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Being perfect is not about that scoreboard out there. It’s not about winning.

It’s about you and your relationship with yourself, your family and your friends. Being

perfect is about being able to look your friends in the eye and know that you didn’t let

them down because you told them the truth.

And that truth is you did everything you could.

There wasn’t one more thing you could’ve done.

Can you live in that moment as best you can, with clear eyes, and love in your heart,

with joy in your heart?

If you can do that, you’re perfect.

Friday Night Lights



For Donald Edwin Zelko –

until we meet again.
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SUMMARY

Mild Cognitive Impairment (MCI) is a disorder that affects millions of elderly indi-

viduals across the world. Common symptoms of the condition are decreases in memory

function, impaired motor control which can cause regularly occurring states of confusion.

Arising from this disorder is the serious concern about how best to support those afflicted

by MCI in continuing to live fulfilling, independent lives while protecting them from haz-

ards that may arise from their MCI.

Of particular interest is investigating movement patterns people with MCI exhibit while

pertaining tasks or daily routines. Repetitive movement throughout the same areas of a

house – such as going from a bathroom, to kitchen, to bedroom in a cyclic fashion – may

indicate increasing severity of MCI. Though there is no known cure or prevention for MCI,

identifying if one’s condition is getting more severe is imperative to improving quality of

life for these individuals.

In this thesis, methods of low-cost location tracking were explored. A low-cost location

tracking system was created and detailed. The system implemented Bluetooth technologies

for identifying individuals. For receivers, devices such as Raspberry Pi computers were

used to record movement patterns of individuals as they moved around an environment.

Simulated scenarios were developed used to create algorithms to determine someone’s lo-

cation in real time.
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CHAPTER 1

INTRODUCTION

1.1 Mild Cognitive Impairment

Mild Cognitive Impairment (MCI) presents as a “syndrome with impairment of mem-

ory or [other] cognitive domain that does not interfere substantially with personal au-

tonomy.”[1] and it, “represents the intermediate state of cognitive function between the

changes observed in aging and a diagnosis of dementia”.[2] MCI has only recently fallen

under scrutiny in the last 30 years and was identified through a myriad of neuropsycholog-

ical tests such as the Global Deterioration Scale (GDS) saying that if someone with a GDS

ranking of 3 were more likely to have a diagnosis of MCI.[3]

Though these explanations for MCI give some insight into what MCI is, there is suffi-

cient ambiguity in its definition to frustrate attempts for its diagnosis. A reason for this was

that, until recently, there were thought to be bespoke subtypes of MCI in existence yet this

was never actually demonstrated to be true. However, Csukly et. al. [4] was able to demon-

strably show the differences between two proposed sub-types: amnestic MCI (aMCI) and

non-amnestic (naMCI). aMCI suffers had significant decreases in the cortical thickness of

the entorhinal cortex, the fusiform gyrus, the precuneus and the isthmus of the cingulate

gyrus in comparison to control groups and naMCI sufferers.

Across all types of MCI, the syndrome predominately affects geriatric cohorts; inter-

national reports have varied wildly stating that MCI affects only 3% of elderly individuals

to over 42% of all elderly across the world.[5]. The number of elderly people in the US is

expected to skyrocket from 52 million to 95 million people by 2060.[6] Though it is hard

to definitively say how many US elderly individuals are affected by MCI, as the number of

elderly increase so will diagnoses of MCI. Further complicating issues, is the fact that there
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are no treatments approved by the Food and Drug Administration for any type of MCI -

this has remained unchanged from the 2005 investigative paper published by Petersen &

Morris.[7]

This variation and numerous complications alludes to the biggest problem in treating

MCI: diagnosing the syndrome.[8] In a systematic review conducted by Stephan et. al. [9]

in 2013, it was found that significant discrepancies between approaches to diagnosing MCI

of any type. One of their explanations for this is the subjective criterion that can be present

in the diagnoses offered by clinicians. This highlights the need for a uniform diagnostic

methodology that can exist independently of any clinician.

