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LATTICE-REDUCTION-AIDED K-BEST
ALGORITHM FOR LOW COMPLEXITY AND
HIGH PERFORMANCE COMMUNICATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a U.S. National Phase Application
based on Skip to Main Content PCT/US14/61094, filed 17
Oct. 2014, which claims the benefit of U.S. Provisional Pat.
Application Ser. No. 61/892,011, entitled “Lattice-Reduc-
tion-Aided K-Best Algorithm for Low Complexity and High
Performance Communications,” filed on 17 Oct. 2013, and
U.S. Provisional Patent Application Ser. No. 61/909,429,
entitled “Schnorr-Euchner Expansion Methods,” filed on 27
Nov. 2013, all of which are incorporated herein by reference
in their entirety as if fully set forth below.

TECHNICAL FIELD

Embodiments of the disclosed technology generally relate
to signal processing in multiple-input multiple-output
(“MIMO”) signal transmission detection. More particular,
the disclosed technology relates to improved implementa-
tions of lattice-reduction-aided K-best algorithms in MIMO
communications.

BACKGROUND

Large-scale multi-input multi-output (MIMO) systems
are attractive due to their high capacity and bandwidth
efficiency. By transmitting and receiving signals via tens or
hundreds of antennas, large-scale MIMO systems show
great potential for next generation wireless communications,
for example, to obtain high spectral efficiencies. However, a
critical challenge in the design of large-scale MIMO systems
is to provide high performance, high throughput, and low
latency, while reducing the complexity of the detectors.
Despite its optimal error performance, maximum likelihood
detectors (MLD) require prohibitively high complexity,
especially when the number of antennas is large.

Sphere decoding algorithm (SDA) is an MLD with less
complexity, but the complexity of the SDA is still exponen-
tial in terms of problem size. To address the stringent needs
of large-scale MIMO detection, several detectors for large-
scale MIMO systems have been proposed.

For example, local neighborhood search methods are
developed to obtain near-optimal performance for large-
scale MIMO systems, but their complexity depends on
symbol, noise, and channel realizations and their worst-case
complexity can be extremely high. [terative soft interference
cancellation detectors have fixed complexity; however, the
complexity is still high if the number of iterations is large.
Furthermore, when the constellation size is large, the detec-
tor cannot collect full diversity as the MLD, thus suffering
from inferior performance.

In contrast, linear detectors (LDs) and successive inter-
ference cancellation (SIC) detectors require polynomial
complexity but suffer from significantly degraded error
performance Recently, to improve the error performance of
LDs and SIC detectors, lattice reduction (LR)-aided detec-
tion has been proposed. LR-aided L.Ds can achieve the same
diversity as the MLD. In addition, different from the search-
based detectors described, the instantaneous complexity of
LR-aided detector does not depend on symbol and noise
realizations, which is preferred for hardware implementa-
tion.
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Although significant performance improvement for LR-
aided LDs and SIC detectors is found, the LR-aided detec-
tors still exhibit some performance loss to the MLD. In
addition, as the number of antennas increases, the gap
between the LR-aided detectors and the MLD increases
significantly.

To further bridge the gap, LR-aided K-best detectors are
proposed. Among existing MIMO detectors, [LR-aided
K-best detectors are attractive for their low complexity and
(near-) optimal performance. However, compared to the
conventional K-best detectors, the LR-aided K-best detector
has no boundary information about the symbols in the
lattice-reduced domain.

The loss of boundary information results in two new
issues of LR-aided K-best detector relative to the conven-
tional K-best: 1) the range of the symbols is broader and
undetermined and; ii) the possible children for each layer
can be infinite. To find the K best partial candidates from the
infinite children set, an algorithm is proposed to replace the
infinite set with a finite subset of the children. See X. Qi and
K. Holt, “A lattice-reduction-aided soft demapper for high-
rate coded MEMO-OFDM systems,” IEEE Signal Process.
Lett., vol. 14, no. 5, pp. 305-308, May 2007 (hereinafter
“Qi”). To reduce the complexity of generating the subset, an
on-demand child expansion based on the Schnorr-Euchner
(SE) strategy is also proposed. See M. Shabany and P. Glenn
Gulak, “The application of lattice-reduction to the K-Best
algorithm for near-optimal MIMO detection,” in /EEE Int.
Symp. on Circuits and Systems (ISCAS), May 2008, pp.
316-319 (hereinafter “Shabany™).

Nevertheless, the existing [.LR-aided K-best detectors still
face several challenges in hardware implementation in terms
of latency, throughput, and complexity. Most existing LR-
aided K-best detectors consider real equivalent signal model
of the complex model. For example, existing [.LR-aided
K-best detectors may result in long latency and high hard-
ware resources. On the other hand, the complex [LR-aided
K-best detectors may yield shorter latency and lower
resources, but existing complex LR-aided K-best designs are
complicated and may not be easy to implement in hardware.
Further, the critical path of some existing K-best detectors is
determined by the SE expansion, which may lower the
maximum frequency and thus system throughput. Further-
more, the existing LR-aided K-best algorithm has a high
complexity on the order of O(N,K+N,K?), where N, is the
number of transmit antennas and K is the number of can-
didates.

Based on the foregoing, there is a need for a less complex
LR-aided K-best detector with low latency, high throughput
and high performance.

BRIEF SUMMARY

The disclosed technology relates to improvements of a
LR-aided K-best detector for large-scale MIMO systems and
its hardware implementation. The LR-aided K-best algo-
rithm described herein may achieve near-optimal bit-error
rate performance to the MLLD with lower complexity than
the existing [L.LR-aided K-best algorithms.

One aspect of the disclosed technology relates to a
multiple-input multiple-output communication system. The
system may include a plurality of antennas configured to
receive a plurality of wireless signals. The system may
include a symbol detector. The symbol detector may be
configured to convert the received wireless signals to input
signals. The symbol detector may implement an [LR-aided
K-best algorithm to detect a symbol in the input signals. For
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example, the symbol detector may conduct a search of a
plurality of layers of candidate symbols. The symbol detec-
tor may implement a priority queue to identify K-best
candidate symbols for each of the plurality of layers. The
priority queue may be updated based on an expansion of at
least one candidate symbol.

Another aspect of the disclosed technology relates to a
method for symbol detection in a multiple-input multiple-
output communication system. A plurality of antennas may
receive a plurality of wireless signals. Each wireless signal
may include a symbol. The method may convert the received
plurality of wireless signals to corresponding input signals.
A processor may conduct a search of a plurality of layers of
candidate symbols in the input signals based on an LR-aided
K-best algorithm. A priority queue may be implemented to
identify K-best candidate symbols for each layer. The pri-
ority queue may be updated based on an expansion of at least
one candidate symbol. The method may output at least one
symbol.

