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Executive Summary

In this report we summarize the research and educational results developed under NASA Grant
number NNX08AB94A. The period of performance for this research award was from November
2007 to November 2011, including a one-year NCE.

The overall objective of this research was to support the NASA activities for a “resilient’ aircraft in
case of an on-board failure. Of particular interest to this research was the problem of on-board safe
and reliable trajectory landing generation. The generated trajectories could be given as suggested
options to the pilot (in the most common case) or could be executed autonomously by the next
generation of on-board flight management system.

Given the previous overall objective, this research has focused on three areas: (a) first, the de-
velopment of a cockpit aid system to assist pilots with the tasks of selecting a convenient landing
site and developing a safe path to land at this site in the event of an onboard emergency. The
results of this research suggest that a particular implementation of the pilot aid that uses a simple
dial to sort the most promising landing sites was effective. A survey among professional pilots
was also conducted to determine the key issues the pilots have to deal when developing a plan
to land the aircraft safely during an emergency; (b) second, the development of multi-resolution
path planning strategies to generate obstacle-free paths in case of obstacles (mountains, inclement
weather, etc). The proposed scheme guarantees the satisfaction of the vehicle’s kinematic and
dynamic constraints and focuses the limited computational resources on the part of the trajectory
that matters most, namely, in the vicinity of the aircraft’s current location. The methodology
captures long-term, strategic planning along with sort-term, tactical execution by the pilot; and
(c) third, the development of robust, numerically efficient methods to solve on-board time-optimal
and fuel-optimal trajectories with execution guarantees. To achieve this we propose a new method
to generate time-optimal paramerizations along a given path, which bypasses the solution of the
complete time-optimal control problem. The same methodology can be used to generate good
initial guesses. A good initial guess can help the solution converge much faster. We applied the
proposed scheme to two actual cases of aircraft incidents, namely, the US Airways flight 1549 case
and the Swissair flight 111.

As a result of the support from this award, 1 student received his M.S. degree and three students
received their Ph.D. degrees. Nine (9) archival journal publications and 17 conference papers
document the results of this work.
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Chapter 1

Introduction and Literature Overview

1.1 Motivation

According to statistical data of civil aviation (including commercial airline and general aviation)
in the United States in the year 2008, an average of 92 touch-downs happened in each minute
nationwide, which summed up to more than 48 million touch-downs throughout the whole year [3].
Considering the large number of landing operations and the low fuel efficiency in the current “stair
case” descend phase, the implementation of optimal landing trajectories is expected to substantially
improve the operational efficiency and the greenhouse gas footprint of current aviation systems.
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Figure 1.1: Statistical summary of commercial jet airplane accidents.

In addition to the obvious economic and environmental benefits, another strong motivation for flying
optimized aircraft trajectories is the potential for safety record improvement in case of emergency
landing. Figure 1.1 shows the distribution of fatal accidents and onboard fatalities worldwide
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according to the phase of flight from 2000 to 2009 [10] (the exposure as the percentage of flight
time for different phases is estimated for an 1.5 hour flight). As shown in the figure, about 38%
of onboard fatalities happen during the approach and landing phases, which is a considerable
portion, especially considering the relatively short time span spent in those phases. Furthermore,
when an accident happens during other flight phases such as during climb or cruise, an emergency
landing procedure should also be initiated shortly as long as the aircraft does not completely lose its
maneuverability. Therefore, effective automation aids for emergency landing process optimization
can provide valuable help such that the pilot can provide fast and proper response to accidents in
all flight phases.

Reference [10] records a total of 89 fatal accidents between 2000 and 2009, with 58% of those
accidents categorized as loss-of-control in flight (including the engine thrust), controlled flight
into terrain, runway excursion, undershoot and overshoot, etc, which are related to inadequate or
inappropriate control inputs to the aircraft. Some of these accidents may not have been fatal should
the pilots had been able to quickly plan and execute a safe landing trajectory by implementing
appropriate control inputs.

One of the fatal accidents that could possibly have been remedied by pursuing a timely generated
optimal landing trajectory is the case of Swissair flight 111, which was on a scheduled flight from
JFK, New York City to Geneva, Switzerland on September 2, 1998, and crashed en route near
Halifax after an infight fire accident. The pilots were not able to plan and execute a proper landing
trajectory during the very short time window in which the initiation of an emergency descent could
possibly have saved the aircraft.

A recent inspiring success story of an emergency landing is the US Airways 1549’s crash-landing into
Hudson River, on January 15, 2009. The Airbus A320 aircraft lost thrust in both engines during
its climbing phase after encountering and striking a flock of birds. The captain, who happened to
be an experienced glider pilot, successfully landed the aircraft on the Hudson river without a single
casualty.

As demonstrated by these incidents, the emergency landing scenario requires (but is not limited
to) the evaluation of the aircraft performance, the selection of a landing site, the fast construction
of a feasible (at least close to) optimal landing trajectory, and the execution of such a trajectory.
These tasks require intensive computations, comparison, and evaluation of various alternative plans,
and must be accomplished within a very limited time. Such tasks can be processed effectively by
automation tools with efficient and robust trajectory optimization algorithms.

This report focuses on the problem of efficient and robust aircraft landing trajectory planning hav-
ing as the motivation of future onboard avionics implementation for more efficient flight and safer
landing (especially during emergencies). This work fits into NASA’s resilient aircraft emergency
planning architecture with integrated trajectory planning, as shown in Fig. 1.2, and aims to func-
tion as a core component in the Intelligent Flight Planning and Guidance module in the Flight
Management System (FMS).

1.2 Problem Statement

In this section we will state the problems addressed in this research. Before proceeding, it is conve-
nient to distinguish between the words curve/path and trajectory, which are used throughout this
thesis. A curve/path is a purely geometrical concept and consists of a one-dimensional continuum
of points. A trajectory is a curve/path along which the coordinates are given as functions of the
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time [171].

In this research we consider the movement of an aircraft in a three dimensional geometric space
G ⊆ R3. The set O ⊂ G represents the collection of obstacles. The full state x of the aircraft,
which completely describe the configuration and instantaneous movement of the aircraft, belongs
to a state space, which is denoted by X . Let xG denote the components of x which belong to the
geometric space G.

The time evolution of the state variable x(t) depends on the initial condition x(t0) = x0 ∈ X at
the start time t0 ∈ R, and is affected by the control input u ∈ U , as described by a set of ordinary
differential equations as follows

ẋ(t) = f(x(t), u(t)), (1.1)

where t ∈ [t0, tf ] ⊆ R, U is the set of admissible controls, and f is a sufficiently smooth vector-valued
function, such that there is a unique solution to the previous set of differential equations.

In is often required that the state x and control u must satisfy certain constraints representing the
flight envelop of the aircraft, such as load factor constraint, speed constraint, etc. These constraints
are typically enforced as algebraic, and pointwise-in-time constraints, in the form

C(x(t), u(t)) ≤ 0, t ∈ [t0, tf ]

where C is a real vector-valued function and the inequality is enforced component-wise.

Problem 1.1 (Feasible Trajectory Generation). Given the initial and final conditions x0, xf ∈ X ,
the initial time t0 ∈ R, determine the final time tf , the control input u(t) ∈ U and the corresponding
state history x(t) for t ∈ [t0, tf ] such that

1. x(t0) = x0 and x(tf ) = xf , and

2. for all t ∈ [t0, tf ],

ẋ(t) = f(x(t), u(t)), (1.2)

C(x(t), u(t)) ≤ 0, (1.3)

xG(t) ∈ G \ O. (1.4)
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Sometimes it is desirable that the generated trajectory is not only feasible, but also has good
performance, which can be measured by a certain functional of the state and control variables,
denoted by

J(x, u) =

∫ tf

t0

L(x(t), u(t)) dt. (1.5)

Hence, we have the following trajectory optimization problem:

Problem 1.2 (Trajectory Optimization). Given the initial and final conditions x0, xf ∈ X , initial
time t0 ∈ R, determine the final time tf , the control input u(t) ∈ U and the corresponding state
history x(t) for t ∈ [t0, tf ] which minimize the cost function J(x(·), u(·)) and satisfy

1. x(t0) = x0 and x(tf ) = xf , and

2. For any t ∈ [t0, tf ],

ẋ(t) = f(x(t), u(t)),

C(x(t), u(t)) ≤ 0,

xG(t) ∈ G \ O.

Solving Problem 1.2 is not an easy task. More often than not, the required amout of computations
prohibit any attempt to solve Problem 1.2 in real-time. Thus, for real-time applications it may
be more practical to accept a reasonably suboptimal trajectory. For many physical systems, the
task of trajectory generation and optimization can be decomposed into two layers: the geometric
layer, and the dynamics layer. It is possible to find a suboptimal solution to Problem 1.2 by
solving Problem 1.1 on the geometric layer and the dynamics layer separately with certain (possibly
heuristic) consideration of optimality on each layer. The planning result on each individual layer
can help improve the performance of the final trajectory. Such an approach can be classified as
hierarchical motion planning, which will be briefly discussed in the next section. Here we define two
optimization problems which can be applied to suboptimal trajectory generation using a hierarchical
approach.

For many non-holonomic systems such as car and aircraft, the path geometry has critical influence
on the feasibility and performance of path tracking. For example, a discontinuity in the derivative
of the path may correspond to a sudden change of the speed vector, which would render the path
infeasible (no admissible control inputs exist for following such a path exactly). Besides, for two
paths with the same length, and the same initial and final positions, better tracking performance
can usually be achieved with the smoother path [60, 193]. One way of improving the smoothness
of a path is to solve the following variational problem, which regulates the curvature of the path:

Problem 1.3 (Path Smoothing). Let r(s) ∈ G \ O be a collision-free path parameterized by its
path length s ∈ [s0, sf ] ⊂ R. Consider a variation δr of r, and denote the new perturbed path by r̃.
Let κ̃(s) be the curvature of the perturbed path r̃ at s. Let w : [s0, sf ] 7→ R+ be a weight function.
Find the variation δr such that

1. (Collision Avoidance) The perturbed path r̃(s) = r(s) + δr(s) ⊂ G \ O, for any s ∈ [s0, sf ],

2. (Boundary Conditions) r̃(s0) = r(s0), r̃(sf ) = r(sf ),
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3. (Local Curvature Constraint) κmin(s) ≤ κ̃ ≤ κmax(s), where κmin(s) and κmax(s) are specified
bounds on curvature at s, and

4. The following integral is minimized

∫ sf

s0

w(s)κ̃2(s)ds (1.6)

Problem 1.3 is a purely geometric problem. The dynamics of the system is not addressed in the
process of solving Problem 1.3, although it is expected that the minimization of (1.6) will result in
a reasonably good tracking performance, measured by (1.5).

The following optimization problem is on the dynamics layer with fixed path geometry:

Problem 1.4 (Optimal Time Parameterization/Tracking of a Geometric Path). Given the initial
and final conditions x0, xf ∈ X , initial time t0 ∈ R, let r(s) ∈ G \ O be a geometric path
parameterized by its path length s ∈ [s0, sf ] ⊂ R. Determine the final time tf , the control input
u(t) and the corresponding state history x(t) for all t ∈ [t0, tf ] that minimize the cost function
J(x, u) and satisfy

1. (Boundary Conditions) x(t0) = x0 and x(tf ) = xf , and

2. (Dynamics and Path Constraints) for any t ∈ [t0, tf ],

ẋ(t) = f(x(t), u(t)),

C(x(t), u(t)) ≤ 0,

3. (Path Tracking) There exists a strictly monotone mapping ν : [s0, sf ] 7→ [t0, tf ] with ν(s0) = t0
and ν(sf ) = tf such that xG(ν(s)) = r(s), s ∈ [s0, sf ].

Problem 1.2 can be addressed either as an optimal control problem, or a motion planning prob-
lem. Roughly speaking, motion planning methods can easily deal with complex geometric con-
straints, such as obstacles, but their capability for dealing with vehicle dynamics is less developed,
as compared to the optimal control approach. Other techniques such as differential flatness and
hybrid/hieararchical methods can also be applied to trajectory generation and optimization.

1.2.1 The Hierarchical Approach: Path Smoothing and Optimal Path Tracking

Because solving Problem 1.2 directly is usually too difficult or computationally intractable, espe-
cially for real-time applications, a hierarchical approach is sometimes adopted to find a feasible
solution to Problem 1.1, which is close to the optimal solution of Problem 1.2 [155, 27, 34]. Hierar-
chical motion planning methods are sometimes called hybrid methods in the literature [76, 77, 141].

A typical hierarchical motion planning process decomposes the task of motion planning into sub-
problems on several levels [27]. In the first level, the environment is analyzed and represented
usually in the form of a graph. The requirement of collision avoidance can be accomplished by
properly determining the connectedness of different vertices in the graph that represents the envi-
ronment. In the second level, a path is chosen from the graph which connects the desired start and
end points. Usually, certain criteria are used for choosing such a path, such as shortest distance.
In the last level, a trajectory is generated based on the path in the previous level, and is used as
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a reference trajectory for the vehicle/robot’s tracking controller such that the trajectory can be
actually executed. More abstract layers such as the strategic layer or the tactical layer may also
be used on top of these three levels to introduce certain degree of “intelligence” into the motion
planner and facilitate the planning process [76].

Reference [141] contains an example of a hierarchical motion planning algorithm. This work presents
a synergistic combination of layers of planning (SyCLoP) such that a discrete searching process is
performed on a high level while a sampling-based motion planning routine runs on the lower level.
The higher level discrete search provides important strategic guidelines for the sampling-based
motion planning algorithm, which also provides feedback to the discrete search in return.

The path smoothing method and optimal time parameterization method proposed in this thesis
may work together in a hierarchical manner to produce feasible trajectories efficiently with accept-
able optimality. Specifically, the path smoothing method works on the geometric layer, and the
optimal time parameterization method, or, equivalently, the optimal path tracking method, ensures
feasibility and exploits the optimality on the dynamics layer.

Path Smoothing

A discontinuity in the curvature profile of the path to be followed implies an instantaneous change
of the steering wheel angle for a car-like vehicle or the bank angle/angle of attack for a fixed-wing
aircraft, both of which require (theoretically) infinite control force. Therefore, the curvature of the
path should be at least continuous for most practical applications. For this reason clothoid arcs have
been used for continuous-curvature path planning based on the Dubins’ path prototype [150, 74, 20].
Reference [140] used analytical splines and heuristics for smooth path generation. Reference [186]
proposed a path planning algorithm which generates a smooth path by smoothing out the corners
of a linear path prototype using Bézier curves based on analytic expressions. Although all these
methods can generate paths with continuous curvature, obstacle avoidance is not guaranteed by
these methods per se, and can only be done in an ad hoc manner.

One approach for smooth path planning in the presence of obstacles is to use a “channel” or
“corridor,” which is selected a priori, such that it does not intrude any of the obstacles. A smooth
path is then found within the channel such that it is collision-free. For instance, Ref. [19] introduced
a method for generating curvature-bounded paths in rectangular channels; reference [29] proposed
a method for constructing bounded curvature paths traversing a constant width region in the plane,
called corridors, and Ref. [103] introduced a method for generating smooth two-dimensional paths
within two-dimensional bounding envelops using B-spline curves. A nonlinear optimization scheme
is used to design collision-free and curvature-continuous paths in [121]. Because the channels are
fixed, the results of these algorithms are limited by the collision-free channels which are chosen
conservatively before the planning.

In this thesis, the path smoothing problem is formulated as Problem 1.3. The smoothness of the
path is improved by minimizing the weighted L2 norm of the path’s curvature. It will be shown
later in the thesis that a smoothed path may provide better tracking performance, such as tracking
time, compared the original path.

Optimal Path Tracking

As one of the major problems considered in this research, Problem 1.4 seeks an optimal solution
for tracking a prescribed geometric path subject to dynamics, state, and control constraints. Prob-
lem 1.4 shares the same cost function as the trajectory optimization problem, hence provides a
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tracking scheme with the best tracking performance for the given path geometry.

The optimal path tracking problem has been studied extensively in the literature. The minimum-
time robotic manipulator and car path tracking problems are studied in [35, 160, 139, 158, 156, 176]
for shortest travel time along the path subject to control and state constraints. The optimal
solutions to these problems can help improve plant productivity [35, 160, 139, 158, 156], racing car
performance [176], or faster aircraft landing as will be shown later in this report. These solutions
correspond to the point-wise maximization of the speed along the path without any singular arcs1.

When the tracking time is not of prime concern, it is often desirable to minimize the energy/fuel
consumption of the system. Along this direction, the minimum work train operation problem has
been studied [11, 88, 110, 82]. Unlike minimum-time problems, the minimum-work solutions usually
contain singular arcs. When the travel time is free, the singular arc can be determined analytically.
In the more practical case of fixed travel time for scheduled operations [11, 88, 110, 82], the singular
arc cannot be determined directly, and an iterative numerical procedure must be used to choose the
appropriate singular arc with which the desired travel time and boundary conditions can be satisfied.
Because the cost function for the minimum-work problem is not strictly convex, the optimal control
approach as in [11, 88, 110, 82] can provide more reliable and accurate information about the
singular arcs in the optimal solution than the numerical optimization approach as in [44, 32, 78, 177].

It is noted that, although originated from different physical systems, the path tracking methods as
in Refs. [11, 88, 110, 82, 35, 160, 139, 158, 156, 157, 176] involve the same key steps by which a scalar
functional optimization problem is solved. Specifically, the point-mass train model has only one
degree of freedom along the rail, hence the corresponding path tracking problem is naturally a speed
optimization problem [11, 88, 110, 82]. Although the robot arm and car dynamics involve more than
one state variables, the time parameterization problems for these systems can also be simplified to
scalar functional optimization problems with state bounds [35, 160, 139, 158, 156, 157, 176].

In this research, we will solve Problem 1.4 with the aircraft dynamics with two different performance
criteria: minimum-time, and minimum-energy with fixed Time Of Arrival (TOA).

1.2.2 Emergency Landing Trajectory Planning

Despite its importance, as discussed at the beginning of the introduction, not too much research
has been done on the optimal landing problem. The abort landing problem in the presence of
windshear has been studied in [40, 41]. The same problem is also studied in [128]. Note that
in the physical space, the trajectory is occasionally represented as a four-dimensional flight path,
following the tradition of air traffic control [47], with time as the fourth dimension in addition to
the normally used three-dimensional representation of a path.

Reference [169] considers the generation of feasible trajectories using segments of trajectories cor-
responding to selected trim condition maneuvers (an equilibrium condition for the aircraft with
constant speed, angle of attach, side slip angle, and angular velocity). A heuristic method is used
to select a limited number of trim points covering a wide spectrum of flight conditions. The final
landing trajectory is generated by searching and connecting the trim state trajectory segments
such that the final position of the aircraft is close enough to the desired landing site. Note that the
final trajectory as given by Ref. [169] may not be feasible at the junction points between different
trajectory segments. A similar approach is used in Ref. [172] to study the emergency flight path

1The “singular arcs” in [156] actually refer to segments of speed profile with active speed constraints, which are
different from the term’s traditional meaning used in optimal control.
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planning problem for aircraft with left wing damage. LQR control has been used to generate the
trajectory transiting the aircraft from one trim state to the other, hence, the generated trajectory
is indeed feasible as long as the control constraints are not violated. The major problem with
the approach in Ref. [169] is that the search results are limited to those that can be generated
by connecting trim state trajectory segments with stable transitions. Because the unstable flight
conditions are not considered in the search, the algorithm cannot identify any feasible trajectory
containing unstable flight modes. Furthermore, the path length is used as the search criterion,
which is less appropriate when compared to flight time for emergency landing, or fuel consumption
for normal flight.

One of the common scenarios for emergency landing is the loss of thrust. Such a malfunction
fundamentally changes the dynamics of the aircraft by turning it into a glider. The pilot not only
needs to identify a reachable runway or landing site which meets the basic landing requirements for
the specific type of aircraft, but he/she also needs to accurately steer and land the gliding aircraft
to that runway or landing site. In this case, an onboard automation tool that optimizes and display
the landing trajectory with a glider’s dynamics would provide immediate assistance to the pilots’
decision-making process [181].

Reference [13] studied the problem of emergency landing due to the loss-of-thrust using a hybrid
approach. A two-step landing-site selection/trajectory generation process was adopted to generate
safe emergency plans in real time under situations that require landing at an alternate airport. In
the trajectory generation routine, a heuristic path planner was used to generate a three-dimensional
trajectory connecting the current position of the aircraft to the runway, which consists of straight
lines and circular arcs. This method is fast and simple. However, it has to stick to conservative
aircraft maneuvers in order to reduce the chance of obtaining an infeasible trajectory. As a result,
the optimality of the generated trajectory could be unacceptable for emergency landing, and further
research is necessary to reduce such a conservatism.

1.2.3 Other Aircraft Trajectory Optimization Problems

The minimum-time, three-dimensional aircraft trajectory optimization prolem was considered in
[151] by approximating the aircraft dynamics using an energy state to reduce the dimension of
the problem for better convergence. This type of model reduction technique is commonly used for
aircraft trajectory optimization [6]. Not surprisingly, trajectory planning problems have also been
studied in the context of air traffic management (ATM) and automation. Reference [95] performed
a sensitivity analysis of trajectory prediction for ATM. The aircraft trajectory synthesis problem
is studied in [164] to provide some basic tools for air traffic automation.

The aircraft terrain-following (TF) problem is analyzed in [118]. The TF problem is formulated
as an optimal control problem that combines short flight time and path-following objectives. The
analysis in [118] revealed that the optimal thrust profile is bang-bang in most cases. Inverse
dynamics was employed to solve the problem numerically. Reference [119] studied the effect of
nonlinear engine dynamics on the existence of singular arcs for a terrain-following aircraft. The re-
sult suggests that the usual practice of ignoring engine dynamics in aircraft trajectory optimization
work does not lead to incorrect conclusions.

Reference [166] considered the generation of wind-optimal trajectory for cruising aircraft while
avoiding the regions of airspace that facilitate persistent contrails formation. The shooting method
is employed for solving the associated optimal control problem minimizing a weighted summation of
flight time, fuel consumption, and a term penalizing the contrails formation. The aircraft dynamics
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considered in this reference is a simple kinematic model in the horizontal plane. The avoidance
of the penalized region is achieved by tuning the corresponding weight factor in the cost function.
The airspace avoidance problem is also considered in Ref. [96]. In this reference, the avoidance of
restricted airspace is formulated as non-convex constraints in the optimization problem, and it is
claimed that with a feasible starting guess, the efficiency of the optimization algorithm is not too
degraded by the non-convex airspace constraints.
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Chapter 2

A Pilot Aid Flight Management
System for Emergency Landing

This chapter describes the pilot evaluation of an automated path planning aid concept which can
assist pilots with the tasks of selecting a convenient landing site and developing a safe path to
land at this site in the event of an onboard emergency. The results suggest that a particular
implementation of the pilot aid that uses a simple dial to sort the most promising landing sites
was effective. This selectable sorting capability, motivated by the anticipated cognitive mode of
the crew, improved the quality of the selected site for the majority of the cases tested. Although
this approach increased the time required for the selection, it was also shown that it decreased the
time to complete the task in the case of unfamiliar emergencies.

Handling en-route emergencies in modern transport aircraft through an adequate team work of
the pilot crew together with the aircraft’s automation systems is an ongoing and active field of
research. The work presented in this paper highlights the results of a human factors study as
part of a proposed automated planning aid which can assist pilots with the tasks of selecting a
convenient landing site and developing a safe path to land at this site in the event of an onboard
emergency. Focusing on the interactions between the pilot-not-flying and the automated planning
aid, the presented results suggest that a particular implementation of the pilot aid interface, which
uses a simple dial to sort the most promising landing sites, was effective. This selectable sorting
capability, motivated by the anticipated cognitive mode of the pilot crew, improved the quality of
the selected site for the majority of the cases tested. Although the presented approach increased
the average time required for the selection of an alternate landing site, it is also shown that it
decreased the time to complete the task in the case of emergencies unfamiliar to the pilot crew.

2.1 Introduction

Modern air transportation has an excellent flight safety record. When failures do occur in flight,
owing to the training and experience of the pilots almost always results in a safe landing. This is
evidenced by a rate of only 1.35 accidents per one million hours flown in 2007 by US air carriers [132].
Despite this excellent record, the pilots’ responsibility to land safely in case of an emergency can
be very demanding. When an emergency situation occurs during a flight, the pilots’ workload
is very high and a number of tasks demand the pilots’ attention. One of the important tasks
is the planning and execution of a trajectory resulting in a safe landing. However, this task is
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complicated by multiple, often conflicting goals, including reducing time to land, staying within
the flight envelope limits of the airplane, weather issues, as well as meeting any relevant regulatory
requirements. Moreover, all these tasks must be accomplished in a stressful environment, often
under severe time pressure[49].

Although fault tolerant adaptive automation is currently being developed, for the foreseeable fu-
ture of civil transport aviation, pilots will be the ultimate decision makers, especially in cases of
emergencies involving any type of aircraft performance degradation or flight envelope reduction. As
a result, current research is being directed at pilot aids that aim at enhancing the pilot’s Situation
Awareness (SA), as well as at supporting the pilot’s decision making process through the provision
of relevant, situation-related information.

The purpose of this paper is to report on a human factors study related to efforts to develop an
Automated Planning Aid (APA)–in terms of both an acceptable interface and control algorithms–
that could assist pilots in generating a plan to safely land at alternative landing sites. In order
to do so, the pilots must first determine the “best” landing site and then formulate an expedient
and safe trajectory to the ground. This paper presents the results of an evaluation of an APA
interface prototype by means of a human-in-the-loop test with commercial airline pilots, focusing
on the selection of alternate landing sites during an emergency. Although the implemented APA in
the simulator was also able to compute emergency paths to those sites, a detailed description and
discussion of this part of the process is omitted in this paper, as it had no immediate effect on the
APA interface evaluation.

The results of the study are evaluated in comparison to the opinion and judgment of a single
subject matter expert. This expert had more than 20, 000 hours of flight experience in over 20
years of service as a commercial pilot. The authors do acknowledge that this comparison might be
improved by incorporating more experts, more test cases and a larger sample. However, given the
fact that these scenarios were designed in cooperation with that expert to have an unambiguous
“best” solution, it is likely that–given enough time to review each scenario–the vast majority of
trained pilots would come to the same conclusion as to which landing site was the best alternative.
As such, the authors do believe that the utilized metrics, and the comparison with the experts
ranking of the landing sites, is valid for the evaluation of the APA for selecting an alternate landing
site under tight time constraints.

2.2 Background

In an emergency situation, the crew must monitor the aircraft systems, detect and resolve any
failures, control an aircraft with possibly degraded performance, and coordinate with the cabin
crew, airline dispatchers, and air traffic control. In addition to these tasks, the pilots must also
plan and execute a trajectory that will result in the safest landing possible. These tasks are made
even more difficult by the circumstances during an emergency. For example, the pilots may feel
a sense of physical danger, or the cabin environment may be a distraction due to smoke, heat, or
noise. Additionally, aircraft performance may be affected, resulting in degraded handling qualities.
In order to understand some of the difficulties these circumstances present, a number of cognitive
engineering models have been developed in the literature and are reviewed here.
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2.2.1 Cognitive Considerations

During an emergency situation a number of contextual features change and alter the pilot’s cognitive
state. Cognitive Control Theory describes how the context of a situation influences cognition and
behavior which change depending on the amount of control the person has [61]. The degree of
control a person has is determined, in large part, by the amount of subjectively available time
and the familiarity of the situation [84]. Subjectively available time refers to the amount of time
that a person perceives that he or she has available to take action. The amount of time perceived
may depend on the objective amount of available time, the predicted changes in the system, the
person’s level of arousal, as well as other factors. In Cognitive Control Theory the degree of
control is discretized into four control modes: scrambled, opportunistic, tactical, and strategic.
The relationship between the amount of subjectively available time, familiarity of the situation and
the control modes is described in [84]. When both familiarity and available time are low, individuals
are likely to exhibit behavior associated with a scrambled mode. With more time, but still without
familiarity, individuals transition into opportunistic and then into strategic modes; a tactical mode
is only expected at moderate to high levels of familiarity. As familiarity becomes greater and
time remains low, individuals will transition into opportunistic mode and then to tactical mode.
Individuals only transition into the strategic mode when familiarity is low to moderate–otherwise,
they remain in the tactical mode regardless of the time available.

The most dangerous mode for a pilot to exhibit is the scrambled mode, which generally corresponds
to a person in a state of panic. When a pilot is in this mode, he or she is not able to focus even
on a single goal, namely, flying the aircraft. When a pilot has adequate subjectively available time
in an emergency, the cognitive state may be better described by the opportunistic mode. In this
mode the pilot has a greater sense of control. The pilot is more likely to develop a plan or modify
an existing plan in order to fit the current situation. The resulting plan may take into account the
potential effects of candidate actions. This mode corresponds to “normal” performance. During
an emergency situation, a pilot’s cognitive state will likely be somewhere between the scrambled
and tactical modes, described by the opportunistic mode. In this mode, pilots are likely to use any
plans and procedures available that are deemed to be sufficient; however, these may not be used
correctly or most effectively.

The amount of subjectively available time perceived by a pilot may be influenced by a number
of factors. The phase of flight during which an emergency occurs, the state and configuration of
the aircraft, the type of emergency, the number of actions the pilot is required to complete, the
availability of resources, as well as the initial stress level, all contribute to the subjectively available
time. Additional stress may be caused by physical factors, such as smoke in the cabin or loud noises,
or it may be purely psychological, such as the fear of impending danger. These stress factors affect
the manner by which the pilot makes decisions. While the pilot may be able to quickly develop a
plan of action based on experience and intuition, stress can lead him or her to fixate on a single
solution, and fail to compare alternatives [23, 107]. Additionally, the pilot may simply increase
the speed with which he or she processes information, potentially leading to errors. The pilot may
also reduce the amount of information that is sought and processed, known as filtration [125, 123].
These stress-related factors can cause pilots to make poor decisions, despite the fact that they
would be able to make acceptable decisions under normal circumstances. These inferior decisions
may cause incidents to become accidents.

In an emergency situation it is tempting to think that an automated system should be included.
However, stress may also lead the pilot to either ignore or rely too heavily on an automated tool. He
or she may assume that the plan generated by automation is best, without verifying its feasibility
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or exploring other options [129]. In addition, the pilot may seek only information which confirms
the automation-generated solution as the best, while discounting other information (confirmation
bias). Alternatively, rather than simply discount conflicting information, the pilot may attempt
to rationalize and mentally force all available information to fit the automation-generated solution
(assimilation bias) [61]. Therefore, care must be taken when devising support systems intended for
use in stressful situations.

In addition to the stress, the complex nature of the decision making task is also important. The
design presented here is based on a hybrid of the Naturalistic Decision Making (NDM) and Rational,
Analytic (RA) decision models. Taking the best of both worlds may allow the decision maker to
reach the best result. The NDM framework is often used to describe how experts make complex
decisions. Zsambok [194] describes NDM as,

“the way people use their experience to make decisions in field settings.”

While experts are often able to make excellent decisions based on experience and intuition, many
of the aforementioned effects of stress can negatively impact the quality of the decision. The
RA model of decision making describes how a decision maker proceeds through a set of steps
(generating alternatives, envisioning the consequences, evaluating the alternatives against a set of
criteria and choosing the best plan) to reach a decision [100]. While under nominal circumstances,
a rational decision process may be helpful in determining the safest path to land, it may not the
most appropriate model of decision making during an in-flight emergency.

In the NDM/RA hybrid model chosen for the APA, the rational decision process can compensate
for some of the weaknesses of NDM. For instance, the rational decision process generates a number
of alternatives, which alleviates the tendency to fixate on a single solution. By automating the
generation and the evaluation of alternatives, the process can be streamlined. It should be noted
that, as Peter Simpson [162, p. 18] warns,

“a decision aiding system should not become a decision making system, and it should
never simply dictate decision courses to the operator.”

However, by capitalizing on the automation’s fast lookup and simulation abilities, and human
pattern recognition and intuition capabilities, the two decision models may be combined to make
sound decisions more reliably.

2.2.2 Related Work

The APA must do two things: first, it must be able to accurately predict the most appropriate
alternative landing sites, as well as the most suitable trajectory to land at these sites; second, it
must provide an intuitive interface for the pilot crew that is appropriate to the task and anticipated
context as well as the operator’s cognitive state. The completion of the first task requires that the
aid determines the overall feasibility of a trajectory. A feasible trajectory must avoid obstacles,
which may be static, such as a mountain, or dynamic, such as a severe weather system. The
determination of such a trajectory is ideally made by taking into account the aircraft’s possibly
abnormal characteristics, due to the emergency. Also, the trajectory usually must minimize time
to land, which is important in many emergencies. For an appropriate solution to the second
task, the aid must also provide an interface with the pilot through which information is effectively
communicated in both directions. Most research to date has primarily focused on one or the other
of these two tasks.
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The landing site selection task has been suggested as a candidate for automation. Atkins, Portillo
and Strube [12] have developed a method to complete this task. First, the footprint containing all
feasible landing sites is calculated. Then the landing site list within this footprint is prioritized
according to a number of weighted criteria, such as runway length, airport facilities available, etc.
In [12] chose example values for the criteria weights, but acknowledged that the criteria weights
would ultimately be based on expert knowledge and would vary by emergency type.

The need for the pilot and the automated planning aid to interact with each other has also been
investigated. The Emergency Flight Planner (EFP) by Chen and Pritchett [49] has been proposed
as a prototype interface between the pilot and the pilot aid. The EFP allows the pilot to enter a
(flight) plan, the ensuing trajectory is then predicted and evaluated. The EFP also provides an
additional mode in which the pilot is presented with a preloaded trajectory, which can then be
accepted, modified, or deleted. The results of testing with the EFP emphasized that generated
plans must incorporate the structure and objectives used by pilots in order to be effective.

Layton, Smith and McCoy studied human-automation cooperative problem-solving for en route
flight planning in [115]. In that study, pilots and air traffic controllers were both used as subjects
in the evaluation of three possible modes. The first mode was a sketching-only system, in which a
plan devised by the subject was evaluated by the system and feedback was provided. The second
was a sketching system with the additional capability for the user to specify constraints on the
plan and allow the system to propose a solution, which matched those constraints. In the third
mode, the system proposed a plan based on system-specified constraints. The results showed that
in the second and third modes, users explored more possible options; however, they were also biased
toward the system-generated alternative. The same study also highlighted the fact that the use of
a fully automated aid could be detrimental if it performs suboptimally.

The previous results show that in order to increase the usefulness of an APA, the process by which
pilots select an alternative landing location and plan a path to, it needs to be better understood.
In addition, it needs to be better understood how the pilots’ decision making processes can best
be assisted by such a tool. It is expected that an aid that accepts and provides information in a
manner that is most consonant with the pilot’s mental process will be most effective.

2.3 Pilot Aid Tool Design

It should first be noted that pilots are currently not without some form of automated path planning
assistance. The modern Flight Management Systems (FMS), which are used on board most major
transport aircraft, include pages in the Control Display Unit (CDU) to help the pilot with the task
of deciding on a divert landing site. For example, the alternates page ALTN of the Boeing 777 FMS
displays four possible alternates at a time [86]. These may be input from a list that the pilot creates
before the flight, from a database, or can be entered manually. The estimated time of arrival (ETA)
and the predicted amount of remaining fuel are displayed. These four alternates are ordered by the
ETA.

While these pages are helpful, it is entirely possible the best choice will not be on the list. For
instance, the nearest airport list only provides the landing sites at airports at which the aircraft is
able to land normally, without taking into account the severity of the emergency. In the case of
a severe emergency, the pilot may be willing to land at a runway that is not sufficiently long for
a normal landing with normal safety factors. Additionally, in the event of a performance altering
emergency, such as a stuck elevator, the FMS cannot presently account for the post-failure flight
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dynamics of the aircraft. Thus, the plan generated may not be feasible, given the aircraft’s degraded
performance. The pilot may alter the recommended plan by altering the waypoints used; however,
this requires a non-trivial amount of time and work on the part of the pilot. In the case of an
in-flight emergency, both time and cognitive resources may be limited due to the number of other
tasks the pilots must address, which suggests the current FMS solutions could be improved for
highly time-critical emergencies.

In order to address the shortcomings of the present system, a new APA concept has been developed.
The proposed APA is linked to the aircraft’s health performance monitoring and alerting system
and receives information about failures as they occur in the system. This data is then used to
determine the post-failure performance of the aircraft. The updated flight dynamic characteristics
of the airplane, combined with terrain and weather information, are then used to compute suited
(e.g., time- or fuel-optimal) plans to reach a number of potential divert locations.

Each of the paths to the alternate landing sites is permanently displayed graphically on the ND as
well as textually on the CDU. Information about each landing site is collected from precompiled
database information, such as data about airports and terrain, as well as live weather information.
This additional information is made available to the pilot through the CDU. Based on the infor-
mation collected, each site is associated with scores from 0 to 1 for different parameters, with a
higher score representing a better fit. From these subscores, a cumulative score is calculated based
on the system’s weighting of the different parameters.1 The alternates are presented in descending
order of the cumulative score in the CDU.

The APA design evaluated here was based on the results of a survey in conjunction with implications
suggested by the Cognitive Control Theory survey in [182]. This study investigated the pilots’
tasks in the event of an in flight emergency, namely the tasks of choosing a safe landing site, and
developing a safe trajectory to reach that site. This survey provides a useful perspective into the
methods and priorities pilots use to accomplish these tasks. During an airborne emergency, the
need to land quickly is always of high priority. Therefore, the most important factor considered by
the pilots when selecting an alternative landing site is proximity in terms of time. Additionally,
the weather at the airport, the length of the runway and the distance from the current location are
also important criteria. The most important en route factors are the avoidance of severe weather
and hazardous terrain.

One of the most important aspects to be considered in an emergency situation is the high workload,
time-critical, stressful nature of the situation. Accordingly, one significant feature of any proposed
aid is that it should reduce workload, rather than increase it. The aid must provide useful infor-
mation in a coherent manner, without burdening the pilot with requests. Similarly, pilots view the
aid only as a tool, not as a directive. Pilots will use an automatically generated plan in conjunc-
tion with their own experience and intuition. Ultimately, the pilot has the final decision-making
authority.

A successful design must be closely integrated with interfaces that pilots are currently familiar
with. The design of a new tool to be used in the cockpit is a very complex task, as the amount
of information and controls available in a modern cockpit is quite large. Also, the physical area in
which they must be contained is rather limited. All of the systems’ displays and controls must be
contained in a small and coherent cockpit layout. With this in mind, no single part of the entire
APA system should be designed on its own. It does not exist as a standalone entity, but must work
cooperatively with existing systems to allow the pilots to complete all of their responsibilities.

1Although the simulated APA was capable of computing polygonal scores and sub-scores, for the purpose of this
study, the utilized score values were hardcoded, bases on a subject matter expert’s option.
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For these reasons, it was decided that the APA be integrated into the existing FMS, utilizing a CDU
page which is based on the current ALTN page. The alternate routes are continuously displayed on
the existing Navigation Display (ND) per survey respondents’ preferences. Efforts were also made
to ensure that the APA would not adversely contribute to the pilots’ workload, but rather present
relevant information in a coherent manner. With this in mind, it was determined that the most
important function was to help pilots filter information. This was accomplished via the use of a
single dial in a slightly modified Navigation Display Control Panel (NDCP), by allowing the pilot to
quickly indicate the severity of the emergency by limiting the types of alternates to be considered.
Utilizing landing site types as differentiators for the severity of the damage allowed for an intuitive
mapping from the pilots’ situational analysis to a measure of urgency of the emergency.

In order for the ND to display the routes to the alternate destinations, it must have some method for
determining these routes. There are various possible approaches to this research question, among
them, for instance, [97, 105]. In the currently implemented design, the approach taken was to
calculate these alternate routes in real time, starting from a Dubins path [65]. These Dubins paths
serve as initial guesses for a high-fidelity trajectory optimization module whose output can be used
by the pilot to get further information about the selected path, along with the corresponding control
actions, and can be used to drive an autopilot and/or flight director [21]. The overall trajectory
generation step of the APA is shown in Fig. 2.1.

Figure 2.1: Schematic of the overall landing site selection and trajectory optimization process
utilized by the APA. The research presented in this paper primarily focuses on the human-machine-
interface between the APA and the pilot-not-flying, pictorially represented by the large arrows in
the left part of the graphic.

An algorithm for determining appropriate criteria weights based on the type of encountered emer-
gency warrants a study of its own, and is not the focus of the current work. In order to avoid testing
the specific criteria weight design, such as those derived from the prior survey results in [182], scores
were hard-coded for every site in each scenario, following the advice from a single subject matter
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expert. This expert had more than 20, 000 hours of flight experience in over 20 years of service
as a commercial pilot. The expert was provided all information available about each landing site
and, unlike the experiment subjects discussed below, was given an unlimited amount of time to
consider each scenario thoroughly. This expert determined scores served to rank the landing sites;
these were also the cumulative scores presented to pilots as a weighted combination of the criteria
scores and as such presented the expert-determined ranking of the alternate landing sites.

Information from the APA is displayed to the crew through modifications of four displays: Nav-
igation Display, Primary Flight Display (PFD), Navigation Display Control Panel (NDCP), and
Control Display Unit. The APA prototype used during the evaluation was built using the Reconfig-
urable Flight Simulator (RFS) [94]. Each of the display modules used in this simulation is roughly
based on the Boeing 777 type displays.

2.3.1 Interface and Setup Description

The ND is on the right of the screen in front of the participant, see Fig. 2.5(b). The display is
track up, i.e. the pilot’s own aircraft is centered at the bottom of the display and the immediate
trajectory is displayed vertically extending from the pictorial representation of the ownship, with
the current plan shown as a solid magenta line (see ND detail in Fig. 2.2). The graphical display
of the routes to alternate destinations allows the pilot to quickly assess the spatial arrangement of
the available alternative landing sites.

Figure 2.2: Alternate landing sites displayed on the Navigation Display (ND) as dashed, cyan lines.
The proposed overlay is the primary way of the APA to present trajectories to alternate sites to
the pilots. Details for each trajectory and the corresponding landing sites can be accessed via the
CDU, compare Fig. 2.4.

The PFD was located to the left of the ND on the screen in front of the participant, see Fig. 2.5(b).
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The PFD provides information about the current state of the aircraft such as heading, flight speed,
altitude, climb/descent rate, and pitch/roll attitudes. Because the participants were put in the
role of a First Officer as the pilot-not-flying, the PFD was provided only as a reference to allow
each participant to be aware of the corresponding aspects of the situation. This display provided
information which corroborated the emergency that was described, such as loss of altitude as a
result of engine failure.

The modified NDCP is the APA’s primary input interface and includes seven buttons and two
dials, as shown in Fig. 2.3. The buttons toggle data overlay options on the ND: WXR (shows
weather systems in the area), STA (shows navigation stations), WPT (shows all waypoints in the
area, ARPT (shows airports), EMRG (shows the candidate routes to alternative destinations),
TFC (shows traffic), and TERR (shows the terrain). The dial to the right allows the user to set
the range (in nautical miles) displayed on the ND (Fig. 2.3 and Fig. 2.2 both reflect a setting of
160 nm), the dial on the left was only present in one of the studied NDCP versions and allowed
the pilots to filter possible landing locations. The dial allowed the pilot to quickly indicate the
requirements of the landing site, as noted above.

Figure 2.3: A modified Navigation Display Control Panel (NDCP) provides the major input inter-
face to the APA, allowing the pilots to change the APA’s configuration while monitoring the effects
on the Navigation Display (ND), compare Fig. 2.2. A focus of the study is the effect of presence of
the dial in the left, i.e. the newly introduced dial selecting the type of landing sites the pilot wants
the APA to consider as alternates.

The Control Display Unit (CDU), see Fig. 2.4, provides a limited subset of the normal CDU func-
tionality required for this evaluation. The route (RTE) and legs (LEGS) pages provide information
about the currently planned FMS route. The alternates (ALTN) page was redesigned to provide
more information and support more effective use. The destination options, after being filtered by
the left dial of the NDCP, were ranked according to the overall scores for each potential landing site.
These are the same destination options which are displayed graphically on the ND and may include
more than four destinations, in which case the NEXT button is used to move further down the list.
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The ALTN page allows the pilot to see additional information about each of the options, including
time to land, distance, fuel remaining upon arrival, runway length, weather at site, medical services
available, and maintenance services available.

(a) The modified ALTN page, display-
ing landing site identification, esti-
mated time of arrival, and the overall
site assigned score.

(b) The MORE INFO page for a partic-
ular site, displaying the internal sub-
score as well as the underlying data for
relevant parameters.

(c) Once a site has been selected by
the pilot, the CDU can be used to
hand over the APA computed plan to
the FMS for execution.

Figure 2.4: One part of the APA interface is a modified ALTN page of the Control Display Unit
(CDU). Pilots can get an overview via a (ranked) list of potential alternate landing sites, access
details for each of the trajectories, and command the execution of any of the proposed plans.

Integrating these landing sites into the exiting ALTN page allows the pilot to select among options in
the same manner that is currently available on board modern commercial airliners. After selecting
one of the destinations on the list (Fig. 2.4(a) shows the fictional landing site KRTV on the CDU’s
ALTN page as selected), the pilot was able to view more information about it by pressing MORE INFO
2 , which brings up the corresponding MORE INFO page on the CDU (Fig. 2.4(b) shows the KRTV

INFO page.) This page provides information about the landing site and the scores that are used by
the ranking system for each of the criteria. After the execution routine has been armed, pressing
the lit EXEC button (Fig. 2.4(c)) transfers the computed plan to the FMS, i.e. the autopilot and/or
flight director in the PFD.

2.4 Experiment Description

The experiment tested for differences in performance for pilots using two variations of the APA,
focusing on the actual human-machine interaction, which is represented by the large arrows in the
left of the schematic of the overall process, Fig. 2.1. One variation of the APA included the left
dial shown in Fig. 2.3, which facilitates the filtering of landing sites; the other APA version did
not include such a dial. The two variations were otherwise identical. In each run, the participant
was presented with a scenario in which an emergency occurred. Emergencies that the pilot was

2A real CDU provides buttons to the side of the text fields. Due to the implementation on a touchscreen, the
subjects in this study had to click the actual field instead.
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expected to have been trained to handle, as well as unfamiliar emergencies, were presented. The
pilot had the opportunity to use the aid, either with or without the dial, to consider the possible
alternate landing sites, and finally select a plan to land. The participating pilots did not actually
fly the simulated aircraft, but they participated as a First Officer, that is, the non-flying pilot. The
simulation run ended when the subject had selected a route and executed it by selecting the EXEC

button, shown in Fig. 2.4(c).

2.4.1 Participants

A total of eight pilots participated in the experiment procedure. These pilots all hold an Airline
Transport Pilot certificate and were experienced in a variety of aircraft, primarily Boeing, Air-
bus and Bombardier. One participant had recently retired, while all others currently fly with a
commercial airline. The average number of flight experience for the participant pilots was 8, 194
hours.

2.4.2 Independent Variables

The experiment included the variation of two independent variables. Each independent variable
had two levels, creating four configurations with two replications. These variables were the aid
type, and familiarity of the emergency.

The scenarios were run with two variations of the APA. In one mode, the pilot was able to use
the previously described dial to filter possible landing sites (Fig. 2.3, left dial). In the second
variant, this dial was not available. In the sequel, this variable is indicated by ( )dial and ( )no dial,
respectively.

The evaluation scenarios simulated two general types of emergencies: familiar emergencies and
unfamiliar emergencies. In the familiar scenarios, the aircraft’s performance was either unaltered
or was altered in a manner that pilots had been trained to handle, such as a single engine failure.
The second type of scenario was a performance altering emergency in which the failure was one
which the pilots had not been specifically trained to manage, such as a stuck elevator. The scenarios
were designed such that each scenario was comparable in terms of difficulty and number of options
that the participants were expected to consider. The comparison of these two emergency categories
is important because pilots may make decisions differently during a familiar scenario than they do
during an unfamiliar one, indicated by ()familiar and ( )unfamiliar, respectively.

2.4.3 Dependent Variables

Two primary metrics were considered. As a first metric, the pilot’s ability to choose the “best”
landing site was assessed. A subject matter expert was consulted in order to provide aggregate
scores for each landing site based on all information available, having unlimited time. These scores
served to rank each of the landing sites in each scenario. The second metric was the amount of
time pilots spent during the selection process. A reduction in time promotes safe flight by allowing
the pilots to focus on other important tasks associated with handling the specific emergency, such
as crew coordination, or alerting personnel on the ground. The time required for the pilot to select
a path was used to determine the efficiency with which the pilot was able to develop a plan. This
time was measured from the moment the emergency occurred, to the time that the pilot selected a
plan for execution in the CDU.
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In support of these measures, other secondary measures were used to assess the APA. The number
of candidate landing sites the pilot reviewed and the number of times the pilot turned the filter dial
(when available) were also measured. In addition to simply comparing the total time to complete
the task, these measures allowed for a more granular analysis of the task. The following is an
overview of all the dependent variables measured:

Time Time was measured from the time the emergency occurred to the time the pilot executed a
path in the CDU.

Quality Each scenario involved a number of potential landing site options. These options were
ranked according to the appropriateness for the given scenario. This ranking was enabled
through an a priori evaluation through a subject matter expert. The quality aspect of the
participant’s performance was based on the rank assigned to the participant-selected landing
site in the experts a priori determined ranking.

Number of alternates viewed The number of alternates viewed was the number of landing
sites for which the pilot viewed the MORE INFO page. This was automatically recorded by
the system and was the total number of alternates viewed before and after the emergency
occurred. The number of alternates viewed was recorded in order to evaluate factors that
influenced the amount of time required to reach a selection.

Situation Awareness The participant’s situation awareness was assessed immediately after the
completion of each run following the Situation Awareness Global Assessment Technique
(SAGAT) method [69]. The displays were blanked and the participant was asked ten ques-
tions about the current scenario. The questions assessed all three levels of SA [70, 71]. Level
1 assessed the pilot’s perception of cues, Level 2 assessed the pilot’s comprehension of the
situation, and Level 3 assessed the pilot’s ability to forecast future events. The ten questions
contained five Level 1 questions, three Level 2 questions and two Level 3 questions. These
were drawn from a pool of twelve Level 1, ten Level 2 and five Level 3 questions.

Workload The participants were asked to evaluate the perceived workload experienced in each
scenario, in order to assess the feasibility of its use in a real emergency. The NASA Task
Load Index (TLX) [91] was used in this study to assess the workload for six different sources;
mental demand, physical demand, temporal demand, performance, effort, and frustration.

APA Assessment Upon completion of the experiment, the participants were asked to complete a
questionnaire, which included questions about the pilot’s experience in each simulated flight,
as well as an evaluation of both variations of the APA. These included subjective assessments
as well as a rating from 1 to 10 based on the modified Cooper-Harper rating for displays [63].

Design of Experiments A 2x2 repeated measure, full-factorial design with one replicate was
used to evaluate the effect of APA dial and experiment familiarity on the dependent variables.
The design was blocked on the APA type, i.e. the presence or absence of the landing site
type filter knob is one of the independent variables in the statistical analysis. As a result,
each participant saw four emergencies with one variation, then four with the other variation,
denoted by ()dial and ()no dial, respectively. An additional “no failure” scenario was included
in order to reduce the pilots’ expectancy of an emergency. Accordingly, each participant
completed a total of nine runs, i.e. each of the four configurations paired with the eight
scenarios plus the additional “no failure” run.

38



Scenarios A total of eight emergency scenarios were created (not counting the “no failure” straight-
and-level flight one). Each scenario was characterized by the emergency situation, the phase
of flight during which the emergency took place, the alternate landing sites which were avail-
able and the time at which the failure occurred. The eight emergencies each occurred in
one of three phases of flight: climb, descent or cruise. The emergencies which were repeated
occurred in different phases of flight each time. Each scenario had a fixed number of potential
landing sites, dependent on the phase of flight in which the emergency occurred. Emergencies
occurring during climb had three sites, during cruise had six sites, and during descent had
four sites. All identifiers of airports, waypoints, and navigation stations were fictional to
prevent any effect due to location familiarity or lack thereof.

There were a total of six types of emergency situations, three familiar situations and three
unfamiliar. In each case the Captain, who–as the more experienced aviator–was the flying
pilot, described the emergency to the First Officer, who, as the non-flying pilot, was tasked
with selecting an alternate landing site. The Captain’s description was simulated through
an audio playback. The PFD also showed any appropriate changes (such as descent) and
the newly introduced alert display (Fig. 2.5(b)) annunciated the appropriate message. The
three familiar emergencies used were engine failure, low fuel, and fire onboard. In order to
allow for appropriate descriptions and understanding of the failures, flight control failures (for
which pilots had not been trained for) were used as the unfamiliar emergency cases. These
were: stuck rudder, stuck aileron, and stuck elevator. The amount of time passed after the
simulation began until the emergency occurred was different for each scenario, and it was
between 45 seconds and 105 seconds, in an attempt to create an element of surprise and–in
conjunction with the “no failure” run–minimize pilot readiness. Although real emergencies
could happen hours into an otherwise normal flight, the metrics of interest for this study were
assumed to not be affected by fatigue resulting from a prolonged period of normal flight time
before the occurrence of an emergency.

Procedure Before entering the simulator, each participant had to read a briefing document. This
document introduced the pilot to the features of the simulator and the procedures which
would be used to conduct the experiment. The introductory material informed (erroneously)
participants that the compensation they would receive depended on how well they would
perform the emergency planning task (but the compensation did not depend on correctly
answering the SAGAT and TLX questions).

After reading this introductory material, the participant entered the simulator to complete at
least two practice scenarios. In the first training scenario, no failure occurred. This run simply
allowed the pilot to explore the interface and familiarize himself with the tools available. The
second run presented a simple engine failure scenario. This allowed the pilot to gain an
expectation of how emergencies would be presented and how the tools would allow diversion
planning. After each run the participant was given sample situation awareness (SA) questions
to familiarize them with the format and types of questions which would be asked. This was
done primarily in order to avoid any differences between the first couple of runs and the later
runs in terms of answering SA questions. Each participant was also asked to complete the
TLX workload questions. The participant was then given the option to run either of the
training scenarios again or to begin with the test runs.

