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SUMMARY 

Biomaterials have become a common feature in everyday life ranging from disposable 

daily contact lenses to implanted devices engineered to outlast the patient. There is a 

great deal of unrealized commercial potential for biomaterials systems and ample interest 

in determining optimal biomaterials for applications such as tissue engineering (TE) and 

detection of biological analytes. Unlike past challenges in polymer selection, candidate 

biomaterials need to be tested while also accounting for the complexity of living cells and 

the variability in biological systems. These challenges can be partially addressed by 

analyzing a large number of biomaterials in a high-throughput manner with high replicate 

number; however, such methods are lacking.  

  

This thesis shows how flow cytometry can be adapted to the study of biomaterials. Flow 

cytometry allows for the automated collection of a large number of unique events in a 

short time period and is already widely used for cell analyses. Here, biomaterial, 

specifically hydrogel, constructs are fabricated and a combination of shape-, size-, and 

fluorescence-barcoding (SSF) enables high-throughput, high replicate, highly 

multiplexed analyses using imaging flow cytometry. This dissertation illustrates how this 

new method, 3D Material Cytometry (3DMaC), can be applied to tissue engineering and 

analyte detection, and discusses how the method can be extended to additional 

biomaterial studies. 

 

 

 



 

1 

 

CHAPTER 1  INTRODUCTION 

1.1 Overview 

The definition of a biomaterial continues to be widely debated, and has different 

meanings for different fields.
1, 2

 In the field of medical materials, a biomaterial can be 

considered as “a material intended to interface with biological systems to evaluate, treat, 

augment or replace any tissue, organ or function of the body”.
1
 Biomaterials in clinical 

use today include hip and knee implants, contact lenses, heart valves, and dental 

implants, among others.
3
 Additionally, the definition of biomaterials can also include 

diagnostic tools such as biosensors that, for example, measure blood glucose level
3
 or 

blood oxygen level
4
. Regenerative or tissue engineering (TE) is a subfield focused on 

replacing organs with materials that can support a seeded cell population to function as 

the replacement tissue.
5
 In 2007, it was estimated that the worldwide commercial sales of 

tissue engineering products reached $1,500 million and that 1.2 million patients had been 

treated with such products.
6
 

 

Although biomaterials have been translated to commercial products;
6
 similar to many 

fields biomaterial research suffers from irreproducibility of data. This problem is fully 

explained by Halsey et al.,
7
 and some of the key points of that paper are discussed here. 

Biological assays inherently suffer from high “noise” that limits experimental 

reproducibility, and current analytical methods often have low statistical power. 

Additionally, individual cells in a population can have large differences in gene 

expression.
8
 Together, these limitations result in incomplete and often poorly 

reproducible data, and potentially skewed results. This is in part due to low replicate 

numbers (“n”) leading to low powered studies.
9
 Biological replicates are often expensive 

in terms of time and money, and true differences between groups may be small. 
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However, without a large number of replicates, the statistical power of the study can be 

too low to discern the true differences between experimental groups and can also lead to 

a high proportion of false positives.
9
  

 

There is therefore a need to increase the replicate number in biomaterial studies. 

Additionally, a high replicate number necessitates a high-throughput assay to process the 

samples in a time-efficient manner. Often the best solution is to miniaturize samples as 

this avoids ballooning costs and time; however, miniaturization introduces new 

organizational challenges during experimentation and analysis. Many of these challenges 

can be addressed within the flow cytometry-based 3DMaC method that uses size, shape, 

and fluorescence barcoding to analyze individual microhydrogels. Flow cytometry 

collects data on individual events, analyzes nano- to micro-sized materials, and has 

existing data handling methods for high replicate number. For each of the applications 

discussed in this dissertation, there is great need for high-throughput, high replicate 

analysis of biomaterials. 

 

1.1.1 Tissue Engineering Applications 

In order to select the best materials for engineered tissue, screening methods compare a 

large number of biomaterials at once. Currently, the need for replacement organs and 

tissues dramatically outstrips the supply and this deficit is projected to grow.
10

 Given this 

dearth and the challenges posed by potential immune responses to allogenic tissue, 

artificial tissues composed of polymeric scaffolds with autologous cells are a promising 
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alternative.
11

 However, rules to predict a priori which scaffold materials will cause 

desired cellular function on a patient-specific basis have not been established.  

 

Currently the field has settled on “rational design” to select biomaterials; meaning that 

materials are selected on the basis of similarity to the desired in vivo microenvironment.
12

 

However, it is still important to screen materials to determine which native material 

properties are most important to replicate. Given the large number of independent 

variables when forming a polymer network, the optimization of scaffolds requires high-

throughput testing to evaluate the design space. This is especially true when studying the 

effect of material composition on a differentiating stem cell population because a range 

of responses are expected due to the heterogeneous starting population.
13

 The 3DMaC 

analysis method is well-suited to the future of biomaterials research because of the 

ongoing push towards personalized medicine. This is important from a clinical 

perspective as 3DMaC analysis could be used to select a scaffold material that enables 

optimal cell differentiation for each individual patient.  

 

In this dissertation the osteogenic differentiation of MSCs (defined here as mesenchymal 

stem cells and discussed further on pg. 34) is used as a model system to demonstrate how 

3DMaC could be applied to TE biomaterials analysis. Poly(ethylene glycol)-based (PEG) 

polymers are widely used in TE scaffolds and specifically have been used for osteogenic 

differentiation of MSCs. The Roy lab has extensive experience using poly(ethylene 

glycol) diacrylate (PEGDA) systems, including for inducing chondrogenic differentiation 

of MSCs.
14, 15

 This previous work
16

 served as major motivation to find a high-throughput 
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way to compare biomaterials and is covered in the Background of this dissertation. 

Osteogenesis of MSCs in a biomaterial scaffold is important because 5-10% of fractures 

result in non-union
17

 and current techniques to bridge critically-sized defects, such as 

bone grafts, can result in donor site morbidity. In this dissertation, 3DMaC’s ability to 

measure the mineralization of MSCs encapsulated in different biomaterials is 

demonstrated. 

 

1.1.2 Bioanalyte Measurement Applications 

Biomaterials also are increasingly used for detecting biological species. Specifically, 

researchers are measuring an ever-growing number of variables related to their biological 

systems. Due to the convoluted signaling in biological systems, this desire to measure as 

many variables as possible is understandable. Broadly characterized as “’omics” research, 

there is a need to increase the number of variables that can be measured in a single 

study.
18

 At the same time, it is important that new high-throughput tools for detection 

maintain high specificity and low background signal. Hydrogel biomaterials make good 

detection platforms because their hydrophilicity decreases non-specific binding which 

would increase background signal.
19

 Additionally, many hydrogels have tunable 

chemistries that allow for the conjugation of antibodies such that high specificity is 

maintained via the relatively high affinity of antibodies for specific analytes. 

 

Antibodies are used to determine specificity in many biodetection assays such as ELISA 

(enzyme-linked immunosorbent assay)
20

, Luminex
21

, and ELISpot (enzyme-linked 

immunospot)
22

. Protein segments of the antibody called the antigen-binding sites use 
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non-covalent interactions to reversibly bind analytes of interest. For these detection 

assays, the antibodies are first chemically attached to a substrate for read-out purposes, 

for example a 96-well plate or polymeric nano- or micro-particles. Existing detection 

methods have used size, shape, or fluorescence to barcode different reporters such that 

multiple analytes can be measured in a single assay. However, the 3DMaC method 

combines these to yield a massive number of potential barcoding combinations and has 

the additional benefit of flow cytometry-based data analysis. The Roy lab also has 

previous experience fabricating large numbers of shape-specific PEG-based particles.
23-25

 

In this dissertation, 3DMaC’s applicability to molecular analytics is demonstrated by 

measuring protein concentrations in solution. 

 

1.2 Hypothesis 

The overall hypothesis was that by combining microhydrogel shape, size, and 

fluorescence as multiplexing variables in flow cytometry, a high throughput, high 

replicate (“n”) assay system for biomaterials can be developed. The overall objective 

was to analyze biomaterials using imaging flow cytometry and develop protocols for two 

different biomaterial applications. 
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1.3 Specific Aims 

1.3.1 Aim 1: Develop and characterize a high-throughput, flow cytometry-based 

screening assay for shape-, size-, and fluorescence-barcoded microhydrogels. 

In this Aim, suitable microhydrogels were fabricated and analyzed using an 

ImageStreamX (ISX) imaging flow cytometer. This formed the basis of the 3DMaC 

method.  

A. Generate shaped microparticles from relevant hydrogel materials with high “n” 

and low size dispersity. 

B. Develop gating parameters for multiplexed analysis and determine experimental 

accuracy using the ISX. 

Hypothesis: Shape, size, and fluorescence barcodes can be automatically determined 

from images of microhydrogels collected in the ISX for high-throughput 

biomaterials analysis. 

 

1.3.2 Aim 2: Demonstrate how 3DMaC can measure the differentiation of 

encapsulated cells in response to barcoded material compositions. 

This Aim studied an important bioengineering model system to demonstrate an 

application of the developed method. 3DMaC was evaluated to study how material 

composition influences stem cell osteogenic differentiation by measuring mineralized 

material. 

A. Develop screening assays for evaluating osteogenic differentiation using the ISX. 

B. Encapsulate viable cells into microparticles with controlled encapsulation density. 

C. Measure the effect of material composition on the mineralization of MSCs during 

osteogenic differentiation using barcoded, peptide-functionalized microhydrogels.  
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Hypothesis: MSCs encapsulated in PEG-based microhydrogels and cultured in 

osteogenic media will produce more mineralization when RGD peptide is 

incorporated into microhydrogels and less when HAVDI peptide is included. 

 

1.3.3 Aim 3: Characterize 3DMaC’s suitability for performing highly multiplexed, 

microhydrogel-based sandwich immunoassays. 

This Aim used 3DMaC as a biomaterials-based detection platform. Existing 

microhydrogel-based functionalization techniques were optimized for the 3DMaC 

analysis system such that the SSF barcoded particles serve as platforms for sandwich 

immunoassays.  

A. Expand the number of shape and fluorescence barcodes that can be used. 

B. Functionalize microhydrogels for sandwich immunoassays and measure the extent 

to which protein binding and detection can be maximized. 

C. Measure the detection sensitivity of barcoded microhydrogels when detecting a 

protein standard curve.  

Hypothesis: Microhydrogels can be used as substrates for sandwich immunoassays 

such that highly multiplexed analyses can be performed using 3DMaC. 

 

1.4 Outline 

This concludes the Introduction to the dissertation, which detailed the central hypothesis, 

three Specific Aims, and hypotheses for each Specific Aim. Chapter 2 provides 

background information regarding biomaterials, high-throughput screening (HTS), and 

flow cytometry. Chapter 3 covers the first Aim, specifically how the 3DMaC method was 

developed and its capabilities. Chapter 4 and Chapter 5 illustrate the application of the 
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3DMaC method to two separate applications, tissue engineering and molecular analytics. 

Finally, Conclusions and Future Directions are presented. This progression is detailed in 

Figure 1. 

 

Figure 1. Relationship between Aims 
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CHAPTER 2  Background 

In the Introduction, biomaterials were broadly defined as materials that interact with 

biological systems or components. The key materials used in this dissertation are 

hydrogels. In particular, the selection of a hydrogel for tissue engineering focuses on the 

importance of structure-function relationships that are critical for normal organs.
26

 The 

interactions of materials and cells have been extensively reviewed
2, 5, 26-29

 and a wide 

range of exciting investigations are currently ongoing on topics such as 3D printing and 

organ-on-a-chip systems, among others. This section discusses the considerations when 

choosing a hydrogel material for inducing differentiation and then discusses my previous 

work in the Roy lab selecting materials using a low-throughput method which motivated 

this dissertation. Next, hydrogels are evaluated in the context of detecting analytes in 

solution and key characteristics of current technologies are explained. Finally, flow 

cytometry is reviewed with specific emphasis in the context of assaying biomaterials. 

 

2.1 Hydrogels: Types, Key Properties, and Considerations 

Hydrogels are polymer chains that are physically or chemically networked together into a 

solid that imbibes a large amount of water.
2
 In everyday life, Jell-O is a familiar hydrogel 

consisting of long gelatin chains (denatured collagen) that physically crosslink via 

entanglements upon cooling. As a result of the network structure and high aqueous 

volume, hydrogels are an ideal material to mimic the physical and chemical properties of 

human tissues.  
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2.1.1 Natural vs. Synthetic Hydrogels 

Natural biomaterials were the first investigated TE scaffolds according to historical 

records
2
, and are still widely researched today. The advantage of native biomaterials is 

that many are inherently bioactive meaning cells have receptors capable of recognizing 

the material and responding appropriately. This is widely used to control cell adhesion in 

tissue engineering applications.
29

 Natural biomaterials also enable other recognition 

events, for example, some adhesion proteins contain stretches of positively charged 

amino acids that will interact with negatively charged ECM (extracellular matrix) 

components or growth factors.
29

 However, natural biomaterials are subject to more 

concerns regarding sterility, can be mechanically weak, and may have more batch-to-

batch variability.
5, 30

 Additionally, it may not be clear which property of the material 

dictates the desired response due to the number of different factors that are not 

controlled.
31

 

 

Synthetic polymers were not invented until much later and so they did not enter the 

literature until the 1940s.
2
 Many successful biomaterials fall into this category with 

contact lenses (silicone acrylate) and hip implants (ultra-high molecular weight 

polyethylene) as familiar examples.
2
 The relatively high degree of control over properties 

is one advantage
31

, others include: manufacturability, quality control, and chemical 

functionality.
28

 However, disadvantages includes the need to remove unreacted 

monomer
2
 and limited inherent biological functionality. Poly(ethylene glycol) (or PEG) 

is a canonical synthetic biomaterial due to its low protein adsorption, high water uptake, 

ease of chemical modification, and low immunogenicity.
2, 32

 It has been used extensively 

for building TE organs, coating drug delivery vehicles, and preventing surface fouling.
2
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2.1.2 Crosslinking 

The networking process that creates hydrogels, called crosslinking, converts a liquid 

solution into a solid structure capable of supporting applied forces. Depending on the 

polymer chosen this crosslinking can take many different forms. Physical crosslinking is 

the simplest, relying on either small nodes of crystallinity (not common in hydrogel 

systems) or entanglements that form when long chains become wrapped around one 

another and pulled in different directions.  

 

Chemical crosslinking in hydrogels frequently occurs via ionic bonding, pH changes, 

temperature changes, or free-radical polymerization. Ionic bonding, for example calcium 

ions used to crosslink alginate chains, forms reversible crosslinks which is convenient for 

in vitro studies. pH and temperature-based crosslinking reactions are useful in some 

applications, especially for minimally invasive surgeries and drug delivery applications. 

However, photo-initiated polymerizations are useful because they can be precisely 

controlled by the engineer and afford spatial control as well.
32

 It is important to note that 

UV-photoinitiated crosslinking reactions
33

 are among the least cyto-compatible due to the 

presence of free-radicals and so experimental conditions must be carefully balanced to 

minimize cell death. In this dissertation, relatively high viability has been achieved using 

LAP (lithium phenyl-2,4,6-trimethylbenzoylphosphinate) as the photoinitiator. This 

photoinitiator has rapidly replaced I2959 (2-hydroxy-1-[4-(2-hydroxyethoxy) phenyl]-2-

methyl-1-propanone), which was previously the predominant initiator for cell-

encapsulation polymerizations, due to LAP’s higher water solubility and absorbance.
34

 

 

2.1.3 Mechanical Properties 

For many tissues the mechanical properties of a replacement scaffold are a key design 

goal.
26

 Mechanical properties are important because the material is expected to fulfill the 
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mechanical function of the tissue while cells regenerate the injury.
35, 36

 Even if the organ 

does not bear the patient’s weight, a scaffold should still mimic the stiffness and elasticity 

of the native tissue. This is because adherent cells exert forces and organize their 

cytoskeleton differently depending on substrate stiffness, and therefore it is likely that 

these interactions are part of cellular decision making.
37

 For MSCs in particular, it has 

been shown that matrix elasticity (in 2D) will direct their differentiation with softer 

surfaces leading to neurogenesis and stiffer surfaces resulting in osteogenesis.
38

 

 

In the past, bone and other hard tissues such as cartilage have been acceptably replaced 

by metal or stiff polymers, represented by the success of the hip implant.
39

 Soft tissue is 

better replaced with hydrogel materials whose stiffness can be tuned by modulating the 

network mesh size and chain composition. In particular, hydrogels are different from 

metals and ceramics in that they can be “viscoelastic” meaning that they exhibit the 

elastic-like and viscous-like behaviors found in natural tissue.  

 

2.1.4 Diffusion 

Diffusion is a key consideration for cell-containing scaffolds because cells require 

constant oxygen delivery and removal of waste products to remain viable. In the body, 

this is achieved through a robust circulatory system with a branching structure to bring 

blood for nutrient/waste transport within tens of microns of almost every cell.
26, 31

 While 

some tissues operate under hypoxic conditions, for example cartilage, the majority of TE 

solutions will need to account for this interconnected network.
5
 Current solutions 

generally either design scaffolds that explicitly incorporate such networks during 

fabrication
40, 41

 or include cells that can be encouraged to form new networks
42, 43

. 
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Additionally, diffusion controls the rate at which other signals such as proteins or small 

molecules will reach a cell. For larger molecules such as proteins, the mesh size of the 

network may be small enough to impede transport. ECM components such as 

glycosaminoglycans can also specifically bind to growth factors,
35

 which may impede 

their transport to a cell but could also be used to preload a biomaterial with deliverable 

protein. 

 

2.1.5 Degradation 

Currently, many groups are working to produce transient implants which induce organ 

regeneration as a superior long-term solution to implanting a permanent synthetic organ. 

The idea is that the material can instruct resident cells to regenerate the tissue as the 

scaffold slowly degrades away. This solution avoids many of the issues seen with long-

term implants such as stress-shielding-related bone loss and the need for revision 

surgeries in younger patients.
39

 However, the degradation of the material must be 

programmed to closely match the recovery of the injured tissue so that the tissue 

functions mechanically throughout the recovery process.
28

 In particular, synthetic 

polymers for TE generally degrade via hydrolysis, which is a time-dependent process that 

would need to be optimized.
5, 35

 Natural ECM materials can be specifically degraded by 

the human body and these same proteases could be harnessed to degrade a tissue 

implant.
35

 Additionally, any byproducts of the degradation reaction must be 

biocompatible to avoid poisoning the patient.
5
  

 

2.1.6 Processing, Handling, and Sterilization 

Infection of implanted biomaterials is a major issue with 60-70% of all hospital-acquired 

infections associated with implanted medical devices.
44

 Implant infection is estimated at 
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0.5-5% for total joint replacements and is one of the primary reasons for device failure.
45

 

Depending on the material used, various strategies can be applied to mitigate the 

contamination of devices before implantation. Polymers are more fragile than ceramics 

and so may be more difficult to sterilize compared to some ceramic bone tissue 

engineering materials.
36

 High heat in particular may degrade polymers which would 

result in changed properties.
2
 Ethylene oxide gas is a commonly used sterilization 

strategy because it will not harm many biologics
27

 that would be destroyed, degraded, or 

denatured by high heat or harsh solvents.  

 

However, none of the described sterilization methods are compatible with the material-

cell constructs that are envisioned here because of the fragile nature of cells.
2
 Currently, 

sterility is maintained by processing all components in a GMP-certified environment 

(Good Manufacturing Practices). Polymers and culture reagents are treated with 

traditional sterilization methods as appropriate and all cells must be extensively lot tested 

before use. This is a current major limitation due to the time and money involved with 

testing cells for a wide range of possible contaminants. 

 

One advantage of polymeric biomaterials, both natural and synthetic, is that they can be 

processed with relatively mild experimental conditions before end use. Unlike ceramics 

or metals which may be difficult to process
5
, polymers are often handled in a liquid state 

before conversion to a solid-like final form. This conversion can be a function of time, 

pH, temperature, or shear stress and this flexibility enables more patient-specific fitting of 

implanted biomaterials. Especially, some polymer formulations are attractive because 

they have the potential to be delivered directly to the injury site and crosslinked in situ to 

better conform to the patient’s geometry.
46
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2.2 My Previous Work in the Roy Laboratory on Biomaterial-based 

Chondrogenic Differentiation of Mesenchymal Stem Cells
1
 

This dissertation was motivated by previous studies in the Roy Lab focused on selecting 

materials that induce zone-specific chondrogenic phenotypes in differentiating 

mesenchymal stem cells. The process of selecting a material involves identification, 

culture, and analysis, which can take weeks to months depending on the culture period, 

and analyses performed. This process also presumes that the researcher is starting with 

materials that have previously shown promise and is looking to optimize around that 

point. Otherwise, this method would be much too slow and expensive to test novel 

materials for suitability. While such studies will always be necessary before in vivo 

implementation, the goal of this thesis was to develop a method that could winnow the 

number of potential materials entering the pipeline. Ideally, only particularly promising 

materials would be tested to accelerate clinical translation and reduce costs and time. 

 

2.2.1 Introduction  

In order to produce polymeric biomimetic constructs for tissue regeneration, it is critical 

to consider the spatial organization of the chosen tissue, and to do so across multiple 

length scales as form should dictate function.
47-49

 Articular cartilage is a model 

engineering target due to its spatially-varying structure. It consists of distinct biochemical 

layers which transmit loads from the articulating surface to the underlying bone with 

                                                 

 

 

1
 Adapted from: Parratt, K; Smerchansky, M.; Stiggers, Q.; Roy, K. Effect of Hydrogel Material 

Composition on hBMSC Differentiation into Zone-specific Neo-cartilage: Engineering Human Articular 

Cartilage with Spatially Varying Properties. Journal of Materials Chemistry B, 2017, 5, 6237-6248. 
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minimal friction, as well as the absence of confounding nerves, blood vessels, or 

lymphatics. Additionally, cell content in articular cartilage is low, such that tissue 

mechanical properties are dictated by the surrounding encapsulating proteins and 

polysaccharides. Native cartilage layers are uniquely characterized by this ECM which 

constitutes the bulk of their volume. The composition of the ECM gives each layer 

distinct biochemical and mechanical properties, and imparts a specific phenotype to 

constituent chondrocytes.
50-52

 

 

Cartilage ECM has two crucial components: collagens (II and X) which help give 

cartilage its structure, and sulfated glycosaminoglycans (sGAGs) which contribute to 

mechanical strength. The superficial layer of hyaline cartilage is the “top” layer which 

forms an articulating surface. As such, the surface has low friction, little compressive 

strength, and a high degree of fiber and cell alignment.
50

 Moving below the surface, there 

is a gradual shift to the transitional layer with decreasing collagen II, individual cells 

encased in well-organized pericellular ECM, and sGAGs organized into aggrecan chains 

for more mechanical strength and water retention.
50

 Closer to the bone, in the middle 

layer, collagen X and sGAGs increase further, and cells are oriented in columns.
50

 Finally 

there is a calcified layer with less active chondrocytes.
50

 The ability of material scaffolds 

to direct stem and progenitor cells towards generating zone-specific levels (relative 

abundance) of these three parameters, collagen II, X and sGAGs, can therefore be used to 

identify material compositions conducive of engineering spatially organized human neo-

cartilage tissues.  

 

Selected biomaterials must have the appropriate biochemical and mechanical cues to 

direct encapsulated cells to differentiate into cartilage tissue and adopt different 

functional phenotypes such that the cells produce an ECM composition specific to each 
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layer.
53, 54

 Although chondrocytes have also been studied extensively for cartilage tissue 

engineering, clinically this is less tenable than stem cells because harvested autologous 

(patient-specific) chondrocytes are few in number, expand poorly, and isolation can lead 

to increased morbidity at the site of removal.
53

 Recent work has focused on using 

autologous stromal cell sources such as human bone marrow-derived stromal cells 

(hBMSCs) or human adipose-derived stromal cells both with and without biomaterial 

matrices.
55-59

 

 

Additionally, external culture conditions such as hypoxia or mechanical stimulation
50

 can 

be used to mimic important in vivo characteristics that contribute to differentiation and 

further improve the final phenotype. These variables have been tested on both 

differentiating hBMSCs and primary, isolated chondrocytes.
60-65

 In vivo, cartilage tissue 

experiences a much lower level of oxygen than the 21% that constitutes normoxic in vitro 

culture, generally closer to 2-9% in tissues.
66

 As such, the differentiation profile of 

hBMSCs can be expected to change if the oxygen profile were altered. Specifically, 

hypoxia is thought to maintain a more “stem-like” cell state in which differentiation 

potential is reduced.
66

 However, studies of hypoxia often are conducted on cells cultured 

on 2D flasks rather than in the context of a 3D hydrogel network. This is important 

because past studies have shown that 2D and 3D systems can give different results
67, 68

 

with 3D culture often yielding results more similar to those observed in vivo.  