These and other aspects of the disclosed technology are
described in the Detailed Description disclosed below and
the accompanying figures. Other aspects and features of
embodiments of the disclosed technology will become
apparent to those of ordinary skill in the art upon reviewing
the following description of specific, exemplary embodi-
ments of the disclosed technology in concert with the
figures. While features of the disclosed technology may be
discussed relative to certain embodiments and figures, all
embodiments of the disclosed technology can include one or
more of the features discussed herein. While one or more
embodiments may be discussed as having certain advanta-
geous features, one or more of such features may also be
used with the various embodiments of the disclosed tech-
nology discussed herein. In similar fashion, while exemplary
embodiments may be discussed below as system or method
embodiments, it is to be understood that such exemplary
embodiments may be implemented in various devices, sys-
tems, and methods of the disclosed technology.

DESCRIPTION OF THE DRAWINGS

The following detailed description of the disclosed tech-
nology may be better understood when read in conjunction
with the appended drawings. The drawings illustrate exem-
plary embodiments, but the subject matter is not limited to
the specific elements and instrumentalities disclosed.

FIG. 1 illustrates an overall structure of a MIMO receiver.

FIG. 2 illustrates broader range and infinite children of
LR-aided K-best compared to the conventional K-best with
4PAM.

FIG. 3 illustrates performance comparisons of a complex
LLL-aided MMSE K-best detector for a 10x10 MIMO
system with 64QAM and different K.

FIG. 4 illustrates performance comparisons of a real
LLL-aided MMSE K-best detector and a complex LLL-
aided MMSE K-best detector for a 10x10 MIMO system
with 64QAM and different K.

FIG. 5 illustrates a system diagram of an FPGA imple-
mentation of a LR-aided K-best detector for 16x16 MIMO
systems.

FIG. 6 illustrates performance comparisons of the MLLD
and LR-aided K-best without and with the late expansion
strategy with 4x4 MIMO systems, 256-QAM, and K=3.

FIG. 7 illustrates performance comparisons of the MLLD
and LR-aided K-best without and with the late expansion
strategy with 8x8 MIMO systems, 256-QAM, and K=3 and
7.
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FIG. 8 is a flow diagram of a method according to an
exemplary method of the disclosed technology.

DETAILED DESCRIPTION

To facilitate an understanding of the principles and fea-
tures of the disclosed technology, various illustrative
embodiments are explained below. In particular, the dis-
closed technology is described in the context of systems and
methods for MIMO communication systems. Certain
embodiments of the disclosed technology may be applied to
many wireless MIMO communication system standards
known in the art, including, but not limited to, IEEE
802.11ax (Wi-Fi), 4G, 3GPP, Long Term Evolution
Advanced (LTE-A), Wi-MAX, HSPA+, and the like.
Embodiments of the disclosed technology, however, are not
limited to use in wireless MIMO communication systems.
Rather, embodiments of the disclosed technology can be
used for processing other MIMO communication systems,
including, but not limited to, optical (MIMO) systems or
other transmission systems having an architecture incorpo-
rating multiple transmitters and/or multiple transceivers.
Further, embodiments of the disclosed technology may be
applied to generalized signal carrier frequency division
multiple access (GSC-f DMA) systems, as well as precoded
FDMA (P-FDMA) systems.

The components described hereinafter as making up vari-
ous elements of the disclosed technology are intended to be
illustrative and not restrictive. Many suitable components or
steps that would perform the same or similar functions as the
components or steps described herein are intended to be
embraced within the scope of the disclosed technology. Such
other components or steps not described herein can include,
but are not limited to, for example, similar components or
steps that are developed after development of the disclosed
technology.

A short description of the notation used herein is as
follows. Superscript © denotes the transpose. The real and
imaginary parts of a complex number are denoted as R[¢]
and I[*]. Upper- and lower-case boldface letters indicate
matrices and column vectors, respectively. A, ; indicates the
(i, kth entry of matrix A. I,, denotes the NxN identity
matrix, Oy, is the NxL. matrix with all entries zero, and
1 sz» 18 the NxL matrix with all entries one. Z is the integer
set. Z[j] is the Gaussian integer set having the form Z+7j,
and j=V=T. B{+} denotes the statistical expectation. ||
denotes the 2-norm.

A ftransmission of a MIMO system with N, transmit
antennas and N, receive antennas may be represented in the
following mathematical formula

Ye=H s +w",

M

where s°=[s,“, s,%, .. ., sNtc]T, (s, €S°) may be the complex
information symbol vector with S¢ being a constellation set
of quadrature amplitude modulation (QAM), H° may be an
N,xN,,(N,=zN,) complex channel matrix, y*=[y,“, v, . . .,
ya°]7 may be the received signal vector, and w=[w,°,
Wzrc, ..., Wyl may be the complex additive white
Gaussian noise (AWGN) vector with zero mean and cova-
riance Nyl .

FIG. 1 illustrates an example overall structure of a MIMO
receiver 100. For purposes of illustration, noise at the
receiver is removed. The MIMO receiver 100 may include
a MIMO symbol detector 110 configured to perform recov-
ery or detection of information symbol. For instance, given
H¢ and y° of Eq. (1), the MIMO symbol detector 110 may
perform recovery or detection of the information symbols s.
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1. Conventional Detectors

1.1 Conventional Real LR-aided K-best Detector

Given the complex signal model in Eq. (1), an equivalent
real signal model may be represented by the following
formula:

[ﬁ ] [ﬁ[HC] =SH[RE] (R } @
. = +

Sy S R[H [°] Sl

y=Hs+w,

where R[] and J[*] may denote the real and imaginary
parts of a complex variable, respectively, s=[s,, s,, . . . ,
SZN’] with s; €8, and S may represent the constellation set
of PAM as {—\/M+1 VM43, ..., VM-1}

Given the model in Eq. (2), the MLD may be represented
as

AML . ~112
§7" = arg min — H5
g min lly— A5,

©)

which is generally non-deterministic polynomial hard (NP-
hard), and has high complexity. The [LR-aided detection
works for infinite lattice, and may be represented by the
following relaxed problem:

AML . ~112
57 =arg min |ly - H3I%,
setd “

)

where U may be the unconstrained constellation set as
{...,-3,-1,1,3,...}. Since § may not be a valid QAM
symbol, a quantization step may be applied”

SEP=0(3), ®

where Q(*) may represent the symbol-wise quantizer to the
constellation set S.

The unconstrained detection in Eq. (3) is naive lattice
detection (NLD). The closest point search algorithm, e.g.,
sphere decoding algorithm, may find the optimal solution to
formula (4). However, one issue of the NLD is that it is not
diversity-multiplexing tradeoff (DMT) optimal in general,
i.e., the NLD is suboptimal in terms of diversity. To achieve
the DMT optimality, the regularized lattice decoding may be
carried out:

. No (6)
§=arg mi - H3|P + == II51*
gse o,y = Hsl 307 1]

. 2
= argmin g, 2w, Iy - H3ll

where the Minimum Mean Square Error (MMSE) regular-
ization is adopted, E{ss”}=s’I, and Hand y are the MMSE
extended matrix and the extended received signal vector as:

o
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6
To solve the NLD with MMSE in Eq. (6) with lower
complexity, the [LR-aided detection performs LR on the
matrix H to obtain a more “orthogonal” matrix H=HT, where
T is a unimodular matrix, such that all the entries of T are
integers, and the determinant of T is +1. Given H and T, the
NLD with MMSE becomes:

§=2Targ m%ﬁ ||§1 - fﬁ”z + Low,x1, ®
272Nt

where ¥ is the received signal vector after shifting and
scaling as (y- leN’xl)/2 and §=21%+1,y.,,,. Since A is more

“orthogonal,” the closest point search algorithm based on £
can enjoy much lower complexity compared to that based on
H in Eq. (7). However, since the problem in Eq. (8) is
NP-hard, the complexity of the closest point search is still
considerably high when N, is large. To achieve low-com-
plexity detection, the LR-aided MMSE-SIC detector finds a
sub-optimal solution to (8) with degraded error perfor-
mance.

