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ABSTRACT

Deep learning models are being integrated into a wide range of
high-impact, security-critical systems, from self-driving cars to bio-
medical diagnosis. However, recent research has demonstrated that
many of these deep learning architectures are highly vulnerable
to adversarial attacks—highlighting the vital need for defensive
techniques to detect and mitigate these attacks before they oc-
cur. To combat these adversarial attacks, we developed UnMask,
a knowledge-based adversarial detection and defense framework.
The core idea behind UnMask is to protect these models by verify-
ing that an image’s predicted class (“bird”) contains the expected
building blocks (e.g., beak, wings, eyes). For example, if an image is
classified as “bird”, but the extracted building blocks are wheel, seat
and frame, the model may be under attack. UnMask detects such
attacks and defends the model by rectifying the misclassification,
re-classifying the image based on its extracted building blocks. Our
extensive evaluation shows that UnMask (1) detects up to 92.9%
of attacks, with a false positive rate of 9.67% and (2) defends the
model by correctly classifying up to 92.24% of adversarial images
produced by the current strongest attack, Projected Gradient De-
scent, in the gray-box setting. Our proposed method is architecture
agnostic and fast. To enable reproducibility of our research, we
have anonymously open-sourced our code and large newly-curated
dataset (~5GB) on GitHub (https://github.com/unmaskd/UnMask).
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1 INTRODUCTION

In the past few years, deep neural networks (DNNs) have shown
significant susceptibility to adversarial perturbation [16, 35]. More
recently, a wide range of adversarial attacks have been developed
to defeat deep learning systems [5, 9, 21, 26]—in some cases by
changing the value of only a few pixels [34]. The ability of these
micro perturbations to confuse deep learning architectures high-
lights a critical issue with modern computer vision systems—that
these deep learning systems do not distinguish objects in ways that
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Figure 1: UnMask Framework Overview. UnMask combats

adversarial attacks (in red) by extracting building-block
knowledge (e.g., wheel) from the image (top, in green), and

comparing them to expected features of the classification

(“Bird” at bottom) from the unprotected model. Low feature

overlap signals attack. UnMask rectifies misclassification

using the image’s extracted features. Our approach detects
92.9% of gray-box attacks (at 9.67% false positive rate) and

defends the model by correctly classifying up to 92.24% of

adversarial images crafted by the strongest attack, Projected

Gradient Descent.

humans would [6, 19]. For example, when humans see a bicycle,
we see its handlebar, frame, wheels, chains, and pedals (Fig. 1, top).
Through our visual perception and cognition, we synthesize these
detection results with our knowledge to determine that we are
actually seeing a bicycle. However, when an image of a bicycle is
adversarially perturbed to fool the model into misclassifying it as
a bird (by manipulating pixels, as in Fig. 1, bottom), to humans,
we still see the bicycle’s building-block features (e.g., handlebar).
On the other hand, the attacked model fails to perceive these build-
ing blocks, and is tricked into misclassifying the image. How do
we incorporate this intuitive detection capability natural to human
beings, into deep learning models to protect them from harm?

There has been a rich body of research studying detection and
defense for deep learning, including adversarial training [22, 37],
distillation [30] and image pre-processing [4, 12]. However, these
approaches have not explicitly considered incorporating the ex-
traction of building-block knowledge from images to protect deep
learning models. Furthermore, research has shown that optimiza-
tion based learning methods often fail to learn representations of
objects that strongly align with humans’ intuitive perception of
those objects [16]. To fill this critical research gap in adversarial ma-
chine learning, we propose UnMask (Figure 1) — a novel method
to protect deep learning models from adversarial perturbations
through extracting building-block knowledge from images.

https://github.com/unmaskd/UnMask
https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
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1.1 Contributions

1. Building-Block Knowledge Extraction. We contribute the
major idea that building-block knowledge extraction offers a power-
ful, explainable and practical method of detecting and defending
against adversarial perturbations in deep learning models. Building-
block knowledge extraction extracts higher-level information out
of images—extending the core concept of feature extraction that is
central to numerous successful data mining techniques.

A significant advantage of our proposed knowledge extraction
concept is that while an attacker may be able to manipulate the class
label by subtly changing pixel values, it is much more challenging
for such perturbation to simultaneously manipulate all the individ-
ual features that jointly compose the image. We demonstrate that
by adapting the Mask R-CNN architecture [17], we can effectively
extract higher-level building-block knowledge feature contained in
images to detect and defend against adversarial attacks. (Section 2.1)

2. UnMask: Detection & Defense Framework. Building on our
core concept of building-block knowledge extraction, we propose
UnMask as a framework to detect and defeat adversarial image
perturbation by quantifying the similarity between the image’s ex-
tracted features with the expected features of its predicted class. To
the best of our knowledge, UnMask is the first framework that uti-
lizes the concept of building-block knowledge extraction to combat
adversarial perturbations.