 

Most previous studies have looked to optimize chondrogenesis in a homogeneous tissue 

structure either by varying material properties or culture conditions. However, cartilage 
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being a spatially-varying tissue, it is critical to develop spatially-patterned scaffolds 

constructed of multiple materials and understand the interactions between each layer and 

how that effects the overall 3D tissue structure.
15

 Based on the native tissue, constructs 

should recapitulate the key characteristics of each spatial “zone” such that the materials 

can restore function to the tissue and give the cells necessary cues to differentiate into 

chondrocytes representative of each layer. Therefore, the superficial layer should aim for 

high collagen II expression, low collagen X expression and low sGAG secretion; the 

middle layer should aim for the inverse with relatively low collagen II, high collagen X 

expression, and high sGAG secretion; and the transitional layer should aim to have 

medium amounts of the ECM components. Together, these biochemical considerations 

should also lead to mechanically distinct layers that replicate the compressive moduli of 

the native tissue. Our group has previously evaluated multilayer constructs of similar 

materials used here; however, that work was done using a mouse progenitor cell line.
14, 15

 

There have been no reports of constructing a zonally-organized human articular cartilage-

like tissue from donor-specific hBMSCs using spatially patterned material scaffolds.  

  

Here we investigated nine different composite, photopolymerizable, interpenetrating 

hydrogel networks (IPNs), comprised of synthetic PEG-based materials and 

methacrylated cartilage ECM biopolymers to optimize zone-specific chondrogenic 

differentiation as a function of material compositions and culture conditions; such that a 

multi-layered, biomimetic construct can be engineered to generate spatially-organized 

tissue. Relative chondrogenesis was evaluated via four relevant metrics of differentiation 

and biomaterial performance: gene expression of collagen I, II, and X, accumulation of 

sGAGs, compressive modulus, and histological staining. Collagen I is found alongside 
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fibrocartilage, which was not the goal of this study.
69

 These metrics were measured for 

the biomaterials of interest across two widely used culture conditions: normoxia (21% 

oxygen) and hypoxia (defined here as 5% oxygen). Based on differences observed in 

single layers, a multi-layered structure was designed around distinct gradients in collagen 

expression and sGAG secretion. Chondrogenesis was then similarly evaluated to 

determine to what extent single material studies could predict performance in a complex, 

spatially-patterned construct. 

 

2.2.2 Hydrogel Crosslinking  

Several test material compositions were crosslinked to generate nine different hydrogel 

IPNs as detailed in Table 1. The compressive moduli of these IPNs were calculated from 

stress-strain curves (Figure 2A) and are shown to have a dependence on both overall 

polymer content and GAG amounts. Figure 2B shows the relative increase in volume of 

each composition after swelling in water; here the trend is more dependent on the overall 

amount of included polymer than a specific composition.  Higher degrees of 

methacrylation can be expected to lead to higher moduli as can the inclusion of higher 

masses of GAG in the prepolymer.
70, 71

 In addition to PEGDA, material compositions B 

and C include low levels of hyaluronic acid methacrylate (HAMA), and D includes a low 

level of a short peptide, all of which lowered the average modulus by a larger degree than 

expected.   However, gels E, F, G, and I contain 5-10% of chondroitin sulfate 

methacrylate (CSMA) which resulted in higher moduli. Sample H has a lower level of 

overall polymer which explains its lower modulus.  

 

These values are below the expected values for native cartilage tissue, which ranges from 

0.08 MPa in the superficial layer, to 2.1 MPa in the middle layer, and 320 MPa in the 

calcified layer (note an almost two orders of magnitude difference from the top to the 
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bottom layer of the same cartilage tissue).
56, 72

 Here, only the highest modulus IPNs 

tested approached the modulus seen in the superficial layer. However, in synthetic tissue 

systems based on PEGDA, higher modulus is generally achieved by increasing the 

crosslink density via higher polymer mass which can result in pore sizes too small to 

allow for transport between cells and through hydrogel constructs. Therefore, this work 

did not design material compositions to target mechanical properties and instead kept 

overall polymer content constant while changing the relative amounts, with an 

expectation that eventually as these neo-tissues lays down their own matrices, the moduli 

will increase.  

 

The same trends are not reflected in the relative increases in volume that were observed 

with swelling. These changes were proportionally smaller than those of the moduli and 

gels with a higher proportion of PEGDA swelled more. Based on the theoretical 

calculated degrees of methacrylation, the CSMA has a crosslink on every 4th 

disaccharide unit whereas the HAMA has a crosslink on every 5th to 6th unit. This means 

that CSMA gels will have a higher crosslink density which would result in reduced 

swelling and higher modulus, as observed. Especially in cases of lower degrees of 

methacrylation, as seen in our HAMA, the network may be heterogeneous with defects 

that lower overall modulus.
70
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Table 1 Material Compositions Tested for Inducing Chondrogenic Phenotype 

Materials were a combination of poly(ethylene glycol) diacrylate, chondroitin sulfate 

methacrylate, hyaluronic acid methacrylate, and an MMP-degradable peptide. 

 

 

 

 

Figure 2 Mechanical Testing of Cell-Free Bulk Hydrogels 

Compressive moduli were measured for each of the materials of interest (A). The relative 

volume of the swollen cell-free hydrogels were also compared with the initial volume of 

the construct (B). 

 

2.2.3 Characterization of Response  

2.2.3.1 Polymerase Chain Reaction 

Different hydrogel material compositions were shown to impact the subsequent 

differentiation of hBMSCs within each experimental condition. Figure 3 shows the 

relative gene expression of collagen I, II, and X in each condition as a fold change ratio 

scaled to the expression of each in the starting hMSC population. These were measured 

by quantitative Real Time Polymerase Chain Reaction (qRT-PCR). Most replicates were 
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from separate polymerizations and cell expansions, and so biological variability was high 

in this measurement.  

 

To better understand relative amounts of collagens rather than overall magnitude, a 

critical aspect of zonal organization in articular cartilage, gene expression can be 

expressed as a ratio of the desirable collagen II expression relative to the undesirable 

collagen I and X expression to control across samples (Figure 4). With this new metric, 

favorable zone-specific material combinations are readily identifiable. It is important to 

keep in mind that high collagen X levels are characteristic of the middle layer of articular 

cartilage and so a material with a lower ratio will be more favorable for this layer of the 

complex construct. 

 

From this data, material compositions can be compared to the widely used pellet culture 

condition that serves as a positive control. Figure 3 shows that pellet culture had the 

highest absolute collagen I and II production, but not collagen X, implying that some 

materials were creating more hypertrophic tissue. However, from the ratios in Figure 4 it 

can be seen that some materials did have more collagen II production relative to the 

pellet, which is favorable for the superficial and transitional layers of the biomimetic 

construct. While this data suggests that chondrogenic potential was improved in these 

gels, future studies should include true chondrocytes as an additional positive control as 

well as longer timepoints to check for increased hypertrophy. We note also that the trends 

seen in the compressive modulus data does not predict the resulting collagen ratios, 

suggesting that biochemical composition of the materials plays a major role. 

Interestingly, all of the conditions that contained HAMA and had a high modulus 

(excluding H) had a high collagen ratio, suggesting that this may be a principal factor at 

this design step. 
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Figure 3 Fold Change of Collagens 

qRT-PCR was used to measure the fold change of cells in each material relative to the 

stem cell population. 

 

 

Figure 4 Ratio of Collagen Fold Changes 

Fold changes could instead be expressed as a ratio of collagen 2 relative to collagen 1 and 

10 to determine the characteristic phenotype. 

 

2.2.3.2 Dimethylmethylene Blue (DMMB) Absorbance 

Collagen gene expression represents only part of the ECM regeneration that is of interest 

in an engineered cartilage; the sGAG content is crucial for water retention in functional 

cartilage. The DMMB assay quantifies the amount of sGAGs in a hydrogel construct by 
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dye absorbance of the digested constructs. Experimental hydrogels showed an increase in 

sGAG production on a per cell basis over the differentiation period. Additionally, many 

material compositions had high starting CSMA concentrations that would absorb as well. 

In order to use both the collagen ratio data and the sGAG data as a multivariate 

discriminator, an sGAG vs collagen ratio plot (Figure 5) was constructed which allowed 

us to readily identify zone-specific “chondrogenic” materials.  

 

 

Figure 5 Determining Collagen Ratios and sGAG Production 

By plotting the collagen ratio against the sGAG production per cell, it is possible to 

define the phenotype of the differentiating cells for the multilayered construct. 

 

2.2.3.3 Compression Testing 

Figure 6 shows the calculated compressive modulus for the hydrogels after three weeks 

of culture. Two samples with low moduli had either lower overall polymer content (10% 

PEGDA + 2% HAMA) or matrix metalloproteinase (MMP)-degradable linkages for the 

cells to digest the surrounding matrix (18% PEGDA + 2% MMP-pep). The materials 
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containing only PEGDA and HAMA (A-C) showed a slight increase in compressive 

moduli over time, possibly because these materials had higher collagen ratios and 

therefore more chondrogenic ECM was produced. In two of the materials that contained 

CSMA (G, I), there was a decrease in compressive modulus compared to the blank 

condition.  Because the modulus was not measured immediately after encapsulation; it is 

possible that decreases in the moduli relative to the blank condition are due to the high 

cell concentration disrupting the polymer network. 

 

 

Figure 6 Compressive Moduli of Cell-Containing Hydrogels 

Compressive moduli were measured for constructs after three weeks of culture in 

chondrogenic differentiation media. 

 

2.2.3.4 Histology 

Histological staining provides an idea of how the composite engineered tissue will 

function, rather than a snapshot of cellular phenotype, by revealing the organization of 

secreted ECM components in the construct. Figure 7 shows representative tissue sections 

for each material condition cultured in static normoxia that have been stained with 

Masson’s Trichrome and Figure 8 shows the same for Safranin-O. In each case, a section 

of mouse articular cartilage is included as a positive control. In these gels, the staining 

does not approach that seen in the cartilage, which suggests that these cells may have less 
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favorable chondrogenesis overall. However, differences were observed between material 

compositions, suggesting that the material composition was contributing to the eventual 

cell phenotype. 

 

The Safranin-O staining was less informative because many of the prepolymer conditions 

contained a substantial proportion of CSMA, a natural sGAG, which caused the entire 

section to stain. Masson’s Trichrome staining for collagens did not show this additional 

background staining and revealed that the pericellular regions had accumulated collagen, 

especially in the hydrogels with a higher proportion of PEGDA. Sections with both stains 

also showed that proliferation varied between the conditions. In particular, the 

10%PEGDA and 10%PEGDA + 2%HAMA constructs showed cell number increased but 

this was not observed when 9 or 10% CSMA was added as well. Given the low 

cellularity in native cartilage, cell proliferation was not considered in the final complex 

construct. 

 

 

Figure 7 Masson’s Trichrome Staining 

Masson’s trichrome stains collagens blue. Scale bars are 127 µm. 
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Figure 8 Safranin-O Staining 

Safranin-O stains sulfated glycosaminoglycans red. Scale bars are 127 µm. 

 

2.2.4 Hypoxic Culture  

Before proceeding to the multi-layered construct, hypoxic conditions were tested for four 

specific material compositions to determine if more native culture conditions would yield 

different phenotypes in the same materials. Based on the biomaterial combinations of 

interest from normoxia, a similar qRT-PCR + DMMB graph then was drawn for hypoxic 

culture.  

 

Figure 9 shows that this changed the phenotype of the cells in all four materials, but did 

not necessarily produce more desirable phenotypes. The 10% PEGDA + 2% HAMA and 

18% PEGDA + 2% MMPpep hydrogels initially had among the lowest ratio of collagen 

II expression out of all the tested materials and it was hypothesized that hypoxia may 

better mimic the in vivo environment. These two materials showed that hypoxic culture 
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increased the average ratio by one to two orders of magnitude, but this increase was 

offset by a decrease in secreted sGAGs.  

 

The two materials that had initially shown the highest collagen II ratios, 19% PEGDA + 

1% HAMA and 14% PEGDA + 5% CSMA + 1% HAMA, were also tested under 

hypoxia. These materials instead showed a decrease in collagen II ratio of about one 

order of magnitude and between one and two orders of magnitude reduction in total 

sGAGs present at the end of culture. The reduction in sGAG in composition F (which has 

a high starting CSMA concentration) is concerning as it suggests the cells are actively 

degrading the ECM (catabolic cells) rather than secreting new material. Therefore, all the 

hypoxic cultures tended towards a specific cell phenotype regardless of the material 

microenvironment. While this phenotype is “chondrogenic” under the criteria used here, 

the goal is spatially-patterned cartilage with layer-specific phenotypes, and so hypoxia 

culture is not suitable for this purpose and was not further investigated. 

 

 

Figure 9 Differentiation Under Hypoxic Conditions  

Hypoxia resulted in a convergent phenotype between materials, close to the phenotype of 

an undifferentiated stem cell. (Black – normoxia, blue – hypoxia) 
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2.2.5 Multi-layered Construct  

Based on the normoxia data, three biomaterial combinations were selected for a multi-

layered structure and further study. 19% PEGDA + 1% HAMA had the most favorable 

collagen II ratio without high sGAG, and so represents the superficial layer. 9% PEGDA 

+ 10% CSMA + 1% HAMA also had a high collagen II ratio along with higher sGAG 

concentration and so represents the transitional layer. Lastly, the 10% PEGDA + 10% 

CSMA combination had substantial collagen X and much more sGAG which makes it 

well-suited for the middle layer of articular cartilage. Our statistical analysis confirmed 

that layers B and G had different collagen ratios (p=0.038) and different sGAG/DNA 

(sulfated glycosaminoglycan / deoxyribonucleic acid) measurements with a 90% 

confidence interval (p=0.065). Similar to our previous work, layers were partially 

polymerized in order to form a complete structure.
15

 A multi-layered construct with 

spatially varying material composition was made where the three materials were layered 

on top of one another in a mold. The middle-mimetic layer was added and exposed to UV 

for 1 minute at a further distance from the lightsource. This process was repeated for the 

transitional-mimetic layer. After adding the superficial-mimetic layer, the entire mold 

was exposed to form a single unit (Figure 10). No constructs delaminated after UV 

exposure or swelling, however, two samples showed incomplete polymerization of the 

top layer after culture and were excluded from analysis. After three weeks of culture gene 

expression, sGAG accumulation, and histology were compared.   

 

Relative to the normoxia cases, the multi-layered structure showed the same trends in 

both collagen expression and sGAG content (Figure 11). This was promising as it 

suggested that materials tested independently could be layered together in the desired 

order and would maintain the relative phenotypic and zonally-relevant characteristics of 

that specific layer of cartilage tissue. These trends are reflected in the histological 
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staining for the multi-layered constructs (Figure 12A, Figure 12B). The Masson’s 

Trichrome staining is strongest throughout the transitional and middle layers; this could 

be because Masson’s Trichrome stains all collagens and these layers have high collagen I 

and X expression. Similar to the single layer materials, the Safranin-O staining is 

strongest for the transitional and middle layers due to their starting sGAG content. 

Mechanical testing was performed on the intact multi-layered constructs (Figure 13). By 

comparing with the previous data (from Figure 6), all the values appear similar and the 

multilayered structure has a modulus near the individual layer average.  

 

 

Figure 10 Design of Multilayer 

Based on the phenotypes observed in Figure 5, three materials were selected. 
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Figure 11 Phenotypes from Multilayer Culture 

Phenotypes were evaluated for each layer after being cultured in a multilayer structure for 

three weeks. Black – Individual materials, red – multilayered construct. 

 

 

Figure 12 Staining on Multilayer 

Masson’s Trichrome (left) and Safranin-O (right) stains were collected for the 

multilayered constructs. 
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Figure 13 Multilayer Compressive Moduli 

Compressive moduli were measured for the individual layers of the multilayered 

construct and found to be similar. 

 

2.2.6 Conclusion 

The purpose of this study was to identify hydrogel materials that direct hMSCs towards 

three different zone-specific neo-cartilage phenotypes and construct a complex, spatially-

patterned cartilage-like tissue. Nine different hydrogel IPN combinations were tested in 

normoxic culture and compared against differentiation in hypoxia and multi-layered 

normoxia culture. Of the materials tested here, three combinations were identified as 

promising for zone-specific differentiation. Multi-layered structures demonstrated that 

composite hydrogel constructs with spatially varying material compositions can direct a 

single hMSC population to form a composite tissue with zone-specific, spatially-varying 

properties, although the resulting zonal properties in single vs composite tissue structures 

were somewhat different. Specifically, the multi-layered construct was shown to lower 

the relative amount of collagen II, an important consideration for clinical translation.  

 

Our choices of PEG-based and cartilage-ECM based materials were driven by the 

polymers’ prominence in the field and use in pre-clinical and clinical studies. In the 
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future, the number of materials investigated should be further increased and tested in 

composite constructs since this work has shown that single layer optimizations do not 

necessarily predict how multi-layer constructs will perform. Additionally, researchers 

should consider whether a material can be 3D-printed to form patient-specific constructs 

that could be cultured externally before implantation.
73, 74

 Based on the studies performed 

here, future constructs should incorporate hypoxia during expansion to increase collagen 

ratios since these were lowered in the multi-layered construct. Engineering the zone-

specific materials to have a higher initial modulus may also improve the chondrogenic 

phenotype of the transitional- and middle-mimetic layers. As the field moves toward 

patient-specific biomaterial implants, it is important to understand better how spatially-

patterned, multi-material constructs will function. 

 

 

2.3 Biomaterial-based Osteogenic Differentiation of Mesenchymal Stem Cells 

Tissue engineering aims to replace or rebuild damaged tissue using a combination of 

biomaterial scaffolds and cells.
30, 35, 36

 A wide range of materials, both naturally derived 

and synthetic, have been tested in vitro and in vivo to evaluate their chemical and 

mechanical suitability as a replacement for a variety of tissues. In particular, hydrogel 

scaffolds are often selected for soft tissue regeneration due to their tissue-like mechanical 

compliance, high water content, and the ease with which they can be manipulated for 

implantation.  

 

2.3.1 Key Variables for Cell-Interacting Hydrogels 

In addition to their mechanical properties, hydrogels are promising TE materials because 

such scaffolds can support encapsulated cells. Once swollen in aqueous media, a 

hydrogel can be largely water by volume which provides cells with a native-like 



34 

 

environment and provides transport through the construct.
75

 Research has also shown that 

cells behave differently in 2D and 3D culture, and testing in 3D conditions may be more 

representative of in vivo responses.
76-78

  

 

Another important property of a TE material is how that material will handle long-term 

implantation in the body. In addition to the concerns regarding degradation products, 

implanted biomaterials need to contend with the patient’s foreign body response. The 

human immune system has evolved to resist invasion and unfortunately is one of the 

greatest challenges to the biomaterials engineer. Any implanted material will 

immediately be investigated by immune cells in the periphery. The innate immune 

system will respond first with neutrophils and macrophages attempting to destroy the 

foreign material.
2
  

 

The body will often construct a fibrous capsule to wall off the implant from the rest of the 

body thus impeding its function.
2
 In cases where this does not occur, the adaptive 

immune system builds a targeted response specific for antigens on the foreign material 

thus enabling the body to attack the material precisely.
79

 These immune responses can 

cause dramatic damage to the patient and implants, often requiring removal of the 

material. This second response is also to be expected when the implant contains allogenic 

cells as cells are potent antigens.
79

  

 

2.3.2 Human Mesenchymal Stem/Stromal Cells 

2.3.2.1 Defining an MSC 

All humans start as a collection of embryonic stem cells which are capable of 

differentiating into all of the cell types found in the body and self-replication. Then these 
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pluripotent stem cells give way to less plastic multipotent stem cells which are specific 

for certain types of cells or lineages. Particularly for the osteochondral tissue engineering 

discussed in this dissertation, the cell type with the highest clinical interest is 

mesenchymal stem cells (MSCs). 

 

Adult MSCs are a hotly debated cell type, often referred to instead as mesenchymal 

stromal cells
80

 or medicinal signaling cells
81

, which are found throughout tissues and in 

bone marrow, and can differentiate into a range of final cell types.
82

 In 2006, the 

International Society for Cellular Therapy issued a white paper
83

 which defined the cells 

as (1) plastic adherent in culture, (2) expressing CD73, CD90, and CD105, and lacking 

CD45, CD34, CD14 or CD11b, CD79α or CD19 and HLA-DR, and (3) capable of 

differentiation into osteoblasts, chondroblasts, and adipocytes in vitro. Since this 

dissertation only focuses on osteochondral differentiation, this is the definition used here. 

The reader is referred to Caplan
81

 for more discussion of these cells. 

 

2.3.2.2 Mesenchymal Lineages and Differentiation 

The three defining differentiation pathways for an MSC are adipogenesis, 

chondrogenesis, and osteogenesis. Adipocytes are found throughout the body and show 

clear, round fat globules within the boundaries of the cell membrane. Chondrocytes are 

found in cartilage tissue and show poor expansion in 2D culture, dedifferentiating when 

removed from 3D culture. Osteoblasts are the cells responsible for creating new bone and 

deposit mineralized material around the cell membrane. 

 



36 

 

2.3.2.3 Measuring Differentiation 

To evaluate differentiation, there are several assay types that can be performed. The first 

is a visual inspection; adipogenesis and osteogenesis can be distinguished in 2D culture 

by the formation of fat globules and mineralization respectively. These can be made more 

apparent by histological staining, Oil Red or Alizarin Red (AR), which will specifically 

color the fat or mineral to enhance imaging. Differentiating cells can also be identified 

through changes in their surface-bound or intracellular markers. Specific antibodies 

tagged with fluorophores used in immunohistochemistry or flow cytometry allow 

researchers to precisely label newly expressed proteins or transcription factors that are 

indicative of differentiation. Finally, many of these same markers can be measured 

through polymerase chain reaction assays which measure RNA transcript number. 

 

2.3.2.4 Stem Cell Manufacturing Considerations 

MSCs are a promising for cellular therapies because they have the potential to 

differentiate into many tissue types, secrete immunomodulatory signals, and have 

relatively low immunogenicity.
84

 This last trait in particular means that allogenic 

therapies may be possible, rather than autologous therapies that have thus far dominated. 

Autologous therapies use patient cells to regenerate a tissue, however, necessary cells are 

often few in number or diseased. Allogenic therapies, in which a donor provides cells, are 

already clinically used for treatments such as bone marrow transplant. If allogenic 

therapies could be developed using MSCs, cell manufacturing technologies such as cell 

banking could solve the problem of collecting enough cells for transplant, reduce the time 

to treatment, and increase quality control.
85

 

 

After the successes of the protein manufacturing field, there currently is a push for 

cellular manufacturing. The idea is that cells are a product like any other and can be 
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produced in large quantities with reproducible quality control (QC) measurements using 

similar techniques developed for other products. However, substantial challenges remain 

to be solved before cells can be shipped and used in the desired off-the-shelf manner. The 

primary biological challenge is how to obtain consistent results between different 

batches. Cells will need to be QC-ed at each stage to ensure they have expected 

performance markers, but often the characteristics most predictive of success are not 

known. This is particularly an issue for stem cells because the product will be changing 

through each step of the process and will be sensitive to any stimuli or lack thereof from 

the outside environment. 

 

The expansion or manufacturing of patient-specific cells come with its own set of 

challenges in addition to those described above. Specifically, the manufacturing process 

may need to be adjusted for each cell type/donor depending on the starting characteristics 

of the cells. Depending on disease state, this may make the expansion impossible or the 

characteristics more difficult to achieve. But from an immunological standpoint, the 

patient-specific cells offer fewer challenges because the clinician does not have to 

contend with any clash between patient and donor cells. Patient-specific cells are likely to 

need screening for each biomaterials-related application. While a base material might be 

promising, each patient may respond differently to certain ligands or mechanical 

properties. The described 3DMaC method has the potential to quickly screen patient-

specific cells in the context of a large number of different biomaterials. 

 

2.3.3 Osteogenesis 

Osteogenic differentiation of MSCs is well-established in vitro and in vivo, but there is 

still great need to regenerate bone tissue in case of injury or disease.
86

 Above a critical 

size, bone cannot bridge the gap to regenerate itself and so instead an autograft is often 
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used; however, this method has drawbacks relating to the need to surgically procure bone 

from another site.
46

 TE scaffolds are a promising alternative to fill the gap, restore 

mechanical function, and direct regeneration of the bone. Native bone tissue is complex 

with anisotropic stiffness
2
, but with soft and productive bone marrow on the inside.