The LR-aided K-best algorithm may enhance the perfor-
mance of the LR-aided MMSE-SIC detector to find a
“better” suboptimal solution to Eq. (8). See Qi and Shabany.

The LR-aided K-best algorithm may first perform QR
decomposition on F=QR, where Q is a 2(N,+N,)x2N, ortho-
normal matrix and R is a 2N, x2N, upper triangular matrix.
Then, the problem in (8) may be reformulated as

§=2Targ min [y~ R+ Lo ®
€2

where y=Q7¥, z may be the candidates of the information
symbols in the lattice-reduced domain with §=2T7+1,.;.

Next, the LR-aided K-best algorithm performs the
breadth-first search from the 2N th layer to the 1st layer. For
each layer (e.g., the nth layer), the algorithm computes the
K best partial candidates [z,%, 2,7, . . ., 7,], i.e., the K
partial candidates with the minimum costs among all the
children of the K partial candidates [z, "V, 7,V .
z,7*Y] in the previous (n+1) st layer, Where a partial
candidate z, in the nth layer may be [Zl,n( o, Z5 N(")]
The cost associated with the partial candidate may be
represented by the following formula:

2Ny

COS[ E [
f=n

A partial candidate of the nth layer z,”
of a partial candidate of the (n+1)st layer z,
if 2=z, ", (2,1, z,,,""EZ holds.
When the search of the 1st layer is completed, the
LR-aided K-best outputs {z,},_* as k=1 the K estimates
of the symbols in LR domain {%,},_,%. For uncoded case,
the hard output of [LR-aided K-best may be obtained as:

(10

Z R kZ(")] .

may be called a child
@+ if and only

S=arg min 15 — H3e I (1D

=027 +1ap, 1 )
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For coded case, {§,= Q(2Tzk+12]\,tx1)},ﬁ1 can be served as
soft candidates to evaluate the approximate log-likelihood
ratio of each coded bit.

Table 1 illustrates an example general description of a real
LR-aided K-best detector. Note that only one partial candi-
date may be in the (2N+1)st layer, where z, Y may
represent the root node.

TABLE 1

A general description of real LR-aided K-best detectors.

Input: Channel matrix H , received signal vector y , candidate size K
Output: K symbol estimates {§;},_, %
(1) Obtain H and y
@ [ T] = LR()
8; [Q R] = QR(H)
= /2
) <2N9*1§y— [l czévs’?l *D_ 0, len = 1
6) For n = 2N, down to 1
0 [{z:™ }k:lKa{COStk(n) b5 =
Find_ Kbest_ Children ({z,®* },_,*" {cost,®**V },_ /%™
(8) len =K
(9) End for
(10)  Output § =Q(2Tz; " +1ax,1)

From Table 1, the key task of the LR-aided K-best
algorithm is how to efficiently find the K best partial
candidates of each nth layer from all the children of the
partial candidates of the previous (n+1)st layer.

1.2 Conventional Complex [L.R-Aided K-Best Detector

Similar to the real LR-aided K-best detector described
above, the complex [LR-aided K-best detector may aim at
finding the sub-optimal solution to the following problem:

3¢ =2TCrg rmn ||y - R% || + (1 + Ply,xa- ®

Lz M

where j=V=T1, Z [j] may denote the Gaussian integer ring
whose elements have a form Z +j Z , T° may be a complex
unimodular matrix with determinant +1 or +j and all entries
being Gaussian integers, H°=[°(T°)"!, FI° may be the LR-
reduced channel matrix with FA°=Q°R¢, Q¢ may be an ortho-
normal matrix, and R® may be an N,xN, upper triangular
matrix with diagonal elements being real, y°=(Q°)*(y-
T, (14§))/2, and §°=2T°4+(14j) 1,

Table 2 provides an example procedure of the complex
LR-aided K-best detector. The procedure in Table 2 may be
similar to that of the real one illustrated in Table 1 except
that all variables may be complex and the number of layers
may be N,. From Table 2, the main complexity of the
LR-aided K-best algorithm may be to compute the K best
partial candidates [z,, z,%”, . . ., 2] for each nth layer,
i.e., the K partial candidates with the minimum costs among
all the children of the K partial candidates [z,%*",

2,00, 2,7 in the previous (n+1) st layer, where a
partlal candldate 2 in the nth layer may be [z, G,

@017, The cost of a complex partial candidate z° may be
represented by the following formula:
Ny 2 6)
cost” = Z Z R(kzrk
f=n
A partial candidate of the nth layer z,%” may be called a child

of a partial candidate of the (n+1)st layer z,"*" if and only
if Zi("):[Zi,n("), "™, zi,n(") €7 holds.
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TABLE 2

A general description of complex LR-aided K-best detectors.

Input: Channel matrix H¢ , received signal vector y°
Output: Hard-output estimate §¢
(1) Obtain T* and y°

, candidate size K

() [H,T°]=LRE")
Ei; [Q°, R°] = QR(H)

yc= cH c_ 1 N 1 /2
) C<Nr*>—)[(]cot< N

Forn =N, down to 1
[{ch(") oS {eosty® 3 K] =
Find_ Kbest_ Children({z,“"*V },_ %" {cost, =D}, _ feny
len =K
End for
Output § = QQ2Tz*™ +(1 + )yt )

(6)
@

®)
©)
(10)

Compared to the real signal processing, directly process-
ing the signal in complex domain has several benefits such
as lower number of arithmetic operations and lower latency.
In contrast to the real LR-aided K-best detector in Table 1,
which has 2N, layers, the complex [.R-aided K-best detec-
tor may have N, layers. As such, the complex LR-aided
K-best detector may yield lower latency and resources
compared to the real counterparts.

1.3 Problems with Conventional LR-Aided K-Best Detec-
tors

However, different from the K-best algorithm in s-do-
main, in which the number of children is finite due to the
bounded constellation set S, each partial candidate in the
LR-aided K-best algorithm has infinite possible children
because no information about the boundary of Z is available.
FIG. 2 illustrates a comparison of the broader range and
infinite children of [LR-aided K-best compared to the con-
ventional K-best with 4PAM. As illustrated in FIG. 2, unlike
the partial candidates in existing K-best algorithm, which
are in the bounded constellation set S, the range of the partial
candidates in the LR domain z,* is broader and is generally
undetermined. As shown in FIG. 2, each partial candidate in
the LR-aided K-best algorithm may have infinite possible
children because no information about the boundary of z is
available, while the number of children of K-best algorithm
is finite due to the bounded constellation set S.