1.2 Current Diagnostic Approaches

Several researchers have attempted to relate information from wearable devices, ubiquitous

computing methods, and traditional clinical observations.[10]–[12] In particular, Kuhlmei

et al [12] showed that actigraphic measurements collected during the daytime is negatively

correlated with memory deficits as assessed by clinical staff using the DemTect battery [13]

In this study, the authors examined 76 subjects of which 32 had dementia, 21 MCI, and 23

were held as controls over a period of 5 days and recorded ambulatory activity during the

day via the Actiwatch Mini.[14]

Akl et al [10] conducted a home-based study using ambient technologies (i.e. passive

infrared sensors, wireless contact switches, and motion sensors) and followed 97 neurotyp-

ical subjects, who lived by themselves, over the course of three years. Proving the difficulty

in this domain, Akl et al were only able to use 68 subjects due to data loss and/or corruption.

In this sub-group, 15 developed MCI based on in-home assessment from the research team

using the Mini-Mental State Examination [15] and the Clinical Dementia Rating system

[16]. Using 98 features and a SVM with an RBF classifier trained using a leave-one-out-

cross-validation process they were able to successfully identify MCI who had developed

MCI in agreement with previous clinical assessment with an AUC of 0.97.
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In another similar study, Cook et al [11] were able to detect MCI in a cohort of 84 indi-

viduals over a period of two years. In the cohort there were 9 subjects who met the criteria

for Parkinson’s Disease and MCI, 16 with strictly Parkinson’s Disease, 9 with MCI, and 50

healthy older adults. The study took place both in the subject’s home and in the researcher’s

CASAS smart home environment [17]. CASAS includes ceiling-mounted infrared sensors,

magnetic door sensors placed on cabinets and doors, lighting sensors, temperature sen-

sors, vibration sensors on commonly used objects (such as a broom, medicine dispenser,

hand soap dispenser, etc.). Additionally, the researchers had participants strap Android

smart phones to their upper arm and an IMU to their ankle. Using 3152 features, Cook et.

al. used a battery of classification methods: Decision Tree, Naive Bayes, Random Forest,

SVM, Ada/DT, and Ada/RF.

They reported a max AUC in differentiating: the control from Parkinson’s subjects of

0.84 (0.80 Acc), healthy adult from those with MCI and Parkinson’s; Parkinson’s only; and

MCI 0.97 (0.86 Acc), healthy adult from Parkinson’s and no MCI of 0.97 (0.97 Acc), and

healthy adult from MCI of 0.96 (0.87 Acc).

1.3 Limitations of Current Work & Motivation of This Proposal

However, a few common issues that arise in these approaches are separating the person of

interest from their environment, automating the classification of events, and data reliability.

Akl reported that in their study [10], if someone else visited the individual, this could

confound the data they collected and would be forced to throw out tremendous amounts of

data as they could not separate signals collected from the individual and visitors. They even

went on to admit that their high performance was most likely due to overfitting - a common

issue with RBF kernel-based SVMs. Cook noted that in their work [11], they had a team of

observers who manually recorded at what time and what type of action an individual was

taking.

Furthermore, there has been little research done to scale these ambient measurement
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methodologies. Most pressing of problems found in scaling ambient measurements we

propose are:

1. Monitoring daily changes in cognitive behavior based activity

2. Social interaction measurements to determine usage patterns

3. Behavioral response to change in therapies and/or environments

Reinertsen and Clifford [18] wrote a comprehensive review discussing the tremendous

utility available in passive monitoring of those suffering from various neuropsychiatric ill-

ness (i.e. major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia).

From the review, Vancampfort et. al. [19] were able to show that those suffering from

MDD, BD, or schizophrenia live a dramatically more sedentary lifestyle. Conversely, those

experiencing excessive movement may show mania or psychosis which may be an impor-

tant decision-support factor in a diagnosis of schizophrenia or BD. Furthermore, Saeb et.

al. [20] in a two week long study with 28 subjects suitable for data analysis, demonstrated

that by examining those with a lower location entropy (increased amounts of time spent

in few locations) the higher probability it was for a subject to be depressed. The findings

enumerated here show that daily monitoring of cognitive behavior via motion and location

recording can lead to the detection of possible cognitive changes.

