992) found that motion was not better detected in the 

periphery than object location (i.e., no differential ability of the ambient channel to detect 

motion over other kinds of stimulus characteristics). 

Another limitation of the current study may be the manner in which multiple 

resources were studied.  A major difference between this study and another study that 

found support for multiple resources in the visual channel (Horrey & Wickens, 2004) was 

that in this study, eye movements were controlled using brief displays.  The logic of this 

decision was that eye and head movements would complicate the interpretation of 

performance.  For example, if the current study found that people were able to efficiently 

monitor a peripheral display and maintain performance in a foveal task, it would be 

difficult to determine whether this was due to a wide distribution of attention (FFOV) or 

more efficient visual sampling of the environment. 

However, eye and head movements in Horrey and Wickens (2004) study were left 

uncontrolled.  In their task, participants in a driving simulator were supposed to stay in 

their own lane and monitor a display located 38 degrees from the horizon.  Thus, it may 

be more accurate to qualify the results of Horrey and Wickens’ (2004) study by saying 

that the ability to make efficient eye and head movements to monitor displays in-vehicle 

is preserved, but it remains uncertain if the distinction of focal/ambient channels exists 

within the visual field.  Thus, to what extent do multiple resources exist in the visual 

channel?  That answer may depend on the way in which multiple resources are measured 

and defined. 
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Questions for Future Research 

 

 The key finding from this study was that, for older adults with reduced perceptual 

processing capacity, the level of perceptual load of a display was related to the size of the 

FFOV.  It was presumed that the mechanism behind the relationship between perceptual 

load and the FFOV is that increasing perceptual load of the display results in less 

perceptual processing capacity available to process other stimuli (i.e., a peripheral task).  

This pattern was not found for younger adults (who presumably had a high level of 

perceptual processing capacity).  As perceptual load increased, peripheral task perceptual 

sensitivity decreased.  This suggests that enhancing the perceptual characteristics of the 

peripheral task may be one way to prevent reductions in the FFOV (i.e., prevent the 

reduction in sensitivity).  It also suggests the possibility that age-related differences in the 

FFOV may be reduced or eliminated by perceptual enhancement of the peripheral task.  

One perceptual enhancement would be to increase the size of the peripheral task in 

relation to the central task. 

The fovea and periphery are differentially represented in the visual cortex.  The 

vast majority of the visual cortex is dedicated to processing information received from 

the fovea (80%).  The remaining visual cortex is responsible for processing of the 

periphery.  Additionally, the visual system prioritizes and magnifies visual input from the 

fovea, resulting in the foveal input being over-represented in the visual cortex compared 

to input from peripheral areas.  One way to compensate for this over-representation of the 

fovea is to increase the size of the peripheral stimulus in relation to the central stimulus 

size.  The cortical magnification factor has been computed by examining the relative 
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areas of the cortex that are dedicated to the fovea and the periphery (Rovamo & Virsu, 

1979).  When peripheral stimuli are M-scaled, they activate approximately the same 

amount of visual cortex as unscaled foveal stimuli. 

Chan and Courtney (1998) found that magnifying peripherally presented tasks 

eliminated a reduction in the FFOV.  In their first study, they found, as expected, that a 

foveally presented cognitive load resulted in a reduced ability to detect and locate a 

peripherally presented task—as eccentricity increased (distance from fixation) more 

errors were made in a peripherally presented target detection task.  However, when the 

peripherally presented stimuli was increased in size, task-related constriction of the 

FFOV was eliminated; that is, peripheral task performance was equalized across 10 

degrees of visual angle.  This suggests that augmenting the perceptual characteristics of 

the peripheral task may be one way to prevent reductions in the FFOV.  It may also be a 

way to reduce age-related FFOV declines.  Recall that it was hypothesized that older 

adults’ smaller FFOV may be due to a reduced perceptual processing capacity and a need 

to use more perceptual processing capacity because of age-related changes in visual 

acuity.  By enhancing the peripheral task, older adults may not need to recruit additional 

perceptual processing capacity to process peripherally presented stimuli.  Whether 

cortically magnifying peripherally presented stimuli would ameliorate age-related 

declines in the FFOV are unknown. 
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Practical Relevance 

 

The goal of the current study was to understand how perceptual load and aging 

would affect performance in a visual dual task situation.  The hope was that the results 

would provide support for the notion that perceptual load was related to the spatial extent 

of attention.  However, the results of the study have direct implications for the design of 

tasks and displays.  Indeed, the impetus for the current investigation to better understood 

the characteristics of visual displays that could support multiple-task performance.   

