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Introduction 

 

A long-standing and fundamental goal of neuroscience revolves around understanding the neural basis of 

visual perception. Recently the use of mice to better model mechanics of visual circuits has become a larger focus 

(Huberman et al., 2011). The motivation behind this method is that mice are unrivaled in terms of the variety of 

technological tools that exist to monitor and label specific cell types and circuits. 

 

To understand the neural basis for visual perception, electrical probes must be placed in the primary visual 

cortex, V1. Neuronal activity in the brain gives rise to transmembrane currents, which are measured using micro-

machined silicon electrode arrays (Buzsáki,2004). These electrodes are used to measure large numbers of neurons 

and monitor local neural circuits during sensory stimulation. One quantifiable measurement is the action potential of 

neurons (spikes), occurring when the membrane potential of a cell rapidly rises and falls. When the neuron's action 

potential crosses a certain threshold, it is said to fire and transmit information to other downstream neurons. Another 

quantifiable metric is the local field potential (LFP). These are transient electrical signals generated by the summed 

electrical activity of individual neurons.   

 

 

This area is divided in 6 horizontal layers, each having characteristic distribution of inputs and outputs across layers. 

Feed-forward inputs from the lateral geniculate nucleus of the thalamus (LGN) arrive in layer 4 and depart to other 

cortical areas from layer 2/3 (Douglas et al., 1998). Electrode probes transverse and record from layers 2 through 6 

corresponding to 200-1200 microns in depth. Neurons in each layer have distinctive receptive-field properties. 

Neurons on the superficial layers have small receptive fields whereas deeper neurons have larger ones (Kandel, et 

al., 2005).  

 

There are two major types of signals in the visual system, the ON and OFF pathways, that are used for the 

detection of luminance increments and decrements (Komban et al., 2011) Several studies have shown that these two 

pathways are not mirror images of each other, but rather that their responses are asymmetric (Pandarinath et al., 

2010). It is because of this asymmetry that humans can read black text on white paper faster than white text on black 

paper (Buchner et al., 2007). 

 

Neurons within these layers of V1 can be assigned to one of two classes: inhibitory or excitatory. These 

neurons can be distinguished based on the action potential wave form they produce. One type of inhibitory neuron, 

termed fast spiking neurons, have a narrow peak-to-trough width. Broader action potential waveforms typically arise 

from excitatory neurons. The way these two classes of neurons in the mouse V1 respond to bright and dark visual 

stimuli can be recorded using the aforementioned probes.  

 

The goal of this study is to characterize how excitatory and inhibitory neurons in the mouse V1 respond to 

dark and light visual stimuli, in both time and space. To do this, the mice will be shown a visual stimulus at different 

positions on the screen throughout the duration of an experiment (Fig 1). The stimulus shown is a vertical bar which 

is 50 degree high by 9 degrees wide, ranging in color from black (0) to white (255). The intensity of a pixel is 

expressed within a given range between a minimum and a maximum. This range is represented in an abstract way as 

a range from 0, total absence, all the way to 255 total presence (Speed et al., 2019).  All stimuli are shown against a 

background whose color corresponds to the mean of this range, at 128. The relationship between the luminance of a 

brighter area of interest and that of an adjacent darker area is called luminance contrast. Michelson Contrast 

measures the relation between the spread and the sum of two luminances which is what is what is used in this 

experiment, rather than the pixel values (Wiebel et al., 2016). The mouse’s real time neural response to all stimuli 

gets recorded by the inserted probe over the duration of the experiment. This data will then be fed through a spike 

sorting algorithm that uses the characteristics of individual spike waveforms present in the neural data to distinguish 

the activity of one or more neurons from background neural activity. 

 



 
Figure 1 Experimental Set-Up 

The output for each experiment will be the firing times for the different neurons within the visual cortex. 

Given the firing times of the neurons, as well as the stimulus times, one can now begin to quantify the encoding in 

mouse V1 of bright versus dark stimuli. To do this different methods of data processing and computational modeling 

will be applied to gain further insight on the cooperative behavior of neurons which in turn increases our 

understanding of how these processes impact our visual perception. 

 

An increased understanding in mouse V1 will allow us to better characterize the internal electrical and 

neural circuit mechanisms of the visual process. This understanding is a necessary step towards technologies of the 

future that may, for example, directly generate synthetic visual perception in the brain by a visual prosthesis that 

stimulates ON and OFF pathways to remedy visual dysfunctions, such as acquired blindness. 

