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GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF ELECTRICAL ENGINEERING 

ATLANTA, GEORGIA 30332 

September 24, 1982 
ELEPHONE: ( 404 ) 894. 2949 

Dr. Abraham H. Haddad 
Engineering, System Theory and Application 
National Science Foundation 
Washington, DC 20550 

Subject: Annual Progress Report for NSF Grant No. ECS-8105509, "On 
Generalized Balanced Realizations and Applications to Model 
Reduction" (covering 1 July 1981 to 31 December 1983). 

Dear Dr. Haddad: 

Significant progress has been made during the first year of the above 
research grant. 

An investigation of the special properties of the "classical" balanced 
realizations (i.e. for time invariant stable systems) has lead to a simpli-
fied characterization of these realizations. An exhaustive analysis of the 
second order case gave some insight in the relation between order reduction 
based on dominance and order reduction via the balanced realization technique. 

Further results have been obtained in the extension of the balanced 
realization concept to time varying systems. These results are reported in: 

E. I. Verriest and T. Kailath: "On Generalized Balanced Realizations," 
to be published in the June 1983 issue of the IEEE Trans. on Automatic 
Control. 

In order to practically test the usefulness of the proposed model 
reduction for time varying systems, a software package is being developed, 
as part of a graduate project. 

An important new direction of the research is the application of the 
balancing concept to the closed-loop system. This results in what we called 
the LOG-balanced realizations and is based on the underlying Riccati equations 
rather than the (open loop) Lyapunov equations. This is a crucial advance, 
however many problems remain to be investigated (e.g. stability of the 
reduced order model). These results were reported in: 

E. I. Verriest: "Suboptimal LOG-Design via Balanced Realizations," 
Proceedings of the 20th IEEE Conference on Decision and Control, 
pp. 686 - 687, San Diego, CA, December 1981. 

Also for the time invariant case an LOG-reduction program is being 
developed. 
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Dr. Abraham H. Haddad 
Page Two  

Important new insight in the fidelity of discrete applications of 
continuous systems was gained by using concepts of balanced realizations. 
Applications to the design of digital filters were obtained as well. In 
particular it was shown that with the "usual" discretization procedures 
input and output properties were not conserved. Our method yields a 
fidelity up to second order in the stepsize, These results are reported 
in: 

E. I. Verriest: "Reachability-Observability and Discretization," 
accepted for the 21st IEEE Conference on Decision and Control," 
Orlando, FL, December 1982. This paper is also under review for 
publication in the Transactions on Automatic Control. 

E. I. Verriest: "Digital Filter Design based on a High Fidelity 
Discretization Procedure," submitted to the 1983 IEEE, ICASSP 
Conference, Boston, MA, April, 1983. 

A study of the applicability of model reduction (via balanced realiza-
tions) for infinite dimensional systems has begun. So far only a simple 
parabolic system has been considered. The method starts from a large (but 
finite) dimensional approximation. The finite element method and the 
expansion in orthogonal functions are compared. 

We are continuing our efforts on several fronts: distributed systems 
(parabolic, elliptic and hyperbolic), delay differential systems, the 
relation to model reduction methods based on singular perturbation, appli-
cations to stochastic modeling, and finally model reduction of nonlinear 
systems, using concepts of differential geometry to obtain a local linear 
state space. 

If additional information is needed, please contact us and we will 
supply it to you. Your support is greatly appreciated. Thanking you, 

Sincerely, 

Erik T. Veriiest 

EIV:krd 

enclosures: copies of all above cited papers. 
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SUBOPTIMAL LQG-DESIGN VIA BALANCED REALIZATIONS 

Erik I. Verriest 

School of Electrical Engineering 
Georgia Institute of Technology 

Atlanta, GA. 30332 

Abstract  

A new low sensitivity realization for the 
quadratic regulator is derived. The main idea is 
the generalization of the "balanced realizations" 
of Moore via the separation principle. The results 
lead directly to a new approximation method for the 
LQG problem and reduced order regulator synthesis. 

Introduction  

The solution to the LQG-problem is well known 
to fall apart into a deterministic controller and a 
stochastic observer synthesis. The internal 
structure of the combined estimator-controller is 
immaterial however. Hence, this freedom can be 
exploited to obtain a realization which minimizes 
the sensitivity, taking the overall stochastic dy-
namics and the performance index into account. 
Skelton [2] suggested a weighting with respect to 
the "component costs." In stochastic context such 
is undesirable since it may lead to a certain im-
balancedness. If the uncertainty associated with 
a dynamical element, with low cost contribution, is 
high, then the actual cost contribution in a sample 
process can be quite different from the estimated 
(low) cost. This motivates a balancing with 
respect to the optimal-deterministic controller and 
the stochastic observer via the separation 
principle. 

To fix the ideas, consider the stochastic 
system 

Fx + Gu + w 

y = Hx + v 	
(1) 

 

and Ex0  = 0, Ex0x0 ' = Po  , where w and v are inde- 

pendent, zero mean gaussian with covariances Q and 
R. Let the goal be the minimization of the perfor-
mance index 

1 	tf 	 1 2 J = 	E 	(x'Ax + u'Bu)dt + - Exi(t f )s f  x(tf ) (2) 
to  

The deterministic optimal closed loop system has 
the dynamics: 

X = (F - GC)x 	 (3) 

C = B -1 G'S 	 (4)  

S = -S(F-GC) - (F-GC)'S - A - C'BC; S(tf) 	Sf  (5) 

The solution S(t; t
f' 

S
f
) of (5) has an interpre- 

tation as a weighting matrix for the minimum 
"cost-to-go" from the state x(t) at time t. Note 
that for S f  = O. S is exactly the observability 

gramian of the closed loop system with fictitious 
output 

= Lx, L' = 
[A1/2 	c,B1/2] 	 (6) 

The performance index is then the output energy of 
this system. Similarly, the filter error dynamics 
are given by 

= (F-KH)i + Me ; 
	

(7) 

M [Q 1/2 	"1/2] 	 (8) 

where K = PH'R
-1 

, P = E(Zil) 
	

(9 ) 

P = (F-KH)P + P(F-KH)'+ Q + KRK' ; P(t0 ) = Po  (10) 

and c is a noise vector of unit variance. Again, 
P(t; t0 , P0 ) is a measure for the uncertainty in 

the closed loop system (7), and characterizes the 
"disturbability" by the noise. Our goal is now to 
find a new coordinate system in which the compo-
nents contributing a lot to the performance index, 
at the same time have the largest uncertainty 
about them. Hence it follows that one should 
balance with respect to the solutions P and S of 
the Riccati equations, rather than the open loop 
gramians [1]. 

The  LQG-Balanced Realization  

In [5], a state-space transformation was de-
rived to obtain the LQG-balanced realization for 
the (steady state) regulator. This can easily be 
generalized to the non-stationary case. We 
summarize. 

Theorem 1:  Given the system (1)1 which is 
observable and reachable in (t0'tf)' 

and the per- 

formance index (c) then there exists a similarity 
transformation such that in the new coordinates 
P and 3-  are equal and diagonal. (= H) 

We shall refer to It as the "canonical riccatian." 
Its elements are the eigenvalues of PS (computed in 

*All parameters are real analytic functions of time. 
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any realization). Since balancing is primarily 
based on the singular value decomposition, the nu-
merical properties of it are shared, hence the in-
sensitivity of this realization with respect to the 
design parameters. The different types of balan-
cing [3,4] can then be taken advantage of for ro-
bust LQG-design. In Fixed-Interval-Balancing (FIB) 
the interval (t0'tf)  is fixed. This leads to ro- 

bust terminal controller design. 

Theorem 2:  If (F,G,H;Q,R;A,B)  is FIB-LQG- 
balanced over [to ,tf] with canonical riccatian ff, 

then the cost functional [2] evaluates to 
1 J = 2 — 	

J 
E 	(t

O1 
) EX.(t

0
a 

 ) 

+ f l
,  
E w.1 [(11

+-g)
ii 
 + 

i
F ]dt 	(11) 

 
t
0 
 i 

In Infinite-Interval-Balancing (IIB), the cost rate 
is minimized ([2] is infinite). The technique is 
suitable for regulator design as shown in [5]. 
Theorem 2 can be modified accordingly, the optimal 
costrate (for stationary systems) being the inte-
grand in (11). Sliding-Interval-Balancing (SIB) 
can be used to design robust suboptimal controllers 
(for stabilizing purposes) [6]. At time t0  = t, 

one considers the performance index (2) with the 
receding horizon tf  = t + T (T fixed), and computes 

the instantaneous gain at t from S(t, t + T, S f ). 

Its dual Kalman filter is similarly computed from 
the approaching horizon estimation, with gain com-
puted from P(t, t - T, P 0). Balancing is in the 

sense that n(t) = 	t + T, S f) = 15(t, t-T, P0 ) 

P
0 
 and S

f are design parameters. Remark also that 

for stationary systems SIB(T) leads to a stationary 
balanced realization. 

LQG-MODEL APPROXIMATION  

Once the system is brought in LQG-balanced 
form, the relative importance of each "axis" of the 
coordinate system is displayed. A large value on 
the diagonal of n indicates that both the cost con-
tribution and the uncertainty are high for the 
corresponding state component. Hence, partition 
the canonical riccation into a part containing 
large and a part containing small elements (accord- 
ing to some norm) and consider the consistent parti-
tion on the system 

= 

-Pi = 

F
21 

[A, 
' 

A
12 

F 121 

F
2 

 

Al
, 

A
2 

x' 	= [x 

= 

Q =
[b. 

Q  

' 

b

1 

l G 2 

2 

x 	' 1  
2 J 

Q1 2I 

	

Q2 	

, 

= [H 1  

n = rl 

H
2
] 

n2 

(12) 

As motivated by Skelton [2], we can use this infor-
mation for (i) Simplification of the original model 
by leaving out the subspaces for which the compo-
nents are fairly well certain and at the same time 
do not contribute much to the overall performance 

index; (ii) The design of reduced order regula-
tors. 

For FIB and IIB the following results hold. 

Theorem 3:  If the LQG-balanced system is 
partitioned as in (11), then the reduced order 
model(F i .G.,,H,.A..B,Q„Uis also LQG-balanced with 
the canOnital'ritcation R V  

Corollary:  The optimal regulator for the re-
duced order system of theorem 3, is given by the 
subsystem of the consistently partitioned optimal 
regulator for the full system. 

The proofs follow simply from the partitioning in 
the riccati equations. In particular 

	

1 = n
1
F 1 

+ F 1 n 1  - n 1 H 1 41-1 H
1
n

1 
+ Q

1 	
(13) 

1 

	

= -n
1
F

1 
- F

1
In

1 
 - n

1
G

1
B-1G

1
in

1 
 + A l 
	

(14) 

As a consequence the closed loop subsystem is also 
asymptotically stable. The corresponding proper-
ties for SIB are not so direct since (13) and (14) 
fail to hold. 

SUBOPTIMAL CONTROL  

The optimal control for the subsystem in the 
previous section can be used as a suboptimal re- 
duced order control for the full order system. 
The overall system, in terms of the (2n1 + n2) 

dimensional state vector X' = 	 x2 1 ] satis- 
fies 

[F

1l

- K I H 1  CI F1241 /1 	-1 [1 
= K H 1 	F1 

 -G
1  C 1 	K1 2 H, X+ 0 0 K

1 	
w
2 	

(15) 

F
21 	

F
21

-G
2
C

1 	
F 	0 I 0 	v 

Let P be the variance of X partitioned accordingly 
as 

P = 

It satisfies a Lyapunov equation, derived from (15) 
which must be solved to evaluate the performance (2). 
In [5] the costrate for stable stationary systems 
(15) is evaluated. 
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DIGITAL FILTER DESIGN BASED ON A HIGH 
FIDELITY DISCRETIZATION PROCEDURE 

E.I. Verriest 

Assistant Professor 
Electrical Engineering 

Georgia Institute of Technology 
Atlanta, GA 30332 

(404) 894-2949 

ABSTRACT 

This paper is concerned with the design of digital filters. The design uses a new 
high fidelity discrete approximation developed recently by the author [1],[2], of a given 
continuous time system. The new fidelity criterion is a measure for the "consideration" 
of the input-to-state and state-to-output mapping properties in the discretization. 
Furthermore the structure of the balanced relatizations [4] is exploited in order to lower 
the sensitivity. 

Some design applications for discrete systems start from an intrinsic continuous 
time system. For instance a commonly used technique in the design of digital filters is 
based on the discretization of an equivalent continuous transfer function. Another 
example is the digital control design of an analog system or plant modeled by a set of 
dynamical equations in continuous time. Here the system model is first discretized and 
the estimation and control algorithms are then designed according to this discrete-time 
description [5]. . 

Usually, the direct form (canonical) realizations are used because the state update 
requires at most n - 1 multiplications for an nth order filter. It was shown in [3] that 
these realizations do not have the best properties with regards to the effects of finite 
word length. These effects are minimized in the "balanced realization" [4] for which the 
state update requires at most n2  + n multiplications. However it can be shown that 
these realizations have a much higher fidelity towards the original continuous time 
specification. Hence a larger stepsize (A i, say) can be allowed, than one would require 
of the canonical form realization with the same fidelity. (Let this stepsize be a c .) This 
tradeoff can lead to an increase in stepsize (sampling period) and hence a smaller number 
of multiplications per time unit than for the direct form realizations with the same fidel-
ity follows. 

High fidelity is achieved if the eigenvalues of the reachability and observability 
gramians of the discrete approximations are "close" to the corresponding eigenvalues of 
the continuous-system reachability and observability gramians. Hence the original 
transfer function is first realized in balanced form, next a stepsize A is chosen which is 
compatible with the expected signal spectrum and the discretization described in [1] is 
performed. 

The procedure is tested in computer simulations and compared with the conven-
tional methods [5]. 
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On Generalized  Balanced Realizations *  

E. I. Verriest
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and T. Kailath
* 

Abstract  

The class of analytic time varying linear systems 
is considered. Different balanced realizations of such 
systems are defined, and their existence and properties 
are analyzed. The results are then used to derive re-
duced order approximations (also for unstable systems). 
A method is suggested to determine the order of a "good" 
approximation. 
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I. INTRODUCTION  

In recent years, a new "canonical" realization for finite dimensional 

linear time-invariant systems (A, B, C) was introduced by B. C. Moore 

[2]; these realizations exhibit certain symmetries (balance) between the 

input and the output maps of the realization, and are called "balanced 

realizations." The input and output maps of a system are characterized in 

a direct quantitative way by the controllability and reachability gramians, 

and the observability and constructibility gramians respectively. Deter-

ministic as well as stochastic interpretations can be given to these 

gramians. This gramian formalism lends itself to include time-variant 

systems as well, as was first shown by Silverman et al. [3], for the 

special class of uniform realizations as defined in [16]. 

