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Abstract 
Most transportation systems operate at capacity. Minor changes in the system could result 

in congestion and delays. One of the many impacting factors of transportation is weather 

condition. Weather conditions might lead to a totally different setting for management of 

transportation systems. Since weather is predictable, being able to measure the impact of 

weather conditions on transportation systems would help in better transportation 

management. 

Estimating dependency of travel time on weather condition will enable us to predict more 

accurate travel time. But it is possible that not all components of weather impact travel time 

equally. There are several other factors associated with travel time that interact with 

weather conditions to affect travel time. Other questions raising from this are: 

1. Which weather component impacts travel time the most? 

2. Is the impact of weather on travel time a function of time? 

The exercise investigates regression models to understand the effect of weather condition, 

accidents, and time on travel duration. Based on the identified factors parametric and non-

parametric classifiers are implemented to provide class-based predictions. Lastly, the 

machine learning models are the rated based on accuracy, precision, recall, and Cohen Kappa 

score, and envisioned for various use cases. 

  



 

Introduction 
An intelligent transportation system is reliable and efficient. The reliability of transportation 

systems is measure of value of time. A critical component of such systems is, travel time 

prediction. High-quality automatic vehicle identification devices make it possible to perform 

short-term traffic flow analysis and develop forecasting techniques. However, the factors 

contributing to the unpredictability of traffic systems, including accidents, erratic driver 

behavior, and various weather conditions make predicting travel time very challenging 

(Qiao, Haghani, & Hamedi, 2012). 

It is well recognized that the transportation system may be significantly disrupted by 

adverse weather events. Apart from extreme events like floods, tornados, and hurricanes 

that could be disastrous, milder changes in weather caused by rain, snow, and ice could also 

have apparent negative impacts on the system (Xu Zhang & Chen, 2019). With the increasing 

quality and quantity of near real time data and sophisticated analysis techniques, accuracy 

in predicting impact of weather conditions on travel time has increased significantly. 

The aim of this study is to quantify the impact of different weather condition on travel time. 

The scope of the study is limited to parameter of demand side of transportation systems.  

Management of transport systems both in terms of supply management and demand 

management is important for ensuring efficiency of urban transportation systems. Since 

most transportation systems operate at capacity, even small changes in demand or supply 

due to weather may significantly increase traffic delay that results in a totally different 

setting for management. Answering the central research question will help modify planning 

decisions and improve transportation system under various weather conditions. 

Theoretical Background 
Literature Review 
Literature reviewed during the project is focused on two themes: travel time prediction 

models, and big data analytics. Prediction models are used in various areas of application 



ranging from market behavior to population. According to (Tsapakis, Cheng, & Bolbol, 2013) 

prediction models for travel time prediction can be divided into two categories, parametric 

methods and non- parametric methods. Parametric models use statistical techniques like 

ARIMA, SARIMA, linear regressions that try to understand the data based on specified 

parameters. Whereas nonparametric methods include K nearest neighbor and random 

forest like technique that deal with the state of the entirety of the data rather than the 

specified parameters. There are advantage and disadvantages associated with both 

prediction method types.  

The basic practice of linear regression suggests making sure that all the independent 

variables must be statistically independent. This is a challenging situation since most 

weather conditions and traffic characteristics like density, peak hour is highly correlated.  

ARIMA models employ the internal relationships obtained from historic data; however, large 

variations in the historic data set would generate significant prediction error. In addition, 

most traffic systems exhibit nonlinear relationships, which makes it difficult for linear 

models to capture stochastic characteristics.  

The basic K Nearest neighbor model is based on historic database, it looks at neighborhood 

similarity to find nearest neighbors in a continuous interval. It is required that the historic 

data be large enough for the model performance. Nonparametric models require 

considerably large processing time and storage space.  

The Highway Capacity Manual states that in light rain, a 1.9 km/h reduction in speed during 

free-flow conditions is typical (Council, 2000).  