As shown by Çakmak et. al. [21], they highlighted a novel development in the effec-

tiveness of creating personalized healthcare models using personal data to determine the

potential for adverse health outcomes. Though this approach addressed congestive heart

failure (CHF), the symptoms surrounding CHF are very analogous to neuropsychiatric ill-

nesses: decreases in activity and social interaction. It is a well-known fact that social

relationships play a significant role in health outcomes [22], [23] and also a sad reality than

many elderly individuals lose a majority of those relationships with age [24]. Morris et.

al. [25] conducted interviews with a cohort of 45 individuals comprised of ten healthy el-
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ders, seven with MCI, twenty-five facing dementia, and three family caregivers. From their

work, they identified three key “Threats to Social Connectedness” being:

• Losing Track - information processing delays due to cognitive impairment make

participating in the flow of conversation difficult.

• Forgetting - impaired memory makes social network maintenance excessively bur-

densome.

• Fears of Imposing - elders struggling with cognitive decline express reluctance to

”impose” upon others.

Morris et. al. [25] found that this led individuals struggling with cognitive decline to

withdraw from social events, avoid them entirely, and even stop answering the phone for

anxiety of forgetting or not understanding something. The approach proposed by Ã‡akmak

et. al. [21] to create models based on personal information would be possible only in a

situation where copious amounts of time series data for an individual would be present. An

answer to finding this data is in the usage of ambient sensing to monitor social interactions.

From this analysis we could determine usage patterns in a given space and how cognitively

impaired individuals may socialize with others present similar to work done by Terry et.

al. [26] in the creation of the Social Net project.

Subtle changes in the environment can have tremendous impacts on individuals as dis-

cussed by behavioral economists Thaler and Sunstein in their book, Nudge: Improving de-

cisions about health, wealth, and happiness who introduced the idea of subtly engineering

people’s environments to lead to a desired outcome (i.e. nudging) [27]. Rashid and Zim-

ring [28] did an empirical literature review which explored indoor environments and the

interplay between health and subtle influences that were controlled in them. One ambient

control highlighted in the review was lighting. Controlling lighting was shown to possi-

bly shorten hospital stays for BD subjects [29] and may aid sleep quality in the elderly

[30]. Using ambient technologies, we could better examine the dynamics of how a user
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behaves in a specific environment and their relationships with changes in their therapies

and/or environment.

Building upon prior research and the unexplored aspects of these research endeavors,

we propose to investigate methods for scalable deployments of ambient technologies to

monitor daily changes in cognitive behavior, observe social interactions, and catalog be-

havioral responses to therapy and/or environmental change of individuals diagnosed with

MCI. This study would take place in the context of Emory University’s Mild Cognitive Im-

pairment Empowerment Program (MCIEP). The MCIEP will give us the ability to follow

individuals in simulated at-home environments. Furthermore, MCI persons will engage in

communal activities with other MCI-afflicted individuals.

The specific aims of this proposal is to:

1. Design, build and test a wearable device that emits Bluetooth signal

2. Implement a distributed sensor system and software architecture to triangulate posi-

tion of an individual

3. Assess the spatial resolution of the location system and the accuracy in determining

the specific location of an individual

To achieve these aims, we propose the development of a wearable device that emits

a Bluetooth signal which is associated with a unique physical address that we can asso-

ciate with members of this program to provide information on the individuals’ movement

throughout their daily program activities. Moreover, this wearable will enable other data

inputs to be collected, such as actigraphic and geolocation data that will enable us to create

a more holistic picture of the individual as they progress with MCI using data fusion and

machine learning methods. Using the signal obtained from this device, we will develop a

triangulation algorithm which utilizes these distributed sensors to determine the position of

this individual in a given environment. Finally, we will assess this methodology in terms
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of accuracy and resolution (i.e. to what extent can we determine an exact position of indi-

vidual). We expect this approach to lead to the identification of novel biomarkers present

in individuals with MCI that future clinicians can use to aid in the diagnosis and treatment

of MCI-afflicted persons.