 

Literature Review 

 

Understanding the relationship between structure and function in the brain allows investigators to 

determine what circuits underlie specific visual computations. One particular region of interest in the brain is the 

primary visual cortex (V1). The fundamental task carried out by visual neurons is the “encoding” of luminance 

increments (white on grey) versus decrements (black on grey). To bridge the gap between structure and function two 

aspects of the cortex are studied: the neurons along with their wiring and the functional computations that get 

performed by the circuit. 

 

One of the earliest and most significant contributions to this field of research was done by Hubel and 

Wiesel in 1959. They revealed the fundamental properties of visual coding in the cortex. They discovered that 

neurons transform the pixels of light hitting the retina into responses that are selective to the orientation of the input 

stimulus. Six years prior to this, Kuffler showed that ganglion cells in the retina have concentric receptive fields, 

with an ‘on’ and ‘off’ periphery. Hubel and Wiesel figured out that these ‘on’ and ‘off’ areas were divided into 

excitatory and inhibitory areas. These two areas are arranged within a receptive field in a side-by-side fashion, 

where the central area of one type is bordered by antagonistic areas of the other type. It was also discovered early on 

that neurons that are vertically aligned in V1 have receptive fields that are also aligned in visual space (Woolsey et 

al., 1970). 

 

Since then, many more discoveries have been made regarding the intricacies of the visual cortex. Research 

indicated that the neurons in the visual cortex are not only sensitive to orientation but also color. A recent study 

(Komban et al., 2011) shows that darks are detected more rapidly and accurately than lights. However, it was 

demonstrated that there are many more black-dominant than white-dominant responses in layer 2/3 neurons of V1 in 

macaque monkeys (Xing et al., 2010). The suggestion that the OFF pathway is stronger than the ON pathway was 

also validated in other studies which also used higher mammals (Yeh et al., 2009; Jansen et al., 2018).  

 

It was noted that the black-over-white preference is generated or at the very least amplified in V1 (Yeh et 

al., 2009). These results coincided with findings that used EEG and fMRI recording modalities which showed that 

decrements are stronger than increments in humans. Ten years later this was again validated and further studied by 

looking into the factors that modulate the OFF dominance (Jansen et al., 2018). This study discovered that the 

dominance is modulated by the size and spatial frequency of the stimulus. OFF-dominated responses are driven five 

times more than ON-dominated neurons when the large grating patterns have a low spatial frequency. When this 

grating size decreases, and when the spatial frequency increases, then this OFF dominance is reduced. This happens 

as the stimulus is moved further away from the observer. It was concluded that cortical OFF dominance is 

continuously adjusted by a neuronal mechanism that modulates ON/OFF response balance depending on the input 

stimuli. 

 



So far most studies directly recording single neurons have been mainly performed in the anesthetized 

animals. This study is novel in that it aims to extend these findings to the awake visual cortex, and to multiple 

retinotopic locations in primary visual cortex of mice. This project will establish spatial and temporal constraints for 

how neural activity must be directly activated in a mouse’s V1 to code ON versus OFF responses. To characterize 

how excitatory and inhibitory neurons in mice V1 respond to bright and dark visual stimuli the mice are presented 

with input stimulus of different colored bars, ranging in luminance defined by Michelson Contrast. Their response to 

these stimuli is recorded using multi-shank probes that are placed in the visual cortex of the mice. The aim is to use 

this data to gain insight on, and to characterize differences between, the different classes of neurons within the 

different layers of V1. Once neurons are identified as being inhibitory and excitatory, their response properties can 

then be tied back to the different input stimuli. The objective is to gain a better understanding of how the brain 

processes and relays visual stimuli to parts of the brain downstream of V1. 

 

 

Methodology 

 

All data was acquired from prior experiments in the lab. For detailed methods review Speed et. al., 2019.  

 

Implant Surgery: 

 

Custom stainless steel headplates with recording chambers were implanted in male wild type C57Bl6 

(RRID: IMSR_JAX:000664) and PV-Cre mice (RRID: IMSR_JAX:017320). This was done under isoflurane 

anesthesia. The headplate was affixed to the skull using a thin layer of veterinary adhesive called VetBond then 

securely bonded to the cranium with a dental cement (Metabond). The recording chamber was then sealed with 

elastomer KwikCast. After the implantation mice were given 3 days to fully recover. Following recovery, the mice 

were handled and habituated for 3-4 days in the head fixation apparatus. 