 In certain situations (e.g., using a computer; monitoring a control panel) people 

must distribute their attention broadly in order to be able to detect events that occur 

outside of foveal view (e.g., status or notification indicators).  However, the perceptual 

load of the display may affect attentional distribution. 

Search difficulty was the way in which perceptual load was manipulated.  Search 

difficulty, engendered by perceptual load, is a highly representative characteristic of 

many displays.  The task of looking for a specific item in a menu of similar looking items 

being a salient example.  In situations like this, there is a demand on perceptual 

processing capacity.  If the perceptual processing demand is high, the current results 

show that, for older adults, the FFOV around visual fixation shrinks potentially degrading 

perception of more peripheral stimuli.  When the FFOV shrinks, the observer may be 

required to make more eye or head movements to perceive all of the relevant items in a 

display.  More eye and head movements may require more integration across fixations, 

more time required to complete a task, and potentially more errors. 
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The current results suggest when designing displays that present information in 

multiple locations, demands on perceptual processing should be minimized, especially if 

the user must monitor multiple locations of the display.  Reducing perceptual processing 

demands should result in a broader FFOV, which should result in fewer eye and head 

movements to sample a display.  Reducing eye and head movements may be especially 

important in tasks where it is critically important to remain fixated on a particular 

location yet be monitoring other areas of the visual field (e.g., driving). 

Reducing perceptual processing demands is especially important for older adults 

because of their reduced perceptual processing capacity.  If it is not possible to reduce 

perceptual processing demands of the foveal task, dual-task performance may be 

enhanced if the peripheral visual task is perceptual enhanced.  This recommendation 

comes directly from the finding that peripheral sensitivity is reduced under high load 

conditions.  If the signal strength of the peripheral task is enhanced (made brighter or 

larger) then peripheral sensitivity should improve leading to better dual-task 

performance. 
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 APPENDIX A 

TRIAL CONDITIONS 
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APPENDIX B 
 

MOUSE PRACTICE INSTRUCTIONS 
 
 

 
Before we start the study, we want to make sure that you are comfortable using 

the mouse.  All of your responses in this study will require the mouse.  In the following 

short mouse practice, you will see a solid white box appear on the screen.  Use your 

mouse to move the arrow-shaped pointer over the solid box and use the mouse button to 

"click" the shape on the screen.  The computer will provide feedback. 
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APPENDIX C 

PHASE I EXPERIMENTAL INSTRUCTIONS 
 

 
 

In this study, you will be searching for letters presented in the center of the 

screen.  You will be told which letter to search for ahead of time.  The letters will flash 

on the screen very quickly so please pay attention to the center of the computer screen.  

You will use the computer mouse to make all of your responses.  You can use any of the 

mouse buttons to make your response.  Let's look at some sample screens so you know 

what to expect. 

[Participants were then shown a series of self-paced annotated screen captures] 

 
Figure C1.  Ready display Figure C2.  Target notification 

 

 
Figure C3.  Fixation dot Figure C4.  Search task 
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Figure C5.  Noise mask Figure C6.  Response display 

 

[after viewing example displays] 

Remember, pay attention to the center of the screen.  Respond as quickly but 

accurately as you can.  If you are unsure whether the pre-defined letter was presented or 

not, please just guess.  Click a mouse button to start the PRACTICE. 

[after 5 trials of practice] 

That was the practice.  Do you have any questions?  The study will now begin.  