(Xiaoyan Zhang & Rice, 2003) uses linear model for short term travel time prediction. They 

suggest that  

According to (Goodwin) aggregate weather effects accounted for roughly 12% of travel time 

delay. In the same study he conducted a detailed analysis in Washington metropolitan area 

average delay increased by 21% on days with adverse weather. 

In (Xu Zhang & Chen, 2019) the authors use quantile regression with dummy variables for 

rain and snowfall occurrence to observe the relationship. The suggested that response to 



weather condition is not an average phenomenon hence to capture the relationship they use 

quantile regression as it is sensitive to the distribution. This lets them explore difference in 

impact of weather conditions on travel time across the distribution. The study adapts a 

decision tree-based classification technique.  

(Tsapakis et al., 2013) explores the impact of weather condition on travel time on a macro 

level. In the study authors explore the average delay in travel time due to weather conditions 

on a city level using simple weighted and aggregate methods. They observed that the ranges 

of the total travel time increase due to light, moderate and heavy rain are: 0.1–2.1%, 1.5–

3.8%, and 4.0–6.0% respectively. Light snow results in travel time increases of 5.5–7.6%, 

whilst heavy snow causes the highest percentage delays spanning from 7.4% to 11.4%. 

Temperature has nearly negligible effects on travel times. The study also mentioned that the 

impact of weather varied based on locational attributes.  

In (Nookala, 2006) the author first performs correlation coefficient analysis to understand 

which weather parameter affects the traffic, daily traffic volume variability under different 

weather conditions to study on the influence on trip demands, congestion analysis to gauge 

how severe the weather impact is on traffic. Using these observations, he finally develops a 

time varying regression model to account for the impacts observed in the last step.  

 

Conceptual Framework 
Conceptual framework developed for the study investigates the possible factors that can 

impact travel time. Weather conditions do not impact travel time directly. As shown in table 

1, weather conditions affect road environment and transportation management which in 

turn then impacts travel time. User characteristic include type of vehicle, day of the weak, 

purpose of the trip and drivers’ characteristics. These factors directly impact travel time. It 

has also been observed in previous studies that drivers’ characteristics are also affected by 

weather condition. The most affected driver characteristic is purpose of the trip.  In previous 

studies it was observed that delays in the trip unsystematic errors refer to accidents or other 



unpredictable occurrences. Road environment and transportation system performance are 

the big envelopes that cover all the characteristic of road travel. 

Table 1 (Goodwin) lists the direct impact on demand and supply side of transportation 

operations due to different weather condition. 

Table 1: Causal chain 

Weather Events Roadway Environment Impacts Transportation System Impacts 

Rain, Snow, 

Sleet, Hail & 

Flooding 

− Reduced visibility 

− Reduced pavement friction 

− Lane obstruction & submersion 

− Increased chemical and abrasive 

use for snow and ice control 

− Infrastructure damage 

− Reduced roadway capacity 

− Reduced speeds & increased delay 

− Increased speed variability 

− Increased accident risk 

− Road/bridge restrictions & closures 

− Loss of communications/power 

services 

− Increased maintenance & 

operations costs 

High Winds 

− Reduced visibility due to blowing 

snow or dust 

− Lane obstruction due to 

windblown debris & drifting snow 

− Increased delay 

− Reduced traffic speeds 

− Road/bridge restrictions & closures 

Fog, Smog, 

Smoke & Glare 
− Reduced visibility 

− Reduced speeds & increased delay 

− Increased speed variability 

− Increased accident risk 

− Road/bridge restrictions & closures 

Extreme 

Temperatures 

& Lightning 

− Increased wildfire risk 

− Infrastructure damage 

− Traffic control device failure 

− Loss of communications & power 

services 

− Increased maintenance & 

operations costs 



 

 

Figure 1: Conceptual framework to explain causal relationship between weather condition and travel time. 