To illustrate how UnMask works, we use the running example
from Figure 1, where a bicycle image has been attacked such that
it would fool an unprotected model into misclassifying it as a bird.
For a real “bird” image, we would expect to see features such as
beak, wing and tail. However, UnMask would (correctly) extract
bike features: wheel, frame, and pedals. UnMask quantifies the sim-
ilarity between the extracted features (of a bike) with the expected
features (of a bird), in this case zero. This comparison gives us the
dual ability to both detect adversarial perturbations by selecting a
similarity threshold for which we classify an image as adversarial,
and to defend the model by predicting a corrected class that best
matches the extracted features. Since we are presenting a new cate-
gory of detection and defense research, this will be the first results
presented in this line of research. (Sections 2.2 & 2.3)

3. Extensive Evaluation.We extensively evaluate UnMask’s ef-
fectiveness using the large UnMaskDataset that we have newly
curated, with over 18k images in total. We test multiple factors,
including: 3 attacks, including the strongest, Projected Gradient De-
scent (PGD) technique; 2 popular CNN architectures, VGG16 [33]
and ResNet50 [18]; and multiple combinations of varying numbers
of classes and feature overlaps. Experiments demonstrate that our
approach detects up to 92.9% of gray-box attacks with a false posi-
tive rate of 9.67% and (2) defends the model by correctly classifying
up to 92.24% of adversarial images crafted by PGD. (Section 3)

4. Reproducible Research: Open-source Code & Dataset. We
contribute a new dataset incorporating PASCAL-Part [11], PASCAL
VOC 2010 [14] and a subset of ImageNet [13]—which we call the
UnMaskDataset. The goal of this dataset is extend the PASCAL-
Part and PASCAL VOC 2010 dataset in two ways—(1) by adding

Symbol Definition

X Training images
Y Training classification labels
S Training building-block segmentation masks
C Set of possible classes
V Class-feature matrix
x Test image
ŷ class prediction from modelM

K Building-block knowledge extraction model
M Unprotected model
D UnMask Defense framework
fe Extracted building-block features from image, by K
fa Expected features of image classified byM
J (fe , fa ) Jaccard similarity between fe and fa
s similarity score
d distance score (1-s)
t Adversarial-benign classification threshold
z Determination of adversarial or benign
p Class prediction, by UnMask

Table 1: Symbols and Definition

8,377 manually evaluated images from a subset of ImageNet; and
(2) by converting PASCAL-Part to the standard Microsoft COCO
format [25] for easier use and adoption by the research community.
Furthermore, we release this new dataset along with all of our code
and models to facilitate reproducibility of the experiments in this
paper, on GitHub (anonymously), at https://github.com/unmaskd/
UnMask. (Sections 3 & 4)

To enhance readability of this paper, we list and define the termi-
nology used throughout the paper in Table 1. The reader may want
to return to it throughout this paper for technical meanings and
definitions. We use the terms “adversarial attack" and “adversarial
perturbation" interchangeably to refer to attacks on images. We ab-
breviate “building-block features” as “features”, and “building-block
feature extraction model” (K ) as “building-block model,” when their
meanings are clear from context.

2 UNMASK: DETECTION AND DEFENSE

FRAMEWORK

In this section, we present our building-block knowledge extraction
based approach to combating adversarial perturbations (Figure 1).
The objective is to defend a vulnerable deep learning model

M (Figure 1, bottom) using our UnMask defense framework D,
where the adversary has full access to M but is unaware of the
defense strategy D, constituting a gray-box attack on the overall
classification pipeline [12].

In Section 2.1, we provide the intuition of why building-block
knowledge extraction may be well suited for combating adversarial
perturbations. Then in Section 2.2, we describe how our UnMask
framework leverages this knowledge extraction concept as a new
way for detection and defense. We formally define the UnMask

detection & defense problem as:

https://github.com/unmaskd/UnMask
https://github.com/unmaskd/UnMask
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Figure 2: (a) A benign image attacked by Projected Gradient

Descent (PGD), the current strongest first-order adversarial

perturbation. PGD’s parameter ϵ controls the pixel intensity
that PGD may change for each image pixel. (b) At ϵ=32, the
attack can easily fool a deep learning model, but the pertur-

bation is also noticeable to human. (c) Pixel differences be-

tween benign and adversarial image.

Given:
• Training imagesX , which contains corresponding classification

labels Y and building-block segmentation masks S .
• Set of classes C (e.g., bike,...) and class feature matrix V (see

Table. 2). Each class c ∈ C is associated with featuresV [c] (e.g.,
wheel,...).

Output:
• Detection: adversarial or benign determination z ∈ {0, 1}
• Defense: predicted class label p ∈ C

2.1 Intuition: Protection via Building-Block

Knowledge Extraction

Our main idea to combat adversarial image perturbations with re-
spect to an input image x , is to extract building-block features fe
using a building-block knowledge extraction model K , fe =
K(x) (see Figure 3 for an example). These extracted building blocks,
and their collective composition, forges a layer of protection around
the model by disrupting the traditional pixel-centric attack [5, 26,
34] (see an example in Figure 2). Our building-block defensive layer
forces the adversary to now solve a more complex problem of ma-
nipulating both the class label and all of the image’s constituent
parts. For example, in Figure 3 the attacker needs to fool the defen-
sive layer into misclassifying the bike as a bird by, (1) changing the
class label and (2) manipulating the bike building-block features
(wheel, seat, handlebar) into bird features.