87
 

Unlike many organs, bone has a substantial inorganic component in the form of 

mineralized material such as hydroxyapatite (HA, calcium phosphate)
27

 which gives the 

tissue substantial strength. On the cellular level, bone is constantly changing with 

osteoblasts laying down new material and osteoclasts removing unnecessary material.
86

 If 

autologous cells are intended to be used in the scaffold, it is important to remember that 

the regenerative potential of stem cells can decline with age and injury.
88

 Additionally, 

the implant site may contain scar tissue or show signs of inflammation
35

, which could 

reduce the regenerative capabilities of bone.
89, 90

 

 

2.3.3.1 Mechanical Considerations 

Ideally, a scaffold for bone tissue will meet several functional goals. The scaffold will 

support cells and deliver necessary cues for osteogenic differentiation. The engineered 

scaffold would ideally model the structure of native bone as well. Bone is divided into 

cortical and trabecular bone which give the tissue mechanical strength and provide a 

space for bone marrow respectively.
86

 However, bone is challenging to replicate because 

it is hierarchically organized with specific patterning across several length scales and is 

highly anisotropic.
91

 Similarly, it can be difficult to incorporate biological components 

with their native architecture, such as fibrillar collagen, without relying on self-

assembly.
30

  

 

Mechanical properties of scaffolds for bone tissue engineering are more important than 

for other tissues for two main reasons. The first is that the patient would ideally like to be 
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able to mechanically load the bone during the healing process and the second is to avoid 

the phenomena of stress-shielding where bone tissue is lost because stresses are borne by 

a stiffer implanted device.
36

 The mechanical properties of a biomaterial are also 

important for directing differentiation. In particular, the modulus
38, 92

 and stress relaxation 

rate
93

 have been shown to impact differentiation. The compressive strength of cancellous 

bone is 5-10 MPa and cortical bone is 130-220 MPa, and the tensile strength is 5-10 MPa 

and 80-150 MPa respectively.
36, 94

 Cells can sense the stiffness of a material via 

collections of adhesive transmembrane proteins called integrins which are organized into 

focal adhesions.
95

 These assemblies are one route by which cells respond to applied 

forces; this process is called mechanotransduction.
96

 

 

For most of the crosslinked systems described here, network mesh sizes are likely small 

because mesh size is inversely correlated with stiffness in synthetic polymer systems. 

However, bone regeneration scaffolds would ideally have large pore sizes (>50 µm) to 

allow for cell migration and growth.
10

 Therefore, bone tissue scaffolds will likely need a 

degradation rate matched to the production of ECM by encapsulated cells so that the 

necessary stiffness is maintained.
86

 

 

2.3.3.2 The Process of Mineralization 

During the differentiation process, osteoblasts remodel their environment by encouraging 

calcification or mineralization of the surrounding ECM. Differentiation media is 

supplemented with β-glycerophosphate as a source of phosphate groups
35

 and this is 

combined with calcium to produce the inorganic component of bone. This mineralization 

is called hydroxyapatite though other minerals can also be involved and form different 

crystal structures.
97

 HA nanocrystals form within the organic component of bone (mostly 

collagen I) at specific nucleation sites with help from acidic proteins.
97
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2.3.3.3 Scaffolds and Biological Molecules for Inducing Osteogenic Differentiation 

One of the most potent inducers of osteogenic differentiation is bone morphogenic 

protein-2 (BMP-2) which was identified by screening the products of bone 

demineralization.
27

 Eventually, a family of similar proteins was identified and found to 

have sequence similarities to Transforming Growth Factor-beta proteins (TGF-β) which 

are used to induce chondrogenesis among other uses.
27

 Currently, a leading commercially 

available bone tissue engineering product is INFUSE, a BMP2-soaked collagen sponge 

that is implanted directly at the injury site.
98, 99

 Mechanical strength is a key failing as a 

collagen sponge does not support compressive forces during the mineralization process.
99

 

 

The source of the biomaterial also determines how the cells or body will respond; natural 

biomaterials derived from plant sources, ex alginate, lack moieties that human cells will 

recognize. While there are a massive number of synthetic polymers that can be used to 

create hydrogel scaffolds, PEG-based polymers are one of the most prevalent. PEG 

chains can hydrogen bond to water and these hydrophilic chains are commonly coupled 

to surfaces (“pegylation”) to yield a corona of water that repels cells and proteins. This 

lack of recognizable groups means that cell-instructive chemical groups may need to be 

added. For osteogenesis in particular, even small molecules have been added to hydrogels 

to increase mineralization.
100

 Synthetic polymers generally also lack biologically relevant 

functional groups; however, appropriate functionalization chemistries are often 

experimentally easier because synthetics can be designed with sites for functionalization.  

 

Functionalizing a hydrogel surface with a protein may yield more benefits than supplying 

free proteins as the immobilized version cannot be consumed by a cell and so remains 

available to signal to many cells.
35

 Peptides are an attractive alternative to including 

entire proteins. If a short sequence is known to recapitulate the functionality of the 
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protein, as is true with many integrin binding proteins
29

, it can be easier and less 

expensive to work only with the sequence. In particular, it has been shown that free 

peptide does not always deliver the same benefits as fixed peptides for maintaining 

viability of hMSCs (human mesenchymal stem cells).
101

 Peptide sequences also limit 

concerns about denaturation or aggregation, are more stable than a full protein, and can 

be more homogeneously distributed within the gel.
30, 102

 If the ideal conditions are not 

known at the time of fabrication, peptides sequences can include sites that are cut by 

cells
103

 or by the researcher
104

.
30

 Peptides can also be added covalently to the matrix 

later.
105, 106

 For all such peptides, it can be important to include a spacer arm when 

coupling a peptide to a surface to attain full functionality.
102

 

 

To achieve osteogenic differentiation in PEG-based hydrogels in particular, biological 

functionality needs to be incorporated in the system. Peptides with a cysteine group at the 

non-functional end of the sequence can participate in free-radical crosslinking via the 

thiol to become covalently linked into the network. Then the other end of the peptide is 

available to bind to groups on the surface of cells and direct differentiation. Two 

commonly used peptides for MSC differentiation contain the sequences RGD and 

HAVDI. RGD is a functional motif of several proteins including fibronectin, laminin, and 

collagen IV,
35

 which serves as an adhesion site for transmembrane integrins on MSCs. 

This peptide serves to replicate cell-ECM interactions that would be expected by a cell in 

the body. As mentioned previously, MSCs are partially defined by their adherent quality 

and so RGD-containing hydrogels enhance differentiation down all pathways by 

promoting cell survival in hydrogels. N-cadherin is a transmembrane protein that binds 

cadherins on adjacent cells and the HAVDI peptide can be used to mimic these cell-cell 

interactions.
107

 HAVDI has been used more recently to help single cells to differentiate as 

though there are surrounding cells.
59

 In particular this is important for chondrogenesis as 
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the in vivo condensation process begins with an aggregate of cells that are eventually 

separated as they lay down ECM.
107, 108

 

 

Osteogenesis in PEG gels also is dependent on the number of attachment sites for cells. 

Burdick and Anseth found that increasing concentrations of covalently incorporated RGD 

resulted in increased number of adhered osteoblasts and increased spreading in 2D 

culture.
46

 When converting to 3D culture where the osteoblasts were incorporated into the 

hydrogels during polymerization, higher concentrations of macromer were shown to 

correlate with decreased cell viability over the culture period.
46

 However, the viability 

could be partially rescued by including RGD in the crosslinked network.
46

 Importantly, 

they also found that higher concentrations of RGD peptide resulted in greater 

mineralization within the 3D matrix.
46

 

 

Cosgrove et al. used hyaluronic acid-based hydrogels as a 2D substrate to which they 

coupled RGD and HAVDI peptide sequences.
107

 As a polymer found in native tissue, 

hyaluronic acid is also biologically active with the ability to bind to cell receptors CD44 

and CD168.
109

 They found that the HAVDI peptide presentation caused the cells to exert 

lower contractile forces on the surrounding matrix and consequently the nuclear 

localization of key transcription factors for osteogenesis was reduced. The authors also 

concluded that, as the HAVDI sequence mimics cell-cell interactions, this peptide may 

shield cells from sensing the stiffness of the surrounding matrix.  Based on this paper, 

this dissertation hypothesized that MSCs encapsulated in PEG-based microhydrogels and 

cultured in osteogenic media will produce more mineralization when RGD peptide is 

incorporated into microhydrogels and less when HAVDI peptide is included. However, 

this is in disagreement with another paper in which Zhu et al. similarly used hyaluronic 

acid as a 2D substrate for osteogenic differentiation of hMSCs and found that the addition 
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of HAVDI resulted in higher expression of a key transcription factor and more Von 

Kossa staining for mineralized material.
109

 Therefore, it is possible that the cell source 

may be important for determining mineralization or there may be other factors that differ 

between the two studies. 

 

2.3.4 Screening Platforms  

Studies of cell behavior in 3D are inherently more difficult than assays in 2D due to the 

difficulties accessing the cells for staining or extracting a clear signal through the gel 

material.
30

 Many cell-biomaterial studies are conducted in “chip” format
110-113

, which can 

give good in vitro data but is not high-throughput as defined in this dissertation. 

Currently there exist multiple methods to generate high replicate numbers of cells in a 

single material or multiple materials; however, there is a need for high-throughput 

analysis techniques to collect multiplexed data from the 3D cell-material constructs. 

 

While many groups have microfabricated cell-material constructs, unlike for biosensing 

applications, most of these studies are not designed around multiplexed particles to 

compare cell-material interactions across materials. Nam et al. used shape-barcoded 

microparticles to indicate cell type; however, cells were cultured in 2D on the particle 

surfaces and intended for drug screening applications.
114

 The Khademhosseini group has 

developed a range of microhydrogel fabrication techniques and these often involve 

shape-specific microhydrogels; however the overall goal has been to generate larger 

tissue constructs via assembly of the microparticles.
115, 116

 Some examples of their work 

includes stop-flow lithography
117

, poly(dimethylsiloxane) (PDMS) molding,
118, 119

 and 

temperature-sensitive poly(N-isopropyl-acrylamide) molding of cell aggregates
120

. 
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Currently, printed microarrays dominate high-throughput screening of biomaterial-cell 

interactions in 2D
121-124

 and 3D
125-128

. With the invention of printers capable of depositing 

biomaterials, engineers could automate the deposition of micron-scale drops of 

biomaterials such that a large number of conditions could be assayed in a small sample 

space. This greatly accelerates the testing of many different biomaterials and reduces the 

associated costs. In such systems, biomaterials are laid out in arrays on glass slides and 

the position designates the composition of each biomaterial. These printers can be 

modified to include viable cells and are compatible with many of the biomaterials and 

crosslinking chemistries described previously.  

 

However, there are a few downsides to these systems. Due to their planar nature, these 

assays still essentially occupy a 2D space which is an eventual concern for cellular 

manufacturing applications that use bioreactors to fill a 3D space. There are also 

experimental considerations as the biomaterial droplets must remain adhered to a slide 

over long culture periods and they can be prone to delamination. Slide-based arrays also 

require printers to make, must have randomized placement to eliminate artifacts, and are 

difficult to assay. Even with an automated microscope to collect data on all the individual 

droplets and an automated program to process the images, the data collection of a large 

number of different experimental conditions and necessary number of technical replicates 

is daunting. Additionally, a portion of samples cannot be removed during culture for 

testing. 

 

Other groups have used microscopic analysis to obtain image data on a larger than 

average number of biological replicates within a biomaterials context. This includes work 

from the Burdick group, where single cell or multi-cell units were imaged and masked to 

analyze the impact of N-cadherin-mimetic peptide on hMSCs
129

, and work from the 



45 

 

Gartner group using DNA-programmed assembly of cells to build specific cellular 

microenvironments which were analyzed in a 3D bulk hydrogel array
130

. While all of the 

cells or cell clusters are treated independently in these methods, only a single material is 

tested at once which was not the goal of this dissertation. 

 

Another highly multiplexed technology is mass cytometry (commercially known as 

CyTOF, Cytometry by Time-of-Flight).
131, 132

 In this method, cell samples are labelled 

with antibodies that have been tagged with metal instead of fluorescence markers.
132

  

Next, a cell is sprayed into plasma, which ionizes the sample.
132

 This material is then fed 

into a time-of-flight mass spectrometer that separates out the signals of each of the 

ions.
132

 Compared to flow cytometry this method has lower throughput and is mainly 

applied to tissue sections or individual cells; however, it generates a large amount of high 

resolution, multiplexed data. It has been shown to collect as many as 34 variables and 

could be increased to 100.
132

 One interesting modification called imaging mass cytometry 

that ionizes the sample as a laser moves across the surface thus linking the acquired 

signal with a specific location.
133

 However, mass cytometry is necessarily a destructive 

process and flow cytometry is not. 

 

2.4 Biomaterials as Detection Platforms 

In addition to all of the TE applications of biomaterials described until this point, 

biomaterials are also widely used for sensing or detection applications. The reader is 

referred to Le Goff et al. for an excellent review of the topic.
134

 Biomaterial 

microparticles are a popular substrate for sensing due to their small size, proportionally 

large surface area, ease of handling, and generally gentle fabrication chemistries. 

Hydrogels in particular have been used in many different sensing applications. Some of 

these applications involve measurement of a physical change in the hydrogel to detect an 
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environmental condition. For example, the Peppas lab has developed molecular imprinted 

hydrogels that are designed with a binding pocket specific for an analyte of interest.
135

 

Upon binding, these materials can undergo a noticeable volume change. pH-sensitive 

hydrogels have also been developed, similarly these can swell or shrink to indicate pH.
136, 

137
 A slightly different principle is at play in some temperature-sensitive hydrogels. For 

example, PNIPAAm gels have a lower critical solution temperature above which they 

crash out of solution.
120

 However, all of these examples are still a single reaction in 

response to a single analyte or stimuli. For such a method to be able to report on a large 

number of conditions, the different test substrates need to have a distinguishing barcode. 

 

2.4.1 Barcoding Methods 

Several methods have been used to barcode particles for HTS and many are compatible 

with 3DMaC analysis. Ideally, all of the barcoding variables will be orthogonal such that 

they can be combined to give high multiplexing and the barcode should not interfere with 

the detection mechanism. Size is a common detection variable. As described above, a 

microhydrogel could either grow or shrink in response to an analyte.  

 

Fluorescence can also be used to barcode microhydrogels. The ISX can have four to six 

lasers that can create signals across ten fluorescence detection channels collected on two 

different cameras. Using single colors, this gives ten possible barcodes. In order to scale 

up that number, each channel can be considered “on” or “off” to dramatically increase the 

number of combinations. For fluorescence barcoding, a key consideration is the degree of 

overlap in emission spectra that might lead to false positive responses. Because the 

spectra are additive, the overlap can be computationally accounted for using 

compensation protocols. Spectra are collected for each of the single-color barcodes and 

the overlap into each detection channel is calculated. Then when analyzing samples, 
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compensation is applied to each signal such that only the signal above background is 

reported. Shape barcoding gives potentially the greatest multiplexing but is the most 

difficult analysis to automate. While this dissertation only uses the overall shape of a 

microhydrogel to barcode the composition or analyte, shape more broadly includes any 

patterning that can be detected in the ISX image. For example, a line-based barcode,
138, 

139
 as is seen on packaged food, or a dot-based barcode,

140
 similar to a QR code, both 

have been used for microparticles. The number of barcodes that can be designed is 

limited only by the creativity of the engineer and the ability of the detector to read the 

barcode.  

 

The detector used in this dissertation is a CCD camera that produces an image of each 

microhydrogel, therefore resolving different barcodes is an image recognition problem. 

The primary analysis method in this dissertation is feature-based, meaning that the 

software has key measurements or features that are used to classify an image. However, 

potential exists to implement more advanced image processing techniques such as deep 

learning algorithms.
141, 142

 In this case, a large number of training images are fed into the 

algorithm to develop a classifier, but this classifier is opaque to the user. Depending on 

the desired multiplexing, SSF barcoding methods can be combined to achieve the desired 

number of barcodes while maximizing accuracy and throughput. 

 

2.4.2 Fabrication of Barcoded Hydrogel Particles 

To achieve the desired barcoding of microhydrogels, many fabrication techniques were 

considered. These can be broadly characterized as: molded, microfluidic, and spun-cast 

techniques. The reader is referred to Merkel et al.
143

 for a review of nanofabrication 

methods, this dissertation will focus on microfabricated particles that can be visualized 

by the ISX. 
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The molding-based methods primarily use PDMS molds to hold the macromer solution in 

a desired geometry during crosslinking. Generally the patterned features around which 

the PDMS itself is first molded are made of photoresist; however, it is possible to pattern 

wafers outside a cleanroom with more accessible materials such as PEGDA.
144

 PDMS is 

a convenient molding material because it is commercially available and frequently used 

in conjunction with cells. All of the microhydrogels in this dissertation are PEG-based, 

but PDMS molding has also been used to make PVA (poly(vinyl alcohol))
145

, alginate
115

, 

hyaluronic acid
118, 146

, and chitosan-PEG
147, 148

 microhydrogels. One interesting variation 

on this method is from Choi et al. who used n-hexadecane to first coat the PDMS mold 

such that complex 3D structures could be generated via surface tension.
149

 There are also 

other materials used as molds including perfluoropolyethers in the DeSimone group’s 

PRINT particles,
150, 151

 superhydrophobic/hydrophilic micropatterns in the Mano 

group,
152

 and PVA and gelatin in the Park group.
153, 154

 

  

In microfluidic-based methods, a channel is created in a microfluidic device and the 

macromer solution is flowed through. Then the solution is exposed to light through a 

mask to crosslink microhydrogels. Extensive work has been done by the Doyle group to 

optimize microfluidic-based fabrication of microhydrogels, only a few key papers as 

related to this dissertation are discussed here.
138, 139, 155-160

 Generally the microfluidic chip 

is made of PDMS though Bong et al. gives an example of oxygen-free flow lithography 

achieved with NOA81 resin.
156

 The advantage of a PDMS channel when using a free 

radical polymerization is that there will be a small (~2.5 µm) inhibition layer at each 

interface which keeps the microhydrogels suspended.
155

  Fluid flow simultaneously 

moves crosslinked constructs to the collection point while also introducing new monomer 

solution to the crosslinking site. This method was also used by Lee et al. for M-ink 
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microhydrogels
140

, Lewis et al. for PEG microhydrogels
161

, Bong et al for complex 3D 

features,
157

 among others. The Doyle group has also built microscope stage-mounted 

microfluidic devices that will align
158

 and then assay
138

 their microhydrogels in lieu of a 

flow cytometer.
139

  

 

The last major category of microhydrogel fabrication methods are those that involve 

macromer solution cast onto a substrate before crosslinking through a photomask. This 

primarily involves spincoating the monomer, though the Ghosh group has also loaded 

HybriWell
TM

 chambers
19

. The advantage of these methods is that a large surface area can 

be exposed at once to scale up the production of microhydrogels. Both the Ghosh group 

and Koh groups have focused specifically on using shape-barcoded particles for 

multiplexed detection. The Ghosh group developed a specific porous hydrogel 

formulation using microspheres
162

 and then fabricated three different shaped hydrogels 

for protein detection.
19

 The Koh group have fabricated shape-barcoded microparticles out 

of photoresist
114

 and PEGDA
163, 164

 using this method. 

 

2.4.3 Capture Assays 

The hydrogels used in this dissertation are intended as multiplexing substrates and rely on 

antibodies for their detection ability. Antibodies are bifunctional proteins used by the 

immune system to patrol the body. One end of the antibody is called the “Fab” portion and 

this end has two arms which target pathogens or pathogenic components using 

specialized recognition sites specific to the intended target. Antibodies can have variable 

affinity depending on the sequence used, many commercially available antibodies have 

high affinities. The other end of the antibody, called the “Fc” portion, signals to immune 

cells as to how the pathogen should be processed. In the case of microhydrogel-based 

detection, the Fc is anchored to the microhydrogel such that the Fab ends are available to 
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bind analyte in solution. Once an analyte is bound to the microhydrogel (or “captured”) 

by this first antibody, another antibody is then used to “detect” the analyte. Either this 

detection antibody or a subsequent “reporter” antibody will also be linked to either a 

colorimetric or fluorescent reporter molecule such that the binding events can be 

quantified. The exact setup described here is a “sandwich” capture assay because the 

analyte of interest is sandwiched between two antibodies. 

 

This method of analyte detection is widely used in cell studies and several systems are 

commercially available. State of the art 2D systems are ELISA or ELIspot kits, and for 

3D the Luminex system. The ELISA analysis method uses well-plates that have been 

functionalized with antibodies to bind protein to the surface and then report on the protein 

using reporters that can be quantified in a plate reader.
20

 ELISA systems look to 

maximize the number of samples that can be measured in a single study, executed in a 

plate this could reach 96 or 384 samples at once. The goal of the ELISpot assay is to 

capture analyte secreted by cells such that the assay shows analyte production on a single 

cell basis.
22

 This method is not highly multiplexed and cannot be easily scaled to high 

replicate numbers because there is a minimum size needed to accommodate the cell. The 

Luminex system
165

 is different than these systems because the assay is performed on the 

surface of metallic or polymeric microparticles, intended to provide high multiplexing, 

and uses flow cytometry as its read-out. The method does require specialized 

instrumentation, but can measure analyte in smaller volumes and can theoretically assay 

as many 500 analytes at once.
21

 However, this multiplexing is still below what is 

theoretically possible using SSF barcoding. 

 

Many groups described in the previous subsection have functionalized hydrogel particles 

to capture and report analyte binding. This is achieved via different chemistries; for 
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example, capture antibodies can be directly encapsulated in the hydrogel matrix
162

 or the 

Fc end of an antibody can be covalently conjugated to the particle
19, 139

 or acrylated 

probes can be covalently incorporated into the network
166

. Lee et al. used color and 

graphically encoded microhydrogels to achieve theoretical multiplexing of up to 2
30

 

barcodes and showed how a DNA hybridization assay could be performed on the 

microhydrogels.
140

 Park et al. incorporated acrylic acid into microparticles in order to 

bind proteins using EDC-NHS chemistry and demonstrated detection of two analytes.
164

 

Lee et al. also showed how enzymes could be encapsulated in shape-coded 

microhydrogels to assay two different reactions.
163

 This dissertation uses a multistage 

non-covalent system to attach antibodies to the surface of microhydrogels to maximize 

experimental flexibility. 

 

2.5 Flow Cytometry: Methods, Advantages, and Disadvantages 

Flow cytometry is a widely used cellular analysis method that collects single cell data 

from hundreds to millions of cells in suspension to characterize the cell population. 

Depending on the system, cells can be analyzed at a rate of thousands of cells per second 

which makes it a high-throughput analysis method. Additionally, the technique is also 

multiplexed because it can record up to 18 measurements on these thousands of events 

per second.
167

 Flow-based techniques have been applied to biomaterials in on-a-chip 

formats, but to our knowledge commercial flow cytometers have not yet been used to 

study intact biomaterial constructs. 

 

2.5.1 Operating Principle  

The general premise of the technology
168

 is that single cells can be collected in 

suspension and processed using microfluidics. In the fluidics system a steady laminar 
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flow is maintained to keep the cell suspension in the center of the channel surrounded by 

sheath fluid. Cells are then passed directly through an interrogation point where one or 

more lasers of different wavelengths will excite fluorescent labels on or in the cell. While 

some cell types are auto-fluorescent, most protocols depend on fluorescently-tagged 

antibodies that will bind with high affinity to components of interest. These protocols can 

be performed on either live or fixed cells, the latter allowing for intracellular labeling. 

The emitted light from these fluorophores is measured with photomultiplier tubes (PMTs) 

and translated into intensity measurements. The data processing also happens in real-time 

which allows the researcher to draw gates and define the data as events are being 

collected. This on-line gating is useful to either restrict data collection to populations of 

interest or to enable a FACS machine (fluorescence activated cell sorting) to divert 

specific cells from the central channel to collect in individual tubes for further use.  

 

2.5.2 Statistical Considerations 

In addition to assaying a range of different materials and culture conditions, it is also 

important to have a large number of technical replicates within each condition. This is 

because cells in a population display heterogeneous characteristics
8
 and these cannot 

easily be controlled by the researcher. As a result, testing a hydrogel material containing 

a single cell or cell cluster may not give a representative result for what might occur in 

vivo. Cell research therefore requires that a large number of replicates be measured within 

each experimental condition. 

 

The question then becomes how many replicates will be needed to capture this variability 

effectively in the data. At issue is the statistical power of the study; the higher the 

statistical power, the more likely that data are an accurate representation. Unfortunately, 

the true statistical power cannot be known since the entire dataset is not known. Instead, 
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approximations are made to conservatively estimate what the power might be for a given 

experiment. In the case of experimental data, increasing the number of samples that are 

randomly selected from the population can increase the statistical power of the data. As 

the sample size grows, especially with cellular analysis, it becomes possible to 

distinguish true outliers (such as might occur due to debris in a flow cytometer) from rare 

subpopulations. 

 

2.5.3 Big Data Analysis for Flow Cytometry Experiments 

Due to its high-throughput and multiplexed nature, flow cytometry successfully collects a 

large replicate number within only a few minutes. This has been instrumental in defining 

closely related cellular populations that share many cell surface markers and defining rare 

subpopulations that could be missed without repeated identification of rare cells. The 

amount of data collected is in excess of most other cellular studies and more multivariate, 

and so the field developed a unified “.fsc” format that can be processed using a variety of 

free or commercial software packages. 