Based on the conceptual framework and previous work on travel time prediction various 

regression models were explored to find the nearest model. Model variables are shown in 

Figure 2. These variables are selected based on the data used for the exercise that is 

discussed in the later chapters and the research objective. Our dependent variable is travel 

time. Weather conditions are further divided into different elements to understand impact 

of each separately. Peak hours, day of the week, number of left turns are included in the 

model to improve the accuracy of the model. Accident data is also attached to the model as 

a dummy variable to account for delay due to them. Since the data used for the exercise is 

collected only for yellow rides it eliminates any systematic variables related to vehicle 

characteristics. Other driver characteristic is not addressed in the exercise due to limitation 

of the data. The project also explores relation of parts of the city and travel time. 

Development of these clusters is explained in the later parts. 



 

Figure 2: Model Variables 

Data Requirements 
There are three primary data sources used in the project trips data, weather data and 

accident data, apart from that various other structural data are used like open street maps 

and New York city demographic data. 

Cab rides for 2016 were selected as they had precise latitude and longitude of pickup and 

drop off locations. After 2016 the data available only had coordinates for the origin and 

destination taxi zones. The data used from 1st January 2016 to 30th June 2016. This contains 

a total of 1,458,643 rides. The average duration of a trip is 959.5 seconds. Distribution of the 

number of trips over the 6 months is shown in figure 3. 

 



 

Figure3: Trips Distribution across 6 months 

Weather data is collected from Integrated Surface Dataset (ISD) , NOAA. Based on the extent 

of the study are 4 weather stations were selected. The data contains name and ID of weather 

stations, timestamp of recorded value and various weather attributes. Most weather 

conditions were recorded at hourly and a few were collected at daily frequencies.  

Accident data is collected from NYC Open Data. Accident data account for the recorded 

vehicle collision that occurred in the city during the time. There was a total of collisions in 

the city. Out of which 97,834 are used due to limitations in the data quality and accuracy. 

 

 

 

23-24 Jan 2016: 
Blizzard in NYC 

30 May : 
Memorial Day 



Table 2: Data Source 

Data Source 

Cab Rides 
TLC Trip Record Data (https://www1.nyc.gov/site/tlc/about/tlc-

trip-record-data.page) 

Weather Data 
Integrated Surface Dataset (ISD) , NOAA 

(https://gis.ncdc.noaa.gov/maps/ncei/cdo/hourly) 

Accident Data 

Motor Vehicle Collisions, NYC Open Data 

(https://data.cityofnewyork.us/Public-Safety/Motor-Vehicle-

Collisions-Crashes/h9gi-nx95/data) 

 

Methodology 
Since the project deals with a high volume of data (over 3 GB) a lot of efforts have been put 

to design the methodology and choosing tools that support big data analytics. The 

methodology devised for the project is divided into five parts: 

i. Data Cleaning 

ii. Data Preparation 

iii. Analysis 

iv. Data Integration and 

v. Prediction Model 

Data preparation included data collection, cleaning, and generation of derived variables that 

are but not limited to calculating route distance, calculating number of left turns, 

interpolation rules for weather condition, understanding peak hours, etc. Data Integration 

involves creating rules to stitch all the variables together.  



 

Figure 4: Methodology 

Multivariate modeling part of the methodology explores various regression models to find 

the best possible model for understanding relation between independent and dependent 

variables. We start with sampling methods that need to be adapted to handle big data. The 

next step is to scale all the variables on same scale using Z- transformation. Z-transformation 

makes sure that all the variables are comparable. The next step for running regression model 

is to get rid of collinearity between our variables. To measure this collinearity matrix is 

developed. Based on this matrix highly correlated parameters are removed.  Finally, various 

regression models are observed. Each step is explained in detail in the next chapters. 

Data Cleaning and Preparation 
 

Dask module is used to first stitch all the cab rides together, collected for 6 months starting 

from Jan 2016 to June 2016. Once all the cab rides have a homogeneous structure this data 

frame is then switched to PySpark data frame. This step was necessary as Dask is a relatively 

new module, finding documentation and test case handling of the module is relatively poor. 

In the next step data types were assigned to all the column. The next step was to get rid of 

nan values from the data and clipping out cab rides going outside or coming from outside the 

city boundary. 