After completing the training runs, each pilot completed nine test runs. Eight of these runs
contained one of the aforementioned emergencies and one was completed without an emer-
gency. The no-emergency run was included in order to slightly reduce the pilots’ expectancy
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of an emergency. The pilot joined each flight in progress and was able to use the tools available
to gain an understanding of the situation. Between 45 and 105 seconds after the simulator
was started, an emergency situation was presented to the pilot through a recorded message.
The participant then used the tools to determine the most appropriate landing site for the
given situation.

After selecting the route to the alternate landing site for execution, the simulator was closed
and the participant was handed a clipboard and asked to complete the ten SA questions. After
completing these questions, the participant was asked to complete the TLX questionnaire on
the touchscreen.

Upon completion of all nine runs, the pilot was given an additional set of questions pertaining
to the experiment as a whole. These included subjective questions about the features and
usage of the APA, along with a Modified Cooper-Harper ranking sheet to rate the usability
of the APA.

After the completion of all the runs, and after answering all the questions, the participants
were made aware of the initial deception regarding the performance-tied compensation and
were informed that all of them would receive the entire, same, amount as a token of appreci-
ation for participating in this study.

Apparatus The overall experimental setup is shown in Fig. 2.5. An external frame is covered with
black cloth to block ambient light sources and isolate the experiment setup. Inside, a mock
up of a flight deck consisted of a large shelf in front of the pilot supporting the primary flight
monitor and computer, and a center console separating the captain and first officer seats. The
touchscreen was placed on the center console in order to allow the pilots to interact primarily
with the CDU near its normal position.

The subjects were seated to the right of the center console in the First Officer’s seat. Posters
were included to provide the pilot with the look and feel of an actual cockpit. These images
included the captain’s seat, other displays which were not simulated, and a view through the
windscreen. The computer screen in front of the pilot showed the PFD on the left and the
ND on the right. The screen on the center console was an LCD touchscreen, where the pilots
were able to interact with the system. This screen contained the CDU, the NDCP, an alert
display and ancillary simulator controls.

2.5 Analysis of Results

The statistical analysis was performed using both parametric and non-parametric statistical anal-
ysis, using a repeated-measures Analysis of Variance (ANOVA) or a Spearman’s signed rank test,
respectively [180, 161]. The significance for all tests was set at α = 0.05. In cases where the results
from the repeated-measures ANVOVA were found to be significant, the effect size η2 is reported as
a percentage of the overall variance attributed to each predictor. In cases where the results were
found to be insignificant, the power for the test, 1− β, is reported.

The F -distribution and statistic utilized for the ANOVA is characterized by two parameters, the
degrees of freedom in the numerator and denominator, respectively. The first represents the number
of groups, for this work 1, the second the number of cases minus the number of groups, for this
work 8 − 1 = 7. In the following, F (1, 7) represents the computed value for the observed data.
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(a) First-Officer in a pilot-not-flying situation. (b) The dynamic interfaces of the simulator.

Figure 2.5: The overall experimental setup. Assuming the Captain to be the pilot-in-command
during the emergency, the simulator aims at replicating a scenario in which the First Officer is
tasked with the landing site selection. The dynamic interfaces the First Officer can access are a the
PFD and the ND (conventional LCD display, top right) as well as the CDU and the ND Control
Panel (touchscreen LCD, bottom left).

This value is compared to Fcritical = Fcritical(0.05; 1, 7) = 5.591. If F (1, 7) > Fcritical, the result is
assumed to be significant at the 0.05 level. For details, see [180, 161].

2.5.1 Performance

Overall, the average time required to select a landing site was 110 seconds, with a standard deviation
of 48 seconds. The unique combination of each phase of flight, failure type and airport availability
in each scenario is an important factor which largely accounts for the difficulty in selecting a landing
site (see Fig. 2.6). Each test run was completed in a suitable amount of time with the exception of
one test run by one subject in which the engine failed during climb. The subject in this run selected
an alternate landing site 218 seconds after the failure occurred, which was considered too long by
the expert, given the aircraft’s altitude at the time. All other test runs by this subject–as well as
by all other subjects–were, according to the subject matter expert’s opinion, completed within an
acceptable amount of time. As shown in Fig. 2.6, the average times varied between the different
scenarios. While there was some variation between all scenarios, the times for the aileron failure
scenario were significantly higher than for other scenarios. The average time of the aileron failure
scenario was 206.8 seconds compared to an average of 96.0 seconds for all other scenarios.

The ability of pilots to select the best landing site (i.e., to pick the same landing site that the
subject matter expert a priori determined to be the best pick of all alternates) was generally quite
good. The median ranking of landing sites selected was 1, and the selected landing site was ranked
highest in 57.8 % of runs. Figure 2.7 shows how the participants’ selections were classified across
scenarios. These results show that the scenarios may have differed in their difficulty. For the engine
failure during climb and the rudder control failure in climb, every pilot was able to select the most
appropriate landing site. For the fire emergency scenario, only one participant selected the most
appropriate landing site. This may not be surprising, considering that time is most limited in the
event of an onboard fire. For the elevator failure scenario, a number of different sites were selected,
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Figure 2.6: The average Time-to-Complete by scenario and the corresponding 95 % confidence
intervals.

which may indicate that the differentiation between the best landing site and the other landing
sites may not have been substantial enough.

In each scenario, there are some trade-offs between the two measures of performance, time and
quality. It was expected that some pilots may spend more time deliberating and coming to a
better decision, while others may make decisions more quickly at the expense of the quality of
the decision. Spearman’s signed rank test [161] was used to determine the correlation between
these two measures. The results showed that there was no significant correlation between time and
quality (rs = 0.203, p = 0.107). With the exception of four out of the total of 64 cases, all runs
ended with a selection of a top three ranked site. Focusing on those results (i.e. quality levels 1-3),
Figure 2.8 shows that runs which were ranked lower in quality, took slightly longer on average to
make and had much greater variance than those classified as being the best, corresponding to a
quality of 1.

A repeated-measures ANOVA was conducted to determine the effect of APA type and the familiarity
of emergencies on the time to complete. The mean time for cases with the filter dial was slightly
higher than those without the dial (µdial = 115.3 s, µno dial = 104.4 s). The time to select an
alternate was lower in the case of familiar emergencies than in cases of unfamiliar emergencies
(µfamiliar = 94.9 s, µunfamiliar = 124.7 s). The effect of APA type was statistically insignificant
(F (1, 7) = 0.217, p = 0.655, 1− β = 0.069), whereas the effect of the familiarity of the emergency
on time to complete was statistically significant (F (1, 7) = 6.979, p = 0.033, η2 = 0.499). The
interaction between APA type and emergency familiarity indicated that the effect of the dial was
not statistically different in the familiar cases than in the unfamiliar cases, Fig. 2.9.

The effect of the APA variation was also tested in regards to the quality of the landing site selected,
Fig. 2.10. Cases in which the filter dial was present resulted in slightly better quality of alternates
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Figure 2.7: Landing site quality by scenario. The quality metric is the rank of the selected option
in the expert’s solution.

selected. The selected landing site was ranked first or second in 84.4 % of cases which included
the dial, compared to only 65.6 % of cases which did not include the dial. Because this dependent
variable is ordinal, two Wilcoxon Signed Ranks tests [161] were used. The results from the Wilcoxon
tests showed that the difference in quality of landing site selection was not significantly affected by
either the APA type (Z = −1.304, p = 0.192), nor the familiarity of the emergency (Z = −0.382,
p = 0.703). Thus the quality is robust regardless of the familiarity of the emergency or the ability
to filter the suggestions.

2.5.2 Workload and Situation Awareness

As previously discussed, the cockpit environment can be very stressful in the event of an emergency.
The pilots have a number of tasks which require their attention, and which must be completed in a
timely fashion. Therefore, any automation added to the flight deck should not add to the already
high workload. A repeated-measures ANOVA was used to determine the effect the independent
variables had on the pilots’ workload. The effect of the addition of the dial slightly reduced the
workload (µdial = 51.1 s, µno dial = 54.9 s), but this reduction was not statistically significant
(F (1, 7) = 1.878, p = 0.213, 1 − β = 0.221). The familiarity of the emergency did not have
a significant effect on workload either (µfamiliar = 52.6 s, µunfamiliar = 53.4 s, F (1, 7) = 1.277,
p = 0.296, 1− β = 0.165).

A correlation analysis was used to determine if there was indeed a correlation between the pilots’
workload and their performance. Spearman’s rank correlation coefficient was used to determine
that the correlation between the workload and time (rs = 0.432, p < 0.001) as well as between
workload and quality (rs = 0.286, p = 0.022) were both significant. As workload increased, the
amount of time taken to determine a solution increased and the quality of the selection decreased.

In order to make a good decision, the pilot must be aware of the situation at hand. The results of the
SA questionnaire were used to determine the effect of the aid variation on the pilots’ understanding
of each situation. Level 1 SA questions were correctly answered at 56 %, Level 2 at 52 % and
Level 3 at 47 %. These low percentages of correct responses may be partly attributed to the
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Figure 2.8: Correlation between the average time to get to a decision and the decision quality (1
corresponds to the best quality). Also shown are the 95 % confidence intervals.

type of questions that were asked. For instance, a number of the questions required that pilots
recall airport identifiers in order to correctly answer the questions, which were unfamiliar to the
participants. Also, pilots were able to keep only the important identifiers in mind, and these were
kept only long enough to complete the scenario. These factors likely contributed to low numbers
of correct responses.

Despite the low absolute scores, three separate repeated-measures ANOVAs were used to test for
effects of the independent variables, one for each level of SA. For Level 2 and Level 3 situation aware-
ness the effect of the APA dial and the familiarity of the experiment individually were marginally
statistically significant. Level 1 situation awareness was overall marginally significantly affected
by the APA dial (F (1, 7) = 3.781, p = 0.093, η2 = 0.351) and the familiarity of the experiment
(F (1, 7) = 4.515, p = 0.024, η2 = 0.539). Level 1 SA was greater without the dial (µdial = 0.48,
µno dial = 0.58) and greater in situations which were familiar (µfamiliar = 0.58, µunfamiliar = 0.48).
Additionally, Level 2 situation awareness was significantly affected by the interaction of the APA
dial and the familiarity of the experiment (F (1, 7) = 9.00, p = 0.020, η2 = 0.562). In unfamiliar
emergency situations, the Level 2 situation awareness (understanding perceptual cues) is improved
with the inclusion of a filter dial (µdial = 0.604, µno dial = 0.438), whereas in familiar situations the
Level 2 situation awareness is decreased (µdial = 0.417, µno dial = 0.500), Fig. 2.11.

As with workload, changes in situation awareness–regardless of the source–may have an effect on
the pilots’ performance. In order to test for this correlation, the Spearman’s rank correlation
coefficient test was again used. The results show that there was no significant correlation between
performance and Level 1 or Level 2 SA. There was, however, a marginally significant negative
correlation between Level 3 SA and the time to select a landing site (rs = −0.212, p = 0.092).
Thus the higher the Level 3 SA the more quickly the pilot was able to choose a landing site.
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Figure 2.9: Effect of APA variation and familiarity on the average time to make a selection as well
as on the variance (indicated by the 95 % confidence intervals).

2.5.3 Secondary Measures

In order to understand the usage of the APA with and without the dial, both the number of landing
sites for which the pilot viewed more information, and the number of times the dial setting was
changed (for cases in which the dial was available) were analyzed. Viewing more options takes
time but may lead to a better understanding of the alternates available and thus a better selection
quality.

A repeated-measures ANOVA was conducted on the number of landing sites viewed to determine
the effect that the independent variables had on this measure. The average number of solutions
viewed was slightly lower for the cases with the dial than for those without the dial (µdial = 4.5,
µno dial = 5.0), however this difference is not statistically significant (F (1, 7) = 0.329, p = 0.575,
1−β = 0.084). The familiarity of the emergency had a significant effect on the number of solutions
viewed (F (1, 7) = 5.639, p = 0.031,η2 = 0.273). The average number of alternates viewed in familiar
emergencies was lower than cases with unfamiliar emergencies (µfamiliar = 3.6, µunfamiliar = 5.9).
A moderately significant interaction was also found between APA type and emergency familiarity
(F (1, 7) = 0.922, p = 0.058, 1 − β = 0.147). As seen in Fig. 2.12, in familiar emergencies, the
addition of the dial slightly increased the number of solutions viewed from µno dial = 3.5 to µdial =
3.8. However, in unfamiliar emergencies, the dial reduced the average number of solutions viewed
from µno dial = 6.5 to µdial = 5.3. This may indicate that in familiar cases the filter encouraged
the pilot to examine more alternatives than he otherwise would have, and in the unfamiliar cases
allowed the pilot to focus on a smaller but more promising set of alternatives.

In order to determine the effect the number of alternates viewed had on the pilots’ performance,
Spearman’s rank correlation coefficient test [161] was used to determine the correlation between
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(a) With and without dial. (b) Familiar and unfamiliar scenarios.

Figure 2.10: Quality of the landing site selection by dial availability and failure familiarity.

the number of alternates viewed, the time to select an alternate, the workload reported and the
quality of the landing site selected. There was a significant positive correlation between the number
of alternates viewed and the time to complete the task (rs = 0.737, p < 0.001). The slight positive
correlation between the number of alternates viewed and the quality of the selection made was
not significant (rs = 0.171, p = 0.178). This implies that participants who viewed more solutions
took significantly more time to make a selection, but did select significantly better alternatives.
A significant positive correlation was found between the workload reported and the number of
alternatives viewed (rs = 0.352, p = 0.002). This positive correlation implies that for runs which
pilots viewed more alternates, they also encountered a higher workload.

Following all of the data collection runs, the pilots were asked whether they subjectively felt that
the filter dial was a useful addition to the APA system. Half of the participants responded that
the addition of the dial made the system “Much better,” while the other half responded that the
dial made the system “Better.” This feedback may be reflective of the fact that the dial may be
used or ignored in any given situation. A general sentiment was expressed that a tool which can
be used or ignored is desirable.

The Modified Cooper-Harper for Displays [63] was used to assess both variations of the aid. Ta-
ble 2.1 provides the description associated with each level of the rating scale. Fig. 2.13 shows the
results from both variations of the aid. Every participant rated the version with the dial the same
or higher than the version without the dial. One notable case was the participant who assigned
both versions of the aid a score of 10, which is described as “Display is missing critical information;
operator is unable to locate essential information...” This subject commented that “runway length
is of critical importance and is too hard to find in the pages.” All other participants rated the
variation with the dial as either “Excellent & Highly Desirable,” i.e. 1, or “Good with Negligible
Deficiencies,” i.e. 2. Only half of the participants rated the variation without the dial in either of
these categories.
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Figure 2.11: Effect of the APA variation and scenario familiarity on the results of the Level 2
situation awareness (SA) questionnaire. Shown is the percentage of correct answers and the 95 %
confidence intervals.

2.6 Discussion

This experiment sought to measure pilots’ performance in handling emergency situations when using
an APA. The two primary measures of performance were the time required to select an alternate
landing site and the quality of the landing site which was selected. It was expected that pilots would
have to make a trade-off between these two factors. That is, to make a better decision, some pilots
may more thoroughly consider their options, resulting in a long time to complete the task. On
the other hand, some pilots may choose to act quickly, without investigating all available options,
resulting in a lower quality decision. The dial was expected to reduce this negative correlation by
reducing the number of options pilots considered. However, the results showed that the correlation
between these two measures was, in fact, positive. This suggests that runs in which the pilot took
longer to complete the task actually resulted in poorer landing site quality. Though contrary to

Table 2.1: Modified Cooper-Harper Rating Scale for Displays.
Rating Description

1 Excellent & Highly Desirable
2 Good with Negligible Deficiencies
3 Minor but Tolerable Deficiencies
4 Moderately Objectionable Deficiencies
5 Very Objectionable Deficiencies

6,7,8 Deficiencies Require Improvement: Major Deficiencies
9,10 Mandatory Redesign: Major Deficiencies
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Figure 2.12: Interaction of APA type and familiarity of failure on total number of solutions viewed.

expectation, a number of plausible explanations exist. First the scenario design may have affected
this relationship; specifically the number of sites which are similar to the highest ranked site.
This similarity may have made some scenarios more difficult than others, requiring more time to
consider the options and to differentiate between the highest ranked sites. Second, the benefit
of automation may decrease as time pressure is relaxed, suggesting that automation may be less
beneficial in lower time pressure scenarios [101]. Third, providing individuals with tools to aid with
analytic decision making may result in increased decision time without the associated improvement
in decision quality.

A difference in performance was expected for familiar and unfamiliar scenarios. The results sup-
ported this hypothesis and showed that pilots made their selections more quickly for familiar sce-
narios. This supports the results of the pilots’ survey in [182], which showed that pilots were more
likely to take immediate action in a familiar emergency. This result is also in line with the theory of
recognition primed decision making [112] wherein experts upon recognizing a situation immediately
understand the implications and are able to make decisions quickly. The effect of the addition of
the dial was affected by the familiarity of the scenario. The time to complete the task was increased
by the addition of the dial in the case of familiar emergencies, while the time was decreased by
the dial in the case of unfamiliar emergencies. This may suggest that the dial proved more useful
for filtering out inappropriate options in unfamiliar emergencies. Each participant used his own
method to make the APA most useful. However, there were some comments that shed light on
how the pilots used the APA. One point of interest is how pilots begin to narrow down the list
of possible options. When the dial was available, the first step may be to adjust the filter to an
appropriate setting.

In debriefing after the fact, most participants indicated that the ability to filter out unnecessary
information and view more detailed information about each landing site were the two most useful
features. Pilots emphasized that a key attribute of these features was the speed with which infor-
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Figure 2.13: Modified Cooper-Harper Ratings of the APA.

mation could be processed. A number of pilots commented that the “ALL FIELDS” dial setting
(compare Fig. 2.3) was not useful. The ability to obtain critical information quickly was empha-
sized by pilots who suggested that more information should be encoded into the graphical display.
The addition of a filter setting to show only sites with runways of sufficient length for the aircraft
(as currently configured) was suggested by multiple participants. Finally, pilots commented that
an APA-type aid should be linked with airline dispatchers. This ability could be used in a number
of ways, such as live updates of airline preferred and weighting of evaluation criteria.

Pilots were asked to describe the types of scenarios in which an APA would be most useful, and
those in which it would be the least useful. Most pilots expressed that the aid would be most
useful in situations where there was high workload and high temporal pressure. These situations
are characterized by the need to make a decision quickly. The ability to quickly access large
amounts of pertinent information makes the aid a large improvement over current options. Pilots
also commented that an APA would be useful in a less intense emergency, in which the aircraft is
unable to reach its destination, but the situation is otherwise normal. The aid can be used more
deliberately to assess all options and determine the most suitable landing site. The situations in
which the aid would not be useful were varied. One participant responded that the aid would
not be useful in dire emergencies such as a fire because, “the only piece of information necessary
is the nearest runway, all other data is irrelevant.” However, another pilot did not identify a
situation in which the aid would be least useful, but commented that, “information is always useful
in formulating a plan, the more info, the better.”

Several caveats regarding realism and training apply to this work. First, while all of the pilots took
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the experiment seriously, the experimental conditions could not replicate all of the experiences
of an actual in-flight emergency. The pilots were offered additional compensation for improved
performance, but this does not entirely replicate the stress and pressures of a real emergency.
Second, the pilots were given two training runs, which allowed them to familiarize themselves with
the features available. While this was sufficient for the pilots to gain a general understanding of
the APA’s functionality, if fielded pilots would be trained to a much higher standard on the device.

2.7 Conclusion

This work has sought to evaluate the efficacy of an automated path planning aid (APA), intended
to help pilots plan a safe trajectory to land in the event of an in-flight emergency. A prototype was
designed and implemented in a cockpit simulation. This simulator was used to test the aid and
gather results and further feedback from pilots. The aid which was developed had to be compatible
with existing cockpit designs. The aid was designed to be easy to use, without requiring unnecessary
time and effort on the part of the pilot. A filter dial was added to allow the pilot to quickly focus
only on alternates that were appropriate for a given emergency.

Comparisons between the two variations of the APA showed that the addition of the dial resulted
in a small difference in the quality of landing site selected and longer times to select a site. The dial
did not significantly reduce the number of alternates viewed, which was strongly correlated with
the time metric. This may indicate that the dial did not simplify the task as much as anticipated.
However, in the case of unfamiliar emergencies, the dial reduced both time to select a landing site
as well as the number of solutions viewed. Every participant scored the variation with the filter
dial more highly than the variation without the dial, indicating that they preferred to have the
dial, despite the lack of improvement in performance measured in the experiment. The APA was
tested using both familiar and unfamiliar emergencies in order to understand if the APA was more
useful in one type of scenario than another type. Both survey and simulator results indicated that
pilots are likely to act more quickly in a familiar emergency. Pilots found the filter dial and the
consolidation of information about landing sites to be very useful features. The ability to quickly
and easily access critical information is one of the most important characteristic of an emergency
planning aid. This design facilitated the pilots’ methods of assessing each landing site throughout
a flight, before an emergency has occurred. The ranking system (though not always optimal)
gave the pilots aggregate scores for each site and provided a more meaningful starting place when
investigating the available options.
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Chapter 3

Pilot Feedback for an Automated
Planning Aid System in the Cockpit

It is the primary responsibility of the airline pilot to safely complete a flight plan and safely land
the airplane. This task can become very difficult in the face of an onboard emergency. One of the
challenging tasks faced by the pilots in case of an emergency is the determination of an appropriate
landing site as well as the development of a safe trajectory to reach that site. An Automated
Planning Aid (APA) can assist the pilot with the tasks of selecting a landing site and developing
a suitable trajectory to land. In order to evaluate such an APA, a survey of airline pilots was
conducted during the late summer of 2008. The participants were presented with several questions
related to the task of planning a path during a performance altering emergency, a non-performance
altering emergency and an unforeseen emergency. Participants were also presented with questions
about how they would prefer to interact with an APA in the cockpit and the circumstances under
which such a device might be most useful. The results of the survey showed that time was the
most important criterion to consider, however the methods pilots use to complete the landing
site selection and trajectory development tasks vary with the type of emergency and the pilot’s
familiarity with the circumstances. The results of the survey are used to understand the mental
processes currently used by the pilots to complete the path planning task as well as to provide
insights to how an APA could be most useful during an onboard emergency.

3.1 Introduction

Modern air transportation has a very good record of flight safety. When failures do occur in flight,
the training and experience of the pilots almost always provide for a safe landing. This is evidenced
by a rate of only 1.35 accidents per one million hours flown in 2007 by US air carriers [131]. Despite
this excellent record, the pilot’s responsibility to land safely in case of an emergency can be very
demanding. There are a number of tasks which demand the pilots’ attention. Among these is the
planning and execution of a trajectory that will result in a safe landing. Moreover, all these tasks
must be accomplished in a stressful environment under great pressure [48].

The purpose of this research is to better understanding how pilots currently go about the tasks
of choosing an appropriate landing site, and planning a safe path to the ground. Additionally,
the research will provide suitable directions for the development of an intelligent flight guidance
and path planning tool to aid the pilot in this process. To this end, a survey of airline pilots was
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conducted to gather information in support of these goals. In this chapter we will first present a
review of research related to the task of emergency path planning. Afterwards, the results of the
survey will be presented and an analysis of the results will be given. Finally, conclusions will be
drawn and suggestions for future research will be made.

3.2 Background

The responsibility of the safe completion of each flight rests with the pilot-in-command. In an
emergency situation, this can be a very challenging task. The pilots must monitor the aircraft
systems, detect and resolve any failures, control an aircraft with possibly degraded performance,
as well as coordinate with the cabin crew, airline dispatchers, and air traffic control. In addition
to these tasks, the pilots must also plan and execute a trajectory that will result in a safe landing.
These tasks are made even more difficult by the circumstances. For example, the pilots may feel
a sense of physical danger, or the cabin environment may be a distraction due to smoke, heat or
noise. Additionally, the aircraft’s performance may be affected, resulting in degraded or inadequate
handling qualities. This limits the relevance of past experience to the current situation.

In order to understand the some of the difficulties that these circumstances present, a number of
cognitive engineering models have been developed in the literature and are briefly reviewed in this
section. The complex nature of the decision making task can be described using the Naturalistic
Decision Making (NDM) framework. Zsambok [194] describes NDM as, “the way people use their
experience to make decisions in field settings.” Experts are often able to make excellent decisions
based on experience and intuition. However, stress can have negative effects on the decision maker’s
cognition. The Cognitive Control Model (CCM) describes how the context of the emergency dictates
the way in which the planning task is handled [83]. This model describes the degree of control a
person has as dependent on the context of the situation. The degree of control is determined in
large part by the amount of subjectively available time that the pilot perceives, and the familiarity
of the situation [85]. Subjectively available time refers to the amount of time that a person perceives
that he or she has available to take appropriate action. The amount of time perceived may depend
on the objective amount of available time, the predicted changes in the system, the person’s level
of arousal as well as other factors. The degree of control is discretized into four control modes:
scrambled, opportunistic, tactical, and strategic.

The simplest and most dangerous mode is the scrambled mode, which generally represents a person
in a state of panic. When a pilot is in this mode, he or she is effectively paralyzed and actions are
not part of a plan, and may be unpredictable or irrational, resulting in a lack of control. When
a pilot has adequate subjectively available time, his situation may be described by the tactical
mode. In this mode the pilot has a greater sense of control. The pilot is more likely to develop
a plan or modify an existing plan in order to fit the current situation. The resulting plan may
take into account the potential effects of candidate actions. This mode corresponds to “normal”
performance. During an emergency situation, a pilot’s control mode will be somewhere in between
the scrambled and strategic modes, described by the opportunistic mode. In this mode, pilots may
use the plans and procedures available to them; however, they may not be used correctly.

The amount of subjectively available time that a pilot perceives may be influenced by a number of
factors. These include phase of flight during which the emergency occurs, the type of emergency,
the number of actions the pilot is required to complete, and the stress level. This stress may be
physical, such as smoke in the cabin or loud noises, or it may be psychological, such as the fear of
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impending danger.

The stress of a situation impacts the manner in which the pilot makes decisions. While the pilot
may be able to quickly develop a plan of action based on experience and intuition, stress can lead
him to fixate on one solution, and fail to compare alternatives [22, 108]. Additionally, the pilot
may simply increase the speed with which he processes information, potentially leading to errors.
He may also reduce the amount of information that is sought and processed, known as filtration
[124, 123].

Stress may also lead the pilot to rely too heavily on an automated tool. He may assume that a plan
generated by automation is best, without verifying its feasibility or exploring other options [129].
Also, the pilot may seek only information which confirms the automation-generated solution as the
best, while discounting other information (confirmation bias). Alternatively, rather than simply
discount conflicting information, he may attempt to mentally force all available information to fit
the automation-generated solution (assimilation bias)[62]. These stress-related factors can cause
pilots to make poor decisions, despite the fact that they would be able to make acceptable decisions
under normal circumstances. These poor decisions may cause incidents to become accidents.

3.3 Review of Accidents

Between 1997 and 2006 there were a total of 89 fatal accidents on board commercial jet aircraft
worldwide [9]. More than fourty percent of these accidents categorized as either “Loss of Control
- In Flight” or “Controlled Flight into or Toward Terrain.” Some of these incidents may not
have become fatal accidents if the pilots had been able to quickly plan and execute a satisfactory
trajectory in order to complete a safe landing.

One such example is the crash of Swissair flight 111, which encountered smoke in the cockpit during
its flight from New York to Geneva (see Figure 3.1). When the pilots noticed the smoke, they
declared an emergency. After making an initial turn toward Boston, the controller recommended
that they divert to Halifax instead. It was four minutes later when the pilots received the Halifax
approach plates and realized that they were too high and needed to lose altitude. So they decided
to circle around and dump fuel near Peggy’s Cove, Nova Scotia. After the aircraft had turned
away from the airport to dump fuel and lose altitude, the fire spread and disabled a number of
aircraft systems, which led to the aircraft crashing into the water. It is possible that if the pilots
had initially recognized Halifax as the most appropriate landing location and been able to quickly
devise a trajectory to land there, then the plane may have been able to land before the fire disabled
the avionics systems.

As the previous example illustrates, once an emergency has occurred on board a civil airplane,
the selection of a landing site and a safe trajectory to that site are of critical importance. The
pilot’s high workload and a human’s limited computational capacity obviate the need to provide
automated assistance. However, the highly complex nature of the selection and planning tasks, as
well as the uniqueness of each emergency, makes automation difficult. The input and oversight of
a human operator is required.
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Figure 3.1: Flight path of Swissair Flight 111. Taken from [7].

3.4 Related Work

In order for an automated planning aid to be most useful, there are at least two primary tasks which
it must be able to accomplish; first, it must be able to accurately predict the most appropriate
alternative landing site, as well as the most efficient trajectory to land at that site. The completion
of this task requires that the aid determine the overall feasibility of a trajectory, avoiding the case
of a controlled flight into terrain because of not reaching the destination, or overshooting it. A
feasible trajectory must also avoid obstacles, which may be static, such as a mountain, or dynamic
such as a severe weather system. The consideration of static obstacles avoids controlled flight into
terrain, whereas the consideration of dynamic obstacles avoids accidents as a result of flight into
convective weather. The determination of such a trajectory must be made by taking into account
the aircraft’s abnormal aerodynamics. Finally, the trajectory must minimize the time to land,
which is important in all cases, such as the aforementioned Swissair accident. The second task an
automated planning aid must be able to accomplish is to provide an interface with the pilot through
which information is shared in both directions. Most research to date has primarily focused on one
or the other of these tasks.

The landing site selection task has been suggested as a candidate for automation. Atkins, Portillo
and Strube [14] have developed a method to complete this task. First, the footprint containing all
feasible landing sites is calculated. Then the list is prioritized according to a number of weighted
criteria, such as runway length, airport facilities available, etc. In their research, the authors choose
example values for the criteria weights, but acknowledge that the criteria weights would ultimately
be based on expert knowledge and would vary by emergency type.
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The need for the pilot and the automated planning aid to interact with each other has also been
investigated. The Emergency Flight Planner (EFP) by Chen and Pritchett [48] has been proposed
as a prototype interface between the pilot and an aid. The EFP is designed to allow the pilot to
easily enter a plan. The ensuing trajectory is then predicted and evaluated. The EFP also provides
an additional mode, in which the pilot is presented with a preloaded trajectory, which he may then
accept, modify, or delete. The results of testing with the EFP emphasized that generated plans
must incorporate the structure and objectives used by pilots in order to be effective.

Research by Layton, Smith and McCoy [116] in their study of a cooperative problem-solving system
for en-route flight planning investigated three possible system modes of pilot-system interaction. In
that study, pilots and air traffic controllers were both used as subjects. The study evaluated three
possible modes. The first mode was a sketching-only system, in which a plan devised by the subject
was evaluated by the system and feedback was provided. The second was a sketching system with
the additional capability for the user to specify constraints on the plan and allow the system to
propose a solution which matched those constraints. In the third mode, the system proposed a
plan based on system-specified constraints. The results showed that in the second and third mode,
users explored more possible options; however they were also biased toward the system-generated
alternative. The same study also highlighted the fact that the use of a fully automated aid could
be detrimental if it performs suboptimally.

The previous results show that in order to increase the usefulness of an automated planning aid,
the process by which pilots select an alternative landing location and plan a path must be better
understood. In addition, it must be understood how the pilot can best be aided by such a tool. It
is expected that an aid that accepts and provides information in a manner that is most consonant
with the pilot’s mental process will be most effective. The results of this research will be useful for
the design of a suitable interface by determining the most important inputs to the system, as well
as the most useful format for the output.

3.5 Commercial Airline Pilot Survey

A survey was conducted by the authors in order to better understand the tasks and priorities
of pilots during an emergency situation. The first section of the survey was intended to elicit
information about the primary factors that pilots consider in the process of planning a landing
trajectory. This involves choosing the most appropriate destination at which to land, and then
determining a trajectory to reach the ground safely. The trajectory planning task also requires
attention to certain en route considerations, such as severe weather and hazardous terrain.

The first section of the survey was structured to cover two general types of emergencies: 1) a
performance altering scenario, in which the aircraft’s performance was non-nominal, and 2) a non-
performance altering scenario, in which the aircraft’s performance was normal, but an immediate
landing was necessary. For the non-performance altering scenario, the participants were presented
with the following information:

You are the captain of a civil transport aircraft. A fire has been detected in the cargo
hold. The appropriate checklists have been performed, but the fire has not been com-
pletely extinguished. The first officer is controlling the aircraft, allowing you to plan a
course of action.

For the performance altering scenario, the participants were presented with the following informa-
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tion:

You are the captain of a civil transport aircraft. The right engine of your twin-engine
aircraft has failed. The appropriate checklists have been performed. The first officer is
controlling the aircraft, allowing you to plan a course of action.

The same set of questions was used in each of the two scenarios. The performance altering scenario
also included an additional question, which addressed how the pilot would assess the feasibility of
a trajectory given the aircraft’s degraded performance.

The second section introduced the concept of an Automated Planning Aid (APA). The questions
built upon the performance altering scenario from the first section, with the following additional
information:

Now an Automated Planning Aid (APA) is available to assist you with the selection
(and perhaps execution) of a suitable plan of action.

This section was intended to obtain information about how the participants might use an APA. In
particular, how participants prefer to convey information to the APA and furthermore how they
prefer to review the information provided by the APA. Finally, this section presented questions
meant to ascertain the amount of confidence that participants would have in the APA.

The third section was designed to collect further information about how an APA might be used.
The participants were presented with the following information:

Consider an emergency scenario which is unforeseen (i.e., you have not received any
pertinent training). The aircraft’s performance is now altered and/or degraded in some
way. You are the captain, and the first officer is controlling the aircraft, allowing you to
plan a course of action. In this scenario you do not have an Automated Planning Aid
(APA) available to assist you.

This scenario was included because it provides some insight into how the participants will make
a plan in a situation where they cannot rely on any prior training or procedures to guide them
through the process.

The final section included general questions about the participants’ opinions of the proposed APA
concept. These questions asked about the scenarios under which the participants would be more
willing or less willing to seek help from an APA and how the participants would like the plan to be
updated. This section also included biographical questions in order to determine the demographic
make up of the participants.

3.5.1 Methodology and Participants’ Profile

The survey was conducted using an on-line service. The service was used to create, format, and
monitor the survey. It was also used to host the survey and collect responses from the participants.
In order to generate responses from several airline pilots, a link to the online survey was distributed
via email to a number of pilots. In addition to the email, a link was posted on the airline pilot
association’s message board requesting participation. Responses were collected over the course of
approximately six weeks between August and September 2008.
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Responses were received from twenty-one participants. One of the respondents declined to include
biographical information, however all twenty-one responses were used in the results. The demo-
graphic analysis therefore only includes twenty respondents. All participants held the position of
either captain or first officer and had been in their current position for an average of 9.5 years.
Eighty-five percent were flying a Boeing aircraft (737, 757, 767, or 777) at the time of the survey.
All pilots had at least 6,500 flight hours with an average of 12,979 flight hours.

3.6 Results

Due to the small number of responses, slight variations in the number of responses for a given
option were neglected as statistically insignificant. However, each question also included an open-
ended option where the participants were free to provide more information. These responses often
provided additional valuable insights into the participants’ thoughts that could not be captured by
the multiple choice responses provided.

The first section of the survey included a set of questions about how pilots currently make decisions
in an emergency situation. The question set was first given for a non-performance altering sce-
nario, and then repeated for a performance altering scenario, as described previously. Participants
were asked to indicate the priority (high, medium, low, or not a consideration) associated with
a number of factors when choosing the airport to which the respondent would divert. Under the
non-performance altering scenario, the most important factor indicated was the proximity of the
airport in terms of time. Weather conditions at the airport, the length of the runway and the
proximity of the airport in terms of distance were also given relatively high priority. These results
can be seen in Figure 3.2. Under the performance altering scenario, the results were largely the
same; however the importance of proximity in terms of time was not differentiable from that of
other factors, as seen in Figure 3.3. One free response comment for the non-performance altering
case also indicated that runway lighting and the availability of navigational aids were additional
important considerations.

A similar question was posed for each scenario in which participants were asked to indicate the
priority (high, medium, low or not a consideration) associated with a number of factors when
planning a safe path. For both scenarios, en route weather and the avoidance of hazardous terrain
were given the same priority, and low priority was given to traffic routes. This is not surprising
because once an emergency is declared, the pilot need not comply with ordinary routes and approach
procedures.

The performance altering scenario differs from the non-performance altering scenario in that the
pilot’s experience and knowledge of the aircraft may have limited applicability to the current
situation. For this reason, the pilot’s “first instinct” may be the best plan given normal performance,
but may not be feasible given the degraded capabilities of the aircraft. Participants said that
they were most likely to judge the feasibility of a maneuver by running the scenario mentally or
seeking help from the dispatcher. Many pilots would also consult the performance manuals. These
responses indicate that an automated planning aid may be particularly helpful in situations where
the aircraft’s performance is not normal.

Participants were then asked to consider whether they would completely determine a plan before
taking any action. The alternative would be for the pilot to alter the current course immediately
based upon his “first instinct.” Many of the respondents took advantage of the open-ended option
to describe some other considerations that affect how they would proceed. For instance, when flying
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Figure 3.2: Prioritization of landing site criteria for non-performance altering case.

Figure 3.3: Prioritization of landing site criteria for performance altering case.
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in a mountainous area such as Quito, Ecuador, planning ahead is essential. Others indicated that
they would first coordinate with Air Traffic Control (ATC) before taking action or completing a
plan of action. Those who would first take some action responded that they would all turn toward
the nearest airport. None would begin descending. For the non-performance altering scenario,
most of the pilots reported that they would change the current course immediately. However,
in the performance altering scenario, most would develop a plan first before altering the current
course. This may indicate that pilots are more comfortable taking immediate action in a more
familiar situation, as opposed to a novel scenario. For instance, pilots have trained for an engine
failure scenario and would have a relatively good idea of how to control the aircraft. However,
in the event of a control surface malfunction, they would not be as familiar with the aircraft’s
post-failure performance and may be less likely to take immediate action before planning.

The final question of this section addressed the parts of a potential plan with which the participants
would be most careful (i.e., provide more specific attention, add more detail, etc.). The pilots were
asked to indicate the priority (high, medium, low, not a consideration) associated with portions
of the plan. The results are shown in Figures 3.4 and 3.5. In both scenarios, pilots reported that
the highest priority is around severe weather and hazardous terrain. Medium priority was given to
the area around the aircraft’s current location. In the case of the performance altering scenario,
medium priority was also given to the area around the destination.

Figure 3.4: Parts of the plan pilots consider with detail for non-performance altering case.

The first questions of the section dealing with an Automated Planning Aid (APA) address the
interface between the pilot and the APA. Pilots described a number of inputs as either highly
preferable, somewhat preferable or not preferable. Pilots will need to be able to provide priority
information to the APA in order for it to be aware of the current situation. Participants indicated
that they would prefer to accomplish this either through the Flight Management System (FMS)
pages, through a separate dedicated interface, or through a data link from the airline operations
center. When the APA has developed a plan, the pilot must be able to review this plan. The
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Figure 3.5: Parts of the plan pilots consider with detail for performance altering case.

respondents indicated that they would prefer to review the plan as a set of automatically generated
FMS entries. The pilots would also favor a horizontal graphical representation of the proposed
trajectory, possibly accompanied by a vertical profile of the proposed trajectory.

In order to effectively evaluate the proposed plan provided by the APA, pilots will have certain
metrics in mind which will be used to make the evaluation. Participants were asked to indicate how
important certain metrics are when evaluating the plan (highly important, somewhat important or
not important). The most important metric was the cumulative time/distance and fuel information.
A comparison against alternatives was also considered an important metric.

Responses showed that the pilots will not unconditionally follow the plan generated by the APA,
especially if the plan if different from their “first instinct.” Most participants said that they would
follow an APA-generated plan that was different from their own when the APA plan required a
significantly shorter amount of time to execute. Some pilots also said that they would follow the
APA plan if it remained well within the flight envelope limitations and encountered significantly
less severe weather. Nearly all of the pilots indicated that they would only use the APA-generated
plan as an aid; that is, they would take it into account while re-evaluating their own plans of action,
but would neither completely accept nor reject an APA-generated plan.

In the final section, the participants were given an unforeseen emergency, as described previously.
As in the performance altering scenario, the majority of respondents would completely develop
a plan before altering their course. Many participants again took advantage of the open-ended
response option to indicate that the primary factor in deciding whether to take immediate action
would be the urgency of the situation. Of those who would immediately alter the current course,
most would turn toward the nearest airport.

In a situation in which the pilot has accepted the plan, but has deviated from it, a new, more
efficient, plan may be calculated as a result of the deviation. Pilots were asked to choose between a
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Figure 3.6: Preference for APA method of input.

Figure 3.7: Preference for APA method of output.
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Figure 3.8: Metrics used to evaluate a plan.

number of conditions under which they would like for the APA to provide a new plan. The results
are shown in Figure 3.9. Most pilots indicated that they would prefer to only receive a new plan
from the APA when they asked for one.

Not surprisingly, the majority of pilots reported that the situation in which they would be most
likely to rely heavily on the APA is one for which they have not had any prior training or experience,
as shown in Figure 3.10. Some indicated that they would not rely on the APA in either a familiar
or unfamiliar situation, while others said that they would rely on the APA in both situations. This
may be due to the lack of clarity with regard to reliance. It seems, based on these comments, that
many of the pilots would use the APA as an aid, but they would be hesitant to simply follow its
plan without some verification of their own.

3.7 Analysis

The multiple choice nature of the responses made the mathematical results simpler to discern;
however, the more enlightening portion of the responses were the open-ended options, which allowed
the participants to include their thoughts on each of the questions provided. These responses
provided insights into the pilots’ expectations about how an APA should function and how it could
be most useful.

As mentioned previously, the pilot’s workload is very high during an emergency. A number of
comments indicated that pilots are wary of any factor(s) that would necessitate more work during
a stressful time. This is reinforced by the respondents’ preference for interacting with the APA
through the FMS, a device they use for other purposes, and with which they are familiar. Most
participants preferred to review the plan as automatically-generated FMS entries, which would
allow the autopilot to follow the APA path with very little additional work required by the pilot.
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Figure 3.9: Conditions under which the APA should provide an updated plan.

Figure 3.10: Situations in which an APA would be most heavily relied upon.
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Respondents emphasized that the APA should be an efficient source of information which is cur-
rently disparate, if available at all. One pilot commented that, “it should offer information, but
not demand any acceptance or response.”

In general, commercial pilots have a good working knowledge of the areas in which they normally
fly. For this reason, the pilots’ “first instinct” is often very good. The results concur with this
conclusion, as evidenced by the fact that pilots were more likely to alter the current course without
a complete development of a plan in the non-performance altering case and much less so in the
unforeseen case. A number of comments revealed that in some cases pilots simply need a tool to
validate their plans and point out to them any options that they may have missed. A tool such as
this may have been helpful in the case of Swissair flight 111, which initially turned toward Boston
when an emergency was declared despite being closer to Halifax, Nova Scotia [7].

When determining the best landing site, as well as the best path to that site, a number of pilots
found the list of factors provided to be insufficient. Certainly, the factors mentioned are important,
however, some comments emphasized the reliance on outside sources. Once an emergency has been
declared, pilots work very closely with Air Traffic Control (ATC) to receive their input to determine
the most appropriate path. Pilots’ comments also indicated that they will seek advice from the
airline dispatcher in order to determine the most appropriate landing site. The scenario for which
the pilot has not had any training or prior experience garnered a number of additional comments.
These emphasized the interactive nature of the planning task by pointing out that the process must
include ATC, airline dispatcher, other crew members, and possibly the manufacturer.

Many comments addressed the role of the APA in the planning process. In addition to keeping
the workload as low as possible, many pilots do not want to view an APA-generated path as a
directive. Rather, they prefer to view it simply as one input into the process of developing their
own plan. This supports the result seen previously in the literature, in which nearly all participants
said that they would take the automated plan into account while re-evaluating their own plan. The
comments emphasized that the path planning task is complicated and that the automated tool may
not have the ability to gather a complete understanding of the situation at hand. These comments
imply that pilots would like to have an APA that makes critical information easy to access in a
timely manner, but which does not dictate actions for the pilot to follow.

Due to the uniqueness of each emergency, one respondent proposed an approach which would
likely be supported by other pilots. The pilot said, “You should be able to manipulate individual
variables and compare solutions.” The priority of certain criteria may change, depending on the
emergency, and pilots need to be able to indicate this to the APA. For instance, airport fire and
rescue services are more important in a fire emergency. Runway length may be more important
in a flap or landing gear malfunction. The recognition that there are a number of variables which
must be taken into account was echoed by a number of comments. Also, the ability to compare
alternatives was considered an important metric.

A fundamental requirement of an APA is that the pilots must trust it and must be willing to use it.
One pilot addressed this issue by saying that, “I must know how the automated plan is generated
to be able to trust its output. Once I have confidence in the APA planning process, I would be
more likely to trust its output, particularly in a time-critical emergency situation.” This sentiment
would surely be echoed by other pilots who will be hesitant to trust any tool with which they
disagree. It is these disagreements that provide the usefulness for an APA; if the generated plan
always agrees with the plan the pilot has in mind, then the tool has provided only a very limited
service. However, if the pilot and the tool disagree, the tool must be able to demonstrate to the
pilot that his plan can be improved upon. It must also be ensured that the pilot, working with
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Nonperformance Altering Performance Altering

Proximity in Time 0.21 0.19

Proximity in Distance 0.17 0.16

Runway Length 0.18 0.18

Weather Conditions 0.18 0.18

Crew Familiarity 0.10 0.11

Medical services 0.11 0.08

Airline Maintenance 0.05 0.10

Table 3.1: Resulting criteria weights based on survey results

the APA, does in fact generate a better plan than the pilot could on his own. This must be done
without causing the pilot to completely rely on the system through biasing or over-reliance [137].

3.7.1 Criteria Weighting

In order for an Automated Planning Aid to develop a recommended path, the automation must
be able to develop a prioritization among the possible landing sites. Such a prioritization may be
based on the minimization of a utility function, such as Equation 3.1.

U = C1 ∗
t

tmax
+C2 ∗

d

dmax
+C3 ∗

rl,max − rl
rl,max

+C4 ∗wwx +C5 ∗wcf +C6 ∗wmed +C7 ∗wrep (3.1)

In this equation, the seven parameters are: time required to land t, distance from the current
location d, runway length rl, weather conditions wwx, crew familiarity with the landing site wcf ,
medical services available wmed, and airline maintenance and repairs available wrep. The time t and
distance d are nondimensionalized by their maximum possible values given the aircrafts performance
tmax and dmax. The availability of medical services and airline maintenance are static attributes of
each airport which could be encoded on a scale from zero to one. The value for the crew familiarity
factor could also be assigned before a flight by the pilots. The weather factor must be determined
in real-time, based on the probability and severity of adverse weather conditions.

This leaves the determination of the criteria weights Ci. In the survey, each of the landing site
criteria were assigned a priority; high, medium, low, or not a consideration. For this analysis, each
of these options was assigned a value, three for ‘high’, two for ‘medium’, one for ‘low’ and zero for
‘not a consideration.’ The responses were summed based on the assigned values, giving a total for
each criteria. In order to normalize these values, each was divided by the sum of the total scores
for all criteria, as in 3.2. The subscripts of score in Equation 3.2 refer to the score assigned by
respondent r for criteria i. The resulting values for the criteria weights are shown in Table 3.1.

Ci =

∑

r=responses

scorer,i

∑

j=criteria

∑

r=responses

scorer,j
(3.2)
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This is just one possible utility function. There are certainly other criteria that could be considered.
For instance, one comment indicated that runway lighting and the availability of instrument landing
system equipment may also be taken into consideration. This survey has provided one possible
starting point for the relative weighting of these criteria. However, the determination of the most
appropriate weighting and utility function must be investigated further before it can be considered
for implementation.
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Chapter 4

Multi-resolution Motion Planning via
Wavelet-Based Cell Decompositions

According to the control hierarchy that we follow in this work, at the top level we need a geometric
path planner to construct an obstacle-free path. This path will later be time-parameterized to
generate a trajectory to be followed by the aircraft. In this chapter present a path- and motion
planning scheme to design such a path that is “multi-resolution,” both in the sense of representing
the environment with high accuracy only locally, and in the sense of addressing the vehicle kinematic
and dynamic constraints only locally. The proposed scheme uses rectangular multi-resolution cell
decompositions, generated efficiently using the wavelet transform. The wavelet transform is used
widely in signal and image processing, with emerging applications in autonomous sensing and
perception systems. The proposed motion planner enables the simultaneous use of the wavelet
transform in both the perception and in the motion planning layers of vehicle autonomy, thus
potentially reducing online computations. We prove rigorously the completeness of the proposed
path planning scheme and we provide numerical simulation results to illustrate its efficacy.

4.1 Introduction

Motion planning for for aerial and other vehicles has been extensively studied [51, 114]. However,
important issues such as dealing with uncertain, partially known, and/or dynamically changing
environments, and the satisfaction of vehicle kinematic and dynamic constraints are yet to be thor-
oughly and satisfactorily addressed, especially when considering additional constraints stemming
from the limited computational resources on-board the vehicle.

In this chapter, we present a fast multi-resolution motion planning scheme that guarantees the
satisfaction of the vehicle’s kinematic and dynamic constraints. To introduce the various inter-
related aspects of the proposed scheme, we will use the following terminology: We will use the term
path to refer to the locus of continuous motion of a point, and the term trajectory to refer to a
path parameterized by time. Depending on the context, we will use the term path to also refer to a
sequence of successively adjacent vertices in a graph. Finally, we will use synonymously the terms
workspace and environment to refer to a planar region over which the vehicle moves.

Multi-resolution path planning involves the representation of the vehicle’s environment with
different levels of accuracy. For example, the popular quadtree method [149, 104, 134], generates a
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planar cell decomposition consisting of small cell sizes that capture accurately obstacle boundaries,
and larger cell sizes that represent efficiently large areas in the free space. Other path planning
schemes that use multi-resolution cell decompositions have appeared, for instance, in [25]; in [92]
(triangular cells); in [142] (receding horizon path planning scheme using multi-resolution estimates
of object locations); in [111] (multi-resolution potential field); and in [178] (hierarchy of imaginary
encapsulating spheres for collision avoidance).

We consider planar cell decompositions such that the environment is represented with high accuracy
(i.e., using small cell sizes) in the agent’s immediate vicinity, and with lower accuracy in regions
farther away, similar to the multi-resolution grids considered in [25, 175]. Multi-resolution cell
decompositions are compact data structures that encode large environment maps, and thus enable
efficient online path- and motion planning. Furthermore, multi-resolution decompositions of the
environment capture naturally the graded levels of uncertainty about the environment as a function
of the distance from the current location of the agent. In other words, such decompositions encode
the notion that the uncertainty or incomplete knowledge about the environment is higher in regions
farther away from the vehicle’s current location.

The discrete wavelet transform (dwt) is a mathematical tool used widely in multi-resolution
signal processing [64, 145]. Applications of the dwt to vision-based navigation and vision-based
slam for autonomous vehicles have appeared recently in [120] (appearance-based vision-only slam);
in [93] and [50] (local feature extraction); and in [159] (stereo image processing). With the plethora
of available sensors, and in light of the fact that multiple sensors are typically used for autonomous
navigation [175], the wavelet transform may soon become the common standard for representing and
analyzing signals [54]. In this context, wavelet-based data representation for path planning problems
has been addressed recently in [187] (occupancy grids); in [183] (standardized representation of road
roughness characteristics); in [184] (terrain depiction for pilot situational awareness); and in [138]
(image registration for vision-based navigation).

In light of the ubiquitous use of the dwt in signal- and image processing, and its emerging applica-
tions in autonomous sensing and perception, it is natural to investigate the seamless integration of
sensing and path planning using multi-resolution wavelet analysis. To this end, we propose a path
planning scheme that directly uses a dwt representation of the environment. Applications of the
dwt in multi-resolution path planning schemes have appeared previously, for instance, in [174, 102]
(preliminary implementations of the proposed path planning scheme); in [136] (path refinement
based on successively finer approximations of a terrain map); and in [45, 163] (multi-resolution
schemes for vision-based path planning).

H-Cost Motion Planning: Motion planning schemes often involve a geometric path planner that
uses an abstract, discrete representation (e.g., graphs associated with cell decompositions) of the
workspace and deals with the satisfaction of task specifications such as obstacle avoidance. However,
the resultant geometric path may be found to be infeasible or unacceptably sub-optimal if the
vehicle’s kinematic and dynamic constraints are ignored. To address this issue, we introduced in [59]
a motion planning approach based on assigning costs, called H-costs, to multiple edge transitions in
the cell decomposition graph. These H-costs allow the vehicle’s kinematic and dynamic constraints
to be incorporated in the geometric path planner via the (implicit) construction of a so-called lifted
graph, which is closely related to the original cell decomposition graph. In this work, we discuss
a multi-resolution implementation of this H-cost motion planning approach, such that the overall
scheme is “multi-resolution,” both in the sense of representing the environment with high accuracy
only locally, and in the sense of considering the vehicle dynamical model for path planning only
locally.
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In summary, the proposed motion planning scheme consists of the following main elements: (a)
A wavelet-based multi-resolution cell decomposition algorithm that creates and modifies a graph
that represents the environment (see Section 4.2); (b) A local trajectory generation algorithm
called TilePlan that associates H-costs in the aforesaid cell decomposition graph to (implicitly)
construct a “partially” lifted graph (see [58, 57]); and (c) A discrete path planner that finds paths
in the “partially” lifted graph, which, in turn, correspond to trajectories that satisfy the vehicle’s
kinematic and dynamic constraints (see Section 4.4). The interactions between the various models
and methods involved in the proposed scheme are illustrated in Fig. 4.1: here, hollow arrows
indicate the creations and modifications of various models by the methods shown, whereas bold
arrows indicate the dependencies between the various models and methods shown. For example,
the hollow arrow from TilePlan to the “partially” lifted graph model indicates modification of
the edge transition costs of the latter.