 

Most software packages are based on the same analysis format and there are best 

practices to process the data. Generally, the strength of the fluorescent signal between 

samples will vary over several orders of magnitude and so logarithmic or logicle plots are 

used. A series of scatterplots or heat maps or density maps will be drawn in 2D space and 

gates (regions of interest) will be manually or computationally drawn around certain 

portions of the graph. This gate then defines a sub-region which can then be graphed on 

additional plots with all of the ungated data excluded. Researchers build gating trees in 

which sub-regions are repeatedly refined by gating on all the measured parameters. This 

allows the researcher to visualize the relative expression of all the fluorescence markers 
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and compare subpopulations of interest. Many software packages are also capable of 

performing more complicated Boolean expressions on the gates as well.  

 

Many gating trees start with a Forward Scatter (FSC) vs Side Scatter (SSC) plot which 

are two measures of scattered, rather than emitted, light collected at two different angles. 

The FSC measurement is a rough approximation for the size of a cell whereas the SSC 

quantifies the internal complexity. Cell types often have distinctive FSC vs SSC profiles 

and so provide additional delineation between groups. This gating can also remove debris 

which is smaller than most cells. 

 

The analysis software can perform a variety of statistics on the populations. For example, 

the total number of data points will be counted as will the number of points in each sub-

gate. From these numbers, the software will automatically calculate the percentage of 

events in each gate overall and in reference to the current plot. The mean, median, and 

standard deviation can be calculated for each expression level; often the median 

fluorescence intensity is presented alongside the percentage of cells expressing a certain 

fluorescent signal to give a more complete understanding of the data. For example, this 

would reveal if fluorescent signal was relatively even across a population or if there were 

a few highly stained outliers which brought the average up. 

 

2.5.4 State-of-the-art Imaging Cytometry 

More recently, imaging flow cytometers have become available.
169

 With increased 

processing power, these cytometers can collect full brightfield and fluorescent images of 

every cell which passes through the interrogation point. This addition of a spatial 

dimension increases the amount of data that can be extracted from each cell because now 

the distribution of staining can be quantified. For example, it can be determined if a 
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signal is primarily on the cell membrane or in the nucleus, or if two signals are co-

localized. An added benefit is the peace-of-mind that comes from imaging the event; all 

images can be confirmed not to contain debris that may affect the analysis. 

 

To complement this increase in data, there are changes to be made to data analysis to 

accommodate the image-based dataset. The first is the application of image analysis 

methods such as masking or thresholding, in which the user computationally defines rules 

for the software to analyze regions or signals of interest. Once defined, an analysis 

template can be automatically applied to extract key measurements such as signal 

intensity and distribution, but also the previously unknown diameter, circularity, or co-

localization. The second improvement involves using analytical techniques such as 

machine or deep learning which apply large libraries of labeled images to accurately label 

new images. 
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CHAPTER 3  Aim 1
2
 

Develop and characterize a high-throughput, flow cytometry-based 

screening assay for shape, size, and fluorescence barcoded 

microhydrogels.  

 

The goal of the first Aim was to develop a new method for high replicate, high-

throughput, highly multiplexed analysis of microhydrogels using imaging flow 

cytometry. As microhydrogels have not been previously evaluated in a flow cytometer (to 

our knowledge), this Aim consisted of proof-of-concept experiments to evaluate the 

extent to which the capabilities of the flow cytometer to measure key cellular variables 

can be extended to measure microhydrogels. The primary challenges overcome in this 

Aim were fabricating microhydrogels of the desired dimensions using a cell-compatible 

crosslinking chemistry, maximizing the throughput of the flow cytometer, and developing 

an analysis template in IDEAS that could accurately determine the SSF barcodes. 

 

In vitro 3D systems of synthetic or ECM-derived biomaterials containing cells or 

organoids have become essential for understanding of cell physiology and pathology, 

unravelling complex disease processes, and developing new biomedical materials to 

restore function in diseased tissues or deliver therapeutic cells
125, 126, 170-175

.  However, 

                                                 

 

 

2
 Partially adapted from: Parratt, K.; Jeong, J.; Qiu, P.; Roy, K. 3D Material Cytometry (3DMaC): A Very 

High-replicate, High-throughput Analytical Method using Microfabricated, Shape-specific, Cell-material 

Niches. Lab on a Chip, 2017, 17, 2861-2872. 



57 

 

such approaches suffer from the lack of high-throughput analytical methods that allow 

rapid measurement of many cell parameters inside 3D niches in a non-destructive 

manner. Biological assays also inherently suffer from high “noise” that limits 

experimental reproducibility, and current analytical methods have low statistical power 

and confidence. Together, these limitations result in incomplete and often poorly 

reproducible data, and potentially skewed results. Cells, in particular, are highly sensitive 

to manipulations and changes to their microenvironment. Thus, measurements of their 

properties and behavior require high replicate numbers to generate high statistical power, 

reduce false positives, and identify subtle, yet critical differences. Unfortunately, existing 

methods are time-intensive, low-throughput, destructive, or limit further sample 

manipulation
122, 124-126, 128, 133, 176-178

.  

 

Despite the tremendous impact that flow cytometry has had on biological assays, the 

technique has been primarily restricted to population-based analyses of cells in isolation 

and its application to biomaterials has not been realized.  Here, we adapt imaging flow 

cytometry to analyze 3D cell-biomaterial niches. This Aim details how an ImageStreamX 

(ISX
169

) imaging flow cytometer can be used for HTS of microhydrogels. The ISX takes 

a picture in each fluorescent channel of every one of the hundreds of particles that pass 

through the interrogation point each second. This ability to see the sample removes 

uncertainty surrounding how samples are interrogated by the lasers and adds a spatial 

dimension to analysis. Microhydrogels were fabricated based on previous work by 

Khademhosseini
115, 118, 119, 146

, Doyle
117, 179

, and Koh
163, 180, 181

. Such methods can produce 

microscale structures with tens of thousands of replicates with high fidelity and low 

variability, and protocols have been established for rapid harvesting of microparticles 

containing viable cells. 
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Based on the sensitivity of the ISX the number of “barcodes” that could be used to 

designate different material compositions was estimated (Table 2). A barcode consists of 

a chosen size, shape, and fluorescence. The “tested” row describes what was 

demonstrated and published, “estimated” describes what might reasonably be done based 

on this dissertation and previous data from the Luminex system, and “theoretical” is the 

limiting value that might be achieved with complete optimization. As shown in Figure 

14, this multiplexing is especially useful because the variables are orthogonal and so can 

be combined into a large number of final barcodes.  

 

Table 2 Proposed Multiplexing 

Proposed multiplexing that can be achieved on the ISX based on sensitivities to shape, 

size, available fluorescent channels, and physical restrictions based on tubing diameters. 

 

Shape Size Fluorescence

Tested 4 3 6 72

Estimated 10 4 500 2 e 4

Theoretical 20 6 10! 4 e 8

Barcoding Variable Total 

Multiplexing

 

 

 
 

Figure 14 Shape, Size, and Fluorescence Barcoding 

Demonstration of how the barcodes can be used orthogonally to achieve potentially huge 

multiplexing. 
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3.1 Methods 

3.1.1 Materials 

Poly(ethylene glycol) diacrylate (PEGDA) was purchased from Sigma (MW 575 or 700) 

and Laysan Bio (MW 3400). Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) 

was purchased from TCI and used as the primary photoinitiator due to its high activation 

efficiency in the UV range.
34

 Phosphate buffered saline (PBS) was used as a buffer. 2% 

fluorescein o-acrylate or fluorescent nano/microparticles (FluoroSphere) were added for 

fluorescent barcoding. SU-8 2010, SU-8 2050, and SU-8 developer (MicroChem) were 

used for wafer patterning. Glycerol was purchased from Fisher Scientific. Poly(vinyl 

alcohol) (PVA, MW 25kDa) was purchased from Sigma Aldrich. Poly(dimethylsiloxane) 

(PDMS) was mixed at a 10:1 volumetric ratio of base to crosslinker before use. 

PNIPAAm-PEG (copolymer of poly(N-isopropylacrylamide) and PEG) was purchased 

from Mebiol
R
 and stored dehydrated at room temperature until use. 

 

3.1.2 Soft lithography for patterning master wafers and molds 

AutoCAD was used to design arrays of desired shapes. In this aim there were twelve 

tested populations consisting of three different cross-sectional sizes (20, 40, and 60 µm 

lengths) and four different shapes (square, circle, equilateral triangle, and right triangle). 

Photomasks were made of chrome-plated soda-lime or printed transparencies (CAD/Art 

Services). Silicon wafers were spincoated with SU-8 2010 (thicknesses of 5-20 µm) and 

SU-8 2050 (thicknesses > 20 µm) according to the manufacturer’s instructions. The 

wafers were exposed through a quartz photomask to 365 nm light and excess unexposed 

photoresist was removed with developer. A 10:1 mixture of PDMS prepolymer and 

crosslinker was degassed, poured over the wafers, and cured at 65
o
C for at least 2 hours. 

Cured PDMS was removed from the wafers using ethanol and dried. The mold face was 
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protected with tape to prevent dust accumulation and the unmolded side placed on glass 

slides for handling. This process is shown in Figure 15.  

 

 

Figure 15 Soft Lithography Process 

Steps describing how photoresist is patterned onto a silicon wafer and PDMS molds are 

produced. 

 

3.1.3 Microhydrogel fabrication and collection 

3.1.3.1 Prepolymer 

Prepolymer formulations were based poly(ethylene glycol), and fabricated using methods 

adapted from Khademhosseini et al
115, 118, 119, 146

. PEGDA-based prepolymer consisted of 

5-30%(wt/v) PEGDA, 0-0.3%(wt/v) 1-vinyl-2-pyrrolidinone (NVP), and 0.1-1%(wt/v) 

LAP in PBS. Photoinitiator concentration was chosen to balance between the time 

required to crosslink under UV light exposure and expected cell viability.  

 

3.1.3.2 Molded Microparticles 

Each PDMS mold was treated with oxygen plasma for at least five minutes to reduce the 

water contact angle and 10-20 µL of prepolymer was immediately spread on the surface. 
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A pipette tip was used to brush any bubbles from the surface then the mold was sealed 

with a block of hydrophobic PDMS. This prevents a residual layer from forming between 

mold wells, thus eliminating any subsequent need for etching. PEGDA-based microgels 

were cured by exposure to 365 nm light through the top PDMS layer and released by 

pipetting in PBS. Microparticles were collected in low-adhesion Eppendorf tubes and 

centrifuged. 

 

3.1.3.3 Spincoated Microparticles 

The fabrication throughput can be scaled up by instead spincoating the prepolymer onto a 

silicon wafer and then exposing selected areas through a photomask. A 2% poly(acrylic 

acid) solution was spun at 3000 rpm for 30 seconds and baked for 1 minute at 200
o
C. The 

entire wafer was submerged in 0.5 M calcium chloride for 5 minutes, rinsed with 0.05 M 

calcium chloride, and rinsed with deionized water. The wafer was then baked again to 

dry. PEGDA prepolymer was spincoated on top of the poly(acrylic acid) layer at 1600 

rpm for 30 seconds to produce thin layers or decreased to 250 rpm to form thicker layers 

comparable to those achieved by molding. Microgels were fabricated on spincoated 

wafers by exposing the wafers to 365 nm light through a photomask using a mask aligner. 

Wafers were then washed with 50 mM sodium chloride/55 mM sodium citrate to release 

the poly(acrylic acid) layer and collect the microgels in solution by pipetting. Microgels 

were centrifuged and suspended in PBS. Unlike the PDMS method, spincoating the 

prepolymer eliminates the need for molding and plasma treatment steps, and therefore 

speeds the fabrication process. Additionally, whereas the PDMS molds have a fixed 

height and so require a separate master wafer for each height, spincoating directly onto a 

wafer allows the height to be varied while keeping the mask constant.  
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3.1.4 Alternative Fabrication Chemistries 

Microhydrogel fabrication was attempted from additional materials as well to test the 

suitability of a variety of biomaterials commonly used in TE studies. Tested materials 

were collagen, gelatin, alginate, and poly(vinyl alcohol). Several materials were also 

tested for their suitability to replace PDMS as a molding material. These materials were 

agar, agarose, PEGDA, PNIPAAm-PEG, alginate, and gelatin. In all cases these molds 

were hydrogel materials and so molds were stored at 4
o
C in a humidified environment.  

 

3.1.4.1 Collagen  

Collagen was prepared from a liquid solution of 3 mg/mL, diluted to 2.4 mg/mL, 

neutralized with NaOH, sealed into the mold, and allowed to gel at 37
o
C in an incubator. 

 

3.1.4.1 Gelatin 

Gelatin was dissolved at 20%(wt/v) in distilled water using heat to fully dissolve the 

polymer. This same solution was used for molds and microhydrogels (in separate 

experiments). For microhydrogels, the gelatin was added to PDMS molds, sealed and 

cooled to room temperature. For molds, the gelatin was poured over silicon wafers and 

cooled to room temperature. 

 

3.1.4.2 Alginate 

Alginate was dissolved in 150 mM NaCl at 1.2-4.0%(wt/v) concentration and spread 

across the surface of the PDMS molds. A straight edge was then used to remove excess 

polymer solution before the microhydrogels were cured using an agar block containing 

0.5 M CaCl2. 
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3.1.4.3 Poly(vinyl alcohol) 

PVA was dissolved at 12%(wt/v) in distilled water using a stir plate and heating . Once 

the polymer was fully dissolved, it was cooled to approximately 50
o
C and added to 

PDMS mold surfaces. The mold was sealed with an untreated glass coverslip and a 

weight was put on top to maintain pressure. This was allowed to sit at room temperature 

for 36 hours. Coverslips were removed, placed in petri dishes, and placed on an agitation 

plate. Na2SO4 was dissolved at a concentration of 0.5 M and added to the petri dish. The 

agitation plate was then set to 70 rpm. 

 

3.1.4.4 Mold materials 

Agar was dissolved at 10%(wt/v) in distilled water with heating as necessary and poured 

over silicon wafers. Agarose was dissolved at 10%(wt/v) in distilled water, heated to 

dissolve, poured over wafers, and allowed to cool. PEGDA (MW575) was mixed with 

distilled water at a high concentration with photoinitiator, pipetted over wafers, and 

crosslinked using UV light. A PNIPAAm-PEG flask was purchased from Mebiol and 

rehydrated with 5 mL distilled water (50% the recommended volume), refrigerated until 

use, and gelled at 37
o
C in an incubator. Alginate was dissolved at 4%(wt/v)  in 150 mM 

NaCl,  poured over silicon wafers, and cured using an agar block containing 0.5 M CaCl2 

that was suspended with spacers to set the thickness of the mold. 

 

3.1.5 ISX experimental conditions 

Microgels were suspended in 200 µL of PBS in 1.5 mL Eppendorf tubes, this volume 

could be increased or decreased depending on the number of microhydrogels. Samples 

were run on an ISX flow cytometer at the slowest fluidics setting to minimize tumbling 

and blurred edges, and different magnifications were tested. The three sizes (20, 40, and 
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60 µm - length of the longest side) are distinguishable with the 20x magnification on the 

ISX. The smallest shapes tested here (20 µm maximum length in cross-section) were best 

viewed on the 60x magnification however, the tubing allowed for microparticles as wide 

as 100 µm to be imaged using the 20x magnification. The ISX confirms that there is not 

excessive shear force on the microparticles and that the microparticles arrive at the 

interrogation point intact. Given the relatively high stiffness of the microparticles 

analyzed in this study, this should be checked for each subsequent material. 

 

3.1.6 IDEAS analysis and sorting protocol 

Images with desirable orientation relative to the camera were gated by graphing Area vs. 

Aspect Ratio and collecting the events with sufficient size (>100 A.U.) for a 

microhydrogel and a high aspect ratio (> 0.5). Microparticles tilted relative to the camera 

would not be distinguishable by shape and were discarded during collection based on low 

aspect ratio. There were few images showing more than one shape passing the 

interrogation point at the same time (“doublets”), these occurred primarily in the 

beginning of the analysis period and were eliminated during analysis. Some cross-

contamination was detected between sample runs (slightly decreasing the calculated 

accuracies for the test dataset) and is estimated by the manufacturer at <0.5% carryover 

during use of the AutoSampler. 

 

To determine the total number of possible multiplexed barcodes, shape, size, and 

fluorescence were considered separately in the context of the ImageStreamX. A training 

population of at minimum 25 images was defined by eye for each of the twelve tested 

SSF barcodes (20, 40, and 60 µm lengths for square, circle, equilateral triangle, and right 

triangle). Gating parameters were chosen based on the “Find Features” wizard in IDEAS 

(Image Data Exploration and Analysis Software) which compares two true populations 
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and reports the image features which give the greatest separation between the two groups. 

Similar to traditional gating in a non-imaging flow cytometer, data could be plotted 

according to these parameters and gated in order to apply another set of parameters that 

further define the data. Based on feature comparisons, six features defined by IDEAS 

(Aspect Ratio, LobeCount, Symmetry2, Symmetry3, Symmetry4, and Circularity) were 

selected as the most effective at distinguishing shape. A seventh feature, Area, was 

selected to separate sizes within a shape population.  

 

3.2 Results 

3.2.1 PDMS Molding is high-throughput and microhydrogels have low size 

dispersity 

3.2.1.1 Molding enables high-throughput fabrication and collection of microhydrogels 

High “n” was achieved by using arrays of >10
4
 molds per 2 µL of precursor; tens of 

thousands of replicate microgels were produced and harvested. Macromer solution was 

optimized by tweaking polymer weight percentage, photoinitiator concentration, UV 

intensity and exposure time, and accelerator concentration (Figure 16). For each starting 

volume of 2 µL of prepolymer, the average number of collected microgels was ~3,500. 

When scaled to a 20 µL starting volume, this number of microgels jumped to ~49,200, 

showing that collection efficiency was slightly higher with higher areas since mold edges 

were left empty to prevent film formation. It is important that the replicate number be far 

in excess of the stated goal of 1000 due to expected losses during fluid handling as well 

as the proportion of microhydrogels that are appropriately rotated during ISX testing. 

This number could be increased further still by using standard sized silicon wafers as 

substrates for crosslinking spincoated macromer solution (Figure 17). The estimated 

number of microhydrogels that could be made for a range of sizes are compared for glass 
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slides and wafers in Table 3. Microhydrogels were filtered through 100 µm cell strainers 

before ISX analysis for all conditions in this dissertation to remove any microhydrogels 

linked by a layer of polymer. 

 

 

Figure 16 Dependence of Polymerization on Macromer Concentration 

As macromer concentration and photoinitiator concentration increases, microhydrogels 

form more easily (left). Adding accelerant will lead to polymerization at lower 

concentrations of both (right). 

 

 

Figure 17 Spincoated Microhydrogels 

Microhydrogels could be generated via spincoating with the speed of the spin (A – fast, B 

– slow) controlling the thickness of the resulting microhydrogels. Scale bars are 254 µm. 
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Table 3 Potential Microhydrogel Numbers 

The number of microhydrogels that can be obtained from a mold depends on both feature 

and substrate size.  

 

 

3.2.1.2 Molding leads to low size dispersity in microhydrogels 

Molds were filled with 10-20 µL of prepolymer depending on the size of the array and 

crosslinked. A mold was hydrated and imaged using a phase-contrast microscope (Figure 

18). This shows how the aqueous media swells the hydrogel matrix. In this mold, the 

height of the microhydrogel is greatly exceeded by the cross-sectional area dimensions, 

causing the swelling action to release the microhydrogels from the mold. Some 

formulations with either lower swelling ratio or deeper mold faces require gentle 

agitation with a pipette tip or spatula to collect the microhydrogels in suspension. 

 

Figure 18 Molded Microhydrogels 

Microhydrogels will swell upon exposure to aqueous media and this swelling action 

enables collection of suspended microhydrogels using pipettes. Scale bar is 300 µm. 
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3.2.2 Alternative Fabrication Chemistries 

Microhydrogels were successfully fabricated from alginate, gelatin, and PVA. Collagen 

was unsuccessful because even at high concentrations the material was too weak and 

sticky to form cohesive microhydrogels that could be collected in solution (not shown). 

Gelatin was then tested as an alternative and found to form microhydrogels that could be 

collected, however, this material had a higher swelling ratio than the PEGDA used 

previously. As a result, the gelatin microhydrogels were larger than feasible for ISX 

analysis and also had low contrast ratio that makes them difficult to image (Figure 19). 

The alginate was the most successful as the microhydrogels had high shape fidelity 

(Figure 20); however over long time periods these microhydrogels seemed to aggregate 

irreversibly. The PVA required a fabrication process that is not compatible with cells and 

so was not considered (Figure 21). 

 

Molds could also be fabricated from different biomaterials (not shown). However, none 

of these chemistries were as favorable as the PDMS molding material. Primarily this was 

because the tested materials are also hydrogels with relatively high swelling ratios 

compared to the tested PEGDA microhydrogel material. The non-PDMS materials were 

attractive because they are naturally hydrophilic and would not need plasma activation 

before use. However, this also meant that the molds had a mesh size on the order of the 

monomer and so the monomer could diffuse from the cavities in the mold into the 

surrounding material. Then after crosslinking, the system had formed an interpenetrating 

network rather than individual microhydrogels. Additionally, the swelling ratio of the 

hydrogel molding materials caused the mold to deform such that the cavities in the mold 

were distorted compared to the photoresist design. Finally, as these molds were hydrogel 

materials, storage was more difficult as they required a humidified atmosphere and were 

not as mechanically robust. 
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Figure 19 Gelatin Microhydrogels 

Gelatin microhydrogels swell significantly when hydrated. Here, a molded surface of 

small equilateral triangles is shown on the right-hand half of the image and the 

microhydrogels have floated off to the left. These microhydrogels are much larger than 

the mold area and have low contrast. Scale bar is 300 µm. 

 

 

Figure 20 Alginate Microhydrogels 

Microhydrogels (left image, large circles) were fabricated from 4%(wt/v) alginate that 

was cured in the mold and collected with PVA on a coverslip. These microhydrogels 

were fabricated with fluorescent microparticles to aid with visualization (small circles). 

In a separate experiment, 3%(wt/v) alginate microhydrogels were fabricated with 

fluorescent nanoparticles (right image). Scale bar is 300 µm (left) and 100 µm (right). 
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Figure 21 Poly(vinyl alcohol) Microhydrogels 

Microhydrogels were imaged on the surface of the coverslips before the salt solution was 

added (left) and after they had been incubated in the salt solution for 24 hours (middle). 

These microhydrogels could also be scraped off the surface of the coverslip and handled 

in solution (right). Scale bars are 100 µm (left) and 300 µm (middle, right). 

 

3.2.3 Microhydrogel analysis flowrate can be maximized 

Samples in PBS were run for approximately five minutes each; longer time periods were 

less productive because the microparticles began to settle. This reduces the throughput of 

the system and also biases the collected images towards constructs with lower density. To 

increase the settling time of the microhydrogels, solutions of varying amounts of PBS and 

glycerol were tested. The glycerol is added to increase the solution density. However, the 

density could not be increased to the point where microhydrogels would not settle for 

three reasons: it may affect flow in the ISX, image quality is reduced if the refractive 

index of the sample and sheath fluid are too disparate, and centrifugation is used for all 

microhydrogel handling steps. A mixture of 50% PBS and 50% glycerol by volume was 

selected based on the settling time which increased to greater than 15 minutes. 

 

The concentration of microhydrogels was varied to determine the maximum flowrate that 

could be imaged by the ISX. While the manufacturer states a maximum image collection 

rate of up to 5,000 events/second, this assumes that the machine is run on the highest 

fluidics setting and that the events consist of cells. Instead, it was found that 

microhydrogels could be imaged at a maximum rate of ~70 microhydrogels/second, most 
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likely due to their larger volume. This maximum was reached at a starting microhydrogel 

concentration of ~3500 microhydrogels/µL (Figure 22). After this maximum was 

reached, the flowrate quickly dropped to minimal levels, possibly at the higher 

concentration it was difficult for the sip to collect microhydrogels for analysis.  

 

However, use of this glycerol solution was discontinued because it resulted in high 

microhydrogel carry-over between samples. This was likely due to settling in the flow 

cytometer sample chamber or poor ability to rinse the chamber completely. Instead, PVA 

was used as an alternative density-increasing agent and dissolved at 2%(wt/v) into 

distilled water containing 0.1%(v/v) Tween-20. This solution has a higher density than 

water and the surfactant reduced microhydrogel adhesion to plastics at all stages of 

handling. The ISX was pulsed at high speed to maintain a high rate of microhydrogels 

while imaging at the low flow speed. The combination of the lower density and the 

surfactant resulted in few microhydrogels seen in rinse buffer between samples. 