2.2 Overview of UnMask

Leveraging the concept of building-block knowledge extraction,
we introduce UnMask as a detection and defense framework (D).
Figure 1 summarizes how our method works at the high level, for
an unprotected model M (Figure 1, bottom). The adversary crafts
an attacked image by carefully manipulating its pixel values using
an adversarial technique (e.g., Projected Gradient Descent [26]).
This attacked image then fools model M into misclassifying the
image, as shown in Figure 1. To guard against this kind of attack
onM , we use our UnMask framework D in conjunction with the
building-block knowledge extraction model K (Figure 1, top). Model
K processes the same image, which may be benign or attacked, and
extracts the building-block features from the image to compare to
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Figure 3: UnMask guards against adversarial image pertur-

bation by extracting building-block features from an image

and comparing them to its expected features using Jaccard

similarity. If the similarity is below a threshold, UnMask

deems the image adversarial and predicts its class by match-

ing the extracted features with the most similar class.

the images’ expected features. Figure 3 shows an example, where
an attacked bike image has fooled the unprotected model M to
classify it as a bird. We would expect the building-block features to
include head, claw,wing, and tail. However, from the same (attacked)
image, UnMask’s building-block model K extracts wheels, handle
and seat. Comparing the set of expected features and the actual
extracted features (which do not overlap in this example), UnMask
determines the image was attacked, and predicts its class to be bike
based on the extracted features.

Algorithm 1: UnMask
Input: Training images X , labels Y , segmentation masks S , set

of possible classes C , attribute matrix V , threshold t ,
test image x

Result: adversarial prediction z ∈ {0, 1}, predicted class p

Train unprotected classification modelM :
M = NeuralNet(X , Y );
ŷ =M(x);

Train building-block extraction model K :
K = Mask-RCNN(X , S);
fe = K(x); (extracted building blocks)
fa = V [ŷ]; (expected building blocks)

Detection:
s = J (fe , fa ); d = 1 − s;

z =

{
0 (benign), if d < t
1 (adversarial), if d ≥ t

Defense:

p =

{
ŷ, if z = 0
argmin
c ∈C

J (fe ,V [c]), if z = 1

return z, p;
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2.3 Technical Walk-Through of UnMask

Now, we detail UnMask’s technical operations and algorithm for
detection and defense (Algorithm 1). Its major steps are:

1. Classify input. Given an input image x , UnMask obtains its
class prediction ŷ from (unprotected) model M , i.e., ŷ = M(x). At
this point, UnMask does not know if image x is adversarial or not.

2. Extract building-block features. UnMask extracts x ’s fea-
tures fe using building-block knowledge extraction model K , i.e.,
fe = K(x). Armed with these features fe , UnMask can utilize them
to both detect if modelM is under attack, and to rectify misclassi-
fication caused by the attack. We considered multiple approaches
for K , and decided to adopt Mask R-CNN for its ability to leverage
image segmentation masks to learn and identify coherent image
regions that closely resemble building-blocks that would appear
semantically and visually meaningful to humans [17]. Different
from conventional image classification models or object detectors,
the annotations used to train our building-block extractor K are
segmented object parts instead of the whole objects. For example,
for the wheel feature, an instance of training data would consist
of a bike image and a segmentation mask indicating which region
of that image represents a wheel. Technically, this means K uses
only a part of an image, and not the whole image, for training.
Furthermore, while an image may consist of multiple image parts,
K treats them independently.

3. Detect attack. UnMask measures the similarity between the set
of extracted features fe and the set of expected features of ŷ (obtained
through matrixV [ŷ]), by calculating the Jaccard similarity score s =
J (fe , fa ). If similarity score s is greater than the threshold parameter
t , input image x is deemed benign, otherwise adversarial. Adjusting
t would allow us to assess the trade-off between sensitivity and
specificity, which we describe in detail in Section 3.

4. Defend and rectify. Determining an image to be adversarial
also means that modelM is under attack and is giving unreliable
classification output. Thus, we need to rectify the misclassification.
UnMask accomplishes this by comparing the extracted features fe
to every set of class features in V , outputting class ŷ that contains
the highest feature similarity s , 0 ≤ s ≤ 1.

3 EVALUATION

We extensively evaluate UnMask’s effectiveness in defending and
detecting adversarial perturbations, using:

• 3 attacks, including the strongest technique, Projected Gradient
Descent (PGD);

• 2 popular CNN architectures, VGG16 [33] and ResNet50 [18],
as unprotected modelsM ; and

• multiple combinations of varying numbers of classes and fea-
ture overlaps.

We begin by describing the experiment setup in Section 3.1. Then
we present our results in Section 3.2. To the best of our knowledge,
this work proposes the first building-block knowledge extraction to
detect and defend against adversarial perturbation for deep learning.
We present the first results in this new line of work.
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Screen
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Table 2: Class-Feature Matrix. Top: dots mark classes’ fea-

tures. Bottom: four class sets with varying levels of feature

overlap. Features vehicle and coach have sub-features not

listed here due to space (see Appendix).

3.1 Experiment Setup

3.1.1 Software and Hardware. We develop all experiment code
in Python 3.6 on Linux. We use open-source libraries Keras, Ten-
sorflow, Foolbox [31] and Matterport [1]; and GPUs that include
two Nvidia Titan X’s, a Titan RTX and a cluster of 24 K40s.
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3.1.2 Adversarial Attacks. We evaluated UnMask against three
attacks, where we detail the parameter selection below (see Section
5 for an in-depth discussion on each attack):

• DeepFool (DF) L2: a non-parametric attack that optimizes the
amount of perturbation required to misclassify an image[28];
we set the update steps to 100.

• Fast Gradient Sign (FGSM): we set ϵ = 8, 16—two common
parameters for this attack [22].