The main contributions of this chapter are as follows. Firstly, we present a multi-resolution cell
decomposition technique that is completely encoded in the dwt coefficients of the environment
map. This approach allows for the development of highly integrated, efficient navigation and path
planning architectures, where the dwt coefficients are used as a common data structure both
for scene understanding and for motion planning. Secondly, we demonstrate one such integrated
approach by proposing a path planning scheme based on the aforesaid cell decompositions, and we
rigorously prove its completeness. To the best of our knowledge, such proofs of completeness are
absent from other similar multi-resolution path planning schemes [25, 175]. Finally, we discuss a
method of incorporating vehicle dynamic constraints in the multi-resolution path planning scheme
using the H-cost motion planning approach of [59]. The issue of consistency between the geometric
and dynamic planning layers is well-known in the robotics community [26]. To date, this problem
has been addressed by planning in the (high-dimensional) state space, instead of the workspace,
where the obstacles naturally lie. We show that, for mobile robotic applications, planning can
be restricted to the low-dimensional workspace. The overall motion planning scheme is thus an
important step in the development of an hierarchically consistent autonomous navigation and
motion planning system, i.e., one that guarantees the satisfaction of vehicle kinematic and dynamic
constraints while retaining the computational efficiency of discrete multi-resolution path planning.

The rest of this chapter is organized as follows. In Section 4.2, we describe the proposed wavelet-
based multi-resolution cell decomposition technique. In Section 4.3, we describe a path planning
scheme using this cell decomposition, and we prove its completeness. In Section 4.4, we discuss
the inclusion of vehicle dynamical constraints in the multi-resolution path planner via the H-
cost approach. In Section 4.5, we provide numerical simulation results illustrating the successful
operation of the overall motion planner.

4.2 Multi-resolution Cell Decompositions using the Discrete Wavelet
Transform

Cell decomposition is a common technique used in geometric path planning [51], that involves
partitioning the workspace into convex regions called cells. A graph is associated with this partition,
such that each cell corresponds to a unique vertex and each pair of geometrically adjacent cells
corresponds to a unique edge. The original path planning problem is thus transformed to the
problem of finding a path in this graph, which can be solved, for instance, by the A* algorithm [114].
In what follows, we introduce a multi-resolution cell decomposition technique based on the 2-D
discrete wavelet transform. We refer the reader to [64, 145] for further details on the dwt.

69



Models

Methods

Multi-resolution

Cell Decomposition

Graph

Vehicle

Dynamical Model

“Partially” Lifted 

Graph

Wavelet-based

Cell Decomposition TILEPLAN
Discrete

Path Planner

Environment Map
Control

Figure 4.1: Schematic illustration of the proposed motion planning scheme.

4.2.1 Multi-resolution cell decompositions

We define an image as a pair (R,F ), where R ⊂ R2 is a compact, square region, and F : R → R,
F ∈ L2(R), is an intensity map. We will assume that R =

[
0, 2D

]
×
[
0, 2D

]
, with D ∈ Z, and that

the image intensity map F is known at a finite resolution mf > −D, i.e., the function F is piecewise
constant over each of the square regions Smf ,k,`, for k, ` = 0, 1, . . . , 2D+mf − 1. We will assume,
without loss of generality, that mf = 0. In the context of path planning, the intensity map F may
represent, for instance, terrain elevation [136], a risk measure [174], or a probabilistic occupancy
grid [68, 187].

We assume that the least cell size of interest is 2−mf = 1, and we define a cell decomposition Ω
consisting of uniformly spaced square cells, each of size 1, i.e.,

Ω := {Smf ,k,` : k, ` ∈ {0, 1, . . . , 2D − 1}}.

The intention of the geometric path planner is to find a path in the graph associated with Ω.
However, the number of cells in Ω is 22D, which makes the graph search impractical when D is
large. To enable fast online computation, multi-resolution cell decompositions may be used to ap-
proximate large environment maps. Such decompositions correspond to graphs with significantly
fewer vertices, thus requiring lesser computational resources for path planning at each iteration.
Furthermore, such decompositions also capture naturally the vehicle’s sensing limitations by relax-
ing progressively, with increasing distance from the vehicle’s location, the accuracy at which the
intensities of cells in Ω are known.

Let am0,k,` and dpm,k,` be the dwt coefficients of F , where m0 ∈ Z is pre-specified, let A ⊂
{(m, k, `) ∈ Z3 : m0 ≤ m < 0, 0 ≤ k, ` ≤ 2D+m} be a set of triplets of integers, and let d̂pm,k,` be
defined by

d̂pm,k,` :=

{
dpm,k,` p = 1, 2, 3, and (m, k, `) ∈ A,
0 otherwise.
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(a) Original image (b) Approximation

Figure 4.2: Example of an image and its multi-resolution approximation.

Then the image (R, F̂ ), where F̂ is obtained by the reconstruction of am0,k,` and d̂pm,k,`, is called
the approximation of (R,F ) associated with the set A. Informally, an approximation is obtained
by neglecting certain detail coefficients in the dwt of F : the set A contains the indices of detail
coefficients that are considered “significant”. A specific approximation that is of interest in this
chapter is one that retains detail coefficients only in the immediate vicinity of the vehicle’s current
location (x0, y0) ∈ R and gradually discards them in regions farther away. To define precisely this
approximation, let % : Z → N be a “window” function that specifies, for each level of resolution, the
distance from the vehicle’s location up to which the detail coefficients at that level are significant.
The set Awin(x0, y0) of indices of significant detail coefficients is then defined by

Awin(x0, y0) :=
{

(m, k, `) : m0 ≤ m < 0,

b2mx0c − %(m) ≤ k ≤ b2mx0c+ %(m),

b2my0c − %(m) ≤ ` ≤ b2my0c+ %(m)
}
, (4.1)

where m0 ∈ Z. An example of an image and its approximation using (4.1) is shown in Fig. 4.2. In
this example, m0 = −10, (x0, y0) = (390, 449), and %(m) = 4 for each m0 ≤ m < 0.

4.2.2 Computing Cell Locations and Intensities

The cell decomposition Ωmr associated with (R, F̂ ) is a partition of R into square cells of different
sizes, such that F̂ is constant over each of the cells. In this section, we describe a procedure to
determine the locations, the sizes, and the values of F̂ over each of the cells in Ωmr.

In this work we use the Haar wavelet family, and the Haar scaling function satisfies the following
dilation equation [145]:

φ(t) = φ(2t) + φ(2t− 1). (4.2)
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The dilation equation (4.2) implies, for the 2-D case, that the square support of the scaling functions
Φm,k,` is exactly the union of the supports of Φm+1,k,`, Φm+1,k−1,`, Φm+1,k,`−1, and Φm+1,k−1,`−1.
Consequently, a map F is constant over the support of Φm,k,` if and only if the detail coefficients
of F at level m and at higher-resolution levels m+ 1,m+ 2, . . . are all zero. Furthermore, for the
Haar scaling function and wavelet, one may associate with each detail coefficient a regions in R2,
such that this coefficient affects the values of the map only in this region. Specifically, we make the
following association:

dpm,k,` ↔ Sm,k,` = 2−m ([k, (k + 1)]× [`, (`+ 1)]) , (4.3)

for each m0 ≤ m < mf = 0, where m0 ∈ Z is pre-specified.

Based on the preceding observations, we formulate the following Rules to determine the locations
and the sizes of cells in the cell decomposition Ωmr associated with a setA of indices of the significant
detail coefficients.

1) {Sm0,k̂,ˆ̀
: 0 ≤ k̂, ˆ̀< 2D+m0} ∈ Ωmr. If A is empty, then these cells form a uniform decompo-

sition.

2) {Sm+1,k̂,ˆ̀ : k̂ ∈ {2k, 2k+ 1}, ˆ̀∈ {2`, 2`+ 1}} ∈ Ωmr whenever (m, k, `) ∈ A. This Rule arises
from the fact that the support of the Haar scaling function at each resolution level is equal to
the union of the supports of the scaling functions at the next higher resolution level.

3) {Sm̂+1,k̂,ˆ̀ : k̂ ∈ {b2m̂−mkc − 1, b2m̂−mkc}, ˆ̀∈ {b2m̂−m`c − 1, b2m̂−m`c},m0 ≤ m̂ < m} ∈ Ωmr,

whenever (m, k, `) ∈ A. This Rule decomposes into squares non-convex regions that arise
when the indices of a detail coefficient at the level m is in A, but the indices of coefficients
associated with the same region (given by (4.3)) at all levels lower than m are not in A.

4) {Sm̂,k̂,ˆ̀ : k̂ = b2m̂−mkc, ˆ̀ = b2m̂−m`c, m0 ≤ m̂ ≤ m} /∈ Ωmr, whenever (m, k, `) ∈ A. This
Rule indicates that a cell, once decomposed, cannot belong to Ωmr.

Exclusions from Ωmr prescribed by Rule 4) take precedence over inclusions prescribed by Rule 3).
Note that the preceding Rules are valid only for the Haar system.

Figures 4.3 and 4.4 illustrate the application of the preceding Rules for the approximation associated
with A = {(−2, 0, 2), (−2, 3, 2), (−1, 3, 4), (−1, 4, 2), (−1, 4, 3), (−1, 5, 2), (−1, 6, 5)}. In Fig. 4.3(a),
the cells with dotted borders are due to Rule 1), and the cells with solid borders are due to the
Rule 2) for the indices with m = −2. The shaded cells in Fig. 4.3(b) illustrate the non-convex
regions that may arise due to non-zero coefficients at higher resolution levels, which need to be
decomposed using Rule 3). The shaded cells in Fig. 4.4(a) are those which arise twice: due to
Rule 2) for level m = −2 coefficients and due to Rule 3) for level m = −1 coefficients. Figure 4.4(b)
shows the final cell decomposition. After determining the elements of the multi-resolution cell
decomposition, i.e., the locations and sizes of all the cells, the adjacency relations between cells
can be determined by geometric arguments (cf. [102]). To calculate the cell intensities, we use
recursively the following relation:




F̂ (Sm+1,2k,2`)

F̂ (Sm+1,2k+1,2`)

F̂ (Sm+1,2k,2`+1)

F̂ (Sm+1,2k+1,2`+1)


 = 2m0E




2−mF̂ (Sm,k,`)
d1
m,k,`

d2
m,k,`

d3
m,k,`


 , (4.4)
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(a) Rule 2) for m = −2. (b) Rule 2) for m = −1.

Figure 4.3: Computations of cell locations and dimensions from A.

for 0 ≤ k, ` < 2D+m, with F̂ (Sm0,k,`) = 2m0am0,k,` for 0 ≤ k, ` < 2D+m0 , where E is a constant
matrix. The intensities of the cells due to Rule 2) for a triplet (m, k, `) ∈ A are given by (4.4). The
intensities of cells due to Rule 3) for a triplet (m, k, `) ∈ A, are each equal to F (Sm1,k1,`1), where
(m1, k1, `1) ∈ A is the triplet with the greatest m1 < m satisfying Sm,k,` ⊂ Sm1,k1,`1 . If no such
triplet exists, then the intensities of these cells are each equal to F (Sm0,k1,`1), where k1, `1 are the
unique indices satisfying Sm,k,` ⊂ Sm0,k1,`1 .

We re-emphasize that all information needed to completely define the cell decomposition Ωmr is
encoded in the set A, and it is straightforward to extract this information. Furthermore, the
expression (4.1) lends itself to a fast update of the set A in accordance with the changes in the
vehicle’s position in the environment, as we will demonstrate in Section 4.3.2.

4.3 Multi-resolution Path Planning

We denote by Ḡ = (V̄ , Ē) the graph associated with the cell decomposition Ω, such that each cell in
Ω corresponds to a unique vertex in V̄ . We will denote by cell(j; Ωmr) the cell in Ωmr associated with
a vertex j ∈ V̄ , and by vert(c; Ḡ) the vertex of Ḡ associated with a cell c ∈ Ωmr. Two vertices are
adjacent if the corresponding cells are geometrically adjacent, and Ē is the collection of all ordered
pairs (̄i, j̄) of vertices in V̄ , such that ī and j̄ are adjacent. In what follows, we will distinguish by
an overline symbols denoting vertices, paths, or functions associated with Ω or Ḡ. We introduce an
edge cost function ḡ : Ē → R+ that assigns to each edge of Ḡ a non-negative cost of transitioning
this edge.

For given initial and terminal vertices īS, īG ∈ V̄ , an admissible path π̄(̄iS, īG) in Ḡ is a finite
sequence (̄i0, . . . , īP̄ ) of vertices (with no repetition) such that {̄ik−1, īk} ∈ Ē for each k = 1, . . . , P ,
with ī0 = īS and īP = īG. For brevity, and when there is no ambiguity, we will henceforth suppress
the arguments in π̄. The cost J̄ (π̄) of an admissible path π̄ in Ḡ is the sum of costs of edges in π̄,
and the path planning problem is to find an admissible path π̄∗(̄iS, īG) with minimum cost.

Next, we associate with the multi-resolution cell decomposition Ωmr a graph G = (V,E) such that
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(a) Rule 3) for m = −1. (b) Overall decomposition.

Figure 4.4: Computations of cell locations and dimensions from A.

each cell in Ωmr corresponds to a unique vertex in V . Note that each vertex j ∈ V corresponds to
a set W (j, V ) ⊂ V̄ , and the collection {W (j, V )}j∈V is a partition of V̄ . Specifically:

W (j, V ) :=
{
j̄ ∈ V̄ : cell(j̄; Ω) ⊆ cell(j; Ωmr)

}
.

The multi-resolution cell decomposition graph G approximates the graph Ḡ by representing each
set of vertices W (j, V ) ⊂ V̄ with a single vertex j ∈ V . For the Haar wavelet, it can be shown that
for each j ∈ V ,

F̂ (cell(j; Ωmr)) =
1

|W (j, V )|
∑

j̄∈W (j,V )

F (cell(j̄; Ω)). (4.5)

Finally, two vertices i, j ∈ V are said to be adjacent in G, i.e., (i, j) ∈ E, if and only if there exist
ī ∈ W (i, V ) and j̄ ∈ W (j, V ) such that {̄i, j̄} ∈ Ē. We will denote by cell(j; Ωmr) the cell in Ωmr

associated with the vertex j ∈ V , and by vert(S;G) the vertex in G associated with the cell S ∈ Ωmr.

4.3.1 Path Planning Algorithm

We present an algorithm that finds iteratively an admissible path π̄ in Ḡ by first constructing multi-
resolution cell decompositions, then by finding paths in these multi-resolution cell decompositions,
and and then by moving along these paths. The proposed algorithm is a modification of the
multi-resolution path planning algorithm presented in [174] and these modifications ensure that
the proposed algorithm is complete.

We assume that F (cell(j̄; Ω)) ∈ [0, 1] for each j̄ ∈ V̄ , such that more favorable cells in the environ-
ment have a lower intensity, and such that cell(j̄; Ω) represents an obstacle if F (cell(j̄; Ω)) > 1− ε,
for some pre-specified ε ∈ (0, 1). We define the transition cost of an edge (̄i, j̄) ∈ Ē by

ḡ((̄i, j̄)) :=

{
λ1F (cell(j̄; Ω)) + λ2, F (cell(j̄; Ω)) ≤ 1− ε,
M, otherwise,

(4.6)

where λ1, λ2 ∈ (0, 1] and M � 2|V̄ | are constants.
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We denote by F̂n the approximation of the environment constructed at iteration n of the proposed
algorithm, byA(n) the associated set of detail coefficients, by Ωmr(n) the associated multi-resolution
cell decomposition, and by G(n) = (V (n), E(n)) the associated topological graph. We define the
goal vertex iG,n ∈ V (n) as the unique vertex that satisfies īG ∈W (iG,n, V (n)).

For each vertex j̄ ∈ V̄ , the proposed algorithm maintains an estimate KG(j̄) of the least cost of any
path in Ḡ from the vertex j̄ to the goal vertex īG, and a record KS(j̄) of the least cost of any path
in Ḡ from the initial vertex īS to the vertex j̄. The algorithm also associates with each vertex j̄ ∈ V̄
another vertex b(j̄) ∈ V̄ called the backpointer of j̄. At each iteration, the algorithm performs a
computation (Line 18 or Line 20 in Fig. 4.5) whose result is a unique vertex in V̄ . We refer to this
computation as a visit to this vertex, and we denot by j̄n the vertex visited at iteration n, with
j̄0 := īS. Finally, let jn := vert(cell(j̄n; Ωmr(n));G(n)).

An admissible path πn(jn, iG,n) in G(n) is a finite sequence (i0, . . . , iP (n)) of vertices (with no
repetition) in V (n) excluding b(j̄n) and excluding vertices in V (n) corresponding to cells in the
path from īS to j̄n. Note that this definition precludes cycles in the concatenation of the path
(j0, . . . , jn−1) with the path πn. We introduce an edge cost function gn : E(n)→ R+, which assigns
to each edge of G(n) a non-negative cost of transitioning this edge, defined by

gn((i, j)) :=

{
(λ1F̂j + λ2)|W (j, V (n))|, F̂j ≤ 1− ε,
M, otherwise,

(4.7)

where F̂j := F̂ (cell(j; Ωmr(n))). The cost J (πn) of the path πn is the sum of the costs of edges in
the path. Note that, by (4.5) and (4.7), the cost of an obstacle-free path in G(n) is less than or
equal to 2|V̄ |, and hence an admissible path πn in G(n) is obstacle-free if and only if J (πn) < M.

The proposed algorithm associates with each vertex j̄ ∈ V̄ a binary value Visited(j̄) that records
whether the vertex j̄ has previously been visited by the algorithm: at any iteration of the algorithm’s
execution, for each j̄ ∈ V̄ , Visited(j̄) = 0 indicates that the algorithm has never visited j̄ in any
previous iteration, whereas Visited(j̄) = 1 indicates that the algorithm has visited j̄ during a
previous iteration. The algorithm also maintains a cumulative cost J̄ (π̄) of the path π̄(̄iS, j̄n)
in Ḡ. The proposed multi-resolution path planning algorithm is described by the pseudo-code in
Fig. 4.5. Here x(j̄) and y(j̄) denote, respectively, the x and y coordinates of the center of cell(j̄; Ḡ),
and MR-Graph denotes the procedure described in Section 4.2.2 to obtain the cell decomposition
graph associated with a set of indices of significant detail coefficients.

Remark 4.1. The constrained optimization problem in Line 8 can be solved by an algorithm
that finds the K shortest paths in a graph. Such algorithms have been reported, for instance,
in [89]. We assume that the K shortest paths will have strictly increasing costs. This assumption
is not required for the algorithm’s successful execution, but it enables a concise statement of the
algorithm.

Remark 4.2. Due to Line 9, the cost of “back-tracking” is not added to the cumulative cost J̄ (π̄).
Also, it follows from (4.7) and Line 21 that KG(j̄) = 0 if and only if j̄ = īG.

We may now state the main result of this section as follows.

Proposition 4.1. The proposed algorithm is complete: if there exists an obstacle-free path in
Ḡ from īS to īG, then the algorithm finds an obstacle-free path in a finite number of iterations.
Otherwise, the algorithm reports failure after a finite number of iterations.

Proof. See [56].
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Multi-resolution Path Planning Scheme

procedure MR-Approx(j̄)

1: A ← Awin(x(j̄), y(j̄))

procedure Main

1: π̄ ← īS, j̄0 ← īS, n← 0, AtGoal← 0, J̄ (π̄)← 0
2: For each j̄ ∈ V̄ , Visited(j̄)← 0
3: while ¬AtGoal and J̄ (π̄) < M and KG(j̄n) < M do
4: b(j̄n)← j̄n−1

5: A(n)← MR-Approx(j̄n)
6: G(n)← MR-Graph(A(n))
7: if Visited(j̄n) = 1 then
8: π∗n ← arg min {J (π) : π obstacle-free in G(n)}, subject to J (π∗n) > KG(j̄n)
9: J̄ (π̄)← KS(j̄n)

10: else
11: π∗n ← arg min {J (π) : π obstacle-free in G(n)}
12: KS(j̄n)← J̄ (π̄)
13: Visited(j̄n)← 1
14: if π∗n does not exist then
15: if j̄n = īS then
16: Report failure
17: else
18: j̄n+1 ← b(j̄n)
19: else
20: j̄n+1 ← vert(cell(i1;G(n)); Ḡ)
21: KG(j̄n)← J (π∗n)
22: AtGoal ← (KG(j̄n) = 0),
23: π̄ ← (π̄, j̄n)
24: J̄ (π̄)← J̄ (π̄) + ḡ(j̄n, j̄n+1)
25: n← n+ 1
26: if J̄ (π̄) ≥M or KG(j̄n) ≥M then
27: Report failure

Figure 4.5: Pseudo-code for the proposed path planning algorithm.
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4.3.2 Efficient Updates of A(n) and G(n)

The set A(n) of the significant detail coefficient indices, and the associated multi-resolution cell
decomposition graph both depend on the vehicle’s current position. Consequently, both A(n) and
G(n) are updated (Lines 5–6 in Fig. 4.5) at each iteration of the algorithm. To enable faster
computations, we describe, in this section, a method to obtain A(n) incrementally from A(n− 1).
Specifically, we first compute the elements of the sets B1 := A(n) ∩ Ac(n − 1) and B−1 := A(n −
1)∩Ac(n), and we then evaluate A(n) = A(n− 1)∪B1\B−1. To this end, we observe that for each
j̄ ∈ V̄ , x(j̄) = bx(j̄)c+ 1/2. It follows that for every m ≤ 0,

b2mx(j̄n)c = b2m(bx(j̄)c+ 1/2)c. (4.8)

Next, we note that bx(j̄n)c = bx(j̄n−1)c + ∆x, where, at iteration n, ∆x = 1 if the vehicle moves
one cell to the right, ∆x = −1 if the vehicle moves one cell to the left, and ∆x = 0 otherwise. From
(4.8), it may be shown [57] that

b2mx(j̄n+1)c = bb2mx(j̄n)c+ 2m∆x + rmx c, (4.9)

where rmx := 2m (b2mx(j̄n)c+ 1/2)− b2mx(j̄n)c. Similarly,

b2my(j̄n+1)c = bb2my(j̄n)c+ 2m∆y + rmy c, (4.10)

where rmy := 2m (b2my(j̄n)c+ 1/2) − b2my(j̄n)c. The elements of the sets B1 and B−1 are then
determined from (4.9)-(4.10) as follows. We first define the scalars δx and δy by

δα :=




−1, 0 > 2m∆α + rmα ,

0, 0 ≤ 2m∆α + rmα < 1,
1, 1 ≤ 2m∆α + rmα ,

for α ∈ {x, y}, (4.11)

and, for p ∈ {−1, 1}, we define the sets Bm,xp and Bm,xp by

Bm,xp := {(m, k, `) : k = b2mx(j̄n)c+ pδx,

b2my(j̄n)c − %(m) ≤ ` ≤ b2my(j̄n)c+ %(m)} ,
Bm,yp := {(m, k, `) : ` = b2my(j̄n)c+ pδy,

b2mx(j̄n)c − %(m) ≤ k ≤ b2mx(j̄n)c+ %(m)} .

Then the sets B−1 and B1 are given by the following equation:

Bp =
⋃

α∈{x,y}

⋃

m0≤m<0

Bmαp , p ∈ {−1, 1}. (4.12)

The advantage of computing A(n) using the modified procedure Mod-MR-Approx described in
Fig. 4.6 instead of the procedure MR-Approx, is that the sets B−1 and B1 have significantly fewer
elements than A(n). More precisely, the number of elements in the set A(n) is O(%̄2), whereas the
numbers of elements in the sets B−1 and B1 are both O(%̄), where %̄ := maxm0≤m≤0{%(j)}.
Figures 4.7(a) and 4.7(b) show data that confirm the preceding observations: these figures show the
ratio of the execution time required by the combination of the procedures MR-Approx and MR-
Graph to the execution time required by the combination of the procedures Mod-MR-Approx
and Mod-MR-Graph for computing the graph G(n). The data shown in Figs. 4.7(a) and 4.7(b)
are averages computed over 30 simulations. As it is evident from these results, the multi-resolution
path planning algorithm with the modified procedures of construction of A(n) and G(n) executes
up to 10 times faster than that with the original procedures.
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Recomputation of Multi-resolution Cell Decomposition

procedure Mod-MR-Approx(A)

1: Compute B−1 and B1 with (4.12)
2: A(n)← A(n− 1) ∪ B1\B−1

procedure Mod-MR-Graph(Ωmr(n− 1),B−1,B1)

1: Ωmr
−1 ← ∅, Ωmr

1 ← ∅
2: for all (m, k, `) ∈ B1 do
3: Ωmr

1 ← Ωmr
1 ∪ {Sm+1,k̂,ˆ̀ : k̂ ∈ K, ˆ̀∈ L}

4: Ωmr
−1 ← Ωmr

−1 ∪ {Sm̂,k̂,ˆ̀ : k̂ = b2m̂−mkc, ˆ̀= b2m̂−m`c, m0 ≤ m̂ ≤ m}
5: for all (m, k, `) ∈ B−1 do
6: Ωmr

−1 ← Ωmr
−1 ∪ {Sm+1,k̂,ˆ̀ : k̂ ∈ K, ˆ̀∈ L}

7: Ωmr
1 ← Ωmr

1 ∪ {Sm,k,`}
8: Ωmr(n)← Ωmr(n− 1) ∪ Ωmr

1 \Ωmr
−1

Figure 4.6: Pseudo-code for the procedure Mod-MR-Graph.

4.4 Multi-resolution H-Cost Motion Planning

It has been noted in several previous works [185, 146, 113], including ours [59], that single-edge
transition costs in cell decomposition graphs cannot capture adequately the vehicle’s kinematic and
dynamic constraints. In light of this observation, we introduced in [59] a motion planning approach
based on assigning costs to multiple edge transitions (called histories) in cell decomposition graphs.

Consider the multi-resolution cell decomposition graph1 G = (V,E) at any iteration of the path
planning algorithm previously discussed. To formalize the concept of cell histories, we define, for
every integer H ≥ 0, the set

VH := {(j0, . . . , jH) : {jk−1, jk} ∈ E, k = 1, . . . ,H,

jk 6= j`, for k, ` ∈ {0, . . . ,H}, with k 6= `} .

An element of VH+1 is called an H-history . Let I ∈ VH and denote by [I]k the kth element of
this (H + 1)-tuple, and by [I]`k the tuple ([I]k, [I]k+1, . . . , [I]`), for k < ` ≤ H + 1. We associate
with each H a non-negative cost function gH : VH+1 → R+, and state a shortest path problem with
transition costs defined on histories as follows.

Problem 4.1 (H-Cost Shortest Path Problem). Let H ≥ 0, and let iS, iG ∈ V be initial and goal
vertices such that any admissible path in G contains at least H + 1 vertices. The H-cost of an
admissible path π = (j0, . . . , jP ) in G is defined by

JH(π) :=

P∑

k=H+1

gH ((jk−H−1, jk−H , . . . , jk)) . (4.13)

Find an admissible path π∗ in the graph G such that JH(π∗) ≤ JH(π) for every admissible path π
in G.

1For the sake of clarity, we drop from the notation of the cell decomposition graph the explicit reference to the
nth iteration.
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Figure 4.7: Sample data illustrating benefits of incremental updates to A and G.
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Problem 4.1 may be transformed into an equivalent standard shortest path problem on a lifted
graph GH . The vertices of GH are the elements of VH , and the edge set EH of the lifted graph GH is
the set of all ordered pairs (I, J), such that I, J ∈ VH , with [I]k = [J ]k−1, for every k = 2, . . . ,H+1,
and [I]1 6= [J ]H+1. For given initial and terminal vertices iS, iG ∈ V , an admissible path Π in GH
is a finite sequence (J0, . . . , JQ) of vertices (with no repetition) such that (Jk−1, Jk) ∈ EH , for each
k = 1, . . . , Q, with [J0]1 = iS, and [JQ]H+1 = iG. Note that every admissible path Π = (J0, . . . , JQ)
in GH corresponds uniquely to an admissible path π = (j0, . . . , jP ) in G, with P = Q + H and
[Jk]` = jkH+`−1, for each k = 0, 1, . . . , Q− 1, and JQ = (jP−H , . . . , jP ).

We introduce a non-negative cost function g̃H : EH → R+ defined by

g̃H((I, J)) := gH

(
([I]H+1

1 , [J ]H+1)
)
,

for every pair (I, J) ∈ EH . It follows that Problem 4.1 is equivalent to the standard shortest path
problem on GH , where the cost of an edge (I, J) ∈ EH given by g̃H((I, J)). However, solving the
H-cost shortest path problem by first transforming it to the standard problem is computationally
intensive, because |GH | is large and grows exponentially with H.

In [57], we discuss an efficient and flexible algorithm for solving the H-cost shortest path problem, as
well as a motion planning framework that incorporates vehicle kinematic and dynamic constraints
by obtaining H-costs from a local trajectory generation algorithm called the tile motion planner
(TilePlan). A precise statement of the tile motion planning problem and its solution based on
model predictive control are available in [57]. Briefly, we specify TilePlan as an algorithm that
takes as the input a sequence of cells and an initial state, and returns as the output a control input
(if it exists) that enables the vehicle’s traversal through the given sequence of cells from the given
initial state.

The overall motion planner searches for H-cost shortest paths in the multi-resolution cell decompo-
sition graphs described in Section 4.3. However, it is unnecessary and computationally expensive
to consider history-based transition costs on the entire multi-resolution cell decomposition graph
due to the following reasons: (a) large cells in Ωmr correspond to coarse information about the
environment in the regions associated with those cells, and hence trajectories passing through large
cells will be refined and/or replanned in future iterations, and (b) curvature-constrained paths are
guaranteed to exist [28] in rectangular channels wider than a certain threshold width (compared to
the upper bound on curvature).

In light of the preceding observations, and in keeping with the multi-resolution idea of using high-
accuracy information only locally, the proposed motion planner searches for H-cost shortest paths
on a “partially” lifted graph, such that the vehicle dynamical constraints are considered (via history-
based transition costs) only locally. To state precisely this notion of a “partially” lifted graph, we
define, for each J = (j0, . . . , jH) ∈ VH , and each L ∈ {1, . . . ,H − 1}, the projection PL(J) of J
onto VL, by PL(J) := (j0, . . . , jL) ∈ VL. For each L ∈ {1, . . . ,H}, we define the set UL ⊆ VL by

UL :=
{

(j0, . . . , jL) ∈ VL : size(cell(jk)) < d̄, (4.14)

for k = 0, . . . , L− 1, and size(cell(jL)) ≤ d̄
}
,

where d̄ is pre-specified, and size(cell(jk)) denotes the size of the cell that corresponds to the vertex
jk in the multi-resolution cell decomposition graph. By (4.14), the set UL consists of (L+ 1)-tuples
of vertices in the cell decomposition graph such that the sizes of the first L cells in each (L+1)-tuple
are strictly lower than d̄, whereas the size of the (L+1)th cell is at most d̄. This definition alludes to
the previously stated notion of including in the “partially” lifted graph only the cells small enough
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Multi-resolution Motion Planning

1: i← vert(cell(̄iS; Ω);G), AtGoal← 0
2: while ¬AtGoal do
3: Define V≤d̄ :=

{
j ∈ V : size(cell(j)) ≤ d̄

}
,

V>d̄ :=
{
j ∈ V : size(cell(j)) > d̄

}

4: Find the set of boundary vertices Vbd defined by

Vbd :=
{
j ∈ V : ∃ i1 ∈ V≤d̄, i2 ∈ V>d̄
such that (i1, j) ∈ E, (i2, j) ∈ E}

5: For each j ∈ Vbd, define K(j) := minimum cost of a path in G from j to the goal vertex iG
6: Define V S

H := {I ∈ ṼH : [I]1 = i}, V G
H := {I ∈ ṼH : [I]last ∈ Vbd}

7: Find the shortest path Π∗ = (I0, . . . , IP ) in G̃H from any vertex IS ∈ V S
H to any vertex in

IG ∈ V G
H , with terminal penalty K([IG]last)

8: i← [I0]2
9: if cell(i; Ωmr) = cell(̄iG; Ω) then

10: AtGoal← 1

Figure 4.8: Pseudo-code describing the overall motion planner.

for the curvature constraints to be significant. The “partially” lifted graph G̃H = (ṼH , ẼH) is then
defined by

ṼH :=
⋃H
L=1UL\PL(UH),

ẼH :=
⋃H
L=1

{
(I, J) : I ∈ UL, J ∈ UL−1, [I]L1 = J

}
.

The overall motion planner then operates as follows. At each iteration, a multi-resolution cell
decomposition is first constructed. The cells in this decomposition may be categorized into two
classes: cells with sizes at most d̄, and cells with sizes greater than d̄. We define boundary cells as the
cells of sizes at most d̄ that have at least one neighboring cell in each of the two previously defined
classes (see Fig. 4.17(a)). A multiple-source, single-goal implementation of the A∗ algorithm may
be used to determine the costs of optimal paths in the multi-resolution cell decomposition graph
from the vertices associated with each of the boundary cells to the goal vertex. These costs are
then used as terminal penalty costs in the execution of the H-cost path planner on the “partially”
lifted graph previously discussed. This H-cost path planner returns a sequence of cells from the
current location to one of the boundary cells, along with an admissible vehicle control input that
enables the traversal of this sequence of cells. The vehicle state is advanced by traversing one cell
using this control input, and the process is repeated until the vehicle reaches the goal.

The pseudo-code for the overall motion planner is provided in Fig. 4.8. Note that Line 7 of
Fig. 4.8 involves local trajectory generation (TilePlan) for the particular vehicle dynamical model
considered. We refer the reader to [59] for further details on finding the shortest path in the lifted
graph in conjunction with TilePlan.

81



s

g

(a) Map of the environment. (b) Resultant path.

Figure 4.9: Illustration of the multi-resolution path planning algorithm’s ability to recover from a
cul-de-sac: the red-colored cells were multiply visited.

4.5 Simulation Results and Discussion

In this section, we present numerical simulation results of implementations of the proposed multi-
resolution path- and motion planning schemes. All of these simulations were implemented in
the matlabr environment, on a computer with an Intelr CoreTM i5-2410M 2.3 GHz CPU and
4 GB RAM.

4.5.1 Completeness of the Path Planning Algorithm

First, we focus on the path planning algorithm, which does not consider vehicle dynamics. Fig-
ures 4.9 and 4.10 illustrate a simulation example demonstrating the capability of the multi-resolution
path planning scheme to recover from a cul-de-sac. Although this situation does not apply for air-
craft navigation problems, nonetheless, this simulation “illustrates” the theoretical completeness of
the proposed path planner.

As shown in Fig. 4.9(a), we designed the shape of the obstacle and the location of the goal to lead the
multi-resolution path planning algorithm into the cul-de-sac in the “central” region of the obstacle,
whereas the goal can only be reached from the “top” region of the obstacle. Figure 4.10 illustrates
some intermediate iterations in the execution of the multi-resolution path planning algorithm on
this environment. Specifically, the algorithm leads the vehicle into the cul-de-sac but in later
iterations, it successfully recovers and finds a path to the goal.

4.5.2 Optimality of the Path Planning Scheme

Whereas we can guarantee the algorithm’s capability of finding a feasible path whenever such a
path exists, we do not yet have theoretical results on the optimality of the resultant path. Here, we
present numerical simulation results concerning the optimality of paths resulting from the multi-
resolution path planning algorithm.
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(a) An iteration before the cul-de-sac is explored. (b) The iteration at which the cul-de-sac is en-
countered.

(c) The location of the vehicle at the iteration
illustrated in Fig. 4.10(b).

(d) The iteration at which the algorithm finds a
channel that contains a path to the goal.

Figure 4.10: Intermediate iterations in the multi-resolution path planning algorithm’s implemen-
tation for the environment shown in Fig. 4.9(a).
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Table 4.1: Window function values
m -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

%1 1 1 2 2 2 2 2 2 3 3 4 4
%2 1 2 2 3 4 5 6 7 7 7 8 8
%3 3 3 5 5 6 7 8 8 9 9 10 10
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Figure 4.11: Histogram showing the distribution according to percentage sub-optimality of simu-
lated cases, for different window functions.

We compared the cost of the resultant paths with the cost of an optimal path found by executing
the A∗ algorithm on the finest level decomposition graph Ḡ. For these comparative simulations, we
chose an environment represented by the image shown in Fig. 4.2(a), with three different “window”
functions, as described in Table 4.1. The window %1 retains very few significant detail coefficients
and results in a multi-resolution cell decomposition with high fidelity representation of the environ-
ment in a very small neighborhood of the vehicle’s location, whereas the windows %2 and %3 result in
decompositions with progressively larger neighborhoods of high-fidelity representations. We scaled
the environment with D = 6, 7, 8, 9, and for each value of D, we performed 30 simulations with the
initial and goal cells chosen randomly for each simulation. We executed the multi-resolution path
planning algorithm proposed in Section 4.3 with each window function for each simulation (a total
of 120 simulations for each window function), with m0 = −D.

Figure 4.11 shows the distribution of the number of simulated cases according to percentage sub-
optimality, where the cost of a path in Ḡ by (4.6) was defined with λ1 = 1 and λ2 = 0.1. For all
three window functions, the sub-optimality in most cases is under 20%, with window %3 resulting in
the most cases of low sub-optimality, as intuitively expected. Overall, Fig. 4.11 shows that very few
cases of extremely high sub-optimality occurred: these cases typically occurred when the algorithm
encountered cul-de-sacs.

Figure 4.12 shows the distribution of the number of simulated cases according to sub-optimality for
different values of the cost function parameters λ1 and λ2, all with the window function %1. From
equation (4.6), note that λ1 simply scales the image intensity, whereas λ2 is a constant penalty on
each edge in the path. As shown in Fig. 4.12, the proposed multi-resolution path planner results in
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Figure 4.12: Histogram showing the distribution according to percentage sub-optimality of simu-
lated cases, for different values of λ2 with λ1 = 1.

paths of low sub-optimality more often2 for small values of λ2. This behavior occurs due to the fact
that, for each edge (i, j) ∈ E(n), the expression (4.7) involves a worst-case estimate3 of the number
of vertices of Ḡ in the path in Ḡ corresponding to the path searched in G(n). Furthermore, by (4.7),
the multi-resolution path planner’s estimate of the cost of the actual path becomes progressively
more conservative with increasing values of λ2.

4.5.3 Performance of the Path Planning Scheme

Figure 4.13 shows the comparison of the (average) number of vertices in the graphs associated
with the multi-resolution cell decompositions corresponding to different window functions and with
the finest-level cell decomposition Ω. As expected, the window function %3, which has the largest
neighborhood of high fidelity approximation of the environment (i.e., a large number of signifi-
cant detail coefficients), results in cell decompositions with the largest number of cells among the
three multi-resolution decompositions. Note, however, that the numbers of vertices in each of the
three multi-resolution decompositions are of the same order of magnitude, whereas the numbers
of vertices in Ḡ are one to three orders of magnitude greater than those in the multi-resolution
cell decomposition graphs. For instance, with D = 9, the number of vertices in Ḡ was 262, 144,
whereas the average number of vertices was only 561 for the multi-resolution cell decomposition
with window %1. In this context, one may recall that the time complexity of the execution on a
sparse graph G = (V,E) of Dijkstra’s algorithm and the A∗ algorithm is O(|V | log |V |), whereas
the memory complexity is O(|V |) [114].

2Note that Fig. 4.12 shows a large number of cases of low sub-optimality for all values of λ2.
3This worst-case estimate is necessary for completeness of the path planner.
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Figure 4.13: Comparison of the number of vertices in the multi-resolution cell decomposition graphs
with different window functions and with the finest-level cell decomposition Ω.

4.5.4 Comparisons with Other Multi-resolution Path Planners

In this section we present a comparison between the proposed multi-resolution motion planning
scheme and some of the standard multi-resolution planners reported in the literature (e.g. [25, 178,
175]). The comparison will be based on the numbers of vertices and edges of the resulting graph,
as the main objective of all multi-resolution planners is to provide graph representations of the
environment with low complexity. These graphs are then searched using standard algorithms such
as the A∗ algorithm. This allows a fair comparison of the available multi-resolution motion cell
decompositions, as the particular search algorithms of the resulting graph are the same across all
such schemes.

The multi-resolution approximations of the environment reported in the literature belong to either
of the following two broad classes: those governed primarily by the environment map, and those
governed primarily by the vehicle’s location in the environment. The former ones (such as those
based on quadtree decompositions [104]) ensure that the resulting path will be entirely obstacle-free,
but they tend to create larger graphs. The latter methods (e.g. [25]) result in smaller graphs, but
obstacle-free cells are ensured only in the immediate vicinity of the vehicle’s location, and replanning
of paths is necessary as the vehicle moves through the environment. The main disadvantage of
multi-resolution planners that use such vehicle location-dependent decompositions is that they are
prone to a lack of completeness. The proposed approach belongs to the second class of planners,
but we provide a guarantee of its completeness.

Table 4.2 provides a qualitative comparison between the proposed work and the various multi-
resolution motion planning schemes reported in the literature.

To illustrate quantitatively our claim (echoed also in [25]) that environment-dependent cell decom-
positions usually consist of significantly more cells than vehicle location-dependent cell decompo-
sitions, we chose three environment maps: a terrain-like environment similar to Fig. 4.2(a), an
environment consisting of a small number of large obstacles, and an environment consisting of a
large number of small obstacles (see Fig. 4.14). We used the basic quadtree decomposition described
in [104] as the basic example of an environment-dependent multi-resolution cell decomposition. Fig-
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Table 4.2: Comparisons between various multi-resolution motion planners.

Decomposition depends on Completeness
Dynamical con-
straints

Ref. [104] Environment map Yes No
Ref. [134] Environment map Yesa No
Ref. [178] Environment map Yesa No
Ref. [92] Environment map Yesa No
Ref. [25] Vehicle location Noa No

Ref. [111] Vehicle location Noa No

Ref. [142]
Environment map and vehicle
location

Noa Yesb

Ref. [175] Vehicle location Noa Yes
Proposed Vehicle location Yes Yes

a]Not addressed. b]Dynamical constraints addressed separately from high-level path planning.

ure 4.15 shows a comparison of the number of vertices in the cell decomposition graphs arising from
this quadtree decomposition, using different thresholds4 and levels of decomposition, against those
arising from the proposed wavelet-based decomposition, the latter using different window functions.

The number of cells from the environment-dependent quadtree decomposition for the environment
with a sparse obstacle distribution is an order of magnitude larger than that obtained by the pro-
posed vehicle-dependent decomposition. Improvements to environment-dependent decompositions,
such as allowing for large “gray” cells, can reduce the number of vertices by an order of magni-
tude [104], and hence for this environment with sparse obstacles, we may consider the two schemes
of decomposition to be equally efficient. However, for the terrain-like environment, where cell in-
tensities take values in the interval [0, 1] (as opposed to binary values in the previous case), the
difference in the number of cells is up to three orders of magnitude. A similar observation holds
true for the highly cluttered environment (Fig. 4.14(b)). Such a large difference in the number of
vertices in the cell decomposition graph may render infeasible the implementation of environment-
dependent decompositions (especially for large environments) for on-board computing systems with
limited processing and memory resources.

Cell decompositions governed by the vehicle’s location in the environment are numerically more
efficient. However, as the corresponding graph changes with the vehicle’s motion, the completeness
of the overall path planning scheme is not guaranteed a priori, even though the graph search
algorithm used at each iteration may be complete. Specifically, the path planner can get trapped
in loops, where it visits a certain sequence of cells ad infinitum.

In addition to showing completeness, the most significant difference of our work compared to other
similar works on multi-resolution path planning in the literature is the systematic incorporation of
vehicle kinematic/dynamic constraints in path planning. In particular, we note in the third column
of Table 4.2 that most of the other works do not address vehicle kinematic/dynamic constraints.
Reference [142] discusses a receding horizon scheme for incorporating vehicle dynamical constraints,
but this scheme is disconnected from the high-level discrete path planner. Consequently, there is
no consistency between the two levels of planning (i.e., a guarantee that the path found by the

4The threshold τ , applicable for the terrain-like environment map, governs the quadtree decomposition as follows:
a cell is decomposed further if and only if the difference in the maximum and minimum intensities of pixels within
that cell exceeds τ .
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(a) Sparse, large obstacles. (b) Cluttered, small obstacles.

Figure 4.14: Environment maps used for comparative analysis.
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Figure 4.15: Comparison in the numbers of vertices of the resultant cell decompositions of the
proposed approach against the quadtree decomposition.
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Figure 4.16: Result of motion planning simulation using the aircraft navigational model. The blue
curve corresponds to the resultant state trajectory, while the channel of cells in black is the result
of executing A* algorithm (without vehicle dynamical constraints). The initial position is at the
top left corner.

high-level planner can be feasibly traversed by the vehicle). This issue is addressed in this chapter
via the H-cost motion planning approach discussed in Section 4.4. In [59], we have also provided
extensive comparative analysis establishing the superiority of the H-cost approach using uniform
cell decompositions over state-of-the-art randomized sampling-based algorithms.

4.5.5 Multi-resolution Motion Planning Example

To illustrate a typical application of the overall multi-resolution motion planning scheme that
incorporates the vehicle dynamic constraints, we consider the problem of navigating an aircraft
amongst a topographic relief of varying elevation. The equations of motion and the implementation
of a local trajectory generation algorithm for this vehicle are described in detail in [57].

Figure 4.16 shows the result of the numerical simulation of the proposed motion planner for the
aircraft navigational model. The aircraft speed was assumed to be constant, and the control input
is the heading angle, which is controlled by the bank angle. To show the flexibility of the algorithm
in incorporating dynamic constraints, an asymmetric bound on the bank angle control input was
assumed (say, owing to an aileron failure [21]) as follows: φmin = −45◦ and φmax = 20◦. The
objective was to minimize a cost defined on the environment (indicated by regions of different
intensities in Fig. 4.16, where the darker regions correspond to higher costs).

Figure 4.17 illustrates an intermediate iteration of this simulation example. Figure 4.17(a) shows the
cells of size at most d̄, with the boundary cells indicated in red. The sequence of cells outlined in blue
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(a) Local perspective: the vehicle’s configuration is indicated in
red.
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(b) Global perspective.

Figure 4.17: Illustration of an intermediate iteration of the overall motion planner.

90



and the blue-colored curve within this cell sequence are the results of the H-cost motion planner.
The yellow-colored cells indicate the vertices explored during the H-cost search. Figure 4.17(b)
shows the overall multi-resolution cell decomposition at the same iteration. The blue-colored cells
indicate the optimal path to the goal from the boundary cell chosen by the H-cost motion planner.
The blue-colored curve in Fig. 4.17(b) indicates the geometric path traversed by the vehicle in
previous iterations.
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Chapter 5

Optimal Synthesis of the Asymmetric
Sinistral/Dextral Markov-Dubins
Problem

5.1 Introduction

In this chapter, we consider the problem of finding curvature-constrained, planar paths of minimum-
length with prescribed positions and tangents when the lower and upper bounds of the curvature are
not necessarily equal. The motivation for this problem stems from vehicle navigation applications
when the maneuverability of the vehicle when taking a left or a right turn is asymmetric. A typical
case would be an aircraft with a damaged aileron as shown in [67]. Henceforth, we shall refer to this
generalization of the standard MD problem as the Asymmetric, Sinistral/Dextral1 Markov-Dubins
problem (ASDMD for short). We formulate the ASDMD problem as a minimum-time problem,
and we investigate its (time-) optimal synthesis, that is, a) we characterize a family of extremal
controls that is sufficient for optimality; b) we provide a state-feedback minimum-time control
scheme; and finally c) we compute analytically the level sets of the minimum-time. Additionally,
the synthesis problem of the ASDMD when the tangent of the curve at the terminal position is
free is also considered, leading us to the analytic characterization of the set of points that can be
reached by curves that satisfy asymmetric curvature constraints.

These Dubins paths can be used as geometric path primitives in the case there are no obstacles. We
will see in later chapters how these Dubins paths (or suitable modifications thereof) can be used to
generate time-optimal paths or (after time-parameterization) as initial guesses for a higher-fidelity
trajectory optimizer.

5.2 Kinematic Model and Problem Formulation

We consider a vehicle whose motion is defined by the following kinematic equations

ẋ = cos θ, ẏ = sin θ, θ̇ = u/ρ, (5.1)

1The term sinistral (dextral) means “inclined to left (right)” [1].
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where (x, y) are the Cartesian coordinates of a reference point of the vehicle, θ is the direction of
motion of the vehicle, u is the control input and ρ is a positive constant. We assume that the set
of admissible control inputs U consists of all measurable functions u over [0, T ], where t > 0, with

u ∈ Uδ
△
= [−δ, 1], where δ ∈ (0, 1]. If we let ̺

△
= ρ/δ, then it follows that ρ and ̺ are the minimum

turning radii for counterclockwise and clockwise turns, respectively. The case Uδ = [−1, δ] can be
treated similarly. We call the system described by (5.1) and input value set Uδ the asymmetric,
sinistral/dextral Isaacs-Dubins (ASDID) car.

It is a well-known fact that the standard ID car is completely controllable [170]. Next, it is shown
that the ASDID car is also completely controllable. The controllability of the ASDID is established
by proving that the equations (5.1) with input value set U ′

δ = [−δ, δ] ⊂ U define a completely
controllable system. It suffices to note that the system (5.1) with input value set U ′

δ is the standard
ID car with minimum turning radius ̺ (for both left and right turns), which is a completely
controllable system.

It is worth-noting that the assumption that δ ∈ (0, 1], which guarantees that 0 is an interior of the
input value set, can be actually relaxed, and it can be assumed instead that δ ∈ [0, 1] (in this case
the vehicle cannot take right turns). A proof of the complete controllability in this case, which is
based on solely geometric arguments, can be found in [17].

Next, we formulate the following minimum-time problem with fixed initial and terminal boundary
conditions for the system (5.1).

Problem 5.1. Given the system described by equations (5.1) and the cost functional

J(u) =

∫ Tf

0
1 dt = Tf , (5.2)

where Tf is the free final time and x : [0, Tf ] 7→ R2×S1 with x = (x, y, θ) is the trajectory generated
by the control u ∈ U , determine the control input u∗ ∈ U such that

i) The trajectory x∗ : [0, Tf ] 7→ R2 × S1 generated by the control u∗ satisfies the boundary
conditions

x∗(0) = (0, 0, 0), x∗(Tf) = (xf , yf , θf). (5.3)

ii) The control u∗ minimizes the cost functional J(u) given in (5.2).

To show the existence of an optimal solution to Problem 5.1, one can apply Filippov’s theorem on
minimum-time problems with prescribed initial and terminal states [46], leading to the following
proposition.

Proposition 5.1. The minimum-time Problem 1 with boundary conditions (5.3) has a solution
for all (xf , yf , θf) ∈ R2 × S1.

5.3 Analysis of the ASDMD Minimum-Time Problem

In this section, we characterize the structure of the optimal paths using a similar approach as
in [170, 173]. To this end, consider the Hamiltonian H : R2 × S1 × R3 7→ R of Problem 5.1, which
is defined by

H(x, p, u) = p0 + p1 cos θ + p2 sin θ + p3u/ρ, (5.4)

94



From Pontryagin Maximum Principle (PMP), it follows that if x∗ is a minimum-time trajectory
generated by the control u∗, then there exists a scalar p∗0 ∈ {0, 1} and an absolutely continuous
function p∗ : [0, Tf ] 7→ R3, where p∗ = (p∗1, p

∗
2, p

∗
3), known as the costate, such that

i) ‖p∗(t)‖+ |p∗0| does not vanish for all t ∈ [0, Tf ],

ii) p∗(t) satisfies for almost all t ∈ [0, Tf ] the canonical equation ṗ∗ = −∂H(x∗, p∗, u∗)/∂x, which
for the system (5.1) reduces to

ṗ∗1 = 0, ṗ∗2 = 0, ṗ∗3 = p∗1 sin θ
∗ − p∗2 cos θ

∗, (5.5)

iii) p∗(Tf) satisfies the transversality condition associated with the free final-time Problem 5.1

H(x∗(Tf), p
∗(Tf), u

∗(Tf)) = 0. (5.6)

Because the Hamiltonian does not depend explicitly on time, it follows from (5.6) that

H(x∗(t), p∗(t), u∗(t)) = 0, (5.7)

for almost all t ∈ [0, Tf ], which furthermore implies, that

−p∗0 = p∗1(0) cos θ
∗ + p∗2(0) sin θ

∗ + p∗3u
∗/ρ. (5.8)

Furthermore, the optimal control u∗ satisfies

H(x∗(t), p∗(t), u∗(t)) = min
v∈[−δ,1]

H(x∗(t), p∗(t), v), (5.9)

for almost every t ∈ [0, Tf ]. It follows that

u∗(t) =











+1, if p∗3(t) < 0,

v ∈ [−δ, 1], if p∗3(t) = 0,

−δ, if p∗3(t) > 0.

(5.10)

Using similar arguments as in [170, 173] one can show the following proposition.

Proposition 5.2. The optimal control u∗ of Problem 5.1 belongs necessarily to U∗, where

U∗ △
= {{u±, 0, u±}, {u±, 0, u∓}, {u±, u∓, u±}}, u+

△
= 1, u−

△
= −δ. (5.11)

Proposition 5.2 implies that the time-optimal paths of Problem 5.1 are necessarily concatenations
of at most three segments, namely two bang arcs denoted by b− (along which u∗ = −δ) and b+

(along which u∗ = 1), respectively, and a singular arc, denoted as s (along which u∗ = 0). Note
that b− and b+ arcs correspond to circular arcs of radius ̺ and ρ respectively, whereas a singular
arc s corresponds to a straight line segment. It follows that a minimum-time paths of Problem 5.1
has necessarily one the following structures

i) b−α sβb
−
γ , b

+
α sβb

+
γ , b

−
α sβb

+
γ and b+α sβb

−
γ ,

ii) or b+αb
−
β b

+
γ and b−αb

+
β b

−
γ ,
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where the subscripts α, β, γ denote the duration of motion along the first, second, and third path
segment, respectively.

Proposition 5.2 provides us with six families of paths that suffice to connect any pair of prescribed
initial and terminal configurations in ℜ2×S1 similarly to the solution of the standard MD problem.
Although we have significantly reduced the family of candidate paths that solve Problem 5.1, no
information regarding the switching times is yet available. In particular, an analysis over the
switching times will allow us to significantly refine the family of the extremals before we proceed
further to the synthesis problem.