 

Barmapping Stimulus: 

 

Vertical bars, 50 degrees high and 9 degrees wide, were presented in 17 locations. These ranged from -40 

to 115 degrees in the mouse’s visual field, at various contrasts between 0 and 100% for black and white. The stimuli 

presented is across two monitors as seen in figure 1, where the vertical bars span the entire elevation range and 

change across azimuth. Bars were displayed 10 times in each location and contrast combination (0.1s duration, 0.3s 

interval). 

 

Electrophysiology: 

 

Recordings were performed using multi-site NeuroNexus linear probes consisting of one 32- channel 

shank. Each “channel” represents an electrode pad that captures extracellular voltage, and is referenced to a 

different, common electrode. Thus, the activity of the brain as represented by electrical potentials generated by 

neurons, can be captured. Electrodes were advanced ~1000um below the cortical surface to ensure all contacts 

sampled all layers of cortex. Data was collected for the duration of the recording session which was typically around 

2000 trials (dependent on the number of contrasts shown). The craniotomy was kept sterile and covered with 

silicone elastomer in between consecutive recording days. Data was recorded in the left hemisphere of V1. Each 

recording was either localized to the monocular or binocular region of V1.  

 

Data Analysis: Spike Sorting 

 

The acquired raw electrical signals were amplified and digitized using Blackrock Microsystems then 

exported for post processing. Extracellular spikes were isolated using the KlustaViewa Suite. Neuron action 

potentials, or spikes, are rapid events of change in electrical potential that can be captured and identified in the 

amplified data. The spike-sorting pipeline involves three main steps: (i) spike detection and feature extraction, (ii) 

cluster analysis, and (3) manual curation (Rossant et al., 2016). Because spikes are rapid events (1-2ms), neural data 

is first high-pass filtered (>200 Hz). Then, an automatic detection algorithm is often used as a first pass to identify 

spikes. Spike identification is often liberal at this stage, because false “spikes” can be removed in a later step. This 

automatic algorithm typically uses either thresholding or template matching to extract spikes. Thresholding is simply 



taking all events that breach a certain voltage threshold, while template matching involves calculating the correlation 

between possible events and a generic “spike” waveform. This automatic algorithm sorts spike events into clusters 

based on timing and location (channel) of the spike, representative of individual neurons. Thus, any spikes in the 

cluster are taken to have come from that neuron. Finally, a user manually curates the clusters using PCA analysis 

and correlation metrics on all spikes in the cluster as aids. The Klusta algorithm uses thresholding in its first pass 

algorithm.  

Then, fast spiking (FS) and Regular Spiking (RS) units were classified according to spike width (peak to 

trough). Units with a peak-to-trough width less than 0.57ms were classified as FS, while all broader unites were 

classified as RS (Speed et al., 2019). 

 

Data Analysis: Data Storage 

 

LFP analysis was performed on a set of 156 recordings from 11 mice. These same recordings are used to 

analyze the single-unit response. The recording number, mouse number, date, and experiment number were added to 

a new data frame object that will store all information pertaining to the experiments. The location of their 

corresponding sorted single-unit (spike-sorted) data was identified and added to a database. 

An automated accessing function based on the database was coded. It can access and store all properties 

that are important for a given recording and the corresponding neurons. This includes all the basic properties 

relevant to an experiment such as the mouse, the date, the base name, and experiment number. Furthermore, it holds 

other properties of the experiment such those related to input stimuli (the times, the contrasts, etc.), the filtered data 

and the optimal receptive field. It also holds information pertinent to individual neurons such as their classification 

(FS/RS) and their depth (L2/3, L4, or L5/6). Internally pulling and storing all variables in one place greatly 

simplifies further analysis. 

 

 

Data Analysis: Generating Bar Maps 

 

Bar maps were created by first obtaining the bar presentation times from the photodiode signal. A 

photodiode is a device that produces a current which is linear with the input light power. This device picks up the 

stimulus presentation times in real-time, reflecting what the mouse sees. The times from the photodiode signal are 

therefore the “true” times to which the bar stimulus times from the computer need to be matched up to. The 

computer “block” file contains its own stimulus times (which could be off due to a lag between when the computer 

output versus when it is actually displayed), as well as information regarding contrast of the stimulus. With matched 

times one can extract bar positions and indexes of bar trials by color. The spike data time locked to these events is 

then taken in 400ms windows, from 100ms before to 300ms after a stimulus presentation.  