 

 

Figure 22 Flow Rates of Glycerol-suspended Microhydrogels 

The number of microhydrogels that could be assayed per second in the flow cytometer 

increases with concentration until the microhydrogels begin to clog at the inlet of the 

flow cytometer. 
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3.2.4 Size, shape, and fluorescence barcodes are feasible 

3.2.4.1 Size, shape, and fluorescence barcodes are discernable by ISX 

Representative brightfield images collected by the ISX for each of the test barcodes are 

shown (Figure 23). The pre-defined shape and size barcodes are clearly identifiable in 

collected images and undesirable images were discarded based on area and aspect ratio. 

To quantify the barcodes computationally, masks were drawn on the brightfield images 

and greater than 75 features calculated for each image (Figure 24). To further increase 

the degree of multiplexing, fluorescent dyes visible in up to ten different channels (the 

maximum of the ISX) were added to the prepolymer (Figure 25). Microhydrogels were 

tagged in various fluorescent combinations to demonstrate, as proof of concept, six 

possible codes that could be layered with the shape/size barcode.  

 

 

Figure 23 Ideal Examples of Oriented Microhydrogels 

When microhydrogels are oriented ideally relative to the camera, clear images can be 

collected and the barcode is discernable by eye. 
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Figure 24 Masking in IDEAS 

IDEAS allows user-designed masks to define images in order to better capture key 

features. From left to right: Brightfield, Object Mask, user-defined Object Mask, user-

defined Perimeter Mask. 

 

 

Figure 25 Fluorescence Barcodes 

Fluorescent molecules were incorporated into the microhydrogels to show how shape, 

size, and fluorescence barcodes can be used orthogonally to achieve a large multiplexing. 
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3.2.4.2 Imaging parameters can be used to automate data analysis and distinguish 

barcodes with high accuracies 

Data were analyzed using the IDEAS software (EMD Millipore) that is designed to 

analyze ImageStreamX data. An analysis template was defined based on microgels of 

known SSF barcode (“truth populations”) and data collection rates were shown to be 

similar. Similar to traditional gating methods, data could be plotted according to user-

chosen parameters, subpopulations identified, and the data further defined. For each 

shape, true subpopulations were compared to extract features which give the greatest 

separation between groups. Similar to the shape and size gating, fluorescence signatures 

could be quantified using several of the IDEAS values. From these measurements, the 

Area and Max Pixel Intensity variables were selected for the highest accuracy separation 

of the fluorescent barcodes. 

 

An example comparison of two populations (squares and circles) is shown in Figure 26 

and gating of ideal images is shown in Figure 27. The identified features from all 

comparisons were then used to design a gating tree (Figure 28) to separate the 

populations and the marked ideal population was shown on scatterplots in order to draw 

manual gates around the regions of interest. The final gated populations are shown in 

Figure 29. This gating tree yielded twelve distinct populations as shown by the true 

images. The tree was then applied to the entire dataset and the percent accuracy was 

calculated for each true population by comparing the number of events sorted into the 

correct gate with the total number of events in any of the final gates. These accuracies are 

listed in Table 4. This template was applied to a test dataset of over 85,000 events and 

graphed. For each shape subpopulation, an area histogram shows three distinctly sized 

subpopulations gated such that the twelve barcodes are defined in the dataset. Using the 

described sorting scheme, ~9000 of the images were gated into one of the twelve final 
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populations. The IDEAS gating achieves an average accuracy of 82% for all twelve 

populations and an average of 88% for the 40 and 60 µm population. 

 

 

Figure 26 Example Feature Identification 

When comparing ideal circles and squares, IDEAS produced a list of potential features to 

separate the populations. Features are listed in order of declining utility. 

 

 

Figure 27 Example Gating Based on Identified Features 

The left graph shows color-coded ideal populations of shapes where the circles (red) and 

squares (blue) overlap. By gating on these shapes and applying new axes of the identified 

features, clear separation could be achieved. 
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Figure 28 Gating Tree in IDEAS 

Features were identified and applied in the described order to obtain final populations 

corresponding to the starting barcodes. 

 

 

Figure 29 Final Populations 

Two additional plots of identified features further separated the microhydrogels based on 

shape (A, B). The twelve final populations were then obtained (C). Blue – squares, green 
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– equilateral triangles, purple – right triangles, red – circles, sizes were color-coded with 

increasing size corresponding to darker colors. 

 

 

Table 4 Accuracies from IDEAS 

Each final gate was evaluated and the percentage of microhydrogels that constituted the 

true population compared to the number that were incorrectly sorted was reported as the 

accuracy. 

 

 

 

3.3 Discussion 

In 3DMaC, very high “n” is achieved by using thousands of cell-biomaterial micro-

niches, fabricated using simple lithographic techniques, as input to the analysis method. 

Specifically, shape- and size-specific micro-hydrogels are created to mimic specific 

cellular microenvironments, e.g. to probe niche-dependent stem cell differentiation or 

tumor biology within the immune-microenvironment. We used microgel shape, size and 

fluorescence to uniquely barcode each cell-biomaterial niche. This barcoding is a unique 

aspect of 3DMaC and the use of niche-shape as a novel barcoding variable increases the 

multiplexing capability of this method many times higher than current analytical 

approaches. Although the micro-niches in this study are demonstrated using 

poly(ethylene glycol)-based materials, many other materials have been used in similar 

microhydrogel schemes and could be used with 3DMaC. Some of these potential 

materials were tested in this Aim, in particular the alginate microhydrogels seemed 

promising. In addition, rapid and high-throughput analyses of barcoded cell-biomaterial 
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microgels is enabled in 3DMaC through the use of imaging flow cytometry and multi-

parametric data analytics which dramatically increases the quantity and quality of data 

collection compared to existing methods of analyzing 3D cell-material constructs.  

 

Using the 3DMaC barcoding and analysis method, greater than 85,000 events were 

collected and gated with high accuracies into the constituent twelve test barcodes of 

shape and size. Based on the sensitivity of the ISX to SSF barcoding, the estimated 

number of barcodes available would be greater than 300 (Table 2). By using the 10 

fluorescent channels in combination, a theoretical 2
10

 fluorescent barcoding indices are 

possible with the application of established compensation protocols
182

, which would 

potentially expand the number of barcodes significantly. However, a more reasonable 

estimate is the 500 combinations already demonstrated by the commercially-available 

Luminex system.  

 

As in traditional flow cytometry gating schemes, a balance is struck between accuracy 

and throughput; generally, one route is chosen depending on the needs of the experiment. 

Given that protocols exist for the fabrication of microhydrogels, the feasibility of our new 

method hinges on 3DMaC’s ability to co-opt the flow cytometers to biomaterial studies. 

The ISX presents the additional challenge of learning to gate populations on spatial 

variables as opposed to traditional flow cytometry gating schemes based on fluorescence. 

The nature of the data collected by the ISX requires specialized analysis software 

(IDEAS) that can marry the gating most users are familiar with to the new range of 

parameters being calculated from the images taken in each fluorescent channel. While 

IDEAS offers a myriad of variables with which to sort as well as assistance selecting 

parameters that do not intuitively seem useful, the software was designed around cellular 

analysis and not the detection of sharp corners or overall shape. 
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By combining all samples into a pooled population, both material- and cell-based 

variables should be better standardized to reduce variation between experimental 

conditions. Already this Aim has shown that 3DMaC collects enough individual 

replicates to produce data with high statistical power for each biomaterial of interest. 

Once designed, this sorting template can be applied directly to new datasets for 

automated identification of barcoded populations similar to traditional flow cytometry. 

Therefore, IDEAS-based analysis is scalable with regards to dataset size, and a single 

experiment could be performed and analyzed within a single day.  

 

Most excitingly, existing non-imaging flow cytometers have the ability to physically sort 

microparticles (FACS, fluorescence activated cell sorting) based on user-designed gating 

schemes such that individual events are separated out of the population and collected for 

further manipulation and analysis. Notably, the same SSF barcoding could be expanded 

further
183, 184

 to non-imaging flow cytometers which are more widely available, have 

more fluorescent color channels, and can physically sort populations of interest. 

Biomaterials screening could then be applied to translational work as encapsulated cells 

are cultured, analyzed, and then only the highest performing constructs selected for 

implantation. As imaging flow cytometer technology continues to improve
185

 and as 

imaging flow cytometers enter wider circulation, the 3DMaC method could help answer 

many questions of interest in the biomaterials community. 

 

In its current iteration, there are still areas of this technology that would benefit from 

future work; these include the sorting accuracy, sorting throughput, and gating flexibility. 

Currently the accuracy of the sorting template developed for ISX analysis is 

predominantly limited by the fabrication process, not the IDEAS software. While the 

molding scheme for microhydrogel generation described in this aim produces particles 
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with low dimensional variability, there are inevitably some particles which are not 

perfectly formed. This generally means that the corners are not sharply defined and that 

the selected shapes (triangles and squares) appear more rounded. This causes the images 

to instead be sorted into gates intended for circles and is reflected in the data for 

supposedly circular objects. In future, this can be ameliorated by eliminating circles from 

the tested barcodes such that all such images can easily be removed from analysis. 

 

This is related to the problem of sorting throughput, or the number of analyzed images 

which are gated into a final population for analysis. The majority of images are currently 

discarded because the shape has rotated in the θ direction and so the edges appeared 

blurred. Some of these images are easily classified by human eyes; however, this is more 

difficult for a computer. In the current analysis scheme, the accuracy of the gates has 

been valued over the throughput and so these images go ungated.  

 

Two possible solutions are envisioned. First, an alternative form of image analysis could 

be used to classify a higher percentage of imperfect images. One such avenue is deep 

learning algorithms which could be trained on hundreds of thousands of true images and 

therefore “learn” how to classify a tilted shape with blurred edges. Current work by Dr 

Peng Qiu’s group addresses this possibility. Alternatively, shape barcodes can be 

redesigned to favor image parameters that are easily calculated by IDEAS and less 

susceptible to rotation. For example, rectangular prisms (rods) with a square cross-section 

would likely align themselves parallel to the laminar flow to reduce tumbling and the 

square cross-section would ensure a relatively constant width measurement regardless of 

the θ orientation. Shape barcodes instead would depend on the length of the rod which 

trades multiplexing for increased accuracy. 
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Finally, there is the issue of “gating flexibility”, meaning the ease by which new 

shape/size barcodes can be incorporated into the overall gating scheme. In the current 

scheme, the incorporation of new shapes involves: (1) identification of >25 ideal images 

of the new shape, (2) pairwise evaluation of principal components against all existing 

shapes, (3) alteration of the gating tree to include new variables, and (4) drawing of 

additional gates. These steps are lengthy and rely on the researcher to optimize. 

Fortunately, existing flow cytometry analysis techniques offer promising ways forward. 

Currently, there is a push towards computational gating, meaning that algorithms define 

the gating boundaries to collect statistically different subpopulations.
186

 These methods 

rely on clustering techniques that evaluate all of the parameters for a certain event and 

draw scatterplots in which highly similar events are collocated in 2D space (See the work 

of Dr Peng Qiu and Jenny Jeong as to how this can be coupled to 3DMaC). These 

methods are computationally tasking but provides additional clarity to the user, are less 

subject to bias, and allows for easy addition of new shape barcodes.
186
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CHAPTER 4  Aim 2
3
 

Demonstrate how 3DMaC can measure the differentiation of 

encapsulated cells in response to barcoded material compositions  

 

This Aim has two broad goals: (1) to demonstrate how 3DMaC can measure 

mineralization in microhydrogels on the basis of material composition and (2) to 

differentiate MSCs into osteoblasts in microhydrogels with specific peptides covalently 

incorporated into the matrix. Whereas the first Aim established the basis of the SSF 

barcoding technique and outlined its technical strengths and limitations, this Aim details 

how to use 3DMaC to measure cell differentiation when encapsulated in a biomaterial. 

Key challenges overcome in this Aim included fabricating microhydrogels with high cell 

viability, avoiding spontaneous mineral deposition, and maintaining flow conditions for 

microhydrogels containing high density mineralized material. 

 

MSCs were selected as the model cell type due to their widespread use in current clinical 

trials and osteogenic differentiation studies. The particular model system of osteogenic 

differentiation was chosen because osteogenic differentiation of MSCs is robust, can be 

induced by known media components, and results in detectable mineralized material. In 

this Aim, the potential of adipogenic differentiation was also explored, but osteogenesis 

                                                 

 

 

3
 Partially adapted from: Parratt, K.; Jeong, J.; Qiu, P.; Roy, K. 3D Material Cytometry (3DMaC): A Very 

High-replicate, High-throughput Analytical Method using Microfabricated, Shape-specific, Cell-material 

Niches. Lab on a Chip, 2017, 17, 2861-2872. 
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was selected. PEG remains the polymer base for the microhydrogel constructs however; 

short peptides were covalently incorporated to introduce biologically relevant signals to 

induce stem cell differentiation.  

 

4.1 Methods 

4.1.1 Materials 

All cell research was performed according to institutional review board guidelines. The 

A20 B lymphoma cell line (A20s), human mesenchymal stem cells (hMSCs, 

RoosterBio), and mouse mesenchymal stem cells (D1) were used as model cell types. 

These hMSCs are a commercial product, deidentified before use, and therefore 

experiments are exempt from institutional review. hMSCs were cultured according to 

manufacturer’s instructions and expanded twice before use. D1 cells were expanded in 

DMEM (Dulbecco's Modified Eagle Medium) supplemented with 10% FBS (fetal bovine 

serum) and 1% penicillin-streptomycin (Pen-Strep). Dendritic cells (DCs) were 

differentiated from bone marrow progenitor cells isolated from C57BL/6 mouse tibias 

and femurs then cultured for 7 days in RPMI media supplemented with 10% FBS, 1% 

penicillin-streptomycin, 100 mM sodium pyruvate, 1% non-essential amino acids, 0.1% 

2-mercaptoethanol, 20 ng/mL GM-CSF, and 10 ng/mL IL-4. T cells were isolated from 

C57BL/6 mouse spleens using the MACS Pan T cell kit and used immediately.  A20 cell-

containing microhydrogels were cultured in RPMI media and stem cell-containing 

microhydrogels in DMEM media, both supplemented with 10% fetal bovine serum and 

1% penicillin-streptomycin. Media was changed every two days. Cell-microgel 

constructs were maintained in a humidified incubator at 37
o
C in 5% CO2. 
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Cell-containing microgels consisted of 0-30% poly(ethylene glycol) diacrylate (MW 

3400, Laysan Bio) and/or 0-10% 4-armed poly(ethylene glycol) thiol (PEG-4SH, MW 

10kDa, Laysan Bio) and/or 0-30% 4-armed PEG norbornene (PEG-4NB, MW 10kDa, 

Sigma Aldrich) and/or 0-0.9%(wt/v) dithiothreitol (DTT, Molecular Probes).  LAP was 

dissolved at 0.5-1%(wt/v) in DMEM with 0-0.3%(wt/v) NVP, aliquoted, frozen at -20
o
C, 

and thawed before use. HEPES buffer was also included in some formulations (4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid). 

 

RGD peptide (H-CGGGGGGGGRGDSG-OH
101

) was purchased from CHI Scientific. 

HAVDI peptide (H-HAVDIGGGC-OH
107

) was purchased from GenScript. These were 

aliquoted for storage at -20
o
C and dissolved directly in the photoinitiator solution and pH 

adjusted before use. Osteogenic media consisted of basal media supplemented with 100 

nM dexamethasone, 50 mg/L ascorbic acid, and 10 mM beta glycerophosphate. Fixation 

buffer (PFA) consisted of 16% paraformaldehyde solution that was diluted to 4% in PBS 

and used within two weeks. DAPI (4′,6-diamidino-2-phenylindole) was aliquoted at 5 

mg/mL, frozen at -20
o
C, thawed before use, and used at a concentration of 5 µg/mL. ISX 

running buffer consisted of distilled water supplemented with up to 0.1% Tween-20 and 

2% PVA. Alizarin Red (AR) was dissolved at 2% in distilled water, the pH was adjusted 

to ~4.2, and the solution was filtered before use. Hydroxyapatite (Sigma Aldrich) had an 

average particle diameter of 5 µm. 

 

4.1.2 Mineralization Masking via ISX 

To develop a quantitative measure of mineralized area, hydroxyapatite was used as a 

proxy. These microparticles had an average diameter of 5 µm and would not dissolve in 

macromer solution. A high concentration of HA was suspended in 20% (wt/v) PEG-4NB 

+ 0.6% (wt/v)  DTT  + 1% (wt/v) LAP in PBS and pipetted onto activated molds. The 
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solution was crosslinked with UV light for 10 seconds and microhydrogels were collected 

in distilled water supplemented with Tween-20. Centrifugation was used between all 

washing steps to collect the microhydrogels at the bottom of the tube. Cell-friendly 

centrifugation speeds were used (up to 700xg, generally for 5-10 minutes). The 

supernatant was then tested by removing 100 µL of water from the well and adding it to a 

500 µL Eppendorf tube containing 100 µL of Alizarin Red solution. The tube was 

vortexed and checked under bright light to confirm that no particulate formed. Additional 

washing was performed as necessary until no particulate was seen. The microhydrogels 

were divided into two tubes; one tube remained unstained and the second tube was 

stained using AR. In the tube to be stained, the water was removed and Alizarin Red 

solution was added to cover the microhydrogel pellet. Microhydrogels were incubated at 

room temperature for 5 minutes then rinsed repeatedly with distilled water until 

supernatant was clear. Microscopic images were collected to confirm successful 

encapsulation and staining. These microhydrogels were then analyzed by the ISX and the 

brightfield channel was collected. 

 

To develop a standard curve of mineralization, HA was suspended in macromer solution 

at the following concentrations: 0, 0.1, 1, 5, 20, and 50 mg/mL. Microhydrogels were 

then fabricated from each concentration, rinsed, stained, and rinsed repeatedly. The same 

shape of microhydrogel was used for all concentrations to standardize areas across the 

populations. Samples were suspended in 2% poly(vinyl alcohol) (MW 25kDa) with 0.1% 

Tween-20 in distilled water and images collected on the ISX. Images were masked with 

the developed template and absolute mineralization area was recorded. This was then 

divided by the area of the “system” mask to obtain the percentage mineralized area. The 

average and standard deviation were calculated for each population, and a linear fit was 

calculated. These are reported with an R-squared value for the average. 
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4.1.3 Cell viability and loading measurements 

4.1.3.1 Cell Viability  

Live/Dead staining was performed with a solution of 4 µM calcein AM and 4 µM 

ethidium homodimer III in PBS. Adherent cells were used as a live control and cells 

treated with 0.1% Saponin-O for 30 minutes were used as a dead control. ImageJ was 

used for cell viability and loading calculations. Constructs were cultured in 6-wellplates 

until free-floating cells adhered to the well and then microhydrogels were transferred to 

non-tissue culture-treated petri dishes.  

 

4.1.3.2 Cell Loading  

The number of cells incorporated into each microhydrogel depends on the initial cell 

concentration in the prepolymer, microparticle size, and cell size. Cell concentration 

ranged from high (10
7
) and low (10

6
) in the microhydrogels with a 60 µm diameter. Cell 

encapsulation was analyzed using a fluorescence confocal microscope and quantified 

using ImageJ. 

 

4.1.3.3 Cell Labeling 

Reactive oxygen species (ROS) staining was performed on hMSC-containing 

microhydrogels immediately after crosslinking. Microgels were rinsed with PBS and 

stained with 5 µM dihydrorhodamine 1,2,3 dye (DHR) for 30 minutes. This dye is 

oxidized in the cell and indicates the presence of ROS by green fluorescence in the 

mitochondria. A LionheartFX automated microscope was used to image microgels which 

had been formed as an array. Microhydrogels were also collected in suspension, stored on 

ice, and analysed using the ISX. The DHR was clearly visible in the second channel with 

a 488 nm laser setting of 20 mW. To measure the ROS activity quantitatively, two 
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additional features calculated by IDEAS (“Modulation” and “H Homogeneity Mean”) 

were used to identify stained cells. A new gate was created to separate empty constructs 

from cell-containing constructs. 

 

Antibody staining was performed on hMSC-containing microhydrogels which were fixed 

for 30 minutes with 4% paraformaldehyde immediately after crosslinking. Microgels 

were blocked with 0.5% BSA in PBS overnight, incubated overnight with DAPI and anti-

humanCD105-PE in 0.5% BSA + 0.1% Triton-100, and rinsed for two hours in blocking 

buffer again. A Zeiss 700 laser scanning confocal fluorescence microscope was used to 

image microgels which had been formed as an array. Similar microhydrogels not formed 

as an array were then suspended in PBS and imaged using the ISX to confirm cell 

labeling could be seen in flow cytometry. 

 

4.1.4 Osteogenic Differentiation of MSCs in 2D Culture 

To validate the osteogenic differentiation of the hMSCs in 2D culture, cells were plated 

in four 6-well plates at a seeding density of 3000 cells per cm
2 

in basal media. After cells 

reached 80% confluency, media was exchanged and half the wells remained in basal 

media and half were switched to osteogenic media. Cells were cultured for four weeks 

with media fully exchanged every 2-3 days. At the end of each week, a plate was 

removed from culture, washed 3x with PBS, and fixed in PFA for three hours at room 

temperature. Cells were washed again 3x with PBS then 2x with distilled water. The 

supernatant was then tested by removing 100 µL of water from the well and adding it to a 

500 µL Eppendorf tube containing 100 µL of Alizarin Red solution. The tube was 

vortexed for 5 seconds and checked under bright light to confirm that no particulate 

formed. If necessary, additional washing was performed until no particulate was seen. 

Next, the water was removed from the wells and Alizarin Red solution was added to 
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cover the cells. Cells were incubated at room temperature for 5 minutes then rinsed 

repeatedly with distilled water until supernatant was clear. Microscope images were 

immediately collected. 

 

4.1.5 Fabrication of Osteogenesis-inducing Microhydrogels 

Macromer solution consisted of (1) 20%(wt/v) PEGDA3400 + 5%(wt/v) PEG-4NB + 

5%(wt/v) PEG-4SH or (2) 30%(wt/v) PEG-4NB and 0.9%(wt/v) DTT or (3) 20%(wt/v) 

PEG-4NB and 0.6%(wt/v) DTT. Non-cell-containing microhydrogels were fabricated to 

determine crosslinking times (between 1 and 30 seconds). Cells were encapsulated in the 

microhydrogels at a low concentration, split into two equal portions, and cultured in basal 

or osteogenic media. RGD peptide was included in microhydrogels at 0 or 5 mM 

concentration. HAVDI peptide was included in microhydrogels at 0 or 1 mM 

concentration.  

 

4.1.6 Measuring Mineralization in Cell-containing Microhydrogels 

Microhydrogels were fabricated and cultured as described on pg. 88. At the end of 

culture, microhydrogels were collected, rinsed with PBS, and fixed with 4% PFA in PBS. 

After fixation, microhydrogels were rinsed multiple times with distilled water containing 

Tween-20 and stained with AR as described on pg. 87. Microhydrogels were then run on 

the ISX in PVA-supplemented wash buffer and mineralized area was calculated using the 

mask developed on pg. 84. Shape barcodes were determined using the sorting tree 

developed in pg. 72. 
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4.1.7 Alternative MSC Differentiation - Adipogenesis 

Adipogenic differentiation was also tested as a potential model system. Cells were plated 

at high concentration (> 5000 cell/cm
2
) and cultured in adipogenic media for two weeks. 

Media consisted of alpha MEM with 10% FBS, 1% Pen-strep, 500 nM dexamethasone, 

0.5 µM isobutyl-methylxanthine, 1 µM insulin, and 60 µM indomethacin. After culture, 

cells were fixed with 4% PFA and stained with either Oil Red or anti-FABP antibody 

(R&D systems, AF3150). Some cells were also trypsinized before fixation and then fixed 

as a cell suspension instead. Half of this suspension was stained with Oil Red. These 

stained and unstained suspension cells were then assayed in a FlowSight imaging flow 

cytometer (this is a similar system to the ISX but with a smaller field of view, the Platt 

Lab at Georgia Institute of Technology kindly allowed use of this machine). 

 

4.2 Results 

4.2.1 Peptide sequences do not impact microhydrogel fabrication 

For each of the peptide additions described on pg. 88, microhydrogels (without cells) 

were fabricated using the same processing conditions optimized for cell encapsulation. 

Images show that microhydrogels formed with different peptides did not negatively 

impact fabrication at the chosen concentrations (Figure 30). However, there is a small 

visual difference between the peptide-free microhydrogels and those containing peptide; 

the addition of a peptide seems to reduce the sharpness of the corners. This makes sense 

as the peptides will be occupying sites that could otherwise be used for crosslinking. 

There are also small differences between the sizes of the microhydrogels. It would be 

expected that adding peptide would result in less crosslinking and therefore higher 

swelling, but this was not directly measured (Figure 31). In the future, macromer 
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solution could be modified such that each condition has approximately the same 

crosslinking. 