To this end, let us consider an open interval I ⊂ [0, Tf ] for which p∗3(t) 6= 0 for all t ∈ I. The
restriction of the optimal control u∗ on I is a piecewise constant function which jumps at most
twice, and u∗(t) ∈ {−δ,+1} for all t ∈ I. For any subinterval Ib of I where u∗ is constant, p∗3
satisfies

p̈∗3 = −

(

u∗

ρ

)2

p∗3 −
u∗p∗0
ρ

, (5.12)

for all t ∈ Ib. The general solution of (5.12) and its derivative for all t ∈ I are given by

p∗3(t) = C1 cos
u∗t

ρ
+ C2 sin

u∗t

ρ
−

ρp∗0
u∗t

, (5.13)

ṗ∗3(t) =
C2u

∗

ρ
cos

u∗t

ρ
−

C1u
∗

ρ
sin

u∗t

ρ
, (5.14)

where C1, C2 are real constants. It follows readily that

(

ρṗ∗3(t)

u∗

)2

+

(

p∗3(t) +
ρp∗0
u∗

)2

= C2
1 +C2

2 , t ∈ Ib. (5.15)

The phase portrait of (p∗3, ṗ
∗
3ρ) is illustrated in Fig. 5.1 for the normal case (p∗0 = 1) and in Fig. 5.2

for the abnormal case (p∗0 = 0). In contrast to the standard MD, the phase portrait of (p∗3, ṗ
∗
3ρ) is

not symmetric w.r.t. the axis p3 = 0 (compare for example, with Ref. [173]).

A B

p∗3

u∗ = +1 u∗ = −δ

ṗ∗3ρ

Figure 5.1: Phase portrait of (p∗3, ṗ
∗
3ρ). Normal case p∗0 = 1.

Proposition 5.3. An b−αb
+
β b

−
γ

[

b+αb
−
β b

+
γ

]

path with min{α, β, γ} > 0 corresponds to an optimal
trajectory of Problem 5.1 only if

96



A

p∗3

u∗ = +1 u∗ = −δ

ṗ∗3ρ

Figure 5.2: Phase portrait of (p∗3, ṗ
∗
3ρ). Abnormal case p∗0 = 0.

i) β ∈ (πρ, 2πρ),
[

β ∈ (π̺, 2π̺)
]

ii) max{α, γ} ≤ ε(δ, β), where

ε(δ, β) = 2π̺+ 2̺ atan

(

δ tan
β

2ρ

)

,
[

ε(δ, β) = 2πρ+ 2ρ atan

(

δ−1 tan
β

2̺

)

]

, (5.16)

iii) min{α, γ} < (β − π)̺,
[

min{α, γ} < (β − π)ρ
]

.

Proof. We consider an b−αb
+
β b

−
γ path. The case of an b+αb

−
β b

+
γ path can be treated similarly. First,

we consider the abnormal case p∗0 = 0. It follows from Fig. 5.2 that a point in the (p∗3, ρṗ
∗
3) plane

stays in the half plane p3 ≤ 0 for exactly β = πρ units of time, which is the time required for
a particle with coordinates (p∗3, ρṗ

∗
3) to travel half of the circumference of a circle centered at the

origin with constant angular speed ω = 1/ρ. However, using the same geometric argument as in
Lemma 23 in [170] we can show that the resulting path with β = πρ is not optimal. Hence, all
optimal extremals of b−αb

+
β b

−
γ type must be normal.

We therefore let p∗0 = 1 in (5.12)-(5.15). In Fig. 5.3, we observe that the phase portrait of (p∗3, ρṗ
∗
3)

consists of a circle centered at A, denoted as CA and an ellipse centered at B, denoted as EB, in
the p∗3 < 0 and p∗3 > 0 half-planes respectively, with parameterizations that trace both of them
clockwise and such that a full loop along them requires 2πρ and 2π̺ units of time, respectively.
Note that a jump from u∗ = −δ to u∗ = +1, and vice versa, occurs only if EB intersects CA along
the axis p∗3 = 0. If this intersection does occur, we denote as C and D the points of intersection.
Let r and rδ denote the distance of either C or D from A and B respectively. Then EB and CA

intersect only if r ≥ ρ and rδ ≥ ̺, and furthermore rδ =
√

r2 + ̺2 − ρ2 as shown in Fig. 5.3.

From Fig. 5.3 it follows that β corresponds to the travel time of the point (p∗3, ρṗ
∗
3) from D to C

along the circle CA. The times α and γ are upper bounded by the travel time from C to D along
the ellipse EB. We observe that πρ is a strict lower bound for β since ρ > 0 (note that β tends
to πρ as A gets closer to O but can never reach as far as ρ > 0). Furthermore, 2πρ and 2π̺ are
strict uppers bound for β and both α and γ, respectively. To see why the previous remark is true,
it suffices to observe that the bang arcs b+2π̺ and b−2πρ correspond to two full circles driving the

system (5.1) to the same state, and thus both b+2π̺ and b−2πρ cannot be part of an optimal solution.
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Next, we improve the upper bound on α, γ. In particular, we observe in Fig. 5.3 that given β,

where β = 2(π− ĈAO)ρ, then α or γ is maximized if the point (p∗3, ρṗ
∗
3) coincides with C at t = 0 or

D at t = Tf , respectively. Thus, max{α, γ} ≤ 2(π− D̂BO)̺. By using simple geometric arguments,

along with the fact that δ ∈ (0, 1], it follows that D̂BO = atan
(

δ tan ĈAO
)

. Thus, max{α, γ} ≤

2
(

π − atan
(

δ tan ĈAO
))

̺, and β = 2(π − ĈAO)ρ. Equation (5.16) follows immediately.

Finally, the third condition of the Proposition is proved by means of simple geometric arguments
as in Lemma 3 of [39].

OA B

C

D

p∗3

ρṗ∗3

rδ
r

ρ ̺

u∗ = +1 u∗ = −δ

Figure 5.3: Phase portrait (p∗3, ρṗ
∗
3).

Proposition 5.4. An b−α sβb
−
γ path corresponds to a time-optimal trajectory of Problem 5.1 only

if α+ γ ≤ 2π̺.

Proof. See the proof of Lemma 5 of Ref. [39].

Remark 5.1. Notice that Lemma 5 of [39] does not apply for b+sb+ paths of the ASDMD problem.
In particular, as is illustrated in Fig. 5.4, the ASDID car emanating from O reaches the terminal
configuration xf = (xf , yf , θf) by traversing an b+α sβb

+
γ path with α + γ > 2πρ. The total elapsed

time is the same as if the ASDID car had traversed an b−α sβb
−
γ with α + γ ≤ 2π. Therefore, if

the path b−sb− is time-optimal, then the b+α sβb
+
γ path is necessarily time-optimal as well. Thus,

we conjecture that there exist b+α sβb
+
γ paths with α + γ > 2πρ, which are optimal paths of the

ASDMD problem. As it is demonstrated in Section 5.4, our conjecture is indeed correct. Next we
provide a conservative bound on the sum of α and γ along b+α sβb

+
γ paths.

Proposition 5.5. An b+α sβb
+
γ path corresponds to a time-optimal trajectory of Problem 5.1 only

if α+ γ ≤ (4π − θf)ρ.

Finally, for b−sb+ and b+sb− paths, as in the standard MD problem, we simply take the most
conservative bounds. In particular, we have the following proposition.
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Proposition 5.6. An b+α sβb
−
γ and an b−α sβb

+
γ path corresponds to a time-optimal trajectory of

Problem 5.1 only if max{α, δγ} < 2πρ and max{δα, γ} < 2πρ, respectively.

O

A

B

O1

O2

A′

B′

O′
1

O′
2

(xf , yf)

θf
ρ

ρ

̺

̺

Figure 5.4: A b+α sβb
+
γ path with α+ γ > 2πρ can be an optimal solution of the ASDMD problem,

in contrast to the solution of the standard MD problem.

5.4 Time-Optimal Synthesis

In this section, we address the time-optimal synthesis problem for the ASDMD problem, and thus
provide a complete characterization of the optimal control that solves Problem 5.1 with boundary
conditions (5.3), for all (xf , yf , θf) ∈ R2 × S1.

First, we show by means of an example, that the synthesis of optimal paths for the ASDMD problem
may be quite different than for the MD problem. In particular, let us consider the problem of
characterizing the minimum-time path from (0, 0, 0) to (0, 0, π) for the ID and the ASDID cars.
On the one hand, the optimal solution of the standard MD problem is either a b+αb

−
β b

+
γ path or

a b−αb
+
β b

−
γ path, where α = γ = πρ/3 and β = 5πρ/3, as shown in Fig. 5.5(a) (these two paths

have exactly the same length). On the other hand, as is illustrated in Fig. 5.5(b), the optimal
path for the ASDMD problem is either an b−αb

+
β b

−
γ path, where α = γ = ̺ acos (1/(1 + δ)) and

β = πρ + 2δα or an b+α sβb
+
γ path, where α = γ = 3πρ/2 and β = 2ρ. The b−αb

+
β b

−
γ and the

b+α sβb
+
γ paths have exactly the same length when δ = δ̃, where δ̃ is the solution of the equation:

1/(1 + δ) + cos ((π − δ)/(1 + δ)) = 0. Note that for this specific problem, the b+α sβb
+
γ path can

never be an optimal path of the standard MD problem, in light of Lemma 5 of [39].

To simplify the presentation and without loss in generality, we henceforth consider the minimum

trajectories of the ASDID car from (0, 0, 0) to (xf , yf , θf) ∈ Pθf , where Pθf
△
= {(x, y, θ) ∈ R2 ×

S1 : θ = θf} as suggested in [38, 39]. Let Rθf (u) denote the reachable set that corresponds to the
control sequence u ∈ U∗. The coordinates of all points in Pθf that can be reached by means of a
b+sb+ control sequence can be expressed as functions of the times of motion along the three arcs
of the path, namely α, β, and γ, by simply integrating the equations (5.1), from t = 0 to t = α for
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O
ρ

ρ

ρ

(a) Standard MD problem.

O

ρ

ρ

ρ

̺

̺

̺

(b) Asymmetric sinistral/dextral Markov-Dubins problem.

Figure 5.5: The minimum-time paths for the steering problem from (0, 0, 0) to (0, 0, π) for the ID
and the ASDID cars.

u = +1, and subsequently, from t = α to t = α+β for u = 0, and finally, from t = α+β to the final
time Tf(b

+sb+) = α + β + γ. Note that γ can always be expressed in terms of the parameters α
and β (actually for a b+sb+ path γ depends only on α as we shall see shortly later). In particular,
since the total change of the velocity direction θ (initially θ = 0) along the path mod 2π must
equal θf , it follows readily that α/ρ+ γ/ρ mod 2π = θf , which furthermore implies that

γ(α) =







ρθf − α, if θf ≥
α

ρ
,

ρ(2π + θf)− α, if θf <
α

ρ
.

(5.17)

It follows after routine calculations that

xf(α, β) = ρ sin θf + β cos
α

ρ
, yf(α, β) = ρ+ β sin

α

ρ
− ρ cos θf . (5.18)

Furthermore, Proposition 5.5 determines the intervals of admissible values of α and β for a b+sb+

control sequence, denoted by Iα(b
+sb+) and Iβ(b

+sb+), respectively. Thus, the reachable set of
the control sequence b+sb+ are constructed by determining all points (xf , yf , θf) ∈ Pθf for every
pairs of (α, β) ∈ Iα(b

+sb+)× Iβ(b
+sb+).

Conversely, given a point (xf , yf , θf) ∈ Rθf (b
+sb+) one can determine the parameters α and β such

that xf and yf satisfy (5.18). In particular, after some algebra, it follows from (5.18) that

α(xf , yf) = ρ atan2(B(yf), A(xf)), β(xf , yf) =
√

A2(xf) +B2(yf), (5.19)

where A(xf) = xf − ρ sin θf , B(yf) = yf + ρ cos θf − ρ, and atan2 : R2 7→ [0, 2π[ is the two-argument
arctangent function.

Figure 5.6(a) illustrates the reachable set Rθf (b
+sb+) of the ASDID car (note that for this path

family the value of δ does not affect the geometry of the reachable set), whereas the same reachable
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set for the standard ID car is illustrated in 5.6(b). We observe that the former set is a superset of the
latter. This is because for the ASDMD problem α satisfies α+γ(α) ≤ (4π− θf)ρ (Proposition 5.5),
whereas for the standard MD problem it satisfies the stricter condition α+ γ(α) ≤ 2πρ (Lemma 5
of [39]).

Finally, after having established the connection between (α, β) and (xf , yf) the total time Tf(b
+sb+)

is given, via (5.17), by

Tf(b
+sb+) =

{

β + ρθf , if θf ≥ α/ρ,

β + ρ(2π + θf), if θf < α/ρ.
(5.20)

The previous procedure can be applied mutatis mutandis for the rest of the control sequences from
U∗ (although the algebra, especially in the case of b+b−b+ or b−b+b− paths, is significantly more
evolved). The equations that give α and β as functions of xf and yf , and vice versa, as well as the
minimum-time Tf for all the control sequences u ∈ U∗ can be found in [16].

The next step involves the partitioning of Pθf into at most six domains, denoted as R∗
θf
(u), where

u ∈ U∗, such that if (xf , yf , θf) ∈ int
(

R
∗
θf
(u)

)

, then (xf , yf , θf) cannot be reached faster with the

application of v ∈ U∗, where v 6= u. We shall refer to this partition of Pθf as the optimal control
partition of the ASDMD problem. The number of these domains can be strictly less than six
in case the domain associated with a particular control sequence has an empty interior. As we
shall see shortly after, such “pathological” cases arise in the time-optimal synthesis of the ASDMD
problem in contrast to the optimal synthesis of the standard MD problem. The procedure required
for the characterization of the domain over which the control sequence, say b+sb+, is optimal,
is summarized below. We denote this domain by R

∗
θf
(b+sb+). In particular, let (xf , yf , θf) ∈

Rθf (b
+sb+), and let Uc(b+sb+) ⊂ U∗ denote the set of control sequences u that are different

from b+sb+ and such that (xf , yf , θf) ∈ Rθf (u). Then (xf , yf , θf) ∈ R
∗
θf
(b+sb+) if and only if

Tf(b
+sb+) ≤ minu∈Uc(b+sb+) Tf(u).

Figure 5.7 illustrates the optimal control partition of Pπ/3 as well as the level sets of the minimum-
time Tf , for different values of the ratio δ−1 = ̺/ρ. In particular, each domain of the partition
Pπ/3 is illustrated by a colored set, whereas the level sets of the minimum time are denoted by solid
black lines. We observe that as the ratio ̺/ρ increases, the domains R

∗
π/3(b

+sb+), R∗
π/3(b

−sb+)

and R
∗
π/3(b

+sb−), primarily, and the domain R
∗
π/3(b

−b+b−), secondary, expand against the domain

R
∗
π/3(b

−sb−) as well as the disconnected components of R∗
π/3(b

+sb−) and R
∗
π/3(b

−sb+) that are

close to the origin of Pθf . We observe, in particular, that for ̺/ρ = 1.8 (Fig 5.7(e)) the partition of
Pπ/3 consists of five domains since the domain R

∗
π/3(b

+b−b+) is reduced to the empty set. Similarly,

for ̺/ρ = 2 (Fig 5.7(f)) only four domains are non-empty since R∗
π/3(b

−sb−) = R
∗
π/3(b

+b−b+) = ∅.

In addition, we observe in Fig 5.7(a)-5.7(f) that the boundaries of each domain change significantly
as the ratio ̺/ρ varies.

5.5 Time Optimal Synthesis and Reachable Sets of the ASDMD
when the Final Tangent of the Path is Free

In this section, we consider the optimal synthesis of Problem 5.1, when θf is assumed to be free.
The solution of this variation of Problem 5.1 will allow us to characterize analytically the set of
points in the plane that can be reached by curves with asymmetric curvature constraints. These
reachable sets along with the level sets of the minimum time of the ASDMD problem, when θf is
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free, exhibit a few notable features related to the existence/abscence of symmetry planes that are
not present neither in the reachable sets nor the syntheses of the standard MD and the ASDMD
problems, when θf is fixed. Favoring the economy of presentation, we shall not discuss in details
the analysis of this problem, and we will instead present the solution of the time-optimal synthesis
problem directly.

First, we discuss briefly the structure of the family of extremal controls, which is sufficient for
optimality for Problem 5.1, when θf is free. In particular, the new transversality condition for θ
is given by p∗3(Tf) = 0. Following the same line of arguments as in [173], where the standard MD,
when θf is free, is addressed in detail, we conclude that a composite path whose final arc is either
an b− or an b+ arc, that is preceded by an s arc, cannot be part of an optimal path. The following
proposition gives us the family of candidate optimal controls for Problem 5.1, when θf is free (it
follows similarly to [173]).

Proposition 5.7. The optimal control u∗ of Problem 5.1, when θf is free, belongs necessarily to
U∗, where

U∗ △
= {{u±, 0}, {u±, u∓}}, u+

△
= 1, u−

△
= −δ. (5.21)

Proposition 5.7 implies that the set of candidate optimal controls of Problem 5.1, when θf is free,
consists of only four control sequences with at most one switching. It follows that the minimum-
time paths of Problem 5.1, when θf is free, necessarily admit one of the following structures: i)
b+αb

−
β , b

−
αb

+
β , ii) b

+
α sβ, b

−
α sβ.

By repeating the analysis carried out in Sections 5.3 and 5.4, we can refine the family of candidate
optimal controls (this analysis will lead to a number of propositions similar to Props. 5.3-5.6), and
subsequently solve the synthesis problem for Problem 5.1, when θf is free. Favoring the economy
of presentation, we directly show the solution of the synthesis problem. In particular, Figure 5.8
illustrates the optimal control partition of the plane as well as the level sets of the minimum-time
Tf , when θf is free (assuming that the ID/ASDID car starts from the origin with θ = 0) for both
the standard ID car (Fig. 5.8(a)) and the ASDID car (Figs. 5.8(b)-5.8(d)). Figs. 5.8(b)- 5.8(d)
illustrate that as the agility of the ASDID to perform right turns, which is measured by the ratio
̺/ρ, is reduced, the sets R∗(b−s) and R

∗(b+b−) “shrink” in favor of the set R∗(b+s), whereas the
set R∗(b−b+) remains invariant under the variations of the ratio ̺/ρ.

It is worth noting that contrary to the synthesis of the ASDMD problem, when θf is fixed, where
both the level sets of the minimum-time and the domains of the optimal control partition are
symmetric with respect to some plane of symmetry (also a characteristic of the optimal synthesis
of the standard MD problem), both the level sets and the domains of the optimal control partition
of the ASDMD problem, when θf is free, do not enjoy similar symmetry properties. It appears that
the term “asymmetric” used in the title of this chapter is more obviously justified in the case when
θf is free rather than when θf is fixed.

Let τ > 0 and let Rs
t≤τ andR

asym
t≤τ denote the set of points in the plane that can be reached by the ID

and ASDID car in time t ∈ [0, τ ], respectively (assuming again that the ID/ASDID car starts from
the origin with θ = 0). The reachable sets Rasym

t≤τ for different values of τ are illustrated in Fig. 5.9.
In Figs.5.9(a)-5.9(d), we observe that the reachable sets Rasym

t≤τ are not symmetric with respect to
the x-axis by contrast to the sets R

s
t≤τ (see, for example, [36, 165]). This comes at no surprise,

since both R
s
t≤τ and R

asym
t≤τ can be interpreted as the union of all the level sets {(x, y) : Tf = t},

for t ∈ [0, τ ], which, as we have already mentioned, are symmetric with respect to x-axis for the
standard MD problem but not for the ASDMD problem, when θf is free.
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Figure 5.6: Reachable set Rθf (b
+sb+) for δ ∈ (0, 1) (ASDMD problem) and δ = 1 (standard MD

problem). The white colored region corresponds to terminal configurations that cannot be reached
in minimum-time by means of a b+sb+ control sequence for the standard MD problem.
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Figure 5.7: Partition of Pπ/3 and level sets of Tf = Tf(x, y) for different values of the ratio δ
−1 = ̺/ρ.
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Figure 5.8: Partition of P and level sets of Tf = Tf(x, y) for different values of the ratio ̺/ρ.
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Figure 5.9: Reachable sets Rasym
t≤τ for different values of τ and for ̺/ρ = 1.6.
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Chapter 6

A Mesh Refinement Method Using
Density Functions for Solving
Numerical Optimal Control Problems

Given a good initial guess for a path or trajectory it will be often necessary to generate optimal
trajectories using more realistic aircraft models. This necessitates the use of numerical techniques
for the solution of the optimal trajectory. Although trajectory generation has a long and well-
established history, the current numerical schemes are plagued by sensitivity to initial conditions,
convergence, etc. Some of these problems can be dealt with using multi-resolution grid for the
discretization of the continuous optimal control problem. Such discretizations can enhance the
numerical stability and convergence properties of the solution algorithm.

This chapter introduces a simple, yet efficient, mesh generation method for solving optimal control
problems. The proposed DENsity function-based Mesh Refinement Algorithm (DENMRA) method
is based on density (or monitor) functions, which have been used extensively for the numerical
solution of partial differential equations and in finite element methods [15, 24, 90]. Subsequently,
the problem of mesh refinement is converted to a problem of finding an appropriate density function.
We show that an appropriate choice of density function may help increase the accuracy of the
solution and improve the numerical robustness.

DENMRA generates a non-uniform mesh by suitably allocating the grid points over the whole
time interval, putting emphasis on the points of discontinuity of the control variables or on the
non-smoothness of the state variables. The grid point allocation process is completely automatic.
Two density functions are also introduced, one based on the local curvature of the graph of the
intermediate solution and the other based on the first derivative of the control variable. The density
function can also be chosen as the integration error, leading to the mesh refinement scheme proposed
in Ref. [152]. Numerical results show that DENMRA automatically maintains an appropriate local
level of discretization over the whole control and state time histories for different problems. The grid
generation is very simple and easy to implement, while still maintaining high numerical accuracy
for the overall solution. The numerical examples also demonstrated the importance of choosing an
appropriate density function that captures the smoothness irregularities in the intermediate solution
for best accuracy, optimality and robustness, especially when solving challenging problems.

Another attractive advantage of DENMRA is that it can be used to distribute a fixed number of
grid points so as to maximize the accuracy of the final solution. In terms of real-time (or close to
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real-time) applications, this may be of greater interest, since the number of decision variables and
constraints of the resulting nonlinear optimization problem is related to the number of grid points
used. If the computational resources impose limitations on the number of constraints that can
be handled during each iteration, it makes sense to limit the size of the optimization problem by
keeping the number of grid points fixed. This can be easily achieved using the proposed algorithm.

6.1 Introduction

The accuracy and efficiency of mesh refinement algorithms that are used for solving numerical
optimal control problems, have motivated a recent research activity in this area. Several mesh
refinement methods are proposed in Ref. [152] demonstrating the advantage of such algorithms.
Reference [33] introduced a mesh refinement method in which integer programming is used to min-
imize the maximum integration error during mesh refinement iterations. Reference [99] proposed a
multi-resolution trajectory optimization algorithm (MTOA) that refines a nonuniform mesh using
local dyadic subdivisions after each iteration. A common strategy behind these mesh refinement
methods is the redistribution of the mesh points based on the local integration/interpolation error.

When the solution of the optimal control problem exhibits discontinuities in the control or its higher
order derivatives, a locally dense mesh is typically necessary to achieve better resolution, and obtain
more accurate estimation of the location of the discontinuity. Mesh generation based on the local
integration/interpolation error does not incorporate any special treatment of the discontinuities,
especially those appearing in higher order derivatives of the control or the state variables.

For better accuracy, it is necessary to estimate the location of such irregularities (namely, disconti-
nuities in the control history and/or its higher order derivatives) and subsequently incorporate this
information into the mesh refinement process.

A mesh refinement method following this philosophy has been proposed in Ref. [81]. This method
divides the time interval at the points with maximum absolute value of the first derivative of the
control, but it does not capture higher order discontinuities in the control time history.

Mesh generation and adaptation is a common topic in many areas of engineering and applied
mathematics. The notion of mesh density function for mesh generation and refinement has been
used in the FEM field [15, 90]. The concept of density functions is similar to monitor functions
used for the numerical solution of PDEs [24]. However, despite their popularity in other fields,
mesh density/monitor functions have rarely been used for discretizing optimal control problems.
The only exception appears to be Ref. [31]. Additional studies are needed to understand how the
density/monitor functions can be used in numerical optimal control and how they can influence
the accuracy and robustness of numerical optimal control algorithms. Furthermore, the choice of
“good” density/monitor functions for mesh discretization of optimal control problems seems to be
open.

In this chapter we attempt to provide a partial answer to the previous questions. We introduce
a method to distribute the mesh points efficiently using density/monitor functions. Although
different monitor functions can be used for mesh generation, an appropriate choice of a monitor
function can generate a better quality mesh, and can improve the accuracy of the solution, along
with the speed of convergence. Hence, the problem of mesh generation can be treated as a problem
of finding an appropriate density/monitor function. We propose two density functions which are
computed based on the discrete control/state histories from the previous iteration during the mesh
refinement process. The proposed method avoids the numerical integration step and the use of
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ODE solvers for the system dynamics as was done in [31]. Yet, it generates a mesh with a suitable
level of adaptive discretization that provides sharp resolution around the places where the control
switches or the trajectory meets/leaves state constraints, thus resulting in better accuracy of the
overall final solution. Numerical examples are presented to demonstrate the advantage of the
proposed method, and comparisons are provided against the industry standard Sparse Optimal
Control Software (SOCS).

6.2 Problem Statement and Nonlinear Programming Formulation

We consider an optimal control problem minimizing the following Bolza cost functional

J = Φ(x(t0), t0, x(tf ),p, tf ) +

∫ tf

t0

L(x(t), u(t),p, t)dt, (6.1)

where t ∈ [t0, tf ] ⊆ R is the time, x : [t0, tf ]→ Rn is the vector of state variables, u : [t0, tf ]→ Rm
is the vector of control variables, and p = [p1, p2, . . . , pl] ∈ Rl the vector of additional optimization
parameters. The Mayer term Φ : Rn × [t0, tf ] × Rn × Rl × [t0, tf ] → R, and the Lagrangian term
L : Rn×Rm×Rl× [t0, tf ]→ R are given functions of suitable smoothness properties. Our objective
is to minimize the cost (6.1) subject to the dynamic constraints

ẋ(t) = f
(
x(t), u(t),p, t

)
, t0 ≤ t ≤ tf , (6.2)

the boundary conditions
Ψ
(
x(t0), t0, x(tf ), tf ,p

)
= 0, (6.3)

and the path constraints
C
(
x(t), u(t),p, t

)
≤ 0, t0 ≤ t ≤ tf , (6.4)

where Ψ : Rn × [t0, tf ]× Rn × [t0, tf ]× Rl → RNΨ and C : Rn × Rm × Rl × [t0, tf ]→ RNC .

To solve this problem through nonlinear programming, the states and controls are discretized on a
mesh {ti}Ni=0 for some positive integer N , with tN = tf and ti < ti+1 for 0 ≤ i ≤ N − 1. Let X be
the vector of all decision variables, the corresponding discretization of the continuous time optimal
control problem (6.1)–(6.4) can be written as

min
X

J(X) (6.5)

subject to
|F (X)| ≤ ζd, (6.6)

|Ψ̃(X)| ≤ ζb, (6.7)

and
C̃
(
X
)
≤ ζC , (6.8)

where the absolute value | · | and the inequalities are enforced element-wise, J , F , Ψ̃ and C̃ are
appropriate discretizations of the cost function, dynamics constraint and path constraint of the
original problem, respectively and ζd ∈ RNn, ζb ∈ RNΨ and ζC ∈ R(N+1)·NC represent defect
vectors, whose elements are small positive real numbers. In particular, for the discretization of the
differential constraint (6.2), the function J in (6.5) and F in (6.6) are obtained using a class of R-K
methods ensuring consistency, such that the solution of the discrete problem converges to that of
the continuous time problem[152]. For more details the reader may refer to Refs. [152, 189, 33, 98].
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6.2.1 Density Function and Mesh Generation

A mesh density function, or simply a density function, is a non-negative function f̄ : [a, b] → R+,

a, b ∈ R that satisfies
∫ b
a f̄(t) dt = 1, and is zero (at most) at countably many points. Since any

non-negative function f : [a, b]→ R+ that has only countably many zeros can be normalized as

f̄ (t) =
f (t)

∫ b
a f (τ) dτ

, (6.9)

to obtain a mesh density function, from now on we may assume, without loss of generality, that
any function f applied to mesh refinement has been already normalized.

The corresponding cumulative distribution function F : [a, b]→ [0, 1] is defined by

F (t) ,
∫ t

a
f̄(τ) dτ. (6.10)

The value of F (t) corresponds to the area below the graph of f̄ between a and t. Clearly, F (a) = 0
and F (b) = 1. In the sequel, and without loss of generality, we will assume that [a, b] is the unit
interval. Consider a mesh {ti}Ni=0 containing a total of N + 1 points with t0 = 0 and tN = 1. Given
a density function f , let F be the cumulative distribution function determined by f as in (6.10).
For i = 0, 1, . . . , N − 1, with the ith point at ti, the position of the (i+ 1)th point can be decided by

F (ti+1)− F (ti) =
1

N
. (6.11)

A mesh can then be generated based on the density function f , such that the distribution of grid
points conforms to an equidistribution of F . Alternatively, the mesh is dense where the value of
f(t) is large.

The previous mesh point allocation strategy usually requires solving a nonlinear algebraic equation
repeatedly N −1 times, which can be a quite time-consuming task when N is large. An alternative
technique for achieving equidistribution requires the integration of a system of ODEs, including the
transformed dynamics and the inverse of the density function [31]. The integration of dynamics
requires intensive computations, especially when the dimension of the problem is large. Besides,
integration is also sensitive to the accuracy of the boundary conditions (if not fixed) and the
accuracy of the control history obtained from the previous iteration.

To avoid the process of repeatedly solving nonlinear equations or integrating the system dynamics,
an interpolation method is used in this work to compute the points {ti}N−1

i=1 , by taking advantage

of the monotonicity of F . Specifically, given any density function f , select a grid {tj}Njj=0 ∈ [0, 1],

which contains Nj points. During the mesh refinement iterations, {tj}Njj=0 could be chosen as the

mesh used in the previous iteration. Now yj = F (tj) can be easily calculated by yj =
∫ tj

0 f(τ) dτ .

For any y ∈ [0, 1], define the inverse mapping F−1(y) = {t|
∫ t

0 f(τ) dτ = y}. From the properties of
f , and hence F , the inverse F−1 is well defined and also continuous, with tj = F−1(yj). The set of

pairs {(yj , tj)}Njj=0 is then a discrete representation of the function F−1. Note that the first and the
last grid points are at t0 = 0 and tN = 1, respectively. For the allocation of the other grid points,

the location ti of the ith mesh point can be obtained by interpolating {(yj , tj)}Njj=1 using a spline
function at the position yi = (i− 1)/(N − 1) for 2 ≤ i ≤ N − 1. Using this method, as long as the
selected partition is dense enough, the location of all mesh points can be calculated very fast and
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Figure 6.1: Density functions and corresponding distribution of grid points.

with high accuracy. Note that the mesh point distribution is unique once the density function is
given, but the converse is not true.

Figure 6.1 shows the mesh point distribution obtained by two specific density functions over the
unit interval. The density function in the upper left of the figure is the linear function f(t) = t.
The resulting mesh is shown in the upper right of the figure. The lower left plot shows the density
function f(t) = e−50t2+20t−2 + e−50t2+80t−32, with its mesh shown in the lower right of the figure.
In both cases, the mesh contains a total of 20 grid points.

6.2.2 Selection of Density Function

By definition, a mesh density function needs only to be non-negative and integrable. This generality
provides a great deal of flexibility for achieving desired mesh point distributions and for designing
different mesh refinement schemes. The particular choice of the density function can have a major
impact on the numerical performance of the overall algorithm.

Certain density functions can be used to regulate the integration error. For example, if the density
function is chosen as a piecewise constant function whose value on each subinterval equals the
corresponding principal local truncation error function (PLTE) as in Ref. [152], then the mesh
point distribution process will be the static mesh refinement Strategy 1 introduced in the same
reference. This strategy tries to approximately equidistribute the PLTE, and as a result, the mesh
points would be denser where the PLTE was large in the previous iteration.

Another strategy for designing a good density function is to provide better approximation to the
state and/or control histories to improve the accuracy of the solution. This approach places more
emphasis on the geometric properties of the graph of the function to be approximated. The arc
length monitor function in Ref. [31], for example, equidistributes the grid points along the graph
of the state. As another example, the curvature-based density function proposed later provides the
best piecewise linear interpolative approximation of the function of interest in the L1 space. As it
will be shown later, this density function is capable of capturing higher order discontinuities of the
function to be approximated.

For more general mesh refinement schemes, it may be desirable to add new points only within
certain specific time spans of the control and state histories, namely at those places where the
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control or state histories exhibit discontinuities or smoothness irregularities (e.g., very fast rate of
change and/or discontinuities in higher order derivatives), while keeping other points fixed. This
objective can also be easily achieved by defining multiple density functions on disjoint intervals; then
the number of points assigned to each interval is proportional to the integral of the corresponding
density function. The points are then distributed using the method introduced above. More details
about this procedure are given in Ref. [190].

Although the density function uniquely determines the mesh once the total number of grid points is
given, it does not provide any information what size of the mesh should be. In the density function-
based mesh refinement algorithm proposed later, the discretization error estimation method in
Ref. [33] is used to determine the size of the mesh in order to ensure that the new mesh provides
a better discretization compared with the the one from the previous iteration.

6.3 A Density Function with the Best Piecewise Linear Interpola-
tive Approximation of Piece-wise Smooth Planar Curves

We propose a density function that achieves best (in terms of the L1-norm) piecewise linear ap-
proximation of C3-smooth (at least piecewise C3) curve. The main benefit of using the L1 metric
for measuring the approximation error is that the measurement corresponds to the area bounded
by the curve and its approximation, which is invariant with respect to rotation. Hence, such a
measure avoids the influence of the choice of coordinate orientation, and depends on the actual
shape of the curve for its approximation.

Given an interval I = [ta, tb] ⊂ R, recall that a function Γ : I → R having piecewise second
derivative implies that its intrinsic curvature is piecewise continuous and hence bounded. Recall
that the curvature κ of Γ is given by:

κ(t) =
|Γ′′(t)|

(1 + Γ′2(t))3/2
,

where Γ′′ = d2Γ
dt2

and Γ′ = dΓ
dt . The natural coordinate s, defined by

s(t) =

∫ t

ta

[
1 + Γ′2(t)

]1
2 d t,

is a measure of the length of the curve defined by the graph of Γ. Let TI,N = {ti}1≤i≤N be a
partition of the interval I using N points, where ta = t1 < t2 < . . . < tN = tb.

The function Γ̄ : I → R defined by

Γ̄ (t) = Γ(ti) +
t− ti
ti+1 − ti

(Γ(ti+1)− Γ(ti)) , t ∈ [ti, ti+1),

where ti, ti+1 ∈ TI,N , (1 ≤ i ≤ N − 1), is a piecewise linear approximation of Γ on the interval I
over the partition TI,N .

With the density function ρΓ defined on I, for any N ≥ 2, the grid points denoted by {(ti,Γ (ti))}Ni=1

are allocated on Γ such that t1 = ta, and

∫ ti

ta

ρΓ (τ) dτ =
i− 1

N − 1
. (6.12)
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Figure 6.2: Approximation error in terms of the L1-norm, for a curve Γ of constant curvature.

Proposition 6.1. The best piecewise linear approximation of a function Γ with nonzero constant
curvature κ using three points is obtained when the points are evenly distributed along the arc Γ.

Proof. The graph of a function with constant nonzero curvature is a circular arc, as shown in Fig.
6.2, with o denoting the center of the corresponding circle. The error in terms of the L1-norm is
exactly the shaded area shown in Fig. 6.2. The shaded area ξ1 is given by

ξ1(θ1) =
θ1

2
κ−2 − κ−1 sin

(
θ1

2

)
κ−1 cos

(
θ1

2

)
=
θ1

2
κ−2 − 1

2
κ−2 sin θ1 =

1

2
κ−2 (θ1 − sin θ1) .

Similarly, the shaded area ξ2 is given by:

ξ2(θ2) =
1

2
κ−2 (θ2 − sin θ2) .

Let s(t) be the path length of the graph of the function Γ between t1 = 0 and t. The approximation
error ξ of the piecewise linear approximation of Γ in terms of the L1-norm is given by the sum of
ξ1 and ξ2:

ξ = ξ1 + ξ2 =
1

2
κ−2(θ1 + θ2 − sin θ1 − sin θ2) =

1

2
κ−2

(
θ − sin θ1 − sin(θ − θ1)

)
,

where θ = θ1 + θ2 = s(t3)κ, which is constant for the given Γ. The first order derivative of ξ with
respect to θ1 is given by:

dξ

dθ1
= −1

2
κ−2

(
cos θ1 − cos(θ − θ1)

)
.

We assume that N is large enough such that the inequalities θ1 < π and θ2 < π hold. The first
order necessary condition for the minimization of ξ, dξ

dθ1
= 0, yields that θ1 = θ2. This is indeed a

minimum since
d2ξ

dθ2
1

=
1

2
κ−2(sin θ1 + sin θ2) > 0.

Hence the proposition is proved.

Lemma 6.1. The best piecewise linear interpolative approximation of a function Γ with constant
curvature κ on a bounded interval I yields a constant density ρκ along the curve.
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Proof. First, notice that if κ = 0, the result follows trivially. Thus, without loss of generality, assume
that κ 6= 0. Assume now that the optimal piecewise linear approximation Γ̄ of Γ corresponds to
a distribution that is not equidistant. Owing to the one-one correspondence between the points
of Γ̄ (except the first one) and the angles θ1, θ2, . . . , θN−1 (see Fig. 6.2), the result is equivalent to
the assertion that the best piecewise linear approximation corresponds to a distribution of angles
θ∗ = (θ∗1, θ

∗
2, . . . , θ

∗
N−1), where θ∗i 6= θ∗i+1 for some 1 ≤ i ≤ N − 1. By virtue of Proposition 6.1, we

can reduce the error over the arclength θ∗i + θ∗i+1 by moving the middle point such that the new
angles are θ∗∗i = θ∗∗i+1 = (θ∗i + θ∗i+1)/2, thus contradicting the minimality of the distribution θ∗.
Hence θ∗ must be equally distributed over the graph of Γ.

Theorem 6.1. Consider a function Γ consisting of two segments Γ1 and Γ2 defined on contiguous,
non-overlapping intervals, with constant curvature κ1 and κ2 of their respective graphs. Let N
be the total number of points allocated to Γ. Then as N → ∞, the error of the piecewise linear
approximation of Γ is minimized by constant densities ρκ1 and ρκ2 on Γ1 and Γ2, respectively,
satisfying

ρκ1

ρκ2

=

(
κ1

κ2

) 1
3

. (6.13)

Proof. Let N1 be the number of points allocated to Γ1 and let N2 the number of points allocated
to Γ2 and let the corresponding angles over the arc lengths be θ1 > 0 and θ2 > 0, respectively.
It follows that θ1 = κ1S1, where S1 is the length of Γ1 and θ2 = κ2S2, where S2 is the length of
Γ2. With the best piecewise linear approximation of the function Γ1 using N1 points, the total
approximation error ξ1(N1) in the L1-norm is given by:

ξ1(N1) =
1

2
κ−2

1

N1−1∑

1

(
θ1

(N1 − 1)
− sin

θ1

N1 − 1

)
=

1

2
κ−2

1

(
θ1 − (N1 − 1) sin

θ1

N1 − 1

)
. (6.14)

Similarly, with the best piecewise linear approximation of the function Γ2 using N2 = N − N1

points, the total approximation error ξ2(N2) in the L1-norm is given by:

ξ2(N2) =
1

2
κ−2

2

(
θ2 − (N2 − 1) sin

θ2

N2 − 1

)
. (6.15)

Our objective is to minimize ξ1(N1) + ξ2(N2) subject to N1 + N2 = N as N → ∞. Note that
the last statement implies, in particular, that both N1, N2 → ∞. (This is easy to see: if both
N1, N2 →∞ the approximation error goes to zero, whereas if either N1 or N2 6→ ∞ as N →∞ the
approximation error will not be zero and hence the point distribution is not optimal.)

To facilitate the proof, we consider the continuous version of this problem. To this end, let x ∈ R+

and y ∈ R+ and consider the problem of minimizing

ξ(x, y) = ξ1(x) + ξ2(y) =
1

2
κ−2

1

(
θ1 − x sin

θ1

x

)
+

1

2
κ−2

2

(
θ2 − y sin

θ2

y

)
(6.16)

subject to x+ y = N and N →∞.

The first order necessary conditions for optimality for this problem lead to the expression

κ−2
2 sin

(
θ2

y

)
− κ−2

2

θ2

y
cos

(
θ2

y

)
− κ−2

1 sin

(
θ1

x

)
+ κ−2

1

θ1

x
cos

(
θ1

x

)
= 0. (6.17)
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Using the power series expansion for the sine and cosine functions

sinx =
∞∑

n=0

(−1)n

(2n+ 1)!
x2n+1, cosx =

∞∑

n=0

(−1)n

(2n)!
x2n,

equation (6.17) can be rewritten in terms of infinite series as

κ−2
2

∞∑

n=0

(−1)n+1 2n

(2n+ 1)!

(
θ2

y

)2n+1

− κ−2
1

∞∑

n=0

(−1)n+1 2n

(2n+ 1)!

(
θ1

x

)2n+1

= 0. (6.18)

Since N →∞ we have that x, y →∞.

It follows that θ1/x � 1 and θ2/y � 1. As x, y → ∞, the higher order terms in (6.18) vanishes,
and one obtains

κ−2
2

(
θ2

y

)3

− κ−2
1

(
θ1

x

)3

= 0. (6.19)

The solution of (6.19) yields,

x

y
=
S1

S2

(
κ1

κ2

)1/3

, (6.20)

from which we have

ρκ1

ρκ2

= lim
N1,N2→∞

N1/S1

N2/S2
= lim

x,y→∞
x/S1

y/S2
=

(
κ1

κ2

)1/3

. (6.21)

The solution to (6.19) is indeed the optimal solution since the Hessian of ξ(x, y) for x, y → ∞,
given by,

H(ξ) =




θ2
1

κ2
1x

3 sin
(
θ1
x

)
0

0
θ2
2

κ2
2y

3 sin
(
θ2
y

)

 (6.22)

is positive definite for x, y 6= 0.

Although Theorem (6.1) only gives an optimal density function for a 2D curve composed of two
pieces of circular arcs, by induction, this conclusion holds also for curves with piecewise constant
curvature profile, as described by the following Corollary:

Corolory 6.1. Let Γ be a planar curve with piecewise constant curvature κ. Let N be the
total number of grid points allocated to Γ. Then as N → ∞, the error of the piecewise linear
approximation of Γ is minimized with the grid points distributed by the density function κ1/3.

Before presenting the results regarding the best piecewise linear interpolative approximation of
planar C3-smooth curves,

One way for applying Corollary 6.1 to more general functions such as C3-smooth functions would
be first approximating the C3-smooth function using a function with piecewise constant curvature
profile, then generate the partition according to Corollary 6.1. As a result, it is necessary to
estimate the approximation error of C3-smooth functions using circular arc splines. Circular arc
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spline, or arc spline, is a curve comprising joined circular arcs. Circular arc splines has been studied
in computational geometry and computer graphics, with Refs. [87, 126, 148] as a few examples.
Note that a straight line is a circle with zero curvature, the piecewise linear spline used in this
Chapter can be viewed as a special type of circular arc spline.

It is shown that C3-smooth curves can be approximated to arbitrary precision using a specific
type of circular arc splines which preserve the curve length of the original smooth curve, and an
upper bound of the approximation error can be established [147]. To address the distribution of
grid points, we consider a different type of arc splines which also preserve the curve length, but
this type is different from the one in Ref. [147] in the sense that, on the interval between adjacent
grid points, the curvature function of this type of arc splines is constant instead of being piecewise
constant with two constant values; Besides, it is not required that the arc spline is tangent to the
smooth curve at the grid points. Since the tangent condition is relaxed, it is easily shown that the
path length is preserved by choosing appropriate curvature values for each arc.

Let a C3-smooth curve Γ in the two dimensional plane be given by a curvature function κ(s),
s ∈ [s0, sf ]. Consider the case that Γ does not contain any circular arcs. By partitioning Γ into a
finite number of segments and assign a local coordinate to each segment, we may assume that κ is
a strictly monotone function, and the angle α between the tangent of Γ and the x-axis is between
−π/6 and π/6 (π/6 is an arbitrary choice for the convenience of proof). Let x(s), y(s) be the
coordinate functions of Γ.

Given an arbitrary grid {si}N−1
i=0 containing N points with s0 < s1 < · · · < sN−1 = sf , define an

arc spline Γ̂ for the approximation of Γ with the curvature function κ̂(s) = κi, for s ∈ [si−1, si),
i = 1, . . . , N − 2 and s ∈ [sN−2, sN−1), where κi is chosen such that min{κ(si−1), κ(si)} < κi <
max{κ(si−1), κ(si)}, and the length of Γ is preserved by Γ̂. Besides, Γ̂(si) = Γ(si) for i = 1, . . . , N−
1. Let x̂, ŷ be the coordinate functions of the circular spline approximation, and α̂ be the angle
between the tangent of Γ̂ and the x-axis, with −π/6α̂ < π/6. The grid {si}N−1

i=0 also corresponds
to a grid {xi}N−1

i=0 on the x-axis, which is well defined with x0 < x1 < · · · < xN−1.

The following theorem extend the result in Ref. [147] to the estimation of the L1 norm of the
approximation error. Because the arc spline considered here is different from that in Ref. [147], we
also include a sketch of the proof regarding the error estimation on the deviation of the slope angel
function α(s)− α̂(s). We also extends the result in Ref. [147] and provide an estimation of the L1

norm of the approximation error.

Theorem 6.2 (Error estimation for circular arc spline approximation). There exist positive real
numbers Mi, i = 1, . . . , N − 1, such that the deviation of the slope angle function of the approxi-
mation from the corresponding function of the original curve satisfies

|α(s)− α̂(s)| ≤Mi(si − si−1)2, s ∈ [si−1, si], i = 1, . . . , N,

Further more, the L1 norm of the approximation error y − ŷ on [xi−1, xi], which is given by

ηi =

∫ xi

xi−1

|y(x)− ŷ(x)|dx,

satisfies ηi ≤Mi max{(si − si−1)4, (si − si−1)7}.

Proof. consider the interval [si−1, si], and assume without loss of generality that κ(si−1) < κ(si).
Because κ(si−1) < κi < κ(si), and κ is monotone, there exists sp ∈ [si−1, si] such that κ(sp) = κi,
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i.e., κ(sp) − κ̂(sp) = 0. Note that κ is Lipschitz since Γ is C3 smooth. As a result, there exists a
finite Lipschitz constant Mai such that |κ(s)− κ̂(s)| < Mai(si − si−1), s ∈ [si−1, si].

The angles α and α̂ are given by

α(s) = α(si−1) +

∫ s

si−1

κ(s)ds,

α̂(s) = α̂(si−1) +

∫ s

si−1

κ̂(s)ds.

Obviously, α and α̂ are continuous functions.

Because Γ(si−1) = Γ̂(si−1) and Γ(si) = Γ̂(si), we must have

(α̂(si−1)− α(si−1)) (α̂(si)− α(si)) < 0.

Therefore, by the continuity of α and α̂, there exists sq ∈ [si−1, si] such that α̂(sq) = α(sq).

Now rewritten the expressions of α and α̂ on [si−1, si] as

α(s) = α(sq) +

∫ s

sq

κ(s)ds,

α̂(s) = α̂(sq) +

∫ s

sq

κ̂(s)ds.

Subtracting one of the above expression from the other, we have

|α(s)− α̂(s)| =
∣∣∣∣∣

∫ s

sq

(κ(s)− κ̂(s)) ds

∣∣∣∣∣ ≤
∫ s

sq

|κ(s)− κ̂(s)|ds ≤Mai(si+1 − si)2.

Because the L1 norm of the approximation error equals to the area between two curves Γ and Γ̂
on [xi−1, xi], we will compute the value of ηi using the polar coordinate, which is illustrated in the
Fig. 6.3.

δi(s)

Γ

Γ̂
si−1

si

ds

R̂i

x

y

xi−1 xi

R(s)

o

Figure 6.3: L1-norm of the approximation error on [si−1, si] for a C3-smooth curve.

δi(s) =

∫ s

si−1

tan(α(τ)− α̂(τ))dτ.
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Because |α| < π/6 and |α̂| < π/6, we have |α − α̂| < π/3. Since the tangent function is Lipschitz
on [−π/3, π/3], there exists a constant Mti such that

| tan(α(τ)− α̂(τ))| ≤ Mti

Mai

|α(τ)− α̂(τ)|.

Then,

|δi(s)| ≤
∫ s

si−1

| tan(α(τ)− α̂(τ))|dτ

≤ Mti

Mai

∫ s

si−1

|α(τ)− α̂(τ)|dτ

≤ Mti

Mai

Mai

∫ s

si−1

(si+1 − si)2dτ

= Mti(si − si−1)2(s− si−1).

Hence,

ηi =

∫ s

si−1

∣∣R2
i −R2 (τ)

∣∣ |κi|dτ

=

∫ s

si−1

|κi| |(Ri +R (τ)) (Ri −R (τ))|dτ

=

∫ s

si−1

|κi| |(2Ri − δ (τ)) δ (τ)|dτ

≤ 2

∫ s

si−1

|δ (τ)| dτ + |κi|
∫ s

si−1

∣∣δ2 (τ)
∣∣dτ

≤Mti(si − si−1)2

∫ si

si−1

(s− si−1)ds

+ |κi|Mti(si − si−1)4

∫ si

si−1

(s− si−1)2ds

=
Mti

2
(si − si−1)4 +

Mti

3
(si − si−1)7.

Let Mi = max{Mai , 5Mti/6}, then the proof is complete.

The following result from Ref. [117] extends Corollary 6.1 to more general functions and metrics.

Let Cr∗ [0, 1] denote the set of the functions Γ(t) ∈ Cr+1[0, 1] such that Γ(r)(t) > 0, 0 ≤ t ≤ 1. Let
∆n = {t0 < t1 < · · · < tn} be an arbitrary partition of the closed interval [t0, tn], and sn,r(t) be
the function which is an algebraic polynomial of degree at most r− 1, (r = 1, 2, . . . ) on each of the
closed intervals [ti−1,n, ti,n] (i = 1, 2, . . . , n). Define

E (Γ; ∆n)X = inf
sn,r
‖Γ(t)− sn,r(t)‖X[t0,tn]

,

and
En,r(Γ)X = inf

∆n

E (Γ; ∆n)X ,

where X is the space Lp.
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Theorem 6.3 (The best choice of nodes for approximation using splines in Lp space[117]). Let
Γ ∈ Cr∗ [0, 1],

En,r(Γ)X =
Br,p

r!nr2(rp+1)/p

[∫ 1

0
(Γ(r)(t))p/(rp+1)dt

](rp+1)/p

+O(
1

nrp/(rp+1)+r
)

where

Br,p = min
ak
‖tr −

r−1∑

k=0

akt
k‖Lp[−1,1] (1 ≤ p <∞)

as n→∞. Moreover, the asymptotically best location of the nodes is determined from the equations

∫ x∗i,n

0

[
Γ(r)(t)

]p/(rp+1)
dt =

i

n

∫ 1

0

[
Γ(r)(t)

]p/(rp+1)
dt. (6.23)

Although it is assumed for Theorem 6.3 that Γ2 > 0, by partitioning Γ into segments based on the
sign of the curvature, and assign proper local coordinate to the segments with negative curvature,
this assumption can always be satisfied. Let

ρ∗(x) =

[
Γ(r)(t)

]p/(rp+1)

∫ 1
0

[
Γ(r)(t)

]p/(rp+1)
dt
,

The associated cumulative function is given by

F (x) =

∫ x

0
ρ∗(t)dt,

Then equation (6.23) is equivalent to

F (x∗i,n)− F (x∗i−1,n) =
1

n
,

Therefore ρ∗ is the optimal density function for the grid point distribution scheme described by
(6.23). When Γ is a C3-smooth curves, r = 2. Since L1 norm is considered in this thesis, we have
p = 1. The optimal density function is

ρ∗(x) =

[
Γ(2)(x)

]1/3
∫ 1

0

[
Γ(2)(t)

]1/3
dt

= c
[
Γ(2)(x)

]1/3
,

where c is a constant. Let s be the path coordinate. Noticing that ds =
√

1 + [Γ(1)(s)]2dt, we have

ρ∗(s) = c
[
Γ(2)(s)

]1/3 (
1 + [Γ(1)(s)]2

)−1/2
,

= c

[
Γ(2)(s)

(
1 + [Γ(1)(s)]2

)3/2

] 1
3

= cκ1/3(s),

Which is the same as the optimal density function for the case when Γ is piecewise circular.
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6.4 Costate Estimation

In direct collocation methods, which are implemented in the previously mentioned DENsity function
based mesh refinement algorithm (DENMRA), the decision variables include the states and controls
only, while the costates are related to the Lagrangian multipliers associated with the NLP. The
feasibility of the optimized solution can be checked easily by integrating the system dynamics using
the optimized controls and compare the integration result with the optimized states. To check the
optimality of the result, it is necessary to recover the costates from the Lagrangian multipliers and
compute the Hamiltonian. In this section, we describe briefly the costate estimation technique from
Ref. [154], which was implemented in DENMRA.