The applicability of the stationary balanced realizations to robust 

design problems was successfully shown by Mullis and Roberts [9] in the 

context of digital filtering (although the realizations were not in the 

"final" form discussed herein and in the following references). Moore [1], 

[2] and then Pernebo and Silverman [11] and Kung [23] showed their use in 

model reduction problems. Kung relates them further to some identification 

methods. This success motivated one study of balanced realizations for an 

important class of time-variant systems. 

The main contributions of this paper lie in the existence proofs of 

balanced realizations for the class of analytic systems [4] (which can 

be used to approximate almost all systems). Moreover, the conditions can 

be given in terms of the system parameters, which is a major advantage over 

1 



other known results in the time variant case ([3], [24], [25]). We remark 

that the class of analytic systems is neither included in, nor does it 

include, the class of uniform realizations. The model reduction techniques 

are thereby also extended to these systems. Further, where previously the 

reduction was restricted to stable realizations, we show the feasability 

of reducing unstable systems. We also discuss a method to approximate 

the fast or the slow behavior of a system. 

The rest of the paper is organized as follows. In section 2, the 

connection of various gramians to the input and output maps of a system 

is briefly reviewed, and their transformation properties and subsequent 

uses as "balancing" pairs are discussed. In section 3, a pointwise (w.r.t. 

time) balancing transformation is shown to exist as a Lyapunov transfor-

mation. Sections 4, 5, and 6 describe some special balanced realizations 

of particular interest: the so-called fixed-interval, infinite-interval, 

and sliding-interval balanced realizations. Each has its own domain of 

applicability. Applications of balanced realizations to model order 

reduction are discussed in section 7; in fact one of the major extensions 

is the availability of reduced models for unstable systems. This paper 

is an extended version of the conference paper [21] and is based on the 

dissertation [4]. 

2 



2. PRELIMINARY CONCEPTS  

We consider the time varying system 

k(t) = A(t) x(t) + B(t) u(t) ; x(t 0 ) = xo  
(2.1) 

y(t) = C(t) x(t) 

and define the following Gramians (4)(•,•) being the transition matrix of 

A(•)) : 
tf  

	

C [to ,t] = I 	0(tf ,t) B(t) B 1 (t) ti(tf ,t)dt 
' 	to  

[to ,tj = f
tf 
 cgto ,t) B(t) 13 1 (t) o l (to ,t)dt 

' 	to  

0 [to ,tf] = Its  cp'(t,tc ) c'(t) c(t) t(t,t o )dt 
to  

0 Eto ,tf] = f
tf 
 0 1 (t,tf ) C'(t) C(t) (gt,tf )dt 

to  

(2.2) 

(2.3) 

(2.4) 

(2.5) 

They are known, respectively, as the reachability, controllability, obser-

vability and constructability gramians, see e.g. [12]. This nomenclature 

is inherited, from the diverse input-state and state-output maps, as the 

gramians are directly related to these maps. We illustrate this below for 

the reachability and the observability maps. 

Suppose a system is in the zero state at time t 0  and an input function 

u(t) belonging to a certain class of permissible functions is applied. In 

our case we shall focus on inputs with finite energy in the interval 

[t
0'

t
f
] where t

f 
 > t

0
. This class of input functions forms the Hilbert 

space LZ [to ,t f] of square integrable m-component vector functions. The 

set X
r
(tf ) of reachable states at time tf , is then 

3 



tf 
X r (tf ) = { f 	(1)(tf ,t)B(t)u(t)dt I u(•)e LT [t o ,y) 

to  

Clearly X r (tf ) is a subset of Dl n . The reachability map L is 

L: L2 [t0 , tf] 	IR n  

(2.6) 

L(u(•)) = 	I
t f  

 4)(tf, t)  B(t) u(t) dt 
to  

The inner product of v(•) and w(•) in LT [to ,tf] is defined as 

w(•)> = f 
tf

v(t)' w(t) dt 
to  

while the inner product of x and y in It n  is as usual 

<x,y> = x'y 

It is well known that the minimum norm solution to L(u(•)) = x is given 

by u = L*(z) where z is any solution of LL*(z) = x (see [22] pp. 161-

163). The operator LL* maps WI  into /t n , and is exactly the above 

defined reachability gramian (2.2). If the system is completely 

reachably in [t o ,tf], or equivalently if L is surjective, then 

LL* = C[to ,tf] is invertible, and the required minimum "energy" is the 

L2-norm 

Hu l l = 11xli (l* ) -1 = (x.(11*) -1 x) 112  (2.7) 

4 



The connection of C to the controllability map is analogous. 

Reachability and controllability of an event (x,t) can be viewed as 

symmetric concepts with respect to t. While reachability of (x,t) involves 

driving the state from zero to z using a "past" input (i.e. u(e), 6 S t), 

controllability of the event (x,t) involves driving the state to zero, using 

a "future" input (i.e. u(e), e 	t). For more details, see [20]. Similarly 

observability of an event (x,t) is the ability to detect the "occurrence" of 

an event by scrutinizing the output after t, while the notion of construct-

ability deals with the ability to construct or simulate the state of the 

system on line (i.e. towards the future). 

The observability map 

P M: IR
n 	L2  [to ,t f] 

(2.8) 
M(x) = C(t) cgt,t0 )x 

and its gramian are related through 

O[to ,tf] = M*M 

where again M* is the adjoint transformation of M. 

The significance stems from the dual problem of finding the state 

X E le which minimizes Ily - Mx ✓ I for y(.) e L2 [to ,t f]. If the solution 

is completely observable, the solution is ([22] p. 160). 

x = (M*M) -1  M*y 

If a "signal plus noise" model 

y = Mx0  + v 

is given for y, where v(.) is a zero mean, unit covariance white noise, then 

the observation error y-Mx has covariance (M*M) -1 . Again there is an 

analogous relation between the constructability gramian and map. 
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In several problems, in particular the optimization problems, the 

"adjoint system" of (A(.), B(.), C(.)) arises. This is the realization 

(-AI(.), C"(.), B'(•)), defined in reverse time ([12] section 9.3). 

( dx(
dt

t) . -A 1 (t) A(t) + C' (t) p(t) ; 	A(tf ) = A f  

u(t) = Bs(t) A(t) 	 ; • 	t
0 
 5 t 5 t

f 

(2.9) 

Because this backward evolution is prohibitive in an actual simulation, the 

"modified adjoint system" is introduced. It is defined by 

( 

dgt) _ A' (t f  - t)  5:(t) + C' (t f  - t) U(t) ; i'(0) = i f  

(2.10) 

It is a simple matter [4] to show that the gramians of the adjoint system 

and the modified adjoint system bear the following relationship. To 

obtain symmetry of the arguments for the modified adjoints, the initializa-

tion t0  = 0 is taken. 

Adjoint Relationship 
	

Modified Adjoint Relationship  

c[t , ] 	Ito ,tf J 
	

C[0,t] 
	

C[0,t] 

0[t0  ,t ] 	O[to ,tf ] 
	

0[0,t] 
	

0[0,t] 

If another basis is chosen in IR A , the state space representation of 

the system will vary accordingly. Let T(•) be a differentiable nonsingular 

state transformation (also called "algebraic": [3]) 

x(t) = r(t) x(t) 

9(t ) 	= B'(tf  - 	5,- (t) 	 0 s t s tf  - t0 
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It is well known that the corresponding new representation (A(•), B(•), C(•)) 

satisfies 

A(•) = (t (. ) + T(•) A(.)) T -1 (.) 

B(•) = T(•) B(•) 

C(•) = C(•) T-1 (•) 

The transition matrix is in the new coordinates 

o(t,T) 	= T(t) o(t,T) T
-1  (T) 

It follows that the effect on the gramians is as a congruence: 

C[t0 ,tf] = T(tf )C[to ,tf]TT (tf ) (2.11) 

U[to ,tf] = T-T (t0 )O[t0 ,tf]T-1 (to ) (2.12) 

6[to ,tf] = T(to )ctto ,tf]TT (to ) (2.13) 

ato ,tf] = T-T (tf )t)to ,tf]T-1 (tf ) (2.14) 

from which it is easily checked that any of the following products (the 

order of the factors in the product can be reversed) transforms as a 

similarity. 	
o[t, t i ] c[to ,t ] 
	

t0  < t < t 1  

TiCto , t] c[ tv t] 
	

to , t
1 
 < t 	

(2.15) 

o[ t , t0 ] 
	

t < t
0, 

t
1 

Z [to ,t] d[t,t 1 ] 
	

t0  < t < tl 

It is not essential that the definition intervals of the gramians have 

equal length. Hence the eigenvalues of the above products will be invar-

iant with respect to a similarity transformation. 
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By "balancing" a realization we mean that we "symmetrize" a certain 

input property (controllability or reachability over some interval) with 

a certain output property (observability or constructability over some 

interval) through a suitable choice of basis. This can be made precise 

by requiring that in the new representation the two gramians of consider-

ation are made equal and diagonal. Loosely speaking we seek the coordi- 

nate basis for which the states requiring a high input energy (2.7) (either to 

"control" or to "reach") are also the states that are highly uncertain 

(large covariance), either considered backward (observation) or forward 

(construction) in time. 

A choice of a particular input gramian with a particular output 

gramian is called a "balancing pair" if their arguments match in the sense 

that their product is one of those in table (2.15). Hence an input 

gramian and an output gramian form a balancing pair if and only if the 

eigenvalues of their product is invariant with respect to a coordinate 

transformation. Which balancing pair is chosen depends on the particular 

problem we have in mind. 

Suppose now that we have a regulator problem for a system in the 

interval [t 0 ,t f]. Let the state at time t e (t o ,t f ) be x. From the 

physical interpretation, the energy needed to control the state x at t to 

zero at tf  is proportional to xlatt,t fr 1 x. In this problem, the weighting 

matrix C[t,t f] rather than the reachability matrix C, should be looked at 

for a quantitative study of the "regulating behavior." What is a good 

choice for the corresponding output map in the regulator problem? In other 

words, in pursuing our goal of getting an "input-output symmetrized" real-

ization (we will use the term "balanced" after the notion has been made 

precise), against which output gramian do we weight the controllability 
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gramian? The observability gramian O[t,t f] is a sensible answer. If the 

output is to be regulated, x'Ox, a measure of the energy at the output of 

the free running system, should be made small for "hard-to-control" states 

(e.g., x corresponding to small eigenvalues of t[t,tf]). Conversely if 

we allocate "cheap controls" to the states that would yield big output 

deviations (as measured by the total energy) when free running, then the 

relative importance of the internal variables will be more transparent. 

This indicates that the pair O[to ,tf], C[to ,tf] is a good choice for 

balancing input and output properties. Furthermore, we have the added 

bonus that the spectrum of their product does not depend on the chosen 

coordinate system. Duality suggests that the pair DIt o ,y, C[to ,t f] will 

play a major role in the problems, of trajectory control, terminal con-

trollers, etc., where the issue is reachability of the states at t f  and 

also the constructability at t f  (Kalman filter). 

The rest of this paper deals uniquely with the C-0 type balancing. 

Other results are readily transposed. 
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[A 

3. 	Existence of Balanced Realizations for Analytic Systems 

Consider the fixed intervals (t 0 ,t 1 ) and (t i ,td and the gramians 

C[to ,t i ] and O[tr tf]. It is well known that C and 0 can be made equal 

and diagonal with the aid of a suitably chosen matrix T [2] if both are 

nonsingular (i.e., if the system (A•, B•, C(.)) is reachable in 

(t0 ,t 1 ) and observable in (tr y). The time variation of the system 

does not play a role since we are only concerned with fixed intervals 

and we only need to find a T such that 

TCT' = T -T0T-1  

For reasons that will become clear later, such a I is called a "balancing 

transformation." In fact, if C and/or 0 are singular, an invertible 

transformation and an integer p < n exists [4] such that 

i) c[to ,t0 

[A 
ii) O[t i ,tf] = 	 , A = Ciag(A l , ..., X) with 

a 
A

l
a A2 	

Ap > 0 

where 

iii) CO is nilpotent. 

p is then the dimension of the observable and reachable (minimal) system. 

A, the part of the gramians that is restricted to readable and observable 

subspace at time t 1  is called the "Canonical Gramian." 
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Suppose that the two intervals (t0 ,t 1 ) and (t l ,tf ) are parametrized 

by a (taking values in an ordered set A) such that 

t0 (a) < t l (a) < tf (a) ,
-Va e A 

Then we can find the family of balancing transformations 

{T(t i (a);_to (a); tf (a)) la e A) or {T(a)I a e A} for short. 

Letting A be some interval I in IR , and with suitable reparametriz-

ation such that t l (t) = t, we can define the EpinALvise balancing trans-

formations {T(t)lt e 1}. Restricting to (•) and t 1 (•) to the class of 

differentiable functions, what are the properties of the induced mapping 

T : 1 -0- 	nxn  : T(t) = T(t) 
	

(3.1) 

from I to the space of transformations of IR n  ? 

We shall show that under certain conditions, differentiability and hence 

continuity follow, and that ImT 	GL(n,1R) (i.e., T(t) is invertible for 

all t e I). This then implies the existence of 1(t) as a Lyapunov trans-

formation. Moreover, it can then be shown that this pointwise defined 

Lyapunov transformation works as the time varying balancing 

transformation..  

Definition 1 [19]: Two time-variant systems are called topologically  

equivalent  if one can be transformed in the other by a Lyapunov transfor- 

mation. 

It follows from the continuity of t0 (t) and t f (t) on 

a compact interval I, and t0 (t) < t< tf (t) Vtc I that the induced interval 

I = [min 
t0I 

 (t), max t f (t)] is compact. 

Theorem  1: If a compact interval I is such that the system 

(A(.), B(.), C(.)) is analytic, completely reachable and observable in 

I, then it is topologically equivalent in I, to a realization 

(A(.), B(•), C(•)), which is balanced with respect to C[t 0 (t), t] and 
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O[t, tf (t)] provided that to (•) and tf (•) are continuous and differen-

tiable on I, and at least one is analytic on I. 

Before proceeding with the proof of this theorem, we indicate some 

classes of balanced realizations which are of particular interest. 

1- 	 - 

abbreviated FIB(to ,tf ). 

iii) The infinite interval balanced realization, IIB, if it exists 

rag.rd4d as a limit cas4,  of 0 for T 	or a limit of ii) if 

in the context of uniform realizations. It has the serious limitation 

that only stable systems can be reduced. FIB(t o ,tf ) seems to be more 

natural in finite time control problems, and both FIB(t 0 ,tf ) and SIB(T) 

are possible for unstable systems, filling in an important gap existing 

with previous balancing methods. For IIB, a modification of theorem 1 

which is valid over compact intervals, is needed. This is elaborated in 

section 5. First we show some preliminary results. 