These differences pose several new challenges on LR-
aided K-best in hardware implementation. Wider range of
candidates requires higher fixed-point resolution to repre-
sent z,"” and more resources to compute the arithmetic
operations related to z,*. In addition, how to efficiently find
the top K children among the infinite children becomes a
critical task.

In the existing technologies, a pre-expansion method is
known to address the infinite children issue. The pre-
expansion method is as described in Qi. The pre-expansion
method first finds top K children of each parent. For
instance, the pre-expansion method approximates the infi-
nite children set with a finite set with NK children by
expanding only N best children for each partial candidate of
the (n+1)st layer. Next, the algorithm then chooses the top K
partial candidates for the nth layer from the NK children.
Note that, when N=K, the K children themselves contain at
least K best partial candidates among all the children of the
(n+1)st layer, and thus, the pre-expansion method is an exact
one. The complexity of this method is on the order of
O(N,K+K?). When K is large, the complexity of the pre-
expansion method becomes high, and thus its hardware
implementation becomes infeasible.

Further, in the existing technologies, an on-demand
expansion method is also known to further reduce the
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number of node/child expansions. Discussions of the on-
demand expansion method may be found in Shabany. The
on-demand expansion method employs the Schnorr-Euchner
(SE) strategy to perform an on-demand child expansion.
This method maintains a candidate list with size K that
stores the current best child of each parent, where the current
best child is defined as the child that all its better siblings of
the same parent are already chosen as the partial candidates
of the nth layer. Then, the on-demand expansion method
chooses the best child in the candidate list and replaces the
best child with its next best sibling of the same parent via SE
expansion. As such, a child is expanded if only if all its better
siblings are expanded. After K selections, the best K chil-
dren of the layer can be obtained. The main benefit of the
on-demand child expansion is that, the method expands
2K-1 children for each layer, and thus requires much less
resources to compute and store the 2K children compared to
the pre-expansion method in Qi, which expands K children.
Although significant reduction on the node expansions is

10

15

10

may exploit the on-demand child expansion and a priority
queue. Table 3 provides an example pseudo code of the real
LR-aided K-best detector. Compared to the algorithm in
Shabany, the algorithm according to this embodiment
employs the priority queue, instead of a brute-force method
in Shabany, to find a child with the minimum cost in line 10.
The priority queue may be implemented by a heap, which
requires O(1) operations to find the child with the minimum
cost, O(log,(K)) operations to maintain the heap if a key is
changed (line 17), and O(K) operations to initialize the heap
with K elements (line 8). Thus, the overall complexity of the
method described in Table 3 may be O (NK+K log,(K)),
which is considerably lower than O(NK+K?) in Qi and
Shabany when K is large. The complexity of lines 4 and 11
may generally rely on the data structure of the implemen-
tation and may be at most on the order O(N,) by using a
memory copy method. The procedure presented in Table 3
may find the exact K best partial candidates for each layer
with reduced complexity.

TABLE 3

Find_ Kbest_ Children( ) subroutine for the real LR-aided K-best detector.

Input: len partial candidates of the (n + 1) st layer {z,¢*" },_,’" with their costs
{cost ™D}, fom
Output: K partial candidates of the nth layer {7, },_,% with their costs {cost,® },_|%¥

Line no. Description Complexity
[¢8)] Fori=1to len
2) =¥, 2[:n+lNRn,lZi,l(n+l) O(N,)

7= [1/R,,

child, = [z, (z"*)T 17

childcost; = costl-("”) +(1; - R,,J,Zl-)2
step; = Sgn(ri/Rn,n -z)

©)
S
®)
(6)

Oo(1)
O(1) or O(N,)
Oo(1)
o)

7 End for
(8) Initialize a priority queue q with {childcost; },_,*" as the keys O(K)
©9) Fork=1to K
(10) Find the index i associated with the minimum key inq  O(1)
(11) 7, = child ; O(1) or O(N,)

(12)
(13)
(14)
(15)
(16)
17
(18)

cost, ™ = childcost ;

z; = Z; + step;

child; = [z;, (z"*)7 17

childcost; = cost,"*D + (r; - R,,J,Zl-)2

step; = —step; — sgn(step,)

Update q using childcost; as the new key
End for

o)
o)
o)
o)
o)
O(log>(K))

(19)

Output {7, };_y % {cost;® },_*

achieved in Shabany, the method in Shabany uses a brute-
force method to find a child with the minimum cost in the
candidate list, and as a consequence, the complexity is still
on the order of O(NK+K?).

Further, the complex [LR-aided K-best detectors have a
main difficulty to efficiently find the best K children of each
layer in complex domain, which is more complicated than
that in real domain.

2. Improved LR-Aided K-Best Detectors

One aspect of the disclosed technology relates to reducing
the complexity of the existing designs on computing K best
children among all the children for each layer. For instance,
the disclosed technology may reduce the complexity of
finding the K best partial candidates from the infinite chil-
dren set for each layer by exploiting an on-demand child
expansion and a priority queue.

2.1 Real LR-Aided K-Best Detectors

According to one embodiment of the disclosed technol-
ogy, the MIMO symbol detector 110 may include a real
LR-aided K-best detector. The real LR-aided K-best detector
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The low complexity of the L.LR-aided K-best algorithm
may perform the algorithm for large MIMO systems (e.g.,
50x50 MIMO systems) with large candidate sizes. As the
number of antennas increases, the error performance may
approach that of AWGN channel. In one embodiment of the
disclosed technology, the [.LR-aided K-best algorithm may be
combined with the minimum-mean-square-error (MMSE)
regularization to achieve near-optimal error performance for
large MIMO systems with large constellation sizes (e.g.,
50x50 MIMO with 256-QAM).

2.2 Complex LR-Aided K-Best Detectors

In another aspect of the disclosed technology, the MIMO
symbol detector 110 may include a complex LR-aided
K-best detector. The disclosed technology may reduce the
complexity of the existing designs on computing K best
children among all the children for each layer.

2.2.1 Finding the Best K Children with 2D SE Expansion

According to one embodiment of the disclosed technol-
ogy, a complex [LR-aided K-best detector may efficiently
find the best K children of each layer in complex domain by
using 2-dimensional (2D) Schnorr-Euchner (SE) expansion.
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Table 4 illustrates one example method to find the best K
children with 2D SE expansion. Similar to the real LR-aided
K-best detector illustrated in Table 3, the [.LR-aided complex
K-best detector according to this embodiment may exploit
an on-demand child expansion and a priority queue.

TABLE 4

12

(K)) by exploiting the on-demand child expansion and a
priority queue. Compared to the existing technology
described in Shabany, the proposed algorithm may employ
a priority queue, instead of a brute-force method described
in Shabany, to find a child with the minimum cost in line 12.

The proposed Find_ Kbest Children( ) subroutine with 2D
SE expansion for the complex LR-aided K-best detector.