Pay attention to the CENTER of the screen.  Respond as quickly but accurately as you 

can.  If you are unsure, please just guess.  Please wait for the experimenter. 
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APPENDIX D 
 

PHASE II EXPERIMENTAL INSTRUCTIONS 
 
 
 

Now, you will be trying to do TWO tasks at the same time.  Your MAIN task is 

similar to what you just completed (looking for letters in center of the screen).  Just like 

before, you will be told which letter to look for in the flashed screen.  Sometimes, 

nothing will be presented in the CENTER of the screen.  Your SECONDARY task is to 

determine WHERE you saw a "*" shown elsewhere on the screen.  Sometimes, there will 

not be any star presented.  Let's look at some sample screens. 

[Participants were then shown a series of self-paced annotated screen captures] 

 
Figure D1.  Ready display Figure D2.  Target notification 

 

 
Figure D3.  Fixation dot Figure D4.  Search task 
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Figure D5.  Noise mask Figure D6.  Central task response 

 

 
Figure D7.  Peripheral task response 

 

 
[after viewing example displays] 

Sometimes, you will find this very easy to do, while at other times you will find it 

difficult.  Remember, your FIRST priority should be the MAIN task of deciding whether 

the predefined letter was presented in the CENTER of the screen.  Your second priority 

should be looking for where the "*" appeared.  You will use the mouse to make all of 

your responses.  We will now try some practice sessions before we start the study.  Do 

you have any questions before we start the practice session? 

[after 6 trials of practice] 

If you need to take a break, please do so at any time.  If you are unsure whether 

you saw the pre-defined letter in the MAIN central task, please just guess.  Also, if you 
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do not know where the "*" appeared in the secondary task please just guess. Remember, 

focus your efforts on the task in the CENTER of the screen--this is your priority.  Do you 

have any questions? 
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APPENDIX E 
 

PHASE III EXPERIMENTAL INSTRUCTIONS 
 
 
 

In the next phase of the study, you will only be doing one task:  The letter search 

task.  This task is the same task you started with.  You will be looking for a pre-defined 

letter presented in the center of the screen.  Remember, pay attention to the center of the 

screen.  If you are unsure, please just guess.  Click a mouse button to start... 
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APPENDIX F 

GENERAL PROCEDURE 
 
 
 

1. Consent form & demographics 
2. Vision tests 
3. Mouse practice 
4. Digit Symbol Substitution 
5. Reverse Digit Span 
6. Shipley Vocabulary 
7. Break 
8. Phase 1 (central task only) 

a. Experimental practice (5 trials) 
b. 48 trials 
c. Break 

9. Phase 2 (center and peripheral task) 
a. Practice (6 trials) 
b. Block 1 – 54 trials 
c. Break 
d. Block 2 – 54 trials 
e. Break 
f. Block 3 – 54 trials 
g. Break 
h. Block 4 – 54 trials 
i. Break 
j. Block 5 – 54 trials 
k. Break 
l. Block 6 – 54 trials 
m. Break 
n. Block 7 – 54 trials 
o. Break 
p. Block 8 – 54 trials 
q. Break 
r. Block 9 (error trials re-run block) – Number of trials varied 

10. Phase 3 (central task only) 
a. 48 trials 
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APPENDIX G 
 

EQUATIONS USED TO COMPUTE A’ AND B’’ (STANISLAW & TODOROV, 
1999)  

 
 
 
 

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

<
−

−+−
−

≥
−

−+−
+

=
FH

HF
HFHF

FH
FH

FHFH

A
  when 

)1(4
)1)((5.0

  when 
)1(4

)1)((5.0
'  

 
A’ is the non-parametric signal detection measure of perceptual sensitivity (cf. d’).  Two 

slightly different formulas are used depending on whether hits are greater than or less 
than the false alarm rate.  The values range from .5 (no sensitivity) to 1 (perfect 

sensitivity) 
 

Figure G1.  Formula for A’ 
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Beta double-prime (B’’) is the non-parametric signal detection measure of response bias 

(cf. β).  The values range from -1 (liberal response bias) to +1 (conservative response 
bias). 

 
Figure G2.  Formula for B’’ 
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APPENDIX H 
 

MEANS AND STANDARD DEVIATIONS 
 

 
 
Table H1 
 
Means and standard deviations of central task hits and false alarms (proportions) by 
central task condition and age group. 
 