Consider the following optimal control problem stated in Mayer form.

min
u∈PWC([t0,tf ])

m
,t0,tf∈R

ϕ [x (tf ) , tf ]

subject to the conditions

ẋ = f (x (t) , u (t) , t)
ψ0 (x (t0) , t0) = 0
ψf (x (tf ) , tf ) = 0
ge (x (t) , u (t) , t) = 0
gi (x (t) , u (t) , t) ≤ 0
he (x (t) , t) = 0
hi (x (t) , t) ≤ 0

Here t ∈ R, x(t) ∈ Rn, u(t) ∈ Rm are time, state vector and control vector, respectively. The
functions

ϕ : Rn+1 → R f : Rn+m+1 → Rn
ψ0 : Rn+1 → Rk0 ψf : Rn+1 → Rkf

k0 6 n+ 1 kf 6 n
ge : Rn+m+1 → Rkge gi : Rn+m+1 → Rkgi
he : Rn+1 → Rkhe hi : Rn+1 → Rkhi

are sufficiently smooth with respect to their arguments. PWC ([t0, tf ])m denotes the set of piecewise
continuous functions defined on interval [t0, tf ].

6.4.1 Discretized Optimal Control Problem

By discretizing the above optimal control problem using collocation, both the states and controls
are discretized, and the dynamic and state constraints are enforced only at isolated points. Using
a trapezoidal rule to enforce the equations of motion at a single point between neighboring nodes,
the scheme leads to the following NLP problem:

min
x0,...,xN ,u1,...,uN ,t0,tN∈RnN+1+mN+2

ϕ (xN , tN )
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subject to the conditions
˙̄xj − f (x̄j , uj , t̄j) = 0, j = 1, . . . , N,

ψ0 (x0, t0) = 0,

ψf (xf , tf ) = 0,

g(x̄j , uj , t̄j) ≤ 0, , j = 1, . . . , N,

h(x̄j , uj , t̄j) ≤ 0, , j = 1, . . . , N,

where
t̄j =

tj+tj−1

2

x̄j =
xj+xj−1

2
˙̄xj =

xj−xj−1

tj−tj−1





j = 1, . . . , N.

The Lagrangian function associated with the discretized optimal control problem is given by

L = ϕ (xN , tN ) + πT0 ψ0 (x0, t0) + πTf ψf (xN , tN ) +
N∑

j=1

λTj [f (x̄j , uj , t̄j)− ˙̄xj ]

+
N∑

j=1

σTj g (x̄j , uj , t̄j) +
N∑

j=0

µTj h (x̄j , t̄j).

6.4.2 Costate Estimates

It is well-known that the Lagrangian multipliers λj correspond to the sensitivity of the optimal cost
with respect to the perturbations in the state vector xj at time tj . However, in order to provide a
valid estimation of the costates in the original optimal control problem, certain post processing of
the Lagrangian multipliers is necessary.

When the state constraint is not active at initial time t0, the costate is given by

λ
(
t−0
)T

=
λT1
2

∂f

∂x

∣∣∣∣
(x̄1,u1,t̄1)

+
λT1

t1 − t0
+
σT1
2

∂g

∂x

∣∣∣∣
(x̄1,u1,t̄1)

+
µT0
2

∂h

∂x

∣∣∣∣
(x̄1,t̄1)

.

If the state constraint becomes active at t0, then the above expression actually gives the value of
the costate just before the state constraint is active, and the costate jump introduced later should
be used to compute the costate at t0.

At each individual node ti, supposing that the state constraint is not active at ti, the value of the
costate can be obtained by deleting the i leading nodes (i = 0, . . . , i − 1) and consider ti as the
initial time. Then the costate estimate would be

λ
(
t−i
)T

=
λTi+1

2

∂f

∂x

∣∣∣∣
(x̄i+1,ui+1,t̄i+1)

+
λTi+1

ti+1 − ti
+
σTi+1

2

∂g

∂x

∣∣∣∣
(x̄i+1,ui+1,t̄i+1)

+
µTi
2

∂h

∂x

∣∣∣∣
(x̄i,t̄i)

, (6.24)

for i = 0, . . . , N − 1. Again, if no state constraints are active at ti, then the costate function λ(t) is

continuous at ti, so λ
(
t−i
)T

can be replaced by λ (ti)
T , otherwise equation (6.24) is only an estimate

of the costate value before the jump at ti.
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The costate value at the final node tf is computed by the expression below:

λ (tN )T =
∂ϕ

∂x

∣∣∣∣
(x̄N ,t̄N )

+ νTf
∂ψf
∂x

∣∣∣∣
(x̄N ,t̄N )

,

where νf = −πf .

Suppose that the state constraints are active for a certain number of nodes, namely,

h (xj , tj) =





< 0, j = 0, . . . , ia−1,
= 0, j = ia, . . . , ib,
< 0, j = ib+1, . . . , N.

In the variational approach to the state-constrained optimal control problems, the active state
constraint h(x(t), t) = 0 on t ∈ [ta, tb] is transformed into an equivalent combination of interior
point constraint and a control constraint:

M (x (ta) , ta) =




h (x, t)|ta
dh (x, t)

dt

∣∣∣∣
ta

...
dq−1h (x, t)

dq−1t

∣∣∣∣
ta




= 0,

and
dqh (x, t)

dqt
= 0 for t ∈ [ta, tb], where q is the smallest integer for which the control appears

explicitly in the corresponding derivative.

Then the jump in the costate due to the activation of state constraint is given by

λ (ti)
T − λ

(
t−i
)T

= lT
∂M (x (ti) , ti)

∂x
,

where the components of l are given by lj =
ib∑
k=i

µk
j!

(tk − ti)j , j = 0, . . . , q − 1.

6.4.3 Numerical Example

Consider the Brachistochrone problem with state constraint as in Ref. [154]. In Meyer form, the
problem can be stated as follows:

min
u∈PWC[t0,tf ]

tf

subject to the equations of motion

ẋ (t) = v (y) cos θ (t) ,

ẏ (t) = v (y) sin θ (t) ,

boundary contitions
x (0) = 0,

x (tf ) = 1,

y (0) = 0,

y (tf ) free,
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and the state constraint
y (t)− x (t) tan γ − h0 6 0.

The quantities v0 = 1, g = 1, γ = 20 deg, and h0 = 0.05 are constants. The angle θ is the only
control, v denotes the velocity, and can be computed by v =

√
v2

0 + 2gy. The state inequality is of
first order, and the optimal switching structure is free—constrained—free. The costates computed
using the Lagrangian multipliers are shown in Fig. 6.4 and Fig. 6.5. The Hamiltonian is shown in
Fig. 6.6. It can be seen that the Hamiltonian is constant at −1, which suggests the local optimality
of the solution and the validity of the costate estimation.

It needs to be pointed out that this costate estimation method is tailored for the trapezoidal
discretization scheme [154], and does not hold for other schemes. New formulas need to be derived
if other discretization schemes are to be applied. Besides, as can be seen in this example, a
successful implemenation of the costate estimation technique also requires the correct knowledge
of the structure of the engagement of the state constraint. Furthermore, the differentiation of the
state constraint h(x(t), t) also needs to be derived and implemented before the computation of the
jump of the costate, the complexity of this process could vary depending on the problem to be
solved. For very complicated problems, the implementation of this costate estimation method may
not be very easy.
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Figure 6.4: Costate history: λx.

6.5 Density Function-based Mesh Refinement Algorithm (DEN-
MRA)

In this section we present the DENsity function-based Mesh Refinement Algorithm (DENMRA),
which is an iterative algorithm for solving optimal control problems, utilizing the mesh generation
method based on a mesh density function introduced previously.

The use of a density function is one of the key components in DENMRA. General optimal control
problems involve ordinary differential equations in terms of the state variables, which describe how
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Figure 6.5: Costate history: λy.

the control changes the vector field of the states. For such problems, since the states are continuous,
irregularities in the smoothness in the states usually correspond to fast (or discontinuous) changes
in the control. Hence, typically, the control history is used in DENMRA for computing the density
function to capture smoothness irregularities in both the state and the control histories, although
this is not restrictive. The state histories can be used as well, if needed.

6.5.1 Major Steps of DENMRA

When solving a general optimal control problem that minimizes the cost function J using m control
inputs, DENMRA goes through the following four major steps:

(1) Set j = 1. Choose a positive integer Nj and generate the initial uniform mesh T1 = {ti}Njti=1,
where ti = (i− 1)/(Nj − 1), Generate an initial guess for the state and control variables, and
solve the discretized problem that minimizes J ;

(2) Calculate the density function f using the discretized control {(ti,ui)}Nji=1 of the previous
solution, where ui ∈ Rm;

(3) Determine the mesh size increment ∆Nj by discretization error estimation which is introduced

in Ref. [33]. Let Nj+1 = Nj + ∆Nj , and generate the new mesh Tj+1 = {ti}Nj+1

i=1 based on f .
Set j = j + 1;

(4) Generate the initial guess based on the previous solution for mesh Tj , solve the problem, and
go to Step (2), unless some stopping rule is met.

6.5.2 Technical Details

The details of these steps are given below.
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Figure 6.6: Hamiltonian history.

Initial Guess

For simplicity, DENMRA may start from a constant initial guess for all control and state variables,
but – as typical with nonlinear optimization problems – any good initial guess based on prior
experience with the problem or good engineering judgment can improve convergence.

Optimization

After the cost function and the dynamic, state, control and path constraints have been discretized
on the given grid, DENMRA calls a nonlinear programming (NLP) solver. In this implementa-
tion, we have used the optimization software SNOPT [80] for solving the corresponding nonlinear
programming problem stemming from the discretized optimal control problem.

Density Function Computation

In DENMRA, when the density function based on the local curvature as described in [190] is used,

the discrete control {(ti,ui)}Nji=1 from the previous iteration is used to estimate the curvature of
the graph of the control history. This curvature based density function provides the best piecewise
linear interpolative approximation to the graph in an asymptotic sense as the size of grid increases.
For more details about the proof please refer to the appendix. The calculation of the density
function corresponding to the control u is therefore computed as follows:

(1) Let ui,k be the kth component of the discrete control value ui at ti, u̇i,k be the first order
derivative of the kth component of control at time t′i = (ti+1 + ti)/2, and üi,k be the second

order derivative at time t′′i = (t′i+1 + t′i)/2. Then, for k = 1, . . . ,m, the values {u̇i,k}Nj−1
i=1

and {üi,k}Nj−2
i=1 can be approximated by u̇i,k ≈ (ui+1,k − ui,k)/(ti+1 − ti) and üi,k ≈ (u̇i+1,k −

u̇i,k)/(t
′
i+1 − t′i), respectively. Interpolate {(t′i, u̇i,k)}

Nj−1
i=1 using a spline function at t′′i and

obtain {(t′′i , u̇′i,k)}
Nj−2
i=1 .

(2) Compute density function as ρi,k = (κ
1/3
i,k + ilon)

√
1 + u̇2

i,k = |üi,k|1/3 + ilon
√

1 + u̇2
i,k, where
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ilon > 0. The actual curvature κ(t) is chosen as a piecewise constant function with ρk(t) =
(ρi,k+ρi+1,k)/2 for t ∈ [ti, ti+1]. Note that a small positive number ilon is added to the actual
curvature density function. In practice, this means that a few grid points are kept even on the
parts of the control history that are straight lines or segments with very small curvature. This
is always a good idea since the control history on Is may change in subsequent iterations, and
it is thus advisable to keep some points in the interior of the interval Is in order to capture
possible changes of the control histories.

(3) The overall (non-normalized) density function f is obtained by merging the density functions
for all controls. For instance,

f(t) =

( m∑

k=1

ρ2
k(t)

) 1
2

, (6.25)

and
f(t) = max

k
ρk(t) (6.26)

are two possible methods to generate the overall density function.

Mesh Generation

DENMRA typically starts with a coarse uniform mesh in order to capture the basic structure of
the control history. In subsequent iterations, the user can either let DENMRA decide the mesh size
based on the integration error, or adjust the final mesh size and the number of iterations according
to the desired or imposed speed and accuracy requirements depending on the problem at hand. In
the former case, at each mesh refinement iteration, cubic splines are used to approximate the state
and control histories, and the local discretization error of the previous mesh is estimated. After
the density function is computed based on the result of the previous iteration, a temporary new
mesh size Ñj is found by gradually increasing Ñj from Nj until the maximum local discretization
error of the new mesh generated using the density function with Ñj points is smaller than that of
the previous mesh. Let Nmax be a limit on the final mesh size, then the actual mesh size increment
after the jth iteration is determined by ∆Nj = min{Ñj−Nj ,∆Nmax}, where ∆Nmax = Nmax−Nj .
if ∆Nj = Ñj −Nj , then the last temporary mesh would be used for the next iteration. Otherwise
a new mesh would be generated with Nj + ∆Nmax points.

Stopping Rule

DENMRA stops either when the maximum number of mesh refinement iterations is reached, or
when the optimality of the problem cannot be further improved and the local integration error is
smaller than the specified tolerance.

6.6 Numerical Examples

In this section we report the results from two numerical examples, generated to illustrate the good
properties of the proposed mesh generation method. The first example is the double integrator
minimum energy problem [37]. Since this problem has an analytical solution, it can be used to
check the accuracy and optimality of the proposed method. It also includes a state constraint, which
is used to demonstrate that the proposed methods is able to handle higher order state irregularities
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stemming from such state constraints. The second example deals with a “hypersensitive” optimal
control problem [144] and it is used to test the robustness of the method when dealing with problems
requiring highly concentrated grid points at certain phases of the solution. For comparison, the
same two problems are also solved using SOCS [30], which is a widely used software for solving
trajectory optimization problems. Both algorithms start with trapezoidal integration, and switch
to higher order Hermite-Simpson integration later on to meet the desired accuracy/optimality. A
feasibility tolerance of 10−10 is used for both algorithms.

6.6.1 Minimum Energy for Double Integrator

The double integrator problem is given by:

v̇ = u, v(0) = −v(1) = 1,
ẋ = v, x(0) = x(1) = 0,

and the goal is to find u(t), where 0 ≤ t ≤ 1, to minimize

J =
1

2

∫ 1

0
u2 dt,

with the state constraint x(t) ≤ `, where ` is a positive real number.

The solution of the optimal control u∗(t) can be obtained as follows [37]:

u∗(t) = −2, 0 ≤ t ≤ 1, for ` ≥ 1
4 ;

u∗(t) =

{
−8(1− 3`) + 24(1− 4`)t, 0 ≤ t ≤ 1

2 ,

−8(1− 3`) + 24(1− 4`)(1− t), 1
2 < t ≤ 1,

for 1
6 ≤ ` < 1

4 ;

u∗(t) =





− 2
3`(1− t

3`), 0 ≤ t ≤ 3`,

0, 3` < t ≤ 1− 3`,

− 2
3`(1− 1−t

3` ), 1− 3` < t ≤ 1,

for ` < 1
6 .

Comparison in Terms of Accuracy and Optimality

The curvature based-density function is used for mesh refinement in DENMRA for this problem.
This density function is given by ρκ(t) = κ(t)1/3, t ∈ [0, 1], where κ is the curvature of the graph
of the control function. As mentioned previously in Section 6.3, this density function provides the
best piecewise linear interpolative approximation of the control. The same problem was also solved
using the commercial numerical optimal control code SOCS, which implements the mesh refinement
strategy of [33]. Both algorithms were tested on the same computer, and cold-started using the
same linear initial guess.

Table 6.1 summarizes the results from DENMRA and SOCS for the double integrator problem. In
the table, N is the size of the final mesh, |J − J∗| is the optimality error, and ‖ui − u∗(ti)‖∞ =
maxi |ui − u∗(ti)| is the norm of the error between the discretized control {ui}Ni=1 and the exact
solution u∗. Our numerical experiments showed that SOCS could not achieve highly accurate
solution for this problem even if the local integration error tolerance has been set to 10−14. The
optimality error of the SOCS solution was around 10−4 ∼ 10−6 with a maximum control error
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Figure 6.7: Mesh refinement, SOCS, ` = 0.05.

around 10−2 ∼ 10−3. DENMRA exhibited an optimality error at the order 10−7 ∼ 10−13, and a
maximum control error at the order of 10−5 ∼ 10−6.

The mesh refinement histories of the two algorithms for the case with ` = 0.05 are shown in Figs. 6.7-
6.8. In these figures, the vertical dotted lines indicate the points of discontinuities in the analytical
solution (at t = 0.15 and t = 0.85). As can be seen from Fig. 6.8, when DENMRA is used to solve
this problem, the grid points get denser around the two points with discontinuities in the control
derivative after each iteration, thus providing a better resolution. The mesh refinement scheme in
SOCS is based on the integration error, and allocates more points on the two intervals [0, 0.15] and
[0.85, 1] where the absolute value of u̇∗ is large, but beyond this, the discontinuities in control did
not receive any additional special treatment. As a result of this mesh refinement procedure, SOCS
always k the points from the previous mesh, and hence tends to generate a larger mesh size. By
solving this problem with different values of `, it was confirmed that, for this problem, the mesh
generated by DENMRA always provides better resolution around the points of discontinuities.

Table 6.1: Comparison of precision and optimality.

` Algorithm N |J − J∗| ‖ui − u∗(ti)‖∞
0.04

SOCS 99 7.5e-5 4.2e-3
DENMRA-ρκ 40 8.9e-7 4.4e-5

0.08
SOCS 99 6.9e-6 1.4e-3

DENMRA-ρκ 40 1.9e-8 4.8e-5

0.12
SOCS 50 9.6e-5 3.9e-3

DENMRA-ρκ 40 1.2e-9 1.0e-5

0.16
SOCS 50 7.2e-5 1.8e-2

DENMRA-ρκ 40 2.7e-13 5.8e-6
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Figure 6.8: Mesh refinement, DENMRA, ` = 0.05.

Comparison in Terms of Resolution

By “resolution” here we mean not only the ability of an algorithm to capture the discontinuities in
the control history or its higher order derivatives using a locally denser grid, but also the ability to
distinguish adjacent points of discontinuity.

(1) When ` ≥ 1/6, the optimal control u∗(t) is either constant or smooth, both DENMRA and
SOCS converge to the theoretical solution.

(2) When ` < 1/6, the optimal control u∗(t) contains two corners. It is challenging to distinguish
these corners when ` tends to zero or 1/6: in the former case, the corners are very close
to the endpoints of the mesh, and the fast change of control between the corner and the
corresponding end point makes it more difficult to obtain an accurate solution; in the second
case, the two points of discontinuity tend to merge, which makes them difficult to distinguish.

Table 6.2: Comparison of resolution.

Algorithm ` ID ∆t |J − J∗| ‖ui − u∗(ti)‖∞
SOCS

0.025 D1 0.075 8.2× 10−4 8.5× 10−3

0.153 D2 0.082 2.8× 10−5 8.5× 10−3

DENMRA-ρκ
0.014 D1 0.042 7.3× 10−9 1.7× 10−4

0.1662 D2 0.0028 1.9× 10−9 9.0× 10−4

D1: the smallest ` keeping‖ui − u∗(ti)‖∞ ≤ 10−2 without algorithm failure.

D2: the largest ` keeping ‖ui − u∗(ti)‖∞ ≤ 10−2 while separating the discontinuities

The resolution test results are listed in Table 6.2. Both algorithms were able to gradually decrease
` until ‖ui − u∗(ti)‖∞ ≤ 10−2 without inducing any algorithm failure. The resolution is denoted
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by ∆t. When `→ 0, ∆t = 3`, where ∆t is the distance between the discontinuities and the nearby
endpoints of the mesh. When `→ 1/6, ∆t = 1−6`, which is the distance between the two points of
discontinuity. In both cases, a smaller ∆t means a better resolution. For all test cases, DENMRA
terminates with 40 points, SOCS starts from 50 points, and the final mesh sizes have 83 points
when ` = 0.025, and 50 points when ` = 0.162. As shown in Table 6.2, DENMRA provides sharper
resolution than SOCS while preserving the accuracy of the solution.

6.6.2 Hypersensitive Problem

This problem minimizes the cost function

J =

∫ tf

0

(
x2(t) + u2(t)

)
dt,

subject to the differential constraint

ẋ = −x3 + u,

and endpoint state constraints x(0) = 1, x(tf ) = 1.5. For large values of tf , the solution of this
hypersensitive problem has a three-segment structure with two boundary layers [144], namely, a
“take-off, cruise and landing” structure. The “cruise” phase is determined by the cost function and
the system dynamics,while the “take-off” and “landing” phases are determined by the boundary
conditions, cost function, system dynamics, and the requirement to reach the cruise phase.

As pointed out in Ref. [144], the key to solving hypersensitive problems using direct methods is
to use a denser grid during the boundary layers—“take-off” and “landing” phases— in which the
state changes fast; a nonuniform mesh is imperative for the solution of this problem with large
values of tf . The hypersensitive problem with large tf is suitable for testing the robustness of mesh
refinement algorithms, because the length of the “cruise” phase increases with respect to tf , which
makes it more difficult to allocate enough grid points to the two boundary layers. We solved this
problem for various values of tf using both SOCS and DENMRA. Observing that the boundary
layer is characterized by a large absolute value of the derivative of control, we used the density
function f(t) = |u̇(t)| 12 to capture these boundary layers during mesh generation in DENMRA.

SOCS was started from a mesh containing 150 points, and the maximum number of mesh refine-
ments was set at 15. DENMRA started from a uniform mesh containing 25 points, with a maximum
number of 15 mesh refinement iterations and a maximum mesh size of Nmax = 100. The problem
was solved on the same computer as in the previous example. The results are summarized below.

In our numerical experiments, when ρκ is used for mesh generation and refinement, DENMRA
failed to allocate enough points at both ends of the mesh, and did not converge for large values
of tf . In contrast, the use of the density finction f(t) = |u̇(t)| 12 captures a larger region of the
two boundary layers. Figure 6.9 shows the result of DENMRA using the f density function for
tf = 1 × 105. As can be seen from the figure, the majority of the grid points are successfully
allocated inside the two boundary layers.

Both SOCS and DENMRA were challenged by solving this hypersensitive problem for tf as large
as possible. To estimate the maximum solvable value of tf , each algorithm was used to solve the
hypersensitive problem for an increasing sequence of tf values starting from tf = 100. Numerical
results showed that the optimal value J∗ ≈ 6.724. If the problem was successfully solved with
the final objective value J < 7, then tf was updated as tf = tf + ∆tf , where ∆tf = 10N if
10N ≤ tf < 10N+1, for some positive integer N , and the problem was solved again with the new
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Figure 6.9: DENMRA solution, tf = 100, 000.

tf . This process was repeated until J ≥ 7. The results are shown in Table 6.3. As shown in the
table, DENMRA exhibited good robustness by solving the hypersensitive problem for large values
of tf , which is attributed to its ability to redistribute the grid points to the boundary layers even
with the presence of very long “cruise” phases. As a matter of fact, DENMRA was able to provide
a solution up to a maximum value of tf = 2× 106, whereas SOCS was limited to a maximum value
of tf = 30, 000.

The optimality of SOCS and DENMRA is shown in Table 6.4. It was found that the optimality of
the results obtained by DENMRA deteriorates when tf is very large, while the optimality of the
SOCS solution is consistent within the range of tf values it can solve. The mesh refinement histories
of two algorithms are similar, except for the fact that the mesh generated by SOCS contains many
more grid points.

Table 6.3: Hypersensitive problem, robustness test.

Algorithm tf NIter Nf J

SOCS 30,000 15 475 6.7241

DENMRA-f 2× 106 15 100 6.8211

In Ref. [31], a density (monitor) function of the form
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Table 6.4: Hypersensitive problem, optimality test.

Algorithm tf NIter Nf J

SOCS
2× 102 11 1020 6.7241
2× 103 14 1201 6.7241
2× 104 15 1014 6.7241

DENMRA-f
2× 102 13 100 6.7240
2× 103 13 100 6.7240
2× 104 15 100 6.7239

ϕ(x, u) =

(
α+

n∑

i=1

βigi(x, u)

)1/2

,

where gi(x, u) is the ith component of the system dynamics, and α and βi are constants to be
adjusted, was used to initialize SOCS for solving the hypersensitive problem. This “arc length”
monitor function was also tested for mesh refinement. It was found that when DENMRA uses this
arc length monitor function, the maximum solvable tf value is 10,000. A density function providing
an equidistribution along the arc length of the graph of the system state is not therefore the best
choice for mesh refinement for this specific problem.

6.6.3 Optimal Aircraft Landing Trajectory with Limited Thrust

In this example DENMRA was used to investigate several optimal landing scenarios for a DC9-30
commercial aircraft. The equations of motion are as follows [73]:

ẋ = υ cos γ cosψ, (6.27)

ẏ = υ cos γ sinψ, (6.28)

ż = υ sin γ, (6.29)

υ̇ =
1

m
(T cosα−D(α, v, z))− g sin γ, (6.30)

γ̇ =
1

mυ
(T sinα+ L(α, v, z) cosφ)− g

υ
cos γ, (6.31)

ψ̇ = − 1

mυ cos γ
L(α, v, z) sinφ, (6.32)

where the variables are

m: mass, v: airspeed, ψ: heading angle, γ: path angle,
x: position(east), y: position(north), z: altitude, T : thrust,
φ: bank angle, L: lift force, D: drag force. α: angle of attack.

The lift and drag forces are functions of α and v, as described in the following equations:

D(α, v, z) = Q(v, z)SCD(α),

L(α, v, z) = Q(v, z)SCL(α),

where Q(v, z) is the dynamic pressure given by Q(v, z) = 1
2ρ(z)v2, ρ(z) is the air density at altitude

z, and S is the wing surface area. The lift and drag coefficients CL(α) and CD(α) can be calculated,
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as usual, by the following equations,

CL(α) = CL0 + CLαα,

CD(α) = CD0 +KC2
L(α),

where CL0 is the lift coefficient at zero angle of attack, and CLα is the lift coefficient slope. The
coefficient CD0 accounts for the drag of the whole aircraft, and the second term in CD(α) accounts
for the induced drag, specifically, K = 1/(0.95eπA), where e is the efficiency factor, which is
corrected by 0.95 for the assumed landing configuration. A is the aspect ratio of the aircraft
defined by A = b2/S, where b is the wing span. In the current model, it is assumed that the
mass of the aircraft m is constant. Since large civil aircraft usually fly at a high altitude, a
realistic atmospheric model is used for solving the optimal landing problem [130]. The values of the
parameters in the former equations are given in Table 6.6.3, where Tmax is the maximum thrust.

Table 6.5: Parameters for the DC9-30.

m 49.940 kg g 9.8kgm/s2 ρ0 1.225kg/m3

S 112 m2 CLα 4.2 CL0 0.4225

Tmax 137.81kN K 0.0459 CD0 0.0197

Finding a good initial guess turns out to be challenging for this problem. Large civil aircraft
usually cruise at an altitude of around 10, 000 m, where the air density is about 0.4140 kg/m3,
which is only 33.8% of the value at sea level. Constantly changing air density during the landing
process makes it difficult for the NLP solver to converge, especially when the initial guess is not
good. Our numerical experiments have shown that an arbitrary affine or constant initial guess of
states and controls works satisfactorily for the constant air density scenario, but it is difficult to
find a converging initial guess for the altitude-varying air density scenario. Experience may provide
good intuition about the shape of the optimal path but, in general, this is not so for the velocity
profile and histories of controls to fly along such a path. Besides, if the initial guess of the states
and controls are not dynamically consistent, then this initial guess may also lead to the failure of
the solver for a sensitive problem.

For the sensitive cases in which the landing problem with a realistic air density model and constant
initial guess failed to converge, the same problem with constant air density was solved, and the
result was subsequently used as an initial guess for solving the problem with the altitude-varying air
density model again. For all sensitive cases which have been tested, this procedure led to convergent
solutions.

When an aircraft looses thrust because of engine failure, fuel depletion, or any other unforeseen
problem, a reasonable option to guarantee the safety of the passengers is to land the aircraft at a
nearby airport as soon as possible. This can be treated as a minimum-time optimal control problem
with fixed boundary conditions. In this section we consider two cases for the zero-thrust, minimum-
time landing problem. For both cases the aircraft loses power at an altitude of z = 10 km, cruise
speed v = 240 m/s, and flight path angle γ = 0◦, and needs to land at a nearby airport using only
the angle of attack α and the bank angle φ as control inputs. We considered four landing scenarios
to demonstrate DENMRA’s capability for solving the aircraft landing problem, with different run
way position and orientation. The runway layouts are listed in Table 6.6.

The zero-thrust emergency landing scenarios in Table 6.6 were solved by minimizing the final arrival
time tf in DENMRA. The corresponding landing trajectories are shown in Fig. 6.10 and Fig. 6.11.
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Table 6.6: Runway layout table.

xf (km) yf (km) zf (km) ψf (◦)

Runway No.1 60 50 0 350

Runway No.2 60 -30 0 30

Runway No.3 -60 -45 0 150

Runway No.4 -70 45 0 310

The same landing problems were also formulated using an industrial-strength numerical optimal
control software—Sparse Optimal Control Software (SOCS), however, no convergent solution was
found.

Figure 6.10: 3D glider landing trajectories generated in DENMRA.
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Figure 6.11: 2D projection of glider landing trajectories generated in DENMRA.
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Chapter 7

Path Smoothing Using Iterative
Quadratic Programming

Path smoothness is a desirable property for the precise tracking of such a path by the aircraft.
With a discontinuity in the first derivative, the path exhibits corner points, at which points the
system must stop completely for precise tracking. Some other systems require even higher order
smoothness of the path in order to be tracked exactly. However, the paths generated by most
geometric path planning methods often do not have the desired smoothness characteristics, and
need to be smoothed. In this chapter, we consider the problem of smoothing a three-dimensional
geometric path, which is proposed as Problem 1.3 in Chapter 1. The method introduced in this
chapter works equally well as a post-processing technique for various geometric path planning
methods generating smooth and collision-free paths.

7.1 Background

Let r(s) = {(x(s), y(s), z(s)) : 0 ≤ s ≤ sf} ∈ R3 represent a parameterized path to be followed by
a vehicle, where s is the arc length coordinate. While obstacles pose constraints on the image of r,
vehicle dynamics place constraints on its higher order derivatives. The challenge of smooth path
planning lies in the coordination between these two different layers of constraints.

The most commonly used high order path constraint is the curvature constraint. Although Du-
binsvehicle paths address curvature constraints, the result is optimal only for a vehicle having
constant speed [66]. For more realistic vehicles with acceleration/deceleration capability, curvature
has greater influence on both the optimality and feasibility of the path. For example, the traveling
time along a longer path with small maximum curvature can be shorter than that along a shorter
path with large maximum curvature [60]. Besides, a path may be infeasible due to a “minor” viola-
tion of the curvature constraint, such that the feasibility can be recovered by a small local variation
of the path. Hence, smoothing a path via local curvature regulation may lead to improvement in
terms of feasibility and optimality.

A discontinuity in the curvature profile implies an instantaneous change of the steering wheel angle
for a car-like vehicle or the bank angle/angle of attack for a fixed-wing aircraft, both of which
require (theoretically) infinite control force. Therefore, the curvature of the path should be at least
continuous for practical applications. For this reason, clothoid arcs have been used for continuous-
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curvature path planning based on the Dubins’ path prototype [150, 74, 20]. Reference [140] used
analytical splines and heuristics for smooth path generation. Reference [186] proposed a path
planning algorithm which generates a smooth path by smoothing out the corners of a linear path
prototype using Bézier curves based on analytic expressions. Although all these methods can
generate paths with continuous curvature, obstacle avoidance is not guaranteed by these methods
per se, and can only be done in an ad hoc manner.

One approach for smooth path planning in the presence of obstacles is to use a “channel” or
“corridor,” which is selected a priori, such that it does not intrude any of the obstacles. A smooth
path is then found within the channel such that it is collision-free. For instance, [19] introduced a
method for generating curvature-bounded paths in rectangular channels; reference [29] proposed a
method for constructing bounded curvature paths traversing a constant width region in the plane,
called corridors, and reference [103] introduced a method for generating smooth two-dimensional
paths within two-dimensional bounding envelops using B-spline curves. A nonlinear optimization
scheme is used to design collision-free and curvature-continuous paths in [121].

Next, we will present an iterative method for smoothing a three-dimensional path subject to curva-
ture and obstacle clearance constraints. The proposed method minimizes the weighted L2 norm of
the curvature along the path, which is analogous to the strain energy stored in a deflected elastic
beam. During the optimization process, a sequence of obstacle-free perturbations are generated
along the normal direction of the path. This idea is similar to the perturbation technique in [79] for
eliminating noise in GPS measurement data. When combined with other geometric path planning
algorithms that provide the initial collision-free path prototype, the proposed method generates
collision-free paths under length and localized curvature constraints.

7.2 Curve Representation

Instead of dealing with a curve (path) in the infinite dimensional space, we reduce the dimensionality
of the problem by considering a finite number of characteristic nodes on the curve, and represent
the path using a cubic spline passing through those nodes.

To this end, suppose that the path is defined in parametric form as r(s) = [x(s), y(s), z(s)]T,
parameterized by its arc length s. The curve passes through N characteristic nodes r1, r2, . . . ,
rN ∈ R3 at s1, s2, . . . , sN , respectively, i.e., r(si) = ri = (xi, yi, zi), i = 1, 2, . . . , N , where s1 = 0
and sN = sf . These characteristic nodes are chosen such that they are equally spanned along the
path length with s2 − s1 = s3 − s2 = · · · = sN − sN−1 = ∆s. We introduce the notation r{k} to
denote the kth component of r, i.e., ri{1} = xi, ri{2} = yi, and ri{3} = zi for i = 1, . . . , N .

In the smoothing process, the first and the last nodes are fixed, and the smoothing of the path is
equivalent to the deployment of the other N − 2 characteristic nodes subject to certain smoothness
criteria.

Because we require that the path has continuous second derivative, cubic splines are used for the
interpolation between the nodes. Specifically, for every i = 2, . . . , N − 2, a group of four adjacent
nodes (the i − 1th, ith, i + 1th, and i + 2th nodes) is used to construct a local cubic curve for
the interpolation between the ith and the i + 1th node, as shown in Fig. 7.1. A local path length
coordinate τ is assigned to each group of nodes such that τ = 0 for the i − 1th node, τ = 1/3 for
the ith node, τ = 2/3 for the i+ 1th node, and τ = 1 for the i+ 2th node.

With a slight abuse of notation, the coordinate x of the path between τ = 1/3 and τ = 2/3 is given
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Figure 7.1: Cubic spline interpolation.

by a cubic interpolative spline passing through the x components of ri−1, ri, ri+1, ri+2 as:

x(τ ; i) = axiτ
3 + bxiτ

2 + cxiτ + dxi

where axi , bxi , cxi and dxi are constants for which the following constraints must be satisfied:

xi−1 = x(0; i) = dxi , (7.1)

xi = x(1
3 ; i) =

axi
27

+
bxi
9

+
cxi
3

+ dxi , (7.2)

xi+1 = x(2
3 ; i) =

8axi
27

+
4bxi

9
+

2cxi
3

+ dxi , (7.3)

xi+2 = x(1; i) = axi + bxi + cxi + dxi , (7.4)

from which we have 


axi
bxi
cxi
dxi


 = G




xi−1

xi
xi+1

xi+2


 ,

where

G =




−9
2

27
2 −27

2
9
2

9 −45
2 18 −9

2
−11

2 9 −9
2 1

1 0 0 0


 .

Therefore, we have the following expression

x(τ ; i) =
[
τ3 τ2 τ 1

]



axi
bxi
cxi
dxi


 =

[
τ3 τ2 τ 1

]
G




xi−1

xi
xi+1

xi+2


 . (7.5)

Similarly, the expressions for y(τ ; i) and z(τ ; i) can also be derived, allowing r(τ ; i) to be given by
the expression

r(τ ; i) =
[
τ3 τ2 τ 1

]
G




ri−1

ri
ri+1

ri+2


 . (7.6)
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By taking derivatives of (7.6), we have

dr(τ ; i)

dτ
=
[
3τ2 2τ 1 0

]
G




ri−1

ri
ri+1

ri+2


 , (7.7)

and

d2r(τ ; i)

dτ2
=
[
6τ 2 0 0

]
G




ri−1

ri
ri+1

ri+2


 . (7.8)

These derivatives are proportional to the derivatives of the path with respect to the path coordinate
s. Let r′ and r′′ denote, respectively, the first and second derivatives of the path r with respect to
s. Then it can be easily shown that for s ∈ [si, si+1], i = 2, . . . , N − 2,

r′(s) =
1

3∆s

dr(τ ; i)

dτ
, and r′′(s) =

1

9∆s2

d2r(τ ; i)

dτ2
,

where τ = (s− si)/3∆s.

At any point s ∈ [s0, sf ], the tangent vector t(s) is given by r′′(s). The normal vector n(s) is given
by n(s) = r′′(s)/‖r′′(s)‖, and the binormal vector b(s) is given by b(s) = t×n, where ‘×’ denotes
the cross product.

We also define

Ri =




ri−1

ri
ri+1

ri+2


 , Ri{k} =




ri−1{k}
ri{k}

ri+1{k}
ri+2{k}


 , k = 1, 2, 3; i = 2, . . . , N − 2.

7.3 Path Variation

Consider a specific variation of the path r(s) by perturbing the path at the characteristic nodes
along the associated “normal directions” ni = n(si) and “binormal directions” bi = b(si). Note
that when r′′i = 0, then ni is not well-defined. In this case, an arbitrary unit vector perpendicular
to r′i is used as the normal vector.

Let δi denote the magnitude of variation along the direction of ni at the ith node ri, and let λi
denote the magnitude of variation along the bi direction. The nodes of the perturbed path are
given by

r̃i = ri + niδi + biλi = ri + (ni{1},ni{2},ni{3}) δi + (bi{1},bi{2},bi{3})λi. (7.9)

Let X = [δ1, . . . , δN , λ1, . . . , λN ]T, which is the collection of decision variables, and define Xi =
[δi−1, δi, δi+1, δi+2]T, and Yi = [λi−1, λi, λi+1, λi+2]T. Also define

Ni,{k} =




ni−1{k} 0 0 0
0 ni{k} 0 0
0 0 ni+1{k} 0
0 0 0 ni+2{k}


 , k = 1, 2, 3.
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Bi,{k} =




bi−1{k} 0 0 0
0 bi{k} 0 0
0 0 bi+1{k} 0
0 0 0 bi+2{k}


 , k = 1, 2, 3.

Then we have

R̃i{k} = Ri{k}+ Ni,{k}Xi + Bi,{k}Yi, k = 1, 2, 3; i = 2, . . . , N − 2.

The perturbed path is obtained using a cubic curve interpolation at the perturbed characteristic
points r̃i, i = 1, . . . , N .

7.4 Quadratic Programming Formulation for the Path Smoothing
Problem

In this section we formulate the path smoothing problem as a quadratic program, which approxi-
mately minimizes the L2 norm of the curvature profile, while maintaining the path length and local
curvature constraints, boundary conditions and collision-avoidance.

Definition 7.1. The problem

min J(x), x ∈ D ⊆ Rn

is a linear-quadratic mathematical programming problem (or a quadratic program for short), if J is
a linear-quadratic function, that is,

J(x) =
1

2
xTHx+ FTx+ c, (7.10)

where H = HT ∈ Rn×n, F ∈ Rn, and c ∈ R, and P is a convex polyhedron, namely P = {x ∈ Rn :
Ax ≤ b}, where A ∈ Rm×n and b ∈ Rm.

Note that P is a convex set. A linear quadratic programming problem is a special case of a convex
optimization problem when H is a positive semi-definite matrix. Both can be solved very efficiently
using numerical methods.

7.4.1 A Quadratic Cost Function

The L2 norm of the signed curvature function of the perturbed path is defined by

‖κ̃‖2 ,

(∫ sf

s0

w(s)κ̃2(s)ds

) 1
2

, (7.11)

where w : [s0, sf ] → R+ \ {0} is a weight function. With the cubic spline curve representation
of the path, the integral in (7.11) can be computed analytically. Specifically, note that r(s) as
parameterized by its path length coordinate has a unit first derivative, and its curvature is the
magnitude of the acceleration, i.e.,

|κ(s)| = ‖r′′(s)‖.
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To obtain an analytic expression of (7.11), we may assume that w(s) is a piecewise constant function
with w(s) = wi for s ∈ [si, si+1), i = 1, . . . , N − 1 and w(sf ) = wN−1. Therefore,

‖κ̃‖22 =

∫ sf

s0

w(s)κ̃2(s)ds

=

∫ sf

s0

w(s)〈r̃′′(s), r̃′′(s)〉ds

= w1

∫ s2

s1

〈
r̃′′(s), r̃′′(s)

〉
ds+

N−2∑

i=2

wi

∫ si+1

si

〈
r̃′′(s), r̃′′(s)

〉
ds+ wN−1

∫ sN

sN−1

〈
r̃′′(s), r̃′′(s)

〉
ds

For i = 2, . . . , N − 2,
∫ si+1

si

〈
r̃′′(s), r̃′′(s)

〉
ds

=
1

81∆s4

∫ 2
3

1
3

[
6τ 2 0 0

]
GR̃iR̃

T
i GT




6τ
2
0
0


dτ

=
1

81∆s4

k=3∑

k=1

∫ 2
3

1
3

[
6τ 2 0 0

]
GR̃i{k}R̃T

i {k}GT




6τ
2
0
0


dτ

=
1

81∆s4

k=3∑

k=1

R̃T
i {k}GT

∫ 2
3

1
3




6τ
2
0
0



[
6τ 2 0 0

]
dτGR̃i{k}

=
1

81∆s4

k=3∑

k=1

R̃T
i {k}GT




28
9 2 0 0
2 4

3 0 0
0 0 0 0
0 0 0 0


GR̃i{k}

=
1

81∆s4

k=3∑

k=1

R̃T
i {k}MiR̃i{k},

where

Mi =




9 −27
2 0 9

2
−27

2 27 −27
2 0

0 −27
2 27 −27

2
9
2 0 −27

2 9


 .

Similarly, we have
∫ s2

s1

〈
r̃′′(s), r̃′′(s)

〉
ds =

1

81∆s4

k=3∑

k=1

R̃T
2 {k}M1R̃2{k},

and ∫ sN

sN−1

〈
r̃′′(s), r̃′′(s)

〉
ds =

1

81∆s4

k=3∑

k=1

R̃T
N−2{k}MN−1R̃N−2{k},
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where

M1 =




63 −297
2 108 −45

2
297
2 351 −513

2 54
108 −513

2 189 −81
2

−45
2 54 −81

2 9


 ,

and

MN−1 =




9 −81
2 54 −45

2
−81

2 189 −513
2 108

54 −513
2 351 −297

2
−45

2 108 −297
2 63




Hence, we have

‖κ̃‖22 =
1

81∆s4

N−1∑

i=1

k=3∑

k=1

R̃T
i {k}MiR̃i{k}

According to equation (7.9), we have

R̃T
i {k}MiR̃i{k} =

(
RT
i {k}+ (Ni,{k}Xi + Bi,{k}Yi)

T
)
Mi

(
Ri{k}+ Ni,{k}Xi + Bi,{k}Yi

)

= RT
i {k}MiRi{k}+ 2RT

i {k}MiNi,{k}Xi + XT
i Ni,{k}MiNi,{k}Xi

+ 2RT
i {k}MiBi,{k}Yi + YT

i Bi,{k}MiBi,{k}Yi + 2YT
i Bi,{k}MiNi,{k}Xi.

Because the term RT
i {k}MiRi{k} in the above expression is a constant independent of the variation

Xi, it suffices to consider the other terms only in the optimization. As a result, the minimization
of (7.11) is equivalent to the minimization of the following cost function

J(X) =

N−2∑

i=2

wi

k=3∑

k=1

XT
i Ni,{k}MiNi,{k}Xi + 2

N−2∑

i=2

wi

k=3∑

k=1

RT
i {k}MiNi,{k}Xi

+ w1

k=3∑

k=1

XT
2 N2,{k}M1N2,{k}X2 + 2wN−1

k=3∑

k=1

RT
N−2{k}MN−1NN−2,{k}XN−2

+ wN−1

k=3∑

k=1

XT
N−2NN−2,{k}MN−1NN−2,{k}XN−2 + 2w1

k=3∑

k=1

RT
2 {k}M1N2,{k}X2

+
N−2∑

i=2

wi

k=3∑

k=1

YT
i Bi,{k}MiBi,{k}Yi + 2

N−2∑

i=2

wi

k=3∑

k=1

RT
i {k}MiBi,{k}Yi

+ w1

k=3∑

k=1

YT
2 B2,{k}M1B2,{k}Y2 + 2wN−1

k=3∑

k=1

RT
N−2{k}MN−1BN−2,{k}YN−2

+ wN−1

k=3∑

k=1

YT
N−2B2,{k}MN−1BN−2,{k}YN−1 + 2w1

k=3∑

k=1

RT
2 {k}M1B2,{k}Y2

+ 2
N−2∑

i=2

wi

k=3∑

k=1

XT
i Ni,{k}MiBi,{k}Yi,+2w1

k=3∑

k=1

XT
2 N2,{k}M1B2,{k}Y2

+ 2wN−1

k=3∑

k=1

XT
N−2NN−2,{k}MN−1BN−2,{k}YN−2.
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which can be written in a more compact form as

J(X) =
1

2
XTHX + FX,

where H ∈ RN×N and F ∈ R1×N , X = [XT
n , X

T
b ]T, Xn, Xb ∈ RN×1 are the vectors containing the

magnitude of variations at each node along the normal and binormal directions, respectively. The
details for the computation of matrices H and F are given in [188].

7.4.2 Path Length Constraint

Because the length of the path affects the traveling time, it is desirable to have a constraint on the
total length of the path. When a path is perturbed at each node along the normal and binormal
directions, the total length of the path is not necessarily preserved—it could either increase or
decrease depending on the perturbation scenario. Therefore, it is necessary to characterize the
relationship between the perturbation and the change of the total length of the curve, and implement
certain bounds on the latter.

When the spacing between adjacent characteristic nodes is small enough, the total length of the
curve can be approximated by the total length of the line segments connecting each pair of the
adjacent nodes. Let Di denote the change of the length of the line segment between nodes ri and
ri+1 induced by the perturbation δ. The new positions of the nodes after the perturbation are
given by r̃i = ri + δini + λidi and r̃i+1 = ri+1 + δi+1ni+1 + λi+1bi+1. For notational convenience,
let piµi = δini + λidi, and pi+1µi+1 = δi+1ni+1 + λi+1di+1.

Then ‖r̃i+1− r̃i‖ is the length of the corresponding line segment of the perturbed path. We assume
that the variations δi, δi+1, λi, and λi+1 are small enough such that µi, µi+1 � ‖ri+1 − ri‖. The
length of the line segment of the perturbed path between nodes si and si+1 is

‖r̃i+1 − r̃i‖ = ‖ri+1 + µi+1pi+1 − ri − µipi‖

=

√
‖(ri+1 − ri) + (µi+1pi+1 − µipi)‖2.

By the polarization identity for the Euclidean inner product,

‖r̃i+1 − r̃i‖ =
(
‖ri+1 − ri‖2 + ‖µi+1pi+1 − µipi‖2

+ 2 〈µi+1pi+1 − µipi, ri+1 − ri〉
) 1

2 .

Then the segment length Di can be written as in (7.12).

Di = ‖r̃i+1 − r̃i‖ − ‖ri+1 − ri‖

= −‖ri+1 − ri‖+

√
‖ri+1 − ri‖2 + ‖µi+1pi+1 − µipi‖2 + 2 〈δi+1pi+1 − µipi, ri+1 − ri〉

=
1

‖ri+1 − ri‖
‖µi+1pi+1 − µipi‖2 + 2 〈µi+1pi+1 − µipi, ri+1 − ri〉

1 +

√
1 +
‖µi+1pi+1 − µipi‖
‖ri+1 − ri‖2

2

+ 2

〈
µi+1pi+1 − µipi
‖ri+1 − ri‖

,
ri+1 − ri
‖ri+1 − ri‖

〉 . (7.12)

By the small variation assumption, and dropping the square terms, expression (7.12) yields the
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following approximation for Di

Di ≈
〈

ri+1 − ri
‖ri+1 − ri‖

, µi+1pi+1

〉
−
〈

ri+1 − ri
‖ri+1 − ri‖

, µipi

〉

=

〈
ri+1 − ri
‖ri+1 − ri‖

, δi+1ni+1

〉
−
〈

ri+1 − ri
‖ri+1 − ri‖

, δini

〉
(7.13)

+

〈
ri+1 − ri
‖ri+1 − ri‖

, λi+1bi+1

〉
−
〈

ri+1 − ri
‖ri+1 − ri‖

, λibi

〉

Eδ =




−〈r2 − r1,n1〉 〈r2 − r1,n2〉 0
−〈r3 − r2,n2〉 〈r3 − r2,n3〉

. . .
. . .

0 −〈rN − rN−1,nN−1〉 〈rN − rN−1,nN 〉


 (7.14)

Eλ =




−〈r2 − r1,b1〉 〈r2 − r1,b2〉 0
−〈r3 − r2,b2〉 〈r3 − r2,b3〉

. . .
. . .

0 −〈rN − rN−1,bN−1〉 〈rN − rN−1,bN 〉


 (7.15)

In order to write equation (7.13) in a more compact form, let B = diag([1/‖r2 − r1‖, . . . ,
1/‖rN − rN−1‖]), and define matrices Eδ and Eλ as in (7.14) and (7.15). Also, let 1N−1 de-
note the N − 1 dimensional column vector with all elements equal to one. Let ∆L(X) denote the
change of the total length of the path induced by the variation X. Then ∆L can be approximated
by ∆L(X) ≈ 1T

N−1B[Eδ,Eλ]X, which is a linear function of X. The constraint on the total length
of the path is given by the following linear inequality constraint on X:

Lmin − L ≤ ∆L(X) ≤ Lmax − L, (7.16)

where L is the length of the path before perturbation, and Lmax and Lmin are the upper and lower
bounds of the path length, respectively. These inequalities are enforced element-wise. Alternatively,
if the length of the path is fixed, then the linear equality constraint ∆L(X) = 0 is applied (Lmin =
L = Lmax):

7.4.3 Curvature Constraints

Localized curvature constraints are important for practical path planning. For example, a ground
vehicle requires a larger turning radius when moving on a slippery surface compared with the same
operation on normal ground. Let Kmax,i and Kmin,i be the maximum and minimum curvature
constraints allowed in a neighborhood of ri (i = 1, 2, . . . , N) which are determined by the vehicle
dynamics and the local environment.

According to (7.8), for i = 2, . . . , N − 1, the second derivative of the path at the ith node is
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r′′(si) =
1

9∆2
s

d2r(1
3)

dτ2

=
1

9∆2
s

[
2 2 0 0

]
G




ri−1

ri
ri+1

ri+2


 =

1

∆2
s

[
1 −2 1 0

]



ri−1

ri
ri+1

ri+2




=
1

∆2
s

(ri−1 − 2ri + ri+1) .

Therefore the second derivative of the perturbed path r̃ at si is given by

r̃′′(si) =
1

∆2
s

(r̃i−1 − 2r̃i + r̃i+1) .

Neglecting the change of the normal direction caused by the variation and assume that ñi = ni,
b̃i = bi, i = 1, . . . , N , we have

κ̃i = 〈ñi, r̃′′i 〉
≈ 〈ni, r̃′′i 〉

=
1

∆2
s

(〈ni, r̃i−1〉 − 2〈ni, r̃i〉+ 〈ni, r̃i+1〉)

=
1

∆2
s

(〈ni, ri−1〉+ 〈ni,ni−1〉δi−1 + 〈ni,bi−1〉λi−1

− 2〈ni, ri〉 − 2〈ni,ni〉δi − 2〈ni,bi〉λi + 〈ni, ri+1〉+ 〈ni,ni+1〉δi+1 + 〈ni,bi+1〉λi+1)

= κi +
1

∆2
s

(〈ni,ni−1〉δi−1 − 2δi + 〈ni,ni+1〉δi+1) +
1

∆2
s

(〈ni,bi−1〉λi−1 + 〈ni,bi+1〉λi+1) .

Similarly, the curvature of the perturbed path at the first node can be estimated by

κ̃1 ≈ 〈n1, r̃
′′
1〉 = κ1 +

1

∆2
s

(−5〈n1,n2〉δ2 + 4〈n1,n3〉δ3 − 〈n1,n4〉δ4)

+
1

∆2
s

(−5〈n1,b2〉λ2 + 4〈n1,b3〉λ3 − 〈n1,b4〉λ4),

and

κ̃N ≈ 〈nN , r̃′′N 〉 = κN +
1

∆2
s

(−〈nN ,nN−3〉δN−3 + 4〈nN ,nN−2〉δN−2 − 5〈nN ,nN−1〉δN−1)

+
1

∆2
s

(−〈nN ,bN−3〉λN−3 + 4〈nN ,bN−2〉λN−2 − 5〈nN ,bN−1〉λN−1) .

Let K̃ = [κ̃1, . . . , κ̃N ]T be the curvature of the perturbed path r̃ at the characteristic nodes. Then
the three expressions above can be written as K̃ = K + CX, where C ∈ RN×N . The details for
the computation of the matrix C are given in [188]. Let Kmax = [Kmax,1,Kmax,2, . . . ,Kmax,N ]T and
Kmin = [Kmin,1,Kmin,2, . . . ,Kmin,N ]T. The curvature of the perturbed path then need to satisfy
the linear inequality constraint

Kmin −K ≤ CX ≤ Kmax −K. (7.17)
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7.4.4 Bounds on the Variation and Collision Avoidance

In the computation of the L2 norm of the curvature, it is assumed that the path lengths between
adjacent nodes is preserved by the perturbation. Such an assumption is valid only if the perturba-
tion is small enough. Some constraints, such as (7.17), also require small variation along the path.
Hence, it is necessary to impose limits on the allowable magnitude of variation. The small variation
is also required by the approximation used in the path length constraint. On the other hand, the
magnitude of the variation should also be limited for collision-avoidance, since a large variation of
the path in a neighborhood of an obstacle may lead to a collision.

By carefully choosing the bounds of variation, we can also ensure, at least approximately, the
collision-avoidance of the perturbed path. The whole path contains N − 1 segments. For the
path segment between the i− 1th and ith nodes, consider the variations along the normal and
binormal directions separately. Specifically, for i = 2 : N − 2, Let δ̄i,u = δmax, where δmax is a
predetermined small positive number, and keep other characteristic nodes unperturbed. Consider
a variation given by δri = δri+1 = niδ̄i,u, and δj = 0 for j = 2, . . . , N − 1, j 6= i, j 6= i + 1. If
this segment is still collision-free after the variation, then δ̄i,u = δmax, otherwise decrease δ̄i,u while
keeping δi = δi−1 = δ̄i,u until the perturbed segment is collision-free. Collision is checked along the
perturbed path at the i− 1th and ith nodes, as well as at a certain number of interpolating points
between these two nodes. The locations of the these points after perturbation can be computed
using equation (7.6).