1.4 Overview of Thesis

This thesis is comprised of the following chapters:

1. Chapter 2: Background on Location Monitoring – covers an overview of on com-

mon uses for location monitoring in commercial applications. Furthermore included

is a summary of common techniques that were considered for exploration in this

thesis.

2. Chapter 3: Hardware Design – an analysis of current Bluetooth beacons available

on the market from which was chosen the beacons used in this thesis. Highlights the

set-up that was used for the experiments taken place in this work.

3. Chapter 4: Location Tracking Algorithms from Bluetooth Sensors – enumerates

three discrete cases from which position tracking algorithms were created. These

cases are idealized situations meant to be achievable that could in the future be com-

piled into a robust solution.

4. Chapter 5: Conclusion – a recap on what this thesis offers to the academic commu-

nity and next steps for future improvement of the system.
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CHAPTER 2

BACKGROUND ON LOCATION MONITORING

Monitoring location has had application in a variety of domains ranging from use cases

such as commercial asset tracking to surveillance of criminals on probation [31]. Table 2.1

shows a small sample of patents regarding location monitoring and illustrates the amount

of different applications are available for generic location tracking technologies.
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Title Description Year Ref

Wearable Location

Monitoring and Com-

munications System

Device capable of determining individual geo-

graphic location to determine entry into permis-

sible/unpermissible regions.

2001 [32]

Asset and Person-

nel Tagging System

Utilizing GPS

A system for tracking tagged objects outdoors. 2004 [33]

Method and System for

Asset Tracking
An asset tracking and panic alarm system. 2007 [34]

Asset Tracking with Er-

ror Adaptive Boundary

A method for tracking assets from central sta-

tions using tracking devices or site identities

broadcast from transmitters within a wireless

network.

2013 [35]

System and Method for

Improving GPS Accu-

racy in a Device by Uti-

lizing Increased Time

Stamp Accuracy

Methodology for updating UTC timestamps

within a GPS to improve pseudorange calcula-

tion.

2016 [36]

Table 2.1: A brief survey of patents citing usage of location tracking technologies personal
and asset monitoring.
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Technique Accuracy (SI) Limits Example

Radio time-of-flight

lateration

1 - 5m (95 -

99%)
Not for indoor use GPS

RF Lateration 1 - 3m
Proprietary, 802.11 in-

terference
PinPoint 3D-iD

802.11 RF Scene Anal-

ysis & Triangulation

3 - 4.3m

(50%)
Wireless NICs required MSR RADAR

Proximity ≈ 1m
Must know sensor loca-

tions

Automatic ID

Systems

Scene Analysis, latera-

tion

1mm

(≈ 100%)

Control unit tether, pre-

cise installation
MotionStar

Table 2.2: An overview of the survey on location determination by Hightower and Boriello
[37].

In the taxonomy created by Hightower and Borriello, they provide a concise overview

of techniques in use today for location monitoring [37]. As shown in Table 2.2, several

technologies in use vary in accuracy when attempting to determine location. Furthermore,

finding a system that can both be accurate while also fitting within the given constraints

of an application site is a great challenge. For the purposes of this thesis, the technique of

proximity detection was explored using Bluetooth beacons.
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CHAPTER 3

HARDWARE DESIGN

3.1 Overview of BlueTooth Beacon Offerings

Device
Range

(SI)
Battery Company

Cost

(USD)
Ref

Smart Beacon SB16-2 ≤ 70m 2 - 5 years Kontakt.io $22.00 [38]

Proximity Beacons 100m 3 years Estimote $25.00 [39]

Series 22 Beacon ≤ 50m 4 years Gimbal $45.00 [40]

Table 3.1: A brief survey of Bluetooth beacons available on the market considered for the
purposes of this thesis. Such a solution for the system that was developed in this thesis was
that the device must be low-cost and have reasonable reach of range. The Smart Beacon
SB18-2 was chosen due to its configurable battery life, low-cost relative to other competi-
tors, and flexibility in configuration.