 

Once this step is completed a bar map can be made by picking a stimulus of a specific contrast value (Fig 

2). For a given experiment all occurrences of that stimulus contrast can be obtained and then sorted by the position 

at which they occurred on the screen. Per position and contrast there are 10 repeats which can be averaged together. 

A final heat map of the stimulus-evoked neuron response can then be plotted of position versus time. This heat map 

– termed a bar-map - reveals the region of visual space where the neural activity exhibits maximum sensitivity. Each 

row of a bar map, when plotted in 2-D, represents the peristimulus time histogram (PSTH) which is a histogram of 

binned spike counts versus time. The colors on the heat map represents the count aggregation of this extra 

dimension. The z-axis for spike plots is therefore the firing rate of the neuron in Hz. 

 

The response of all neurons in a recording can be averaged together to create an average bar-map. The 

location in space of the lightest and darkest spot, correspond to the activation and suppression of that neuron, which 

occurs at the optimal receptive field for that neuron. This functionality was incorporated into the automated code 

across all 156 recordings, accounting for variability.  

 



 
Figure 2 Example population Bar-Map of layer 5/6 response with receptive field at 40 degrees. Yellow spot 

indicates activation response to stimulus and the dark green is the suppression. The color bar represents the binned 

spike counts in spikes per second (Hz). 

 

 

Data Analysis: Determining LFP Matches  

  

  Neurons that contribute to a response should have the same or similar optimal receptive field as the LFP 

data, because LFP is an aggregate signal it is more stable than individual neurons. The Spike data on the other hand 

is a collection of assorted neurons not all of which are necessarily contributing to the response. To ensure that only 

relevant neurons are analyzed the average spike response of neurons per layer was compared to that of the LFP data. 

By hand, each layer was compared and marked as being a match versus mismatch (Fig 2). All results reflect data 

from only the layers that were matched. It was assumed that if layers matched, then on average the neurons 

contributing to the layer also matched the LFP receptive field. 

 

Data Analysis: Maximum PSTH 

  

For each recording per neuron the maximum firing rate was determined. The data corresponding to the first 

100ms before stimulus onset was averaged and subtracted from all points. This baseline was removed to ensure that 

the maximum PSTH is that which corresponds to the firing rates as changes from the baseline (pre-stimulus). Then 

across all positions the maximum PSTH value was taken from 30-100ms time window where the maximum PSTH is 

expected to occur in response to the input stimuli. The corresponding time was also recorded.  

 

Data Analysis: Latency  

  

 For each recording per neuron the latency corresponding to the maximum firing rate was determined. 

Latency refers to the time interval between the onset of the stimulus presentation and the response. The time 

corresponding to when the maximum stimulus occurred was used as a separate metric.  

 

 

Data Analysis: PSTH vs Contrast 

 

All neurons across all 156 recordings were first separated into two groups, monocular and binocular 

recordings based on the receptive fields of each recording. A receptive field less than or equal to 40 degrees in 

mouse visual space is classified as binocular, while any above 55 is monocular. Then each individual recording was 

further subdivided into the 7 different classes on contrast ranging from 0-100% that were present for both black and 

white input stimuli. The corresponding maximum PSTH was averaged across all neurons for a given contrast. 

 

 

 

 

 

 

 



Results 

 

Neurons that contribute to a response should have the same optimal receptive field as the LFP data. By 

hand, responses picked up by neurons residing in each layer were compared to the LFP data and marked as being a 

match versus mismatch based on the location of the optimal receptive field. In Figure 2a one can see an example of 

where the response was matched in all three layers. On the right is an example of a mismatched case, which can be 

most clearly seen by comparing layer 5/6. The suppression in the LFP data is around 50 degrees, while that for the 

spike data is closer to zero. Note that LFP data is flipped because of referencing, thus activation appears as a dark 

spot in LFP and a light spot in spike data. It is also worth noting that like in Figure 2b, some of the recordings did 

not have data corresponding to all three layers. In fact, many recordings had only data for layer 5/6 leading to a 

skewed sample size.  