 Younger (n = 19) Older (n = 17) 

 Hits SD  
False 

alarms SD Hits SD  
False 

alarms SD 
Lower load 0.9 0.06  0.15 0.06  0.81 0.02  0.41 0.03
Higher load 0.9 0.07  0.28 0.19  0.88 0.02  0.57 0.04
Note.  Perfect performance is 1.0 while .33 is chance performance. 

 
 
Table H2 
 
Means and standard deviations of peripheral task hits and false alarms (proportions) by 
central task condition and age group. 
 

  Younger (n = 19) Older (n = 17) 
Peripheral task 

eccentricity/Load Hits SD  
False 

alarms SD Hits SD  
False 

alarms SD 
Near            
 No load 0.97 0.03  0.01 0.01  0.80 0.13  0.01 0.01
 Lower load 0.96 0.03  0.02 0.02  0.77 0.12  0.04 0.05
 Higher load 0.96 0.03  0.03 0.03  0.76 0.13  0.06 0.05
Far            
 No load 0.97 0.03  0.02 0.03  0.84 0.11  0.10 0.08
 Lower load 0.95 0.04  0.02 0.02  0.71 0.21  0.12 0.08
 Higher load 0.93 0.07  0.02 0.02  0.72 0.20  0.13 0.10
Note.  Perfect performance is 1.0 while chance performance is .50 
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Table H3 
 
Means and standard deviations of central task signal detection statistics (A’ and Β’’). 
 
 Younger (n = 19) Older (n = 17) 
Central task load A' SD Β’’ SD A' SD Β’’ SD 
Lower load 0.93 0.03 -0.22 0.34 0.78 0.08 -0.20 0.16
Higher load 0.84 0.06 -0.38 0.27 0.75 0.06 -0.35 0.14
Note.  The value of A’ ranges from 0 to 1; 0 indicates no sensitivity while 1 
indicates perfect sensitivity.  The value of Β’’ ranges from -1 to 1 with -1 
indicating a liberal bias while 1 indicates a conservative bias and 0 represents 
no bias. 
 
 
 
 
Table H4 
 
Means and standard deviations of peripheral task signal detection statistics (A’ and Β’’). 
 

Younger (n = 19) Older (n = 17) Central task load/ 
Second task  
eccentricity A' SD Β’’ SD A' SD Β’’ SD 

Near         
 No load 0.99 0.01 0.48 0.33 0.95 0.03 0.88 0.06 
 Lower load 0.98 0.01 0.38 0.39 0.92 0.04 0.64 0.28 
 Higher load 0.98 0.01 0.24 0.5 0.91 0.05 0.54 0.27 
Far         
 No load 0.99 0.01 0.36 0.35 0.92 0.05 0.15 0.41 
 Lower load 0.98 0.01 0.42 0.48 0.88 0.07 0.21 0.04 
 Higher load 0.98 0.02 0.54 0.41 0.88 0.07 0.19 0.46 
Note.  The value of A’ ranges from 0 to 1; 0 indicates no sensitivity while 1 
indicates perfect sensitivity.  The value of Β’’ ranges from -1 to 1 with -1 
indicating a liberal bias while 1 indicates a conservative bias and 0 represents no 
bias.   
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APPENDIX I 
 

ANOVA TABLES 
 
 
 

Table I1 
 
Central task hit rate (arc-sine of proportion) ANOVA 
 

Source SS df MS F p 
Between subjects 

Age group (A)* .15 1 .15 15.86 .00 
 

Within subjects 
Load (L)* .03 1 .03 6.73 .01 
L × A* .03 1 .03 6.50 .02 
Note.  * indicates significance at p < .05 

 
Table I2 
 
Central task false alarms (arc-sine of proportion) ANOVA 
 

Source SS df MS F p 
Between subjects 

Age group (A)* .83 1 .83 52.91 .00 
 

Within subjects 
Load (L)* .49 1 .49 24.95 .00 
L × A .00 1 .00 .14 .71 
Note.  * indicates significance at p < .05 
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Table I3 
 