• Projected Gradient Descent with Random Start (PGD): PGD
is the current strongest first-order attack [26]. Its key parameter
ϵ represents how much each pixel may be changed by PGD in
intensity, e.g., ϵ = 4 means changing up to 4 units of intensity
(out of 255). It is common to evaluate up to a value of 16 [12, 22]
(as perturbation becomes visible), with a stepsize of 0.01 and 40
iterations.

3.1.3 UnMaskDataset. We curated the UnMaskDataset for
our evaluation, which consists of three component datasets—PASCAL-
Part, PASCALVOC 2010 and a subset of ImageNet—as seen in Tables
3 and 4. The impetus for our curation is to (i) collect all of the data
used in our evaluation as a single source to promote ease of re-
producibility by our research community, and (ii) to increase the
number of images available for evaluating the performance of the
deep learning models and the UnMask defense framework. We
designed multiple class sets with varying number of classes and
feature overlap (e.g., CS3a, in Table 2, bottom; and Table 5), to study
how they would affect detection and defense effectiveness. We fur-
ther discuss the utilization of the data in Sections 3.1.4 and 3.1.5
below.

3.1.4 Training Building-Block Model K . As illustrated in Fig-
ure 3 and Section 2.3, the building-block knowledge extraction
model K takes an image as input (e.g., bike) and outputs a set
of building-block features (e.g., wheel,...). To train K , we use the
PASCAL-Part dataset [11], which consists of 180,423 feature seg-
mentation masks over 9,323 images across the 44 building-block
features. The original dataset contains very fine-grained features,
such as 18 types of “legs” (e.g., right front lower leg, left back upper
leg), while for our purposes we only need the abstraction of “leg”.
Therefore, we combined these fine-grained features into more gen-
eralized ones (shown as rows in Table 2). Section 4 and Appendix
detail our generalization for reproducibility of our experiments.

We followed a similar procedure described in [1], training K for
40 epochs. We use a ratio of 80/10/10 for training, validating and
testing the model respectively (see Table 3). Our work is the first
adaptation of Mask R-CNN model for the PASCAL-Part dataset.
As such, there are no prior results for comparison. We computed
model K ’s mAP (mean Average Precision), which estimates K ’s
ability to extract features. The model attains an mAP of 0.56, in
line with Mask R-CNN on other datasets [17]. Model K processes
up to 4 images per second with a single Nvidia Titan X, matching
the speeds reported in [1]. This speed can be easily raised through
parallelism by using more GPUs. As building-block extraction is the
most time-intensive process of the UnMask framework, its speed
is representative of the overall speed of the framework.

Setup PASCAL-Part PASCAL VOC 2010

Model Classes Train Val Test Train Val Test

K 44 7,457 930 936 - - -

M

CS3a - - - 1,750 350 1,400
CS3b - - - 2,104 421 1,684
CS5a - - - 2,264 452 1,812
CS5b - - - 2,501 500 2,001

Table 3: Number of images used in trainingmodelsK andM .

Defense Detection

Class Set DF FGSM PGD All Attacks

CS3a 3,485 2,823 3,494 3,494
CS3b 4,749 4,161 4,764 4,764
CS5a 5,827 5,252 5,849 5,849
CS5b 6,728 5,883 6,747 6,747

Table 4: Number of ImageNet images used to evaluate de-
fense and detection of UnMask. Only the images that can be

successfully perturbed by the attack are used, thus the varia-

tions in numbers. We report values for PGD and FGSM with

ϵ=16. The numbers for ϵ=8 are similar.

Class Set Classes Unique Parts Overlap

CS3a 3 29 6.89%
CS3b 3 18 50.00%
CS5a 5 34 23.53%
CS5b 5 34 29.41%

Table 5: Four class sets investigated in our evaluation, with

varying number of classes and feature overlap.

3.1.5 TrainingUnprotectedModelM . As described in Section 2,
M is the model under attack, and is what UnMask aims to pro-
tect. In practice, the choice of architecture for M and the data it
is trained on are determined by the application model developers.
Here, our evaluation studies two popular deep learning architec-
tures — VGG16 [33] and ResNet50 [18] — however, UnMask sup-
ports other architectures. Training these models from scratch is
generally computationally expensive and requires large amount of
data. To reduce such need for computation and data, we adopt the
approach described in [1], where we leverage a model pre-trained
on ImageNet images, and replace its dense layers (i.e., the fully
connected layers) to enable us to work with various class sets (e.g.,
CS3a) In detail, the training process forM is as follows:
(1) Load weights from model pre-trained on ImageNet data.

(2) Replace dense layers of the model with new dense layers, al-
lowing us to specify a variable number of classes.
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Figure 4: UnMask’s effectiveness in detecting detecting three attacks: DeepFool, FGSM (ϵ=8,16), and the strongest, PGD (ϵ=8,16).
UnMask’s protection may not be affected strictly based on the number of classes. Rather, an important factor is the feature
overlap among classes. UnMask provides better detection when there are 5 classes (dark orange; 23.53% overlap) than when

there are 3 (light blue; 50% overlap). Keeping the number of classes constant and varying their feature overlap also supports

our observation about the role of feature overlap (e.g., CS3a at 6.89% vs. CS3b at 50%). Dotted line indicates random guessing.

(3) Freeze all of the model weights except for the newly-added
dense layers, allowing us to preserve the ImageNet features
contained in the early layers while training the new dense
layers on our data.