The next step was to calculate other related derived variables like distance, time elapsed and 

number of left turns for each cab ride. Duration of the trip is simply calculated based on the 



timestamps of the rides. To calculate the distance between the pickup and drop off point it is 

assumed that the trip would take the shortest possible path. This distance is calculated using 

Open Source Routing Machine (OSRM) API. OSRM as the name suggest is an open source 

platform that performs routing-based calculation for the input data and gives the data in as 

a json object. To calculate the distance and number of left turns in the route taken, 

coordinates for origin and destinations are passed through the api. This API the gives result 

as a json object, finally using designed functions distance and left turns are calculated. An 

example of this JSON object is shown in figure 5. 

 

Figure 5: OSRM json output 

Weather data collected has hourly reading for precipitation, temperature, visibility and daily 

averages for snowfall and snow depth. The data contains IDs of the weather stations. 

Coordinates od these stations are first added. All the data processing for this dataset has been 

performed in pandas. The first step was to create hourly weather condition from daily 

averages for snow fall and snow depth. It was assumed that these values would remain 



constant through the day. It was observed that the data obtained was not strictly hourly, 

some hourly rating were collected multiple times withing one hour. In order to get rid of 

multiple values within the same hour, data frames were grouped on hourly basis of each 

weather station. Using designed functions on these hourly data frames we got rid of all the 

nan values, multiple values, and missing data points. In case of nan values in all the points 

within the hour 0 was replaced. For hours with multiple values average value was taken. In 

cases with nan and other values for the same hour, nan was removed, and the other value 

was used. The function was designed in a way to differentiate between 0 and nan values in 

order incorporate all the cases as discussed above. This function was used to generate hourly 

data points for each weather condition at each weather station. Finally, the generated values 

were compiled to get the desired weather dataset.  

Finally, accident data is also processed using Pandas data frame. Accident data contained 

time of the accident, coordinated of the accident, street name on which the accident occurred, 

number of people injured and cause of accident. It was observed that some of the data points 

did not contain any locational attribute. It was impossible to generate that information using 

this data sets hence such points were removed firstly. Only about 20% of the data contained 

precise coordinates of the accident, to get location of rest of the datapoint street names were 

used. Using Google’s geolocation API coordinates for the rest of the points were generated. 

Finally, locations lying outside the study are were cropped and the remining points were 

plotted. The most vulnerable areas are highlighted using point kernel density function 

(figure 6). 



 

Figure 6: Accident Density 

 

Analysis and Integration 
Using the filtered dataset with derived variables we will now explore other analysis that 

are required before developing the regression model. To understand how these trips, 

connect and different parts of the city a cluster analysis was performed on small sample of 

trips. Using random sampling 20% of the data was used to achieve this. The pickup and 

drop off location of these point were snapped to the underlying census block. This was 

necessary to develop a network encompassing all parts of the city. Using this block to block 

network cluster analysis was performed in R using i-graph package. The cluster analysis 

assigns modularity classes or group number to each node which in this case is center of 



census block. These clusters are modularity classes generated based on network 

connectivity. As shown in Figure 7 the clusters are spatially contiguous. These clusters will 

be used as categorical variables in the regression model to check if the impact of weather 

on travel time also a function of area of the city. 

 

Figure 7: Cluster Analysis of Trips 

Weather conditions at stations need to be interpolated though the whole study area. As 

previously stated, there are 4 weather stations, for each station there are 5 weather 

attributes, and for each weather condition there are hourly readings collected for 6 months. 

This is not a feasible solution. Hence to avoid generating so many interpolations surfaces 

the project uses various conditional function to optimize this process. The conditions are 

employed on each weather condition separately: 

• If the difference in weather conditions at 4 weather station is less than a specific 

value (different for each condition), then take average value for that hour 



• If the difference in weather conditions at 4 stations is more than this specific value, 

interpolate to surface raster.  

To account for impact of accidents on trips, a travel buffer of 200m is applied around the 

location of accident along the streets. This buffer is applied as an intent to account all the 

trips that will pass around the area and get delayed due to the collision. Accidents are 

added as dummy (1,0) to trips if the time of accident in within 15 min of trip end time. 