Input: len partial candidates of the (n + 1) st layer {zk‘(m) oot with their costs

{coste™ D}
Output: K partial candidates of the nth layer {z;’

e o X with their costs {cost,® },_ X

Line no. Description Complexity
[¢8)] Fori=1to len
@ = ync -2 +1NRn chz lC(M) om)
) 2t = iR T o)
4) child, = [z, (z° )T1T O(1) or O(N)
) parent; = i o(1)
6) childcost; = cost,™*? + | 17 - R,z 2 O(1)
@) step; = sgn(r;/R,, ,° - z,°) Oo(1)
(8) twosiblings; = true o(1)
©9) End for
(10) Initialize a priority queue q with {childcost ; },_,"" as the keys O(K)
(11) Fork=1to K
(12) Find the index i associated with the minimum key inq  O(1)
(13) If twosiblings; then o(1)
(14) len = len + 1 o(1)
(15) en” = 1,5 o)
(16) parent,,, = parent; o(1)
an R[] =R[z ]+ Rstep ; ] Oo(1)
(18) Sl 1=8[2] oa
(19) childy,, = (210" Zparens. . ) 17 O(1) or O(N)
(20) childcosty,,, = COStyarens,, S| Tren” = Ry Zien” 2 o(1)
@1 R[step,] = - Ristepo] — sgn(Rsteps,,]) Oo(1)
(22 3 [stepye, ] =3 [stepye, ] Oo(1)
(23) twosiblings;,,, = true o(1)
(24) Update q by adding the key childcost;,, O(log,(K))
(25) Engi if
(26) > = child; O(1) or O(N)
27) costk(") = chlldcost ; o(1)
(28) S[z] =5 [Zic 1+3[step ; ] Oo(1)
(29) child; = [z, (zpm,,,f@::l) nr o(1)
(30) chlldcost = costpam,, +11°-R,, 7 <2 o(1)
(31) 3 [step; ] = —S [step; ] — sgn(S [step; ]) o(1)
(32) twosiblings; = false o(1)
(33) Update q using childcost; as the new key O(log,(K))
(34) End for
(35) Output {ch(’O bt {eosty® 1 ®
45

This method may classify all children into two categories
and expands the next children via the real and/or imaginary
direction depending on the categories to make sure the next
smallest child of the same parent is in the candidate list. For

example, with continued reference to Table 4, a child, e.g., 50

2, of a parent z,"*") in the nth layer may be classified as

two categones In a first category (i.e., Type 1), the real part
of z,,“” of the child z,"” may be the same as the real part of
Zs (") where 7, may be the child with the lowest cost

among all the chlldren of the same parent z,"*". The second 55

category (i.e., Type 1) may include all other scenarios that
do not fit in the first category.

Once a Type [ child is chosen as one of the K-best
children, both the real (lines 13-24 in Table 4) and imaginary

SE (lines 28-33 in Table 4) expansions may be executed to 60

guarantee that the next smallest child of the same parent is
in the priority queue. However, for a Type II child, only
imaginary SE expansion may be performed (lines 28-33 in
Table 4). Note the rounding operation [*] may round the real

and imaginary parts of a complex variable, respectively. 65

The algorithm in Table 4 may find the exact K best partial
candidates for each layer with complexity O(NK+K log,

The priority queue may be implemented by a heap, which
may require O(1) operations to find the child with the
minimum cost, O(log,(K)) operations to maintain the heap
if a key is changed (lines 24, 33, note that the size of the heap
is, at most, 2K), and O(K) operations to initialize the heap
with K elements (line 10). Thus, the overall complexity of
the proposed method may be O(NK+K log,(K)), which is
considerably lower than O(NK+K?) in Shabany and Qi
when K is large. Note that, the complexity of lines 4, 19, and
26 may generally rely on the data structure of the imple-
mentation and is at most on the order O(N) by using a
memory copy method.

2.2.2 Finding the Best K Children with Two-Stage 1D SE
Expansion

According to another embodiment of the disclosed tech-
nology, a complex [.R-aided K-best detector may efficiently
find the best K children of each layer in complex domain by
a two-stage one-dimensional (1D) SE expansion. The two-
stage expansion method may be based on the one-dimen-
sional expansion described in Table 3, where the 1D SE
expansion may be the same as the one that used in real
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LR-aided K-best in Table 3 (lines 15-16). Table 5 illustrates
an example method to find the best K children with two-
stage 1D SE expansion.

TABLE 5

14

K-best detector, the MLD, the complex MMSE successive
interference cancelation (SIC), and the complex LLL-aided
MMSE-SIC. These performance tests may be conducted on

The proposed Find_ Kbest_ Children( ) subroutine with two-stage
1D SE expansion for the complex LR-aided K-best detector.

Input: len partial candidates of the (n + 1) st layer {ch("”)}k:llen with their costs

{cost D}, en

Output: K partial candidates of the nth layer {Z,f(") et X with their costs {cost,® },_ X

Line no. Description

Complexity

Fori=1to len
=¥,
z = [1Ry 0
child, = [z°, (z£ )T T
childcost, = cost,"*? + | 1,7 - R, .7 1
step; = sgn(r;/R,, ,° - z,°)

End for

Initialize a priority queue q with {childcost, },_,

Fork=1to K
Find the index i associated with the minimum key in q
newchild;, = child;
newchildcost;, = childcost;
newcost ; = cost** D

newstep;, = step;

newr; = r;°

z = z,°+ R [step;

i, o, 0 1y

childcost, = cost, "+ + | 17 - R,z 2

step; = - R[step,] — sng(R[step,]) +3 [step,1i

M

N e, (i+l)
21? +1 Rn,l Z;7

len

as the keys

(20) Update q using childcost, as the new key

(21) End for

(22) Initialize a priority queue q with {newchildco st,},_,* as the keys
(23) Fork=1to K

(24) Find the index i associated with the minimum key in q
(25) 7" = newchild ,

(26) costk(")r= newchildco st ;

27) [z, z< 17 = newchild ;

(28) z =275 +3 [newstepri i

(29) newchild ; = [z, z° ¢

(30) newchildcost ; = newcost; + | newr; - R, ,z, P2

(31) newstep; = (-3 [n]wstep; ] — sgn(S [newstep; 1))j

(32) Update q using newchildcost; as the new key

(33) End for o

(34 Output {77 15 {costy® 1o

O,

o(1)

O(1) or O(N,)

o(1)
o(1)

O(K)

o(1)

O(1) or O(N,)

o(1)

O(log,(K))

0(0)

o)

O(1) or O(N,)

o(1)

O(log>(K))

As illustrated in Table 5, the first stage may expand only
the real parts of all the children of the (n+1)* layer. After K
expansions, the second stage may expand only the imagi-
nary parts of all the children obtained from the first stage.
Since the children obtained from the first stage and their
siblings obtained by the following imaginary-part expansion
may contain the top K children of the layer, this method may
be an exact one and may not rely on the 2D SE method.
Lines 1-18 in Table 5 may be similar to Table 4 except that
some extra variables may be created to support the second-
stage expansion.

Compared to the real LR-aided K-best that may have 2N,,
layers in Tables 1 and 2, the complex [R-aided K-best
according to this embodiment using the method in Table 5
may have N, layers. As such, this embodiment may thus
save half of the best child calculation of each parent (lines
1-7 in Tables 1 and 5). As a result, the complex LR-aided
K-best according to this embodiment may enjoy lower
latency and complexity compared to the real one.