 

 

Figure 30 Comparison of Microhydrogels with Different Peptide Inclusions 

The same barcode was fabricated from 20%(wt/v) 4-PEG-NB and 0.6%(wt/v) DTT 

containing no peptide (top left), 5 mM RGD (top right), 1 mM HAVDI (bottom left), and 

5 mM RGD + 1 mM HAVDI (bottom right). The three images showing peptide-

containing microhydrogels were modified with a 20% increase in brightness to 

standardize the images. Scale bars are 200 µm. 
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Figure 31 Quantified Comparison of Peptide-containing Microhydrogels 

Peptide-containing microhydrogels were imaged on 10x magnification and measurements 

were taken of representative microhydrogels. Scale bars are 200 µm. From upper left 

moving clockwise, average sizes are 99.5, 90.5, 100.2, and 104.6 µm. 

 

4.2.2 Quantification of mineralization in microhydrogels 

Using hydroxyapatite as a proxy for mineralization, an IDEAS template was designed to 

measure mineralization in microhydrogels. In hydrogel scaffolds, mineralization is 

expected to be visible as nodules surrounding encapsulated cells and so hydroxyapatite 

microparticles are a model material. Figure 32A shows the microhydrogels immediately 

after fabrication. Inclusions of hydroxyapatite were easily distinguishable by eye. Figure 

32B shows that these calcium-containing microparticles also stained strongly with AR as 

would be expected for deposited mineralization.  
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Using the ISX this mineralization was also visible. Figure 33 shows representative 

bright-field images of microhydrogels that were unstained (left) and AR stained (right). 

Based on images collected from unstained microhydrogels, an analysis template was 

designed in IDEAS to mask the HA particles. Due to the “Intensity” value being very 

different for the clear regions and the hydroxyapatite inclusions, a mask was designed to 

measure the HA visible in Channel 1 by setting a minimum intensity of 830 for unstained 

microhydrogels. In the stained microhydrogels, the mineralized areas instead are visible 

as dark regions. This area was measured via an Intensity mask with a maximum value of 

520.  

 

Using the test dataset, the measured Intensity-masked areas were graphed (Figure 34). 

The Intensity mask on the brightfield channel gave the greatest separation between HA 

particles and blank hydrogel and was therefore chosen to measure mineralization. The 

mask was also refined to exclude any staining on the perimeter of the microhydrogel to 

eliminate artifacts derived from contrast, this was done using the AdaptiveErode tool in 

IDEAS set to 90% (Figure 35, Figure 36).  The effect of this area reduction was 

quantified in Figure 37. A standard curve was developed to correlate the measured 

masked area with a quantitative measurement of mineralized material. Using 

microhydrogels from populations of known HA concentration (Figure 38), the following 

areas were masked for each population (Figure 39) and scaled by the area of the 

microhydrogel (Figure 40). These points could be quantified and fit to a standard curve 

(Figure 41). 
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Figure 32 HA Particles as a Proxy for Mineralization 

Hydroxyapatite was added to macromer solution and polymerized to show that inclusion 

does not reduce polymerization or interrupt shape barcoding. Unstained (A) and stained 

(B) samples are shown at 4x magnification and insets were taken at higher magnification. 

Scale bars are 127 µm (large images) and 100 µm (inset images). 

 

 

Figure 33 ISX Images of HA-containing Microhydrogels 

Hydroxyapatite-containing microhydrogels were imaged in the brightfield channel of the 

ISX (left – unstained, right – stained). Masks were created for high and low intensity to 

mask in each channel, shown in purple, and these feature values are quantified in the 

upper right-hand corner of each image. 
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Figure 34 Masked Areas of HA in Unstained and Stained Microhydrogels 

The masked area was quantified for unstained (white) and stained (red) samples and 

compared.  

 

 

Figure 35 Demonstration of Edge Effects with Mineralization Masking 

Edges of microhydrogels often have low intensity regions relative to the sheath fluid in 

unstained (top left) and stained (top right) microhydrogels. Once the edge is eroded from 

the mask, only mineralized areas are masked for both (unstained – lower left, stained – 

lower right). Values in images’ upper righthand corner are for masked area. 
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Figure 36 Quantification of Mineralization Refined to Remove Edge Effects 

The mask was modified to eliminate the immediate edge of the microhydrogel from 

masking due to low intensity areas between the microhydrogel and sheath fluid. 

 

 
Figure 37 Graphical Comparison of Refined Masking Confirms Difference 

By refining the masking of the HA-containing microhydrogels, the signal was reduced 

for unstained and stained populations. To test the comparison, an Ordinary two-way 

ANOVA was performed with Sidak’s multiple comparison test. The row factor 

(unstained versus stained) was responsible for 37.18% of variability and the column 

factor (unadjusted or adjusted area) was responsible for 11.57%. The analysis was 

performed on 1242 unstained events and 552 stained events. 
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Figure 38 Hydroxyapatite Loading for Standard Curve 

Representative images of microhydrogels loaded with different concentrations of 

hydroxyapatite. Note that some samples had brightness tuned to standardize the images 

but no changes were made to contrast or color. Scale bars are 100 µm. 

 

 

Figure 39 Area of Mineralization in HA Standard Curve 

The absolute areas masked for each microhydrogel in two hydroxyapatite standard curves 

are shown (left – low contrast microhydrogels, right – high contrast microhydrogels). 
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Figure 40 Percentage Mineralization in HA Standard Curve 

The percentage of microhydrogel areas masked in two hydroxyapatite standard curves are 

shown (left – low contrast microhydrogels, right – high contrast microhydrogels). 

 

 

Figure 41 Lines of Best Fit for Mineralization Standard Curves 

The areas shown in the above two graphs for the low contrast microhydrogels (left – 

absolute mineralized area, right – percentage mineralized area) were graphed and a linear 

fit was calculated. The equation of the line and R square values are shown. 

 

4.2.3 Reducing Spontaneous Mineralization in Microhydrogels 

Initially, a 30% (w/v) PEGDA3400 was used to encapsulate hMSCs for osteogenic 

differentiation. However, microhydrogels in osteogenic media rapidly (5-6 days) 

appeared cloudy or as though they contained fine-grained particulate (Figure 42). 

Staining with Alizarin Red (Figure 43) showed that this granularity was caused by 
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spontaneous mineralization which has been seen previously in osteogenic hydrogel 

materials.
187

 

 

To reduce this mineralization, a hydrogel composition hypothesized to have a larger 

mesh size was tested based on literature suggesting that pore size contributes to 

autocalcification.
188-190

 The 30% (w/v) PEGDA system with a macromer length of 3.4 

kDa has a small mesh size, on the order of angstroms to nanometers. The new hydrogel 

formulation selected still maintains its PEG backbone but involved two key 

improvements. First, the mesh size was increased by using a longer PEG chain. Second, 

the acrylate chemistry was exchanged for a UV-activated norbornene-thiol reaction 

which is much quicker. Therefore, the new system is based on 20% (w/v) PEG-4NB and 

0.6% (w/v) DTT (a molar equivalent of norbornene and thiol groups). High glucose 

DMEM was used as the solute as previous research from the Peyton group suggested it 

protects cell viability during maleimide-thiol crosslinking reactions that occur at lower 

pH.
191

 HEPES buffer was included at a low concentration (0.1%(v/v)) to provide small 

buffering around the desired pH and NaOH was added as needed to neutralize the 

solution after the addition of peptides. The crosslinking time could then be reduced down 

to as low as one second, however, five seconds was selected to maintain shape fidelity 

without sacrificing high cell viability.  

 

These microhydrogels did not auto-mineralize over the time period (two weeks) used in 

the following studies. Figure 44 shows a comparison of microhydrogels fabricated from 

a PEGDA-based macromer (left) and a solution crosslinked by norbornene-thiol (right). 

Two key differences of these higher swelling microhydrogels are apparent; first that the 

edges and corners have swollen such that they are more difficult to discern, and second 

that the gels now show less contrast with the background when viewed with a phase 
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microscope. Over a ten day period, microhydrogels fabricated using the new and the old 

monomer formulations were cultured in basal or osteogenic media (Figure 45). The old 

formulation showed strong mineralization in osteogenic media and even some in basal 

media, whereas the new formulation showed none. In wells containing both formulations, 

the new PEG-4NB/DTT microhydrogels still showed no mineralization even when the 

PEGDA microhydrogels had strongly mineralized. 

 

 

Figure 42 Spontaneous Mineralization Occurs in Osteogenic Media 

Non-cell-containing microhydrogels were cultured in PBS, basal, or osteogenic media for 

two weeks. Even by one week, the osteogenic media had caused spontaneous 

mineralization in the microhydrogels. Scale bars are 200 µm. 
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Figure 43 Staining of Automineralized Microhydrogels 

These mineralized microhydrogels showed strong Alizarin Red staining as the 

mineralized material is labeled in a similar manner as mineralization produced by cells 

(Left – basal, right – osteo). Scale bars are 200 µm. 

 

 

Figure 44 Comparison of Previous and Refined Microhydrogels 

Microhydrogels were fabricated from 30% PEGDA3400 (left) or 4-armed monomers 

with thiol or norbornene functionality (example shown on right is 20% PEG-4NB + 

0.6%DTT). The differences between these compositions were quantified (bottom row). 

Scale bars are 200 µm (top) and 100 µm (bottom). Averages are 74.65 µm (left) and 

86.05 µm (right). 
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Figure 45 Minimal Mineralization is Observed Using Norbornene/Thiol Monomers 

Microhydrogels were fabricated using the previous monomer formulation and the new 

formulation and incubated for ten days. Each material was cultured (with no cells) in 

basal and osteogenic media conditions, alone and with the other material, for a total of 

four wells per material and six total wells. Scale bars are 200 µm. 

 

4.2.4 Encapsulation of viable cells is achieved at controlled concentrations 

4.2.4.1 Encapsulated cells remain viable 

Fluorescent images of stained cells were collected and ImageJ used to quantify live and 

dead cells (for a total of more than 550 cells). This confirmed that cells remain viable 

post-gelation with approximately 79.9% +/- 1.1% viability 24 hours after crosslinking 

and no difference between viability in square and circle microhydrogels (Figure 46). 
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Figure 46 Cell Viability 

Cell viability was measured from confocal images of encapsulated hMSCs (green – live, 

red – dead). Magnified images show that similar staining was seen in two different 

shapes. Scale bars are 100 µm. 

 

4.2.4.2 Cell concentration in the prepolymer controls cell number in microhydrogels 

A wide range of cell concentrations could be achieved in the selected microhydrogel 

geometries, which is an important variable in cell-niche interaction studies. Lower cell 

concentrations (10
5
 cells/mL) mimic single cell-biomaterial interactions within a niche 

and higher cell concentrations (10
6
-10

7
 cells/mL) could be used to mimic organoids or 

tissue microenvironments (Figure 47). For each of the stated concentrations the number 

of cells per microhydrogel was quantified using fluorescence microscopy and ImageJ 

analysis of more than 185 wells. Figure 48 (left) shows the low concentration case as a 

number average to demonstrate the proportion of wells with at least a single cell. In this 

lower concentration case, the majority of microgels contain either zero cells (which can 

be discarded during analysis) or a single cell in the context of the encapsulating 

biomaterial. For the higher concentration case, a weighted average is shown (Figure 48, 

right) instead to demonstrate the likely multi-cell community size.  
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Figure 47 Cell Loading Image 

Multiple cell types were encapsulated at different concentrations (top – low, bottom -  

high) to show the different types of microenvironments that could be constructed.  (T 

cells – green, dendritic cells –  blue, A20 cells – red) Scale bars are 50 µm. 

 

 

Figure 48 Cell Loading Quantification 

Cell loading was quantified for each of the two loading concentrations. The low 

concentration case is shown as a number average and the high concentration case is 

shown as a weighted average. 

 

4.2.4.3 Cell Labeling 

Two example assays were performed on arrays of microhydrogels to demonstrate the 

versatility of the system. Similar assays have been shown by other groups and could be 

adapted for 3DMaC studies.
117-119, 163, 192

 In this example, circle-shaped microhydrogels 
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consisted of 15% poly(ethylene glycol) diacrylate (Mw 3400) and 5% PEG-4SH in 

supplemented media. Square-shaped microhydrogels had the same starting polymer 

supplemented with 0.66 µM RGD peptide. Arrays were formed on PDMS via the same 

process described previously, however, in this case the top layer of PDMS was applied 

gently rather than tightly pressed. This leaves a thin layer of polymer between 

microhydrogels such that a large number of replicates in an array format can be easily 

imaged using microscopy. 

 

Reactive oxygen species are oxygen radicals that can interfere with intracellular 

reactions, and a good measure of stress in the cell. In particular, ROS can be generated 

via free-radical crosslinking mechanisms which may impact cell viability and function. 

ROS activity is therefore an example of a short-term assay that could be performed on 

encapsulated live cells to determine (1) if different materials provide protection from 

ROS activity or (2) if external culture conditions such as drug concentration lead to 

cellular stress. The second method shows how traditional flow cytometry assays based on 

antibody staining are still applicable in the microhydrogel system. Microhydrogels can be 

fixed and permeablilized such that fluorescently-labelled antibodies can be incubated 

with the constructs such that they bind cell surface or intracellular markers.  

 

To measure ROS activity, hMSC-containing microhydrogels were stained with DHR for 

30 minutes immediately after crosslinking, rinsed, and imaged (Figure 49). These 

microhydrogels showed that the cells were actively converting the dye and therefore that 

they were experiencing ROS activity, which is to be expected after the crosslinking. A 

separate set of arrays were also imaged the next day (not shown) and fluorescence was 

reduced, indicating that the cellular stress was not a function of the encapsulating 

material. 
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To demonstrate antibody staining, hMSC-containing microhydrogels were fixed for 30 

minutes immediately after crosslinking, then blocked with BSA and permeabilized with 

Triton-X100. Microhydrogels were incubated for one day with antibodies and DAPI to 

label CD105 and the cell nucleus respectively. CD105 is a constituent surface marker of 

hMSCs and therefore could be expected to have high expression and good staining. 

Previous characterization of the cells used here has been done by our group to confirm 

high CD105 expression (data not shown). Images of staining microhydrogel arrays were 

collected on a confocal scanning fluorescent microscope (Figure 50).  The anti-CD105-

PE antibody used here was designed for flow cytometry studies but can still be seen in 

the confocal microscope (DAPI staining not shown). These microhydrogels were imaged 

on the ISX to confirm that labelling would be seen in the flow cytometer. Brightfield 

images show that the circle and square shapes could be distinguished, and that the DAPI 

and PE staining were visible in fluorescence channels. 

 

Next, this analysis template was applied to cell-containing microhydrogels. D1 cells were 

suspended in 30% poly(ethylene glycol) diacrylate at a concentration of ~60 million 

cells/mL for 60 µm circles and 60 µm squares. In this experiment, 60 µm Squares and 

Circles were considered as they were the most challenging shapes to separate in IDEAS. 

Future studies will expand the cell template to additional shapes and sizes. Here, Circles 

were generated with 30 seconds of UV exposure (previously selected for optimal cell 

viability and crosslinking); Squares were exposed for 2 minutes and therefore 4x the 

exposure. Given that free-radical polymerizations can generate harmful levels of ROS, 

DHR dye was selected to measure the resulting ROS activity in the context of the two 

microenvironments. Cells were stained for 60 minutes, washed with PBS, and stored on 

ice before analysis in the ISX.  
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As in the previous analysis, two truth populations were collected of only Circles (~48,000 

events) and only Squares (~26,000 events). The template developed for non-cell-

containing microhydrogels was applied and the Circle and Square populations were 

measured. The template still identified the two true populations with reasonable accuracy. 

However, the rate of mis-formed hydrogels was higher in the cell-containing prepolymer 

as cells disrupted edge features and so throughput was lower in the cell-containing 

system. There was also overlap into the Right Triangle gate which would need to be 

addressed in future by adding more feature gates to the template. This experiment showed 

that free cells, which are often included in analyzed population due to the thin layer of 

oxygen-inhibited prepolymer in PDMS molding, were collected in the 20 µm gates and 

so this barcode would need modification in the template. Therefore, the data in this assay 

was not gated by size, only shape. Because the amount of swelling will vary by polymer 

composition, size gates may need to be adjusted for each tested material.  

 

After initial sorting, the data from the pure populations were computationally combined 

to analyze the difference in the two conditions. Constructs were gated into the desired 

populations using the above template with an additional gating layer for fluorescence 

signal to remove empty gels from analysis. The fluorescence intensity of each pure 

population was divided by the fluorescent area (to account for cell number) on a per gel 

basis (Figure 51). Feature values for those populations were then exported and averaged. 

Based on this example study, the Circles had an average of 309.95 +/- 169.53 and the 

Squares had 342.07 +/- 151.91. Therefore, there was no significant difference between 

the two groups either due to lowered accuracy in the sorting template or insufficient 

biological differences between the groups tested. 
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Figure 49 DHR Staining in Array-immobilized Microhydrogels 

Microhydrogels were stained with DHR dye (false colored green) to show ROS activity 

after photopolymerization with UV light. (Left – phase contrast, right – fluorescence) 

Microhydrogels fabricated in 60 µm molds. 

 

 

Figure 50 Antibody Staining in Array-immobilized Microhydrogels 

Microhydrogels were stained with an antibody specific for a defining hMSC marker 

(purple). (Left – brightfield, right – fluorescence) Microhydrogels fabricated in 60 µm 

molds. 
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Figure 51 ISX-sorted DHR-stained Microhydrogels 

Microhydrogels were exposed to varying amounts of UV light and ROS activity was 

measured using DHR. Circle (left two) and Square (right two) populations were gated 

and the fluorescence for each population was compared. The Circle gating collected 203 

events and the Square gating collected 138 events. 

 

4.2.5 Osteogenic Differentiation of hMSCs in 2D culture 

hMSCs were plated on four 6-well tissue culture plates in basal and osteogenic media. 

Microscope images at each time point are shown in Figure 52. AR staining after each 

week of culture showed that mineralization deposition began on week 1 and increased 

over time. Mineralization in basal media was not seen at any time point, confirming that 

osteogenic media was required to induce differentiation to an osteogenic phenotype. 

Based on this study, microhydrogels were cultured for 10-14 days before starting 

evaluation of mineralization. 
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Figure 52 2D Osteogenesis 

Mineralization was imaged using Alizarin Red dye at the end of each week of culture. 

hMSCs grown in basal media showed no staining and those grown in osteogenic media 

showed increased staining at the end of every week. Scale bars are 200 µm. 

 

4.2.6 Screening osteogenic differentiation 

After 13 days, AR staining showed that the basal condition had a low level of 

osteogenesis but that the osteogenic media resulted in noticeably more mineralization 

(Figure 53). At longer timepoints, this mineralization and therefore staining increased 

dramatically (Figure 54). This mineralization could also be seen with D1 cells cultured in 

osteogenic media (Figure 55).  

 

While the AR staining of the hMSC-containing microhydrogels was visible, these 

microhydrogels had low contrast with the surrounding water due to the hydrogel 

composition (20% PEG-4NB + 0.6% DTT + 5 mM RGD). As a result, the ISX had 

difficulty collecting usable images of the microhydrogels. In another study, D1-

containing microhydrogels (20% PEGDA3400 + 5% PEG-4NB + 5% PEG-4SH. Square 

– 5 mM RGD, Triangle - 1 mM HAVDI) were cultured in osteogenic media for 11 days. 

After culture, the microhydrogels were fixed and stained with Alizarin Red (Figure 55). 

These samples were then suspended in 2% PVA + 0.1% Tween20 in distilled water at a 

high concentration and images were collected on the ISX.  
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These images were masked and sorted based on the templates described in earlier 

sections. However, these shape barcodes showed reduced throughput now that cells were 

included and so the shapes were sorted by eye (Figure 56, 

Figure 57). The mineralization for each population was then compared overall (Figure 

58) and at the edge or center of the microhydrogels ( 

Figure 59). However, the variability in the populations was large, the counted 

microhydrogels fewer than 100 for each condition, and the resulting populations showed 

that the sorting algorithm designed in IDEAS was not as accurate as could be desired 

with some images clearly misclassified by the template (Figure 56). From the variables 

measured here for the mineralized microhydrogels, it is clear that there was a range of 

mineralization observed within each material population and so no clear differences 

between the materials. However, this may be due to the variable number of cells in each 

microhydrogel since any cell-cell interactions would limit the effect of including HAVDI 

peptide in only some of the microhydrogels.  

 

 

Figure 53 Alizarin Red Staining of Cell-Containing Microhydrogels 

hMSCs were cultured for 13 days in basal or osteogenic media. The macromer solution 

was made of 20% PEG-4NB + 0.6% DTT + 5mM RGD. Scale bars are 200 µm. 
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Figure 54 Over-mineralized Microhydrogels 

If microhydrogels were allowed to differentiate for a longer period, the mineralization 

continued to spread and to distort the shape barcode. Note that this image has overly high 

background due to insufficient washing; however, the extent of mineralization is clear. 

Scale bars are 200 µm. 

 

 

Figure 55 Mineralization of D1 Cells in Microhydrogels 

D1 cells could also be induced to mineralize in microhydrogels containing RGD or 

HAVDI peptide. This formulation was 20% PEGDA3400 + 5% PEG-4NB + 5% PEG-

4SH (Square – 5mM RGD, Triangle – 1 mM HAVDI). Scale bar is 200 µm. 
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Figure 56 Analysis of Mineralized Cells in the ISX 

Microhydrogels containing mineralized material could be imaged using the ISX and 

masked using the developed shape and mineralization templates. For each of the shapes 

there were images that were correctly classified and also those that were not. 

 

 

 
 

Figure 57 Representative Images of Mineralized Cells in Shaped Microhydrogels 

For the two tested materials and shape barcodes, ideal images were identified by eye and 

masked using multiple designs to capture shape and mineralization. These are presented 

as representative images to show the range of analyzed images (left – square, right – 

triangle). 
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Figure 58 Measuring Mineralization in Shape-barcoded Microhydrogels 

Mineralization in two shape-barcoded material compositions was compared. No 

differences were seen between the two materials in terms of the percentage of the area 

occupied by mineralization (left), the median pixel per area or the mean pixel per area 

(middle), or the intensity per area or bright detail intensity (right). (Square – blue, triangle 

– green)  

 

 

 
 

Figure 59 Measuring Mineralization at Edges and Interiors of Microhydrogels 

Mineralization was also compared using masks specific for the outer 60-90% and inner 

60% of microhydrogels. Examples of these masks are shown for two shapes each using 

two different masking protocols (left). There were no differences observed in these two 

masks for intensity per area (middle) or median pixel per area (right). (Square – blue, 

triangle – green) 

 

4.2.7 Alternative MSC Differentiation – Adipogenesis 

Adipogenesis of MSCs was also considered as a model system to illustrate 3DMaC’s 

ability to assay biomaterials systems. Unlike the osteogenic media, adipogenic media did 

not result in any noticeable spontaneous changes to the microhydrogels. This 

differentiation system is also robust in in vitro culture which makes it another good test 
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system. hMSCs were shown to differentiate into adipocytes within two weeks of culture 

when seeded at high density and this could be clearly seen with a phase microscope 

(Figure 60). Oil Red is a small molecule histological stain similar to Alizarin Red which 

could be used to specifically stain the fat deposits in the cells (Figure 60). Antibody 

staining was also tested as a more specific measure of adipogenesis that would not result 

in background staining of the microhydrogels (both Oil Red and Alizarin Red do show a 

small amount of staining of blank microhydrogels). One specific protein expressed during 

adipogenesis is FABP4 (fatty acid binding protein 4) and so expression of this protein 

was probed. Interestingly, the cells used in this experiment showed inhomogeneous 

expression of the protein (Figure 61), which would be an important consideration if used 

as a model system. 

 

Cells that were fixed in suspension instead of on the well-plate were also tested in an 

imaging flow cytometer to see if the Oil Red staining could be masked in the same 

manner as the Alizarin Red staining. These cells could be stained, imaged, and masked 

which suggests that this would also work as a model system (Figure 62). However, the 

adipocytes were fragile and many seemed to burst in either the process of collection or 

analysis. This bursting was hypothesized based on many collected images of sub-cellular-

sized circle images that appeared similarly reflective to the globules in unstained cells. 

The adipogenesis model system was not tested any further because adipogenesis-inducing 

materials generally have a lower modulus than the materials tested in this Aim, which 

suggests that encapsulated cells would likely not differentiate effectively. 
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Figure 60 Adipogenesis of MSCs and Small Molecule Staining 

hMSCs differentiated into adipocytes over the course of two weeks of culture. This could 

be seen using a phase microscope (left) or Oil Red histological staining (right). 

 

 

 
 

Figure 61 Staining of Adipocytes Using Anti-FABP Antibodies 

Antibody staining could also be used to detect adipogenesis (green) via expression of 

fatty acid binding protein 4. 
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Figure 62 Imaging Flow Cytometer Analysis of Adipogenesis via Oil Red Staining 

Cells were fixed, split into two populations, and half were stained in suspension before 

analysis on a FlowSight machine. The globule regions could be masked in either 

unstained (top) or stained (bottom) cells in both brightfield (left) and side scatter channels 

(right). 