Lemma  1: If A(t) is real analytic in an open interval I, then the 

associated transition matrix cgt,T) is analytic in I x I. 

Proof: [5] p. 44 
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It follows 	from lemma 1 that if A(t) is analytic for all t 

greater than some t
0' 

and if the system Z(t) = A(t) x(t) is stable, the 

transition matrix is a bounded analytic matrix function in (t o , ,e)x(to ,.) . 

Lemma 2: If A(•), B(.) and C(') are real analytic in an interval I 

containing t0  and tf , then C[to ,tf] and O[to ,tf] are real-analytic func-

tions of t0  and tf . 

Proof: By lemma 1, 0(t f ,T) is analytic in I x I, and therefore 

0(t,T) can be extended to a holomorphic function 0(t,z) in a domain 

I x c, where SI c C' encloses the interval I of the real line. Similarly 

B(t) can be extended to B(z) holomorphic in a' c C enclosing I. Letting 

D = 	n a', for t e I, the function o(f,z) B(z) B'(z) o'(f",z) is holo- 

morphic in D. Since I is a connected path in D, the indefinite integral 

t 
M(f,t 0 ;t) = 	I o(t,z) B(z) B'(z) 4) 1 (1-,z) dz 

to  

is holomorphic-Yt c I, and C[to ,tf] = o(tf ,.0 Mcf,t0 ;tde(tf ,I) 

is analytic with respect to tf  in I by the previous and lemma 1. 

The other statements are proven analogously. 
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Remark that under the additional assumption of boundedness of B(.) 

and stability of A(•) it follows that C[t o ,tf] is bounded for bounded t 0  and tf 

 since the class of bounded holomorphic functions in D: HB[D] forms a sub- 

class of H[D]([6] p. 75). 

Proposition 1: 

Let to (t) and tf(t) be differentiable functions of t 

in I, such that for all t in I, t 0 (t) < t f (t). If A(t), B(t) and C(t) 

are real analytic (matrix) functions in the interval I . [min t 0 (t), 
I 

max tf(t)j, then the elements of the singular value decomposition of I 
C(t) = C[t0 (t),t] and 0(t) =0 [t,t f (t)] 

are continuous and differentiable in I. 

Proof: From lemma 2, C[to ,t] is analytic in both t0  and t on the 

rectangle I x I. By analytic continuation the domain of definition of 

C[to , -] can be extended to a holomorphic function C[t 0 ,z] in the domain 

I x D where D is a simply connected complex domain, containing I. The 

holomorphic family C[t0 ,z] is symmetric (i.e., C[t0 ,z] is symmetric for 

z e I), hence its eigenvalues A i (to ,z) and eigenprojections P i (to ,z) are 

holomorphic: on the real axis and the eigennilpotents D i (to ,z) vanish iden-

tically(np.120). Hence there exist a diagonal matrix A c (to ,z) and a 

matrix X c (to ,z) with normalized columns, both holomorphic: on I such that 

C[to ,z] X c (to ,z) = Xc (to ,z) Ac (to ,z) 	 (3.2) 

Hence, on I, both Xc (to ,z) and Ac (t0' 
 z) are differentiable. 

Since X c (to ,z) is orthogonal on I, this shows that C[t0 ,t] has a singular 

value decomposition 

C[t
o
,t] = X (t

o' 
 t) A

c 
 (t

0 
 ,t) Xc 1(t0'  t) 
	

(3.3) 
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which elements are differentiable in the second argument. Proving differ-

entiability in the first argument proceeds similarly. 

Let now C[to (t),t] = C(t) have a singular value decomposition 

C(t) = U(t) Ac (t) U'(t) 	 (3.4) 

Since t0  = to (t), both U(t) = X c (to (t),t) and Ac (t) = Ac (to (t),t) are 

continuous since they are continuous functions of a continuous function, 

Moreover, differentiability of U(t) follows from the assumptions since 

dt, 
ci-fU(t) - 
	

U(t 0 ,t) 	+ 	U(t) 	 (3.5) 
at 	0' 	dt 	a 3 t 

and similarly for the differentiability of A c (t). Differentiability of 

the singular value decomposition of 0(t) is completely analogous. ❑ 

Proof of theorem 1: There are two steps; by proposition 1, the singular 

value decomposition (3.4) has differentiable elements for 

all t in I. Complete and total controllability are equivalent concepts 

for analytic systems [8], hence C(t) (and thus A c (t)) have full rank in I. 

In fact C(t) is bounded away from zero in 1, for suppose that for some 

sequence tk  in 1, there exists a nonzero q e IR k 
for which 

lim*  q' C(tk ) q = 0 
tk±t 

then by continuity of C(t) in I, the singularity of C(t * ) follows, while 

since I is compact, t*  c 1. This contradicts the assumption of complete 

reachability. Hence Ac-1 (t) is bounded on I. 

The transformation T 1 (t)  = Ac
-1/2

(0 U'(t) is then continuous, differ- 

entiable and has a bounded inverse on compact I since 

T1(t)  = 	2 Ac 	A
-3/2

(t) U'(t) + Ac
-1/2

(t) 6 1 (t) 	 (3.6) 
1 • 

and 

T 1  (t)
-1  = U(t) A 1/2 (t) 
	

(3.7) 
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Hence 1- 1 (t) is a Lyapunov transformation, in fact, it is analytic if 

to (•) is. Then the transformed system matrices A l (t), B 1 (t) and C 1 (t) 

are again analytic in I. Moreover the new gramians are 

C 1 (t)  = I 
	

(3.8) 

0 1 (t) = Ac 1/2 (t) U'(t) 0(t) U(t) A c 1/2 (t) 
	

(3.9) 

for which reason we shall refer to T 1 (t) as the "pre-input normalizing 

transformation." In the second step proposition 1 is again invoked to 

show that 01 (t) has a singular value decomposition 

0 1 (t) = W(t) A2 (t)W'(t) 
	

(3.10) 

where W(t) and A(t) are continuous and differentiable. Complete obser-

vability of the system implies then further the nonsingularity and boun-

dedness of 0
1 (t) and A(t) in 1. Hence the transformation 

T 2 (t) = A1/2
(t) W 
	

(3.11) 

is a Lyapunov transformation in 1. The balancing transformation for the 

original realization 

T(t) = A 1/2 (t) 14 1 (t) Ac-1/2 (t) U'(t) 	 (3.12) 

is consequently a Lyapunov transformation. The system (A(t), B(t), C(0) 

is then topologically equivalent on I to the balanced realization 

(A, B, 	= (TT-1  + TAT-1 , TB, CT-1 ) 	 (3.13) 

with canonical gramian A(t). If tf (•) is analytic rather than t o (-), 

a "pre-input normalizing transformation" should be constructed first. 

Final remark: For the class of analytic systems, complete reachability 

is equivalent to the existence of a t e I such that the time-varying 

controllability matrix [8] 

Cn (t) 	[B(t),  (A(t) - p) 8(t), 	(A(t) - p) n-1 B(t)] j 	(3.14a) 
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has full rank. Similarly, complete observability is equivalent to the 

existence of a t e 1, such that 

0
n
(t) 	[V(t), (A'(t) + p) V(t), 	(A'(t) 	

p)n-1 t)] 	(3.14b) 

has full rank. (p = 	 ) 

So the conditions of theorem 1 avoid the need for the (often unavailable) 

transition matrix to establish the existence of a topologically equivalent 

balanced realization. 

All system matrices encountered in the rest of the paper are assumed 

to be analytic. 

Remark that in [3] and subsequently in [24] and [25] unlike here, the 

existence of a topologically equivalent balanced realization cannot be 

given directly in terms of the system parameters. For uniform realiza-

tions the algebraic transformation is constructed and checked a posteriori 

for Lyapunovness. 
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4. Properties of FIB Realizations: 

We first characterize a FIB(t
0'  tf 

 ) realization and derive some of its 

properties. SIB(T) realizations will only be briefly discussed, while in 

the IIB-case, we need additional conditions to guarantee the existence of 

a topologically equivalent balanced realizations. 

Theorem 2: The n-th order realization (A(•), B(•), C(.)) is FIB (t o ,tf ) 

iff there exist n nonnegative and differentiable functions { i (') • 

i = 	n} such that 

A(t0 ) = A(tf ) = 0 

A'A + AA + CIC = A 

AA + AA' + BB' = -A 
t E (t irtf ) 

where A(t) = diag {A i (t) : i = 1, ..., n} 

Proof: Sufficienty follows from the uniqueness of the solution of a 

linear ordinary differential equation. 

Necessity is direct since the observability gramian of any system satisfies 

O(tf ) = 0 and (4.2a), and the reachability gramian C(t 0 ) = 0 and (4.2b). 

By definition of balancedness they are equal. 
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This connection between the elements of a balanced realization can 

be exploited to improve the accuracy in an actual computation. For sta-

bility analysis, the following corollary is important. 

Corollary  1: The matrix A(t) of a (not necessarily stable) FIB(t o ,tf ) 

realization is negative semidefinite for all t in (t o ,t f ). 

Proof: From (5.2a) and (5.2b) we get (A s  = symmetric part of A). 

As (t) A(t) + A(t) As (t) = -(BB' + C(C) t 	 (4.3) 

Since A(t) > 0 in (to ,tf ) it follows that 

As (t) = - 	e-At '
(4.  

)T  (BB' + C'C) t e-A(t)T  dT s 0 	 (4.4) 
0 

Thus for all t in (t o ,tf ) A(t) is negative semi-definite since its sym-

metric part is. 

It can be shown [ 4] 	that actually A(t) is negative definite at 

t iff the pair {A(t), [B(t), C'(t)]} "frozen" at t is controllable. 

This result is very unusual since it relates (pointwise) properties of a 

time varying system to the properties of a time-invariant one, constructed 

from a "frozen" time-varying system. A sufficient condition for pointwise 

positive definiteness of A(t) can then be derived from this result as the 

condition that at time t all A. are disjoint and none is stationary. 

Another result generalizes the symmetry properties reported in 

[2 ] 	for scalar time invariant systems (derived for IIB). 

Corollary 2:  A single input-single output FIB(to ,tf ) can be completely 

characterized by the 2n functions 
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0.(t),a 1 ; i = 1, ..., n} where x.(t) and a.(t) z 0 

and E = diag {ai } is a signature matrix. 

Proof: 

b.
2
(0 + c i

2
(0 

Set fi(t) = 	  2 

It follows then from theorem 3 that 

	

2 	• 
b. = e. • 	si 	- A. 

• 
c. = c.a. • /a.

2  + A. 

where the e i  are arbitrary signs and a. = sign a. . 

After some algebra, equations (5.2) yield 

2a ii
x = -a. 2 

(4.5) 

(4. 6) 

(4.7) 

(4.8) 

f 1. 2 	A.2N,. = 	 .7 . Nf n. 2 	Ui  
%/1 1 	j  jaji 	o i uj Aj 	‘10 1 	Ai"pj 	

Ji 

5t•)(f3 2  -;,.))e.e. 
J 	1 J 

i # j 	 (4.9) 

A sign change of b i  (e i ) corresponds to the (elementary) similarity trans-

formation of changing the sign of the i th  state component. The overall 

transfer is not affected, hence without loss of generality one can set all 

e i  equal to plus one. We then have the parametrization of the balanced 

realization, assuming that all x i  are non zero and disjoint. 
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2 
2  

b. = j 	• 	 A l. - A. 	, 	c. = a.13.
2 	

A + 	, a.. = 2x
i  

+ A.)(13. 	+ X.) - c .X. 	-•X.)0. 	- X.) 
J 	 1 	j 	1111  

2 	• 	2 	• 2 	• 	2 	• 

a. = a. 	 2 	2A
ji 	1 - 1 

FIB-realizations are useful in problems where fixed initial and 

final time are important (as in certain regulation problems to the nominal 

trajectories in rendezvous, etc.) Nonstationarity of the system typi-

cally arises from the linearization of a nonlinear system about a nominal 

trajectory. 
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The importance and applicability of balanced realizations over semi-

infinite intervals was first illustrated by Moore [2] and in the context 

of digital filters by Roberts and Mullis [9] for stationary systems. 

They have been further studied by Sastry [10] and Pernebo [11] for station-

ary systems, and by Silverman et al [3], [24], [25] for uniform systems. 

The existence conditions in the latter work are less elegant since they 

rely on an a posteriori check for "Lyapunovness" of the balancing trans-

formation. On the other hand the class of uniform realizations has or 

conserves remarkable properties [19]. 

Many of the previous results will carry over if we formally let 

t
0 	

- co and t
f 	+co. Unfortunately, the existence conditions established 

in section 3 only deal with systems defined over compact  intervals. Addi-

tional conditions are needed to guarantee the existence of IIB-realizations.. 

The main difficulty in establishing the results for IIB is the re-

quirement of boundedness of T, f and T-1  as t 	:to, . However in many 
applications only a finite timespan is of interest. (e.g. terminal controller 

problems) 

Of course, A(.), B(•), and ON still have to be defined for all 

t c DR in order that the infinite-interval gramians are well-defined. 

What we mean here is that t in C(-.,t] 4  Cm(t) and 04t,-1--) 	0.(t) only 

varies in a compact interval. This eliminates the problems of unbounded-

ness at infinity, and on compact sets, boundedness and continuity are 

equivalent. Then we can take full advantage of the existence conditions 

developed in Section 3, where compact intervals were considered. Note 

that from a practical viewpoint, we are always "limited" to some finite 

time interval, and thus all we really have to consider is boundedness for 

finite time (i.e., continuity). For these reasons a broader class of 

transformations than the (strict-) Lyapunov transformations can be allowed. 

It is therefore useful to define a notion of "almost Lyapunov" or quasi-

Lyapunov transformation. 
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Definition  2 : An algebraic transformation T(t) is quasi-Lyapunov iff 

T(t), T
-1 (0 and T(t) are continuous and bounded on compact intervals. 

Theorem 3:  If A(t), B(t) and C(t) are analytic matrices such that 

C.(t) and 0.(t) exist (i.e., are finite) and are nonsingular for all 

(finite) t, then (A(•), B(•), C(•)) can be IIB balanced by a quasi-

Lyapunov transformation. 