2.3 Performance of Improved L.LR-Aided K-Best Detectors

To demonstrate the performance of the improved LR-
aided K-best algorithm for MIMO systems, a real LLL
algorithm and a complex LLL algorithm with reduction
quality parameter d=1 or 8=0.99 may be adopted.

FIG. 3 illustrates performance comparisons of various
types of detectors including the complex L.LL-aided MMSE

45

50

55

60

65

a 10x10 MIMO system with 64QAM and different K.
Specifically, the entries of H may be modeled as indepen-
dent and identically distributed (i.i.d.) complex Gaussian
variables with zero means and unit variances. The SNR
shown in FIG. 3 may be defined as the received information
bit energy versus noise variance. The BER shown in FIG. 3
may refer to bit-error rate.

As shown in FIG. 3, the complex LLL-aided MMSE-SIC
may obtain significant performance improvement over the
MMSE-SIC, whose diversity may be 1. The complex LLL-
aided MMSE K-best detector may further enhance the
performance of the complex LLL-aided MMSE-SIC, where
the complex LLL-aided MMSE K-best detector with K=2
may have more than 2 dB gain over the complex LLL-aided
MMSE-SIC. Also, as shown in FIG. 3, by increasing the
number of candidates K, the performance of the complex
LLL-aided MMSE K-best detector may approach that of the
MLD. As shown in FIG. 3, when K=15, the complex
LLL-aided MMSE K-best may achieve almost the same
performance as the MLD.

FIG. 4 shows performance comparisons between the real
LLL-aided MMSE K-best detector and the complex LLL-
aided MMSE K-best detector for a 10x10 MIMO system
with 64QAM and different numbers of K. As shown in FIG.
4, both the real and complex detectors may exhibit almost
the same error performance for different K.
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The improved real/complex LR-aided K-best algorithm
according to the disclosed technology has a reduced com-
plexity of O(N,K+K log,(K)), which is lower than that of the
existing technologies. The low complexity of the improved
LR-aided K-best detectors may facilitate large-scale MIMO
detection with large candidate sizes K. For example, the
LR-aided K-best with K=4000 may achieve around 3 dB gap
to the bound for 50x50 MIMO systems with 1024-QAM at
bit-error rate (BER) being 107>, With large number of K, the
improved L.R-aided K-best algorithm described herein may
achieve near-optimal performance for large MIMO systems.

The complex [LR-aided K-best detector may have lower
latency than the real [LR-aided K-best detector. Table 6
summarizes the average number of arithmetic operations
(real additions and real multiplications for floating point) for
the real LLL-aided MMSE K-best algorithm and the com-
plex LLL-aided MMSE K-best algorithm described herein.
The preprocessing steps (e.g., LLL and QR decomposition)
do not count toward the table. Table 6 shows that the
complex LLIL-aided MMSE K-best algorithm generally
requires fewer operations than the real one.

TABLE 6

Average number of arithmetic operations of the
real LLL-aided MMSE K-best algorithm and the
complex LLL-aided MMSE K-best algorithm.

K 2 5 10 15

Real LLL-aided
MMSE K-best,

N =10

Complex LLL-aided
MMSE K-best,

N =10

1177.58 3133.31 6531.53 10046.05

1172.08 2996.99 6169.82 9418.01

K 5 25 50 100

Real LLL-aided
MMSE K-best,
N=32

Complex LLL-aided
MMSE K-best,
N=32

2427492 127504.63 260720.92  533222.85

23899.55 123125.56 249291.34  504265.87

2.4 Hardware Implementation

The hardware implementation of the disclosed technology
may enjoy low complexity by taking account of the parallel
hardware computation on the on-demand child expansion
and the priority queue. In some embodiments, the complex
LR-aided K-best detectors described herein may be easier to
implement in hardware with potential lower latency and
lower resources compared to their real counterparts.

In one embodiment, the large-scale MIMO systems may
include at least 16 antennas at the transmitter and receiver,
and use Xilinx VC707 FPGA evaluation board as target
hardware platform for quick prototype. As the number of
antennas goes large, the detector may consume more
resources and yields longer latency, while the FPGA board
has limited resources (e.g., registers and multipliers) and
generally lower achievable frequency compared to ASIC.

To reduce the latency and resources, the pipeline stages of
LR-aided K-best detector may be decreased by using the
complex [LR-aided K-best instead of the real one. The
complex LR-aided K-best may have N, layers compared to
2N, layers of the real one. As a result, the complex LR-aided
K-best may potentially require fewer number of pipeline
stages and thus less resources and lower latency.

In one aspect of the disclosed technology, the complex
LR-aided K-best may be implemented on Xilinx FPGA for
large-scale MIMO detection. To take into account of limited
hardware resources offered by FPGA, a hardware-optimized
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complex [R-aided K-best detector may be proposed for
relatively small K. The FPGA realization may support 3
Ghps MIMO transmission for 16x16 MIMO systems with
1024-QAM with about 2.7 dB gap to the MLD at hit-error
rate (BER)=10"%.

In some aspects of the disclosed technology, the greater
value K is, the better performance is at the price of higher
complexity. To decide the value of K with a good perfor-
mance complexity tradeoff, the performance of the complex
LLL-aided MMSE K-best detector for a 16x16 MIMO
system with 1024-QAM may be conducted with respect to
different values of K chosen from {1, . .. ,10}. It is observed
that as K increases, the performance gain decelerates, and
the gain of K=10 compared to K=6 is about 0.5 dB at
BER=10"*, while the gain of K=6 over K=2 is more than 1.5
dB. As a result, K=6 may be chosen for implementation
purposes.

FIG. 5 illustrates a system diagram of the hardware
implementation of the MIMO symbol detector 110. Besides
y° and R the implementation may require the input of
{1/R, 7}, that is assumed to be pre-computed before
LR-aided K-best. As shown in FIG. 5, the MIMO symbol
detector 110 may include a last layer (LL) module, a
pre-expansion (PE) module, and an on-demand expansion
and selection (OES) module. For K=6, the last layer (LL)
module may generate the best 6 children of the N th layer.
The LL module may accept new input V%, Ry, and
1/Ry, »;" for every 6 cycles. The LL module may output the
best child of the layer in 3 cycles and the rest 5 children in
total 8 cycles.

The PE module may generate the best 6 children of one
parent of a specific layer. The PE module may be fully
pipelined such that it accepts one parent in one cycle and
outputs the children of one parent in 6 cycles.

The OES module may choose the best 6 children of a
specific layer. The OES module may accept new input for
every 6 cycles, and may output the best child of the layer in
6 cycles and the rest 5 best children of the layer in total 11
cycles.

According to the embodiment illustrated in FIG. 5, the
overall latency of the design may be 8+15x(6+6)=188
cycles.

The proposed design may be modeled using Verilog, and
the fixed-point (FP) settings for some key parameters are
listed in Table 7 (the FP setting is denoted as [a, b], where
a is the number of integer bits including one sign bit if
applicable, and b is the number of fractional bits). As shown
in Table 7, although the conventional K-best detectors may
require 5 bits to represent the real or imaginary part of a
1024-QAM symbol (with proper scaling and shifting), the
LR-aided K-best detector according to the disclosed tech-
nology may utilize 10 bits, which is twice boarder.