Peripheral task hit rate (arc-sine of proportion) ANOVA 
 

Source SS df MS F p 
Between subjects 

Age group (A)* .72 1 .72 62.70 .00 
 

Within subjects 
Load (L)* .27 2 .14 9.06 .00 
Eccentricity (E) .01 1 .01 .53 .47 
E × A .01 1 .01 .25 .62 
L × A .03 2 .01 .94 .40 
L × E* .06 2 .03 5.23 .01 
L × A × E .02 2 .01 1.72 .19 
Note.  * indicates significance at p < .05 

 
Table I4 
 
Peripheral false alarm (arc-sine of proportion) ANOVA 
 

Source SS df MS F p 
Between subjects 

Age group (A)* .15 1 .15 40.34 .00 
 

Within subjects 
Load (L)* .15 2 .07 16.32 .00 
Eccentricity (E)* .33 1 .33 30.59 .00 
E × A* .33 1 .33 31.05 .00 
L × A .03 2 .01 3.03 .06 
L × E* .06 2 .03 4.72 .01 
L × A × E .01 2 .00 .49 .61 
Note.  * indicates significance at p < .05 

 
 
 



 

 86

Table I5 
 
Central task sensitivity (A’) ANOVA 
 

Source SS df MS F p 
Between subjects 

Age group (A)* .23 1 .23 52.92 .00 
 

Within subjects 
Load (L)* .07 1 .07 22.49 .00 
L × A* .02 1 .02 6.26 .02 
Note.  * indicates significance at p < .05 

 
 
 
 
Table I6 
 
Central task bias (Β’’) ANOVA 
 

Source SS df MS F p 
Between subjects 

Age group (A)* .04 1 .04 .56 .46 
 

Within subjects 
Load (L)* .46 1 .46 9.79 .00 
L × A .00 1 .00 .01 .91 
Note.  * indicates significance at p < .05 
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Table I7 
 
Peripheral task sensitivity (A’) ANOVA 
 

Source SS df MS F p 
Between subjects 

Age group (A)* .05 1 05 51.30 .00 
 

Within subjects 
Load (L)* .03 2 .01 11.35 .00 
Eccentricity (E)* .02 1 .02 20.24 .00 
E × A* .02 1 .02 13.90 .00 
L × A* .01 2 .01 5.08 .00 
L × E* .00 2 .00 4.20 .02 
L × A × E* .00 2 .00 3.95 .02 
Note.  * indicates significance at p < .05 

 
 
 
Table I8 
 
Peripheral task bias (Β’’) ANOVA 
 

Source SS df MS F p 
Between subjects 

Age group (A) .01 1 .01 .43 .52 
 

Within subjects 
Load (L) .27 2 .13 1.52 .23 
Eccentricity (E)* 2.5 1 2.50 8.06 .01 
E × A* 4.89 1 4.89 14.41 .00 
L × A .13 2 .07 .75 .48 
L × E* 1.48 2 .74 6.07 .00 
L × A × E .09 2 .04 .35 .71 
Note.  * indicates significance at p < .05 
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APPENDIX J 
 

OVERALL ACCURACY FOR CENTER AND PERIPHERAL TASK 

 

Central task 

 

 Figure J1 (ANOVA Table J1) illustrates the overall central task accuracy by 

central task load and age group.  Overall central task accuracy is the average proportion 

of items participants responded correctly (e.g., target letter was present in display and 

response was “present”).  The main effect of load on central task accuracy was 

significant, F(2,72) = 112.44, MSE = 1.25, indicating that increasing load resulted in 

decreased central task accuracy.  

This showed that the central task manipulation of load did indeed have an effect 

on performance.  The interaction between load and age group was marginally significant, 

p = .052, indicating that varying load had different effects in each age group.  The effect 

of load on central task performance was greater for the younger adults compared to the 

older adults. 
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Figure J1.  Central task overall accuracy (proportion correct) by central task load and age 
group. 
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Table J1.   
 