In developing the system used for location tracking, one of the requirements was to equip

individuals with Bluetooth beacons. These Bluetooth beacons had to be low-cost while

also capable of transmitting a signal an adequate distance in a home environment. Table

3.1 summarizes a brief survey of current market offerings that could meet this need. After

comparison and analysis, the Smart Beacon SB16-2 (see Fig. 3.1) created by Kontakt.io

due to its low-cost and ease in configuration – both in terms of software and battery.

11



(a)

(b)

Figure 3.1: Images of the Smart Beacon SB16-2 Bluetooth beacon created by Kontakt.io.
(3.1a) Shows what the beacon looks like in deployment scenarios. (3.1b) Gives the discrete
dimensions of the device. [38]

3.2 System Set-up

To prototype position tracking, an at-home setting was used that closely matched the even-

tual environment into which this technology could be deployed. In this at-home setting,

nine Raspberry Pi computers (see Fig 3.2) were set-up running a modified Debian Kernel

called Raspbian Stretch. [41] These computers were configured as signal receivers that

scanned the environment for Bluetooth beacons.
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Figure 3.2: A figure of the Raspberry Pi computers used in the set-up for this thesis. These
devices cost as much as $10 - 55 USD and are capable of a variety of computational services
and prototyping.

Alongside the Bluetooth beacons, accelerometers were attached and paired with them

(configuration referred to as a badge). The accelerometer for the badge that was used is

the Yost Labs 3-SpaceTM Data Logger (see Fig. 3.3) [42] The badge was configured in this

fashion to provide an additional data modality for validation of position extraction.
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Figure 3.3: The Yost Labs 3-SpaceTM Sensor Data-logger contains an Attitude and Heading
Reference System, Inertial Measurement Unit with an on-board micro-SD card storage
and a rechargeable LiPo battery. These features make the device the perfect solution for
recording continuous accelerometry data alongside the Bluetooth beacons.

Once the badges were prepared, the Raspberry Pi computers were set-up throughout the

home setting. These locations were recorded and mapped to a floor plan of the environment.

An individual with the badge then walked throughout the home setting while the receivers

were recording Bluetooth signal.
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CHAPTER 4

LOCATION TRACKING ALGORITHMS FROM BLUETOOTH SENSORS

Of great significance in developing a Bluetooth based location system is the need for ad-

equate algorithms to extract position from detected signals. Using proximity detection

methodologies, Bluetooth signal was captured from the Raspberry Pi receivers. From there,

a battery of test cases were developed to develop the appropriate means to detect position

via triangulation efforts.

4.1 Location Tracking Algorithm

In order to accurately determine where someone is in an environment, three discrete cases

were identified to build an accurate location tracking algorithm utilizing Bluetooth signals.

For these cases, we make the base assumption that three receivers are in place and that

they receive signal from only one Bluetooth badge beacon moving between these three

receivers. Before operating on these cases, it is useful to clarify vocabulary:

• When using the word, Contiguous it is meant that a signal is not missing any data

points over the period of time the receiver is collecting information.

• When the word Continuous is used, it is meant that a given receiver will always

have an associated received signal value that does not vary greatly from its previous

values.

• In the following cases, Overlapping means that a receiver has a received signal

strength that creates a perimeter around a receiver that overlaps with other receivers.

In this mode of testing, we expect to see unions of three overlapping circles.

Although by themselves, each case is not adequate to address the various complexities

that one encounters in real deployment settings. However, using this case-based approach,

15



an algorithm was developed from these simplified cases that was able to better approximate

a realistic deployment.