 
Figure 3 (a) Example of response that is matched across all layers. (b) Example of response that is not matched as 

seen clearly in layer 5/6. No data for neurons in layer 2/3 was collected. 

 

Once all the spike data was compared to that of the LFP data the breakdown of data that matched and was 

used can be seen in Table 1. To further ensure that all data represents true peaks and not random noise only the 

neuron responses that were one standard deviation away from their individual response mean were taken.  

 

The matched data can be divided into two classes based on the location of their optimal receptive field: 

monocular and binocular. These two groups relate to the monocular and binocular areas of V1 in which the probes 

were inserted. In each monocular and binocular group, you have FS and RS cells. The breakdown of this data can be 

seen in table 2. Aside from grouping the individual neurons, one can also divide the data into the 3 main layers of 

V1: layer 2/3, layer 4, and layer 5/6 as shown in table 3. 

 

Layer Layer 2/3 Layer 4 Layer 5/6 

Matched 16 28 44 

Mismatched 4 10 6 

Table 1 Distribution of matched versus mismatched recordings 

 

 



Cell Type  Monocular Binocular 

FS 953 1928 

RS 1497 895 

Table 2 Total number of recorded neuronal responses per trial per neuron type 

 

 

Layer Monocular Binocular 

L2/3 151 130 

L4 656 534 

L5/6 1643 2159 

Table 3 Total number of recorded neuronal responses per trial per layer 

 

Figure 4 and 5 below show the overall trend for Monocular and Binocular recordings when splitting both 

across cell type and layers. The black line represents the data corresponding to black bars, while the grey line is the 

white bars. The error bars correspond to the standard deviation of that data used for each point. Furthermore, for 

each data point Wilcoxon rank sum test was run. This is a nonparametric test for two populations with independent 

samples.  It tests the null hypothesis that the data for black and white stimuli at a given contrast are from continuous 

distributions with equal medians. All green asterisk denotes the rejection of the null hypothesis with a 5% 

significance level.  The noise seen in layer 2/3 across all figures can be attributed the small sample size. This is in 

part due to the fact that there are generally less neurons in layer 2/3.  

 

When looking at the latency plots in Figure 4 the RS latency for black contrast is on average 0.004s faster 

than that of FS neurons. This is because RS neurons are putatively excitatory neurons while FS are putatively 

inhibitory. As a result, the RS neurons are the first to fire in response to a stimulus and are then suppressed by the FS 

neurons.  

 

 
Figure 4  Latency versus contrast in monocular (a) and binocular (b) recordings, divided by cell type and across 

layers. Error bars represent 1 SD.  

 

Looking at the PSTH plots in Figure 5 the RS firing is lower than that of FS neurons. This is due to the 

refractory period after the spike, which is very short in FS neurons, meaning they can fire another spike soon after 

the preceding one (Hu et. al., 2014). The magnitude of the response increases with increased contrast. These trends 

can most explicitly be seen in the data for layer 5/6 due to the large sample size.  

 

 



In Figure 5b there is an observable black dominance in the binocular recordings in FS cells, specifically in 

layer 4 at 75% contrast, with µw = 7.373 and µB = 12.616. However, this difference is not statistically significant, p-

value = 0.430 (Table 7). In monocular recordings on the left there is an observable small but uniform and consistent 

white dominance in the RS cells, but only statistically significant in layer 2/3 at 10% contrast with p-value of 0.042 

(see appendix). 

 

 
Figure 5 PSTH versus contrast in monocular(a) and binocular (b) recordings, divided by cell type and across 

layers. Error bars represent 1 SD. 

 

Conclusion  

 

The goal of this study was to characterize how excitatory and inhibitory neurons in the mouse V1 respond 

to dark and light visual stimuli, in both time and space. The trends in firing across time after stimulus presentation 

(Fig 5) do not show a statistically significant black dominance for FS cells in binocular recordings. When looking at 

the corresponding latencies in figure 4 one can see that blacks at higher contrasts (50-100%) in binocular FS 

recordings are processed on average 0.004s faster in layer 4 and 0.006s in layer 5/6 (see appendix). But the 

difference is not statistically significant. White dominance is also not statistically significant for RS cells in 

monocular recordings the only statistically significant point is in layer 2/3 at 10% contrast with p-value of 0.042 (see 

appendix). In figure 5 however, one can observed the white response as being uniform and consistent.  