The proof requires only a slight modification to the proof of theorem 

1. Under the assumptions, it follows that C.(t) and 0. (t) are analytic 

for all (finite) t. Hence they are continuous and differentiable, and 

obviously invertible. The extension of proposition 1 is then direct; and 

from here the proof of theorem 1 carries over verbatim. for I: any compact 

interval in (- 

A sufficient condition for the existence of C.(t) and 0 .(t) is the 

square integrability of llo(t,T) B(T)I! and 114) 1 (T,t)C 1  (T)II, which is in 

turn implied by the analyticity of (A(•), B(•), C(•)) in any compact inter-

val in 	with the asymptotic stability of A(t). Remark that the 

existence of C.(t) and 0.(t) implies the existence of C.(t') for all 

t' s t and 0. (t") for all t" 	t. The invertibility of C.(t) and 0.(t), if 

they exist, is equivalent to complete reachability and observability of 

(A(•), B(•), C(•)) in (-0. 	The above result shows in particular that 

the complete reachability for all (-co,t), and the existence of C . (T) 

implies that the pre-input normalizing transformation T 1 (t) = Ac-1/2 (t)U(t) 

is quasi-Lyapunov in any compact interval enclosed in (- ,.,T]. In general, 

it will not, be a Lyapunov transformation since T i , T 1  and T 1
-1 
 might not be 

bounded as t 	±.. Finally, note that a quasi-Lyapunov transformation 

preserves finite-time stability and is therefore significant in simulations. 
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If (strict)-Lyapunovness of the balancing transformation is required, 

a stronger version of theorem 3 is needed. Boundedness of T 1  and T 1
-1 
 is 

implied by the boundedness of C -1  and C respectively since 

IIT 1 (011 = 11A c 1/2 (011 = liAc (0 -1 11 1/2 = 11C -1 (011 1/2  

111- 1 (0 -1 11 = 114" (011 = riAcmill".11C(0111" 

It is therefore natural to add a certain "uniformity" condition on C .(•) 

(and similarly on 0. (-)). 

Definition 3: 

i) (A(.), B(.)) is "boundedly completely reachable" (b.c.r.) 

iff there exist 0 < am < aM < 

such that 

0 < am i 5 C. (t) 5 am i < co , 4tt E IR 	 (5.1) 

ii) (A(.), C(.)) is "boundedly completely observable" (b.c.0) 

iff there exist 0 < m  < 814  < 

such that 

0 < om I 	U(t) 	< m 	t e IR 	 (5.2) 

A minimal stationary system is clearly boundedly completely reachable and 

boundedly completely observable. Note that this definition does not imply 

and is not implied by uniform reachability and observability. C13 ]. 

The transformation T 1 (t) = Ac
-1/2

(t) U(t) is guaranteed to be a bounded  

algebraic transformation (with bounded inverse) if (A(•), B(•)) is b.c.r. 

With an additional condition on the behavior of C.(t) at infinity, T 1 (t) 

also has a. bounded derivative. 
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We say that M(t) has disjoint eigenvalues as t 	iff for any 

two eigenvalues x.(t) and x.(t) of M(t) i # j, there exists a T
ij 

< co 

and e
ij 

> 0 such that 

iX i (t) - Xj (t)1 > e ij 	-V- t > T ij 	 (5.3) 

This implies for finite dimensional systems the existence of T < co 

and e > 0 such that for all i # j 

lA i (t) 	Aj (01 > E 	V-  t > T 
	

(5.4) 

Theorem 4: If A(t) and B(t) are bounded analytic matrices such that 

(A(•), B(•)) is a boundedly completely reachable pair and if their 

reachability gramian C(t) has disjoint eigenvalues as t approaches 

infinity, then the pre-input normalizing transformation T 1 (t) is a 

Lyapunov transformation. 

The proof is deferred to the appendix. 

Sufficient conditions for the existence of an 'TB realization, topolo-

gically equivalent to the given realization, are then: 

Theorem 5: If A(t), B(t), and C(t) are bounded analytic matrices on 

(- o  ,co) such that the realization (A(•),B(•),C(.)) is boundedly com-

pletely reachable and controllable, and if further either 

i) C and C 0 have disjoint eigenvalues for t 	+co and t 

respectively, or 

ii) C and C 0 have disjoint eigenvalues for t 	-co and t 

respectively, 

then a topologically equivalent balanced realization exists, valid 

over (-co,..). 

25 



Proof: From theorem 4, it follows that the matrix 

U.(t) = r, -T
(t) 0.(t)T 1 -1 (t) 

is also Lyapunov. Its eigenvalues are those of C.(00.(t), and hence 

are disjoint as t 	. Let U.(t) have the singular value decomposition 

U.(t) = w(t) A2 (t) WPM 

then from lemma's Al and A2 (or the dual of theorem 4) it follows that 

174(t) and A(t) are bounded, and that 

T2 (t)  = A
1/2

(t) W(t) 

is Lyapunov. If instead the eigenvalue condition on 0.is known to hold, 

then we can "dualize" by first considering the transformation that brings 

the observability gramian to the identity matrix. 

In the rest of this section we shall assume that the IIB-realization 

exists. 

Theorem 6:  If (A(•), B(-), C(•)) is IIB with canonical gramian A('), 

then 

A'A + AA + 	= A 
AA + AA' + BB' = -A 

	
(5.5) 

The proof is trivial (cf. theorem 2). Note that the conditions 

(4.1) do not carry over, and the sufficiency-equivalent of theorem 2 is 

lost. 	The corollaries to theorem 2 still hold where IIB is 

possible, in particular the negative semidefiniteness of A(t), because 

only the necessity part is needed. An important special case is 

formed by the stationary realizations; while FIB[t o ,tf] leads to 

a time varying realization, the IIB-realization, if it exists, is 

also stationary, and the relations (4.10) imply the symmetry 
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relations in the scalar case 

b = Ee 
(5.6) 

A' = EAE 

In fact, the transferfunction h(s) can be written as (for disjoint x i ) 

h(s) = b'(sE 	BEB) -1 b, 	 (5.7) 

where B = diag ib i l and E ij  = -(xiai + Xjaj) 
	

(5.8 ) 

Theorem 7:  The nth order balanced realization of a stationary single-

input-single-output minimal system of order n cannot have a zero element 

in its b and/or c vector, nor on the principal diagonal of A, provided 

that the corresponding element of its canonical gramian is distinct from 

all the others. 

Proof: From theorem 6: 

b . 22
i
2 

a ii (t) - 

 

2), = -  ta i  

	

hence b i  = 0 +4. a ii  = 0 +4 c i  = 0 	 (5.9) 

Assume now (5.9) 

It follows then from (4.10) that for all j # i , a ij  = aji  = 0, and 

thus that the i th 
state component is unobservable and unreachable, 

contradicting the existence of the IIB realization. 
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6. Sliding Interval Balanced Realizations 

Both the fixed interval balanced realization(FIB) and the infinite 

interval balanced realization analyzed in Sections 4 and 5 suffer from 

some serious problems. In the first case the reachability gramian is 

zero at the starting time, and gradually builds up, while the observa-

bility gramian decreases and is zero at the final time. Those points 

are therefore singular points for the balancing transformation. This 

reflects in the elements of the "balanced realization" being unbounded 

as t closes in to t
0  or t

f. 

For infinite interval balancing, the issue is 	stability, or con- 

vergence of the integrals defining the gramians. This motivates us to 

consider the gramians over an interval with fixed finite, nonzero length. -

If T is the length of the interval, then the gramians leading to "Sliding 

Interval Balancing (SIB(T)) are 

C[t - T,t] 	CT(t) 

O[t,t + T] 	OT(t) 

This ties in with the theory of uniform balanced realizations [ 3],[24], and [25]. 

Theorem 8:  If (A(.), B(.), C(•)) is analytic and completely reachable 

and observable in a compact [t 0 ,tf], then the SIB(T) realization exists 

for all 0 < T < (t f-to )/2 and t0  + T < t < tf  - T. 

Proof: If the realization is completely reachable and observable 

in the interval (t o ,tf ), by the analyticity assumption it is then 

reachable and observable in every subinterval of (t o ,tf). Thus in 
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particular CT (t) and OT (t) are nonsingular for all t and T. By theorem 

1 the balancing transformation exists. 

A sliding-interval-balanced realization of a stationary system is 

also stationary. This "structure-conservation" property also holds for 

periodic systems. SIB(T) realizations and their associated canonical 

gramian of a periodic system are itself periodic. 

Unlike FIB(t o ,tf ) and IIB, the Lyapunov-type differential equations 

do not lead to a simple criterion for "balancedness" of a realization. 

The canonical gramian for the SIB(T) realization satisfies 

A(t) = A(t)A(t) + A(t)A 1 (t) + B(t)B 1 (t) 

- o(t,t-T)B(t)B 1 (t)e(t,t-T) 	 (6.1) 

A(t) = -11 1 (t)A(t) - A(t)A(t) - C 1 (t)C(t) 

+ o'(t + T,t)C'(t)C(t)o(t + T,t) 	 (6.2) 

The need for the transition matrix of A(t) obscures the usefulness of 

these equations. However they infer that the symmetry relations 

	

A' = EAE 	 (6.3) 

	

b = Ec' 	 (6.4) 

where E is some signature matrix, still hold for SIB(T) realizations of 

a scalar stationary system, as is readily verified. 
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7. Applications to Model Order  Reduction  

The canonical gramian is a direct measure for the relative impor-

tance of each "dimension". This makes the balanced realization theory 

very useful for model reduction. This fact was initially recognized by 

B. C. Moore [ 2], for the case of infinite interval balancing of sta-

tionary systems, both in the continuous and discrete case. 

The reduced order model is given by a consistent partitioning of 

the full order balanced realization, i.e., if 

`A11 	A12 ̂  	-
1
- 

A = 	 B= 	 C 	[ C
1 	

C9  ] 
	

(7.1) 

_ A21 	A22 

consistent with 

Al  
, A

l 
> A

2 
A2, 

then (A 11 , B 1 ,C 1 ) is a reduced order subsystem. Corresponding to the 

different types of balancing, we get different reduced order models for 

a given system. The following theorems describe their properties. A s 

 indicates the symmetric part of A. 

Theorem 9  : 

If (A( .), B(•), C(.)) is FIB(to ,tf ) and partitioned as in (8.1), 

then the subsystem (A11 (-), B 1 (-), Cl(*)) 

i) has a transition matrix which is contractive, and strictly 

contractive if (A11(0)s is not singular for all t. 

ii) is automatically balanced. 

A= 
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Proof: By equation (4.4), A s (t) is negative semi-definite for all 

t in (to ,tf ), whence also 

[As (t)] 11  s 0 	 (7.2) 

Wazewski's inequality ([15] pp. 117-119) implies for the solution of 

x i (t) = A(t) 11  x l (t) , x1(t0) = x o  

t 

m 11x2 (t;x0 ,t0 )11 s Ilxo llexp 	f A..., a,.
(T)dt s 11)(0 11, t 	t0 	(7.3) 

4 to   

where Amax (T) is the largest eigenvalue of [As (t)] ii . If (All (t)) s  is 

not singular for all t, then by analyticity, xmax• (T' in (7.3) is zero on -  

a set with measure zero, and negative elsewhere. So there is a 0 < K < 1,. 

in general, depending on t0  such that 

Ilx(t)11 s 11)(0 11 K 

The inheritance of balancedness to the subsystem follows at once from the 

sufficiency part of theorem 2. 

The important fact learned from Theorem 9 is that the state of all 

free-running principal subsystems (and therefore the balanced realization 

itself) of a FIB(t0 ,tf ) realization is bounded by the initial state. 

Corollary: The subsystem (A 11 ,8 1 ,C 1 ) of an FIB(to ,tf) realization 

(A,B,C) is bounded input-bounded state stable in (to ,tf ). 
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Proof: From theorem 9 : 

t 
IIx(t)II s II0A 	(t,tn ) xn  + 	

I OA 11
(t,,:) B 1 (T) u(T)dTII 

`" 	to 	"11 

tf 

	

s 11)(0 11 + 11 I OA 	(t,T)8 1 (T)u(T)dT11 

	

to 	11 

t 

	

11)(0 11 + 11 f 	(DA 	( 	) 	( ) 	( ) (t,r)dT11 1 / 2  

	

to 	11 	 11 

tf 
• 11 f u'(T)u(i)di11 1 /2  

t0  

lixo ll 	ily t)11 112  • 11u11 2  

using Schwarz's inequality. A l (t), as a submatrix of A(t) is bounded. 

For IIB the situation is more delicate since the conditions of 

theorem 6 are no longer sufficient. The equivalent to part ii) of theorem 

9 will need additional conditions. Part i) carries over integrally. 

Theorem 10: 

If (A(•),B(.),C(.)) is IIB and partitioned as in (8.1), then the sub-

system (A ll  (•), B l (•) C 1 (•) ) 

i) is internally stable, i.e., the solution to the homogeneous 

	

system remains bounded as t 	-. Its transition matrix is 

strictly contractive if (A ll (t)) s  is not singular for all t. 

ii) is IIB balanced with canonical gramian A 1 (t) 1  if lim A(t) 

exists at -±G. , and 
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a) A11 (t) and A 11  (-t) are asymptotically stable 

t 
b) (- co ) = lim 	f to  (t,T)B 1 (T)B i l (T)t iA  (t,T)dr 

t+-co 	co 	11 	 11 

exists 

co 

c) 0 1 (+ co) = urn 	f 
to 
 (T,t)C i  (t)C i (r)t A  (T ,t)th exists 

t-'+°° t 	11 	 11 

d) For some t*  : A11 (t* ) and -A 11 (t* ) have no common 

eigenvalue. 

Remark that strict contractivity does not imply asymptotic stability, 

hence the stronger assumption a) in part ii). A sufficient condition for 

asymptotic stability is [15]. 

CO 

xmax (T)dt = -co , 	to 

Proof of  part ii): If C 1 (t) is the reachability gramian of the system 

(A11 ,B 1 ,C 1 ), then C1 (t) satisfies 

Cl(t) = A 11 (t)  C1(t) + C1(t)  A 11
(t) 1  + B 1 (t) B i (t)' 

By theorem 6, and (7.1), the difference C 1 (t) -A 1 (t) satisfies 

X(t) = A ll (t) X(t) + X(t) Al l (t) 	. 	 (7.4) 

The homogeneous equation (7.4) has the general solution 

X(t) = All (t,0) ft;v11 (t,0) + X c 	 (7.5) 

where M is a (symmetric) matrix of integration constants, and X C  is a 
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constant (symmetric) solution (if any) of the algebraic equation 

A11 (t) XC  + XC A 11 	= 0 	
. 	 (7.6) 

But, this equation has only the null solution 1ff A 11 (t) and -A 11 (t) have 

no common eigenvalues. Invoking continuity, condition d) sufficies to 

ensure that X c = 0, and thus 

C1(t) = A l (t) 	0A (t,0) MO IA  (t,O) 	 (7.7) 
n 11 	n11 

Similarly, for some symmetric N 

1 
0 1 (t) = A 1

(t) + 
A 11

(0,0 No
All

(0,t) 

The asymptotic stability of A1 1 (-0 implies that 

lim II 0A 	( 0, t)II -4" 
V+ -m 	'11 

(7. 8) 

1 
and thus the unboundedness of (D

A 
(t,0) M(D

A 
(t,0) as t + - ,39, for any 

11 	11 

nonzero M. Boundedness of A 1  (t) as t + 	is implied since it is con- 

tained in the bounded A(t). Condition b) and equation (7.7) imply then 

that M can only be zero and thus C 1 (t) = A 1 (t) , -V- t 

The part 0 1 (t) = A I M is analogous, using c) and asymptotic stability of 

A(t). 

