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ABSTRACT

Given a projective reconstruction of a 3D scene, we address
the problem of recovering the Euclidean structure of the scene
in a recursive way. This leads to the application of Kalman
filtering to the problem of camera autocalibration and to new
algorithms for the autocalibration of cameras with varying pa-
rameters. This has benefits in saving memory and computa-
tional effort, and obtaining faster updates of the 3D Euclidean
structure of the scene under consideration.

Index Terms— Calibration, Kalman filtering, cameras.

1. INTRODUCTION

As is well known, the extraction of 3D structure informa-
tion from images taken with uncalibrated cameras is a noise-
sensitive problem that can greatly benefit from the availability
of a large number of images of the scene, that can be easily
obtained from a video sequence. Since the cost of the avail-
able algorithms is very sensitive to the amount of processed
data, handling in batch mode a large number of images may
result in unaffordable computational cost and/or delay.

In this paper we employ the formalism of Kalman filtering
to propose a recursive algorithm for the autocalibration of a
scene. This algorithm, being linear in the number of images,
is specially suited to the processing of large image sets. We
consider the case of a rigid scene registered with a camera
with known pixel shape that is allowed to vary arbitrarily its
other internal parameters while experiences general motion.
For the formalization of this autocalibration problem we make
use of the Absolute Line Quadric (ALQ) [1].

Autocalibration algorithms based on Kalman filtering are
(to the authors knowledge) scarce in the literature. An excep-
tion is [2], in which such a scheme is applied to the autocali-
bration of a camera capturing a planar scene.

This paper is organized as follows. In section 2 we formu-
late the autocalibration problem, deriving the equations from
the hypothesis of known pixel-shape and the Kalman filter ap-
proach to their solution. The resulting recursive algorithm is
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formalized in 3, and the experimental results are described in
section 4. Concluding remarks are given in section 5.

2. PROBLEM FORMULATION

Using homogeneous coordinates and assuming negligible ra-
dial distortion, the geometry of image formation can be mod-
eled with the linear pinhole camera model x ∼ PX, that
is, the camera matrix P = K[R| − Rt] maps world points
X = (x, y, z, t)> to image points x = (u, v, w)>, where
∼ means equality up to a non-zero scale factor. The intrinsic
parameter matrix K is given by

K =




αu −αu cot θ u0

0 αv/ sin θ v0

0 0 1


 ,

where u0 and v0 are the affine coordinates of the principal
point, αu and αv are the pixel scale factors and θ is the skew
angle between the axes of the pixel coordinates. We denote
by τ = αu/αv the pixel aspect ratio. The matrix R is a rota-
tion matrix which gives the camera orientation, and t are the
coordinates of the camera optical center.

As is well known [3], given a set of point correspondences
xi

j in m ≥ 2 images it is possible to obtain a projective recon-
struction consisting of a set of matrices P̂i and a set of point
coordinates X̂j such that xi

j ∼ P̂iX̂j , where X̂j = HXj and
P̂i = PiH−1 for some non-singular 4× 4 matrix H.

For a given projective reconstruction, autocalibration is
the process of determining, directly from multiple uncalibrated
images, a rectifying homography of 3-space H that converts
projective coordinates into Euclidean coordinates, in which
the absolute conic has equations x2 + y2 + z2 = t = 0.

The ALQ [1] is a convenient tool to deal with our autocal-
ibration problem. This geometric object, representing the set
of lines that intersect the absolute conic, is given by a rank-
three symmetric 6×6 matrix Σ∞. Two lines are orthogonal
if and only if their Plücker coordinate vectors r, r′ satisfy
r>Σ∞r′ = 0.

Certain constraints in the internal parameters of the cam-
eras yield linear equations in the elements of the Images of
the Absolute Conic (IACs) [3, p.462], ωi = (KiKi>)−1 or



their Duals (DIACs) [3, p.449], ω∗i = KiKi>. By the rela-
tionship between the IAC and the ALQ, it is easy to see that
linear equations in the former are also linear in the elements
of the latter [4], just like linear equations in the DIAC are also
linear equations in the Dual Absolute Quadric (DAQ) [5], Q∗∞.

We will continue the discussion for the case of cameras
with square pixels, but it is straightforward to extend the ideas
to any other of the aforementioned constraints.