 

4.3 Discussion 

Biomaterial microgels containing tumor and tumor-supporting cells, and stem cells were 

chosen for exploratory studies. Both cell types have heterogeneous population 

characteristics and a behavioral dependence on encapsulating material
100, 171

; and would 

therefore benefit from population-level statistics gathered from individual events. In stem 

cell research, the starting population can demonstrate a range of responses to identical 

biomaterial cues, and in cancer research in vivo behavior is best mimicked when tumor 

cells are co-cultured with supporting cells in an appropriate biomaterial niche
171, 193

. 

Therefore, while this method can easily be applied to single cell systems (similar to 

traditional FACS analysis), this method is unique in that it can also analyze entire cell 

niches within a biomaterial. While shape has important implications for 2D studies
194

, no 

such dependence has been reported in 3D microgel culture. However, this remains an 
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interesting biological question for future studies and would need to be studied for each 

specific cell-biomaterial system of interest. 

 

In this Aim the goal was to show how the 3DMaC method could be modified to enable 

the study of cell-material interactions in a high-throughput manner. Both adipogenesis 

and osteogenesis were considered before osteogenesis was selected. First, hydroxyapatite 

was used as a model system to determine an effective way to measure mineralization in 

the context of the ISX. As hydroxyapatite is very similar to bone, a stain (Alizarin Red) 

was available to stain mineralized material a bright red color. Because the cell-containing 

microhydrogels were expected to need additional gating to define the response signals, 

several different analysis templates were defined. This primarily meant defining an area-

modified intensity mask to measure mineralization, however, this aim also showed how 

fluorescent small molecules and antibodies could be detected in the ISX. A standard 

curve of mineralization was also developed to correlate imaged mineralized area with a 

quantitative measurement of mineralized material.  

 

An important caveat to this mineralization curve is that the 2D nature of the 

quantification does not fully measure the 3D encapsulation of HA in microhydrogels. 

This is because HA particles in more densely packed microhydrogels are likely to have 

some degree of stacking through the thickness of the microhydrogel, but the ISX will 

only see the footprint of these particles blocking light from passing through the 

microhydrogel. Here, this discrepancy was partially addressed by (1) quantifying 

primarily lower concentrations of HA that would have minimal stacking and (2) only 

analyzing images of microhydrogels correctly oriented to the camera. In the future, this 

could be further improved by using a non-linear fit for the data, using z-stacks in confocal 



118 

 

microscopy to make a more accurate standard curve, or using thinner microhydrogels to 

limit HA stacking. 

 

Having developed an analysis method on the ISX, the cellular side needed to be 

addressed. MSCs from both human and mouse sources could be induced to differentiate 

down an osteogenic lineage using osteogenic media to culture 2D plated cells and this 

mineralization could be imaged with AR dye. Because the previous macromer 

formulation was found to induce spontaneous mineralization in microhydrogels during 

prolonged culture, new microhydrogel formulations were developed to address this 

problem. By using monomers that lead to larger mesh sizes in the material (and therefore 

higher swelling), auto-mineralization was not observed during the tested timeframe of 

two weeks. These new formulations used a similar crosslinking chemistry but led to key 

changes including increased crosslinking efficiency, higher cell viability, and increased 

film formation during fabrication. This film formation was addressed by decreasing the 

crosslinking time and also redesigning the PDMS molds such that the individual features 

were closer together.
118

 These closer features made it more likely that a cell would settle 

into a well instead of remaining between the two pieces of PDMS and thus creating a 

space for polymerization.  

 

Using these new macromer formulations, hMSC and D1 cells were observed to produce 

mineralized material within two weeks and stain strongly with AR. However, analyzing 

these microhydrogels using the ISX brought new challenges. Highly mineralized 

microhydrogels were denser than cell-free microhydrogels and much denser than the cell 

suspensions that the ISX is designed to analyze. As a result, microhydrogels containing 

mineralized material were imaged before the ISX completed its required calibrations or 

settled in the sample chamber. It was at this point that the PVA was added to the run 
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buffer to ensure that microhydrogels would remain suspended throughout the analysis 

period. Still, the ISX needed to be pulsed between the high and low speeds to keep the 

highly mineralized microhydrogels flowing. 

 

Another reoccurring challenge was that the sorting template was less accurate for cell-

containing microhydrogels. This occurred because the inclusion of cells often disturbed 

the corners and edges necessary to define the shape barcode. However, the sorting was 

also less accurate due to the changes in the macromer solution. The higher swelling 

resulted in less defined corners and a lower contrast between the microhydrogel and 

surrounding fluid. 

 

To address these challenges and to continue improving the ability of 3DMaC to analyze 

cell-containing microhydrogels, there are several avenues that could prove productive. 

The first goal should be to try to improve the shape recognition of the microhydrogels. 

The low contrast could be approached by introducing an additional staining agent to the 

system. This could be a fluorescent label throughout the gel or immediately on the 

surface, either should be fine for the shape barcoding template. Fluorescence could be 

achieved either by incorporating FITC-PEG-acrylate throughout the gel or by incubating 

the microhydrogels with a fluorescently-tagged anti-PEG antibody. The contrast could 

also be improved with brightfield features. PEG can be specifically stained with barium 

iodide or with less hazardous trypan blue. The trypan blue has been effective and easy to 

control in our hands; however, it is removed by the addition of Tween-20 to the system 

and so has not been pursued. 

 

As in the previous Aim, substantially better image classification may be possible by 

analyzing the images outside the confines of IDEAS. Images and feature values can be 
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exported for analysis elsewhere and one of the great advantages of flow cytometry is that 

it is easy to generate the massive number of training images needed for more powerful 

analytics. Future studies related to this aim might take advantage of the many 

fluorescence detection channels to look at other important cell characteristics or to 

evaluate different cell types. The microhydrogels used here are large enough to 

encapsulate most cell types and possibly entire multicellular microenvironments. As 

more in vitro analyses attempt to account for cell-cell interactions to accurately predict 

outcomes, 3DMaC provides the multiplexing needed to track multiple variables at once. 

Also, the 3DMaC SSF barcoding scheme could be extended to non-commercial 

cytometry systems. Already, many groups have used flow in microfluidics to analyze 

microhydrogels (barcoded with a range of methods) and such systems might be necessary 

for organoid cultures that are too large or too heavy for ISX analysis. Lastly, the 3DMaC 

system could be extended to non-imaging flow cytometers. If the materials are already 

going to have a fluorescence barcode for analysis, this can be equally well measured by 

traditional flow cytometers with the caveat that most currently available systems (the 

Fortessa or Aria for example) will only be able to analyze slightly smaller 

microhydrogels (<40 µm) due to their smaller fluidics. 
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CHAPTER 5  Aim 3 

Develop and characterize 3DMaC’s suitability for performing highly 

multiplexed, microhydrogel-based sandwich immunoassays 

 

In this Aim, 3DMaC was adapted to assay microhydrogels functionalized for highly 

multiplexed detection of analytes in solution. The goal was to illustrate how the 

combination of shape-, size-, and fluorescence-barcodes analyzed in 3DMaC enables a 

much larger number of analytes to be detected in a single assay. Previously, the SSF 

barcode of the microhydrogel corresponded to the material composition, but in this Aim 

the SSF barcode indicates which analyte the microhydrogel is capable of detecting. 

Substantial modification of the previously developed method was needed for this Aim to 

conjugate antibodies to microhydrogels, optimize shape barcode fidelity, develop multi-

color fluorescence barcoding, and design new analysis templates. 

 

As for any detection platform, a biomaterial-based detection method will ideally combine 

high precision and sensitivity for the analyte of interest with low background signal. For 

biological systems this analyte can be any number of things including proteins, mRNA, 

carbohydrates, etc. There is a need to assay a large number of different analytes in 

solution in a high throughput manner. Such biological assays are increasingly used to 

scan serum samples, for example in immunology research, and it is preferable to test as 

many analytes as possible in a single run. Ideally, the method would be rapid, accurate, 

test small volumes, readily stored, and highly multiplexed. All of these requirements are 

met in 3DMaC. 
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While there is a need for biological detection platforms to be high-throughput to provide 

data on many replicates or experimental conditions, the greater advantage of 3DMaC is 

the potentially massive multiplexing that can be achieved. Using the ISX to determine 

SSF barcodes, potentially many more analytes can be analyzed at once than currently 

possible using existing methods.  

 

5.1 Methods 

5.1.1 Materials 

Photomasks were purchased from Cad/Art Services. 0-50% (v/v) Poly(ethylene glycol) 

PEGDA (MW 575) + 0-30% (w/v) Biotin-PEG-Acrylate (Biotin-PEGA, MW 5kDa) 

were dissolved in a stock solution of 1% (w/v) LAP and 1% (v/v) NVP in PBS. PBST 

was prepared from PBS + 0.5%(v/v) Tween-20. Streptavidin was purchased from Bio 

Basic and Streptavidin-RhodamineRedX was purchased from VWR; both were dissolved 

in PBS at 2 mg/mL, aliquoted, and stored at -20
o
C. Biotinylated Atto-647 was purchased 

from Sigma Aldrich, dissolved in 50% (v/v) DMSO (Dimethyl Sulfoxide) in PBS at 0.5 

mg/mL, aliquoted, and stored at -20
o
C. BSA and BSA-AlexaFluor488 were purchased 

from ThermoFisher. Antibodies were: AlexaFluor488 Donkey anti-Rabitt IgG 

(BioLegend, 406416), Anti-IL10 (Abcam, 222630), Anti-TNFα (Abcam, 34674), Anti-

IL6 (Abcam, 7737), Anti-BSA (ThermoFisher, A11133), Anti-IFNβ (ThermoFisher, 

PA5-20390) Biotinylated antibodies were: Anti-TNFα (ThermoFisher, AMC3719), anti-

IL6 (BioLegend, 504602), Anti-IL10 (BioLegend, 505004), Anti-IFNβ (BioLegend, 

508105). Protein standards were: TNFα (BioLegend, 575209), IL-6 (BioLegend, 

575709), IL-10 (BioLegend, 575809). 

 



123 

 

5.1.2 Microhydrogel Fabrication and Functionalization 

PDMS molds were fabricated as previously described. Molds were activated by oxygen 

plasma for 5 minutes and 10 µL of prepolymer was directly pipetted on the surface. 

Molds were sealed using an equally sized slab of untreated PDMS and exposed to 365 

nm light for 60 seconds. The top slab was removed and PBST was pipetted onto the mold 

surface to hydrate the microhydrogels. Microhydrogels were collected in low adhesion 

Eppendorf tubes via centrifugation, counted, and rinsed three times in PBST or TBS (Tris 

Buffered Saline). 2 mg/mL Streptavidin in PBS was added to the microhydrogels at 7e-7 

µg/µm
2
 (where the area refers to the surface area of the microhydrogel multiplied by the 

number of microhydrogels) and rotated for at least 30 minutes. A small sample of 

microhydrogels were instead rotated with fluorescently-labeled streptavidin and used as a 

positive control for binding. Rinsing was repeated as before. Figure 63 shows a 

schematic of the functionalized microhydrogels. 

 

Microhydrogels were next incubated with biotinylated capture antibody at a 

concentration of 0.5 mg/mL (in a 3:1 molar ratio of antibody to streptavidin) and rotated 

for at least two hours. This step was conducted in a TBS-based blocking buffer (Odessey) 

to limit non-specific binding. Again, a small sample was incubated instead with a 

biotinylated dye such that binding could be measured after rinsing. Rinsing was repeated 

before storage at 4
o
C. Figure 64 shows a schematic of the functionalized microhydrogels. 

 

An alternative functionalization of microhydrogels was also tested based on the protocol 

from the Doyle group. In this method, EDC/NHS chemistry is used to modify NH2 

groups on the antibody directly and covalently link the antibodies to a Maleimide-PEG-

succinimidyl linker before use. This maleimide group could then participate in the free 
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radical crosslinking reaction. Two antibodies were tested, one with a TexasRed 

fluorophore and one with a FITC fluorophore. 

 

 

Figure 63 Schematic of Non-specifically Functionalized Microhydrogel 

In this example, a cube of PEGDA forms surface acrylate-acrylate (red) bonds and biotin 

groups (blue) extend from the edge. These biotins are bound to streptavidin (blue 

squares). 

 

 

Figure 64 Antibody-functionalized Microhydrogel and Intended Binding 

Biotinylated antibodies are bound to the available sites on streptavidin. Incubation with 

specific proteins (green) will result in binding that can then be detected with 

fluorescence-tagged detection antibodies. 
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5.1.3 Detecting Microhydrogels Using Non-imaging Flow Cytometry 

For these experiments, Jiaying (Ingrid) Liu from the Roy lab and Sommer Durham from 

the Georgia Tech Flow Cytometry Core are both acknowledged for data collection. 

Microhydrogels were fabricated at smaller sizes and collected in PBS at a high 

concentration. FSC and SSC graphs were used to look for the presence of 

microhydrogels. The laser intensities were lowered to minimal levels to try to shift the 

peak of the FSC plot below the highest measurable value on the LSR-Fortessa. Using the 

FACS-Aria, a neutral density filter was applied with the same goal. For some 

experiments, microhydrogels were functionalized with fluorescence to assist with 

detection in the flow cytometer. 

 

5.1.4 Expanded Barcoding Shapes 

New shapes were designed in AutoCAD based on the previous set of twelve test 

barcodes. These new shapes were: pentagon, star, crescent, clover, dogbone, and keyhole. 

The pentagon and star were intended to test how well the sorting algorithm could identify 

an increasing number of edges on the shape. The crescent and clover were meant to 

introduce concavity as an additional variable. The dogbone and the keyhole were 

designed with one long axis based on the observations that (1) longer shapes would 

generally orient themselves parallel to the direction of flow and (2) the imaging 

environment of the ISX is designed such that the length of the image is variable and 

dependent on the length of the imaged object. 

 

5.1.5 Expanded Barcoding Fluorescence 

Microhydrogels were incubated with fluorescently labeled versions of streptavidin (Cy3, 

APC, or RhodamineX) and biotin (FITC or Atto647) to create a range of combinations. 
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Single color and blank microhydrogels were collected as well. Note that here fluorescent 

barcoding was achieved by labeling the linker molecules, however, fluorescence could 

also be included in the macromer solution either by using labeled macromer or by 

including functionalized fluorescent nanoparticles capable of polymerizing with the 

system.  To eliminate shape as a possibly confounding variable, a single shape barcode 

was used for each experiment and a gate of Area vs. AspectRatio was applied to the data 

to remove disoriented microhydrogels (~60% removed). Laser powers were optimized on 

single color controls and compensation was performed in IDEAS after data collection. 

 

5.1.6 Standard Curves 

Based on the optimized microhydrogel formulation, standard curves were produced to 

test the amount of streptavidin and subsequent biotin groups could be bound to the 

surface. The same RhodamineX-functionalized streptavidin was used to measure how 

much could be bound to the surface. Keeping the solution volume and microhydrogel 

number constant, the microhydrogels were incubated in ten different concentrations 

ranging from 0 to 1 µg/µgel and shaken for 2 hours. Dilution was performed in PBS + 

0.01%Tween-20.  

 

A standard curve was prepared from BSA (either unconjugated or with an AlexaFluor488 

tag). Concentrations tested were: 1 mg/mL, 100 µg/mL, 1 µg/mL, 100 ng/mL, 1 ng/mL, 1 

pg/mL, and 0 (negative control). Microhydrogels were added to 0.6 mL Eppendorf tubes, 

centrifuged, and supernatant removed. Incubation consisted either of 4 hours on a room 

temperature shakerplate or overnight at 4
o
C. This step was conducted in a TBS-based 

blocking buffer to limit non-specific binding. Rinsing was repeated as before. 

Fluorescently-labeled BSA standard curves were then evaluated in a spinning disk 
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confocal microscope and using the ISX. Unconjugated BSA standard curves were 

incubated with a detection antibody, rinsed, and imaged in the same manner. 

 

5.2 Results 

5.2.1 Microhydrogel Fabrication and Functionalization 

Macromer solution was designed to have high streptavidin binding capability without 

sacrificing barcoding accuracy. PEGDA575 was selected as the base macromer solution 

because crosslinked gels will have a small mesh size and little swelling. This will 

maintain higher shape fidelity and prevent functionalization of the internal volume (rather 

than the surface). Different ratios of PEG macromer and Biotin-PEGA were fabricated 

(Table 5) and functionalized with fluorescent streptavidin (StrepRhodX) as a proxy for 

the number of biotin moieties that were present on the surface of the microhydrogels. As 

seen in Figure 65 the binding was highest with 10% Biotin-PEG-Acrylate. This was 

surprising because one would expect that a higher proportion of Biotin-PEGA would 

result in more moieties present on the surface; however, the Biotin-PEGA also had a low 

solubility under the chosen experimental conditions with particulate visible at 20% (w/v) 

and excessive particulate at 30% (w/v). 

 

A second experiment was performed in which the amount of PEGDA575 was varied to 

determine how the reduced pore size impacts the binding of streptavidin (Table 6). 

Interestingly, the highest tested concentration of PEGDA575 was found to have the 

highest binding (Figure 66). Higher concentrations were not tested as the gels become 

increasingly brittle but there could be room for improvement still with optimization of the 

macromer solution. 
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During testing an unexpected variable, functionalization time, was identified. Namely, for 

some samples the availability of the Biotin-PEGA groups seemed to decrease over time 

with immediate streptavidin functionalization resulting in higher observed fluorescence 

than those samples incubated even one hour later (Figure 67). This was primarily seen 

with the PEGDA575 solutions, microhydrogels derived from PEG-4NB macromer 

solutions could be functionalized equally well even after a 48 hour waiting period 

(Figure 68). It is posited that those microhydrogels designed with larger mesh sizes and 

swelling maintain high accessibility of their biotin moieties whereas the PEGDA575 

might undergo a less favorable rearrangement of biotin away from the surface. 

 

Finally, an alternative antibody incorporation method was also tested. In this system, the 

antibodies are covalently incorporated during fabrication by treating attaching the 

antibodies to a linker group before crosslinking. This is easier from a processing 

standpoint and did result in antibody incorporation as demonstrated using fluorescently-

labeled antibodies (Figure 69). However, there are also downsides to this method that led 

to the biotin attachment strategy being preferred. The covalent incorporation method 

requires that the barcode-antigen selection happen earlier which results in a less flexible 

experimental system. It also could lead to waste of material as the antibody will be 

incorporated throughout the volume of the gel but larger analytes might not be able to 

penetrate past the surface, which means more antibody was used than necessary. Based 

on these disadvantages, the biotin-functionalization method was used in following 

experiments. 
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Table 5 Conditions for Maximizing Surface Biotin by Varying Biotin-PEGA 

Macromer solutions used in Figure 65. 

 

 
 

 

 

Figure 65 Maximizing Surface Biotin Groups by Varying Biotin-PEGA 

Fluorescent streptavidin was bound to surface biotins and quantified via microscopy.  
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Table 6 Conditions for Maximizing Surface Biotin by Varying PEGDA 

Macromer solutions used in Figure 66. 

 

 
 

 

 

 

Figure 66 Maximizing Surface Biotin Groups by Varying PEGDA 

For each Biotin-PEGA concentration, two concentrations of PEGDA were tested relative 

to streptavidin binding. 
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Figure 67 Time Study of Streptavidin Binding with Small Mesh Size 

Immediate incubation with streptavidin was necessary for the microhydrogels with 

smaller mesh size (40% PEGDA (MW 575) + 20% Biotin-PEGA). Scale bars are 100 

µm. 
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Figure 68 Time Study of Streptavidin Binding with Large Mesh Size 

Immediate incubation with streptavidin was unnecessary for the microhydrogels with 

larger mesh size (Macromer corresponding 10% 4ArmPEGDA (MW 20kDa) + 20% 

PEGDA (MW 575) + 10% Biotin-PEGA). For unknown reasons, the 90 minute group 

showed low binding. Scale bars are 100 µm. 

 

 

Figure 69 Covalent Incorporation of Fluorescence-tagged Antibodies 

Two different antibodies were covalently bound into the hydrogel matrix during 

crosslinking. After extensive rinsing, the fluorescent signal could be used to show that the 

antibodies were incorporated successfully. Shown are the phase contrast and fluorescent 

channels, along with an overlaid image. 
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5.2.2 Detecting Microhydrogels Using Non-imaging Flow Cytometry
4
 

In Aim 1 and Aim 2, the potential to expand SSF barcoding to non-imaging flow 

cytometers was discussed. This would expand the utility of the method for both the tissue 

engineering and molecular analytics studies. However, current flow cytometers such as 

the FACS-Aria and LSR-Fortessa (both from BD Biosciences) have smaller microfluidics 

than the ISX and so would only accommodate smaller microhydrogels (< 40 µm), which 

are less convenient for TE studies. However, smaller microhydrogels are more favorable 

for detection applications due to the reduced material necessary for fabrication. Two 

different experiments were performed to test the potential of the FACS-Aria and LSR-

Fortessa (Figure 70). These experiments show that microhydrogel events were detectable 

with the application of the density filter; however, different sizes only showed a small 

shift on the graph. Nanoparticle sizes can be distinguished using flow cytometers and so 

the detectors may be more sensitive when detecting smaller sizes. This is a potential 

avenue for future work along with testing different shapes. 

 

                                                 

 

 

4
 Partially adapted from a supplementary figure of Parratt, K.; Jeong, J.; Qiu, P.; Roy, K. 3D Material 

Cytometry (3DMaC): A Very High-replicate, High-throughput Analytical Method using Microfabricated, 

Shape-specific, Cell-material Niches. Lab on a Chip, 2017, 17, 2861-2872. 
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Figure 70 Non-imaging Flow Cytometers Cannot Accurately Detect Microhydrogels 

Microhydrogels of two different sizes (A) 20 µm and (B) 40 µm were analyzed using the 

FACS-Aria and a small shift was seen between samples. In the LSR (C), even at low 

laser powers, the majority of the fluorescently labeled microhydrogels (used to confirm 

that the events were microhydrogels) appeared only on the right-hand side of the graph. 

 

5.2.3 Expanded Barcoding Shapes 

Several shapes were difficult to form due to areas with minimal dimension that could not 

polymerize consistently under the given polymerization conditions. Namely, the points of 

the crescent and the smallest length in the dogbone did not always successfully 

polymerize. However, the overall shapes were still largely determinable to the human eye 

(Figure 71). Using the ISX and labeling the true populations in a similar manner as 

before, the shapes could be compared against each other to calculate the variables that 

provide the greatest separation.  
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Figure 71 Expanded Shape-based Barcoding 

Six new shapes were added (top, AutoCAD design and ISX images) and sequentially 

graphed relative to six features of interest (bottom left to right). Color-coding relates the 

points on the graph. 

 

5.2.4 Expanded Barcoding Fluorescence 

A range of fluorescent barcodes were explored for the ISX with the intent of testing if a 

Luminex-like two-color fluorescent barcodes could be used (Figure 72, Figure 73, 

Figure 74). The machine is configured with four lasers and a SSC laser which are 

collected in ten fluorescent channels which are located on two separate cameras. This 

means that there are five channels being collected on each camera and therefore that there 

will be less crosstalk if fluorescent barcodes consist of two colors collected on separate 

cameras. 

 

After compensation for overlap between the colors used, the images were gated on 

“Intensity” for Rhodamine intensity and then “Median Pixel” for Atto intensity. Using 

microhydrogels collected as “true” data, the throughput and accuracy of this gating was 
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calculated (Table 7). For example, the throughput of sample A was equal to the number 

of A microhydrogels in gate A divided by the total number of A samples that were 

correctly oriented to the camera. The accuracy was the number of A microhydrogels in 

gate A divided by the total number of microhydrogels in gate A. 

 

 

Figure 72 Ideal Fluorescent Barcodes 

Microhydrogels were designed to have three concentrations of Rhodamine-streptavidin 

and then each group divided into three again and incubated with Atto647-biotin to give a 

total of nine fluorescence barcode. 

 

 

 
Figure 73 ISX Data from Three Fluorescence Barcodes 

Only single and double positive color barcodes were tested to determine concentrations 

and laser powers. 
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Figure 74 ISX Data from Nine Fluorescence Barcodes 

Nine combinations were tested, even with compensation there is visible cross-talk in the 

samples with the highest Atto concentration. (Left – ungated true populations, right – 

populations after gating) 

 

 

Table 7 Fluorescence Barcoded Microhydrogel Throughput and Accuracy 

Calculated as described in the text. 
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5.2.5 Standard Curves 

Standard curves were created to measure the amount of streptavidin (Figure 75) and 

subsequent biotin (Figure 76) groups could be bound to the surface of the 

microhydrogels. 