4.1.1 Contiguous & Continuous Overlapping Signals (Case 1)

Assumptions

For Case 1, we make the following assumptions:

1. That the incoming signal is continuous and contiguous.

2. All three perimeters surrounding a receiver always overlap.

3. The location of the person holding a badge is considered to be the centroid of the

union (or polygon) formed by the three overlapping perimeters.

Starting from these assumptions, a graphical representation was generated to visualize

the placement of receivers. Fig. 4.1 displays the theoretical set-up of Case 1 and the

assumed position of an individual passing in proximity to the receivers (demarcated as the

black point in the center of the overlap generated by the circles).
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Figure 4.1: Each receiver, symbolized by the icon for the Raspberry Pi computer, is cen-
tered in each perimeter generated by a received signal from a badge passing in proximity
to the receivers. The assumed position of an individual is symbolized as the black point in
the center of the overlap created by the overlapping ranges of the receivers.

Algorithm

An algorithm was developed for Case 1 (see Fig. 4.2 for a pictorial summary):

1. Receivers were fixed at particular points along the Cartesian plane. Each receiver

was given an associated radius to ensure overlap.

2. The intersecting points between circles were determined using the following ap-

proach [43]:

(a) Let Circle1 and Circle2 be centered at the points (a, b) and (c, d) respectively.
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Furthermore, let Circle1 and Circle2 have r1 and r2 as their respective radii.

(b) Using the midpoint formula, a formulation for the distance between two circles

can be generated as follows:

D =
√
(c− a)2 + (d− b)2 (4.1)

(c) Next, using Heron’s formula, a formulation for the area of the triangle formed

between overlapping circles can be found:

A =
1

4

√
(D + r1 + r2)(−D + r1 + r2)(D − r1 + r2)(D + r1 − r2) (4.2)

(d) Let P1 and P2 be the intersection points at (x1, y2) and (x2, y2) respectively.

Combining equations 4.1 and 4.2 together, one can develop the equations for

the intersecting points of two circles as follows:

x1,2 =
a+ c

2
+

(c− a)(r21 − r22)

2D2
± 2

b− d

D2
A (4.3)

y1,2 =
b+ d

2
+

(d− b)(r21 − r22)

2D2
∓ 2

a− c

D2
A (4.4)

3. Let circle C be centered at (x1, y1) with radius r and let the ordered pair (x2, y2)

represent a point, P , of interest. Using an iterative process and the Pythagorean

Theorem, the intersecting points that formed the overlapping area were determined

with the following logic:

(a) If the following statement,

(x1 − x2)
2 + (y1 − y2)

2 < (r)2 (4.5)
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is true, then P falls within C.

(b) If the following statement,

(x1 − x2)
2 + (y1 − y2)

2 = (r)2 (4.6)

is true, then P falls on the circumference of C.

(c) Otherwise, if the following statement,

(x1 − x2)
2 + (y1 − y2)

2 > (r)2 (4.7)

is true, P is not contained within C.

4. Finally, once the intersecting points that lie on the overlapping region and overlap

with all circles are discovered, a simple arithmetic mean is calculated across these

points’ x and y coordinates to determine the center of the overlapping region.
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(a) (b)

(c) (d)

Figure 4.2: This figure pictorially summarizes the algorithm developed for Case 1. (4.2a)
Depicts the theoretical set-up based on Case 1. (4.2b) Extracts all the points of overlap
that exist between the circles. (4.2c) From the overlapping points that were extracted, the
points that overlap between all three circles (which also form the overlapping section) were
identified. (4.2d) Finally, a simple average was take across the points that overlap in the
union to extract the centroid of the overlapping region.

4.1.2 Contiguous and Continuous Non-Overlapping Signals (Case 2)

Assumptions

For Case 2, the following assumptions are made
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1. That the incoming signal is continuous and contiguous.

2. All three perimeters surrounding a receiver do not always overlap.

3. The location of the person holding a badge is considered to be the centroid of the

union (or polygon) formed by the three overlapping perimeters.

Unlike Fig. 4.2a, all the perimeters are not initialized to overlap in Case 2. Furthermore,

Case 2 actually presents with two sub-cases that needed to be solved that is best illustrated

in Fig. 4.3.