Center task overall accuracy (arc-sine of proportion correct) ANOVA 
 

Source SS df MS F p 
Between subjects 

Age group (A)* 1.04 1 1.04 72.97 .00 
 

Within subjects 
Load (L)* 2.55 1 2.55 148.08 .00 
L × A .04 1 .04 2.01 .165 
Note.  * indicates significance at p < .05 

 
 

Peripheral Task 

 

 Figure J2 illustrates the overall accuracy in the peripheral task by central task 

load, eccentricity, and age group.  The no load condition refers to the case when no 

central task was displayed.  The no star condition refers to the case when no star was 

presented.  The no-load/no star condition (the first two bars) was a blank screen.  In this 

case, proportion correct is whether the participant correctly indicated that the center and 

peripheral task was “blank.” 
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Figure J2.  Peripheral task overall task accuracy (proportion correct) by central task load, 
eccentricity, and age group. 
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These proportion data were arc-sine transformed and submitted to  

a repeated-measures ANOVA (Table J2).  The main effect of load was significant, 

F(2,72) = 5.28, MSE = .20, indicating that increasing load resulted in decreasing 

peripheral task accuracy.  No load versus lower load was significant different in terms of 

the effect on peripheral task performance.  However, the difference between lower load 

and higher load was not significant.  The interaction between load and eccentricity was 

also significant, F(2,72) = 5.00, MSE = .05, indicating that varying load had different 

effects at each eccentricity.  In the near eccentricity, increasing load had no effect on 

peripheral task accuracy, however, in the far eccentricity, increasing load from no load to 

lower load had a significant effect on peripheral task accuracy. 

 
Table J2.   
 
Peripheral task overall accuracy (arc-sine of proportion correct) ANOVA 
 

Source SS df MS F p 
Between subjects 

Age group (A)* 1.27 1 1.27 63.38 .00 
 

Within subjects 
Load (L)* .39 2 .32 5.28 .02 
Eccentricity (E) .09 1 .09 2.90 .10 
E × A .09 1 .09 2.90 .10 
L × A .00 2 .00 .06 .95 
L × E* .11 1.57 .07 4.98 .02 
L × A × E .02 1.57 .01 .69 .48 
Note.  * indicates significance at p < .05 
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APPENDIX K 

HIT RATE BY SPOKE 

 

 To determine if participants preferentially allocated their attention to a particular 

area of the screen, hit rate was individually computed for each spoke (north, south, east, 

west, northwest, northeast, southeast, southwest) in which the peripheral star task could 

have appeared.  A hit was when a star was presented in a particular spoke and the 

participant responded with that spoke.  Only the trials in which participants correctly 

responded to the central task were included in the hit rate calculation.  This was to ensure 

that participants were not ignoring the central task and focusing attention preferentially to 

a particular location (e.g., north).  Figure K1 illustrates hit rate for younger and older 

adults by spoke (across all load conditions). 

 While there was a main effect of age on hit rate by spoke (older adults had an  
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Figure K1.  Older and younger adult peripheral task hit rate by spoke.  A hit was when 
the participant responded in the correct spoke.  Younger adults standard error was smaller 
than the indicator symbol and was thus occluded.  The spokes are indicated by the 
abbreviations of the cardinal directions and obliques. 
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overall lower hit rate than younger adults at each spoke), the main effect of spoke was not 

significant (participants of both age groups did not have different hit rates for any one 

spoke).  Because the hit rate was not significantly different by spoke, performance was 

collapsed over spokes and analyzed in terms of near ring or far ring.  The results of the 

ANOVA are illustrated in Table K1. 

 

Table K1.  