The final step is to compile all our variables into one data frame. The integration process is 

completed using various pipelines. The base data for integration is trips. The final product 

is trips with all the variables added based on timestamps. 

Prediction Model 
Statistical Analysis 
Figure 8 compares distribution of number of trips in a day. The identified peak from the 

distribution are Morning peak – 7 to 11 AM, Evening peak – 5 to 9 PM. Number of trips 

reached global minima around 5 AM. Figure 9  compares the average ideal travel time for 

the trips with the actual time taken. It shows that as the number of trips decreases and 

reaches global minima at 5 AM, the actual time taken is less than the ideal time. 

 
Figure 8: Distribution of Trips in a Day 



 

Figure 9: Difference in Ideal and Actual Time 

The difference between two increases as the number of trips in the hour increases. Figure 

10 shows the frequency of actual time. Data points outside 2 standard deviations have been 

removed to get rid of any possible outliers. As the distribution is not normal, during the 

sampling process data points are upscaled to make the spread normal.  

 

Figure 10: Distribution of Travel Time 



Linear Regression 

Before using linear regression models, collinearity between the variables were calculated. 

Firstly, correlation matrix was generated between all the variables. Figure 11 shows the 

output of the matrix. None of the pairs had correlation value greater than 0.5. Hence for the 

first linear model all the variables were used. The model gave the initial R – square. The 

model also had high p value.  

 

Figure 11: Correlation Matrix 

The next step was to conduct Variance Inflation Factor analysis (VIF). VIF check for 

multicollineary between the selected variable and all other variables combined. The results 

showed high VIF( >5)for pickup and dropoff coordinates, for weather conditions and 

distance. 

Based on VIF results the finalized variables for linear regression models were: 

Dependent Variable: Travel time 

Independent Variables: 

• Direct distance from pickup to dropoff- since latitude and longitude were not 

a suitable parameter, I calculated the direct distance using the coordinates to 

get rid of the multicollinearity. 



• Number of Left Turns 

• Weather conditions: Snow Depth, Visibility, Temperature 

• [As Dummy] Hour of the Day, Day of the Week, Month, Accident, Vendor 

Linear regression model with these variables gave an R – squared value of 0.49. which 

mean that the model was able to account for 49% variance in the data increases the R 

square by 35% compared the first model. 

The base case for the final regression model was Sunday, January, at 00:00 hour, with no 

accident and traveling with vendor 1. Base case sets the comparative case and all the 

calculation are done in comparison to this case. 

Figure 12 shows the value of coefficients of the finalized linear regression model. It shows 

that there is a positive coefficient for snow depth (12.6) and temperature (0.2). That means 

as snow depth or temperature increases travel time also increases. There is negative 

coefficient for visibility (-6), hence an increase in visibility decreases travel time. The most 

significant variable was hour of the day, going as high as 248 to as low as -151. Occurrence 

of accident has coefficient of 36, which mean an accident on the trip could result in a delay 

of 36 seconds, keeping all other variable constant. Visit Annexure for other coefficients.

 

Figure 12: Linear Regression Coefficient  



Stratified Sampling 
It is clear from the visualizations that the distribution of the population set in terms of the 

time taken to complete the trip is not homogeneous. There is a 40-40-20 split among 

extremely delayed (cases where delay > 5 meter/sec), delayed (cases where delay < 5 

meter/sec), and not delayed classes, which was computed through difference in ideal speed 

and actual speed through data and the OSRM output.  

The most effective method for sampling when the population is heterogenous (suffering 

from class imbalance) is Stratified Sampling (htt) 

The main idea behind the method is: 

• Divide the heterogenous population into sub-groups (in the study, this is done on 

the basis of delay class), such that the units are homogenous with respect to the 

characteristic that is being studied 

• The population data is heterogenous with respect to sub-population, or strata 

• Each strata is treated as a separate population and draw a sample from each 

stratum with the same probability 

 

N: Population size 

k: Number of strata 

Ni: Number of sampling units in the ith stratum 

N = ΣNi 

ni:  Number of sampling units to be drawn from the ith stratum 

n = Σni 



 

 

 

        

 

 

 

 
Stratified sampling ensures that the probability with which an element is picked from a 

stratum has the same probability of picking as that of any other stratum. Since the dataset 

contains 3 classes, the probability of picking an element was 0.33 for each class.  