We chose to train the new dense layers using the PASCAL VOC
2010 dataset [14] for its desirable connection to the Pascal-Part
dataset — PASCAL-Part uses the images from PASCAL VOC and
adds segmentation masks for those images to describe image parts.
Thus, we can readily ensure that the classes modelM and model K
are at parity. In practice, other datasets containing the classes from
Table 2 may also be used. Refer to Table 3, for a breakdown of the
data used for training and evaluation.

3.2 Evaluating UnMask Defense and Detection

The key research questions that our evaluation aims to address
is how effective UnMask can (1) detect adversarial images, and
(2) defend against attacks by rectifying misclassification through
inferring the actual class label. Most image datasets containing the
classes from Table 2 may be used. However, we use ImageNet data
(see Table 4) as it matches our class sets and has a large number of
available images. We note that the evaluation is focused on images
containing a single-class (i.e., no “person” and “car” in same image)
as this allows for a more controlled environment.

3.2.1 Evaluating Detection of Attacks. To evaluate UnMask’s
effectiveness in detecting adversarial images against attacks (DF,
FGSM, PGD), we use a contamination level of 0.5—meaning half
of the images are benign and the other half are adversarial. Fig-
ure 4 summarizes UnMask’s detection effectiveness, using receiver

operating characteristics (ROC) curves constructed by varying the
adversarial-benign threshold t . The curves show UnMask’s per-
formances across operating points as measured by the tradeoff
between true positive (TP) and false positive (FP) rates.

An interesting characteristic of UnMask’s protection is that its
effectiveness may not be affected strictly based on the number of
classes in the dataset as in conventional classification tasks. Rather,
an important factor is how much feature overlap there is among

the classes. The ROC curves in Figure 4 illustrate this phenomenon,
where UnMask provides better detection when there are 5 classes
(Figure 4, dark orange) than when there are 3 classes (light blue).
As shown in Table 5, the 5-class setup (CS5a—dark orange) has a
feature overlap of 23.53% across the the 5 classes’ 34 unique features,
while the 3-class setup (CS3b—light blue) has 50% overlap. Keeping
the number of classes constant and varying their feature overlap
also supports this observation about the role of feature overlap (e.g.,
CS3a vs. CS3b in Figure 4). We call each combination of class count
and feature overlap a “class set,” abbreviated as “CS.” CS3 thus means
a class set with 3 classes. CS3a and CS3b have the same number of
classes, with different feature overlap. Table 4 details the number
of images used in testing detection (and defense) across the four
class sets we investigated.

For a given feature overlap level, UnMask performs similarly
across attack methods. When examining feature overlap 6.89%
(CS3a) on VGG16, UnMask attains an AUC scores of 0.952, 0.96,
0.959, 0.951 and 0.949 on attacks DF, FGSM (ϵ=8,16) and PGD
(ϵ=8,16), respectively. This result is significant because it highlights
the ability of UnMask to operate against multiple strong attack
strategies to achieve high detection success rate. As a representative
ROC operating point for the attack vectors, we use PGD (ϵ=8), on
feature overlap 6.89%. In this scenario, UnMask is able to detect up
to 92.67% of attacks with a false positive rate of 9.67%. We believe
that performing well in a low feature overlap environment is all
that is required. This is because in many circumstances it is not
important to distinguish the exact true class (e.g., dog or cat) of
the image, but whether the image is being completely misclassified
(e.g., car vs. person). Therefore, in practice, classes can be selected
such that feature overlap is minimized.

3.2.2 Evaluating Defense and Rectification. Detecting an at-
tack is only the first step of UnMask’s protection, it also rectifies
the misclassification by comparing the extracted features fe to ev-
ery set of class features in V , outputting class c that contains the
highest feature similarity. As the evaluation focus is on rectifying
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Setup DF FGSM (ϵ = 8) FGSM (ϵ = 16) PGD (ϵ = 8) PGD (ϵ = 16)

ModelM Class Set Overlap No Attk No Def UnMask No Def UnMask No Def UnMask No Def UnMask No Def UnMask

VGG16

CS3a 6.89% 87.00 5.13 94.33 0 84.53 0 73.44 0 92.24 0 89.89
CS3b 50.00% 89.13 3.47 85.62 0 71.64 0 60.11 0 79.49 0 75.19
CS5a 23.53% 80.35 3.91 91.11 0 79.12 0 65.86 0 86.05 0 82.65
CS5b 29.41% 81.36 3.04 87.17 0 74.93 0 62.88 0 81.75 0 77.02

ResNet50

CS3a 6.89 86.64 4.51 95.04 0 87.11 0 74.42 0 92.9 0 90.81
CS3b 50.00 85.75 3.28 86.12 0 76.07 0 66.71 0 82.51 0 78.55
CS5a 23.53 80.35 3.91 91.11 0 79.12 0 65.86 0 86.05 0 82.65
CS5b 29.41 79.91 3.33 87.57 0 76.91 0 65.19 0 83.39 0 80.01

Table 6: UnMask’s accuracies (in %) in countering three attacks: DeepFool (DF), FGSM, and the strongest, Projected Gradient
Descent (PGD) technique. We test two popular CNN architectures, VGG16 and ResNet50, as unprotected model M , with four

class sets with varying numbers of classes and feature overlap.We show themodels’ accuracies (1) when not under attack (“No

Attk” column); (2) attacked without defense (“No Def”); and (3) attacked and defended by UnMask.

misclassification, our test images have a contamination level of 1—
meaning all of the images are adversarial. We evaluate UnMask’s
rectification capability on:

• 2 neural network models (VGG16, ResNet50)
• 3 attacks (DF, FGSM, PGD)
• 4 class sets (CS3a, CS3b, CS5a, CS5b)

Table 6 shows that UnMask is agnostic to the deep learning
model that is being protected, as measured by the ability of UnMask
to infer an adversarial images’ actual class. This can be seen when
comparing the results across each attack on VGG16 and ResNet50.