  

This study fails to confirm that the underlying mechanisms that are known to make up visual perception in 

higher primates, hold true in awake mice. This could be accredited to one of two things: the data set and the 

analysis. As mentioned, there are generally fewer neurons in layer 2/3 than in layer 5/6. This class imbalance can 

skew results as it becomes harder to generalize trends in smaller datasets which are prone to be affected by outliers. 

Prior to analyzing neuronal responses to input stimuli, the baseline activity of each neuron was calculated and 

removed as outline in the methods. Then to further ensure that all data represents true peaks and not random noise 

only the neuron responses that were one standard deviation away from their individual response mean were used for 

the analysis. This regularization of the data was heavily reliant on single neuronal responses at a given time point. It 

is possible that there are better methods of baseline subtraction and regularization of the data. One possibility would 

be to use the signal to noise ratio (SNR) rather than standard deviations as an indicator (Yeh et. al., 2009). It also 

possible that SNR can be used as a feature when looking to quantifying a cells response, rather than using the 

maximum firing rate.  

 

As proven in literature neurons in V1 are sensitive to contrast where ON pathways prefer preference 

luminance increments while OFF pathways preference luminance decrements. However, these results do not 

indicate any statistically significant differences between these two pathways. In the future further analysis can be 

done using features which may reveal underlying trends that coincide with those in literature.  
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Appendix  

 
 

 2/3 4 5/6 

F

S 

µw [0.07, 0.072, 0.065, 0.060, 0.064,0.067,0.058] 

µB [0.075,0.060,0.060,0.050,0.053,0.075,0.075] 

p-value  

[0.971,0.571,0.800,1,0.893,0.924,0.075] 

µw [0.066,0.072,0.064,0.070,0.065,0.060,0.064] 

µB [0.076,0.071,0.058,0.060,0.056,0.064,0.069] 

p-value 

[0.345,0.851,0.573,0.389,0.297,0.780,0.399] 

µw [0.070, 0.066, 0.063, 0.067, 0.065, 0.069, 0.065] 

µB [0.070, 0.072, 0.066, 0.068, 0.062, 0.064, 0.065] 

p-value [0.952, 0.280, 0.566, 0.904, 0.532, 0.348, 

0.874]  

R

S 

µw [0.073, 0.049, 0.073, 0.070,0.077,0.077,0.073] 

µB [0.040,0.060,0.040,0.060,0.070,0.048,0.066] 

p-value 

[0.200,0.558,0.571,0.697,0.944,0.066,0.546] 

µw [0.071,0.060,0.066,0.075,0.062,0.066,0.064] 

µB [0.061,0.074,0.057,0.066,0.059,0.059,0.068]  

p-value 

[0.174,0.058,0.236,0.331,0.449,0.271,0.301] 

µw [0.072,0.070,0.067,0.075,0.065,0.066,0.065] 

µB [0.061,0.070,0.061,0.065,0.064,0.061,0.066] 

p-value 

[0.010,0.962,0.220,0.108,0.807,0.200,0.858] 

Table 1 Monoc latency mean (s) and p-value for white contrast and black contrast, divided by cell type and across layers. 
Corresponding to Figure 4a. 

 

 2/3 4 5/6 

F

S 

µw [0.080,0.100,0.070,0.040,0.060,0.063] 

µB [0.040,0.050,0.040,0.070,0.040,0.060,0.070] 

p-value  

[1,0.667,1,1,1,0.857] 

µw [0.076,0.051,0.062,0.060,0.058,0.068,0.058] 

µB [0.040,0.063,0.053,0.058,0.053,0.063,0.056] 

p-value 

[0.571,0.324,0.477,0.933,0.796,0.805,0.788] 

µw [0.071,0.065,0.0581,0.066,0.065,0.066,0.065] 

µB [0.059,0.079,0.059,0.060,0.059,0.059,0.059] 

p-value 

[0.069,0.009,0.639,0.206,0.355,0.164,0.052] 

R

S 

µw [0.071,0.078,0.070,0.077,0.075,0.070,0.076] 

µB [0.045,0.060,0.060,0.090,0.054,0.060,0.066] 

p-value 

[0.103,0.298,0.654,0.581,0.358,0.592,0.238] 