Similarly, the variation lower bound δ̄i,l of the same segment is determined by initially choosing
δ̄i,l = −δmax and δi−1 = δi = δ̄i,l. If collision occurs, gradually increase δ̄i,l while keeping δi−1 =
δi = δ̄i,l until the perturbed path is collision-free, and let lδi = δi. In the same way, the bounds λ̄il
and λ̄iu on the variation λi, i = 2, . . . , N − 1 can also be determined.

Let lδ1 , . . . , lδN and uδ1 , . . . , uδN be the lower and upper bounds of the variations δi, and let
lλ1 , . . . , lλN and uλ1 , . . . , uλN be the lower and upper bounds of the variations λi, respectively. Be-
cause the path is required to pass through the start and target positions, the variation must be zero
at these two points, which can be achieved by setting the bounds as lδ1 = uδ,1 = 0, lδN = uδN = 0,
lλ1 = uλ,1 = 0, lλN = uλN = 0. The bounds of the variations of the second and the N − 1th

nodes are given by lδ2 = δ̄2,l, uδ2 = δ̄2,u, lλ2 = λ̄2,l, uλ2 = λ̄2,u. For i = 3, . . . , N − 2, the bounds
on the variation are given by lδi = max{δ̄i−1,l, δ̄i,l}, lλi = max{λ̄i−1,l, λ̄i,l}, uδi = min{δ̄i−1,u, δ̄i,u}
uλi = min{λ̄i−1,u, λ̄i,u}.
Let Xmin = {lδ1 , . . . , lδN , lλ1 , . . . , lλN } and Xmax = {uδ1 , . . . , uδN , uλ1 , . . . , uλN }. With Xmin ≤ X ≤
Xmax as a constraint in the optimization, the collision avoidance requirement is approximately
satisfied. Simulation results show that the performance of such a simple treatment is acceptable.
More rigorous treatment for collision avoidance is also possible. As an example, for the ith segment
of the path r between the ith and the i+ 1th nodes, an obstacle-free convex polygon containing this
segment can be find. By requiring that a certain number of interpolating points along this segment
of the perturbed path stay within the polygon, collision avoidance is enforced along this segment.
The collision avoidance of the whole path is then guaranteed by finding N − 1 convex polygons
for each segment and requiring that each segment stays within the corresponding polygon. Such a
laborious treatment leads to a large number of linear inequality constraints on X.
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7.4.5 Initial and Final Condition

Suppose that the perturbed path is required to satisfy tangent constraints at the first and last
nodes with

r′1 =
[
t1x , t1y , t1z

]
, r′N =

[
tNx , tNy , tNz

]
.

Let b1 and bN denote the binormal direction at the first and last nodes, which are given by
b1 = r′1 × n1, and bN = r′N × nN .

The tangent, or the path derivative of of r̃ at the first node is

r̃′(0) =
1

3∆s

dr(0; 2)

dτ

=
1

3∆s

[
0 0 1 0

]
G




r1 + n1δ1 + b1λ1

r2 + n2δ2 + b2λ2

r3 + n3δ3 + b3λ3

r4 + n4δ4 + b4λ4




=
1

3∆s

[
−5.5 9 −4.5 1

]



r1

r2 + n2δ2 + b2λ2

r3 + n3δ3 + b3λ3

r4 + n4δ4 + b4λ4


 .

The constraint that r̃′(0) is parallel to r′1 is equivalent to the requirement that r̃′(0) is perpendicular
to both b1 and n1, i.e.,

−5.5〈r1,n1〉+ 9〈r2 + n2δ2,n1〉 − 4.5〈r3 + n3δ3,n1〉+ 〈r4 + n4δ4,n1〉
+ 9〈r2 + b2λ2,n1〉 − 4.5〈r3 + b3λ3,n1〉+ 〈r4 + b4λ4,n1〉 = 0, (7.18)

−5.5〈r1,b1〉+ 9〈r2 + n2δ2,b1〉 − 4.5〈r3 + n3δ3,b1〉+ 〈r4 + n4δ4,b1〉
+ 9〈r2 + b2λ2,b1〉 − 4.5〈r3 + b3λ3,b1〉+ 〈r4 + b4λ4,b1〉 = 0, (7.19)

which are linear constraints on δ2, δ3, and δ4. Similarly, the tangent constraint at the last node
can be enforced by

5.5〈rN ,nN 〉 − 9〈rN−1 + nN−1δN−1,nN 〉+ 4.5〈rN−2 + nN−2δN−2,nN 〉
− 〈rN−3 + nN−3δN−3,nN 〉 − 9〈rN−1 + bN−1λN−1,nN 〉 (7.20)

+ 4.5〈rN−2 + bN−2λN−2,nN 〉 − 〈rN−3 + bN−3λN−3,nN 〉 = 0,

5.5〈rN ,bN 〉 − 9〈rN−1 + nN−1δN−1,bN 〉+ 4.5〈rN−2 + nN−2δN−2,bN 〉
− 〈rN−3 + nN−3δN−3,bN 〉 − 9〈rN−1 + bN−1λN−1,bN 〉 (7.21)

+ 4.5〈rN−2 + bN−2λN−2,bN 〉 − 〈rN−3 + bN−3λN−3,bN 〉 = 0,

7.4.6 Connection to Beam Theory

Consider a classical beam subject to pure bending. The bending moment and the local curvature
satisfy

κ (s) =
M (s)

EI(s)
,
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where κ(s) is the local curvature of the neutral surface of the beam, M(s) is the bending moment at
the cross section at s, and I(s) is the second moment of area of the cross section about its neutral
surface, and E is the Young’s modulus of the beam material. The product EI(s) is often referred
to as the flexural rigidity or the bending stiffness of the beam.

The total strain energy U of the bending beam can be written as:

U =

∫ sf

0

M2 (s)

2EI (s)
ds =

1

2

∫ sf

0
EI(s)κ2(s)ds,

which is exactly the square of the weighted L2 norm of the curvature function. Hence, the result
of the quadratic program essentially corresponds to a minimum bending energy configuration in
a neighborhood of the original path. It is also observed that the weight function w(s) in (7.11)
corresponds to the flexural rigidity EI(s).

7.5 Path Smoothing Algorithm

7.5.1 Discrete Evolution and the Path Smoothing Algorithm

Consider a family of smooth paths P(s, j), where s is the path coordinate parameterizing the path
and j is the index parameterizing the family. The path evolves among the family P(s, j) at the
representative nodes according to the evolution equation

P (si, j + 1) = P (si, j) +X∗nin (si, j) +X∗bib (si, j) , (7.22)

P (s, 0) = P(0) (s) ,

where X∗ni and X∗bi are the ith component of X∗n and X∗b , which compose the optimal solution

X∗ = [X∗Tn , X∗Tb ] to the quadratic program with initial path P(s, j).

The proposed path smoothing algorithm is designed based on the evolution equation (7.22), and
involves solving iteratively a series of Quadratic Programming problems:

1. Let j be the count of iterations, starting from j = 1,

2. Discretize the path with N nodes, say, s1 = 0, s2, s3, . . . , sN = sf .

3. Determine the bounds of variation, and solve the quadratic programming problem. Interpo-
late the result with a cubic spline curve to generate the new path,

4. Compute the difference between the new and the old path by

ξj =

∫ sf

0
‖P(s, j)− P(s, j − 1)‖2 ds.

Stop the iteration if ξj is smaller than some predetermined threshold, or if j reaches the
maximum number of iterations. Otherwise increase j by one and go to Step 2).

The main difference between the above iterative Quadratic Programming method and the stan-
dard Sequential Quadratic Programming is that for the later, the cost function and constraints
are pre-determined functions of the decision variables, and these functions do not change in the
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optimization. In the iterative Quadratic Programming approach described above, these functions
are updated after each iteration, which means that a new problem is formulated at the beginning
of each iteration based on the solution of the previous iteration.

In order to test the smoothing efficiency of the proposed algorithm, we consider a planar path ex-
ample, and compared the proposed algorithm with the curvature evolution path-smoothing method
with zero constant speed, which has the following evolution equation [153]:

∂P(s, t)

∂t
= κ(s, t)n(s, t), (7.23)

P (s, 0) = P(0) (s) .

Equation (7.23) can be solved numerically using forward difference

P(s, t+ ε) = P(s, t) + εκ(s)n(s, t), (7.24)

where ε is a small number.

Both methods were started from the same initial path P(s, 0) which in this case was the graph
of a sine function, and converge to a straight line at the end. The same stopping rule was used
for both methods. The fixed length requirement in the quadratic programming method is relaxed
to be comparable to the curvature method. For fast convergence speed while ensuring numerical
stability, we chose ε = 0.5 for the curvature evolution method in (7.24). The quadratic programming
method finishes the smoothing in 0.3 sec after 21 iterations, while the curvature method finishes
the smoothing in 5.6 sec after 3528 iterations. The results of the two methods are shown in Fig. 7.2
and Fig. 7.3.
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Figure 7.2: Quadratic programming path smoothing.
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Figure 7.3: Curvature evolution.

7.5.2 Reconciling Conflicts Between Variation Bounds and Constraints

Due to the bounds on the allowed variation, the domain of optimization in each step of the pro-
posed algorithm is relatively small, and sometimes the variation bounds are in conflict with the
boundary conditions and curvature constraints, in the sense that the prescribed boundary condi-
tions and curvature constraints cannot be satisfied by any variation within the bounds during a
single iteration.

To resolve such conflicts, the curvature constraints and boundary conditions are enforced progres-
sively during the iterations when necessary, rather than being enforced explicitly in each iteration.
For example, suppose the path needs to satisfy the curvature constraints Kmin ≤ K ≤ Kmax. Then
for each iteration j, the following relaxed curvature bounds are used

Kmin − c1e
−β1j ≤ Kj ≤ Kmax + c2e

−β2j ,

where c1, c2, β1, β2 > 0. It is seen that the left and right hand sides in the above inequalities initially
provide relaxed curvature bounds when j = 0, yet approach the prescribed bounds Kmin and Kmax

asymptotically as j increases. A similar technique is applied for the enforcement of the tangent
directional constraints at the start and end points.

7.6 Numerical Examples

7.6.1 Fixed Length Path Smoothing with Collision Avoidance

In this example, a UAV flies from point A to point B. The obstacles are represented by the polytopes
in Fig. 7.4. The original three-dimensional landing path is shown as the red curve in the Figure.
This initial path is processed using the path smoothing algorithm introduced in this chapter, and
the smoothed path result is shown as the blue curve in Fig. 7.4. The initial and final tangents of
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the path are fixed during the optimization, and the path length is also fixed. The path smoothing
algorithm finishes in 3.5 sec after 15 iterations. The curvature profiles for the original and smoothed
paths are compared in Fig. 7.5. The L2 norm of the curvature function with respect to the path
coordinate decreased by 67% after smoothing, while the L∞ norm was reduced by 61%. In Fig. 7.6,
the optimal speed profiles of the original and smoothed paths are compared. It is clear that the
smoothed path provides a shorter travel time. The optimal speed profiles are computed using the
time-optimal parameterization method introduced in [191] with free final speed at point B.

Figure 7.4: Path smoothing in the presence of obstacles.

7.6.2 Path Smoothing with Localized Curvature Bounds

In this example, a ground vehicle starts from point A at one side of a frozen river, avoids the
obstacle, crosses the river while passing through point B, and finally reaches the target at point
C at the other side of the river. Due to the small coefficient of friction of the icy river surface, it
is required that the segment of the path on the ice surface must have zero curvature (no turning
allowed). The initial path consists of three line segments. During the smoothing process, the
constraint on the total length of the path is relaxed. Furthermore, there exists no directional
constraint at the start and the end of the path. In order to ensure that the path passes through
point B, a node is added to the path at point B, and the variation at this node is set to be zero
during the smoothing process. The result from smoothing is shown in Fig. 7.7. It is clear that the
ground vehicle does not need to perform any turning maneuver on the ice surface.
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Figure 7.5: Curvature profile comparison.
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Figure 7.6: Optimal speed profile.
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Chapter 8

Time-Optimal Path Tracking
Operation for Fixed-Wing Aircraft

In this chapter, we propose a method for the minimum-time travel of a fixed-wing aircraft along a
prescribed geometric path. The method checks the feasibility of the path, namely, whether it is pos-
sible for the aircraft to travel along the path without violating the state or control constraints. If the
path is feasible, the method subsequently finds a semi-analytical solution of the speed profile that
minimizes the travel time along the path. The optimal speed profile is used to time-parameterize
the path, and generate the state trajectory and control histories via inverse dynamics. Two algo-
rithms for the time-optimal parameterization are proposed. Numerical examples are presented to
demonstrate the validity, numerical accuracy and optimality of the proposed method.

8.1 Introduction

Numerous methods including concatenations of Dubins’ path primitives, potential field methods,
optimal control, etc, have all received considerable attention in the literature for the solution of path-
planning problems [133, 168, 66, 53]. Besides trajectory optimization-based methods, the previous
approaches typically do not provide the control histories required for maneuvering the vehicle to
follow the optimal path. Instead, they generate obstacle-free, geometric paths in the environment.
The actual implementation (i.e., path-following) is left to a trajectory tracking controller (or human
pilot) which generates the required control commands to follow the path after a suitable time-
parameterization along the optimal path is imposed. However, because most of these path-planning
methods are at the kinematic level, and do not account for the dynamics of the aircraft, the
feasibility of the resulting trajectory is not guaranteed a priori, i.e., it is possible that no control
exists that allows the aircraft to follow the proposed path without violating the control or state
constraints.

An alternative approach for path-planning of aircraft, which considers more realistic dynamics and
incorporates the state and control constraints, is to formulate the flight path-planning problem as
an optimal control problem[128]. For the numerical solution of this optimal control problem, the
convergence of the solution depends heavily on the quality of the initial guess of the time histories
of both the state and control variables. A good initial guess can help the solution converge much
faster. A bad initial guess will hinder convergence or lead to divergence of the overall numerical
scheme. However, it is not easy to obtain a set of state and control histories that are consistent

155



with the aircraft dynamics and satisfy the given constraints and boundary conditions.

In this chapter we propose a new method to generate time-optimal paramerizations along a given
path, which bypasses the solution of the complete time-optimal control problem. The time pa-
rameterization is constructed by solving for a time-optimal speed profile such that the state and
control constraints are satisfied. The problem is similar to the time-optimal control of robotic
manipulators [35, 160, 139, 158, 156]. These references take advantage of the Lagrangian form of
the dynamics of a fully-actuated robotic manipulator, to compute the required speed profile for
the manipulator to move along a specified path in minimum time. In this work we take a similar
approach, and time-parameterize a given geometric path for a fixed-wing aircraft in a way that
results in minimum-time optimality, while satisfying the dynamic and control constraints along the
given path. The proposed method works equally well as a post-processing tool for pure geomet-
ric/kinematic planners for checking the feasibility of the generated path. This method can also be
used to construct good initial guesses for a complete trajectory optimization solver. Specifically,
the approach may be used as a bridge between geometric path-planning methods and numerical
optimal control methods to improve convergence of a Nonlinear Programming (NLP) solver. The
geometric path given by the geometric planner can be optimally time-parameterized to obtain the
corresponding state and control histories, which can then be passed to the NLP solver as an initial
guess.

In the rest of this chapter, we first show that the problem of optimal time-parameterization of
a geometric path for a fixed-wing aircraft can be converted to a constrained scalar functional
optimization problem by decoupling the controls. The analytical solution to this problem is derived
using Pontryagin’s Maximum Principle. We study the switching structure of the optimal control
profile, and propose two algorithms that can be used to generate the optimal speed profile and
hence also the profile of the optimal thrust. Numerical examples are included to demonstrate the
developed theory.

8.2 Equations of Motion

Let a path in the three-dimensional space, parameterized by the path coordinate s, be given as
follows: x = x(s), y = y(s), z = z(s), where s ∈ [s0, sf ]. The main objective of this chapter is to
find a time-parameterization along the path, i.e., a function s(t), where t ∈ [0, tf ] such that the
corresponding time-parameterized trajectory (x(s(t)), y(s(t)), z(s(t))) minimizes the flight time tf .
It is assumed that x(s), y(s) and z(s) are continuously differentiable and piecewise analytic1.

Consider the following equations of motion for a point-mass model of a fixed-wing aircraft [127]:

ẋ = v cos γ cosψ, (8.1)

ẏ = v cos γ sinψ, (8.2)

ż = v sin γ, (8.3)

v̇ =
1

m
[T − FD(CL, v, ρ)−mg sin γ] , (8.4)

γ̇ =
1

mv
[FL(CL, v, ρ) cosφ−mg cos γ] , (8.5)

ψ̇ = −FL(CL, v, ρ) sinφ

mv cos γ
, (8.6)

1This is a weak assumption. Piecewise polynomial functions or spline functions, for example, satisfy these condi-
tions.
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where x, y, z are the coordinates defining the position of the aircraft, v is the speed, ρ is the air
density (varying with altitude), γ is the flight path angle, ψ is the heading angle, and φ is the bank
angle. The aerodynamic lift force FL(CL, v, ρ) and drag force FD(CL, v, ρ) are given by:

FL (CL, v, ρ) =
1

2
ρv2SCL,

FD (CL, v, ρ) =
1

2
ρv2SCD =

1

2
ρv2S(CD0 +KC2

L),

where CD0 and K are constants determined by the aerodynamic properties of the aircraft, and S is
the main wing surface area. The effect of wind is not considered. In this model, the lift coefficient
CL, the bank angle φ, and the thrust T are the control inputs.

Because the given path is naturally parameterized using the path coordinate s instead of time, the
equations of motion can be rewritten with respect to s as follows (where prime denotes differenti-
ation with respect to s:

x′ = cos γ cosψ, (8.7)

y′ = cos γ sinψ, (8.8)

z′ = sin γ, (8.9)

v′ =
1

mv
[T − FD (CL, v, ρ)−mg sin γ] , (8.10)

γ′ =
1

mv2
[FL (CL, v, ρ) cosφ−mg cos γ] , (8.11)

ψ′ = −FL (CL, v, ρ) sinφ

mv2 cos γ
, (8.12)

where the following relations have been used for deriving (8.7)-(8.12):

dt =
ds

v
, (8.13)

ds =
√

d2x+ d2y + d2z, (8.14)

ψ = arctan
dy

dx
= arctan

y′

x′
, (8.15)

γ = arctan
dz√

dx2 + dy2
= arctan

z′√
x′2 + y′2

, (8.16)

ψ′ =
1

1 + (y′/x′)2

y′′x′ − y′x′′
x′2

=
x′2

x′2 + y′2
y′′x′ − y′x′′

x′2
=
y′′x′ − y′x′′
x′2 + y′2

, (8.17)

γ′ =
z′′x′2 + z′′y′2 − z′x′′x′ − z′y′′y′√

x′2 + y′2
. (8.18)

Note that the flight path angle γ and the heading angle ψ are purely geometric variables, therefore,
once a three-dimensional path (x(s), y(s), z(s)) is given, these variables and their derivatives with
respect to the path coordinate can be computed from (8.17) and (8.18). It is clear from the previous
expressions that the continuous differentiability of x, y, z implies the continuity of x′, y′, and z′.
We also assume that the fixed-wing aircraft flight-path angle is always between −π/2 and π/2, a
reasonable assumption for civil fix-wing aircraft, which are the main focus of this work. Note that
x′′, y′′, z′′, γ′, ψ′ and v′ may be discontinuous.

In order to time-parameterize an arbitrary path, it is sufficient to obtain the history of the speed
v(s) with respect to the path coordinate s. After the optimal speed profile v∗(s) is obtained, the
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corresponding optimal time-parameterization of the trajectory can be calculated by integrating
(8.13). Specifically, let t∗ : [s0, sf ] → [0, tf ] be the bijective mapping between the path coordinate
and the corresponding time coordinate along the optimal solution. Then t∗(s) denotes the time
at which the aircraft arrives at the position corresponding to the path coordinate s. Since dt∗ =
ds/v∗(s), it follows that the optimal time profile along the path is given by

t∗(s) =

∫ s

s0

dt∗ =

∫ s

s0

1/v∗(s) ds, s0 ≤ s ≤ sf .

The optimal time-parameterization of the geometric trajectory
(
x(s), y(s), z(s)

)
is then given by

(
x∗(t), y∗(t), z∗(t)

)
=
(
x(t∗−1(t)), y(t∗−1(t)), z(t∗−1(t))

)
.

It will be shown in Section 8.4 that the optimal thrust profile T ∗(s) along the path can be determined
once v∗(s) is known. Subsequently, the other controls can be recovered through inverse dynamics
as follows:

C∗L(s) =
2

ρv∗2(s)S

(
T ∗(s)−mv∗(s)v∗′(s)−mg sin γ(s)

)
,

φ∗(s) = − arctan

(
cos γ(s)ψ′(s)

γ′(s) + g cos γ(s)/v∗2(s)

)
.

Obviously, the key to the optimal time-parameterization along a geometric path is the optimization
of the speed profile along the given path. Next, we show how the state and control constraints of
the problem can be mapped to a set of admissible velocity profiles in the s— v2/2 plane. Later
on, we will solve a scalar functional optimization problem to find the optimal speed profile. The
solution of the latter problem will provide the optimal time-parameterization along the given path.

8.3 The Admissible Kinetic Energy Set

It is required that the lift coefficient CL, the bank angle φ, and the thrust T must stay within
certain ranges during the whole flight, namely,

CL(s) ∈ [CLmin
(s), CLmax

(s)], φ(s) ∈ [φmin(s), φmax(s)], T (s) ∈ [Tmin(s), Tmax(s)], ∀s ∈ [s0, sf ],
(8.19)

where CLmin , CLmax , φmin, φmax, Tmin and Tmax are piecewise analytic functions of s. These con-
straints account for limitations of the control inputs, which may depend on the location along
the path. It is also required that the aircraft speed satisfies the bounds v(s) ∈ [vmin(s), vmax(s)],
where vmin and vmax are piecewise analytic functions with vmin(s) > 0 for all s ∈ [s0, sf ]. We
will further assume that CLmin(s) ≤ 0 ≤ CLmax(s), −π/2 < φmin(s) < 0 < φmax(s) < π/2, and
0 ≤ Tmin(s) < Tmax(s), for all s ∈ [s0, sf ], and that the flight path angle satisfies γ(s) ∈ (−π/2, π/2)
for all s ∈ [s0, sf ]. These are generic conditions for a civil fixed-wing aircraft in normal flight con-
ditions. When the aircraft is flying at an abnormal condition (due to malfunction of the control
surfaces/servo systems/engines, structure-damage, etc.), some of these assumptions may no longer
hold. Nonetheless, the method introduced in this chapter may still be applied with minor modifi-
cations. In such cases, the bounds on CL, φ and T in (8.19) have to be updated to account for the
post-failure characteristics of the airplane.
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Let E
4
= v2/2 be the kinetic energy per unit mass of the aircraft. Also, let Emax(s) = v2

max(s)/2 and
Emin(s) = v2

min(s)/2. In the sequel the specific kinetic energy E will be used in lieu of the aircraft
speed v to simplify the ensuing analysis. The constraint on the speed of the aircraft requires that
Emin(s) ≤ E(s) ≤ Emax(s) for all s ∈ [s0, sf ].

8.3.1 Lift Coefficient Constraint

From equations (8.11) and (8.12), we have

γ′ =
1

2m
ρSCL cosφ− g cos γ

v2
, (8.20)

ψ′ = −ρv
2SCL sinφ

2mv2 cos γ
= −ρSCL sinφ

2m cos γ
, (8.21)

which can be rewritten as:

CL cosφ =
2m

ρS

(
γ′ +

g cos γ

v2

)
, (8.22)

CL sinφ = −2mψ′ cos γ

ρS
. (8.23)

Eliminating φ from equation (8.22) and (8.23), and replacing v2 with 2E, one obtains

E = g1(CL; γ, γ′, ψ′)
4
=
mg cos γ

ρS



√
C2
L −

(
2mψ′ cos γ

ρS

)2

− 2mγ′

ρS



−1

. (8.24)

The other solution is omitted because it is always negative. Note that the constraint 0 < Emin(s) ≤
E(s) ≤ Emax(s) <∞ for all s ∈ [s0, sf ] implies that there exists CL(s) ∈ [CLmin(s), CLmax(s)] such
that

0 <

√
C2
L(s)−

(
2mψ′(s) cos γ(s)

ρ(s)S

)2

− 2mγ′(s)
ρ(s)S

<∞, ∀s ∈ [s0, sf ]. (8.25)

This is equivalent to the condition

C̄L(s) > C̃L(s), ∀s ∈ [s0, sf ], (8.26)

where

C̄L(s) = max{−CLmin(s), CLmax(s)}, (8.27)

and

C̃L(s) =





2m

ρ(s)S
|ψ′(s)| cos γ(s), if γ′(s) < 0,

2m

ρ(s)S

√
γ′2(s) + ψ′2(s) cos2 γ(s), if γ′(s) ≥ 0.

(8.28)

The given path (x(s), y(s), z(s)) is infeasible if (8.26) is not satisfied, owing to insufficient lift.
When (8.26) holds, and because the right hand side of equation (8.24) is a monotonically decreasing
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function with respect to C2
L, the limits on the lift coefficient impose a lower bound on the kinetic

energy E as follows

E(s) ≥ g
w1

(s)
4
= max{Emin(s), g1(C̄L(s); γ(s), γ′(s), ψ′(s))}. (8.29)

In other words, if the problem is feasible, (8.29) provides a lower bound on the allowable speed,
whereas the bounds CLmin(s) ≤ CL(s) ≤ CLmax(s) on the lift coefficient do not impose any constraint
on the maximum value of E(s). Finally, note from (8.29) that if g

w1
(s) is unbounded, then the path

is not feasible. Feasibility implies, in particular, that g
w1

in (8.29) is a (possibly discontinuous)
piecewise analytic function of s.

8.3.2 Bank Angle Constraint

In order to consider the effect of the bank angle constraint on the specific kinetic energy E, we need
to eliminate CL from equations (8.22) and (8.23) and form an algebraic equation involving φ and
E. However, two special cases need to be considered before proceeding with such an elimination:
the case when CL(s) = 0, and the case when 2γ′(s) + g cos γ(s)/E(s) = 0, for some s ∈ [s0, sf ].

If CL(s) = 0 for some s ∈ [s0, sf ], then the lift is zero and the bank angle φ is indeterminate. In
this case, the bounds φmin(s) ≤ φ(s) ≤ φmax(s) on the bank angle φ do not constrain the specific
kinetic energy at s. Similarly, note that 2γ′(s) + g cos γ(s)/E(s) = 0 may hold only if γ′(s) < 0. If
2γ′(s) + g cos γ(s)/E(s) = 0, then E(s) is uniquely determined, regardless of the value of the bank
angle at s, i.e., the bank angle has no effect on E. Therefore, we only need to consider the cases
with CL(s) 6= 0 and 2γ′(s) + g cos γ(s)/E(s) 6= 0 for some s ∈ [s0, sf ] in order to eliminate CL from
equations (8.22) and (8.23), thus obtaining the following equation:

tanφ = − 2ψ′ cos γ

2γ′ + g cos γ/E
. (8.30)

Solving for E from equation (8.30) yields:

E = g2(φ; γ, γ′, ψ′)
4
= −1

2

g cos γ tanφ

γ′tanφ+ ψ′ cos γ
. (8.31)

The positivity of E(s) requires that g2(φ(s); γ(s), γ′(s), ψ′(s)) > 0 for all s ∈ [s0, sf ], otherwise the
path is infeasible. If g2(φ; γ, γ′, ψ′) > 0 along the given path, the constraints on E due to the bank
angle bounds can be determined as follows:

(i) When ψ′(s) = 0, equation (8.30) implies that φ(s) = 0, and the bounds of φ impose no
constraints on E(s).

(ii) When ψ′(s) 6= 0, two cases need to be considered:

(iia) If γ′(s) = 0, and since γ ∈ (−π/2, π/2), it follows that cos γ 6= 0, and we have

E(s) = g2(φ(s); γ(s), γ′(s), ψ′(s)) = −g tanφ(s)

2ψ′(s)
.

The condition g2(φ(s); γ(s), γ′(s), ψ′(s)) > 0 requires that φ(s)ψ′(s) < 0. The constraint
on φ then leads to the following upper bound on the specific kinetic energy E

E(s) ≤ µ0(s)
4
= max

{
g tanφmin(s)

2ψ′(s)
,
g tanφmax(s)

2ψ′(s)

}
. (8.32)
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(iib) If γ′(s) 6= 0, rewrite (8.31) as follows:

γ′(s) tanφ(s) + ψ′(s) cos γ(s) = −g cos γ(s)

2E(s)
tanφ(s). (8.33)

The bank angle constraint φ(s) ∈ [φmin(s), φmax(s)] limits the admissible value of E(s)
via equation (8.33). A necessary and sufficient condition for the satisfaction of this
constraint is

g cos γ(s)

2E(s)
≤ µ1(s)

4
= min

{
h(s;φmin, γ, γ

′, ψ′), h(s;φmax, γ, γ
′, ψ′)

}
, (8.34)

or

g cos γ(s)

2E(s)
≥ µ2(s)

4
= max

{
−h(s;φmin, γ, γ

′, ψ′),−h(s;φmax, γ, γ
′, ψ′)

}
, (8.35)

where

h(s;φ, γ, γ′, ψ′)
4
= γ′(s) + ψ′(s) cos γ(s)/ tanφ(s). (8.36)

In order to characterize the constraint on E induced by the bank angle, three subcases
are analyzed, and the results are given below:

(iib.1) If µ1(s) ≤ 0 and µ2(s) ≤ 0, then equation (8.35) always holds as long as E(s) > 0.

(iib.2) If µ1(s) ≤ 0 and µ2(s) > 0, then equation (8.34) does not hold, and equation (8.35)
must be satisfied, which is equivalent to the following constraint on E(s)

E(s) ≤ 1

2
g cos γ(s)/µ2(s). (8.37)

(iib.3) Finally, if µ1(s) > 0, then it is required that either (8.37) holds, or the following
inequality holds:

E(s) ≥ 1

2
g cos γ(s)/µ1(s). (8.38)

Equations (8.32), (8.37) and (8.38) define the admissible values of E(s) limited by the bank angle.

8.3.3 Summary of Algebraic Constraints

In the previous two sections it has been shown that the lift coefficient and the bank angle constraints
can be reduced to a series of algebraic constraints on the value of the specific kinetic energy E along
the path. Summarizing these results, for feasibility, the specific kinetic energy profile E must satisfy
either one, or both, of the following two constraints. The first constraint is defined according to
the inequalities

g
w1

(s) ≤ E(s) ≤ gw1(s), s ∈ [s0, sf ], (8.39)

where g
w1

(s) from (8.29) and gw1(s) from

gw1(s)
4
=





min {Emax(s), µ0(s)} , s ∈ Γ1,
min {Emax(s), g cos γ(s)/2µ2(s)} , s ∈ Γ2 ∪ Γ3,
Emax(s), otherwise,
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where

Γ1 =
{
s|ψ′(s) 6= 0, γ′(s) = 0, s ∈ [s0, sf ]

}
,

Γ2 =
{
s|ψ′(s) 6= 0, γ′(s) 6= 0, µ1(s) ≤ 0, µ2(s) > 0, s ∈ [s0, sf ]

}
,

Γ3 =
{
s|ψ′(s) 6= 0, γ′(s) 6= 0, µ1(s) > 0, s ∈ [s0, sf ]

}
,

The second constraint is defined according to the inequalities

g
w2

(s)
4
= max

{
g
w1

(s), g
w3

(s)
}
≤ E(s) ≤ ḡw2 (s) , s ∈ [s0, sf ]. (8.40)

where,

g
w3

(s)
4
=

{
max {Emin(s), g cos γ(s)/2µ1(s)}, s ∈ Γ3,
Emin(s), s ∈ [s0, sf ]/Γ3,

(8.41)

and

gw2(s)
4
=

{
Emax(s), s ∈ Γ3,
gw1(s), s ∈ [s0, sf ]/Γ3.

(8.42)

and where µ0(s), µ1(s) and µ2(s) are given in (8.32), (8.34) and (8.35), respectively.

The collection of points (s, E(s)) satisfying either (8.39) or (8.40) correspond to the set W =
W1 ∪W2 in the s− E plane, where W1 and W2 are given by

W1 = {(s, E) | g
w1

(s) ≤ E ≤ gw1 (s) , s ∈ [s0, sf ]}, (8.43)

W2 = {(s, E) | g
w2

(s) ≤ E(s) ≤ gw2 (s) , s ∈ [s0, sf ]}, (8.44)

Consequently, the given geometric path is feasible only if there exists a continuous function E,
whose graph lies entirely in W, while connecting the initial and final boundary conditions. We will
thus always assume that (s0, E(s0)) ∈ W and (sf , E(sf )) ∈ W otherwise the problem is clearly
infeasible.

8.3.4 Topological Properties of the Admissible Velocity Set

Before proceeding with the determination of the optimal velocity profile inside the admissible
velocity set W, some observations regarding the topological properties of W and its boundary are
in order.

1. If W is not connected, then the given path is not feasible.

2. Even if the admissible velocity set W is connected, it may not be simply connected. If W is
simply connected, then exists two piecewise analytic unctions g

w
and gw such that

W = {(s, E)|g
w

(s) ≤ E(s) ≤ gw (s) , s ∈ [s0, sf ]}. (8.45)

For instance, one can simply take g
w

= min{g
w1
, g
w2
} and gw = max{gw1, gw2}.

3. In case W is not simply connected, then it cannot be characterized by inequalities involving
only two piecewise analytic functions as in (8.45). Such a situation will occur if there exist
points s ∈ [s0, sf ] such that g

w1
(s) > gw2(s) or g

w2
(s) > gw1(s), for instance. Nonetheless,

owing to the piecewise analyticity of the functions involved in (8.43) and (8.44), which rep-
resent the boundaries of W1 and W2 between s0 and sf , respectively, these functions may
intersect at only at a finite number of points in [s0, sf ]. Consequently, there can only be a
finite number of “holes” in W.
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4. Suppose W is not simply connected, but it rather has m holes. In this (rather rare) case, W
can be decomposed as the union of 2m simply connected subsets, as illustrated in Fig. 8.1
for the case when m = 1. After such a decomposition, each subset is searched for an optimal
kinetic energy profile candidate using the approach described later on in the chapter. Once
all possible (at most 2m) candidates have been obtained, they are compared to identify the
unique optimal kinetic energy profile for the original set W.

E

s

W
E

s

W1

= +

E

s

W2

gw1
gw2

g
w1

g
w2

Figure 8.1: Decomposition of W when it is not simply connected.

In this work, we focus on the simple—and most common—case when W is simply connected and
hence W is defined by algebraic constraints of the form g

w
(s) ≤ E(s) ≤ gw (s) , s ∈ [s0, sf ], where

g
w

and gw are appropriately defined piecewise analytic functions.

8.3.5 Thrust Constraint

From equations (8.10), (8.22) and (8.23) we have the following equation:

T = mvv′ +
(

1

2
CD0ρS +

2Km2γ′2

ρS
+
Km2 cos2 γψ′2

ρS

)
v2

+
2Km2g2 cos2 γ

ρS

1

v2
+

4Km2γ′g cos γ

ρS
+mg sin γ.

(8.46)

Note that vv′ = v
dv

ds
=

d

ds

(
v2

2

)
= E′ and the above equation can be rewritten as a constraint on

the derivative of E as follows

E′(s) =
T (s)

m
+ c1(s)E(s) +

c2(s)

E(s)
+ c3(s), (8.47)

where

c1(s)
4
= −CD0(s)ρ(s)S

m
− 4Kmγ′2(s)

ρ(s)S
− 2Km cos2 γ(s)ψ′2(s)

ρ(s)S
, (8.48)

c2(s)
4
= −Kmg

2 cos2 γ(s)

ρ(s)S
, (8.49)

c3(s)
4
= −4Kmγ′(s)g cos γ(s)

ρ(s)S
− g sin γ(s). (8.50)

Note that c1, c2 and c3 are piecewise analytic functions with respect to the path length coordinate
s.
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8.4 Optimal Control Formulation

The extensive analysis of the previous section reveals that instead of working with the original
dynamical system described by (8.7) - (8.12), we only need to solve an optimal control problem
with a single state variable E and a single control input T . For the case of robotic manipulators[158]
it has been proved that the control is bang-bang when the speed limit is not active. In this section we
show a similar result for the thrust control of a fixed-wing aircraft. Although the bang-bang form of
the control for robotic manipulators has been proved in Ref. [158], the switching structure between
the upper and lower control bounds has not been studied, despite the fact that the appropriate
structure has been used implicitly in the algorithms proposed in Refs. [35, 160, 139, 158, 156]. In
this section we prove that for the case of a fixed-wing aircraft, the thrust control switching structure
is unique when the speed constraint is not active.

The optimal thrust profile T ∗(s) and the corresponding optimal speed v∗(s) =
√

2E∗(s) for the
minimum-time travel of a fixed-wing aircraft are given by the solution to the following optimal
control problem:

Problem 8.1 (Minimum-Time Path-Tracking Problem). Consider the following optimal
control problem in Lagrange form:

min
T

J(s0, sf , E(s0), E(sf ), T ) = tf =

∫ sf

s0

ds√
2E(s)

(8.51a)

subject to E′(s) =
T (s)

m
+ c1(s)E(s) +

c2(s)

E(s)
+ c3(s), (8.51b)

g
w

(s) ≤ E(s) ≤ gw(s), (8.51c)

E(s0) = v2
0/2, (8.51d)

E(sf ) = v2
f/2, (8.51e)

Tmin ≤ T (s) ≤ Tmax, (8.51f)

where v0 and vf are the required initial and final speed at s0 and sf , respectively, and gw and g
w

are piecewise analytic functions, computed in Section 8.3.

Note that we can always redefine the value of gw and g
w

at their (necessarily finite) points of
discontinuities to make them either left or right continuous. In particular, and without loss of
generality, in this work we assume that at the point of discontinuity, the value of gw is defined so
that it is lower semi-continuous and the value of g

w
is defined so that it is upper semi-continuous.

The reasons for such an assumption will be explained later in Section 8.5. The functions c1, c2 and
c3 are also piecewise analytic, and are given in equations (8.48), (8.49) and (8.50). They can be
readily computed once the path is given.

Consider the case when the state constraint (8.51c) is not active. The Hamiltonian of the optimal
control problem is

H(E, λ, T, s) =
1√
2E

+ λ

(
T

m
+ c1E +

c2

E
+ c3

)

=
2λ

m
T + c1λE + c2

λ

E
+

1√
2E

+ c3λ,

The costate equation is

λ′ = −∂H
∂E

= −c1λ+ c2λE
−2 +

1

2
√

2
E−3/2. (8.52)
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The optimal control consists of constrained (i.e., E(s) = g
w

(s) or E(s) = gw(s)) and unconstrained
(i.e., g

w
(s) < E(s) < gw(s)) arcs. Furthermore, the control T enters linearly into the Hamiltonian,

so a singular control may exist. The switching function is

∂H

∂T
=

2λ

m
. (8.53)

According to the Pontryagin’s Maximum Principle, depending on the sign of the switching func-
tion, the optimal control may switch between the two bounds Tmin, Tmax and the singular control
when the state constraints are not active. Correspondingly, in general, the optimal control T ∗

of Problem 8.1 may contain bang-bang control, singular control, and control arcs associated with
active state constraints, as described by the following expression

T ∗(s) =





Tmin, for λ > 0, s ∈ [s0, sf ] \ K,
singular control, for λ = 0, s ∈ [s0, sf ] \ K,
Tmax, for λ < 0, s ∈ [s0, sf ] \ K,
Tw(s), for s ∈ KU ,
Tw(s), for s ∈ KL.

(8.54)

where KU = {s|E∗(s) = gw(s), s ∈ [s0, sf ]}, KL = {s|E∗(s) = g
w

(s), s ∈ [s0, sf ]}, and K =
KU ∪ KL. At the points where the function gw (respectively, g

w
) is differentiable, the value of the

thrust Tw(s) (respectively, Tw) is computed by

Tw(s) = m
(
g′w(s)− c1(s)gw(s)− c3(s)− c2(s)/gw(s)

)
, (8.55)

and respectively,
Tw(s) = m(g′

w
(s)− c1(s)g

w
(s)− c3(s)− c2(s)/g

w
(s)). (8.56)

At the points where gw (respectively, g
w

) is discontinuous and/or non-differentiable, the thrust is
discontinuous, and can be computed by

Tw(s±) = m
(
g′w(s±)− c1(s)gw(s±)− c3(s)− c2(s)/gw(s±),

)
(8.57)

and
Tw(s±) = m(g′

w
(s±)− c1(s)g

w
(s±)− c3(s)− c2(s)/g

w
(s±)), (8.58)

for the two cases. Note that owing to the piecewise continuous differentiability of gw and g
w

the

limits g′w(s±), gw(s±) and g′
w

(s±), g
w

(s±) exist for all s ∈ [s0, sf ]. Furthermore, the number of

points at which g′w(s+) 6= g′w(s−) or g′
w

(s+) 6= g′
w

(s−) or gw(s+) 6= gw(s−) or g
w

(s+) 6= g
w

(s−) is
finite.

Proposition 8.1. The optimal control solution of Problem 8.1 does not contain any singular
control.

Proof. We only need to show that there does not exist any sub-interval [sa, sb] ⊆ [s0, sf ] on which
λ(s) ≡ 0 and g

w
(s) < E(s) < gw(s) (strict inequalities) for all s ∈ [sa, sb]. Suppose, ad absurdum,

that λ(s) ≡ λ′(s) ≡ 0 for all s ∈ [sa, sb], and the state constraints are not active on [sa, sb]. It
follows that on [sa, sb], equation (8.52) becomes

0 =
1

2
√

2
E−3/2 > 0,

which is impossible. Hence λ cannot remain constantly zero on any nontrivial interval, and the
proof is complete.
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Proposition 8.2. The optimal control T ∗(s) is bang-bang, and does not contain any switch from
Tmin to Tmax on [s0, sf ] \ K.

Proof. Since we have shown that a singular control does not exist, the control history must be
bang-bang on [s0, sf ]\K. We only need to prove that, when the constraint (8.51c) is inactive, there
does not exist a switching from Tmin to Tmax in the optimal control history.

To this end, suppose, on the contrary, that T ∗ contains a switching from Tmin to Tmax at some
sm ∈ (sa, sb] ⊂ ([s0, sf ] \ K), such that

T ∗ =

{
Tmin, sa < s ≤ sm,
Tmax, sm < s ≤ sb.

For simplicity, and without loss of generality, we will assume that the functions c1, c2 and c3 are
continuous at sm.

Let η be a small positive scalar, and let E−m(s; η) and E+
m(s; η) denote the trajectories passing

through (sm, E
∗(sm)+η), with control Tmin and Tmax, respectively. From the definitions of E−m(s; η)

and E+
m(s; η), we have the following expressions

E−m
′
(s; η)− E+

m
′
(s; 0) = (Tmin − Tmax)/m+ c1(s)

(
E−m(s; η)− E+

m(s; 0)
)

+ c2(s)

(
1

E−m(s; η)
− 1

E+
m(s; 0)

)

= (Tmin − Tmax)/m+

(
c1(s)− c2(s)

E−m(s; η)E+
m(s; 0)

)(
E−m(s; η)− E+

m(s; 0)
)

≤ (Tmin − Tmax)/m+

∣∣∣∣c1(s)− c2(s)

E−m(s; η)E+
m(s; 0)

∣∣∣∣
∣∣E−m(s; η)− E+

m(s; 0)
∣∣ . (8.59)

and

E−m
′
(s; 0)− E+

m
′
(s; η) = (Tmin − Tmax)/m+ c1(s)

(
E−m(s; 0)− E+

m(s; η)
)

+ c2(s)

(
1

E−m(s; 0)
− 1

E+
m(s; η)

)

= (Tmin − Tmax)/m+

(
c1(s)− c2(s)

E−m(s; 0)E+
m(s; η)

)(
E−m(s; 0)− E+

m(s; η)
)

≤ (Tmin − Tmax)/m+

∣∣∣∣c1(s)− c2(s)

E−m(s; 0)E+
m(s; η)

∣∣∣∣
∣∣E−m(s; 0)− E+

m(s; η)
∣∣ . (8.60)

Note that E+
m(sm; η) = E−m(sm; η) = E∗(sm) + η. We therefore have

∣∣E−m(s; η)− E+
m(s; 0)

∣∣ =
∣∣E−m(s; η)− E−m(sm; η) + E+

m(sm; η)− E+
m(sm; 0) + E+

m(sm; 0)− E+
m(s; 0)

∣∣
≤ |E−m(s; η)− E−m(sm; η)|+ |E+

m(sm; η)− E+
m(sm; 0)|+ |E+

m(sm; 0)− E+
m(s; 0)|.

Since E−m(s; η) and E+
m(s; 0) are continuous with respect to s, and E+

m(sm; η) is continuous with
respect to η, and since the coefficient multiplying |E−m(s; η)− E+

m(s; 0)| in (8.59) is bounded, it
follows that E−m

′
(s; η)−E+

m
′
(s; 0) ≤ (Tmin−Tmax)/m < 0 for η small enough and for all s in a small

enough neighborhood of sm. By the same token, we can also show that E−m
′
(s; 0) − E+

m
′
(s; η) ≤

(Tmin − Tmax)/m < 0 for η small enough and for all s in a small enough neighborhood of sm.
Choose now ε > 0 and η0 > 0 such that for all η < η0 and all s ∈ (sm− ε, sm + ε) both the previous
inequalities are satisfied and, in particular, E−m

′
(s; η) − E+

m
′
(s; 0) < (Tmin − Tmax)/2m < 0 and

E−m
′
(s; 0)− E+

m
′
(s; η) < (Tmin − Tmax)/2m < 0 for all s ∈ (sm − ε, sm + ε) and 0 < η < η0.

Notice that in the interval (sm−ε, sm+ε), the optimal specific kinetic energy profile can be written
equivalently as:

E∗(s) =

{
E−m(s; 0), sm − ε < s < sm,

E+
m(s; 0), sm < s < sm + ε.
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Consider now the part of E+
m(s; η) with s < sm and the part of E−m(s; η) with s > sm. Since

E∗(sm) < lim infs→sm gw(s), and since gw(s) is lower semi-continuous, there exists a small positive
real number η1 such that, for all η < η1, E+

m(s; η) < gw(s) for all sm − ε < s ≤ sm, and E−m(s; η) <
gw(s) for all sm < s ≤ sm + ε, that is, a sufficiently small change of the initial condition at sm will
not lead to the violation of the constraint gw(s).

Let η2 = −ε(Tmin − Tmax)/2m > 0, and let 0 < η < min{η0, η1, η2}. At the point sm, we have
E−m(sm; η)−E∗(sm) = E−m(sm; η)−E−m(sm; 0) = E−m(sm; η)−E+

m(sm; 0) = η > 0. Since E−m
′
(s; η)−

E+
m
′
(s; 0) < (Tmin − Tmax)/2m for all s ∈ (sm, sm + ε), forward integration of E−m

′
(s; η)−E+

m
′
(s; 0)

from sm results in E−m(s; η) − E+
m(s; 0) < η + (Tmin − Tmax)(s − sm)/2m for all s ∈ (sm, sm + ε).

Specifically, there exists s+
m ∈ (sm, sm + ε) such that E−m(s+

m; η) = E+
m(s+

m; 0) = E∗(s+
m).

A similar argument shows that there exists s−m ∈ (sm − ε, sm) such that E+
m(s−m; η) = E∗(s−m). See

Fig. 8.2.

Ω Ω̃

sa s−m sbsm s+m s

Ω∗

W

gw

g
w

Ω−
m(sm, 0)

Ω−
m(sm, η)

Ω+
m(sm, η)

Ω+
m(sm, 0)

Ω∗
m(sm)

Ω∗
m(sm) + η

s−m sm s+m sm + ǫsm − ǫ

Figure 8.2: Speed variation for the proof of Proposition 8.2.

Now consider the variation of T ∗ (see Fig. 8.3) given by

δT =





Tmax − Tmin, s−m < s ≤ sm,
Tmin − Tmax, sm < s ≤ s+

m,

0, otherwise.

Then with the new control T̃ = T ∗ + δT , the new speed profile Ẽ is composed of segments of E∗,
E+
m(s; η) and E−m(s; η), which is given below

Ẽ(s) =





E∗(s), sa < s ≤ s−m,
E+
m(s; η), s−m < s ≤ sm,

E−m(s; η), sm < s ≤ s+
m,

E∗(s), s+
m < s ≤ sb.

The variation of speed is shown in Fig. 8.2. By construction of s−m and s+
m, we have E∗(s) < Ẽ(s) <

gw(s) for s ∈ (s−m, s
+
m). Hence J(sa, sb, E(sa), E(sb), T

∗) > J(sb, sb, E(sa), E(sb), T̃ ), which means
that T ∗ cannot be optimal.

167



T

Tmax

Tmin

T̃
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Figure 8.3: Thrust variation for proof of Proposition 8.2.

The next proposition shows that the lower bound g
w

is generically not part of the optimal specific
kinetic energy profile on a nontrivial interval.

Proposition 8.3. Assume gw(s) 6= g
w

(s) and T ∗(s) = Tw(s) < Tmax(s) for all s ∈ [s0, sf ]. Let
E∗(s) be the optimal kinetic energy solution to Problem 8.1. Then the set KL does not contain
any nontrivial interval.

Proof. (Sketch) Assume, on the contrary, that there exists (sa, sb) ∈ KL such that E∗(s) = g
w

(s)
for all s ∈ (sa, sb), where sa 6= sb. Then since gw(s) 6= g

w
(s) and Tw(s) < Tmax(s) on (sa, sb), one

can construct a variation of the thrust T in the interval (sa, sb) similar to the proof of Proposition
8.2 that does not violate the thrust constraint, and which results in better time optimality, hence
leading to a contradiction. We leave the details of the proof to the interested reader.

Corolory 8.1. The time optimal control T ∗ for Problem 8.1 can be constructed as a combination
of Tmax, Tmin and Tw.

Proof. Note that T ∗(s) is equal to Tmax, or Tmin, or Tw(s) on [s0, sf ] \ KL. We only need to
consider the value of T ∗(s) on KL. If gw(s) = g

w
(s) on some nontrivial interval [sa, sb], then clearly

T ∗(s) = Tw(s) = Tw(s) for all s ∈ [sa, sb], and the corollary holds on [sa, sb]. If Tw(s) = Tmin(s)
for some s ∈ [s0, sf ], then the corollary trivially holds for such points. If gw(s) = g

w
(s) only at

isolated points, or if gw(s) 6= g
w

(s) and Tw(s) < Tmax(s) for all s ∈ [s0, sf ], then KL has an empty
interior according to Proposition 8.3.

8.5 Two Numerical Algorithms for Finding the Optimal Control

Recall that the admissible kinetic energy set W is determined by the geometry of the given path.
Once the path is given, it is possible to find a semi-analytical solution of the optimal control problem
(8.51a) using the necessary conditions introduced in the previous section.
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Assuming that the given path is feasible, then according to Proposition 8.3, the lower bound g
w

cannot be part of the optimal kinetic energy profile, except for the trivial case when g
w

(s) = gw(s)
over some part of [s0, sf ]. The optimal kinetic energy profile is thus composed of three types of
segments corresponding to maximum acceleration with T ∗ = Tmax, maximum deceleration with
T ∗ = Tmin, and T ∗ = Tw, the latter corresponding to the saturation of the upper state constraint
E(s) = gw(s). The most critical step of the optimal synthesis problem is to characterize which
parts of gw can possibly be saturated.

If gw is continuous at sd ∈ [s0, sf ] and E∗(sd) = gw(sd), since E∗(s) cannot violate the constraint
gw, i.e., E∗(s) ≤ gw(s), there exists a control T ∗(s) ∈ [Tmin, Tmax] such that E∗(s) satisfies the
following inequality

E∗(sd + h)− E∗(sd)
h

≤ gw(sd + h)− gw(sd)

h
, (8.61)

where h is a small positive real number. By taking the limits of both sides of (8.61) with h → 0,
the last expression leads to the existence of T ∗(s) ∈ [Tmin, Tmax] such that

E∗′(s+
d ) ≤ g′w(s+

d ). (8.62)

On the other hand, we have

E∗′(s+
d ) ∈

[
Tmin

m
+ c1(s+

d )E∗(sd) +
c2(s+

d )

E∗(sd)
+ c3(s+

d ),
Tmax

m
+ c1(s+

d )E∗(sd) +
c2(s+

d )

E∗(sd)
+ c3(s+

d )

]
.

Therefore, (8.62) implies

g′w(s+
d ) ≥ Tmin

m
+ c1(s+

d )E∗(sd) +
c2(s+

d )

E∗(sd)
+ c3(s+

d ) =
Tmin

m
+ c1(s+

d )gw(sd) +
c2(s+

d )

gw(sd)
+ c3(s+

d ).

(8.63)

Similarly, the constraint E∗(s) ≤ gw(s) for s ∈ (sd − ε, sd] implies

g′w(s−d ) ≤ Tmax

m
+ c1(s−d )E∗(sd) +

c2(s−d )

E∗(sd)
+ c3(s−d ) =

Tmax

m
+ c1(s−d )gw(sd) +

c2(s−d )

gw(sd)
+ c3(s−d ).

(8.64)

Therefore, E∗(sd) = gw(sd) is possible only if both (8.63) and (8.64) are satisfied. In particular,
when gw is continuously differentiable at sd, then g′w(s−d ) = g′w(s+

d ) = g′w(sd) and hence, the
inequalities (8.63) and (8.64) are reduced to

Tmin

m
+ c1(s+

d )gw(sd) +
c2(s+

d )

gw(sd)
+ c3(s+

d ) ≤ g′w(sd) ≤
Tmax

m
+ c1(s−d )gw(sd) +

c2(s−d )

gw(sd)
+ c3(s−d ).