In addition, we find that the results from Table 6 support our ob-
servation that feature overlap is the dominant factor in determining
the accuracy of the UnMask defense, as opposed to the number of
classes. When examining DeepFool (DF) on class set CS3b (3 classes;
feature overlap 50%), UnMask is able to determine the underlying
class 85.62% of the time. At class set CS5a (5 classes; feature overlap
23.53%) we obtain an accuracy of 91.11%, highlighting the important
role that feature overlap plays in UnMask’s defense ability.

It is interesting to note that FGSM is more effective at attacking
our UnMask defense than the other two attacks. We believe this is
due to the single-step attacks’ better transferability, which has been
reported in prior work [22]. Given this transferability property of
FGSM, we believe UnMask provides a significant defense.

We also mention the fact that UnMask’s accuracy can be higher
than the un-attackedmodelM due to the fact that, in some instances,
model K learned a better representation of the data through the
feature masks as opposed to modelM , which trained on the images
directly. This occurs on multiple occasions in Table 6.

4 REPRODUCIBILITY

To enable reproducibility of this work, we have anonymously open-
sourced all of our code, data and models used in this paper on
GitHub, at https://github.com/unmaskd/UnMask. In addition, we
provide a two-page appendix detailing the experiment setup and
steps to run our code. Our goal is to encourage both data-mining
researchers and practitioners to explore, validate and utilize our

defense framework for their own research and applications. To
further assist in the reproducibility of the experiments, we discuss
additional details about the UnMaskDataset below.

Our implementation of PASCAL-Part differs from the original
dataset by generalizing features into broader categories (e.g., left
back lower leg, right front upper leg = leg). We adopt these feature
generalizations in order to increase the amount of data available to
learn each part, and in turn create a more robust feature extraction
model. In addition, we chose not to include four classes from the
original PASCAL-Part dataset that contain no features (dining table,
sofa, boat and chair). This leaves us with a total of 16 classes and 44
unique features. For a full comparison of the differences between
UnMaskDataset (Table 2) and the original PASCAL-Part [11],
please see Table 7 in the Appendix.

5 BACKGROUND AND RELATEDWORK

Adversarial attacks typically operate in one of three threat models—
(i) white-box, (ii) gray-box or (iii) black-box. In the (i) white-box set-
ting, everything about the model and defense techniques is visible
to the attacker, allowing them to tailor attacks to individual neural
networks and defense techniques. This is the hardest scenario for
the defender since the adversary is aware of every countermeasure.
In (ii) the gray-box threat model, we assume that the attacker has
access to the classification model but no information on the defense
measures. In (iii) the black-box setting, we assume that the attacker
has no access to the classification model or the defense techniques.
This is the most difficult, and realistic, scenario for the attacker
since they typically have limited access to sensitive data. Despite
this disadvantage, recent research has shown that it’s possible for
adversaries to successfully craft perturbations for deep learning
models in the black-box setting [2, 20, 29].

5.1 Adversarial Attacks

There exists a large body of adversarial attack research. We provide
a brief background on the attacks we use to probe the robustness
of our UnMask detection and defense framework. We assume that
all attack models operate in a gray-box setting, where the attacker

https://github.com/unmaskd/UnMask
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has full knowledge of the classification model, but no knowledge
of the defensive measures. We focus on untargeted attacks in all of
our experiments.

DeepFool [28] is an optimization-based attack, where it iteratively
attempts to find the minimal perturbation by projecting the current
perturbed example to a locally linearized decision boundary. In the
binary case, this minimal perturbation is defined as argminr | |r | |2
subject to f (x) + ▽f (x)T r = 0, where f is the DNN model. The
perturbations generated by DeepFool are usually less conspicuous
than those generated by other attacks.

Fast Gradient Sign Method (FGSM) [21] is a simple and efficient
attack that adds the sign of the gradient of loss function ℓ w.r.t. the
input x to the original image,

x ′ = x + ϵsign(∇x ℓ(x ,ytrue )).

Projected Gradient Descent (PGD) [26] is an extension of FGSM
that iteratively performs the FGSM update step followed by a pro-
jection step to ensure the pertubed image is within ϵ-ball of the
original image and is a legitimate image. The starting point is ran-
domly chosen within the ϵ-ball of the original image.

5.2 Adversarial Defense & Detection

Many methods have been proposed to combat adversarial image
perturbations, which we discuss a few of the primary ones below.
However, in our evaluation of the related research, we found none
of them take into account the building-block knowledge informa-
tion that can be extracted from the images themselves to combat
adversarial attacks.

Adversarial Training. The objective of adversarial training is to
vaccinate deep learning models to adversarial image perturbations
by modifying the model’s training process to include examples of
attacked images [22, 37]. The idea is that the model will learn to
classify these adversarial examples correctly if enough data is seen.
It is one of the current state-of-the-art defenses in the white-box
setting. When the adversarial examples are crafted by PGD, it is
known to improve robustness even against other types of attacks,
because PGD is the strongest first-order attack and approximately
finds the hardest examples to train. The downside to this technique
is that models require large amounts of adversarial data, increasing
the model training time [26].