Remark that asymptotic stability does not imply the conditions b) and c), 

even if B and C are bounded as the counterexample A(t) = -2t, and 

B(t) = 1 readily illustrates. 

Theorem 11: 

If (A,B,C) is IIB, partitioned as in (7.1), then the following 

implications hold: 
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) 	(Al 1 ' C
l ) completely observable 4- A 11 (t) is asymptotically stable 

ii) (A 11 ,B 1 ) completely reachable 4- A1 1 (-t) is asymptotically stable 

Proof:  i) Consider the function V(x)= x'A
1
x. Along trajectories of the 

subsystem we find 

1:1(x) =x'(A11A1  + Al 
 + 

= -x' C I  C x 
1 	1 

= -x1:21  4)A  (t,0) 
C 1 (t)'  C1(t) 0

A  (t,0) x0 

	

11 	 11 

By the complete observability, the columns of C i (t)0 A  (t,0) are linear 
'11 

independent. Thus 1.1(x) s 0 and not identically zero along trajectories. 

Hence V(x) is a Lyapunov function. 

The proof of ii) is similar. 

Statement i) is adopted from [ 3], where it is stated in the context 

of uniform realizations, and hence the stronger requirement of uniform 

complete observability was used, to yield the stronger result of uniform 

asymptotic stability. This uniform condition implies c) in theorem 10. 

Also the existence of A(t) at infinity is implied if (A,B,C) is a uniform 

balanced realization [ 3]. Boundedness of B
1 (t) and uniform asymptotic 

stability of A 11 (t) (which is again equivalent to B1B0 stability for 

uniform systems [16]) implies condition b). Hence for balanced uniform 

realizations (BUR), we can modify theorem 1" to: 

Theorem 10": 

If (A(•), B(.), C(•)) is a uniform  IIB realization, partitioned as 

in (8.1), and if the subsystem (A 11 (•), B 1 (•), C 1 (•)) is uniformly com-

pletely observable, 
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then it is 

i) asymptotically stable 

ii) IIB if also 

a) (A 11 (•), B 1 (.), C 1 (.)) BIBO-stable 

b) A11 (t) and -A 11 (t) have no common eigenvalue for some t 

Remarks:  

i) If (A,B,C) is a time invariant BUR, the conditions a) and b) 

above are implied by the asymptotic stability, and we retrieve 

the original result by B. C. Moore for stationary systems 

([2], Theorem 6). 

ii) Theorem 10' can also be "dualized" 

iii) Shokoohi et al. [24] and [25] focus on the stability of approx..' 

imations of uniformly balanced asymptotically stable systems. 

Using our SIB(T) method for variable T, we are able to obtain reduced 

order models corresponding to the slow (large 1. ) or fast (small 1. ) response 

of the system. This technique for small T can be linked to singular 

perturbation methods [4]. 

For practical applications, a criterion is suggested to decide on the 

order of a reduced model. To this end , the "real dimension" of a system 

(with respect to some type of balancing) is defined as 

p = 2HA 	 (7.9) 

where H
A 

is the entropy (logarithms to the base 2) associated with the 

corresponding canonical gramian (i.e., the entropy of the distribution 

A. 

I trA' 	= 1, ..., n} where A = diag (A l  ... An )). The reduced order should 

be larger than p. In the example below, the real dimension with respect 

to SIB(T), is close to one for T very small and I very large. In the 
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first case, the reduced order system mimics the slow (unstable) behavior, 

while for T large, the stable fast response is modeled. 

In the feedback design, this added freedom helps in matching the 

approximate model to the specific design problem more adequately. 
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8. Conclusions  

The concept of balancing a given realization is extneded to analytic 

time-varying systems. It is further generalized to obtain different types 

of balancing. In particular we introduced the new concepts of Fixed 

Interval Balancing and Sliding Interval Balancing, and established for 

analytic systems 

i) existence conditions, 

ii) properties of the various balanced realizations, and 

iii) applications to model reduction, and their properties. 

The ideas of balancing a realization can be extended to the LQG-

design problem, as already shown by the author in [17] and by the inde-

pendent work of Jonckheere et al. [18]. 
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APPENDIX: 	Proof of Theorem 4 

Several preliminary results towards the proof of the existence 

theorem of IIB realizations are first established. 

Lemma Al: Let X(t) be a symmetric positive definite Lyapunov transforma-

tion, with singular value decomposition X(t) = U(t) A 2 (t) 1.1 1 (t), then 

both A(t) and A(t) A(t) - A(t) A(t) are bounded on 	where: 

A = 11 . 0 	 ( ► .1) 

Proof: 

Let S(t) be defined as the unique positive definite symmetric square 

root of X(t): (take A(t) > 0) 

S(t) = U(t) A(t) Us(t) 	. 	 (A.2) 

It follows from a lemma by Silverman ([19], Corollary 1) that S(t) is 

also a Lyapunov transformation, and thus that t is bounded. But 

S = UAU' + UAU' + UAU' 	. 	 (A.3) 

Pre- and post-multiplication of (A.3) by U' and U respectively yields: 

U'tU = U'OA + A + AU'U 	. 	 (A.4) 

From the orthogonality of U, we obtain 

O'U = -U 1 0 	 (A.5) 

Substituting equation (A.5) in equation (AA) gives 

U'tU = U'OA + A - AU 1 0 	 (A.6) 

39 



or', by virtue of definition (Al) 

U'tU = AA + A - AA 	 (A.7) 

At the same time (A.5) indicates that A is an antisymmetric matrix. 

The left-hand side of equation (A.7) is bounded because S is Lyapunov. 

Thus the elements of the matrix on the right-hand side must be bounded. 

The diagonal elements are 

a ii X i  + a i  - x i a ii  = 3t i  = (A) i 	 (A.8a) 

while the off-diagonal elements reduce to 

a ij xj  - xj a ij  = (AA - AA) ij  . i # j 
	

(A.8b) 

The statement of the lemma thus follows. 

Lemma A2:  Let X(t) be a symmetric positive definite Lyapunov transfor- 

mation with singular value decomposition X(t) = U(t)A 2 	U'(t), then 

O(t) is bounded on 	if the eigenvalues of X(t) are uniformly 

disjoint. 

Proof:  

Since X(t) is Lyapunov, its inverse is bounded for all t, thus all 

eigenvalues are strictly bounded away from zero. Under the additional 

assumption of uniform disjointness of elements of A 2
, there exists an 

> 0 such that 

IX. 2 
- A.

2 	
e
ij 
	

(A.9) 

thus for some e 	0 

ij  lx. - 	a 	a e 	0 
1 	j 	A. + A. 

1 	J 
itt , iti#j 	(A.10) 
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By lemma Al, the elements a..
IJ

(x. - x.
J
) are bounded (by M say), and 

thus 

la
ij

1 s 	M 	
M s 

lAi - 

MC 

	
e 

where a.
i 
 is the (ij)-element of the matrix A defined in equation (A.1). 

Note that the diagonal elements are zero. Thus A is bounded and 

11011 = IluAll = IIAII < 

Lemma A2 can now be applied to the reachability gramian of a 

boundedly completely reachable, analytic pair (A(t),B(t)), proving 

theorem 4. 

Proof  of theorem 4: 

From the discussion preceeding the statement of the theorem it 

suffices to show that U(t) and Ac (t) have bounded derivatives at 

infinity. 

From the boundedness of A(t) and B(t), it follows that 

Ilk,(011 5 11A(t)c.(t) + c.(t)A 1 (t) + B(OP(011 

(A.11 ) 

s 211A(t)II IIC.(011 + 1113(011 2  

	

and thus boundedness of kp(t) in 	is ensured by boundedly com- 

pletely reachability. Thus C .(t) is a Lyapunov transformation and 

from Lemmas Al and A2 (note that "disjointness" at +. suffices, since 

boundedness on compact intervals follows from the analyticity assump-

tions.) we obtain that A
c and U are bounded on (-.,.). Finally it 

follows that 
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T1(t) 	- 2Ac-3/ 2  Ac  u. - A: 1 / 2  6. 	 (A .12) 

is bounded as t approaches plus or minus infinity. Since T 1 (t) was 

already shown to be a bounded algebraic transformation on D2, (A.12) 

proves that T1 (t) is indeed a Lyapunov transformation. 
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Abstract:  

It is shown that a commonly used discretization method leads to a 

certain infidelity regarding the reachability and observability proper-

ties of the original versus the discretized version. In a digital 

implementation this infidelity is amplified due to round off errors. 

In particular, the reduced order modeling is shown to be very sensitive. 

A new discretization method of high fidelity is proposed. As an appli-

cation the commutativity of reduced order modeling and discretization is 

studied for balanced realizations and a criterion for determining the 

stepsize corresponding to a certain degree of fidelity is presented. 
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1. Introduction and background material. 

In many cases a mechanical, electrical or chemical process, plant or system 

is modeled by a set of dynamic equations in continuous time, especially in 

those instances where the physical insight underlies the modeling. In 

general one may have a time varying nonlinear set of differential equations. 

Linearization about a steady state nominal operating point, or a nominal 

trajectory leads then to a set of linear differential equations which are 

time-varying in general. 

In this paper we shall only consider process models described by time 

invariant linear differential equations 

X = Ax + Bu 
(1.1) 

y = Cx 

where x(t) E R n , u(t) E 	 y(t) E RP are respectively the state vector, 

input vector and output vector, and 

A E R nxn 
	

B E R nxm , 	 C E R Pxn  

Without loss of generality we may assume that the realization (1.1) is 

minimal. Further, the assumption that A is stable is made. 

For the purpose of estimation and/or control via a digital computer, 

one needs to convert the given continuous time system model (1.1) into a 

set of difference equations, say 

= ^z k + ru k 	
(1.2) 

y
k 

= Hz
k 

+ Du
k 

Consequently, this discrete model is then used in the control-law design. 

Many discretization schemes are known, depending on the sample-and-hold 

procedure used. Further, a whole class of equivalent state space 
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CO 

C = I eAtBB'eA'tdt 
0 

(1.4) 

realizations correspond to any given input-output behavior. Finally the 

stepsize in the discretization may be variable. 

In this paper we shall motivate what we mean by a "best" discretiza-

tion scheme, and actually show its performance in the context of control, 

estimation, digital filtering and model reduction. 

Rather than directly requiring a match between input and output of the 

original and the discretized system, we shall look at their internal pro-

perties. For this purpose, the gramian formalism is thought to be a good 

approach. 

Suppose that for the description (1.1) the initial state is zero. 

It is then well known from optimal control theory that in order to reach 

the state x
0 
 as t i co, the input needs an energy of at least 

Hull 2 	
x' C-1 x

0  2   

where C is the reachability gramian of the system (1.1). 

(1.3) 

Equality holds in (1.3) iff u(t) = u 0 (t) the optimal control minimizing 

the L 2 -norm 

liullL2  = ( of u'udt) 1/2  

while meeting the constraint x(..) = x0 . For the discretized model (1.2) 

one can find similarly that, in order to reach z 0 , the input-"energy" is 

bounded by 

2 
	z°1C-cil zo 
	

(1.5) 

where now 
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00 

0 = I eA'tCCeAtdt 
0 

(1.8) 

	

Cd = k 
E
0

k 
 ITIV

k 	
(1.6) 

= 

and equality holds in (1.5) iff u k  is the optimal control minimizing the 

1 2-norm 

Ilu k li c2  = ( k.zo  uk u k ) 1/2  

and meeting the constraint z w  = z0 . Hence, in both cases the inverse of 

the reachability gramian is a weighting matrix for the computation of the 

minimal reachability cost or energy. Alternatively, a stochastic inter-

pretation can be given to the gramians. If either system is perturbed by 

white noise with unit covariance, then the state covariance after all 

transients died out is equal to the reachability gramian. Thus C and Cd  

are a quantitative measure for the disturbability of the states for the 

continuous and discretized system respectively. A good discretization 

scheme should neither introduce nor destroy reachability or disturbability, 

in order to keep the same evaluation of the control cost. Hence one 

should look for a discretization scheme for which Cd is close to C in some 

sense. 

Analogously, one can also look at the properties of the state-to-output 

mapping. For a stable system with initial state x0  and no forcing function, 

the total output energy, as measured by the L2  norm is 

	

ly 1 1 1.2  = x(1)  O xo 	 (1.7) 

where 

is the observability gramian of (1.1). 
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CO 

0d 	E 0'
kk 

k=0 
(1.10) 

For the discretized system (1.2) one finds 

IlY111 2  = z°10dz° 	 (1.9) 

with the observability gramian 

A stochastic interpretation of the observability gramians can also be given. 

Let for the undriven system, the output be corrupted by white noise, then 

the information (as measured by the inverse of the covariance matrix) con-

veyed in the output process about the initial state is respectively 0 and 

0d for the continuous system (1.1) and the discretized system (1.2). Thus 

the observability gramians are a quantitative measure for the observability 

properties of the system. Again a good discretization scheme should 

neither create nor destroy observability, and O d  should be made as close 

to 0 as possible. 

The role played by the gramians is further quintessential in the model 

reduction techniques based on the balanced realizations ([1 ], [2]). This 

technique actually also works for timevarying systems ([ 3],[4]). Here 

the input-to-state and state-to-output properties are "balanced" by a 

suitably chosen state-space transformation, so that disturbability of the 

state in a certain direction is made eugal to the observability of the 

state component in that direction. Thus for a balanced realization, one has 

equality of the reachability and observability gramian (which are then 

further made diagonal). In this way near-redundancy of state components 

can be detected as those directions x in the state space for which 

x'Cx  _  x'Ox  

11x11 2 	11)(112 

5 



is small compared to other directions. If C = 0 = A = cliag O i l, then the 

elements A i  of the canonical gramian are interpreted as measures of the im-

portance of the i-th dimension in the state space. 

Thus in particular, when the original system (1.1) is given in 

balanced form, the discretized version (1.2) should conserve this property, 

if a discretization method with "high fidelity" in the reachability and 

observability properties is used. If then a reduced model for (1.1) is 

chosen, it automatically results in the corresponding reduced discrete 

model, for a suitably chosen stepsize. 