(a) (b)

Figure 4.3: These are the two distinct sub-cases that were evaluated in order to solve Case
2. (4.3a) Shows the situation where two circles do overlap and form a distinct overlapping
section. However, it does not take into account Receiver 3 which has a perimeter outside
of the overlap. (4.3b) Illustrates when Receiver 3 does start overlapping with the other
receivers present but does not form a overlapping section between the three receivers.

Algorithm

To not only solve Case 2 but also the two sub-cases, the following algorithm was created

based on the algorithm used in Case 1:

1. Receivers were fixed at particular points along the Cartesian plane. Two receivers
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were given an associated radii that overlap between themselves. One receiver was

given a radius that did not overlap or intersect with the perimeters of the other circles.

2. To determine the receiver whose perimeter does not overlap with the other receivers,

the following sub-routine was formulated (illustrated in Fig. 4.4):

(a) Equations 4.3 and 4.4 were used to determine which points overlap to form the

overlapping section between the two receivers whose perimeters do overlap.

(b) Reasoning inductively, the number of circles that form a shared overlapping

region is the same number of intersecting points that are shared between all

circles in this overlapping region. If the number of receivers present in a given

scenario are not congruent to the number of intersecting points in an overlap,

then one can know that a receiver is being left out of this overlapping region.

(c) An iterative process is then applied to determine the missing receiver by testing

the points calculated in (a) via the logical statements defined in statements 4.5,

4.6, and 4.7. If a receiver does not contain within its perimeter none of the pre-

viously determined intersecting points, then that receiver is the receiver which

does not overlap with the other two receivers present.

3. Once the non-overlapping receiver is identified, the radius of that receiver is itera-

tively boosted using a greedy process to force all three receivers’ perimeters to over-

lap (this iterative process is demonstrated in Fig. 4.5).

4. After all receivers are made to overlap, the remainder of this algorithm follows each

step enumerated in Case 1’s algorithm.

The greedy process detailed in step 3 can be a point of computational inefficiency as

it does not guarantee the best solution. One can gain better resolution when forcing an

overlap by choosing a smaller interval by which to increase the radius of the receiver’s

perimeter. However, this comes at the cost of more computational steps to achieve overlap.
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Inversely, one can increase the step size by which to increase the radius of this receiver to

force an overlap. Though this decreases the number of computational iterations to gain an

overlap, the trade off is a less accurate overlap.

(a) (b)

Figure 4.4: Determining a receiver that does not overlap is an imperative sub-routine to
Case 2’s algorithm. (4.4a) Shows the idealized set-up for investigating Case 2. (4.4b)
Demonstrates finding the intersection points between the receiver perimeters that do over-
lap. The number of points calculated aids in determining if all receiver perimeters overlap.
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(a) (b)

(c)

Figure 4.5: The key subroutine to extracting position in Case 2 is the greedy sub-routine
illustrated here. (4.5a) Initializes where the Receiver 3 has been identified as the non-
overlapping receiver. (4.5b) Shows the 19th iteration of the greedy algorithm and the in-
creasing radius of Receiver 3. (4.5c) Shows the terminating iteration of the greedy algo-
rithm that finds a overlapping union of the three and then proceeds to extract the centroid
of the overlapping region.

4.1.3 Non-Contiguous and Non-Continuous Overlapping Signals (Case 3)

Assumptions

For Case 3, the following assumptions are made:
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1. The incoming signal is non-contiguous.

2. The incoming signal is non-continuous.

3. All three perimeters surrounding a receiver do not always overlap.

4. The location of the person holding a badge is considered to be the centroid of the

union (or polygon) formed by three overlapping perimeters.

This case is very similar to Case 2 – the only difference being that a signal is not

constantly being received by the receivers though a person with a badge is present. This

could be due to an error in the badge, an error with the receivers, or the badge is obfuscated

by an object in a person’s environment.