Defensive Distillation. At a high level, this technique is used
to robustify deep learning models to adversarial perturbation by
training two models—where the model is trained normally using
the provided hard labels and the second model is trained on the soft
labels from the probability output of the first model [30]. However,
it has been show that distillation is likely a kind of gradient masking
and is still vulnerable to black-box transfer attacks [7].

Pre-processing. The goal of pre-processing is to eliminate adver-
sarial perturbation before model inference. There are many pro-
posed techniques, a couple of which include—(i) image compres-
sion [12] and dimensionality reduction [4]. Data pre-processing de-
fense is usually model independent and can easily be used along side

with other defenses. The downside of this approach is that most pre-
processing techniques have no knowledge of whether the system
is actually being attacked. More advanced attacks have also been
proposed by replacing the non-differentiable pre-processing step
with an approximate differentiable function and back-propogating
through the whole pipeline [3, 32].

Adversarial Detection. Instead of performing accurate classifi-
cations on adversarial examples, many techniques have been de-
veloped to look at the problem of detecting whether the input
data is benign or adversarial, using a variety of methods from
topological subgraph analysis [15] to various forms of image pro-
cessing [24, 38, 39] and hidden/output layer activation distribution
information [8, 23, 27].

6 CONCLUSION & DISCUSSION

In this paper, we have introduced a new fundamental concept of
building-block knowledge extraction, and showed how it protects
deep learning models against adversarial attacks through the Un-
Mask detection and defense framework. We draw inspiration from
humans’ natural ability to make robust classification decisions
through the detection and synthesis of contextual building-block
knowledge contained in images. We aim to design and develop our
UnMask framework to simulate such capability, so it can (1) detect
adversarial pixel-centric manipulations targeting a deep learning
model, and (2) defend the model against attacks by rectifying the
classification. Through extensive evaluation on large-scale real-
world image data, we showcase the merits of our ideas through
UnMask’s ability to detect up to 92.9% of attacks with a false pos-
itive rate of 9.67% and defend deep learning models by correctly
classifying up to 92.24% of adversarial images in the gray-box sce-
nario. Our proposed method is fast and architecture-agnostic. To
enable reproducibility of this research, we have anonymously open-
sourced our code and large newly-curated dataset (~5GB) on GitHub
(https://github.com/unmaskd/UnMask)

In this work, we direct our efforts to systematically studying
the efficacy of UnMask and the concept of building-block knowl-
edge extraction on their own. As myriads of newer and stronger
attack strategies are continuously discovered, our approach is not a
panacea to defend all possible (future) attacks, and we do not intend
for it to be used in isolation of other techniques. Rather, we believe
that detection and defense strategies should be coordinated. We
expect our approach to be one of multiple techniques that are used
in concert to provide comprehensive protection. Multi-pronged
protection is a proven, long-standing defense strategy pervasive in
security research and in practice [10, 36]. Fortunately, our proposed
technique can be readily integrated with many existing techniques,
as it operates in parallel to the deep learning model that it aims to
protect (see Figure 1).

We note that UnMask has the potential vulnerability to attacks
that simultaneously target and manipulate all building-block fea-
tures, e.g., changing every “bike” parts in a bike image, into “bird”
parts (bike wheel→bird wing; bike handlebar→bird tail). Such si-
multaneous, multi-part attack could be challenging to formulate and
execute. To the best of our knowledge, we have not yet encountered
it in research or practice.

https://github.com/unmaskd/UnMask
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Appendices

In the supplemental appendix we provide a detailed description
of the experiment analysis and how to replicate the results pre-
sented in the paper. We begin with an in-depth description of the
experiment setup in Section A. We then discuss some additional
information relevant to the conversion of the PASCAL-Part dataset
for use in the UnMaskDataset in Section B. Finally, in Section C
we detail how to run the open-sourced code and models presented
in this paper.

A DETAILED EXPERIMENT SETUP

Environment. We run the experiments in a Linux environment
using Python 3, on 2 Nvidia Titan X GPUs, a Titan RTX and a
cluster of 24 Nvidia K40 GPUs. We note that a single Nvidia GPU
is sufficient to recreate all of the experiments, however, we recom-
mend that the GPU has at least 12GB of memory (not tested with
less).

We utilize Anaconda 3 to manage all of the Python packages. To
facilitate reproducibility of the Python environment, we release an
Anaconda YAML specification file of the libraries utilized in the
experiments. This allows the user to create a new virtual Python
environment with all of the packages required to run the code by
importing the YAML file. If the user decides to utilize their own
Python environment, we note that it’s important that they utilize
Tensorflow 1.10.0 as there is a bug in the newer release of Tensorflow
1.12.0 that causes an error to periodically manifest in the building-
block extraction process when using the Mask R-CNN model. Since
we utilize Keras in the experiments with the Tensorflow back-end,
if the user wants to utilize their own environment they will want
to download Keras-gpu 2.2.0.

In addition, we utilize multiple Github repositories in the code
base—(i) for the Mask R-CNN model [1] and (ii) to assist in the
development of the UnMaskDataset1. Since there are significant
modifications from the original implementation, it’s necessary for
the user to utilize the provided version.