TABLE 7
Fixed-point settings of the FPGA implementation.
Variable ye RE 1/R; ¢ had cost
FP setting [1,10] [410]  [4,10]  [l0,0]  [5,10]
The design may be synthesized using Xilinx XST, and

may be placed and routed by Xilinx PAR. The used
resources, maximum achievable frequency after place and
route, latency, and throughput of the proposed [LR-aided
K-best implementation are summarized in Table 8. The
design may occupy about 22043/75900=29% slices and
702/2800=~25% multipliers of XC7VX485T-2FFG1761
FPGA device. The design may be easily extended for larger
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MIMO systems. For 1024-QAM, the maximum throughput
for 16x16 MIMO systems may be f,,, xlog,(1024)xN /K~3
Gbps.

TABLE 8

Implementation results of the LR-aided K-
best detector for 16 x 16 MIMO systems.

Design 16 x 16 MIMO
Slices 22043
Multipliers (DS P48Eis) 702
Maximum frequency, f,,. 120.351 MHz
Latency 1.562 ps
Max. throughput (64-QAM) 1925 Mbps
Max. throughput (256-QAM) 2567 Mbps
Max. throughput (1024-QAM) 3209 Mbps

2.5 LR-Aided K-Best Detectors with Late Expansion
Strategy

In some aspects of the disclosed technology, the LR-aided
K-best detector may be implemented with a late expansion
strategy. Table 9 illustrates an example Find_Kbest_Chil-
dren_Iate( ) subroutine for a real LR-aided K-best detector
using a late expansion. Compared to the subroutine in Table
3 without the late expansion strategy, this embodiment may
postpone the next best child expansion to the next k+1 loop.
This late expansion may be in the favor of hardware imple-
mentation, since the operations of finding the kth best child
and the late expansion may be executed in parallel.

TABLE 9
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The late expansion strategy may not be used when len=1,
as no valid children is available for the next SE expansion

when len=1.

The late expansion strategy may not guarantee to find the
K best children corresponding to the K parents in each layer.
However, the late expansion may guarantee to find |K/2|

best children corresponding to the K parents in each layer.

The LR-aided K-best detector with late expansion (e.g.,
Find_Kbest_Children_Late( ) in Table 9) may statistically
result in degraded performance compared to that without
late expansion (e.g., Find_Kbest_Children( ) in Table 3).
However, as shown later, the performance loss may be

negligible when K is moderately large.

Depending on the hardware requirements, part of the
operations in the late expansion may be moved to the current
child expansion. An example of such variant is presented in
Table 10. The performance of such variants may be the same
as that in Table 9.

Find_ Kbest_ Children_ Late( ) subroutine for the LR-aided K-best

algorithm with on-demand expansion and the late expansion strategy.

Input: len partial candidates of the (n + 1) st layer {z,®*V },_,’" with their costs
{COStk(r”l) }k:llen

Output: K partial candidates of the nth layer {7, },_,% with their costs {cost,®™ },_|%¥

Line no.  Description
[¢8)] Fori=1to len
@ =¥, 2[:n+lNRn,lZi,l(n+l)
(3) Z;= [ri /Rn,n J
4 child; = [z, , (z V)77 Expand the best child for each parent
Q) childeost; = cost,"™ D +(r; - R,,J,Zl-)2
©) step, = sgn(r; /R, , - 2;)
7 End for
(8) Fork=1to K
©) Find the minimum childcost; in {childcost,},_,’"
(10) 7% = child, Find the kth child
(11) cost,™ = childcost;
(12) If k= 1 then
(13) Zprev_i = Zprev_i T St€Pprey_i
(14) Childy ey = [Zyres_iZprew_ ) 717 ]
(15) childcost,,., ;= costprwii("”) + (e = Late expand the next best child
RonZprev_s) 2
(16) SIED o 1 = ~SIED prer s = SNE(SIED e, ;)
(17) End if
(18) childcost; = w
(19) prev_i=1
(20) End for
D Output {2, i % {costy™ 1o/ ®
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TABLE 10

A variant of Find_ Kbest_ Children_ Late( ) subroutine for the LR-aided
K-best algorithm with on-demand expansion and the late expansion strategy.

Input: len partial candidates of the (n + 1) st layer {z,%*? },_ %" with their costs {cost,?+D },_*"
Output: K partial candidates of the nth layer {7, },_,% with their costs {cost,® },_|%¥

Line no. Description

Fori=1to len
= yn -2 +1NRn,lZ i,l(n+l)
z;=[1;,/R,,,
child, = [z, , (z "7 17
childeost; = cost, ™D + (r, - R,,y,,zl-)2
step, = sgn(t; /R, ,, - Z;)

End for

Fork=1to K
Find the minimum childcost; in {childcost,}, ,""
7, = child,
cost, ™ = childcost;
z; = Z; + step;

M
@
©)
S
®)
(6)

Expand the best child for each parent

} Find the kth best child

Partially expand the next best child

step, = —step; — sng(step;)

(14) If k = 1 then }

(15) hilden s = [prenis (Zpren ") T17]

(16) childcost,,,,_; Late expand the next best child
= COStprevii(rH’l) + prev_i = RanZprew o) 2

(17) End if

(18) childcost; = w

(19) prev_i=1

(20) End for

Output {7, }, % {cost,® };,_*

2.6 Performance Comparison with/without Late Expan-
sion

The late expansion strategy for LR-aided K-best detectors
may relieve the critical path issue of existing K-best detec-
tors. As such, the late expansion strategy may yield higher
maximum frequency and higher throughput.

FIG. 6 displays the performance comparisons of the
MLD, the LR-aided K-best without and with the late expan-
sion strategy with 4x4 MIMO systems, 256-QAM, and K=3.
The LR-aided K-best algorithm may adopt LLL algorithm
and minimum mean square error (MMSE). The entries of H
may be modeled as independent and identically distributed
complex Gaussian variables with zero mean and unit vari-
ance. As illustrated in FIG. 6, with K=3, LR-aided K-best
algorithms without and with the late expansion strategy may
yield almost the same error performance as MLD.

FIG. 7 demonstrates the performance comparisons of the
MLD, LR-aided K-best without and with the late expansion
strategy with 8x8 MIMO systems, 256-QAM, and K=3 and
7. When K=3, the LR-aided K-best with the late expansion
strategy may exhibit about 0.5 dB loss relative to that
without the late expansion strategy at BER=10"°, and the
loss compared to MLD may be about 1 dB. When K=7, the
MLD, and the LR-aided K-best without and with the late
expansion strategy may exhibit almost the same error per-
formance

FIG. 8 is a flow diagram 800 of an example method in
accordance with an exemplary embodiment of the disclosed
technology. In block 802, the method 800 may receive, by
a plurality of antennas, a plurality of wireless signals. Each
of the plurality of the wireless signals may comprise a
symbol. In block 804, the method 800 may convert the
received plurality of wireless signals to corresponding input
signals. In block 806, the method 800 may include conduct-
ing, by a processor, a search of a plurality of layers of
candidate symbols in the input signals based on a lattice-
reduction (LR)-aided K-best algorithm. In block 810, the
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method 800 may identify K best candidate symbols for each
layer via a priority queue. In block 812, the method 800 may
update the priority queue based on an expansion of at least
one candidate symbol. In block 814, the method 800 may
output at least one symbol.