Peripheral task hit rate by age and spoke (arc-sine of proportion) ANOVA 
 

Source SS df MS F p 
Between subjects 

Age group (A)* .70 1 59.3 93.47 .00 
 

Within subjects 
Spoke (S) .25 7 .04 1.38 .22 
A × S .06 7 .01 .32 .94 
Note.  * indicates significance at p < .05 

 



 

 93

APPENDIX L 

ALTERNATE COMPUTATIONS OF PERIPHERAL TASK FALSE ALARM 
RATE, SENSITIVITY, AND BIAS 

 

Hits and False Alarms 

 

Peripheral task hit rate and false alarm are illustrated in Figure L1 as a function of 

central task load (no load, lower, or higher), eccentricity (near or far ring), and age group 

(younger, older).  A response was considered a ‘hit’ in a particular ring if the star 

appeared and that ring and participants responded with that ring.  A response was  
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Figure L1.  Peripheral task hits and false alarms by central task condition (no load, lower 
load, higher load) and age group (young, old).  Error bars represent the standard error.   
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considered a ‘false alarm’ for a particular ring when participants made a response in a 

ring where a star either did not occur at all or it was actually presented in the other ring.  

Thus, the false alarm rate for the near ring was the total number of times the participant 

responded “near” divided by the total number of times the star was actually in the far ring 

or there was no star. 

The proportion data were transformed and submitted to a repeated-measures 

ANOVA (Table L1).  Because hit rate was computed the same way as that presented in 

the results section, I will only discuss the false alarm data and whether any differences 

existed by re-calculating false alarm rate.   

 
 
Table L1 
 
Peripheral task false alarm rate (arc-sine of proportion) ANOVA 
 

Source SS df MS F p 
Between subjects 

Age group (A)* .11 1 .11 33.31 .00 
 

Within subjects 
Load (L)* .08 2 .08 26.19 .00 
Eccentricity (E)* .09 1 .09 33.31 .00 
E × A* .13 1 .13 24.33 .00 
L × A* .06 2 .03 9.25 .00 
L × E* .04 2 .02 5.59 .01 
L × A × E .01 2 .00 .98 .38 
Note.  * indicates significance at p < .05 

 

For false alarm rate, the main effects of age, F(1,34) = 33.31, MSE = .11, load, 

F(2,68) =  26.19, MSE = .08, and eccentricity, F(1,34) = 16.23, MSE = .09, were 

significant.  However, the interaction between age group and eccentricity was significant, 

F(1,34) = 24.33, MSE = .13, because for younger adults increasing eccentricity had no 
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effect on false alarm rates but for the older adults, increasing eccentricity resulted in a 

significant increase in false alarm rate.  The interaction between load and eccentricity on 

false alarm rate was also significant, F(2, 34) = 5.59, MSE = .02, indicating that varying 

central task load significantly affected peripheral task false alarm rates in the near 

position but not in the far position.   

The only change in significance from re-computing false alarms was an additional 

load × age interaction (which was previously marginally significant, p=.06) suggesting 

that load had different effects for each age group.  For younger adults, increasing load did 

not result in increasing false alarm rates (pairwise comparisons of load were not 

significant) whereas for older adults, increasing load resulted in a higher false alarm rate.  

The pairwise comparisons of older adults’ false alarm rate showed significant differences 

between “no load”/“lower load”, and “no load”/”higher load”.  Additionally, the 

difference between “lower load” and “higher load” on older adults’ false alarm rate was 

marginally significant (p=.055). 

 To summarize, re-calculating the false alarm rate showed that including the trials 

in which no peripheral task was present resulted in a very similar pattern of results 

compared to when the blank peripheral task trials were not included.  The only difference 

was a significant load × age interaction when blank trials were included in the calculation 

of false alarm rate.  When the false alarm rates were computed only with peripheral-task-

present trials, I was strictly examining how age, eccentricity, and load would affect 

stimulus localization, not detection—detection was assumed.  By including the blank 

peripheral task trials into the calculation of false alarms, detection was not assumed.  The 

finding of no major differences in the patterns of hits and false alarms suggest that my 
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initial assumption that participants, older and younger, were able to initially detect the 

peripheral task before being able to localize it is a valid assumption. 

 

Signal Detection Analyses 

 

Sensitivity 

 

Sensitivity (Figure L2) was computed using the hit and false alarm rates for each 

participant.  Because false alarm rate was re-computed, the sensitivity and bias measures 

were re-computed as well.  When sensitivity was re-computed using the new definition of 

false alarm rate, the only change from the sensitivity analyses presented in the results 

section was that the three-way interaction became only marginally significant (p=.072).  