The classes in the original dataset, which were in the 40-40-20 proportion were now 34-

33-33, which means the “no delay” class was up-sampled to match the number of instances 

in the other two classes. 

Dimensionality Reduction 
To apply feature engineering and machine learning techniques to conduct analysis and to 

build the predictive classification models, the number of dimensions that were present in 

the final regression model might requirement of calculations which spans through multiple 

dimensions, increasing complexity. Through the introduction of dummy variables for hour 

(23 dimensions), day (6 dimensions), month (5 dimensions), and vendor (1 dimension), 

the number of dimensions increased from 20 to 55 (only 45 used in the regression model).  

It was important to check how the variance was distributed across various dimensions in 

the feature space. If the essence of the model could be encoded in less than 45 dimensions, 

it would greatly reduce the amount of computational power.  

To verify if the exercise was worthwhile, it was necessary to investigate the computational 

complexity of the algorithms that are explored in the analysis (The Kernel Trip, n.d.) 

Considering “n” number of training samples, “p” number of features, “ntrees” number of 

Population (N units) 

Stratum 1 

N1 units 

Stratum 2 

N2 units 

Stratum (k-1) 

N(k-1) units 

Stratum k 

Nk units 

Sample 1 

n1 units 

Sample 2 

n2 units 

Sample 

n(k-1) units 

Sample 

nk units 

N = ∑Ni 

n = ∑ni 



trees (for tree-based methods), “nsv” number of support vectors, and t=min(n,p), following 

are the approximate computational complexities: 

Algorithm Training Prediction 

Principal Components 

Analysis  

O(p2n + p3) --- 

Linear Discriminant 

Analysis 

O(pnt + t3) --- 

Linear Regression O(p2n + p3) O(p) 

K-Nearest Neighbors --- O(np) 

Decision Tree O(n2p) O(p) 

Random Forest O(n2pntrees) O(pntrees) 

Stochastic Gradient Descent O(n2pntrees) O(pntrees) 

Support Vector Machine O(n2p + n3) O(p) 

Extreme Gradient Boosted 

Trees 

O(npntrees) O(npntrees) 

As “n” and “p” play a huge role in various training and testing phases, it would be great for 

the classifiers to reduce the value of both “n” and “p”, which is why sampling and 

dimensionality reduction was conducted. 

Two methods were compared for performance of dimensionality reduction process: 

• Principal Components Analysis (PCA): 

The various Principal Components (PCs) for the data were studied, and through 

Singular Value Decomposition (SVD) of the design matrix done through calculation of 

covariance matrix, and through Eigenvalue decomposition of the covariance matrix.  



It was identified that 85% of the variance in the data could be explained through the 

first two PCs. The plot for the factor loadings w.r.t. the first two PCs:

 

Figure 12: Principal Component Analysis Results 

The color of each data-point represents the class that it belongs to, and PCA does not 

seem to identify clear separation bounds because it hardly gives any importance to the 

class label. Therefore, it is not very effective for our problem. 

• Linear Discriminant Analysis (LDA): 

LDA is a dimensionality reduction algorithm similar to PCA. However, it is different 

from PCA due to the importance LDA gives to classes. The algorithm behind LDA tries to 

increase the separation bounds between each class, and thereby identify optimal Linear 

Discriminants (LDs). It was identified that the first two LDs explained 93% of the 

variance in the data. The plot for the factor loadings for w.r.t. the first two LDs: 



 

Figure 13: Linear Discriminant Analysis Result 

As it is visible from the plot of LD1 vs LD2, the separation bounds among various 

classes are clearly visible through LDA, which was not demonstrated through PCA. The 

further steps involve using LD1 and LD2 as the primary dimension for the dataset, and 

we can discard the original form of the dataset.  