2.1. Cameras with known pixel shape

After a coordinate transformation in the image planes, cam-
eras with known θ and τ are equivalent to cameras with square
pixels (θ = π/2, τ = 1), which leads to two linear equations
on each IAC: ωi

12 = 0 = ωi
11 − ωi

22
1. The geometrical inter-

pretation of these conditions is that the back-projected lines
of points (1, 0, 0) and (0, 1, 0) and those of points (1, 1, 0)
and (1,−1, 0) are two pairs of orthogonal lines, so that in
terms of the ALQ [4] we have, given a projection matrix
P = (π1,π2,π3)>,

ω12 = (π2∧∗ π3)>Σ∞(π3∧∗ π1) = 0

ω2
11 − ω2

22 = ((π2 + π1)∧∗ π3)>Σ∞((π2 − π1)∧∗ π3)= 0.

These equations form the system As = 0, where s is the
vector of the ALQ elements. In presence of noise, the pre-
vious system may not have an exact nontrivial solution, but
one finds a least-squares solution by minimizing the the al-
gebraic distance2 ‖As‖ with ‖s‖ = 1. This linear algorithm
requires m ≥ 10 cameras [6]. Once s is determined, natu-
ral constraints of the ALQ are enforced a posteriori and the
rectifying homography H can be obtained.

The linear algorithm is the stepping stone towards de-
signing more elaborate ones, such as the nonlinear algorithm
that minimizes the algebraic distance by a priori enforcing
the constraints of the ALQ with a suitable parameterization
s = s(h), where h = (c1; c2; c3) 3 and H = (c1, c2, c3, c4)
is the rectifying homography. This enforces the required con-
straints: det Q∗∞(h) = 0 for the DAQ and Σ∞(h)ΩΣ∞(h) =
0 for the ALQ. Although this parameterization is not min-
imal, it has good numerical properties besides being unbi-
ased: no projective camera needs to be chosen as the refer-
ence P = [I|0]. This algorithm works for m ≥ 4 cameras.

The algorithm we have proposed admits the following for-
mulation. Minimize the cost function g(h) = ‖X − f(h)‖2,
where X is the target measurement vector and f : R12 → RN

is the model function. Vectors X = [X1; . . . ;Xi; . . .] and
f(h) = [f1(h); . . . ; fi(h); . . .] can be partitioned so that the
cost function becomes g(h) =

∑m
i=1 ‖Xi − fi(h)‖2. In our

problem, the target measurement vector is zero, X = 0, N =
2m and all fi have the same form fi(h) = A(P̂i)s(h/‖h‖)
but different data P̂i. In [3] it is shown how to minimize g(h)

1Linear equation ω11 − ω22 = 0 and quadratic equation ω2
11 − ω2

22 =
(ω11 + ω22)(ω11 − ω22) = 0 are equivalent because (ω11 + ω22) > 0.

2between a set of orthogonal 3D lines (A) and a candidate quadric (s)
3(a;b) = (a>,b>)> means vertical concatenation of matrices

with the Levenberg-Marquardt algorithm considering it as a
batch problem.

2.2. Towards a recursive approach

One drawback of most autocalibration algorithms in the liter-
ature is that they require all camera matrices P̂i to be known at
the time the optimization begins. We show now that it is pos-
sible to design algorithms that provide an estimate of the rec-
tifying homography by processing one camera at a time. This
has benefits in saving memory, computational effort (smaller
matrices need to be inverted) and obtaining faster updates of
the parameter vector h.

There is a fundamental connection between recursive least
squares (RLS, deterministic optimization) and Kalman filter-
ing (stochastic optimization), so that solving a problem in one
domain amounts to solving a problem in the other.

We will use the stochastic viewpoint and think of the recti-
fying homography as a constant shared by all camera matrices
that needs to be estimated in order to update the reconstruc-
tion. Each camera provides two observations (linear equa-
tions) of this homography and we have to estimate H from
these observations.

The Kalman filter can be used to estimate this constant
matrix when treated as the state vector of a dynamical sys-
tem with state equation hi = hi−1. Following the notation
in [7], the cost function specifies the observation equation of
the system: fi(y′i,hi) = y′i−fi(hi) with y′i = yi+vi, where
yi is the output of the system, y′i = fi(hi) and vi is mea-
surement noise. In our problem, we suppose that the camera
matrices are exact and that we want to find the homography
that makes yi = Xi = 0. That is, we have a system with
state hi that takes a camera matrix P̂i as input and outputs
yi = fi(hi) + noise, where we should observe zero for the
exact result. The state-space representation of our system is:

state equation hi = hi−1

observation equation fi(yi + vi,hi) = 0.

The Kalman filter is an estimator for linear systems and
because the observation equation is nonlinear, it cannot strictly
be applied to our system. Therefore we consider using the
Extended Kalman Filter (EKF), which applies the standard
Kalman filter to nonlinear systems with additive white noise
by linearizing them around the previous state estimate, start-
ing with an initial guess.