Even though the three-way interaction was only marginally significant, pairwise 

comparisons showed that the pattern was essentially the same as the previous analyses.  

Older adults experienced a greater effect of load on sensitivity in the far ring compared to 

the near ring while younger adults did not show any sensitivity change.  For older adults, 

pairwise comparisons of sensitivity by ring showed that in the no load condition, there 

was no significant difference in sensitivity between the near and far rings.   

However, in the lower and higher loads, sensitivity was significantly lower in the far ring 

compared to the near ring. 

The interaction between load and eccentricity was still significant, indicating that 

the effect of load was greater in the far ring than the near ring.  For older adults, pairwise  
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comparison of sensitivity showed that sensitivity significantly decreased from “no load” 

to “lower load” and “no load” to “higher load” in both rings.  There was no significant 

sensitivity change between “lower load” to “higher load” in either the near or far ring.  

For younger adults, pairwise comparisons of sensitivity in the near and far rings showed 

no significant differences between loads in the near or far rings.   

To summarize, the major difference when false alarms were re-computed was that 

the interaction between age × load × and eccentricity was only marginally significant, 

however, the general pattern (older adults sensitivity more reduced in the far ring with 
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Figure L2.  Peripheral task signal detection analysis:  Sensitivity as a function of 
peripheral task position, central task load, and age group (A’).  Perfect sensitivity is equal 
to 1.0 while no sensitivity is 0.5. 
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increasing load) was identical to the previous analyses.  The summary of the ANOVA of 

sensitivity is shown in Table L2. 

 

Table L2 
 
Peripheral task sensitivity (A’) ANOVA 
 

Source SS df MS F p 
Between subjects 

Age group (A)* .041 1 .041 48.43 .00 
 

Within subjects 
Load (L)* .03 2 .01 13.5 .00 
Eccentricity (E)* .01 1 .01 9.84 .00 
E × A* .00 1 .00 5.70 .02 
L × A* .01 2 .01 6.61 .00 
L × E* .00 2 .00 4.27 .02 
L × A × E .00 2 .00 2.74 .07 
Note.  * indicates significance at p < .05 

 

Bias 

 

Response bias was re-computed using the new false alarm rates (illustrated in 

Figure L3, ANOVA summary in Table L3).  When the measures of bias were re-

computed, the major change was that the main effect of eccentricity was no longer 

significant, however, the eccentricity × age, and load × eccentricity interactions were still 

significant.  The eccentricity × age interaction shows that older adult’s bias was 

significantly affected by eccentricity (they were more liberal in the far ring) whereas 

younger adult’s bias was unaffected by eccentricity.  The interaction between load and 

eccentricity was also significant indicating that in the near ring (closest to fixation) 

increasing central task load resulted in an increasingly neutral response bias (pairwise  
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comparisons of no load/lower and no load/higher were significant only for older adults).  

However, in the far ring, increasing load had no significant effect on response bias for 

either age group.  The three-way interaction between age, load, and eccentricity was not 

significant.  

 To summarize, including the blank peripheral trials into the calculation of false 

alarms (and thus computing a detection/localization false alarm versus a localization only 

false alarm) resulted in minor changes to the significance levels of some of the major 

effects, however, the interpretation remains unchanged from that presented in the main 

results section. 
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Figure L3.  Peripheral task signal detection analysis:  Bias as a function of peripheral task 
position, central task load, and age group (B’’).  Positive values indicate conservative 
bias, negative values indicate liberal bias while zero is no bias. 
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Table L3 

 
Peripheral task bias (Β’’) ANOVA 
 

Source SS df MS F p 
Between subjects 

Age group (A) .03 1 .03 .86 .36 
 

Within subjects 
Load (L) .23 2 .11 1.15 .32 
Eccentricity (E) .85 1 .85 3.23 .08 
E × A* 3.10 1 3.10 11.80 .00 
L × A .45 2 .22 2.26 .11 
L × E* .91 2 .45 4.75 .01 
L × A × E .10 2 .05 .94 .59 
Note.  * indicates significance at p < .05 
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