(8.65)

If gw is discontinuous at sd, then either gw(sd) = gw(s+
d ) or gw(sd) = gw(s−d ). In this case, the

conditions E∗(sd) = gw(sd) and E∗(s) ≤ gw(s) in a neighborhood of sd can be satisfied only if gw(s)
is lower semi-continuous (which we assume it is) and, in addition, (8.63) holds if gw(s+

d ) < gw(s−d ),
and (8.64) holds if gw(s+

d ) > gw(s−d ).

Let W̃ be the graph of all points in the interval [s0, sf ] such that gw is continuous, and, in addition,
(8.63) and (8.64) hold, that is,

W̃
4
= {(sd, gw(sd))|(8.63) and (8.64) hold, sd ∈ [s0, sf ]} .

169



These are the points on the graph of gw(s) which could possibly be part of the optimal kinetic energy

profile E∗(s). Furthermore, let W̃d be the points on the graph of gw where gw is discontinuous

(but necessarily lower semi-continuous), and either (8.63) or (8.64) holds. The points in W̃d are
the points of discontinuity of gw which could be part of the optimal E∗(s) profile.

Let W = W̃
⋃
W̃d and let W

c
= {(s, gw(s)), s ∈ [s0, sf ]}\W . Generally, W is disconnected.

Depending on the path, W may consist of multiple arcs and single points, as shown in Fig. 8.4.
By the piecewise analyticity assumption of the given path, all functions involved in (8.63) and
(8.64) are piecewise analytic, and it follows that the equality in (8.63) and (8.64) can only hold
for a finite number of points on [s0, sf ]. Hence, W is composed of only a finite union of disjoint

components. That is, W =
⋃N−1
j=1 W j for some positive integer N , where W j are connected, and

with W i
⋂
W j = ∅ for i 6= j. Let (s−j , E

−
j ) and (s+

j , E
+
j ) denote the left and right end points of W j

for each j = 1, . . . , N−1, where E−j = gw(s−j ) and E+
j = gw(s+

j ) correspond to the “trajectory sink”

and the “trajectory source” in Ref. [139]. Also, define two points W 0 = (s0, E0) and WN = (sf , Ef ).
Note that, in general, W 0 6= W 1 and WN 6= WN−1. It is obvious that W 0 and WN must be part
of the graph of the optimal kinetic energy profile.

E

sfs0

E0 Ef

W

f.w. integration

b.w. integration
W̃

W̃d

B

A

Figure 8.4: Elements for the optimal E

For each j = 1, . . . , N − 1, let S+
j denote the trajectory obtained by forward integration with

maximum thrust, starting from s+
j with the initial value S+

j (s+
j )
4
= E+

j , and similarly, let S−j be

the trajectory obtained by backward integration using minimum thrust, starting from s−j with the

initial value S−j (s−j )
4
= E−j . Forward integration with Tmax and backward integration with Tmin are

also computed from the boundary points s0 and sf with initial conditions E0 and Ef respectively,
and the resulting trajectories are denoted with S+

0 and S−N .

All current algorithms, including those in Refs. [35, 139, 158, 160], use a “search, integrate and
check” procedure, which gradually extends the optimal speed profile from the initial point to the
final point. Following this procedure, it is possible that during the search process, part of the
already constructed trajectory has to be discarded because it cannot intersect W later on for any
allowable thrust value.
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In order to avoid such unnecessary computations, and to also improve the overall computational
efficiency of the numerical scheme, it is necessary to characterize the elements in W which are
part of E∗. Assuming feasibility of the problem, when the boundary conditions cannot be satisfied
by a bang-bang control with no more than one switch from Tmax to Tmin, some elements in W
corresponding to the smaller values of gw(s) must be active (at least at a single point) in the
optimal solution, since these correspond to the most stringent/binding part of the constraint.

Following this observation, we introduce two new algorithms, which improve the numerical efficiency
of the procedure for searching the optimal speed profile. The first algorithm is designed for parallel
computation, while the second algorithm reduces the amount of computations devoted to the
“search, integrate and check” process.

8.5.1 Algorithm I

Step 1 Compute gw, g
w

as in Section 8.3.3 and check the feasibility of the geometric path. Stop
if the path is not feasible, otherwise proceed to the next step.

Step 2 Compute the feasible segments W j on the graph of gw following the procedure outlined in
the previous section.

Step 3 Calculate S+
j for j = 0, 1, 2, . . . , N − 1, with the integration terminated when gw(s) =

S+
j (s), or s = sf . Let I+

j denote the interval of integration associated with S+
j . Also calculate

S−j for j = 1, 2, . . . , N , with the integration terminated when gw(s) = S−j (s), or s = s0 and

denote by I−j the corresponding intervals of integration of S−j .

Step 4 Let

S±(s) =

{
S±(s), s ∈ I±j ,
gw(s), s ∈ [s0, sf ]\I±j ,

(8.66)

for all j = 0, 1, . . . , N , and let

E(s)
4
= min{S+

0 (s), S+
1 (s), . . . , S+

N−1(s), S−1 (s), S−2 (s), . . . , S−N (s)}. (8.67)

If E(0) = E0, E(sf ) = Ef and E(s) ≥ g
w

(s) for all s ∈ [s0, sf ], then the optimal speed profile
is given by (8.67). Otherwise the given path is not feasible.

The optimal speed profile is given by v∗(s) =
√

2E∗(s), and the corresponding optimal thrust
profile T ∗(s) can be computed by equation (8.46). By construction, the optimal thrust profile
T ∗(s) satisfies the necessary conditions given by Proposition 8.2 and Theorem 8.1. The control
T ∗ is indeed optimal because it maximizes point-wise the speed, and any further increase in speed
results in the violation of the speed constraint.

Note that the “search, integrate and check” process is avoided in this algorithm. This algorithm
can be implemented in parallel owing to the following reasons: (i) Step 1 and Step 4 can be
performed point-wise for different s ∈ [s0, sf ]; (ii) in Step 2 and 3 the computations of S−j and S+

j

are independent, hence they can be computed in parallel for different j at the same time.

The following algorithm still preserves the “search, integrate and check” process, but the repetition
of the process is reduced to a minimum.
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8.5.2 Algorithm II

Step 1 Compute gw, g
w

, and check the feasibility of the geometric path. Stop if the path is not
feasible, otherwise proceed to the next step.

Step 2 Compute S+
0 (s) and S−N (s) with stopping criteria S+

0 (s) = gw(s) and S−N (s) = gw(s), or
s = s0, or s = sf . Update gw(s) ← S+

0 (s) and gw(s) ← S−N (s) on the corresponding domain
of integration.

Step 3 Compute W and its segments W j on the graph of gw following the procedure outlined
previously. If gw is continuous and W

c
is empty, or if gw(s0) 6= E(s0), or if gw(sf ) 6= E(sf ),

then go to Step 5. Otherwise, go to the next step.

Step 4 Among those W j for which no integration has been performed at s+
j and s−j , select the one

whose distance to the s axis is the smallest. Let its index be k. Compute S−k (s) and S+
k (s)

with the stopping criteria S−k (s) = gw(s) and S+
k (s) = gw(s), or s = 0, or s = sf . Update

gw(s) ← S−k (s) and gw(s) ← S+
k (s) on the corresponding domain of integration, and go to

Step 3.

Step 5 If gw(s0) 6= E(s0) or gw(sf ) 6= E(sf ), then the given path is infeasible. Otherwise, the
optimal speed profile is given by E∗ = gw.

The difference between Algorithm II and Algorithm I (as well as the other time-optimal control
algorithms in Refs. [35, 160, 139, 158]) is illustrated in Fig. 8.5. While Algorithm II computes only
the integrations which are involved in the construction of the optimal speed profile, the algorithms
in Refs. [35, 160, 139, 158] integrate the trajectory along arcs which may be discarded later on,
when extending the optimal speed profile to the final point. Hence, they are in general less efficient
when compared to Algorithm II.

E

sfs0

E0

EfW

Necessary integration

Un-necessary integration

W

Figure 8.5: Algorithm comparison
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8.6 Numerical Examples

In this section, two examples are used to test the feasibility and optimality of the proposed approach.
Both examples implement Algorithm I, for simplicity. The first example focuses on checking the
feasibility of the algorithm, i.e., whether the controls given by the optimal parameterization method
satisfy the prescribed bounds, and whether the aircraft can follow the path when using these
control inputs. In the second example, the given path is a minimum-time path with known time
parameterization, and is used to examine the optimality of the proposed method.

8.6.1 Landing Path with Two Turns

A three-dimensional path is used to test the feasibility of the trajectories obtained using the pro-
posed time parameterization method. The trajectory is shown in Fig. 8.6. The initial position
of the aircraft is (0, 0, 6) km, the aircraft flies with v0 = 220 m/s, at γ(0) = 0◦ path angle and
ψ(0) = 0◦ heading. The final position is (111.0,17.3,0) km, with final speed v(sf ) = 95 m/s, path
angle γ(sf ) = 0◦ and heading ψ(sf ) = −25◦. The horizontal projection of the trajectory contains
two constant rate turning maneuvers. The atmospheric density data are taken from Ref. [130]. For
simplicity, the change of gravity with altitude is neglected.
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Figure 8.6: 3D Geometric Trajectory.

The control bounds are given as follows: the lift coefficient CL ∈ [−0.067, 1.9], the bank angle
φ ∈ [−15◦, 15◦] and the thrust T ∈ [0, 1126.3] kN. The maximum speed limit is 0.8 Mach, while
the minimum speed limit is vmin=60 m/s (134.2 mph). These data correspond approximately to
a typical civilian airliner. Using the optimal time parameterization method, the minimum-time
speed profile v∗(s) is computed following the approach developed in this chapter and is shown in
Fig. 8.8. The same profile in terms of time is shown in Fig. 8.9. To arrive at the final position in
minimum time, the aircraft should fly as fast as possible, however, due to the limited acceleration
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Figure 8.7: X-Y plane projection of the geometric trajectory.

0 20 40 60 80 100 120 140 160
50

100

150

200

250

300

350

s (km)

v
(m

/s
)

W

 

 
optimal speed profile

Figure 8.8: Optimal speed profile under path coordinate.
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Figure 8.9: Time history of optimal speed.
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Figure 8.10: Optimal thrust.
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and deceleration capability, the optimal velocity profile cannot necessarily stay at vmax all the time.
Within 0 ≤ s ≤ 25 km, the upper limit of speed is higher than 270 m/s, but the aircraft cannot
travel at the maximum speed because it would not be able to decelerate sufficiently fast, thus
violating the speed upper limit within 25 ≤ s ≤ 33 km, which is induced by the first left turning
maneuver. Similar scenarios exist before the second turning maneuver and the final point. The
total length of the path is 152.9 km, and the aircraft finishes in 771 s using the optimal thrust with
an average speed of 170.4 m/s.
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Figure 8.11: The states and control histories of the time parameterized trajectory.

The state and control histories recovered from the optimally time-parameterized trajectory are
shown in Fig.8.11. The red dotted lines in the figures represent the control bounds. As shown in
the figure, the thrust and bank angle saturate during some phases of the flight. The saturations
of the bank angle are caused by the turning maneuvers. The saturation of the thrust leads to
maximum acceleration which improves optimality.

To check the validity of this result, inverse dynamics are used to recover the state and control
histories from the optimal time-parameterized trajectory

(
x∗(t), y∗(t), z∗(t)

)
. For the purpose of

validation, after the control histories are calculated from inverse dynamics, they are used as the
control inputs to simulate the trajectory. Specifically, the ordinary differential equations (8.1)-(8.6)
are solved using the resulted control histories. The new simulated trajectory (x̂, ŷ, ẑ) is compared
with (x∗, y∗, z∗) in Fig. 8.12.

The discrepancy between the simulated trajectory and the original input trajectory is estimated
using the following relative error index

∆r = max
t

√√√√
(

x̂ (t)− x∗ (t)

max
t
x∗ (t)−min

t
x∗ (t)

)2

+

(
ŷ (t)− y∗ (t)

max
t
y∗ (t)−min

t
y∗ (t)

)2

+

(
ẑ (t)− z∗ (t)

max
t
z∗ (t)−min

t
z∗ (t)

)2
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For this example, ∆r = 4.1× 10−4, which is quite acceptable.
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Figure 8.12: Comparison of the original geometric path(dots) and the path generated using time
parameterization and inverse dynamics(line).

8.6.2 Time Optimal Path

In order to validate the optimality of the time-parameterized trajectory, a minimum-time landing
path for a large civil aircraft is used to test the proposed method. The path is generated using
DENMRA, which is a numerical algorithm solving optimal control problems with an automatic
multiresolution mesh refinement scheme [192]. The accuracy and robustness of the DENMRA have
been demonstrated in the same reference.

The aircraft starts at an initial position of (0, 0, 10)km, and lands at an airport with position (110,-
60,0) km. The initial conditions are: speed v(0) = 240 m/s, heading angle ψ(0) = 0◦ and the path
angle γ(0) = 0◦; the final conditions are: speed v(sf ) = 95 m/s, heading angle ψ(sf ) = 80◦, and
path angle γ(sf ) = −3◦. The aircraft considered in this example is a Boeing-747. During the whole
flight, the following constraints need to be satisfied: v ≤ 270 m/s, φ ∈ [−15, 15]◦, CL ∈ [−0.31, 1.52],
and T ∈ [0, 1126.3] kN. The path is shown in Figs. 8.13 and 8.14.

Because the state and control histories obtained from DENMRA are already time optimal, it is
expected that the application of the time-parameterization method to the path corresponding to
the DENMRA solution should yield the same optimal solution as that of DENMRA. This is indeed
the case, as it is evident from Figs. 8.17-8.20.

The optimal parameterization method gives a total travel time of 534.1 s, which matches very well
with the final time of 533.8 s given by the DENMRA. The small discrepancy observed is attributed
to numerical issues with the solvers. The admissible speed set W in terms of the path coordinate
and time are shown in Figs. 8.15 and 8.16, respectively. The time history of the speed and the
controls are shown in Figs. 8.17-8.20. As mentioned before, the other two states—the path angle γ
and the heading angle ψ—are pure geometric variables, and are independent of parameterization, so
they are not used for checking the optimality of the proposed method. As shown in Figs. 8.17-8.20,
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Figure 8.13: the min-time trajectory.

0 2 4 6 8 10 12

x 10
4

−7

−6

−5

−4

−3

−2

−1

0
x 10

4

x (m)

y
(m

)

Figure 8.14: X-Y plane projection of the min-time trajectory.
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Figure 8.15: Optimal speed profile under path coordinate (DENMRA).
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Figure 8.16: Time history of optimal speed (DENMRA).
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Figure 8.17: Speed comparison.
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Figure 8.18: Control comparison: CL.
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Figure 8.19: Control comparison: φ.
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Figure 8.20: Control comparison: throttle.
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the numerical optimization result agrees very well with that of the time-parameterization method.
This agreement validates the optimality of the time-parameterization method and, to some extent,
that of DENMRA as well.
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Chapter 9

Energy-Optimal Landing Path
Tracking with Fixed Time of Arrival

In this chapter, we present a method for the energy-optimal operation of a fixed-wing aircraft
tracking a prescribed landing path in the three-dimensional space with fixed Time Of Arrival
(TOA). Following the same approach in Chapter 8, such a problem is converted to an optimal
control problem with one state variable, subject to state and control input constraints along the
path. It is shown that the solution to this energy-optimal tracking problem provides a good
approximation to the minimum-fuel problem. The switching structure of the optimal solution is
analyzed, and a semi-analytical method is proposed for computing the optimal solution. Compared
to standard numerical optimization methods, the proposed method is guaranteed to converge to the
optimal solution, and is computationally much more efficient. Numerical examples are presented
to demonstrate the validity of the proposed method. As verified by these numerical results, the
proposed energy-optimal solution can help improve aircraft fuel efficiency during the landing phase.

9.1 Introduction

With climbing fuel cost, it is desirable to improve the fuel efficiency of current aircraft operations
subject to aircraft performance and scheduling constraints. Such a problem can be naturally cast as
an optimal motion planning problem, which is a common problem encountered in many industrial
and transportation systems, including robotic arms [35, 160, 139, 158, 156, 157, 55, 32, 78, 177, 44],
ground vehicles [11, 88, 110, 82, 176], aircraft [109, 118], etc. Although optimal motion planning
problems can be solved directly using numerical optimization techniques [40, 41, 167, 44, 52, 106],
the number of the required computations may grow to impractical levels, especially for real-time
applications. Hence, a hybrid approach is commonly adopted in practice, according to which the
motion planning task is decomposed into multiple levels [76, 141]. At the higher level, only the
geometric aspects of the path are considered, while the lower (path-tracking) level deals with the
system dynamics and the state and control constraints, and generates the time-parameterization
of the path provided by the higher (geometric) level planner. This chapter focuses on the aircraft
path tracking problem at the lower level. Therefore, throughout the chapter, it is assumed that
the path to be followed is given by the geometric level path planner.

Given a path, the minimum-time path-tracking problem for robotic manipulators, ground vehicles,
and aircraft has been studied in [35, 160, 139, 158, 156, 176, 191]. The optimal solution to these
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problems can help improve plant productivity [35, 160, 139, 158, 156], racing car performance [176],
or achieve faster aircraft landing in case of an emergency [191]. These solutions maximize pointwise
the speed along the path, and do not contain any singular arcs 1. When tracking time is not of
primary concern, it is often desirable to minimize the energy or the fuel consumption of the system.
Along this direction, the minimum-work train operation problem has been studied in Refs. [11, 88,
110, 82]. Unlike the solution to the minimum-time problem, minimum-work or minimum-energy
solutions usually contain singular control arcs, in addition to the bang-bang control arcs. As it is
typically the case for problems with singular arcs, it is difficult to determine the optimal sequence in
which these singular arcs appear–in combination with the bang-bang arcs–in the optimal solution,
as well as the corresponding optimal switching times. Numerical techniques are usually required
for solving optimal control problems involving both bang-bang and singular arcs. When the travel
time is free, the explicit expression of a singular arc can be solved analytically. In the case of fixed
travel time, which is most important for scheduled operations [11, 88, 110, 82], the singular arc(s)
cannot be computed directly, and a numerical procedure must be used to compute the singular
arc(s) such that the desired travel time and boundary conditions are satisfied.

When using numerical methods to solve singular optimal control problems, an approximate solution
is usually obtained at first, using standard numerical optimal control techniques, and then a control
switching structure is guessed based on the approximate solution and the analytic expression of the
singular control. Finally, the guessed switching structure is applied to solve the singular control
problem [179]. These numerical methods are time-consuming, and require extensive knowledge and
experience from the part of the user to obtain the actual optimal solution. On the other hand, an
analytical optimal control approach (such as in [11, 88, 110, 82]), although less general than purely
numerical methods, can provide more accurate information about the singular arcs and switching
times in the optimal solution, and thus it is more reliable and efficient.

The path-tracking methods in Refs. [11, 88, 110, 82, 35, 160, 139, 158, 156, 157, 176, 191] share
the same key steps of solving a scalar functional optimization problem. For train operations, for
instance [11, 88, 110, 82], the point-mass train model has a single degree of freedom along the
rail, hence the corresponding path-tracking problem is naturally a speed optimization problem.
Similarly, the path-following problem for robotic arms, ground vehicles, and aircraft can also be
simplified to a speed optimization problem along a prescribed path [35, 160, 139, 158, 156, 157,
176, 191], which can be solved analytically.

In this chapter, we address the problem of minimum-energy path-tracking for fixed-wing aircraft
with fixed time of arrival (TOA). As in Ref. [191], a scalar functional optimization problem is
formulated and solved semi-analytically using optimal control theory. Because fuel consump-
tion is closely related to the engine’s mechanical work counteracting the effects of air drag and
gravity, the issue of fuel efficiency can also be addressed (at least approximately) by solving this
minimum-energy problem. Compared to the somewhat similar minimum-work problem for train
operations [11, 88, 110, 82], in which the initial and final speed are both zero and only the up-
per speed limit can be active in the middle of the optimal solution, in the aircraft path-tracking
problem considered in this chapter both the initial and final values of the speed are non-zero, and
both upper and lower non-zero speed bounds exist, and can be active along the path. Hence, the
aircraft minimum-energy solution exhibits a more complicated switching structure than the one in
Refs. [11, 88, 110, 82].

The rest of this chapter is organized as follows: We first formulate the aircraft minimum-energy

1The “singular arcs” in Ref. [156] actually refer to segments of the speed profile with active speed constraints,
which is different from the traditional term used in optimal control [37].
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fixed TOA path-tracking problem as an optimal control problem in Section 9.2. Then, in Section 9.3
we provide some new results, along with the corresponding proofs regarding the optimal switching
structure of the minimum-energy solution. We also present a formula for computing the energy-
optimal solution. A minimum-energy path tracking algorithm is proposed in Section 9.4. The
validity of the proposed method is tested using numerical experiments, and the results are presented
at the end of the chapter.

9.2 Aircraft Dynamics and Simplified Problem

A point-mass model of a fixed-wing aircraft is given by the following equations of motion:

ẋ = v cos γ cosψ, (9.1)

ẏ = v cos γ sinψ, (9.2)

ż = v sin γ, (9.3)

v̇ =
1

m
[T − FD(CL, v, z)−mg sin γ] , (9.4)

γ̇ =
1

mv
[FL(CL, v, z) cosφ−mg cos γ] , (9.5)

ψ̇ = −FL(CL, v, z) sinφ

mv cos γ
, (9.6)

where x and y denote the position of the aircraft in the horizontal plane, z is the altitude, v is the
aircraft speed, γ is the flight path angle, ψ is the heading angle, and φ is the aircraft bank angle.
The aerodynamic lift force FL(CL, v, z) and the drag force FD(CL, v, z) are given by:

FL (CL, v, z) =
1

2
ρ(z)v2SCL,

FD (CL, v, z) =
1

2
ρ(z)v2SCD =

1

2
ρ(z)v2S(CD0 +KC2

L),

where ρ(z) is the air density given as a function of z, CD0 and K are constants describing the
aerodynamic properties of the aircraft, and S is the main wing surface area. The control inputs
in this model are the lift coefficient CL, the bank angle φ, and the thrust T . It is required that
the aircraft speed satisfies the bounds v(s) ∈ [vmin(z), vmax(z)], where vmin(z) and vmax(z) are
altitude-dependent minimum and maximum speeds, respectively, and

CL ∈ [CLmin , CLmax ], φ ∈ [φmin, φmax], T ∈ [Tmin, Tmax], (9.7)

where CLmin , CLmax , φmin, φmax, Tmin and Tmax are (possibly, path-dependent) bounds on the
associated control inputs. It is assumed that CLmin ≤ 0 ≤ CLmax , −π/2 < φmin < 0 < φmax < π/2,
0 ≤ Tmin < Tmax, and γ ∈ (−π/2, π/2). These conditions are generic for a civil fixed-wing aircraft
in normal/maneuverable flight.

Let now (x(s), y(s), z(s)) denote a three-dimensional geometric path, parameterized by its natural
path length coordinate s ∈ [s0, sf ] ⊂ R+. The main objective of this chapter is to find a time-
parameterization of the path, or equivalently, a function s(t) with s(0) = s0 and s(tf ) = sf , where
t ∈ [0, tf ], and tf is the desired TOA, such that the corresponding time-parameterized trajectory(
x(s(t)), y(s(t)), z(s(t))

)
minimizes the total energy, or mechanical work, while flying along the
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path, and without violating any state or control constraints. Because the path coordinate s is
related to the speed v as follows

s(t) =

∫ t

t0

v(τ) dτ,

the key step for solving this problem is the optimization of the speed profile v(s) along the path.

For convenience of notation, let E
4
= v2/2 denote the specific kinetic energy per unit mass of the

aircraft. It has been shown in Ref. [191] that the lift coefficient, the bank angle, and the speed
constraints can be reduced to lower and upper bounds on the specific kinetic energy E as follows:

E(s)− gw(s) ≤ 0, (9.8)

g
w

(s)− E(s) ≤ 0, (9.9)

for all s ∈ [s0, sf ], where gw(s) and g
w

(s) are path-dependant bounds on the specific kinetic energy,
which are determined from the path geometry, and the constraints on the speed, the bank angle and
the lift coefficient. The derivative of E satisfies the following ordinary differential equation [191]:

E′(s) =
T (s)

m
+ c1(s)E(s) +

c2(s)

E(s)
+ c3(s), (9.10)

where the prime denotes the derivative with respect to s, and

c1(s)
4
= −CD0(s)ρ(s)S

m
− 4Kmγ′2(s)

ρ(s)S
− 2Km cos2 γ(s)ψ′2(s)

ρ(s)S
, (9.11)

c2(s)
4
= −Kmg

2 cos2 γ(s)

ρ(s)S
, (9.12)

c3(s)
4
= −4Kmγ′(s)g cos γ(s)

ρ(s)S
− g sin γ(s). (9.13)

Once the optimal specific kinetic energy E∗(s) is obtained, the optimal thrust profile T ∗(s) along
the path can be determined using equation (9.10). Subsequently, the other optimal control inputs
can also be computed using inverse dynamics as follows:

C∗L(s) =
1

ρE∗(s)S

(
T ∗(s)−mE∗′(s)−mg sin γ(s)

)
, (9.14)

φ∗(s) = − arctan

(
2cos γ(s)ψ′(s)

2γ′(s) + g cos γ(s)/E∗(s)

)
. (9.15)

9.3 Energy-Optimal Path Tracking with Fixed Time of Arrival

In this section, we first introduce a formulation of the energy-optimal aircraft path-tracking problem
with fixed TOA. This problem provides an approximate solution to the minimum-fuel problem. We
then present a semi-analytic solution to the energy-optimal path-tracking problem.

9.3.1 Fuel-Optimal and Energy-Optimal Problem Formulation

Most modern civil airliners are powered by high-bypass turbofan engines for better fuel economy.
The fuel consumption rate for this type of engine is given by [122]

ḟ = −ηT, (9.16)
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where f is the fuel weight, η is the installed thrust specific fuel consumption, which varies with
airspeed, altitude, type of engine, and throttle conditions, and it is given by

η = (a+ bMa)
√
η0/(1 + cM2

a ), (9.17)

where Ma is the Mach number and a, b, c are constants depending on the engine type. In (9.17),
η0 = η0(z,Ma) varies with altitude and Mach number and can be determined from look-up data
tables [122]. The fuel consumption models for other types of jet engines are similar to equations
(9.16) and (9.17), but with different parameters.

With the above model, the fuel consumption during the landing phase can be estimated by

Jf =

∫ tf

t0

−ḟ(t) dt =

∫ tf

t0

η(t)T (t) dt. (9.18)

From (9.18) it is clear that the minimum-fuel problem is equivalent to the minimization of the
weighted thrust history, where the weight η(t) is given in (9.17). The solution to this problem
requires the use of purely numerical techniques. To avoid this difficulty, here we will minimize,
instead, the total energy (mechanical work) required to fly along the path, which is given by

Jw =

∫ tf

t0

v(t)T (t) dt =

∫ sf

s0

T (s) ds. (9.19)

As demonstrated in Ref [42], the optimal speed profile of the minimum-fuel optimization problem
contains singular arcs on which most of the fuel-saving is achieved. It was observed in our numerical
studies that the air speed changes slowly along these singular arcs, in which case the singular arcs
of the fuel-optimal problem can be approximated by those of the energy-optimal problem. As a
result, the minimization of the energy cost function (9.19) is expected to provide a reasonably good
approximation to the fuel optimization problem (9.18). This is verified by numerical results in
Section 9.5. Henceforth, we focus on minimizing the energy for the landing path-tracking problem.

During the landing process, the change of mass due to fuel consumption is usually negligible when
compared to the total mass of the aircraft. Hence, we may neglect the effect of mass change on the
specific kinetic energy dynamics (8.47), and assume that m is constant during the landing phase.
The validity of such an assumption is justified in Ref. [42], which reported that the mass change
has little influence on the fuel-optimal trajectory during the climb and descent phases. It needs to
be noted however that this assumption would be invalid during the long cruise phase [75].

To account for the fixed final time, the flight time t is treated as a state variable in an augmented
system with the additional differential equation

t′(s) =
1√

2E(s)
.

With the above assumptions, the minimum-energy aircraft path-tracking problem with fixed TOA
can be formulated as an optimal control problem involving two differential equations, two algebraic
constraints, two boundary conditions, and two control constraints, as follows:
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Problem 9.1 (Minimum-energy path-tracking problem with fixed TOA). Consider the
following optimal control problem in Lagrange form:

min
T

∫ sf

s0

T (s) ds, (9.20)

subject to E′(s) =
T (s)

m
+ c1(s)E(s) +

c2(s)

E(s)
+ c3(s), (9.21)

t′(s) =
1√

2E(s)
, (9.22)

E(s)− gw(s) ≤ 0, (9.23)

g
w

(s)− E(s) ≤ 0, (9.24)

E(s0) = v2
0/2, (9.25)

E(sf ) = v2
f/2, (9.26)

Tmin(s) ≤ T (s) ≤ Tmax(s), (9.27)

t(sf ) = tf . (9.28)

To solve this problem, we apply the necessary conditions for optimality to screen the allowable
thrust profile candidates. This is done next.

9.3.2 Optimality Conditions

First, consider the case when the state constraints (9.23) and (9.24) are not active. The Hamiltonian
for Problem 9.1 is given by

H = T + λE

(
T

m
+ c1E +

c2

E
+ c3

)
+

λt√
2E(s)

=

(
1 +

λE
m

)
T + λE

(
c1E +

c2

E
+ c3

)
+

λt√
2E(s)

,

where λE and λt are the costates corresponding to the dynamics for E and t, respectively. The
costate dynamics are given by:

λ′E = −∂H
∂E

= −c1λE + c2E
−2λE +

1

2
√

2
E−3/2λt, (9.29)

λ′t = −∂H
∂t

= 0. (9.30)

Therefore, the costate λt is constant. The switching function is given by

∂H

∂T
= 1 +

λE
m
. (9.31)

By Pontryagin’s Maximum Principal (PMP), the extremal control is given by

T =





Tmax, 1 + λE/m < 0,

T̃ , 1 + λE/m = 0,
Tmin, 1 + λE/m > 0,

(9.32)
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where T̃ is the singular control. On singular arcs, the switching function (9.31) is identically zero.
Hence, the derivative of the switching function must also vanish on singular arcs, which yields

d

ds

(
∂H

∂T

)
=
λ′E
m

=
1

m

(
−c1λE + c2E

−2λE +
1

2
√

2
E−3/2λt

)
= c1 − c2E−2 +

1

2
√

2m
E−3/2λt ≡ 0, (9.33)

from which the singular specific kinetic energy profile can be computed. For notational convenience,
equation (9.33) is rewritten as

P (E(s), s) = λt, (9.34)

where

P (E(s), s) = −2
√

2m
(
c1(s)E3/2(s)− c2(s)E−1/2(s)

)
. (9.35)

Let E∗(s) be the optimal specific kinetic energy profile for Problem 9.1 with the corresponding
optimal costate value λ∗t , and suppose that E∗(s) contains a singular arc on a subinterval [sa, sb] ⊆
[s0, sf ]. Because the switching function vanishes on singular arcs, we must have P (E∗(s), s) = λ∗t
for all s ∈ [sa, sb].

Henceforth, we assume that the optimal solution to Problem 9.1 is unique, and we will focus on
the energy-optimal path-tracking problem.

Proposition 9.1. Let E∗(s) be the optimal specific kinetic energy profile for Problem 9.1 with
corresponding optimal costate value λ∗t . Let the function Ẽ : [s0, sf ] → R+ be defined via the
equation P (Ẽ(s), s) = λ∗t for all s ∈ [s0, sf ]. Then, for all s ∈ [s0, sf ], we have that P (E∗(s), s) > λ∗t
if and only if E∗(s) > Ẽ(s), and P (E∗(s), s) < λ∗t if and only if E∗(s) < Ẽ(s).

Proof. Note that

P (E∗(s), s)− λ∗t = 2
√

2m
(
−c1(s)E∗3/2(s) + c2(s)E∗−1/2(s)

)
− 2
√

2m
(
−c1(s)Ẽ3/2(s) + c2(s)Ẽ−1/2(s)

)

= 2
√

2m
(
−c1(s)

(
E∗3/2(s)− Ẽ3/2(s)

)
+ c2(s)

(
E∗−1/2(s)− Ẽ−1/2(s)

))
.

Since c1(s) < 0 and c2(s) < 0 for all s ∈ [s0, sf ], according to (8.48) and (8.49), the claim of this
proposition can be easily verified based on the monotonicity of the power functions appearing in
the right hand side of the above expression.

Remark 9.1. It is clear that if E∗(s) contains a singular arc on [sa, sb] ⊆ [s0, sf ], then the function
Ẽ(s) defined in Proposition 9.1 satisfies Ẽ(s) = E∗(s) for all s ∈ [sa, sb].

With E∗(s), λ∗t and Ẽ(s) as in Proposition 9.1, the singular control T̃ can be obtained by taking
the derivative of equation P (Ẽ(s), s) = λ∗t , and replacing Ẽ′(s) with the right hand side of equation
(9.21), that is,

T̃ (s) =
2m
(
c′2(s)Ẽ(s)− c′1(s)Ẽ3(s)

)

3c1(s)Ẽ2(s) + c2(s)
− c1(s)Ẽ(s)m− c2(s)m

Ẽ(s)
− c3(s)m. (9.36)

Suppose there exists (sa, sb) ⊆ [s0, sf ] such that E∗(s) = Ẽ(s) but T̃ (s) > Tmax or T̃ (s) < Tmin.
It follows that the corresponding optimal thrust profile cannot contain any singular thrust subarc.
Therefore, in the sequel we will assume that T̃ (s) ∈ [Tmin, Tmax] for all s ∈ (sa, sb). This assumption
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is valid as long as the aircraft is in a normal flight condition, and the path is smooth enough, in
the sense that the path angle and the heading angle change slowly along the path.

According to the PMP, when the state constraints (9.8) and (9.9) are not active, the optimal
control is composed of extremals Tmax, Tmin and T̃ . The singular specific kinetic energy Ẽ and the
corresponding thrust profile T̃ are not readily known since they depend on the unknown parameter
λ∗t , which further depends on the final time tf . Furthermore, although there is only a finite number
of extremal controls, the possible combinations of the resulting extremals can be large. Hence, it is
necessary to identify the switching structure for the different extremals along with the associated
switching times in order to obtain the optimal solution.

9.3.3 Optimality of the Singular Arcs

An admissible singular control T̃ (s), in addition to the constraint Tmin ≤ T̃ (s) ≤ Tmax, must satisfy
the generalized Legendre-Clebsch condition[37]

∂

∂T

[
d2

ds2

(
∂H

∂T

)]
≤ 0. (9.37)

if it is to be part of the optimal trajectory. Differentiating (9.33) with respect to s, one obtains

d2

ds2

(
∂H

∂T

)
= c′1(s)− c′2(s)Ẽ−2(s) + 2c2(s)Ẽ−3(s)Ẽ′(s)− 3

4
√

2m
Ẽ−

5
2 (s)λ∗t Ẽ

′(s).

Using (9.21), it follows that

∂

∂T

[
d2

ds2

(
∂H

∂T

)]
=

1

m

(
2c2(s)Ẽ−3(s)− 3

4
√

2m
Ẽ−

5
2 (s)λ∗t

)
. (9.38)

Since Ẽ(s) satisfies (9.33), it follows that

c1(s)− c2(s)Ẽ−2(s) +
1

2
√

2m
Ẽ−3/2(s)λ∗t = 0, (9.39)

By eliminating λ∗t from (9.38), and by using equation (9.33), equation (9.38) can be written as:

∂

∂T

[
d2

ds2

(
∂H

∂T

)]
=

1

mE(s)

(
2c2(s)Ẽ−2(s)− 3

4
√

2m
Ẽ−

3
2 (s)λ∗t

)
(9.40)

=
1

2mE(s)

(
3c1(s) + c2(s)Ẽ−2(s)

)
, (9.41)

which is indeed negative because c1(s) < 0 and c2(s) < 0 according to (8.48) and (8.49). Hence,
along the singular arcs, the generalized Legendre-Clebsch condition is satisfied, and hence these
arcs can be part of the optimal trajectory.

9.3.4 Optimal Switching Structure Involving Singular Arcs

When solving an optimal control problem with singular arcs, and since the optimal switching
structure is not known in advance, it is a common practice to assume initially a certain fixed
switching structure according to which the switching times are computed. This approach, although
straightforward, may lead to a suboptimal solution. The switching structure of the optimal solution
to Problem 9.1 can be uniquely determined owing to the special properties of this problem. The
following theorem is key regarding the switching structure of the solution of Problem 9.1.
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Theorem 9.1. Let E∗(s) be the optimal specific kinetic energy profile for Problem 9.1 with the
optimal costate value λ∗t , and let Ẽ : [s0, sf ] → R+ be the function defined by P (Ẽ(s), s) = λ∗t .
Consider a subinterval (sa, sb) ⊂ [s0, sf ] such that g

w
(s) < E∗(s) < gw(s) for all s ∈ (sa, sb). If

E∗(s) < Ẽ(s) (respectively, E∗(s) > Ẽ(s)) for all s ∈ (sa, sb) ⊂ [s0, sf ], then the corresponding
optimal control T ∗(s) does not contain any switching from Tmin to Tmax (respectively, Tmax to Tmin)
on (sa, sb).

Proof. Assume that E∗(s) < Ẽ(s) for all s ∈ (sa, sb), and let T ∗(s) = Tmin on (sa, τ) , and assume,
ad absurdum, that T ∗(s) = Tmax on (τ, sb), where τ ∈ (sa, sb) is the switching point from Tmin

to Tmax. Because the state constraints are not saturated on (sa, sb), the optimal costate λ∗E is
continuous on (sa, sb). Since T ∗(s) = Tmin on (sa, τ) , and T ∗(s) = Tmax on (τ, sb), we have
1 + λ∗E(s)/m > 0 on (sa, τ) and 1 + λ∗E(s)/m < 0 on (τ, sb) following (9.32). By the continuity of
λ∗E(s), it follows that λ∗E(τ) = −m.

According to equation (9.29), the derivative of the costate at τ is given by

λ∗E
′(τ) = − 1

2
√

2
(E∗)−3/2(τ)

([
−2
√

2m
(
c1(E∗)3/2(τ)− c2(E∗)−1/2(τ)

)]
− λ∗t

)

= − 1

2
√

2
(E∗)−3/2(τ) (P (E∗(τ), τ)− λ∗t ) > 0,

where the last inequality holds because P (E∗(τ), τ) < λ∗t when E∗(τ) < Ẽ(τ), following Proposition
9.1. Because λ∗E

′ is continuous following the continuity of E∗, there exists ε > 0 such that λ∗E
′(s) > 0

for all s ∈ (τ, τ + ε) ⊆ (τ, sb). It follows that, since λ∗E(τ) = −m, we have 1 + λE(s)/m > 0 for
all s ∈ (τ, ε), a contradiction. Therefore, if E∗(s) < Ẽ(s) on (sa, sb), the optimal thrust contains
no switch from Tmin to Tmax on (sa, sb). The proof for the case E∗(s) > Ẽ(s) is similar, hence, is
omitted.

Theorem 9.1 narrows down the possible switching combinations of the optimal control T ∗ for
Problem 9.1. The valid switching structures above and below Ẽ are illustrated in Fig. 9.1. In
contrast, the switching structures in Fig. 9.2 are not optimal.

Given the optimal costate value λ∗t , Ẽ(s) can be computed using the expression P (Ẽ(s), s) = λ∗t
for all s ∈ [s0, sf ]. If the optimal specific kinetic energy E∗ contains a singular arc on a subinterval,
then it must be true that E∗ = Ẽ on this subinterval. Hence, the optimal specific kinetic energy
E∗ can be obtained by first identifying the segments of Ẽ, and then choosing the optimal structure
and the corresponding switching times.

9.3.5 Optimal Switching Structure Involving State-Constrained Arcs

The previous analysis is valid when the state constraints (9.8) and (9.9) are inactive. In this section
we analyze the case when the state either the constraints (9.8) or (9.9) are active on part of the
optimal trajectory. When the state constraint (9.8) or (9.9) is active along a certain part of the
optimal specific kinetic energy solution E∗, we call this part of E∗ a state constrained arc. The
corresponding control is referred to as a state constrained control. If the upper state constraint
is saturated, then T ∗ = Tw, which is the control corresponding to E∗ = gw. Similarly, if the
lower state constraint is saturated, then T ∗ = Tw, which is the control corresponding to E∗ = g

w
.

Clearly, it is required that Tw, Tw ∈ [Tmin, Tmax] on the corresponding domain for feasibility. For an
arbitrary geometric path, the optimal control T ∗ for the minimum-energy path-following problem
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Figure 9.1: Optimal switching structures

E

s

Ẽ

T = Tmin
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T = Tmax

Figure 9.2: Non-optimal switching structures
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is composed of bang-bang control Tmin and Tmax, singular control T̃ , and state constrained control
Tw and Tw.

The minimum-time path-following problem has been solved in Ref. [191]. This method can be
modified to provide the maximum flight time along a given geometric path. The maximum flight
time scheme corresponds to the point-wise minimization of the specific kinetic energy along the
path. This is the opposite of the minimum-time problem, which seeks to maximize pointwise the
specific kinetic energy along the path. Note that, for any given path, an upper bound of the flight
time exists because the speed of a fixed-wing aircraft must be higher than a certain value to avoid
stall.

Lemma 9.1. Let E∗U (s) be the minimum-time path-following specific kinetic energy profile with
flight time tmin, and let E∗L(s) be the maximum-time path-following specific kinetic energy profile
with flight time tmax. Let E∗(s) be the optimal specific kinetic energy profile for the minimum-
energy path-following problem with fixed flight time tf . Then the following inequalities hold

tmin ≤ tf ≤ tmax,

E∗L(s) ≤ E∗(s) ≤ E∗U (s), s ∈ [s0, sf ].

Proof. The inequalities involving tmin and tmax are obvious. To show the other inequalities, suppose,
without loss of generality, that E∗(sa) > E∗U (sa) for some sa ∈ [s0, sf ]. Since both E∗ and E∗U
are feasible specific kinetic energy profiles, Ē = max{E∗, E∗U} is also a feasible specific kinetic
energy profile, i.e., Ē(s) satisfies the boundary conditions, and can be tracked with the available
control inputs. Then Ē ≥ E∗U on [s0, sf ], and Ē(s) > E∗U (s) on at least one interval containing sa
following the continuity of E∗. Hence, for Ē the total flight time would be smaller than tmin, which
is a contradiction since tmin is the minimum-time solution. The inequality E∗L(s) ≤ E∗(s) can be
proved similarly.

According to Lemma 9.1, the fixed-time energy-optimal specific kinetic energy E∗ is bounded
by the minimum-time solution E∗U and the maximum-time solution E∗L. Furthermore, based on
Theorem 9.1, it can be shown that E∗(s) = E∗U (s) or E∗(s) = E∗L(s) on certain subintervals. This
property of E∗ is characterized by the following Lemma.

Lemma 9.2. Let E∗(s) be the optimal specific kinetic energy solution to Problem 9.1. and let
Ẽ be defined on [s0, sf ] by P (Ẽ(s), s) = λ∗t where λ∗t is the corresponding optimal costate value.
Let E∗U (s) and E∗L(s) be the optimal specific kinetic energy solutions to the minimum-time and
maximum-time path-tracking problems, respectively. Let ΓU = {s|E∗U (s) < Ẽ(s), s ∈ [s0, sf ]},
and ΓL = {s|E∗L(s) > Ẽ(s), s ∈ [s0, sf ]}. Suppose that E∗(s) > g

w
(s) for all s ∈ [s0, sf ] \ ΓL, and

E∗(s) < gw(s) for all s ∈ [s0, sf ] \ ΓU , then E∗(s) = E∗U (s) for all s ∈ ΓU , and E∗(s) = E∗L(s) for
all s ∈ ΓL.

Proof. We first show that E∗(s) = E∗U (s) for all s ∈ ΓU . Let T ∗U and T ∗ be the thrust control
associated with E∗U and E∗, respectively. From Lemma 9.1, we have that E∗(s) ≤ E∗U (s) for all
s ∈ [s0, sf ]. Assume, ad absurdum, that there exists τ ∈ ΓU such that E∗(τ) < E∗U (τ). Then by
the definition of ΓU , we also have E∗(τ) < Ẽ(τ).

Let q = inf{s|E∗(s) = E∗U (s), s ∈ [τ, sf ]}. Since E∗(sf ) = E∗U (sf ), q is well-defined. Similarly,
let p = sup{s|E∗(s) = E∗U (s), s ∈ [s0, τ ]}. We have E∗(s) < E∗U (s) for all s ∈ (p, q) by the fact
E∗(τ) < E∗U (τ), the definitions of p, q, and the continuity of E∗ and E∗U . Since E∗(s) < E∗U (s) ≤
gw(s) for all s ∈ (p, q), the state constraint E(s) ≤ gw(s) is inactive along E∗ for s ∈ (p, q), hence,
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T ∗(s) can only take the values of Tmax, Tmin, T̃ (s), or Tw(s) on (p, q). Because E∗(τ) < Ẽ(τ), we
have E∗(τ) > g

w
(τ), and it follows that either T ∗(τ) = Tmax or T ∗(τ) = Tmin.

First, consider the case T ∗(τ) = Tmin. Then we claim that E∗(s) < Ẽ(s) for all s ∈ (τ, q). To see
this, assume that E∗(s) ≥ Ẽ(s) for some s ∈ (τ, q), then it follows from the fact E∗(τ) < Ẽ(τ)
and the continuity of E∗ and Ẽ that the equation E∗(γ) = Ẽ(γ) has at least one solution on
(τ, q). Let γ = inf{s|E∗(s) = Ẽ(s), s ∈ (τ, q)}, it follows that E∗(γ) = Ẽ(γ), and E∗(s) < Ẽ(s)
for all s ∈ (τ, γ). Therefore, (τ, γ) ⊆ [s0, sf ] \ ΓL, and we have E∗(s) > g

w
(s) for all s ∈ (τ, γ).

It follows that on (τ, γ), T ∗(s) can only take the values of Tmin and Tmax. Because E∗(s) < Ẽ(s)
for all s ∈ (τ, γ), T ∗(s) can not switch from Tmin to Tmax according to Theorem 9.1, and we
have T ∗(s) = Tmin for all s ∈ (τ, γ). With T ∗(s) = Tmin ≤ T̃ (s) for s ∈ (τ, γ), and the initial
conditions satisfying E∗(τ) < Ẽ(τ), it follows from forward integrations of E∗′ and Ẽ′ from τ to
γ that E∗(γ) < Ẽ(γ), which is a contradiction. Hence, the claim is true, i.e., E∗(s) < Ẽ(s) for
all s ∈ (τ, q), and it follows that T ∗(s) = Tmin for all s ∈ (τ, q) according to Theorem 9.1. Then,
with the initial conditions E∗(q) = E∗U (q) and T ∗U (s) ≥ Tmin = T ∗(s) for all s ∈ (τ, q), backward
integrations of E∗′ and E∗U

′ from q to τ lead to E∗(τ) ≥ E∗U (τ), which is a contradiction to the
assumption E∗(τ) < E∗U (τ).

Similarly, if T ∗(τ) = Tmax, we can first prove that E∗(s) < Ẽ(s) for all s ∈ (p, τ). Specifically,
suppose this is not true, then E∗(γ) = Ẽ(γ) has at least one solution on (p, τ). By defining γ =
sup{s|E∗(s) = Ẽ(s), s ∈ [p, τ)}, then the backward integrations of E∗′ and Ẽ′ lead to E∗(γ) < Ẽ(γ),
which is a contradiction. Then it follows that E∗(τ) < E∗U (τ) is not possible, as in the proof for
the case with T ∗(τ) = Tmin.

Hence, there does not exists any s ∈ ΓU such that E∗(s) < E∗U (s), and we have E∗(s) = E∗U (s) on
ΓU .

The proof for the other statement, E∗(s) = E∗L(s) for all s ∈ ΓL, is similar, hence, is omitted.

Since the unconstrained solution to an optimal control problem has the same, or better optimality
characteristics than a constrained one, a constraint is, in general, not active unless it is violated
by the optimal solution of the unconstrained problem 2. This property is described by the lemma
below.

Lemma 9.3. Consider the following two optimal control problems

Problem A Problem B
min
u

J(x, u)

s.t. ẋ(t) = f(x(t), u(t)),
g1(x(t), u(t)) 6 0,
g2(x(t), u(t)) 6 0, t ∈ [t0, tf ],
x(t0) = x0, x(tf ) = xf .

min
u

J(x, u)

s.t. ẋ(t) = f(x(t), u(t)),
g1(x(t), u(t)) 6 0, t ∈ [t0, tf ].
x(t0) = x0, x(tf ) = xf .

Let x∗A be the optimal solution and u∗A be the corresponding optimal control to Problem A, and
let x∗B and u∗B be the optimal solution and corresponding optimal control to Problem B. Then the
following statements are true:

1. If g2(x∗B(t), u∗B(t)) ≤ 0 for all t ∈ [t0, tf ], then J(x∗B, u
∗
B) = J(x∗A, u

∗
A). Furthermore, if either

Problem A or Problem B has a unique solution, then x∗A = x∗B and u∗A = u∗B.

2The only exception would be the case when along the unconstrained optimal solution certain constraints are
active but not violated, which is considered to be a trivial case.
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2. If Problem B has a unique solution and g2(x∗B(t), u∗B(t)) > 0 for some t ∈ [t0, tf ], then
J(x∗A, u

∗
A) > J(x∗B, u

∗
B).

Proof. We start with the first statement. Since (x∗A, u
∗
A) is the optimal solution to Problem A, and

(x∗B, u
∗
B) is a feasible solution to Problem A, we have J(x∗A, u

∗
A) ≤ J(x∗B, u

∗
B) by the optimality

of (x∗A, u
∗
A). On the other hand, (x∗A, u

∗
A) satisfies all constraints in Problem B, so (x∗A, u

∗
A) is a

feasible solution to Problem B. Consequently, J(x∗A, u
∗
A) ≥ J(x∗B, u

∗
B) by the optimality of (x∗B, u

∗
B)

for Problem B. Therefore J(x∗B, u
∗
B) = J(x∗A, u

∗
A). It follows that x∗A = x∗B and u∗A = u∗B, otherwise

both Problem A and Problem B have non-unique solutions.

We now prove the second statement. As in the previous proof, since (x∗A, u
∗
A) is a feasible solution

to Problem B, we have J(x∗A, u
∗
A) ≥ J(x∗B, u

∗
B) by the optimality of (x∗B, u

∗
B) for Problem B.

Since g2(x∗B(t), u∗B(t)) > 0 for some t ∈ [t0, tf ], and g2(x∗A(t), u∗A(t)) ≤ 0 for all t ∈ [t0, tf ], it
follows that (x∗B, u

∗
B) and (x∗A, u

∗
A) are not identical. By the uniqueness of (x∗B, u

∗
B), it follows that

J(x∗A, u
∗
A) > J(x∗B, u

∗
B).

In the following, Lemma 9.3 is used to characterize the state constrained arcs in the optimal
specific kinetic energy profile E∗(s). Specifically, given the state constraints, we can first compute
the optimal solution of a certain relaxed problem to identify the state constrained arcs. Before
introducing the relaxed problem, we need some additional notation. For any subset ΓU ⊆ [s0, sf ],
define

gΓU (s) =

{
gw(s), s ∈ ΓU ,
M, s ∈ [s0, sf ] \ ΓU ,

where M > 0 is a number large enough such that E(s) < M is always satisfied on [s0, sf ] by any
feasible specific kinetic energy profile E(s). By choosing a subset ΓU of interest and enforcing the
state constraint E(s) ≤ gΓU (s) for all s ∈ [s0, sf ], we can ensure that the optimal solution E∗

satisfies E∗(s) ≤ gw(s) on ΓU , while remaining unconstrained on [s0, sf ] \ ΓU . Similarly, we also
define

g
ΓL

(s) =

{
g
w

(s), s ∈ ΓL,

−M, s ∈ [s0, sf ] \ ΓL.

By enforcing the constraint E(s) ≥ g
ΓL

(s) instead of the constraint E(s) ≥ g
w

(s), the later con-

straint is relaxed on [s0, sf ]\ΓL. Next, we introduce the following relaxed problem for Problem 9.1
by relaxing the original state constraints (9.23) and (9.24) on certain subintervals.

Problem 9.2 (Relaxed minimum-energy path-tracking problem with fixed TOA). Mini-
mize the energy cost (9.20) while subject to constraints (9.21), (9.22), (9.25), (9.26), (9.27), (9.28),
and state bounds

E(s)− gΓ(s) ≤ 0, (9.42)

g
Γ
(s)− E(s) ≤ 0. (9.43)

for all s ∈ [s0, sf ].

Similarly, one can also form the relaxed minimum-time and maximum-time path tracking problems
with state constraints (9.42) and (9.43) instead of (9.23) and (9.24). In general, the minimum-time
and maximum-time solutions of the relaxed problems are different from the corresponding solutions
of the original (non-relaxed) problem. However, as shown by the following proposition, by choosing
carefully where the constraints are relaxed, the the minimum-time and maximum-time solutions
do not change on certain subintervals.
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Proposition 9.2. Consider a function Ẽ : [s0, sf ] → R+, which is a solution to the ordinary
differential equation (9.21) with a certain control input T̃ (s) ∈ [Tmin, Tmax]. Let ΓU = {s|E∗U (s) <
Ẽ(s), s ∈ [s0, sf ]} and ΓL = {s|E∗L(s) > Ẽ(s), s ∈ [s0, sf ]}, where E∗U (s) and E∗L(s) are the
specific kinetic energy solutions to the minimum-time and maximum-time path-tracking problems,
respectively, with constraints (9.23) and (9.24). Let E∗Ur(s) and E∗Lr(s) be the specific kinetic
energy solutions to the minimum-time and maximum-time path-tracking problems, respectively,
with constraints E(s) ≤ gΓU (s) and E(s) ≥ g

ΓL
(s) instead of (9.23) and (9.24). Then we have

E∗U (s) = E∗Ur(s) for all s ∈ ΓU , and E∗L(s) = E∗Lr(s) for all s ∈ ΓL.