In the context of digital filtering, it is further well known [6] 

that the balanced realizations play an important role in the minimization 

of finite word length effects (probability of overflow and roundoff noise): 

In fact it is shown in [5] that the balanced realization or principle 

axis realization minimizes these effects, although to the expense of 

requiring a larger number of multiplications. Hence, if for some discre-

tization method the gramians are "conserved", then automatically "balanced-

ness" will be conserved, and thus the parasitic noise effects due to 

the finite word length in the discrete model are minimal. Moreover, the 

following scheme is made commutative in some sense: 

model 	, (A '13 x  ) 
(A,B,C) reduction 	1 	 ' 

discretization I I 
(cp,r,H) 	+ (yrr ,H r ) 

In what follows we shall also need the Lyapunov equations satisfied by 

the gramians (for strictly stable A and O. In the continuous time case C 

6 



and 0 solve respectively 

AC + CA' + BB' = 0 (1.11) 

A 1 0 + OA + C'C = 0 

while the discrete gramians Cd  and Od  satisfy 

0Cd4,1 	+ rr' 	= Cd 

(1.12) 

(1.13) 

0 1 0d 	+ H'H = d 
(1.14) 

The rest of the paper is organized as follows: In section 2, we 

define a measure for the fidelity of any discretization scheme, and show 

that a commonly used method has a low fidelity. A first improvement by 

scaling is suggested. A better high fidelity scheme is worked out in 

section 3, and it is shown that the fidelity is up to second order in A, 

the stepsize. Finally application to the model reduction techniques are 

discussed in section 4. 
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{

fo = exp . 

X i (0) - X i (0d ) 2 

 
Ex. 2 (0) 
i 

(2.2) 

2. A Fidelity Measure for the Discretization Scheme. 

To fix the ideas, let C and 0 be the reachability and observability 

gramians for the original continuous time model, and Cd  and Od  those for 

any discretized version of the form (1.2). Motivated by our discussion 

in the previous section we define the discretization fidelities. 

Definition 1:  i) The fidelities of the discretization with respect 

to the reachability and observability properties are respectively 

11 fc = exp 

x i ( c ) - x i (Cd )1 2 
 

(2.1) 
Ex.

2 (C) 
i 1  

 

ii) The overall discretization fidelity is 

f = fof c 

Obviously the fidelities are between one and zero, and can be lower 

bounded by 

Theorem 1:  The fidelities are bounded by 

11C - Cd11F1  

(2 .4) 

(2.3) 

f 	exp 
11 C 11 F  

fo 	
exp 	

11 0  - 0d11F1 

II ° 11F 

where 11•I1 F is the Frobenius (Schur or Hilbert-Schmidt) norm. If the 
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Frobenius norm of the difference C - C
d 

and 0 - 0
d 

is sufficiently small, 

the following lower bounds are useful. 

11C - Cd li F  
f > 1 c — IIcII F  

110 -0d 1I F  
f > 1 	 

o — 	11°11 F 

(2.5) 

Proof:  (2.5) follows directly from (2.4) since for all x, the inequality 

e
x 

1 - x holds. To show (2.4), the Wielandt-Hoffman inequality is 

involved 

y ix.(0) - : k i cod )12  < Ho - od H 
i  

and the fact that for any Hermitian matrix X 

= X IA.
1
(x)1 2  

A commonly used method for discrete representation of a continuous 

time linear time invariant system (1.1) is given. by the zero order hold 

([6], p. 135). 

xki.1  = xk  + r uk  

(2.4) 

Yk=C 
xk 

where 

x
k 

= x(kA) , 	yk = y(kA) 

u
k 

= u(kA) , 	A = stepsize 
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and 

	

(D. = eAA 
	

(2. 5 ) 

r = 1 eAT  B (2.6) 

For improved numerical properties, one can modify the above using the 

matrix exponential 

A 	 A
2 
A2 

0 = eA  = I + AA + 	+ 2! 

(2. 7 ) 

where 

AA A2  A2  ti) = I + — + 	+ 2! 	3! 

and is usually evaluated by a series in the form 

,
= I  , 
	

AA (I + -5AA 	 AA -- (... 121  (1 +-)) ...) 

(2. 8 ) 

(2.9) 

N 	
4 as N-)-co 

The read-in matrix (2.6) becomes, using term by term integration 

r =VP AB 	 (2.10) 

The discrete time system (2.4) has reachability and observability gramians 

respectively given by 

10 



C = X (I + A A tp)
k

PABB'A tp t (I + VAA')
k 

A 	k=0 

00 

0
A 
 = X (I + V AA')

k 
C'C (I + AA4)

k 

k=0 

(2.11) 

(2.12) 

and satisfying respectively the discrete time Lyapunov equations 

( I + A A IP) CA  ( I + tl) 'A A ) + A 2  ty BB'S,' = CA 	(2.13) 

(I + 	AA' ) O A  (I + AAtp) + C'C =O A 	 (2.14) 

or 

(A'p CA  + CA  1y' A') + A (4y BB'V + AlliCAVA') = 0 	(2.13') 

A(VA'OA  + OAA1P) + A 2VA'OAA1P + C'C = 0 	 (2.14') 

For small A, we consider the zeroth approximation of IP (i.e. we only take 

the first term in the series IP ' I). Then we get for (2.13) 

AC
A 

+ CA A' + ABB' + AA C
A 
 A' = 0 

Expanding CA  in a series, we get 

(0) 	AC(1)  + C = C 	+ AC 
A (2.15) 

, (0) 	(1), 	, (0) 	(1) N  0 = MC 	+ AC ) + \ C 	+ AC JA I  + ABB' + AA(C(o) + AC(i) )A' 

AC(0)  + C(0)A' = 0 	 (2.17) 

11 

and 

or 



AC
(1) 

+ C
(1) 	+ BB' + AC(0)A l  = 0 
	

(2.18) 

Since A is stable, (2.17) has only the zero solution, and then the first 

order term C,(1) reduces to the reachability gramian of the continuous 

system, since the solution to (11) is unique. 

Thus, up to first order in A we have 

CA  == AC 
	

(2.19) 

An analogous expansion of OA  

yields 

(0) 	(1) 0 = 0 	+ AO 	+ 
A (2.20) 

A[A l  (0
(0) 

+ A0
(1)%

4' (0(0) 	AO(0 )Al + A
2
A'(0 	+ AO(1) )A + C I C = 0 

from which we obtain the inconsistency VC = 0, unless we let 0(0) be of 

the order of A -1  . In this case 

(0) 	(0) A' 0 	+ 0 A + C' C = 0 

0(1) 
+ 

0(1)A  + A'  0(0)
A= 0 

(2.21) 

(2.22) 

Again, by unity 

0(0) 	0  

and thus the first approximation to the discrete observability gramian is 

o = 1 0 
A 	A 
	 (2.23) 
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We find in (2.19) and (2.23) a discrepancy in the balance of the 

gramians in the continuous versus the discrete case, due to the appearance 

1 i of the scalar factors A and A — in the first term of he approximation. This 

can be worked away easily by resealing the state variables. Indeed if we 

let xk 
	

1 = 	x
k 
 , then the discrete system 
 

iA 

x
k+1 

= 0 x
k 

+ r u
k 

(2.24) 

Yk ' 6  

with t = rbri, and C =1K C , has gramians matching those of the correspond- 

ing continuous system in the first approximation. 

Definition 2: A discretization procedure will be called an equili-

brium discretization if the gramians Cd and 0
d 

reduce to C and 0 respec-

tively as A approaches zero. 

For the above developed equilibrium discretization, we can show 

after some algebra using matching expansions that up to third order: 

A
2 

2 
CA 	1 

= C- 	ACA' 

(2.25) 

A 
0 = 0+ C y  A 	-2" C 12  (A'C'C+ C'CA) 

Hence, for this particular discretization method, the reachability proper-

ties and the observability properties do not have an equal fidelity. In-

deed, using theorem 1, we obtain (keeping the first terms only) 

f > 1- 0
2 ac c — 

13 



where 

f >1-A a 
o — 	o  

1 	2 
a c  = T-2- liAll F  

2 
ac, = 114 F 

and we used the fact that hXYII F < 11XII F  Hyn r, and the,  Liapunov equation 

(1.12). The overall discretization method has therefore a fidelity which 

deviates linearly from one. 
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3. A high fidelity zero order hold discretization scheme. 

The discrepancy in the fidelity that was shown to exist in the usual 

zero order hold discretization method can be traced back to the non-

symmetrical role of the input and the output operations. Indeed in (2,4), 

a weighting of the input ulna) is chosen corresponding to the effect the 

continuous time system would have had with a constant input during an inter-

val of length A. The output equation is however a "one shot" computation: 

the instantaneous output at the sampling interval is computed. Alterna-

tively, we can compute an averaged output during the interval of length A, 

and hold this average output rather than the instantaneous output, as com-

puted by (2A). 

Thus, again sampling u(t) with period A, and using a zero order hold,. 

	

we obtain as before (0 	T 	A). 
T 

x(nA + T) = eATx(nA) + I  eA0deBu(nA) 
0 

= e
AT

x(nA) + A
-1 
 (eAT 	I)Bu(nA) 
	

(3 .1 ) 

Here we assumed that the continuous time system is strictly stable, so that 

all its poles are in the open left half plane. A is therefore nonsingular. 

The average value of the state in [nn, (n+ 1)p) is then 

A xn  = )- f x(nA + T)dT 
A  0 

A 	 A A  

	

= -.- 	I e
AT

dT x(nA) + 1-A-1 	(e'T  - I) dTBu(nA) A 
0 	 0 

	

-1 	 i 	A _ A
A 
 i`jkA 	

I) x(nA) + A."[ "
1 (eA 	

A
ll

I]Bu(nA) 
I   

(3.2) 
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The corresponding average output of the continuous time system is 

yn = Cxn  

1 l[ A1 	 1 ( AA 
- 

 LI CA
A 	‘ 
 t ìkA - I)x(nA) + CA - 	 I]Bu(nA) (3.3) 

As discussed in the previous section, we can properly renormalize the state 

equations by letting the discrete time state z n  correspond to 

z n  = 	x(no)  
v0 

(3.4) 

The The equations (3.3) and (3.1) where we set T equal to A are then rewritten 

as 

 

z n+l = 	zn + 	u 

Yn = gzn + un 

(3 . 5 ) 

where 

T= e °  

A -1 (eAA -  

177 

_ C(eAA  - I)A -1  
rz: 

(3.6) 

(3.7) 

(3 .8 ) 

	

E  -1(e 	
- 

 TN  AA 
= CA-1 	

A 	
-I ] B 

VrT 

or, letting again as in the previous section 

AA A2A2 T= I + -+ 2! 	3! 

(3.9) 

(3.10) 
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one obtains: 

= + ATA 

= /7-  TB 

= T CT 

and 

CA -1 (T - 

= AcRi 
	

(3.14) 

where 

I „ AA , A
2
A
2 

, 
= 2! ' 3! ' 	4! 	' 

can be accurately approximated by 

i/N  	[ I + 	(I + 	(. 	(I + 

(3.15) 

(3.16) 

It is now obvious from equations (3.12) and (3.13) that ZTand hi play symmet-

rical roles with respect to the original continuous time system. This is 

even more pronounced if one considers the Lyapunov equations satisfied by 

the reachability and the observability gramians respectively. Note that 

these gramians exist since, if A has all its eigenvalues in the open left 

half plane, then all the eigenvalues of T are strictly inside the unit 

circle. Letting CA  and OA  be the reachability and observability gramians 

for the discretized system, we get (noting that A and v commute) 

(I + ATA)CA  (I + ATA)' + ATBVT 1  = CA 	 (3.17) 

(I + AWA)'() (I + Aid) + AT I C I CT = 0 A 	 A (3.18) 

or after some algebra and observing that v is invertible (since -r has no 

eigenvalues on the unit circle) 
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AC
A
Y -T + -1 C

A
A' + BB' + AAC

A
A' = 0 

A10 T
-1 

+
-T

0 A + C'C + 6A 1 0
AA = 0 A 	 A 

(3.19) 

(3.20) 

It is apparent that CA  and OA  will be perturbations of C and 0 respectively, 

hence the technique of matching expansions in A will be employed to obtain 

exact formulas for the perturbations. The result is stated as a theorem, 

the proof is deferred to the appendix. 

First we show that T -I can be expanded in a converging sequence in A. 

Lemma 1:  The inverse of v as defined in (3.10) can be expanded in the form 

-1 	.1 i 
T 	= E a

i
h 

i=0 

where the a i  are recursively defined by 

a l  
42 	am- 	am 

= u 	 + 	+ + (m+ 1 -)! 	m! 	- 1)! 	
1 

2! 	1! 

40 =1  

proof: Direct multiplication of (3.10) and (3.21) yields 

ii 
-1 	°3 

 'FT 	= E 
+ 	Z 	

,j,j 

j 1=0 	=0 

m m m 	a. = z AA 	E 
m=0 	i=0 

from which (3.22) follows. 

(3.21) 

(3.22) 

E 

18 



Lemma 2: The explicit solution of the equations (3.22) is 

1 	d 
 m 

am = m! 	dx ) ex -1 

  

x=0 

(3.23) 

   

The sequence {am } converges to zero. 

proof: Appendix. 