B EXTENDED UNMASKDATASET

INFORMATION

In this section, we give a detailed breakdown of how we convert the
PASCAL-Part features for use in the UnMaskDataset. In Table 7,
we can see that the features in the UnMaskDataset are a general-
ization of the ones in PASCAL-Part. For example, the PASCAL-Part
dataset has 18 variations of the leg feature, however, in order to
create a model that better generalizes, we combine this to a single
leg feature. We note that in Table 2, that two features have multiple
sub-features condensed into a single feature (not listed due to space
constraints). These features are: vehicle: {vehicle left, vehicle right,
vehicle top, vehicle back} and coach: {coach left, coach right, coach
back, coach top, coach front}. In addition, we note that there is a
minor error in the conversion of the handlebar feature in the bike
and motorcycle class (handlebar features were labeled as hand).
However, since those classes are not utilized in the experiments,
the effects are minimized.
1We utilized part of the following repositories to convert the PASCAL-Part dataset to
Microsoft COCO format: I

C CODE AND MODELS

In order to facilitate reproducibility of this research, we open-source
all of the code, data, experiments and models. Below, we provide a
walk-through of how to set up the environment and run the code
locally. For additional information, and the steps necessary to train
a custom feature extraction model K , we provide a detailed walk
through on Github (https://github.com/unmaskd/UnMask).

Setup. Below are the steps the user should take in order to set
up their environment for running the code:

(1) Set up a Linux environment (not tested for Windows) with
an Nvidia GPU containing at least 12GB of memory (less
may work, but not tested).

(2) Download the open-sourced code, dataset and models from
Github.

(3) Create a virtual Python environment using the provided
YAML configuration file on Github.

(4) Activate the new virtual Python environment
Running the code. Once the environment is set up, we can

recreate any of the experiments using combinations of the com-
mand line arguments. We provide three options for running the
program—(i) defense evaluation, (ii) adversarial image creation and
(iii) parallel adversarial image creation. We focus on detailing (i),
since (ii) and (iii) are helper functions to speed up adversarial image
creation. Additional information on how to use (ii) and (iii) can be
found in the Github walk-through.

(1) Model(s): the user can select between two models—VGG16
and ResNet50.

(2) Image size: the image size to work with (square image). Every
image will be re-sized to this specification.

(3) Model K epochs: the building-block knowledge extraction
model K to load, specified based on training epoch. The
model provided must be specified as 40. However, if the user
trains a custom K model, this number will vary based on the
number of epochs trained.

(4) Class set: the class set (e.g., CS3a) to utilize when evaluating
UnMask.

(5) Attack: the type of adversarial perturbation to utilize, op-
tions include: Fast Gradient Sign Method (FGSM), Projected
Gradient Descent w/ Random Start (PGD) and DeepFool
(DF).

(6) Epsilon: the strength of the PGD attack.
(7) GPU: for multi-gpu setups, this specifies which GPU to uti-

lize.
(8) Parallel: for multi-gpu setups, this parameter allows for par-

allel adversarial image generation.
(9) Number GPUs: for multi-gpu setups, the number of GPUs

to utilize for parallel adversarial image generation.
We provide a few examples of running the UnMask framework

below, but refer the reader to the GitHub repository for a detailed
explanation of the parameters and how to use them:

(1) python main.py evaluate –model VGG16 –imagesize 150
–num_classes 3 –attack PGD –epsilon 8 –gpu 0

(2) python main.py evaluate –num_classes 3 –attack FGSM –
epsilon 16 –gpu 1

https://github.com/waspinator/pycococreator
https://github.com/unmaskd/UnMask
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UnMaskDataset PASCAL-Part Dataset

Arm Right upper arm, right lower arm, left upper arm, left lower arm
Beak Beak
Body Body
Cap Cap
Coach back Coach back (1-1)
Coach front Coach front (1-9)
Coach left Coach left (1-9)
Coach right Coach right (1-8)
Coach top Coach top (1-4)
Door Door (1-4)
Engine Engine (1-6)
Ear Left ear, right ear
Eye Left eye, right eye
Eyebrow Left eyebrow, right eyebrow
Foot Left foot, right foot
Front side Front side
Hair Hair
Hand Left hand, right hand
Head Head
Headlight Left headlight (1-8)
Hoof Left back hoof, left front hoof, right back hoof, right front hoof
Horn Left horn, right horn
Leg Lower left leg, right front lower leg, right lower leg, left leg, left front leg, left front lower leg, right front upper leg, right

back upper leg, left upper leg, left back upper leg, right leg, right back lower leg, right front leg, left back leg, right back leg,
right upper leg, left back lower leg, left front upper leg

License plate Back license plate, front license plate
Mirror Left mirror, right mirror
Mouth Mouth
Muzzle Muzzle
Neck Neck
Nose Nose
Paw Left back paw, left front paw, right back paw, right front paw
Plant Plant
Pot Pot
Saddle Saddle
Screen Screen
Stern Stern
Tail Tail
Vehicle back Vehicle back
Vehicle front Vehicle front
Vehicle left Vehicle left
Vehicle right Vehicle right
Wheel Wheel (1-8), back wheel, chainwheel, front wheel
Window Window (1-20)
Wing Left wing, right wing

Table 7: Feature mapping from PASCAL-Part to the UnMaskDataset. We use the notation “part (1-x)" to indicate that the

PASCAL-Part dataset labeled the feature as ‘x’ separate feature labels. We also note that the PASCAL-Part utilizes a more

dense label notation, which we re-label in the table for ease of reading. For example, right front lower leg is abbreviated

‘rflleg’ in PASCAL-Part.
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