µw [0.062,0.076,0.070,0.070,0.072,0.068,0.073] 

µB [0.062,0.070,0.071,0.078,0.059,0.063,0.072]  

p-value 

[0.546,0.355,0.844,0.326,0.0788,0.480,0.685] 

µw [0.064,0.066,0.064,0.063,0.065,0.066,0.069] 

µB [0.063,0.066,0.063,0.063,0.060,0.064,0.065] 

p-value 

[0.584,0.966,0.719,0.830,0.154,0.595,0.132] 

Table 2 Binoc latency mean (s) and p-value for white contrast and black contrast, divided by cell type and across layers. 
Corresponding to Figure 4b. 

 

 

 

 

 

 

 

 

 



 2/3 4 5/6 

F

S 

µw 

[10.884,11.715,15.848,1.667,12.078,16.415,15.3

40] 

µB 

[4.708,13.059,35.196,4.549,24.412,19.196,13.28

7] 

p-value 

[0.486,0.897,0.267,0.667,0.571,0.914,0.805] 

µw 

[9.224,7.409,9.857,10.809,9.896,12.740,12.303

] 

µB 

[5.404,9.823,16.496,8.908,11.297,10.795,10.52

6] 

p-value 

[0.205,0.148,0.044,0.410,0.940,0.597,0.919] 

µw 

[7.572,6.987,10.457,10.980,11.029,12.792,13.105] 

µB 

[6.165,7.707,12.619,14.507,12.678,12.6823,13.34

1] 

p-value 

[0.504,0.359,0.138,0.377,0.447,0.763,0.614] 

R

S 

µw [2.123,1.516,4.085,5.709,8.064,9.734,7.978] 

µB [2.500,2.514,2.353,2.349,4.059,5.816,4.584] 

p-value 

[0.800,0.042,0.571,0.537,0.667,0.432,0.140] 

µw [3.903,3.749,5.851,6.437,7.663,7.993,7.878] 

µB [3.691,4.948,5.425,3.962,6.540,6.176,7.750] 

p-value 

[0.903,0.132,0.357,0.097,0.791,0.135,0.919] 

µw [4.723,5.831,8.126,7.036,9.845,10.306,9.579] 

µB [3.788,6.035,7.685,6.809,9.047,8.019,9.529] 

p-value 

[0.230,0.498,0.239,0.191,0.434,0.084,0.976] 

Table 3 Monoc firing rate mean (spikes/sec) and p-value for white contrast and black contrast, divided by cell type and across 
layers. Corresponding to Figure 5a. 

 

 2/3 4 5/6 

F

S 

µw [9.630,6.481,4.775,10.784,6.699,6.324] 

µB [2.685,5.370,3.725,4.549,3.706,5.157,6.180] 

 

p-value 

[1,0.667,1,1,1,0.914] 

µw [5.284,4.288,5.176,6.947,7.889,7.373,6.510] 

µB 

[2.685,5.588,9.248,7.475,9.760,12.616,10.317] 

p-value 

[0.571,0.638,0.167,0.940,0.949,0.430,0.174] 

µw 

[4.962,8.372,8.212,12.076,13.555,12.774,14.814] 

µB 

[6.630,8.957,12.238,10.396,12.587,15.242,14.588] 

p-value 

[0.115,0.479,0.013,0.468,0.860,0.357,0.718] 

R

S 

µw [4.0264,3.009,4.069,3.134,3.662,5.105,4.210] 

µB [2.546,2.400,2.922,2.539,2.319,2.654,2.815] 

p-value 

[0.315,0.845,0.222,0.476,0.230,0.028,0.368] 

µw [4.105,4.697,4.937,5.475,7.581,7.377,7.386] 

µB [3.998,3.690,5.423,6.473,3.888,5.257,5.807] 

p-value 

[0.663,0.500,0.948,0.904,0.047,0.134,0.097] 

µw [4.358,5.204,4.877,5.282,5.877,6.058,6.564] 

µB [4.058,4.610,6.071,5.23,4.952,5.361,5.766] 

p-value 

[0.449,0.692,0.443,0.241,0.391,0.198,0.160] 

Table 4 Binoc firing rate mean (spikes/sec) and p-value for white contrast and black contrast, divided by cell type and across 
layers. Corresponding to Figure 5b. 

 