We define the error covariance matrix in the usual way:
Pk|i = E[ek|ie>k|i], where ek|i = hk − ĥk|i is the error in the
estimation of state hk = h considering all the observations
up to time i ≤ k.

As is well known, every iteration of the Kalman filter has
two steps: (i) a prediction step in which the state vector and
the error covariance matrix are propagated according to the
state equation and (ii) an update step in which observations
are used to correct the previously predicted elements.



The prediction equations of the state and the error covari-
ance matrix are: ĥi|i−1 = ĥi−1|i−1 and Pi|i−1 = Pi−1|i−1.
To simplify the notation, let ĥi = ĥi|i and Pi = Pi|i. Then,
only the observation equation requires linearization. The first
order Taylor series approximation of our observation equation
around (yi, ĥi−1) is [7, p.317]

0 = yi − fi(ĥi−1) + vi − ∂fi

∂hi
(ĥi−1) · (hi − ĥi−1)

and this equation can be rewritten as a linear measurement
equation y′i = F̃ihi + vi, with

F̃i = − ∂fi

∂hi
(ĥi−1)

.= −Ji,

y′i = F̃iĥi−1 − yi + fi(ĥi−1) = F̃iĥi−1 + fi(ĥi−1).

Observe that F̃i ∈ R2×12 is the negative Jacobian matrix of
the model function evaluated at the predicted estimate of the
state vector ĥi−1, prior to taking into account the current pre-
diction error (y′i − F̃iĥi−1) = fi(ĥi−1).

3. RECURSIVE ALGORITHM

ALGORITHM: given a projective calibration of m cameras,
{P̂i}m

i=1 and an initial rectifying homography estimate H,
Initialize ĥ0 with the first three columns of H and P0 = I.
Iterate. Because this is a linearized version of the nonlin-

ear system considered, repeat until convergence or a specified
number of times the following prediction and measurement
updates.

For i = 1, 2, . . . , m compute:

fi = A(P̂i)s(ĥi−1/‖ĥi−1‖) 2× 1

Ji = ∂fi

∂h (ĥi−1) 2× 12
Γi = (JiPi−1J>i + Σv

i )−1 2× 2
Ki = −Pi−1J>i Γi 12× 2

ĥi = ĥi−1 + Ki(y′i − F̃iĥi−1)

= ĥi−1 + Kifi(ĥi−1) 12× 1
Pi = (I + KiJi)Pi−1 12× 12

Observe that the conversion factor Γi ∈ R2×2 is the only
place where matrix inversion is required and it is a trivial one.
Do not confuse the Kalman gain, Ki, with the intrinsic pa-
rameter matrix Ki, which is unknown at this point.

The inverse of the weighting matrices in Weighted RLS
problems play the role of the covariance matrices of the mea-
surement noise in the Kalman filter. Therefore, from a de-
terministic optimization viewpoint we can choose Σv

i = I
or we can weight the error in the skew and aspect ratio ac-
cording to their uncertainties with Σv

i = JP̂iJ>
P̂i where JP̂i =

∂fi(hi,P̂
i)

∂P̂i (P̂i) ∈ R2×12 when interpreting P̂i as a 12× 1 vec-
tor. This is related to the minimization of the isotropic Samp-
son’s distance instead of the algebraic distance. If we knew
the covariance of the camera matrices, ΣP̂i ∈ R12×12, we

could further use Σv
i = JP̂iΣP̂iJ>

P̂i , which is related to the min-
imization of the non-isotropic Sampson’s distance [3, p.114].

We need to specify an initial state and covariance ma-
trix to start the Kalman Filter. Ideally, ĥ0 = E[h0] and
P0 = E[e0|0e>0|0]. In practice, we initialize ĥ0 with the result
of a linear algorithm (e.g., estimation of the DAQ using the
orthogonal cameras4 hypotheses, which requires only 3 cam-
eras) and we initialize the covariance with the identity matrix.

3.1. Model function simplification and exact derivative

Let us show an efficient way to compute fi. Given a projec-
tion matrix P = (π1,π2,π3)> and a rectifying homography
H = (c1, c2, c3, c4), the Euclidean (metric) camera matrix is
PM = K[R| − Rt] = PH, whose first three columns do not de-
pend on c4. Let PM = [M|m4], where M = (m1,m2,m3)>.
Then, the square pixel equations on the IAC become:

ω12 = (m2×m3)>(m3×m1) = 0
ω2

11 − ω2
22 = ((m2 + m1)×m3)>((m2 −m1)×m3) = 0.