In an example implementation, a value K associated with
the K-best candidate symbols may be a predetermined
number. In some examples, the K best candidate symbols
may have minimum costs. In one example implementation,
each layer may include at least one parent node representing
a candidate symbol. In an example implementation, at least
one parent node may include a child node. The child node
may represent a candidate symbol. In one example imple-
mentation, the processor may perform an expansion on a
best child node for each parent node. The best child node
may have a minimum cost among all child nodes of the same
parent node. In an example implementation, the processor
may identify a kth best child node. The processor may
expand a next best child node. In one example implemen-
tation, the processor may postpone the expansion of the next
best child node.

In an example implementation, the expansion may be an
on-demand expansion. In one example implementation, the
expansion may be a Schnorr-Euchner (SE) expansion.

In an example implementation, the processor may imple-
ment the LR-aided K-best algorithm in a real domain. In one
example implementation, the processor may implement the
LR-aided K-best algorithm in a complex domain. In some
examples, the LR-aided K-best algorithm may have a com-
plexity of O(NK+K log,(K)), where N represents the num-
ber of antennas.

In an example implementation, the processor may per-
form a 2-dimensional SE expansion to identify the K best
candidate symbols. In one example implementation, the
2-dimensional SE expansion may include a real SE expan-
sion and an imaginary SE expansion. In another example
implementation, the processor may perform a two-stage
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one-dimensional (1D) SE expansion. In one example imple-
mentation, the two-stage 1D SE expansion may include a
first stage expansion on real parts of all child nodes of a
layer, and a second stage expansion on imaginary parts of all
child nodes obtained from the first stage.

Certain example implementations of the disclosed tech-
nology may provide a technical effect of reducing complex-
ity and latency, and increasing throughput and performance
associated with detectors in MIMO systems, such as large-
scale MIMO systems. Further, technical effects provided by
certain implementations of the disclosed technology may
include a near-optimal error performance for MIMO sys-
tems with large constellation sizes. Still further, some imple-
mentations of the disclosed technology may provide tech-
nical effects of reducing implementation resources, such as
reducing the number of pipeline stages, associated with
detectors in MIMO systems.

It is to be understood that the embodiments and claims
disclosed herein are not limited in their application to the
details of construction and arrangement of the components
set forth in the description and illustrated in the drawings.
Rather, the description and the drawings provide examples
of the embodiments envisioned. The embodiments and
claims disclosed herein are further capable of other embodi-
ments and of being practiced and carried out in various
ways. Also, it is to be understood that the phraseology and
terminology employed herein are for the purposes of
description and should not be regarded as limiting the
claims. For instance, the term “exemplary” used herein does
not mean best mode, but rather, example.

Accordingly, those skilled in the art will appreciate that
the conception upon which the application and claims are
based may be readily utilized as a basis for the design of
other structures, methods, and systems for carrying out the
several purposes of the embodiments and claims disclosed in
this application. It is important, therefore, that the claims be
regarded as including such equivalent constructions.

Furthermore, the purpose of the foregoing Abstract is to
enable the public generally, and especially including the
practitioners in the art who are not familiar with patent and
legal terms or phraseology, to determine quickly from a
cursory inspection the nature and essence of the technical
disclosure of the application. The Abstract is neither
intended to define the claims of the application, nor is it
intended to be limiting to the scope of the claims in any way.

The invention claimed is:

1. A multiple-input multiple-output communication sys-
tem, comprising:

a plurality of antennas configured to receive a plurality of

wireless signals; and

a symbol detector configured to:

convert the received wireless signals to input signals;
and
implement a lattice-reduction (LR)-aided K-best algo-
rithm in a complex domain to detect a symbol in the
input signals by:
conducting a search of a plurality of layers of can-
didate symbols, wherein each layer includes at
least one node representing a candidate symbol,
wherein at least one node is a parent node that
includes a child node;
performing a 2-dimensional Schnorr-Enchner (SE)
expansion to identify K-best candidate symbols
for each of the plurality of layers, including:
classifying all child nodes into a first category and
a second category, wherein each child node in
the first category has a real part identical to a
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real part of a best child node of the same parent
node, wherein the best child node has a mini-
mum cost among all child nodes of the same
parent node, wherein each child node in the
second category has a real part different from
the real part of the best child node of the same
parent node;
performing the SE expansion in a real dimension
and an imaginary dimension on child nodes in
the first category;
performing the SE expansion in the imaginary
dimension on child nodes in the second cat-
egory;
implementing a priority queue to store the K-best
candidate symbols for each of the plurality of
layers; and
updating the priority queue based on the 2-dimen-
sional expansion.

2. The system of claim 1, wherein a value K associated
with the K-best candidate symbols is a predetermined num-
ber.

3. The system of claim 1, wherein the K best candidate
symbols have minimum costs.

4. The system of claim 1, wherein the symbol detector is
further configured to perform an expansion on the best child
node for each parent node, and wherein the symbol detector
is further configured to identify a kth best child node and
expand a next best child node.

5. The system of claim 4, wherein the symbol detector is
further configured to postpone the expansion of the next best
child node.

6. A method for symbol detection in a multiple-input
multiple-output communication system, comprising:

receiving, by a plurality of antennas, a plurality of wire-

less signals, each of the plurality of the wireless signals
comprising a symbol;

converting the received plurality of wireless signals to

corresponding input signals;

conducting, by a processor, a search of a plurality of

layers of candidate symbols in the input signals based
on a lattice-reduction (LR)-aided K-best algorithm in a
complex domain, wherein each layer includes at least
one node representing a candidate symbol, wherein at
least one node is a parent node that includes a child
node;

identifying K-best candidate symbols for each layer by

performing a 2-dimensional Schnorr-Euchner (SE)

expansion, including:

classifying all child nodes into a first category and a
second category, wherein each child node in the first
category has a real part identical to a real part of a
best child node of the same parent node, wherein the
best child node has a minimum cost among all child
nodes of the same parent node, wherein each child
node in the second category has a real part different
from the real part of the best child node of the same
parent node;

performing the SE expansion in a real dimension and
an imaginary dimension on child nodes in the first
category,

performing the SE expansion in the imaginary dimen-
sion on child nodes in the second catergory;

implementing a priority queue to store the K-best candi-

date symbols for each layer; and

updating the priority queue based on the 2-dimensional

SE expansion; and
outputting at least one symbol.
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7. The method of claim 6, wherein a value K associated
with the K-best candidate symbols is a predetermined num-
ber.

8. The method of claim 6, wherein the K best candidate
symbols have minimum costs. 5
9. The method of claim 6, wherein the processor performs
an expansion on the best child node for each parent node,
and wherein the processor identifies a kth best child node

and expands a next best child node.

10. The method of claim 9, wherein the processor post- 10
pones the expansion of the next best child node.
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