It follows then from lemma 2 that the series (3.21) is absolutely con-

vergent, at least for 

A < IIAII -1  2' 	 (3.24) 

The first coefficients in the series are: 
a0 = 	al = 	' a2 =  

a3  = 0, a4  = - 720  , a5  = 0. This suggests that the actual region of con-

vergence for (3.21) may be much larger than that given in (3.24), but we 

have been unable to show this. We show also in the appendix that the co- 

efficients a i  can be computed alternatively as the coefficients of the powers 

of x in the telescoping series 

1 	1 	1 
1 - -2-0(x) + 	e 2 	4- (x) - 	e 3  (x) + 

where 
2 	3 

e(x) = 	+ 	x  1! 	2! ' 37 4.  • • • 

Now, we can state the 

Theorem 2: The reachability and observability gramians Co  and OA  of the 

discretized system (3.5) can be expanded in a norm-converging series if 

A < 271. 11A11 -1 	as: 

 C =EAiC (i)  A 	1=0 	A 1  
(3.25) 
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. 	. 
0 = E A 1 0 (1) 	 (3.26) 

	

A 	i=0 	A 

where C 	and 0A
(0) 	

a(0)  are respectively C and 0, the gramians of the 

original continuous time system, and for k # 0, the perturbation terms 

are computed recursively from: 

(k) 	(k) , 	a k 	(- (k-i)A ,i-1 +Ai-l c  (k-1) )A , = 0 	(3.27)  AC 	+C
A A +A E a. C A 	 1 A 	 A i=2 

k 
A , A  (k) 	0  (k)A 	A , 

i 
vA 	

A 	A a fn (k-1)Ai-1  + A' 

	

(k-1)
)A = 0 	(3.28) 

=2 

where the coefficients ai  are as in lemma 2, and the last summation vanishes 

if k is 1. 

proof: Appendix 

Application of theorem 1 yields 

AC (1) 
+ C (1)

A' = 0 A 	A 

which has the unique solution CA
(1) = 0 since A is strictly stable. The 

second order perturbation term is the solution to 

AC
A (2)  + CA (2)A 1  + 127A(CA '  + AC)A' = 0 

which can be reduced using (1.11) to 

ACA (2)  + C (2)A .  - -1- ABB'A' = 0 

	

A 	12 

which has as solution 

	

CA  (2) :: 
- 

112 
	 eAtABB'A'eAltdt = - 112  ACA' o  
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The third term is zero since (2.27) yields 

ACA (3)  + CA (3) A 1  +A[a2 (CA (1)A 1 
 +ACA(1))+0t3(cA(0)A,2+A2cA(0))]A1 = 0  

while a3  = 0 and CA (1)  =0 

The fourth term solves, noting again that a3  = 0. 

n%, An  A (4)+n 	n (4)AI+ A
m

L..
"2 %" 

(1, 

A 	
A (2)-, +AC

A 
 (2)  ) + a

4
(C (°) A 13 +A3cA  (°) ))A 1  = 0 

The term in between the brackets can be reduced to 

-a22 (ACA' 2 + A2CA') + a4 (CA'
3  +  A3C)  

= (a2L  + a4 )ABB'A' - a4A2BB' - a4BB'A' 2  

The solution is then 

(4) = 	m AtA[(a
2 
2 

- I e 	+ a4 )ABB'A' - a4A
2BB' - a

4
BB'A' 2

]Aie
A't

dt A 
0 

(a22  + a4  )A
2CA' 2 - a

4
A3CA' - a4ACA'

3 

One can continue the process ad libidum. Up to the 4 th order we get thus: 

2 	4 
Co 	 - 	- 	 , .?2 ACA' + ;20 (4A2CA ' 2 	A3CA' 	AC 00 3 ) + 0(A5)   = C -  (3.29) 

Observing that equation (3.20) is the "dual" of (3.19) where A, v, B, Co 

 are respectively replaced by A', v', C', OA  we obtain directly 

A 2 	A4 
0A 	12 = 0 - u A'0A  + 720  (4A' 20A2  - A' 30A - A'0A3 ) + 0(a 5 ) 	(3.30) 

The proposed discretization scheme is thus such that the reachability and 

observability properties of the original continuous time system - as displayed 
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by the respective gramians - are inherited up to second order in A. 

Beyond this the perturbation terms display further a very nice symmetry. 

The eigenvalues of the reachability gramian can be interpreted as the 

reciprocal of the minimal required energy associated with displacing the 

state in certain eigendirections [7]. Hence, a comparison of the eigen-

values of C and Co  will give an indication of the fidelity with regard to 

the reachability properties in the discretization. Similarly, the eigen-

values of the observability gramian are associated with the information 

conveyed by the observed output about the components of the initial state 

in certain eigendirections [4]. 

In what follows we shall assume that A is sufficiently small so that 

all terms of order 4 and above are negligible in (3.29) and (3.30). Thus,-

we let 

C o 	C 	eACA I  

0A  = 0 - ePOCA 

A 2 
where we replaced -17 by e. 

If the eigenvalues of C are 

> 	> ... > A 1 - 2 - 	n 

and those of Co  

A l 	A2 	An 

then it follows from the minimax theorem [8] that 

	

A. c  - eXmax (ACA') s A. c 	A. c  - eA
min

(ACA') 
	

(3.31) 

If the eigenvalues of ACA' are not known, then we can use the more conserva-

tive spectral norm 
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11ACA'11 	xmax (ACA') 

and obtain 

aic - clIACA'11 :5. X i 	< x i c 
	

(3.31) 

Thus all the eigenvalues of the discrete gramian are smaller than those of 

the continuous gramian by at most 

A 2 	, 
A  

11ACA'11 < 	11A11 2 11CII = 	Al‘11Al 2  12 	 A 

Similarly, the eigenvalues {T i c } of the discrete observability gramian 

are bounded by 

where 

0 
A. 	- ellA'0All 	< A 1 0 

- 

X
1
0 
	x 2 0 	? xn°  > 0 

( 3.32) 

are the ordered eigenvalues of 0. 

The "discretized" eigenvalues are all smaller than the corresponding 

eigenvalues of the continuous observability gramian by at most 

	

2 	 2 	 A 	0 11 	2 A OA 	— 	 x 1 	/111 

	

A 	li 	II 	—HAI12 11011 = 12 

The fidelities (2.5) can now easily be lower bounded. 

Indeed from theorem 1, we obtain 

11ACAT F  
fc  exp ( 12 	11C11 F  

2 
exP 	I1A110 

	

2 	2 > 1 - f2- IIAII F  
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and similarly 
2  

f0 	exp (- 11 	
A 	) F 

1  - 12 I1A4 
where we used the fact that IIXVII F 	IIXII F IlY1IF.  Another lower bound 

can be obtained by working directly from the definition, and using the 

maximal deviation for the eigenvalues: 

2 	A 2  I x i  (C) - x i  (CA ) 	n ( 	
2 

	

1-2- 	xi 	I IA I 1 
2)  

2 
	  - n

/ 	
1 1A1 1 2 ) 2  

EX i  (C) 2 0 2 
1 

whence 

2 
fc 	exp (- 	12 IIA112) 

2 
1 _12 VTE IIA112 

and similarly 
2 

- IF I IA11 2  12  

The results can be combined in the following. 

Theorem 3  

The fidelities of the discretization (3.5) are bounded by 

A 2 
fo , fc  ?_ 1 - iymin(11A4 , Jn 11A11 2 ) 	 (3.33) 
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The overall discretization fidelity is bounded by 

f(A) 	1 - 6 min(11A4, 	IIA11 2 ) 	 (3.34) 

up to third order. 

Comments: 

i) The bounds in the theorem can be made tighter by taking the 

exponential, rather than the first terms in the series 

expansion. The bounds obtained are however very tractable. 

ii) Computationally, IIAI1 F  is easier to obtain than 11A11 2 . 

iii) The overall fidelity is quadratic in A, as opposed to the 

linear dependence in the usual discretization scheme of 

section 2. 
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4. Applications to Digital Filtering and Model Reduction 

A commonly used technique in the design of digital filters is based 

on the discretization of an equivalent continuous transfer function. 

Usually, the direct form (canonical) realizations are used because the 

state update requires at most n+1 multiplications for an n-th order filter. 

It was shown in [5) that these realizations do not have the best properties 

with regards to the effects of finite wordlength. Those effects are 

minimized in the "balanced realizations" for which the state update re-

quires at most n2  + n multiplications. In some cases, this augmentation of 

the number of multiplications can trade off with a larger fidelity in 

mimicing the continuous transfer function. This then may allow a decrease 

in step size (sampling period) and hence a smaller number of multiplica-

tions per time unit than for the direct form realizations for the same 

fidelity. The details will be presented in a forthcoming paper, but the 

remainder is based on the following. 

If the continuous time system were given in balanced form, then by 

definition [7) 

C = 0 = A 	 (4.1) 

where A is diagonal and called the canonical gramian [4). 	Hence the 

discretized realization has the gramians 

Co
2  

 = A -
12 
 AAA' + 0(A

4
) (A .+0) (4.2) 

A 2  
OA = A -- 12 

A 'AA + 0(A4 ) 	(A Ho- 0) (4.3) 
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In general, the matrices AAA' and A'AA are not diagonal, so the discretized 

realization is no longer balanced, although the imbalancing perturbation 

terms are only of second order. Suppose one "rebalances" the discretized 

system, then it is of interest to know how the canonical gramian of the 

discrete system relates to the original one. 

Theorem  3: 	If (A,B,C) is a continuous time balanced realization with 

canonical gramian A, then the canonical elements X.(A) of the discretized 

system (3.5) are for sufficiently small step-size A 

A 
L 

	

4 

2 	2 i 
	

2 
A i (A) = A. - — 	 (ak 

 + a. ) 
k 
 +) 

	

2 	 ik  
(4.4) 

proof:  The canonical elements are the square roots of the eigenvalues of 

	

2 	 2 

	

C
A
O
A 

= (A - 
A 	 A 

	

2 	 12 

	

AAA' + 0(A
4
))(A - 	A'AA + 0(A

4
) 1  

2 

	

, 	, = A 2 - 
12  (AAA'A + AA'AA) + OkA

4 
 ) 

This can be diagonalized by an orthogonal transformation T which is almost 

the identity. Hence we set 

	

T = I + A 2
c 
	

(4.5) 

for some skew symmetric C (because TT' = I). Now find C such that 

2 A 2  2 
(I + A )(A -  

12 

 (AAA'A + AA'AA) + 0(A4))(I - A
2
C) 

A2 
	2, 2 = A + A kCA -

12 
 (AAA'A + AA'AA) - A 2 c) + 0(A 4 ) (4.6) 
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is diagonal (up to third order in A), or 

(CA 2  - -ff (AAA'A + AA'AA) - A
2‘).. = 0 
	

j 

, 2 	2, 	r. kA. - A.)4. 	- 	(a. A a. A. + A.a .x a .) = 0 3 	ij 	12 	ik k jk 3 	L 	k kj 

Thisequationdeterminesif lowever, we do not need c. j 

 explicitly for i 0 j. Remark that cii  = 0 since C is skew symmetric. 

The diagonal elements of (4.6) are then 

, 2 	A2  
A i - 	A i 	Ak (afk 	aki) + 0(A4 ) 

2 (1 - " 9 k 2 
' A. 	

2 	
4)) L 	(a.k  + a .) + 0(A 

k 	1 	ki 

For sufficiently small A, the square root is 

9 	A A - 	k , 2 	2 	4.. A. ki - — L 	ka. + 	.) 	 vkA 
1 	24 A 	lk 	kz k 

from which (4.4) follows. 

Related to this problem is also the combined model reduction and 

discretization. The reduction technique for the continuous as well as the 

discrete system is based on the balanced realizations 171, the main idea of 

which goes as follows. 

Suppose (A,) is balanced with canonical gramian A, containing 

large elements in the first p diagonal entries and small ones in the other 

n-p entries. If one partitions the given realization in 
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All 

76;12 ] [i  

1 

-Ai
21 A22 	

T3
2 	

[C
1 

C
2

] 

consistent with 

A 
[A

l  
A 2] 

p 

n-p 

then a good approximation of this system is given by the stable balanced 

realization (A11 ,B 1 ,C 1 ) with canonical gramian 

Let now (A,B,C) be any n-th order (not necessarily balanced) reali-

zation with canonical gramian A. We investigate the commutation of discre-

tization and reduction. 

First we reduce the continuous system via the method of balanced 

realizations. Say that the result is (A 11 ,131 ,C 1 ) of order p < n. Using 

theorem 3, it follows then that the discretization of this model leads to a 

system with canonical elements. 

2 P - v —2 	—2 
( A) 	A. - — 2, (a 	+ a. )X 

i 	i 	4 	ki 	ik 
k=1 

i = 1,•••,p (4.7) 

Alternatively, one can first discretize (A,B,C) and then reduce. 

Invoking (3.23) and (3.29), the canonical elements of the discretized 

system are the square roots of the eigenvalues of the product (up to third 

order in L) 

A 2 
C

A
O

A 
= CO - nr (ACA'0 + CA'0A) 
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This formula is not so useful to put bounds on the eigenvalues since the 

terms in the righthand side are not symmetric. In order to remedy this 

situation, we symmetrize by finding the transformation T such TCAT' = I, 

then the elements fo the canonical gramian are equal to the square root of 

the eigenvalues of the symmetric matrix T -TOR T
-1

. 

Further, expanding T as T = (I + A
2
0)C where C is a square root 

of C (i.e. C = C CT/2 ), we get 

2 	- 11 	A2 	-T/2 
(I + A 0)C (C - — ACA')C 	(I + A

2
0') = I 

12 

from which the first perturbation term is 

A
2
[0 - — C 	

T/2 
ACA' 	+ 0'] = 0 . 12 

Only the symmetric part of 0 is of importance. 

-11- --c ACA I C T/2 
S 24 

for the first perturbation, hence we can set the asymmetrical part zero and 

approximate T
-1 

as 

-1 	1.1 	2 	-1 	11 	A2 	 -T/ 

	

T = C (I + A O
s
) = C (I - — 	A I C 2 ) 

24 

We get finally 

	

2 	, 

	

A 	 - 	, 
T-1 OT

-1 
 = (I - 1-2; C AGA' C 

T/2  )UT/2 
 

(0 - A A'19A)c 	A  1/2(I -  
12 	 24 C 

ACA1cT/2) 

,T/2 CC 	-27; (C AcA pc 
 

+ 2c /2  A. 1 0Acd.  + CT/2 
cloA , c T/ 2 )  = 
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A general formula for the eigenvalues i
(A) of the above matrix cannot be 

given, but we get the following bounds 

IA? 	2 	A2 	-1/2 	 -T/2I 

	

. - A.(A)1 < — 	AcA ,och TI2 A'OAC
1/2 

+ 
CT,/2 

OACA I C 	I 
— 24 

A 2 
< IT II  C 1/2  ACA'OC II  + 2 11 CT I 2  AIOAC1/2 H + 0/12  GAGA' C T/211  

A 2 

—
< 

24
- {4 IIACA'OII} 

2 	2 

	

I1A11 	IICII 	11 0 11 

Hence, for sufficiently small A 

	

A 2 	11 	A 11 2  Hcll Holl 	 I1A11 2  mcm 11011 	(4.9)  

	

- — 	 < A (A)< A
l 
 + - 

	

A
l 12 	 — 	 12 

The perturbation is again quadratic in A as expected, but can only be 

bounded by a A i  dependent term, whereas we get an equality in (4.7). 

Letting 14 Ali 2  IICII loll equala,theneachAJA) is inside the sector 

with top at Ai  and which widens inversely proportional to A i  (Fig. 1). For 

bothoases,itfollowsnatifA i >ApthennotnecessarilyA.(A) > A.(A) 

which would indicate that the important dimensions of the discrete system 

and the continuous system do not correspond. 