Therefore, after normalizing h, we can use

z(PM) =
[

(m2×m3)>(m3×m1)
((m2 + m1)×m3)>((m2 −m1)×m3)

]

as our error vector, fi(h, P̂i) = z(P̂i
M). Furthermore, the

derivative is easy to compute, as well. Given two vectors
u,v ∈ R4, define the antisymmetric matrix M(u,v) = uv>−
vu>. Define the symmetric part of a real matrix A, Sym(A) =
(A + A>)/2. Then,

∂z/∂h =
[

∂z1/∂c1, ∂z1/∂c2, ∂z1/∂c3

∂z2/∂c1, ∂z2/∂c2, ∂z2/∂c3

]

where, for j = 1, 2, 3,
∂z1/∂cj = 2c>j Sym (M23(cjc>j −

∑3
k=1 ckc>k )M31)

∂z2/∂cj = 2c>j Sym (M ′
23(cjc>j −

∑3
k=1 ckc>k )M ′

31)

and M23 = M(π2,π3), M31 = M(π3, π1), M ′
23 = M23 −

M31 and M ′
31 = M23 + M31.

Since fi = z(P̂i
M) ◦ u is a composition of functions, the

chain rule applies and its derivative is the product of deriva-
tives Ji = (∂z(P̂i

M)/∂hu)Ju where Ju = I/‖h‖−hh>/‖h‖3
is the exact derivative of the normalization mapping h 7→
hu = h/‖h‖.

4. EXPERIMENTS

The proposed algorithm has been tested on synthetic data in
two ways: (i) comparison of batch and recursive algorithms
and (ii) evaluation of the trade-off between performance and
number of iterations.

Simulations consist in the reconstruction of a set of 50
points from their projections in 10 to 40 images taken with
uncalibrated cameras with square pixels but varying parame-
ters. Normalized focal length α follows a uniform distribu-
tion centered at 20 mm with a maximum deviation of ±10%.

4cameras with principal point (p.p.) at origin, θ = π/2 and τ = 1.



The principal point follows a uniform distribution with sup-
port in [±320,±240] pixels. The 3D points lie close to the
origin of world coordinates and the cameras are located at
random positions lying approximately over a sphere centered
at the origin and roughly pointing towards it. Projected point
coordinates have values within the range [−1500, 1500] and,
in each image the points are contained inside a square of side
1500 pixels. Exact image coordinates are perturbed by the ad-
dition of zero-mean Gaussian noise with standard deviation σ
between 0 and 5 pixels.

A projective reconstruction is obtained through bundle ad-
justment and the linear algorithm [6] is used to provide an
initial estimate of the rectifying homography. Then, the pro-
posed algorithm is applied and its performance is evaluated
trough the measurement of the errors in the estimation of the
intrinsic parameters.

In the first comparison, both batch and recursive algo-
rithms share the same input data. The latter uses Σv

i = JP̂iJ>
P̂i ,

as described in section 3, and only one loop through all the
projection matrices. Fig. 1 shows the results for m = 12
cameras. Some benchmarks are displayed: both algorithms
perform better than the linear one and are close to the results
of a Euclidean bundle adjustment. As the number of cameras
increases, the performance improves, with a trend similar to
the plots in [4].
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Fig. 1. Comparison of batch and recursive algorithms for
m = 12 cameras. Principal point (solid line) and focal length
(dashed line) errors. In both cases, from top to bottom: linear
algorithm, recursive algorithm, minimization of the algebraic
distance and Euclidean bundle adjustment.

Results of the second comparison are shown in Fig. 2. The
errors in the focal length and the principal point decrease as
the recursion proceeds. We also note that there is little gain
in performing two or more loops over the projection matrices
than making just one. This phenomenon is even stronger as
the number of cameras increases.
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Fig. 2. Comparison of iterations of the recursive algorithm.
Principal point (solid line) and focal length (dashed line) er-
rors. Two loops are performed in a scene with m = 12 cam-
eras. Vertical arrow is at the beginning of the second loop.

5. DISCUSSION

We have presented a novel algorithm for estimating the Eu-
clidean structure of a scene from a given projective recon-
struction. Our algorithm can be applied to a video sequence
where one has a rough estimate of the Euclidean structure of
space and wants to update and improve it with new projec-
tion matrices of new frames acquired by the moving camera.
Each recursion provides an easy way to incorporate new data
to those already available. It can also be applied as an al-
ternative to the batch algorithm that minimizes the algebraic
distance whenever it is not feasible due to practical issues.
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