Algorithm

To evaluate Case 3, the algorithm from Case 2 is used with very minor modifications. The

key changes to this version of the algorithm is listed here:

1. Prior to starting this algorithm, a filter must be chosen for smoothing missing data.

In this case, one can use a moving average filter such as a median filter to interpolate

and smooth missing values. [44]

2. Once a filter is selected, missing data can be interpolated to create a contiguous

signal.

3. As the missing data may continue non-overlapping regions, the algorithm created for

Case 2 can then be used to ensure continuously overlapping regions.

One of the weaknesses of this algorithm is the initial filter. Depending on the initial

data points collected, the filter may demonstrate poor accuracy when smoothing (such as in

the case of moving average filters). Furthermore, if there is significant data loss, this could

also result in bad smoothing not representative of actual movement patterns.
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4.2 Conclusions

The assumptions that were made in the development of a Bluetooth based location tracking

algorithm provide a basic foundation for improved location tracking. These assumptions

created idealized solutions in which extracting location was achievable. The resulting lo-

cation that was extracted in these cases was assumed to be the definite center of the over-

lapping region between receivers.

Utilizing this foundation, one can evaluate additional cases to extract position. Through

the evaluation of additional cases, such as forcing overlap between more than 3 overlapping

receivers or how to handle when more than one receiver is not overlapping, better accuracy

can be obtained in position extraction. This would then result in a contiguous and contin-

uous signal collected from a robust system that enables a high degree of accuracy when

reporting the exact location of an individual.
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CHAPTER 5

CONCLUSION

In this thesis was demonstrated the foundational means of creating a low-cost position

tracking system for its application in the lives of individuals afflicted with MCI. Utilizing

Raspberry Pi computers as Bluetooth signal receivers, one can inexpensively set-up a po-

sition tracking system in a home based environment. Then, by using the algorithms that

were developed in the body of this work, one can then begin the process of extracting a

continuous stream of positions from the receivers’ recorded signals in real-time.

In this work, many assumptions were made to simplify solving the problem of real-time

location tracking via Bluetooth technologies. One simplification was the decision to limit

the calculations to 3 receivers. In this idealized set-up, the implicit assumptions was that

each of these receivers were perfectly operational and there were no hardware malfunctions.

In practice, to track position through an entire building, multiple receivers will have to be

used and maintained. Moreover, these receivers may overlap and form regions between

more than 3 receivers.

Another assumption is that the receivers are placed exactly as recorded when they are

first installed and are not moved while collecting data. An example is of an at home layout

as shown in Fig. 5.1. Here, it is known where each receiver is placed exactly making

creating an updating map of the environment straightforward. However, if these receivers

are possibly bumped by individuals walking around a given space or somehow moved,

it can invalidate all data collected from that receiver. Determining how to either account

for position shifts or recover flawed data is imperative to future development of systems

implementing these technologies.
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Figure 5.1: This demonstrates a possible visualization scheme where receiver locations are
known in an at home setting. Each differently colored bubble represents a different receiver
and their position on this apartment layout. The differing radii represent the strength of the
received signal detected from a Bluetooth beacon. Receivers 1, 2, 3 have different radii
from the other receivers present because they are actively detecting a Bluetooth beacon
(the other beacons are held at a base radii when the receivers are first initialized). The star
represented depicts the extracted location of someone in that corresponding room following
usage of a greedy algorithm.

One facet of future work will be exploring visually this data in a real time manner. The

need for this is predicated by enabling caretakers of those with MCI to determine where a

MCI person is located in a given environment. Alerts to caretakers can be delivered visually

denoting if a MCI person has entered or left a specific vicinity in which their safety may be

jeopardized.

Finally, one can utilize data fusion to repair and/or verify positions extracted from de-

tected Bluetooth signals. Using the accelerometry data collected alongside the Bluetooth
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beacons, advanced filtering techniques such as implementing a Kalman filter, can be uti-

lized to marry these two signals together. [45] One could then create a routine to see if

movement is being recorded from the accelerometer to determine if a position pattern sug-

gesting movement is valid.
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