Proof. Define

E (s) =

{
min{max{E∗Ur(s), E∗U (s)}, Ẽ(s)}, s ∈ ΓU ,

E∗U (s), s ∈ [s0, sf ] \ ΓU .
(9.44)

By the definition of E(s) and ΓU , E(s) ≥ E∗U (s) on [s0, sf ], and E(s) is continuous. Furthermore,
E(s0) = E∗U (s0) = E0, E(sf ) = E∗U (sf ) = Ef , and g

w
(s) ≤ E(s) ≤ gw(s) for all s ∈ [s0, sf ].

Hence, E(s) is a feasible solution to the minimum-time path-tracking problem with constraints
(9.23) and (9.24). If there exist τ ∈ ΓU such that E∗Ur(τ) > E∗U (τ), then by the definition of E(s),
we have E(τ) > E∗U (τ), and it follows from the continuity of E and E∗U that E(s) > E∗U (s) in a
neighborhood of τ . Hence, we have

∫ sf

s0

1√
2E(s)

ds >

∫ sf

s0

1√
2E∗U (s)

ds,

which means that E(s) has a shorter final time than E∗U (s), which is a contradiction since E∗U is
the minimum-time solution.

Suppose there exist τ ∈ Γ such that E∗U (τ) > E∗Ur(τ). Let E(s) = max{E∗Ur(s), E∗U (s)} for s ∈
[s0, sf ]. Because E∗Ur(s) ≤ gΓU (s) and E∗U (s) ≤ gw(s) ≤ gΓU (s) are always satisfied, we have
E(s) ≤ gΓU (s) for all s ∈ [s0, sf ], and E is a feasible solution to the minimum-time problem with
constraint E(s) ≤ gΓU (s). Since E(τ) = E∗U (τ) > E∗Ur(τ), by the continuity of E and E∗Ur , we
have E(s) > E∗Ur(s) in a neighborhood of τ . Therefore, following a similar argument as in the
proof above, E1 has a shorter final time than E∗Ur , which is a contradiction. Hence, we must have
E∗U (s) = E∗Ur(s) for all s ∈ ΓU . Similarly, one can prove that E∗L(s) = E∗Lr(s) for all s ∈ ΓL. The
proof is omitted for the sake of brevity.

The optimal solution to Problem 9.1 is given by the following theorem. Its proof is based on the
optimal solution of the relaxed Problem 9.2.

Theorem 9.2. Suppose there exists a real number λt and a function Ẽ given by P (Ẽ(s), s) = λt
for all s ∈ [s0, sf ], such that the specific kinetic energy E∗ given by

E∗ (s) =





E∗L (s), s ∈ ΓL,

Ẽ (s), s ∈ [s0, sf ] \ (ΓU ∪ ΓL),
E∗U (s), s ∈ ΓU

(9.45)

satisfies the desired TOA, where ΓU = {s|E∗U (s) < Ẽ(s), s ∈ [s0, sf ]}, and ΓL = {s|E∗L(s) >
Ẽ(s), s ∈ [s0, sf ]}. Then E∗ is the optimal solution to Problem 9.1,
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Proof. Consider the relaxed Problem 9.1 with the constraints (9.23) and (9.24) replaced by E(s) ≤
gΓU (s) and E(s) ≥ g

ΓL
(s), respectively. Assume that the optimal specific kinetic energy solution

of Problem 9.1 is E∗r . Let λ∗tr be the optimal costate value of the relaxed problem, and let Ẽr be

defined on [s0, sf ] by P (Ẽr(s), s) = λ∗tr . Let T ∗r (s) be the optimal control associated with E∗r (s).

Let ΓUr = {s|E∗r (s) = gΓU (s), s ∈ [s0, sf ]}. By definition of gΓU , it is clear that ΓUr ⊆ ΓU .
According to Proposition 9.2, the time-optimal solution does not change on ΓU by enforcing E(s) ≤
gΓU (s) instead of E(s) ≤ gw(s). Hence, following Lemma 9.2, we have E∗r (s) = E∗(s) for all
s ∈ ΓU ⊇ ΓUr . Similarly, let ΓLr = {s|E∗r (s) = g

ΓL
(s), s ∈ [s0, sf ]}, then we have E∗r (s) = E∗(s)

for all for s ∈ ΓL ⊇ ΓLr .

Next, we will show that E∗(s) = E∗r (s) for all s ∈ [s0, sf ]. Suppose, ad absurdum, that E∗(s) 6=
E∗r (s) for some s ∈ [s0, sf ]. Because E∗ and E∗r have the same TOA, i.e.,

∫ sf

s0

1√
2E∗(s)

ds =

∫ sf

s0

1√
2E∗r (s)

ds,

there must exist τ, γ ∈ [s0, sf ] such that E∗r (τ) < E∗(τ), and E∗r (γ) > E∗(γ).

When λ∗tr ≥ λt. It follows from the definition of function P in (9.35) that Ẽr(s) ≥ Ẽ(s) for all
s ∈ [s0, sf ]. Let q = inf{s|E∗r (s) = E∗(s), s ∈ [τ, sf ]}. Since E∗r (sf ) = E∗(sf ), q is well-defined.
Similarly, let p = sup{s|E∗r (s) = E∗(s), s ∈ [s0, τ ]}. Clearly, τ ∈ (p, q) and (p, q) ∩ (ΓUr ∪ ΓLr) = ∅
(since it has been shown that E∗r (s) = E∗(s) on ΓUr ∪ ΓLr). It follows that E(s) < gΓU (s)

and E(s) > g
ΓL

(s) on (p, q), and T ∗r (s) may only take the values of Tmax, Tmin or T̃ on (p, q).

Furthermore, we have E∗r (s) < E∗(s) for all s ∈ (p, q).

Note that E∗r (s) = E∗(s) for s ∈ ΓL ∪ ΓU and E∗r (s) < E∗(s) for all s ∈ (p, q). We have (p, q) ⊆
[s0, sf ] \ (ΓL ∪ ΓU ). Since E∗(s) = Ẽ(s) on [s0, sf ] \ (ΓL ∪ ΓU ) by the definition of E∗, we have
E∗r (s) < E∗(s) = Ẽ(s) ≤ Ẽr(s) for all s ∈ (p, q). Hence, T ∗r (s) cannot be singular on (p, q), and
either T ∗r (s) = Tmin or T ∗r (s) = Tmax for s ∈ (p, q). Specifically, at τ , either T ∗r (τ) = Tmin or
T ∗r (τ) = Tmax. When T ∗r (τ) = Tmin, with E∗r (s) < Ẽr(s) for all s ∈ (p, q), we have T ∗r (s) = Tmin

for all s ∈ (τ, q) since T ∗r (s) can not switch from Tmin to Tmax on (τ, q) according to Theorem 9.1.
Note that T ∗(s) ≥ Tmin = T ∗r (s) for all s ∈ (p, q), by forward integration of E∗′ and E∗r

′ from τ to q
with initial conditions satisfying E∗r (τ) < E∗(τ), we have E∗r (q) < E∗(q), which is a contradiction.
Similarly, T ∗r (τ) = Tmax also leads to a contradiction after a backward integration from τ to p.
Hence, we have shown that E∗r (s) = E∗(s) for all s ∈ [s0, sf ] when λ∗tr ≥ λt.
Similarly, when λ∗tr < λt, by defining q = inf{s|E∗r (s) = E∗(s), s ∈ [γ, sf ]} and p = sup{s|E∗r (s) =
E∗(s), s ∈ [s0, γ]}, we can also show that E∗r (γ) > E∗(γ) leads to a contradiction. Hence, we must
have E∗r (s) = E∗(s) for all s ∈ [s0, sf ], i.e., E∗(s) is the optimal solution to the relaxed problem.

Because E∗(s) = E∗U (s) ≤ gw(s) for s ∈ ΓU , E∗(s) = E∗L(s) ≥ g
w

(s) for s ∈ ΓL, and g
w

(s) ≤
E∗L(s) < E∗(s) = Ẽ(s) < E∗U (s) ≤ gw(s) for s ∈ [s0, sf ]\ (ΓU ∪ΓL), it is clear that g

w
(s) ≤ E∗(s) ≤

gw(s) for all s ∈ [s0, sf ], and E∗(s) is feasible for Problem 9.1. Hence, E∗ is also the optimal
solution to Problem 9.1 by Lemma 9.3, and the proof is complete.

9.4 An Energy-Optimal Path-Tracking Algorithm

Theorem 9.2 characterizes the switching structure of the optimal solution to the aircraft energy-
optimal path-tracking problem. Although E∗U can be computed using the algorithm in Ref. [191],
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and E∗L can be computed in a similar manner, the optimal costate value λ∗t is unknown. As a result,
one is not readily able to choose the correct value of Ẽ(s) for each s ∈ [s0, sf ] in order to construct
the optimal specific kinetic energy as in (9.45). In this section a numerical algorithm is presented
for solving Problem 9.1 by identifying the optimal costate value λ∗t . This allows the computation of
the associated function Ẽ(s) from (9.34) and, subsequently, the optimal solution E∗(s) from (9.45).
To identify the constant λ∗t and the associated singular arcs for a specific TOA, we need to search
among a family of extremals associated with the prescribed geometric path for the correct value
λ∗t .

The algorithm for identifying the minimum-energy path-tracking control is given as follows:

Main Algorithm. Compute the optimal solution for aircraft minimum-energy path-tracking oper-
ation with fixed TOA.

1. Compute the state bounds gw(s), g
w

(s), and the functions c1(s), c2(s), c3(s) in Problem 9.1
as in Ref. [191].

2. Compute and store the values of P (E(s), s) from equation (9.34) on a selected meshM over
the domain [s0, sf ]× [Emin, Emax], where [Emin, Emax] covers the possible range of the specific
kinetic energy.

3. Compute the minimum-time solution E∗U (s) and the maximum-time solution E∗L(s) using the
algorithm in Ref. [191]. Let the corresponding minimum and maximum TOA be tmin and
tmax, respectively. Proceed to the next step if tmin < tf < tmax. Otherwise, quit the algorithm
since the desired TOA is not possible and the given problem does not have a solution.

4. Apply a Newton-Raphson algorithm with adjusted bounds of the solution[143] to find the
optimal costate value λ∗t such that τf = tf , where τf is given by Algorithm 1 below with
λ = λ∗t . Then the corresponding specific kinetic energy E∗(s) associated with the costate
value λ∗t , which is returned by Algorithm 1, is the optimal solution with TOA equal to tf .

5. Compute the optimal controls thrust T ∗(s), bank angle φ∗(s), and lift coefficient C∗L(s) his-
tories using equations (8.47), (9.14), and (9.15), respectively.

Next, we introduce an algorithm that computes the optimal speed solution and the TOA for a
specific extremal with costate value λ.

Algorithm 1 Compute the TOA τf and the corresponding optimal specific kinetic energy profile
E∗(s) for a given λ value

1. Solve P (Ẽλ(s), s) = λ for the function Ẽλ(s) by interpolating the pre-computed and stored
data of P (E(s), s) for the given path on the mesh M.

2. Compute the optimal specific kinetic energy E∗(s) for the given λ using formula (9.45) along
with the computed maximum-time specific kinetic energy E∗L(s) and minimum-time specific
kinetic energy E∗U (s).

3. Compute the TOA τf for E∗(s) using

τf =

∫ sf

s0

1√
2E∗(s)

ds.
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4. Return τf and E∗(s).

According to the structure of the optimal specific energy profile in (9.45), it can be easily proved
that the travel time τf of the energy-optimal solution decreases monotonically with increasing λt,
since Ẽ(s) increases monotonically with respect to λt for all s ∈ [s0, sf ] according to the definition
of Ẽ as in (9.35). In the Newton-Raphson algorithm with adjusted bounds used in Step 4. of the
Main Algorithm, a bisection step is taken whenever Newton-Raphson would take the solution out of
bounds. Since a bisection method alone is guaranteed to converge given the monotonicity property
of the problem, such a hybrid method is also guaranteed to converge, and the Newton-Raphson
steps can speed up the convergence.

9.5 Numerical Examples

Next, we validate the proposed energy-optimal tracking algorithm using a three-dimensional landing
trajectory, as shown in Fig. 9.3. The initial position of the aircraft is (−111,−17.3, 6) km and the
final position is (0, 0, 0) km. The initial speed is v0=240 m/s, and the final speed is vf=95 m/s.
Both the initial and final path angles are 0◦. The initial heading angle is 0◦, and the final heading
angle is −25◦. The horizontal projection of the trajectory contains two turning maneuvers, as
shown in Fig. 9.4.
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Figure 9.3: 3D Geometric Trajectory.

The speed and control bounds considered during the time parameterization process are Ma ≤ 0.9,
where Ma is the Mach number, CLmin = −0.47, CLmax = 1.73, φmin = −15◦, φmax = 15◦, Tmin = 0,
and Tmax = 1126.3 kN.

The path is processed using the algorithm introduced in the previous section with different TOA
requirements. Figures 9.5 and 9.6 show the optimal speed profiles for the minimum-energy aircraft
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Figure 9.4: X-Y plane projection of the geometric trajectory.

path-tracking for several TOA values. It can be seen from these figures that with different TOA
values tf , different parts of the minimum-time and/or the maximum-time speed profile can be
involved in the minimum-energy solution, together with the corresponding singular arcs. Figures 9.7
and 9.8 illustrate the minimum-energy control histories for tf = 800 s and tf = 1400 s, respectively.
In these figures, the throttle is the ratio of the actual thrust to the maximum thrust Tmax. It is
clear that all solutions satisfy the speed and control constraints along the path.

To evaluate the fuel economy of the energy-optimal solution, a fuel-optimal control problem was
solved using a numerical optimal control approach with the fuel consumption model (9.18) as the
cost function. The constraints of the fuel-optimal control problem are identical to those of Prob-
lem 9.1. The fuel-optimal control problem was converted into a nonlinear programming problem via
direct transcription [32], and solved using the sparse nonlinear optimization software SNOPT [80].
The density function based mesh refinement method in Ref. [192] was used to generate a mesh
such that the state bounds (9.8) and (9.9) can be approximated more accurately with a limited
number of grid points. The parameters for the computation of η0 in equation (9.17) were stored in
a look-up table, and were provided to the nonlinear optimization solver.

The same four cases shown in Fig. 9.5 (tf = 800 s, 1000 s, 1200 s, 1400 s) were solved using the
numerical optimal control approach for minimum-fuel path-tracking, and the optimization results
were compared to those given by the energy-optimal path-tracking algorithm. The results of the
comparison are shown in Figs. 9.9 and 9.10. It is clear from these figures that the energy-optimal
solutions are very close to the minimum-fuel solutions. Note that the singular arcs in the minimum-
fuel problem cause numerical issues (oscillations along the singular arcs in Figs. 9.9 and 9.10). This
is a well-known phenomenon observed when computing singular arcs using direct trajectory opti-
mization methods. Furthermore, the computation time of the numerical optimization approach is
much longer than the proposed energy-optimal path-tracking algorithm: a Matlab implementation
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Figure 9.5: Energy-optimal speed profiles with different TOA, path coordinate domain.
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Figure 9.6: Energy-optimal speed profiles with different TOA, time domain.

201



0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

C
L

0 100 200 300 400 500 600 700 800

−10

0

10

φ
(◦
)

0 100 200 300 400 500 600 700 800
0

0.5

1

t (s)

th
ro
tt
le

Figure 9.7: Energy-optimal control histories with tf = 800 s.
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Figure 9.8: Energy-optimal control histories with tf = 1400 s.
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of the energy-optimal path-tracking control algorithm finds the optimal solution in 2-4 seconds,
while the Nonlinear Programming solver takes at least 5 minutes (for some cases, more than 20
minutes) to find a convergent fuel-optimal solution.
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Figure 9.9: Comparison of fuel-optimal and energy-optimal speed profiles, tf = 800 s and tf =
1000 s.
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Figure 9.10: Comparison of fuel-optimal and energy-optimal speed profiles, tf = 1200 s and tf =
1400 s.
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Chapter 10

Initial Guess Generation for Landing
Trajectory Optimization

As discussed in Chapter 1, a landing trajectory obtained using a Nonlinear Programming (NLP)
based numerical optimal control approach via direct transcription provides both feasibility and
optimality, which are important for the emergency landing scenario. However, the application of
such an approach is limited by the convergence of the optimization algorithm (specifically, the NLP
solver working jointly with the numerical optimal control algorithm), which depends extensively
on the quality of the initial guess, including the time history of all state and control variables, as
well as any unknown parameters. Thus, convergence is not guaranteed, in general. In numerical
optimal control algorithms, the initial guess is usually automatically generated by setting the state
and control variables to constants, or as simple affine functions. The user may also try different
initial guesses if he/she has some insight into the specific problem. In this chapter, we introduce
a new scheme for automatic initial guess generation for aircraft landing trajectory optimization
problems.

10.1 Feasible Landing Trajectory Generation

The quality of the commonly used affine initial guess is usually unreliable in the sense that such
a guess is rarely feasible, i.e., the time histories of the state and control variables of the initial
guess do not satisfy the differential equations governing the system dynamics. Throughout this
thesis, we say that the NLP solver fails if the result returned by the solver does not satisfy either
the feasibility tolerance 1× 10−6 or the optimality tolerance 1× 10−3. Although NLP solvers may
proceed to a feasible region by updating decision variables using penalty methods [43], often the
solver fails if the initial guess is far away from the feasible region.

For the landing trajectory optimization problem, such failures are commonly observed when affine
or constant initial guesses are used. Therefore, to reduce the failure rate of penalty methods for
identifying feasible regions, as well as to improve the robustness of the optimization scheme, it is
desirable to provide feasible landing trajectory initial guess to the NLP solver.

The generation of a feasible trajectory, as described in Problem 1.1 proposed in Chapter 1, is not
a trivial task in the case of landing trajectory generation due to complicated aircraft dynamics.
With a hierarchical approach as introduced in Chapter 1, the generation of a feasible trajectory can
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be decomposed into two tasks involving the geometric layer and the dynamics layer, respectively,
as illustrated in Fig. 10.1. Such an approach generates first a purely geometric collision-free path
connecting the initial and final positions. After such a path is obtained, in the second step, a
certain time parameterization is assigned to the path, which converts the path into a trajectory. It
is required that the time parameterization found in the second step must satisfy the dynamics and
other state and control constraints.

Figure 10.1: Hierarchical approach to feasible trajectory generation.

Although many efficient collision-free path planning methods are available for the first step in the
hierarchical trajectory generation approach, few of them can be directly applied for the generation
of aircraft landing trajectories because the generated paths are not smooth enough to be followed
by the aircraft. On the other hand, variations of Dubins’ paths, although reasonably smooth,
cannot meet the requirement for collision avoidance. The path smoothing method introduced in
Chapter 7 works as a post-processing technique on the geometric layer for these non-smooth path
planning methods. The resultant paths obtained using this method are smooth enough for the
aircraft dynamics, while retaining the collision avoidance feature of the original non-smooth paths.

The time-optimal aircraft path tracking method introduced in Chapter 8 and the fixed final time,
energy-optimal aircraft path tracking method introduced in Chapter 9 fit into the dynamics layer
of the hierarchical approach. Both methods are able to generate a feasible time-parameterization
to the prescribed geometric path (if such a parameterization exists) given by the geometric path
planning methods employed in the first step of the hierarchical approach. The energy-optimal
method can help improve fuel efficiency in the landing phase during normal scheduled flight. The
time-optimal formulation provides the shortest landing time, and is more suitable for emergency
landing scenarios.

The hierarchical aircraft landing trajectory generation scheme considered in this thesis includes a
geometric path planner and a path smoothing method in the geometric layer, and a time-optimal
path tracking method in the dynamics layer. The main characteristics of such a hierarchical scheme
when compared to a NLP based numerical optimal control approach are described below:

1. Robustness
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The robustness of the hierarchical scheme is determined by the robustness of the algorithms
employed in the geometric and dynamics layers, and the interaction between these methods.
Unlike the NLP approach that often encounters convergence issues, geometric path plan-
ning methods such as A∗, D∗, visibility graph, and Dubins’ paths are much more reliable.
Path smoothing updates the path in a neighborhood by solving a sequence of Quadratic Pro-
gramming problems. For each problem, the solution is guaranteed to converge. Hence, the
generation of a geometric path in the hierarchical scheme is highly reliable.

On the other hand, this hierarchical approach applies semi-analytic methods on the dynamics
layer for the time parameterization of the geometric path. As shown in Chapter 8 and
Chapter 9, these semi-analytic methods are guaranteed to find the time parameterization if
such a parameterization exists given the path.

Hence, the individual methods in this hierarchical approach do not cause any robustness
issues, and the robustness of the hierarchical scheme, i.e., the feasibility of the generated tra-
jectory, depends on whether the geometric path planner can properly generate the geometric
path for which a feasible time-parameterization exists. As will be shown later in this chap-
ter, by properly tuning the geometric path planner (mainly by avoiding aggressive turning
maneuvers), the hierarchical scheme can generate a feasible trajectory for the overwhelming
majority of cases.

2. Optimality Although semi-analytical optimal path tracking methods in the dynamics layer of
the hierarchical scheme can compute the exact optimal solution for the given path geometry,
the geometric path planners usually do not generate paths with optimal geometry, which
depends on system dynamics. Instead, these geometric path planners can only generate
paths with reasonably good geometry. Therefore, the landing trajectories generated by a
hierarchical scheme are obviously sub-optimal, in general, compared to convergent solutions
from a NLP approach. This is especially true when conservatism is introduced in the geometric
path planer to ensure the feasibility of the solution.

3. Computation speed This is considered to be a major advantage of a hierarchical scheme
over a general NLP approach. Current geometric path generation methods are highly efficient.
Path smoothing based on Quadratic Programming can also be solved efficiently. In the
dynamics layer, optimal path tracking methods are based on semi-analytic solutions, for which
the majority of computations deal with the integration of system dynamics, which can also
be computed efficiently. Hence, although more subproblems are solved in this hierarchical
approach, the overall computation speed is much faster than the NLP, which solves the
numerical optimal control problem directly.

Since the landing trajectories generated using the hierarchical scheme are mostly feasible, and,
in general, reasonably close to the optimal solution, they are good initial guesses to a numerical
optimal control solver. Even if such a hierarchical scheme fails to provide a feasible trajectory, the
generated trajectory is still not far away from the feasible region, hence there is a good chance
that the feasibility of the solution can be recovered by penalty methods using generic NLP solvers,
and thus the optimality can be further improved. The schema of such an initial guess generation
technique for numerical optimal control algorithms is illustrated in Fig. 10.2.

As shown in Fig. 10.2, the time-optimal path tracking method first generates a trajectory by
assigning a time parameterization along the path given by the geometric path planner. If the
trajectory is feasible, then it is used as an initial guess for the numerical optimal control solver.
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Figure 10.2: Schematic of landing trajectory optimization.

Meanwhile, such a feasible trajectory is also stored as a back-up plan in case of the failure of the
NLP solver. If the trajectory generated by the time-optimal path tracking method is not feasible,
then the path is revised using the path smoothing method, and optimal path tracking is applied
again to the smoothed path. Such a process is repeated until either the trajectory is feasible, or the
maximum number of iterations is reached. If no feasible trajectory can be obtained after reaching
the iteration limit, the infeasible trajectory is passed to the numerical optimal control algorithm,
which makes a last attempt to produce a feasible trajectory. If this last attempt is not successful,
then either there does not exists a feasible trajectory to the problem, or both the hierarchical
scheme and the NLP solver have failed.

10.2 A Three Dimensional Landing Path Primitive Generation
Method

Next, we introduce a landing path primitive generation method based on the suboptimal solution
of a three-dimensional variation of the classical Markov-Dubins problem [66], which characterizes
curvature constrained paths of minimum length in the plane. Specifically, we consider the generation
of a geometric path which connects the initial and terminal configurations of the aircraft subject
to the following requirements:

1. The projection of the three-dimensional curve onto the horizontal plane corresponds to a
Dubins-like path (that is, it is composed of concatenations of circular arcs and line segments);

2. An aircraft traveling along the path is descending continuously until the final destination is
reached.
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Such an geometric problem can be formulated, equivalently, as an optimal control problem of a
point mass particle of unit mass, with the kinematic model is described by the following equations

x′ = cosψ cos γ, (10.1)

y′ = sinψ cos γ, (10.2)

z′ = sin γ, (10.3)

ψ′ =
u

Rmin(z)
, (10.4)

where (x, y, z) ∈ R3 is the position vector, ψ ∈ [0, 2π) is the heading of the particle, Rmin is a
positive number, which may depend on the altitude z, γ is the flight path angle, which is treated
as an control input, and u is a control input that determines the rate of change of the heading
angle. Prime denotes differentiation with respect to the arc length s. It is furthermore assumed
that γ ∈ [γmin, γmax] ⊆ [−π/2, 0], and u ∈ [−δ, 1], where δ ∈ (0, 1] (i.e., the steering constraints
may be asymmetric [18]).

Problem 10.1. Find the controls u∗ and γ∗ that steer the system described by Eqs.(10.1)-(10.4)
from (x0, y0, z0, ψ0) (prescribed) to (xf , yf , zf , ψf ) (prescribed) with zf < z0, such that the total
length of the ensuing path sf (free) is minimum.

In this section we are interested in finding a suboptimal solution to Problem 10.1 for any prescribed
pair of boundary configurations. A straightforward way to characterize suboptimal solutions for
Problem 10.1 is to decouple the path planning problem into a steering problem in the x-y plane
(or more precisely R2 × S1), and another steering problem in the vertical plane (one-dimensional
problem).

10.2.1 The Minimal Length Curve Problem in the Horizontal Plane

First, we address a path-planning problem in the horizontal x-y plane, which will allow us to address
Problem 10.1. To this aim, it is assumed that the solution of the steering problem in R2×S1 follows
the Dubins pattern, that is, the projection of a (suboptimal) solution of Problem 10.1 on the x-y
plane is a concatenation of two circular arcs of minimum radius interconnected by either a straight
line or another circular arc. Note that the radii of different circular arcs of the projection of a path
that solves Problem 10.1 on the x-y plane may not be equal, as a result of the fact that the steering
capacity of the aircraft depends on the altitude.

In order to obtain a simple formula for computing the minimum turning radius of an aircraft as
a function of the altitude, we first observe that the rate of change of ψ of an aircraft of mass m
traveling with speed v at an altitude z is given by [73]

ψ′ = −L(CL, v, z) sinφ

mv2 cos γ
, (10.5)

where φ is the bank angle, L = L(CL, v, z) is the lift and CL is the lift coefficient. If we assume
that v = v(z), we can obtain a rough approximation of Rmin as follows

Rmin(z; γ) =
mv(z)2 cos γ

L(Cmax
L , v(z), z) sinφmax

, (10.6)

where φmax and Cmax
L denote, respectively, the upper bounds on the bank angle and the lift coeffi-

cient.
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Equation (10.6) implies that an aircraft is less maneuverable, in terms of performing sharp turns,
at higher altitudes than it is in lower altitudes. Let R0 , Rmin(z0; 0), Rm , Rmin(zm; 0), where
zm = (z0 + zf )/2, and Rf , Rmin(zf ; 0). In addition, let us assume that along the first and the last
circular arc of the Dubins path the quantity Rmin in Eq. (10.4) is constant and equal to R0 and
Rf , respectively. Furthermore, if the Dubins path consists of three circular arcs, then the quantity
Rmin along the middle arc is constant and equal to Rm. Note that R0 ≥ Rm ≥ Rf . In order to
obtain more conservative estimates of the Rmin, and thus reduce the risk of selecting a small value
for the minimum turning radius that can lead to dynamically infeasible paths for the aircraft, we
multiply R0, Rm, and Rf by a safety factor k0, km, and kf > 1, respectively.

Next, we formulate a minimum-length problem on the horizontal plane x-y plane.

Problem 10.2. Given two configurations (x0, y0, ψ0) and (xf , yf , ψf ) in R2×S1, find a minimum-
length curve that connects the two configurations and belongs necessarily to the following family
of paths

P , {C±(R0) ◦ C∓(Rm) ◦ C±(Rf ), C±(R0) ◦ S ◦ C±(Rf ), C±(R0) ◦ S ◦ C∓(Rf )}, (10.7)

where C−(R`) (C+(R`)) and S denote a circular arc of radius R`, where ` ∈ {0,m, f}, traversed
clockwise (counterclockwise) and a line segment, respectively, and ◦ denotes the concatenation of
two consecutive arcs.

10.2.2 Vertical Descent Profile Generation

In this section, we obtain a three dimensional landing path by generating a vertical profile for the
two dimensional Dubins’ path in the previous section. In the subsequent analysis, it is assumed
that the trigonometric sine function of the path angle, which is denoted by χ(s) = sin(γ(s)), is a
piecewise linear function with three segments along the path length s of the Dubins’ path. It is
also assumed that χ is constant along the second segment. We will find a function χ with χ(0) = 0,
χ(sf ) = χf = sin(γf ) < 0, and χ(s) ≤ 0, s ∈ [0, sf ] such that the boundary conditions for the
vertical path planning problem, i.e., z(0) = z0 and z(sf ) = zf are satisfied. We also require that
for the first and the third segments, |χ′| = a > 0. Let s1 denote the switching point between the
first and second segment, and let s2 denote the switching point between the second and the third
segment. The descend profile χ subject to these constraints is given by the following expression

χ(s) =




−as, s ∈ [s0, s1],
χm, s ∈ (s1, s2),
χe, s ∈ [s2, sf ],

(10.8)

where χm is a negative number to be determined, and either χe(s) = χf + a(s − sf ) or χe(s) =
χf−a(s−sf ), depending on the desired boundary condition as will be discussed shortly afterwards.

Note that

zf = z0 +

∫ sf

0
z′(s) ds = z0 +

∫ sf

0
sin(γ(s)) ds = z0 +

∫ sf

0
χ(s) ds, (10.9)

and we have that the signed area enclosed between the image of χ(s) and the s-axis, which is the
integral in the above expression, must equal to a constant zf − z0. Such a constraint affects the
choice of χm. We consider four cases for the choice of χm as shown below:
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Case I: zf − z0 > −χ2
f/2a. In this case, the constraint |χ′(s)| = a for s ∈ [0, s1] ∪ [s2, sf ] and

the integral constraint (10.9) are not compatible, and we relax the previous constraint by choosing
a = χ2

f/2(z0 − zf ). Also, then χ is given by (10.8) with s1 = 0, s2 = sf + χf/a, χm = 0, and
χe = χf +a(s−sf ). The profile of χ for this case is shown in Fig. 10.3, in which χ(s) is represented
by the golden dotted curve.

s0 sf

χf

χmin

s1
s2 s

0

Figure 10.3: Vertical profile generation, Case 1.

Case II: sfχf − χ2
f/2a ≤ zf − z0 ≤ −χ2

f/2a. In this case, χm is given by the solution to the
following equation

(sf −∆1 −∆2)χm −
χ2
m

2a
+

∆2

2
(χm + χf ) = zf − z1,

where ∆1 = −χm/a and ∆2 = (χm − χf )/a. The solution to the above equation is

χm =
(2a(zf − z0) + χ2

f )

2asf + 2χf
.

The switching points in (10.8) are given by s1 = ∆1, s2 = sf −∆2. χe = χf −a(s−sf ). The profile
of χ for this case is illustrated in Fig. 10.4

s0 sf

χf

χmin

s1 s2 s
0

Figure 10.4: Vertical profile generation, Case 2.

Case III: −χ2
f/2a + sfχmin + 3χ2

min/a − χfχmin/a ≤ zf − z0 < sfχf − χ2
f/2a. In this case, χm

must satisfy the following equation

3χ2
m + (asf − χf )χm − χ2

f/2− a(zf − z0) = 0.

The above equation has two solutions. The following solution is used for (10.8) since the other
solution is not feasible:

χm =
1

6

(
χf − asf −

√
(asf − χf )2 + 6χ2

f + 12a(zf − z0)
)
.
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The switching points s1 and s2 in (10.8) are given by s1 = −χm/a, s2 = sf − (χf − χm)/a. The
third segment of χ(s) as in (10.8) is defined by χe = χf + a(s− sf ). A representative solution χ(s)
for this case is shown as the golden dotted curve in Fig. 10.5.

s0 sf

χf

χmin

s1 s2 s
0

Figure 10.5: Vertical profile generation, Case 3.

Case IV: χ2
f/a+sfχmin +χ2

min/2a−χfχmin/a > zf−z0. In this case, the downward velocity is not
sufficiently large to guarantee that an aircraft traversing a path whose projection on the x-y plane
is a Dubins path can reach the desired final altitude at the end of its course. In order to increase
the length of the descent path without changing the structure of the path in the x-y plane, we
simply add one or more loops along the first helical arc. In this way, the projection of the last arc
on the x-y will remain the same but the length of the ensuing path will be increased. Specifically,
let sn denote the total length of a full loop with radius R0, we find the minimum number of loops
n ≥ 1 such that

χ2
f

a
+ (sf + nsn)χmin +

χ2
min

2a
− χfχmin

a
≤ zf − z0. (10.10)

The total path length is update by sf ← sf + nsn. Then one of the previous three cases can
be applied to compute the function χ for the new path including n additional loops at the very
beginning. The effect of including additional loops in the Dubins path is illustrated by Fig. 10.6.

s0 sf

χf

χmin

s1 s2
0

sf + nsn

Figure 10.6: Vertical profile generation, Case 4.

After χ(s) is obtained for all s ∈ [0, sf ], the vertical profile of the descent is given by the following
integral

z(s) = z0 +

∫ sf

0
χ(s) ds.
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10.3 Simulation Results

In this section, we apply the hierarchical trajectory generation approach to obtain an initial guess for
the numerical optimal control software DENMRA for solving the minimum time landing trajectory
optimization problem. In particular, the three-dimensional landing path generation method in
Section 10.2 is used to generate a geometric path satisfying the boundary conditions, which include
the position, path angle, and heading angle at the start and end points of the path. After a landing
path is obtained, the time-optimal path tracking method in Chapter 8 is applied to convert the
geometric path into a trajectory by assigning a time parameterization to the path and computing
the state and control variables using inverse dynamics. If the generated trajectory is feasible,
then it is used to generate initial guesses for DENMRA. If the trajectory is not feasible, then a
maximum number of two path smoothing iterations are applied, as described in Section 10.1, to
modify the path geometry until the trajectory is feasible. If no feasible trajectory can be generated,
the trajectory from the last iteration is used to generate initial guesses for DENMRA.

Numerical results show that the initial guess generated using this method usually captures the key
features of a local optimal solution, as shown in Figs. 10.7 and 10.8. In these plots, the red lines
are the initial guess, and the blue lines with markers are the optimization result of DENMRA using
the generated initial guess. The difference between the initial guess and the optimal trajectory is
observed for some landing cases when the horizontal range of flight (horizontal distance between
the aircraft’s initial position and the airport) is small, as shown in Fig. 10.9. Simulation results
indicate that the geometry of the optimal landing trajectory is related to the ratio of the horizontal
range to the altitude change. When this ratio is large enough, the flight time is mainly determined
by the aircraft’s movement in the horizontal plane, and the projection of the optimal trajectory to
the horizontal plane resembles the typical circle-straight line-circle pattern of the Dubins’ path for
shorter travel time. When this ratio is small, the total fight time is more limited by the aircraft’s
dynamics for descent—the aircraft must fly over certain horizontal distance to lose altitude, in
which case the optimal landing trajectory tend to exhibit more complex geometry.
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Figure 10.7: Trajectory comparison, case 1.

A series of numerical experiments were performed to test the effectiveness of the proposed initial
guess generation scheme for improving the convergence of the DENMRA for solving the minimum
time emergency landing problem. In all experiments, some boundary conditions are fixed, including
the initial speed v0 = 240 m/s, the final speed vf = 95 m/s, the initial path angle γ0 = 0 deg, the
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Figure 10.8: Trajectory comparison, case 2.
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Figure 10.9: Trajectory comparison, case 3.
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final path angle γf = 0 deg, the initial position x0 = 0 km, y0 = 0 km, and the initial heading angle
ψ0 = 0. The other boundary conditions are generated randomly for each experiment. Specifically,
the airport position is sampled uniformly from a disc on the ground (zero altitude) with radius
Rmax = 200 km, the runway heading is uniformly distributed in [0, 2π], and the initial altitude is
uniformly distributed between 6 km and 10 km.

In each experiment, after the boundary conditions are determined, a three-dimensional landing
trajectory, which is referred to as the TP trajectory henceforth, is generated by applying the time-
optimal tracking method to the Dubins’ type landing path generator as introduced in Section 10.1.
The TP trajectory is interpolated to obtain the initial guesses for DENMRA. In particular, the
DENMRA performs a maximum of three iterations. The DENMRA starts from 50 grid points,
and five grid points are added for each additional iteration. If the desired feasibility and optimality
tolerance can not be satisfied by the current iteration, then the mesh size is increased, and a
subsequent iteration is performed using an initial guess obtained by interpolating the TP trajectory
on the new mesh. If the desired tolerances, including the feasibility tolerance (1 × 10−6) and the
optimality tolerance (1 × 10−2), are satisfied, then the DENMRA is terminated after the current
iteration.

The key experimental data and results such as the boundary conditions, and whether DENMRA
converged, were recorded. As a comparison, in each experiment, affine initial guesses interpolating
the boundary conditions and constant control inputs were also used to start the NLP solver, and
the settings of DENMRA were identical to those when the TP trajectory initial guesses are applied.

The details about the boundary condition used in the experiments are shown below:

x0 = 0, y0 = 0, zf = 0, ψ0 = 0,
γ0 = 0, γf = 0, v0 = 240, vf = 95,

z0 ← U([6, 10])km, ψf ← U([0, 2π]), θ ← U([0, 2π]), $ ← U([0, 1]),
R = Rmax

√
$, xf = x0 +Rmax cos θ, yf = y0 +Rmax sin θ,

where U([a, b]), a, b ∈ R is a random number uniformly distributed on [a, b], Rmax is the maximum
cross range during the landing process, which is chosen to be Rmax = 200 km in the experiments.

A total of 500 experimental cases were performed. DENMRA converged successfully for 68.0% of all
cases when an affine initial guess was used. When the hierarchical trajectory generation approach
was used to generate initial guesses, the convergence rate shot up to 99.0%, which is a significant
improvement compared to those affine initial guesses.

Fig. 10.10 shows the final time differences of the TP trajectories (ttp) and the corresponding DEN-
MRA trajectories (tg) obtained using initial guesses interpolating the TP trajectories for the 495
cases for which DENMRA converged. N represents the number of cases fitting in the ttp − tg
ranges corresponding to the blue bars. As expected, ttp > tg for all test cases, since the DENMRA
can improve both the landing path geometry and the time parameterization of the path for better
performance (smaller tg), while the TP trajectory is time-optimal only for a fixed Dubins’ type
geometric landing path generated in a heuristic way (close to optimal, but not even suboptimal).
In other words, DENMRA may further improve the optimality of the initial guesses provided. The
maximum value of ttp − tg is 168.2 s, and the mean value of ttp − tg is 80.6 s. Hence, in a real
emergency landing scenario, it might be worthwhile to use numerical optimization algorithm to
further improve the optimality of the TP trajectory.

Fig. 10.11 compares the final times tg of DENMRA trajectories generated using TP trajectory initial
guesses and final times tng of DENMRA trajectories obtained using affine initial guesses. Among
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Figure 10.10: Optimality comparison: time-optimal tracking trajectory v.s. numerical optimization
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Figure 10.11: Optimality comparison: numerical optimization results, TP initial guesses v.s. affine
initial guesses.

216



the 339 cases that DENMRA converged with both types of initial guesses, −0.71 ≤ tng−tg ≤ 1767.7.
The mean value of tng − tg is 123.4 s. It was frequently observed that the DENMRA converged to
sub-optimal solutions with unacceptably long final times when the affine initial guesses were used,
as shown in Fig. 10.11, which suggests that a simple affine function initial guess generation scheme
is not applicable to trajectory generation for real emergency landing scenario.
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Chapter 11

Case Studies in Emergency Landing
Trajectory Optimization

This Chapter presents the study of two emergency landing cases, including the US Airways flight
1549 case and the Swissair flight 111 case, using the aircraft landing trajectory optimization algo-
rithm introduced in Chapter 10. The purpose of this study is to evaluate the effectiveness of the
proposed algorithm for emergency landing, and to characterize the critical factors which affect the
success of landing. The aircraft maintains a certain amount of maneuverability for both cases: in
the first case, the aircraft maintained full maneuverability for about 11 minutes after the onset of
the emergency. In the second case, the thrust of the aircraft was lost, but other controls of the
aircraft were operational during the whole flight. In an effort to identify valuable aircraft onboard
decision aid tools for improving aviation safety, it would be informative to evaluate the pilots’
decisions in terms of trajectory planning in these cases, and how different the outcome of each
emergency could have been if a proper landing trajectory had be executed by the pilots.

For each of the two accidents, a flight trajectory is reconstructed based on recorded flight data,
which are referred to as the actual landing trajectories. Furthermore, a sequence of points evenly
distributed in the time domain were selected along each actual trajectory, and the corresponding
minimum-time trajectories were computed using the proposed algorithm. Each of these minimum-
time trajectories starts descending at a specific point on the actual landing trajectory, and ends up
at either the final approach fix point or the runway of a nearby airport. The performance of the
optimal trajectories were compared to those of the actual trajectories.

The purpose of this chapter is limited to testing the previously proposed trajectory planning algo-
rithms, and demonstrating the potential of such algorithms for providing decision aid references to
pilots and air traffic controllers. The current study is highly preliminary, and the presented results
do not lead to any implication on the accidents considered or the previous investigation results.
The assumptions and limitations of this study include, but not limited to, the following

1. The effect of wind is not addressed.

2. The actual flight trajectory used in this study are extracted from references [8, 5] and [135],
which are different from the actual flight path.

3. The aerodynamics characteristics are assumed to be time-invariant, which is different from
the real case when the aerodynamic characteristics are changed by the change of flap setting,
elevator deflection, speed brake, and landing gear, etc.
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4. It is assumed that the change of mass during the landing process is negligible.

5. For the Swissair 111 case, a maximum airspeed of 250 m/s is assumed. A maximum airspeed
of 150 m/s is assumed for the US Airways 1549 case.

6. The dynamics model itself may not be accurate enough. Besides, the model parameters, such
as aircraft mass, zero lift drag, and control bounds etc., may be different from those in the
real scenario.

11.0.1 The Case of Swissair Flight 111

Swissair Flight 111 (SR-111) departed from John F. Kennedy International Airport in New York
City on September 2, 1998, on a scheduled flight to Cointrin International Airport in Geneva,
Switzerland. The aircraft type was a McDonnell Douglas MD-11. Due to a fire accident on board,
the aircraft crashed into the Atlantic ocean Southwest of the Halifax International Airport.

The projection of the actual trajectory of flight SR-111 is shown in Fig. 11.1, which is reconstructed
using the data in [8, 5]. A three-dimensional plot of the same trajectory is shown in Fig. 11.2.
Because of unusual odor in the cockpit, the pilot declared a Pan Pan emergency at point “A”
and attempted to go to Boston. Pan Pan is an expression, spoken three times in succession, used
in the case of an urgency, which is a condition concerning the safety of the aircraft, or of some
person on board or within sight, but which does not require immediate assistance. The pilot
later took the advice of the air traffic controller and started approaching the Halifax International
Airport. At point “D”, which is about 55.6 km away from the Halifax airport, the altitude of the
aircraft was about 6620 m. Considering the altitude to be too high to land in Halifax, the pilot
requested and was permitted to circle above the ocean to lose altitude and to dump excessive
fuel. However, the fire condition onboard deteriorated rapidly. The fire first affected cockpit
avionic systems at point “G” and caused autopilot disengagement, which was 590 seconds after
the declaration of the emergency. The pilot declared “Mayday”, a first class emergency, at point
“H” and requested immediate landing. However, the aircraft experienced a series of malfunctions
immediately afterwards, finally crashing into the Atlantic ocean. Point “I” is generated from the
last data received from the transponder of the aircraft. Note that the flight path following point
“I” is not shown in the figure. The flight time between the point “A” and point “I” is 634 s.

A total of 11 points were selected along the actual SR-111 flight trajectory and used as the initial
point of descent for the minimum-time landing trajectories. These points are evenly distributed
temporally with 20 s between adjacent points. All time-optimal trajectories share the same final
point, which is the final approach fix point of runway-6 of Halifax airport. This point is 5 nautical
miles away from the runway. The initial speed, path angle, and heading angle are interpolated using
the reconstructed actual trajectory data. The final speed at the approach fix point is 100 m/s, the
final path angle is−3◦, and the final heading angle is aligned with the runway direction. A maximum
speed limit of 250 m/s and a minimum flight path angle of −8◦ were assumed and enforced during
the optimization. It was also assumed that the average aircraft’ speed between the final approach
fix point and the runway touch down point is 80 m/s, which corresponds to a flight time of about
116.8 s between these two points. The effect of wind was not considered. The aircraft model used
in this study is based on Ref. [4].

To help understand the benefits of using time-optimal trajectories for emergency landing, we intro-
duce two time variables ts and te for the analysis of the SR-111 flight case. The first time variable ts
is the time span between the start time of the time-optimal trajectory and the time corresponding
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to point “I” in Fig. 11.1. For example, the ts value for point “A” would be 634 s. Because the
aircraft experienced a series of functional downgrades after point “G”, an optimal trajectory is
considered to be feasible if by flying such a trajectory the aircraft arrives at the airport before the
actual time corresponding to point “G”. The second time variable te denotes the excessive amount
of time, which is the time span between the touch down of the aircraft and the first functional
downgrade of the aircraft (point “G”). Hence, a trajectory is considered viable if the associated te
value is nonnegative, which means that the functional downgrade happens after touchdown, hence
it does not affect airplane safety. Otherwise, the trajectory is considered to be nonviable.
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Figure 11.1: Swissair flight 111 trajectory, a top view.

The landing trajectory optimization algorithm proposed in this thesis converged for all 11 descent
start points along the actual flight trajectory, and generated the corresponding time-optimal trajec-
tories. The time-optimal landing trajectories connecting the actual flight path and the airport are
shown in Figs. 11.3 and 11.4. In these figures, viable trajectories are plotted with green color, and
nonviable trajectories are plotted with red color. According to the optimization result, after passing
point “C”, the aircraft had been unable to land at the airport before the fire affected its maneu-
verability of the aircraft, even if a time-optimal trajectory has been pursued. As an example, the
minimum-time state and control histories for the case with ts = 620 are shown in Figs. 11.5-11.10.

Admittedly, due to imprecise actual flight trajectory data and the discrepancy between the true
dynamics of the aircraft and the aircraft model used in the optimization, the optimization results
may not be accurate enough, and are surely is not conclusive. However, these results suggest, at
least, the possibility that the outcome of this fatal aviation accident may had been reversed if a
time-optimal flight trajectory was pursued early enough.

The excessive times te for different descent start times ts are shown in Fig. 11.11. Note that, by
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Figure 11.2: Swissair flight 111 trajectory, a bird view.
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Figure 11.3: Minimum-time trajectories along the Swissair flight 111 trajectory, a top view.
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Figure 11.4: Minimum-time trajectories along the Swissair flight 111 trajectory, a bird view.
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Figure 11.5: Minimum-time speed profile, ts = 620.
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Figure 11.6: Minimum-time path angle profile, ts = 620.
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Figure 11.7: Minimum-time heading angle profile, ts = 620.
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Figure 11.8: Minimum-time lift coefficient profile, ts = 620.
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Figure 11.9: Minimum-time bank angle profile, ts = 620.
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Figure 11.10: Minimum-time throttle profile, ts = 620.

definition, smaller ts means flying along the actual flight trajectory longer before performing a
time-optimal descend. If the actual flight trajectory and the aircraft dynamics model are accurate
enough, then te should decrease monotonically as ts decreases. To see this, consider two time-
optimal descend start times ts1 and ts2 with ts1 > ts2 , and let te1 and te2 be the associated excessive
times, respectively. If the aircraft starts an optimal descent at ts2 , then between ts1 and ts2 , the
aircraft tracks the actual flight trajectory, which is not optimal and results in a longer flight time
as compared to the time-optimal trajectory starting from ts1 . Therefore, the excessive time te2 is
smaller than ts1 . As shown in Fig. 11.11, such a monotonicity is not perfectly maintained, which
can be caused by various reasons such as position errors in the actual flight path data or imprecise
model. However, the overall trend of the ts− te curve is acceptable. It can be seen from this figure
that te decreases most rapidly around te = 600 s, which happened after the pilot declared a Pan
Pan emergency and initiated a right turn to go back to Boston. te decreased by about 50 seconds
during this incomplete turning maneuver and became negative. Therefore, after the first right turn
around ts = 600s, the chance of a safe landing became very slim. The earliest possible landing time
is also estimated in [8], which corresponds to ts = 683 s and te = 0. Such an estimation assumes
direct tracking to the Halifax Golf beacon. As a comparison, a time-optimal trajectory starting
from the same point provides an excessive time of te = 27.6 s, which suggests that about half a
minute might be saved compared to a conventional emergency descent procedure if a time-optimal
descent is initiated at this point.

The above analysis suggests that if real-time landing trajectory optimization technologies were
available to pilots and air traffic controllers in the future in assistance of landing site selection
and landing trajectory generation, they may help reduce the probability of adverse outcomes of
emergencies scenarios and improve aviation safety. Landing trajectory optimization algorithms,
such as the hierarchical algorithm introduced in this thesis, may provide the desired capabilities
and help with the safe landing of aircraft under abnormal conditions.

226



450500550600650700
−40

−30

−20

−10

0

10

20

30

40

ts

t e

Figure 11.11: The excessive time te v.s. the start time ts of optimal landing trajectories.

11.0.2 The Case of US Airways Flight 1549

US Airways Flight 1549 (US-1549) was a A320 aircraft on a domestic flight from New York City’s
La Guardia Airport (LGA) to Charlotte/Douglas (CLT), North Carolina, on January 15, 2009.
La Guardia Airport has two runways perpendicular to each other. The length and width of these
runways are almost the same. Two numbers are assigned to each runway for different landing/take-
off directions, hence there are four runway labels, which are illustrated in Fig. 11.12. Flight US-
1549 took off from runway-4 and headed Northwest. About two minutes after take-off, the aircraft
collided with birds and lost thrust on all engines. The captain, who happened to be an experienced
glider pilot, maintained control of the aircraft and successfully performed a ditch landing on the
Hudson river. The flight path of the aircraft is also shown in Fig. 11.12 (the trajectory data is from
[135]). The red circle on the flight path corresponds to the point where the aircraft collided with
birds and lost thrust.

The US-1549 flight emergency landing case was also used to test the performance of the proposed
landing trajectory optimization algorithm. Similar to the SR-111 flight case, time-optimal landing
trajectories were computed for different start points along the actual flight trajectory with different
start times and corresponding initial positions along the trajectory. Because the aircraft does not
have any thrust, the normal landing procedures do not apply to this case, and the final approach fix
point is not used in the trajectory optimization. The final condition of the aircraft is chosen such
that the aircraft is aligned with the runway with a touch-down speed between 70-85 m/s. Landing
scenarios for the four runways were considered separately, and the effect of wind was not taken into
account. The aerodynamic data of A320 aircraft in this study obtained using a min-square fitting
of the aerodynamic data table in Ref. [2].

If the nonlinear optimization solver converges and generates a trajectory satisfying the specified
feasibility (10−5) and optimality (10−4) tolerances, then the trajectory is considered to be optimal.
The solver may not converge either because there does not exist a glider landing trajectory given the
specified boundary conditions and constraints, which is very common for this zero-thrust landing
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trajectory optimization problems, or because of numerical difficulties of the NLP solver itself. The
feasibility of a landing path for a glider is very sensitive to the path geometry due to the lack of
thrust control. For this reason, paths generated by the geometric path planner are often infeasible.
As a result, the quality of the initial guess to the numerical optimal control algorithm is not good
enough, which may affect the convergence of the NLP solver. In this study, if the NLP solver does
not converge for certain landing cases, then the geometric path planner is modified to adjust the
geometry of the initial guess. If no convergent solution can be found in this way, then a zero-thrust
landing would be considered impossible for this case.

The time-optimal trajectories for four different cases are shown in Figs. 11.13-11.16. In these
figures, the green circles represent the latest time and the corresponding position of the aircraft
such that the aircraft can still land on a particular runway by performing a time-optimal landing
starting from that point. For a runway-4 landing, the latest time for starting time-optimal descent
is 21 seconds after the bird-strike. For runway-13, runway-31, runway-22, these values are 123 s,
65 s, and 73 s, respectively.

As shown in Figs. 11.13-11.16, the zero-thrust time-optimal emergency landing trajectories are
much more complicated than the actual flight trajectory. Therefore, even if all four runways are
available for landing, the pilot must choose a runway and respond fast enough such that the time-
optimal descent would start early enough before those green points in these figures. Besides, the
execution of such trajectories poses very high demands on the skill and attention of the pilots, since
any deviation from the optimal trajectory may result in an accident. Hence, the pilot’s choice of
the Hudson River as the landing site was practically a much safer choice than other alternative
plans such as landing at any runway of LGA.

On the other hand, if the same emergency happened in an airport without a convenient ditch landing
site like the Hudson River, the outcome of the accident might be much severer. As demonstrated
by the optimization result, the choice of runway has a major influence on the emergency landing
process. Taking the runway layout of LGA and the US-1539 flight trajectory as an example, a longer
time span between the red and green circles in Figs. 11.13-11.16 would be favorable, in the sense
that the pilot would have more time to plan an emergency descent trajectory. Besides, the earlier
the descent start time within this time span, the better the chance of a successful landing. Hence,
under the assumption that the LGA runways are the only possible landing sites, it is clear that
runway-31 was the best choice for emergency landing in this case, as suggested by the trajectory
planning results obtained using the landing trajectory optimization algorithm proposed in this
thesis.
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Figure 11.12: US-1549 Hudson River landing trajectory, a top view.
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Figure 11.13: US 1549 Runway-4 landing.
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Figure 11.14: US 1549 Runway-31 landing
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Figure 11.15: US 1549 Runway-13 landing.
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Figure 11.16: US 1549 Runway-22 landing.
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Chapter 12
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