For performing predictions, each of the test instance will first be projected on the LD1 

and LD2 dimension, and the prediction would be made only on the basis of these new 

dimensions.  

The next section discusses about various Machine Learning algorithms that were 

implemented for the dimensionally reduced dataset. 

Machine Learning 

• Unsupervised Learning: The k-means clustering algorithm was implemented for the 

range 1 < k < 10 to find the optimal value of k. The elbow plot for the experiment is 

as follows: 



  

Figure 14: Distortion Vs no of clusters 

 

As it is visible through the elbow plot, the value of k=3 demonstrates a sharp decrease 

in the distortion and is the location of the elbow. This means, the optimal number of 

clusters for the problem is 3, which in extension suggests that 3 classes for predictive 

modeling is a good estimate, and the supervised algorithms that are implemented 

below are in concurrence to the results of the unsupervised learning experiment. 

• Supervised Learning: Both LDA and K-means clustering have been used in 

supervised and unsupervised learning due to their ability to consider class labels to 

perform prediction. The performance of various learning-based classifiers are listed 

below: 

 

 



Model 

Name 

Accuracy Cohen 

Kappa 

Score 

Precision Recall F1-Score 

   
Delay Extreme 

delay 

No 

delay 

Delay Extreme 

delay 

No 

delay 

Delay Extreme 

delay 

No 

delay 

Linear 

Discriminant 

Analysis 

(LDA) 

60.10% 0.39860 50.15% 64.79% 63.90% 47.63% 75.13% 55.70% 48.86% 69.58% 59.52% 

Decision 

Tree 

Classifier 

65.48% 0.48196 53.82% 63.83% 75.54% 47.24% 60.27% 89.45% 50.31% 62.00% 81.91% 

K-Means 

clustering 

59.15% 0.38586 47.15% 67.33% 67.13% 59.44% 70.72% 45.93% 52.59% 68.98% 54.54% 

Support 

Vector 

Machine 

60.91% 0.41160 51.25% 66.62% 62.71% 46.64% 72.57% 62.06% 48.84% 69.47% 62.39% 

k-Nearest 

Neighbour 

(k=7) 

Classifier 

60.17% 0.40164 50.07% 65.85% 62.70% 45.40% 66.05% 68.31% 47.62% 65.95% 65.39% 

Gaussian 

Naive Bayes 

Classifier 

59.60% 0.39035 49.62% 63.50% 64.54% 46.67% 77.20% 52.78% 48.10% 69.69% 58.07% 

Random 

Forest 

Classifier 

68.13% 0.52157 57.00% 67.66% 77.24% 51.32% 64.68% 88.70% 54.02% 66.13% 82.58% 



Stochastic 

Gradient 

Descent 

(SGD) 

Classifier 

55.47% 0.32296 57.00% 67.66% 77.24% 51.32% 64.68% 88.70% 54.02% 66.13% 82.58% 

Gradient 

Boosting 

Classifier 

61.04% 0.41400 51.50% 67.48% 61.96% 46.42% 71.30% 64.12% 48.83% 69.34% 63.02% 

Conclusion 
Impact of weather condition on transportation safety, mobility and production is 

inevitable. However, these impacts can my significantly reduced through smart 

transportation policies. According to (Goodwin) there are three types of mitigation 

measures that can be adapted to reduce this impact, control, treatment and advisory 

strategies. They define control strategies as devices to permit or restrict traffic flow and 

regulate roadway capacity. Treatment strategies are using resources to reduce the 

impact of weather. And advisory strategies deal with providing information on weather 

conditions, it serves in supporting decision making process. 

Management strategies require relevant, accurate, and timely environmental data to 

effectively mitigate weather effects. Managers need observations and predictions of 

road weather conditions to make operational decisions (Goodwin). These mitigation 

strategies are adapted based on the scale of expected impact of weather condition. Scale 

of decisions taken to mitigate such situations can be planning, warring or Operations 

based. A robust prediction model for quantifying weather impact will help in 

developing better road weather management strategies. 
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