Suppose now that the original system was reduced from order n to 

order p. Thus, we assume that 

[Al 	

I $ P  

A = 
A2 $ n-p 
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Figure 1. Bounds on the elements of the conical gramian for the general 
reduced order realization. 

where Al  > A2 . Let A. 4.  and A be the least elements of A
l  and 112  respective-

ly. Then the p-th order optimal reduction of the discretized system will 

correspond to the discretization of the optimally reduced continuous sys-

tem if 

A + (a) > A i (a ) 
	

i = p+1,...„n 
	

(4.10) 

This is a condition on A. 

Definition. 3: The discretization and the model reduction are said 

to be compatible for steplength A if the elements of the set {A i (A); 

i=1,...,p} are all larger than the elements of the set lx i (A); 

i=P+1,...,n1. 
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A < 	 

	

A+ - a j 	a 
A+ - A i A

+A i 

TheboundsprovidedonthecanonicalelmentsA.(A) developed in 

(4.9) provide now a conservative scheme for computing the region of compat-

ibility. 

Theorem 4:  A sufficient condition for the compatibility' of the p-th order 

reduction and the discretization is that 

where the A. are the 
1 canonical elements of the (deleted) part A and 

a  = 12 

H All 2  Hall 	11011 . 
proof: Using the bounds (4.9) we get 

.1. (A) > A +  - 

and 

Ala 
A+ 

A.(6) < A. + A. for i = p+1,...,n. 
A2a, 

For (4.10) to hold it is thus sufficient that 

A2a 	A2a 
> 	+ 
— 

A . 
	A

i 
or 

A - A 	A A 
2 < 	 
— A + A + 	i a  

i=p+1,...,n 

Remark that by bounding the righthand side of (4.11) we obtain the (more 

conservative) bound 

A+ - A- A+An 
<

+ + A- a 
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Remarks:  The definition 3 is quite arbitrary,, alternatively one could 

require that compatbility holds if also the ordering of the elements x i a) 

and A.'  is kept for i=1,...,p, which is obviously a more restrictive condi- 

tion. 
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5. Conclusion. 

A new ZOH-discretization scheme has been derived. It was shown that 

it "conserves" the reachability and the observability properties of the 

continuous system up to first order. The method can be applied for robust 

design of digital filters. In the application to model reduction an upper 

bound on the stepsize is given based on the order conservation of the 

canonical elements. 
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H 	z k  delay 

IMP 	 

Y k 

APPENDIX  

A. Proof  of lemma 2: 

The sequence {a i } can be generated as the return difference in the 

feedback system 

i > 0 

k 

where the system H has impulse response h = T-(---14:

1

.0-r  with initialization 

y
o 

= 0. 

Then indeed y k+, = z k  = - iE 
0 i 

 h(y k _ i  + s k-i ) and eco  = 1, e i  = yi 
 = 

satisfies the recursion (3.22). In the transform domain we get 

1 

H(z) = i E
0 ` 

z-i (i 	2)1  - z2 (ez  - z -1 
- 1) 

= 

and 

E(z) :: 	1 	 1
-1 	 1 

1 + z H(z) 
z(ei.  - 1) 

(A.1) 

The inverse z-transform and hence the coefficients a i  can then be identified 

from the expansion of (A.1) in negative powers of z, or letting x = z -1 , we 

obtain 

E: (x -1 ) - 	x  
ex  - 1 

The Taylor expansion of this about x = 0 yields 

i 
E ( X ) = --E 	Rdx 	x 

X 	
x

i 
i=0 	e - 1 	x=0 
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Hence 

a. 
1!  . 
	[(l i 	 

dx 	x  
ex - 1 x= 0 

If we also set ex -1 = e, then x = ln(e + 1) and we get 

1 	1 	
•• 

2  + 	. ln(e 	I)  - 1 - -2-  E(x -1 ) = i(e) 

where also: 

	

1,11 	, 1 	1  
° = 	' 2! 	2 	' 3! 	3 ' z 	z  

giving also a solution of a i  as the coefficients of z 1  in the above tele-

scoping series. These coefficients are also related to the Bernoulli-

numbers, which appear in the theory of the 	regular prime numbers [9], 

B
n 
defined by 

B
n xn 

ex - 1 	E 
n=0 

B 
 Thus an = T 

From the known properties of the Bernoulli numbers [10] we obtain for n z 1 

	

a2n+1 = 
	

(A.2) 

2 	 n+1 	 2  
1 	(-1) 	a2n 	

(210
2n (2 ) 2n 1 	21-2n  

Thus clearlya
2n 	

0 for n 

(A.3) 
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B. Proof of Theorem 1: 

Consider the equation (3.19) where we substitute (3.21) and (3.25) 

(i) 	,j 	 (j ) A' Ea.AjA 	+ EA j a.A 1 EAjC 	)A + BB' + 
i=0 	A 	j=0 	 i=0 	1  j=0 	A 

+ E A
i+1

AC
A 
 (i)

A' = 0 
i=0 

A , AEAk  EC 	
-1 	k=0  k i k=0  	A "  A 

(i)(k-1)
ak  E A E a.A I C (K-1)A 1  

k=0 i=0  

+ BB' + E AA kCA (k-1) A' = 0 
k=1 

 
(ACA  (°) + CA  MA' + BB') + 	o k  A E CA

(;1 
 I A'

II,
-I I
41  

ak-i + 
k=1 	i=0 

	

k-1 	(i)
i= 	

(k-1) , E 
0
a,,A 	Co  A' 	ACA  

hence 

AC (°) + C MA' + BB' = 0 A 	A (B.1) 
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and 

k E (AC (i) A 1(k-i)  + Ak-i CA (i) A l )a k_ i  + ACA
(k-1)

A = 0 

	

i=0 	A  

k = 1, ... 

or equivalently, 

AC (k)  + C (k)Al + E ci i (ACA (k-i) A li  + A i C (k-i)k) = 0 

	

A 	A 	
i=2 	 A (B.2) 

The exact solutions of (B.1) and (B.2) are, noting that a2k+l  = 0 

for k = 1, 2 ... 

C (°) = C A 

	

c  (2k) 
= f eAt 	a94(ACA (2(k-i))A,2i 	A2i c 

 A(2(k-1 ))AI)eAltdt  0 	i=1 

c  (2k-1) = 0 
A 

A bound on CA  (2k)  is obtained as 

lic, (2°11 

k 
E 	11A11 2 1a2i 

i=1 	
I III° eAt(cA(2(k-MA,2i-1 	A2i-1c(2(k-i)))eA'tdtll 
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The integral is bounded by 

211A112i-iiic 
A
(2(k-i))11 

20
o  

where a = min IReA(A)I 

hence, we obtain recursively 

ilcA (2k) 11 _ z 	ia 
21 

1  . 	liAll 2i licA (2(k-i)) 11  
00 i=1   

Q 	
4
2. 11A11 2i ll

cA (2(k-i)) 11 
0 1=1 (210 

By induction it is then easily shown that 

lIcA ( 2 0 1 1 11A112k  (4 + Go )k-1 

ao k 
	

( 2w )2k 

and hence that the series (3.24) converges for at least 

271- 	
G
o 	

2w 

A  < IlAll 	4 + ao 	11All 
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An important new direction of the research is the application of the balancing 
concept to the closed-loop system. This results in what we called the LQG-balanced 
realizations and is based on the underlying Riccati equations rather than the (open 
loop) Lyapunov equations. This is a crucial advance, however many problems remain 
open (e.g. stability of the reduced order model). These results were reported in: 

E. I. Verriest, "Suboptimal LQG-Design via Balanced Realizations", Pro-
ceedings of the 20th IEEE Conference on Decision and Control, pp. 696-687, 
San Diego, California 1981. 

Also for the time invariant case an LQG-reduction program is developed. 
Important new insight in the fidelity of discrete applications of continuous sys-

tems was gained by using concepts of balanced realizations. Applications to the design 
of digital filters were obtained as well. In particular, it was shown that with the 
"usual" discretization procedures input and output properties were not conserved. 
Our method yields a fidelity up to second order in the stepsize. These results are 
reported in: 

E. I. Verriest, " Reachability-Observability and Discretization", accepted 
for the 21st IEEE Conference on Decision and Control", Orlando, Florida, 
December 1982. This paper is also being reviewed for publication in the 
Transactions on Automatic Control. 

The application to the design of digital filters is presented in: 



E. I. Verriest, "Digital Filter Design based on a High Fidelity Discretization 
Procedure", 17th Annual Conference on Information Science and Systems, 
Johns Hopkins, March 1983. 

During the 2nd year of the research, the work continued on several fronts: 
0 Connecting to the work on discretization, we have looked at the inverse problem, 
namely that of modeling a discrete system by a process, continuous in time. It is 
shown that an n-th order discrete system can always be "continuized" by a minimal 
real system of order, possibly higher than n, but not exceeding 2n. This theory is 
then applied towards the equivalence of continuous and discrete Liapunov equations, 
hence again tying in directly with our main objective: the study of balanced 
realizations. It should also be noted that this procedure is further very significant 
in certain interpolation methods. The results are written up in: 

E. I. Verriest, "The Matrix Logarithm and the Continuization of a Discrete 
Process", under review IEEE Transactions on Circuits and Systems. 

ii) The structure of scalar time invariant balanced realizations (in particular the sign 
symmetry) is well known. The structural properties have for multi input - multi output 
balanced realizations has been analyzed. Unfortunately, not such nice properties 
as for the siso case exist. These results were discussed in an invited conference paper. 

E. I. Verriest, "The Structure of Multivariable Balanced Realizations", Intern-
ational Symposium on Circuits and Systems, Newport Beach, California, 
May 1983. 

The same paper also discusses a more direct way of obtaining the balancing transfor-
mation (modulo an orthogonal transformation) of a siso system, thus avoiding the 
dual singular value decomposition of the original approach of Moore. Also some explicit 
formulas for the Lyapunov equations in terms of reachability or observability matrices 
and what I have termed the "canonical gramian" of the characteristic polynominal 
are given. As indicated, this gramian is completely determined by the coefficients 
of the characteristic polynominal. A more detailed version of this conference paper 
will be written in the near future and submitted to the IEEE Transactions on Automatic 
Control. 

iii) Another interesting question is the relation of model reduction based on balanced 
realizations and the classical method based on dominance. The results of this study 
are not yet quite at a satisfactory level, and some further work in this area is desired. 
We approached the problem from the inverse direction, i.e. given a balanced matrix 
A. Imbed this matrix into a larger one (by bordering) which is still balanced. The 
relation of the eigenvalues of the matrices are investigated and bounds are established. 
The results of this continued study will evolve in a more matrix-theory oriented paper: 
"The Eigenstructure of Balanced Matrices". 

iv) In the area of stochastic modeling, we have tied together the stochastic balancing 
method proposed by Desai and Pal (canonical correlations) and the method of Arun 
and Kung based on the one-sided Karkunen Loeve expansion (principal component 
analysis). A dispute about which one is optimal is resolved by providing optimality 
of both methods, but with respect to different contraint sets. The unifying framework 
is the so-called RV-coefficient method by R. Escouffier and the redundancy analysis 
of Van Wollenberg. Preliminary results are reported in the invited paper: 



J. Ramos and E. I. Verriest, "A Unifying Tool for Comparing Stochastic 
Realization Algorithms and Model Reduction Techniques", Proc. American 
Control Conference, San Diego, California, June 1984. 

This unification fits further nicely in the more abstract framework of Gleason-measures 
on the logic of subspaces of a Hilbert space. This is under further investigation and 
a resulting publication will be forthcoming. 

v) A study of the applicabiality of model reduction techniques via balanced realizations 
for infinite dimensional systems has begun. Only a simple parabolic system (the heat 
equation in a homogeneous medium) has been investigated. Two different 
approximations were used. A straight forward discretization, as used for the numerical 
solution of parabolic PDE's and the eigen function expansion. Both solutions converge 
to the exact operation solution as N, the dimensionality of the approximation, tends 
to infinity. The work slowed considerably as some unexpected difficulties arose, 
and is as yet not terminated. 

vi) The germinal ideas on balancing in general and its use in model reduction spawned 
some new ideas towards the robust design of control systems. 

The main idea is that while reducing a given deterministic model, part of the 
informaiton (i.e. some state components) is thrown away, thus resulting in some uncer-
tainty. For this reason, any reduced model should have this uncertainty built into 
it: i.e., the reduced model of a deterministic system should be stochastic. The inform-
ation loss should be conserved in the uncertainty in the stochastic model! 

This must definitely be true in the finite approximation of infinite dimensional 
system. Similarly the effect of the nonlinearities of a mild nonlinear system could 
be modeled as a stochastic input, leading to more robust modeling on one hand, and 
to quantitative criteria for selecting weighting matrices and covariance matrices 
in the general LQG problem. A proposal to continue the research in this direction 
is forthcoming. 

vii) Finally, an extension of the theory of balancing transformations to Volteria systems 
was proposed based on a tensor space formalism. Only some conservative bounds 
for the reduced orders could be given. This is inherent in the tensor space approach. 
This together with material on I/O approximation for certain nonlinear systems is 
presented in 

E. I. Verriest, "Approximation and Order Reduction in Nonlinear Models 
using an RKHS-approach", 18th Annual Conference on Information Sciences 
and Systems, Princeton University, March 1984. 



"A Generalized Stochastic Realization Theory with Applications to Multivariate 
Streamflow Modeling and Optimal Control of Water Resource Systems" 
Jose Ramos, Graduate Student Civil Engineering 
Dissertation Advisor: Srinivas G. Rao, co-advisor E. I. Verriest 

Abstract (Preliminary) 

The joint problem of multivariate modeling of streamflows and optimal control 
of water resource systems in a particular river basin is approached in this dissertation 
from a stochastic realization point of view. 

The streamflow modeling problem is formulated as that of finding linear 
transformations (basis vectors) of the forward and backward predictor spaces of a 
vector stochastic process. These basis vectors will then be the states of a forward 
and backward Kalman filter, respectively. A new method of solution is presented, 
namely the RV-coefficient method which in turn yields two previously developed 
algorithms as specific cases. When the two Kalman filters have equal and diagonal 
state covariance matrices, the system is said to be in balanced form and a 
reduced-order model can be easily obtained. It is shown that the RV-coefficient 
method is a general tool for solving the stochastic realization problem in that when 
applied to unbalanced systems, a balancing transformation can be found. 

The optimal control problem is solved as an LQG problem via the separation 
principle, having a forward Riccati equation for the Kalman filter and a backward 
Riccati equation for the optimal control law. Since this pair of equations is not in 
balanced form, the RV-coefficient method is applied in order to find the balancing 
transformation and hence the reduced-order model which can be viewed as some 
form of model aggregation. Applications of this methodology to a specific river basin 
are under way.. 
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