 

By determining the maximum possible loading of streptavidin and biotin on the surface 

of the microhydrogels, masses of streptavidin and biotinylated antibody were selected for 

functionalizing the microhydrogels. It is important to note that a biotinylated antibody is 

much larger than the biotin small molecule alone and so the maximum surface loading is 

unlikely to approach that of the test fluorescent biotin. A standard curve was then 

prepared from fluorescent BSA protein and samples were incubated with anti-BSA 

functionalized microhydrogels (Figure 77). These values were not as sensitive as desired, 

ELISA and Luminex systems can detect down to the range of pico- to nano-molar 

amounts.  

 

One possibility is that the sensitivity of the ISX may be higher than that of the confocal 

microscope and so the samples were also tested on the ISX (Figure 78). Unfortunately, 

the detection of the ISX did not exceed that seen on the confocal microscope and the 

peaks for the different samples have a wide range of median intensities. Therefore, the 

current iteration does not match the Luminex or ELISA. However, those systems use a 

detection antibody coupled to a signal multiplier in the form of either a colorimetric 

reporter or secondary antibody. Therefore, the standard curve was instead made of 

normal (non-fluorescent) BSA and a fluorescently-tagged primary antibody was used to 

detect and report the protein of interest (Figure 79). Surprisingly, using a fluorescently-

tagged primary detection antibody did not result in noticeable signal magnification with 
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100 ng/mL remaining the lowest concentration that yielded a measurable signal. This 

suggests that analyte was not efficiently captured from the solution. 

 

In a separate experiment, incubation with a fluorescently-labeled detection antibody did 

reduce the detection limit of the microhydrogels (Figure 80). There were two changes 

between this experiment and the previous experiment. First, the detection antibody was 

incubated with the microhydrogels for an additional hour (previously incubation was only 

one hour) while on a shaker-plate. The second difference was the specific BSA used as an 

analyte. In the first experiment, general lab BSA was used as the analyte and in the 

second experiment a fresh bottle of BioUltra BSA was purchased. It is possible that these 

changes contributed to the increased sensitivity; however, this improved detection limit 

was not observed in a follow-up experiment where the analyte of interest was IFNβ 

(Figure 81). This was surprising because the detection antibody was functionalized with 

AlexaFluor488, which is a brighter fluorophore than the FITC used in the BSA detection 

experiments. However, each experiment also used a different set of antibodies. Therefore, 

a key conclusion is that future experiments should utilize ELISA-tested antibodies for 

both capture and detection, and a standard curve will be necessary for each individual 

analyte to determine the extent to which it can be detected. This is similar to the Luminex 

or ELISA protocols where a standard curve is run with each experiment to account for 

the antibodies used and the condition of the laser. 
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Figure 75 Binding Fluorescent Streptavidin to Microhydrogels 

Increasing amounts of streptavidin were incubated with microhydrogels to determine at 

what mass the microhydrogels’ surfaces were saturated. 

  

 

 
Figure 76 Binding Fluorescent Biotin to Microhydrogels 

A similar standard curve was attempted for the subsequent incubation with fluorescently-

labeled biotin. By eye, the samples showed increasing deep blue color on the surface of 

the microhydrogels. However, when the fluorescence was quantified the signal decreased 

in a surprising manner. Most likely the close proximity of the fluorophores was 

quenching the emission. 
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Figure 77 Fluorescently-tagged BSA Standard Curve 

Fluorescent BSA could be measured down to a concentration of 100 ng/mL on a spinning 

disk confocal microscope. Scale bars are 100 µm. 

 

 

 
Figure 78 Detection of BSA-AF488 in the ISX 

ISX images of microhydrogels with fluorescent BSA were collected for a range of 

concentrations and quantified to form a standard curve. The averages were fit with a four-

parameter dose-response curve. 
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Figure 79 BSA Standard Curve with Fluorescent Detection Antibody 

Normal BSA was instead incubated with antibody-functionalized microhydrogels and 

then detected with FITC-bound antibodies. The detection limit was still 100 ng/mL. 

 

 

Figure 80 Detection of BioUltra BSA Using Fluorescent Detection Antibodies 

In a second BSA detection experiment, two procedural changes resulted in detection at 

lower concentrations. Note for these images that all were collected at the same laser 

power but are not graphed on the same fluorescence scale.  

 



143 

 

 

 



144 

 

Figure 81 Detection of IFNβ Using Fluorescent Detection Antibodies and the ISX 

Using an ELISA protein standard, the microscope detection limit was at best 75 ng/mL 

(top row) and the ISX (middle row) confirmed that clear separation between groups was 

only possible for the higher concentrations. In IDEAS, two features (Mean Pixel – left, 

and Intensity – right) were both analyzed to determine which feature gave greater 

separation between groups. These data from the ISX were quantified (bottom two rows) 

for median pixel intensity (left) and intensity (right), and fit with four-parameter dose-

response curves. 

 

5.3 Discussion 

In this Aim, the base 3DMaC method was modified to serve as a highly multiplexed, 

high-throughput molecular analytics method. Already microhydrogels have been 

demonstrated in literature to be useful platforms with which to detect analytes; however, 

none have matched the ease of use or multiplexing of 3DMaC. In literature, analysis of 

these microhydrogels has been either slow (requiring manual microscopic analysis, the 

Koh and Ghosh groups) or required instrumentation that is not commercially available 

(the microfluidic analysis of the Doyle group). These methods can offer more content 

during analysis, but are not as high-throughput as flow cytometry analysis. 

 

The most comparable commercially available systems are the ELISA and Luminex 

technologies. Two key considerations are important for the comparison between these 

systems and 3DMaC: the potential number of analytes and replicates that can be analyzed 

at once. Unlike the methods described in literature all of these systems have automated 

analysis of results. In the ELISA system, the multiplexing is generally restricted to a 

single analyte and the remainder of the 96-well plate is used for technical and biological 

replicates. In the Luminex system, the multiplexing can reach 500 analytes and a plate is 

similarly used to assay replicates. In the 3DMaC method, the multiplexing could 

potentially reach ~2000 analytes (Table 2) and the ISX can also be set-up to read from a 

96-well plate. Therefore, this Aim illustrated that the 3DMaC method enables more 



145 

 

highly multiplexed analyte quantification using commercially available technology and 

automated analysis.  

 

In order to demonstrate 3DMaC’s usage as a detection platform, several key fabrication 

variables were changed. Microhydrogels no longer include cells and so the 

polymerization conditions do not need to be as carefully tuned. This is beneficial because 

changing the macromer solution to contain a higher polymer weight percentage and 

choosing a smaller PEG monomer results in a much stiffer gel. This gel barely swells 

upon hydration which ensures that the fabricated shape barcodes retain crisp corners and 

size is a more reliable barcoding variable. This barcode fidelity then enables more shape 

barcodes to be added to the analysis, a key route by which the multiplexing was increased 

in this Aim. In the first and second Aims, the barcodes were basic geometric shapes with 

low perimeter to area ratios to maximize cell encapsulation. However, in this cell-free 

Aim, the feasible types of shape were expanded to also include shapes with cutout and 

protruding regions. As the microhydrogel shape diverges more from a cell-like shape, 

advanced image analysis methods are likely to be more useful than IDEAS-based 

analysis. In theory, this fabrication and analysis method could also be extended to 

pattern-based barcoding that would enable even more analytes to be analyzed at once. 

 

The microhydrogels used in this Aim were also smaller than those used in Aim 2 because 

they did not need to contain cells and lowering the surface area means fewer streptavidin 

molecules and antibodies are needed to coat the surface while maintaining the same 

surface density. There is potential to use still smaller hydrogels as detection agents. All 

studies here were performed using a 20x magnification; however, the ISX is also 

equipped with a 40x and 60x option. Smaller microhydrogels have the additional benefit 
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of a slower settling time which means a higher density running buffer is not required for 

long assay times. This increases the overall throughput of the method. 

 

The other avenue by which multiplexing was increased was the addition of fluorescence 

barcoding. In the first Aim, fluorescence barcodes were introduced as binary values and 

demonstrated for a few color combinations. In this Aim, following the methodology used 

in the Luminex system, fluorescence barcoding was expanded to show different levels of 

fluorescence within the same detection channel. When combining three levels of intensity 

across two fluorescence channels, this demonstrates nine potential color combinations. 

This also necessitated expanding the gating tree to account for fluorescence levels. Using 

true populations, the throughput and accuracy were calculated for this new tree. 

Accuracies were high for some groups but not others, which showed that even with 

compensation there is still need for precise control over fluorophore loading to prevent 

detectable overlap in the emission spectra. The throughput on these microhydrogels was 

much higher than for the shape barcodes shown in Aim 1, this is likely because of 

homogeneous surface labeling with the fluorophores and the relative ease of measuring 

intensity rather than shape. As all test microhydrogels had the same shape barcode, only a 

rough shape gate was applied and is not reflected in the accuracy and throughput 

calculations. With careful titration of the fluorophore incorporation and the addition of 

more colors, this barcoding variable could be further increased. 

 

One area of further improvement is the functionalization chemistry for the 

microhydrogels. Specifically, in this Aim the fabrication conditions of the 

microhydrogels were tuned to maximize particle functionalization to enable protein 

detection. When using antibodies as capture agents the two key considerations are 

affinity and avidity. The affinity of the antibody quantifies how tightly an analyte will be 
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bound by its specific antibody. The binding is not covalent and so binding is thought of 

as a balance between the time that the analyte is bound and unbound. When using a 

single capture antibody molecule, there is the possibility that the captured analyte will 

move away and be lost while in this unbound state. However, many proteins have 

multiple antigen sites that can be bound to adjacent antibodies. If multiple antibodies 

capture the analyte, it is unlikely that they will all be in the unbound state at once and so 

the analyte is less likely to escape. This is called binding avidity. Using the fabrication 

and antibody conjugation chemistries described in this Aim, the detection limit was found 

to be between 10 and 100 ng/mL depending on the tested system. In the future, this could 

be improved by exploring other fabrication chemistries or increasing the volume of the 

microhydrogel that is accessible to proteins by adding porogens.
19
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CONCLUSIONS AND FUTURE DIRECTIONS 

In this dissertation, a new method for high replicate, high-throughput analyses of 

material-cell interactions was designed and validated. Dubbed 3D Material Cytometry 

(3DMaC), this method uses flow cytometry to analyze 3D material constructs. The 

impact on the field can be broadly summarized as follows: (1) An imaging flow 

cytometer was shown to enable size-, shape-, and fluorescence-barcoding and (2) flow 

cytometry was used to analyze 3D hydrogel materials rather than suspended cells. In the 

first Aim, key design choices were made and explained, and the capabilities of the 

method were quantified. This method was then applied to two different applications of 

interest: tissue engineering (Aim 2) and molecular analytics (Aim 3). This new method 

has great potential to contribute to biomaterials studies and is, to the best of our 

knowledge, the only effort to adapt flow cytometry technology to assay hydrogels. As 

biological studies increasingly focus on higher sample numbers and reproducibility, 

methods such as 3DMaC provide a route to adapt existing technology to meet new 

challenges. Given the impressive ability of the flow cytometer to assay microhydrogels, 

even though it was designed with cells in mind, 3DMaC opens up many new avenues for 

flow cytometry-based analysis of biomaterials. 

 

For tissue engineering, there is a need for high-throughput screening of cell-material 

interactions due to the sheer number of variables that determine efficacy and variability 

within cell populations. While osteogenesis of MSCs was used as a model system in Aim 

2, the method is applicable to many other cell-material systems of interest. Only PEG-

based materials were used in this dissertation; but other materials have been 

microfabricated with shape barcodes (by our group and others). The ability to screen a 

massive amount of materials in conjunction with different culture conditions is critical to 
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exploring the design space for biomaterial constructs. This will enable studies to either 

screen materials for further study or to iterate around a promising material to optimize 

performance. This iterative process might become especially useful for patient-specific 

applications since biomaterial implants may require optimization for each patient. 

3DMaC also could contribute greatly to bench research by screening materials on the 

microscale to select materials for more expensive full testing. 

 

To use 3DMaC for other materials, it is important to consider which fabrication methods 

could be used to generate the microhydrogels. In this dissertation, UV-initiated chain 

polymerization was used, but other methods may offer alternative fabrication advantages. 

The PDMS micromolding method used here is most favorable for less viscous materials 

with user-controlled or slower crosslinking methods. The viscosity is important because 

monomer solution will coat the PDMS mold surface in contact with the hydrophobic 

surface and this layer can be minimized at lower viscosities. At higher viscosities, it 

might be possible to use doctor-blading to remove this layer, but the PDMS mold would 

need to be made deeper to compensate for any material stripped from the wells. PDMS is 

UV-transparent which was convenient for the crosslinking used here, but the same 

polymerization could be achieved using a visible light crosslinking. For example, using 

Eosin Y as a photoinitiator could result in higher viability due to the absence of UV and 

the resulting background green fluorescence might improve barcoding. A time-dependent 

crosslinking, such as a Michael addition reaction between thiol and acrylate or maleimide 

groups, should also work well with PDMS micromolding. In this case, monomers would 

be mixed at the appropriate pH, sealed into molds, and allowed to sit until crosslinking 

was complete. The acrylate/thiol system is probably more promising because these 

reactions are slower than maleimide/thiol reactions which should result in a more 
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homogeneous polymer network. These crosslinking reactions are also favorable because 

the same peptide incorporation demonstrated in this dissertation can be used. 

 

Moving away from the PDMS micromolding, spincoating monomer is a good alternative 

because the spincoating method readily accommodates more viscous materials. However, 

this method requires that photopolymerization be used to mold the microhydrogels. 

Microfluidic fabrication methods are flexible and clever design might allow for a variety 

of polymerization methods to be used. But, in general, these methods are lower 

throughput than the molding methods because they are a continuous fabrication process 

that needs to run for a long time to generate large numbers. 

 

When expanding this method to other materials, there are key parameters to keep in 

mind. When changing between the PEGDA and PEG-4NB/DTT chemistries, the 

increased swelling resulted in microhydrogels with less contrast. This made identification 

of the barcode more difficult using the ISX and barcode visibility needs to be considered 

for each material used. Most materials could be stained by incorporating a small amount 

of fluorescence (for example, by conjugating a fluorophore to the backbone or a subset of 

endgroups before crosslinking) and this staining may make boundaries more identifiable. 

The elasticity of the materials also needs to be considered due to the mechanical 

constraints of flow cytometry. The machines are designed to pick up cells in the fluidics 

system; cells are relatively fragile but also much smaller relative to the apertures. The 

materials used in this dissertation were relatively stiff and robust compared to cells and 

barcodes observed before flow were similar to those seen in the ISX images. However, 

applying 3DMaC to softer materials might be difficult if any of the forces related to 

sample pick-up result in deformation. 
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Another key improvement would be improving the degree of control over the number of 

cells in each individual microhydrogel. In this dissertation, cell numbers were only 

roughly controlled by the starting cell concentration in the monomer solution and the 

result was a distribution of cell numbers in the microhydrogels. This led to several 

challenges. The first was that the cells were distributed through the volume of the 

microhydrogel. The microhydrogels used in this dissertation were relatively small 

compared to the size of a human cell and so in many cases the cell could reach the 

exterior of a microhydrogel. An edge-based cell often would not adhere sufficiently to the 

microhydrogel (such that it was lost during culture or staining), or bind to culture plastics 

or cells on other microhydrogels. Also, even if a cell remained at the exterior of a 

microhydrogel, often it would result in a slight protrusion that altered the shape-based 

masking and reduced the accuracy of the sorting tree. These cell-inclusion issues were 

among the greatest reasons for loss of replicates before or during analysis.  

 

The second challenge was that multiple cells in a microhydrogel will interact with the 

surrounding material differently compared to when there is a single cell. If there are 

multiple cells in a microhydrogel, the biological situation being investigated is likely to 

be different than if there were only one. This is because the cells may communicate via 

chemical signals or be close enough to physically interact. In this dissertation, the goal 

was to study material-directed stem cell differentiation and so limiting cell-cell contact 

was important. This is especially true for the hypothesis described in Aim 2 because the 

HAVDI peptide was incorporated to mimic cell-cell contact and any other contact affects 

the testing. 

 

Without reproducible cell numbers and cell placement in the microhydrogels, it is 

difficult to ensure that there are no artifacts in the data analysis. These artifacts could 
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include the mis-identified shape barcodes and also signal detection limitations. As 

described in Aim 2, cells could be stacked on top of each other in the microhydrogels but 

the analysis is performed on 2D images so some signal could be hidden. This is possible 

for brightfield intensity detection and fluorescence. Some of this might be resolved by 

using the extended depth of field function available on some imaging flow cytometers. 

However, this does not address artifacts that might arise from the distance between the 

microhydrogel and the detectors. Because the detection is microscope-based, it is 

important to consider the plane of detection because out-of-plane signals will be weaker. 

While the ISX adjusts keep images in focus, the movement is not sufficient to capture the 

range over which the microhydrogels drift. In the first Aim, the microhydrogels were thin 

relative to the cross-sectional area which helped reduce microhydrogel tumbling during 

analysis. However, once cells were included the microhydrogels needed to be thicker to 

fully incorporate the cells so tumbling increased. Once the volume of the microhydrogels 

increased, the microhydrogels were a more significant disruption of the flow profile and 

so cells were not always in the same plane during analysis.  

 

Fixing this problem could be approached in two ways: controlling the cells or controlling 

the flow. Controlling the flow would require dramatic changes to the flow cytometer, 

including the size of the microfluidics, and is beyond the scope of this work. However, 

there could be improvements made to the microhydrogels that might improve the analysis 

efficiency and cell incorporation. Microhydrogels should be made of minimal thickness 

necessary and one axis should be elongated to help align with the direction of flow. 

Fluorescence barcoding also should be tested for cell-containing microhydrogels to 

explore the impact of 3D shape on cell behaviors. The fabrication method could also be 

improved to control cell numbers. This would likely be achievable using a microfluidic 

method to place a desired cell number in each microhydrogel before crosslinking. It also 
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might be possible to use direct-write methods to crosslink a microhydrogel around a cell 

cluster of the correct size. Microhydrogels could also be crosslinked first just as a tiny 

shape-irrelevant cell-containing hydrogel and then the shape-barcoded microhydrogel 

crosslinked around this cluster. 

 

Rather than controlling the cell number before fabrication, the microhydrogels could also 

be sorted depending on the number of encapsulated cells. For example, this might mean 

staining all the cells with a CellTrace dye and then using a FACS system to sort 

microhydrogels based on intensity to collect populations with roughly the same number 

of cells per microhydrogel. In the case of the mineralized microhydrogels, the differences 

in density between the different microhydrogels mean that they could potentially be 

separated using a density gradient. 

 

For molecular analytics, there is a need to increase the number of analytes that can be 

detected at once and in Aim 3 3DMaC was shown to be a promising way to measure a 

large number of analytes using SSF barcoded particles. Compared to existing methods in 

literature or those commercially available, 3DMaC offers potentially the fastest way to 

assay the largest number of analytes in a single test. Before this can be achieved using the 

3DMaC system, there are a few improvements that need to be made. First is increasing 

the number of barcodes that can be detected simultaneously. This dissertation showed a 

maximum of ten shapes, three sizes, and nine fluorescence barcodes but there is potential 

to include more. Also, it will be important to test the barcoding variables in combination 

to prove that they do not result in any detection artifacts and truly can be multiplexed 

together.  
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Second, 3DMaC detection needs to be improved to be able to detect lower amounts of 

analyte and to have less variability. The analyte detection limit is tied to the amount of 

analyte that is bound to the microhydrogels. This dissertation focused on maximizing 

microhydrogel functionalization, but more incubation conditions and times could be 

investigated to maximize analyte binding and then detection. This method is not designed 

to give rapid information and so longer times could be tested to try to capture more 

protein from solution.  

 

Currently, 3DMaC detection shows more variability than is desirable. This is apparent in 

the detection profiles from Aim 3 where even for the standard curves there is large 

variability at each concentration. While the means could be accurately fit using a four-

parameter dose-response curve, the range at each concentration was large. This is likely 

because the signal is being detected over the area of the microhydrogel and this area 

changes for each event, which suggests that a normalization factor could be selected to 

control for this variation or that a strict shape gate could be drawn to limit variability. 

Another option would be to refine the fluorescence masking to only incorporate the 

exterior of the microhydrogel. It is also possible that this range comes from the 

fluorescence reporters used to label the analyte. The number of analytes and the number 

of fluorophores per detection antibody can vary which means the signal will be more 

variable between microhydrogels. This could be controlled for by using well-defined 

detection antibodies or by standardizing against a set of calibration beads. Such 

improvements to the signal variability are important because ideally the method would 

use a minimal number of microhydrogels to detect since this will use less supply material 

and let a larger number of microhydrogels be scanned in the assay period. 
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As technology improves, there is the potential for 3DMaC to be useful for additional 

problems and situations. Within the two applications demonstrated here, both will benefit 

from advanced optics and image analysis methods that enable the classification of a 

larger number of shape barcodes to expand the number of conditions that can be 

measured at once. The flexibility of imaging cytometers to detect bright-field and 

fluorescence channels means that there is great potential to measure differentiation or 

other cellular responses using existing reporter technologies. This would make the 

technique useful for analyzing a wide range of cell-material interactions. For molecular 

analytics, many different types of barcoded particles have been developed to report on 

many different analytes of interest. In addition to the particles and methods developed 

here, many existing technologies are compatible with 3DMaC analysis and there are 

improvements that could be made to sensitivity as well. 

 

There are also a large number of potential areas of research where 3DMaC could be 

applied in its present state. Broadly divided into cell-based and sensing applications, 

these possible applications leverage the imaging flow cytometer to enable high-

throughput, high replicate studies of biomaterials. Among the cellular applications, this 

dissertation has discussed primarily the ability to study the response of cells to an 

encapsulating material. It is important to note the diversity of cell types and biomaterials 

currently being researched, many of which could be converted to 3DMaC studies without 

large changes in material or end-point assay. However, there are many more applications 

to consider. The barcoding method in this dissertation need not be restricted to material 

composition or analyte specificity. Instead the barcode could denote a specific media 

composition or drug screening combination.  
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There is also room for studies of how 3D shape and size relate to cell behavior. Studies 

could be expanded to include co-culture conditions that are of high importance for 

understanding how multiple cell types interact in vivo. This encompasses studies of 

multiple cell types in a single microhydrogel (for example, modeling tumor 

microenvironment with immune and tumor cells) and also cases where the barcode 

designates the type of encapsulated cell. In the latter cases, this could be used to study 

how cellular populations affect one another through chemical signals when each cell type 

is constrained to a particular material environment. This last point is particularly 

important for tissue engineering applications as cells encapsulated in a transplanted 

biomaterial will need to contend with the response from immune cells on the periphery of 

the implant. All of these cell-based applications can be further studied in the 3DMaC 

system to acquire high replicate, high-throughput data. One particular advantage of 

3DMaC is that, in its current implementation, a massive number of replicates are cultured 

in suspension in aggregate and this population can be sampled at multiple timepoints to 

track progress and obtain longitudinal data. Particularly for clinical and cell 

manufacturing-related applications, this sampling could be important for maintaining 

quality metrics. 

 

3DMaC could also contribute to a large number of non-cell-based studies. Already, many 

groups have shown that microhydrogels (or other microparticles) can be used for 

detection studies, but these studies lack an easily accessible, rapid assay system. In this 

case, the main advantage of 3DMaC is not that it is high replicate (though this is still 

advantageous for quantifying population averages), but that it offers large multiplexing in 

high-throughput. This dissertation showed how microhydrogels functionalized for a 

sandwich immunoassay could be analyzed using 3DMaC with increased barcode 

numbers. 3DMaC could also be used to measure changes in shape in response to stimuli, 
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as described in the Background of this dissertation. For example, rather than using 

antibodies, a molecularly imprinted system could be used where a binding event is 

measured via a resulting change in size. In this case, multiplexing would be achieved 

with shape and fluorescence, which already offer the greatest number of potential 

barcodes. Another possibility would be to fabricate microhydrogels where the barcode 

designates a particular crosslinker susceptible to degradation. For example, 

microhydrogels could be crosslinked with peptides and then exposed to solutions that 

may contain particular enzymes. Microhydrogels whose peptide could be cleaved by 

those enzymes would then be dissolved and 3DMaC could identify the enzymes via the 

absence of that barcode during analysis. These are only a few examples of how high-

throughput analysis of microparticles might contribute to sensing studies; 3DMaC does 

not necessarily need to be restricted to microhydrogels and other microparticles could be 

analyzed with slight experimental accommodations. 

 

Finally, if SSF barcodes could be determined for a non-imaging flow cytometer, this 

method would be accessible to many more researchers. This would also enable FACS 

methods to be used to collect specific microhydrogels for further study which would 

greatly increase the data that could be obtained. It is also possible that imaging flow 

cytometers such as the ISX might be upgraded such that populations of interest could be 

collected thus enabling collection using existing gating methods shown here. One of the 

biggest advantages of 3DMaC is that the method is designed for use with existing flow 

cytometers and does not require specialized equipment. Taken together, this dissertation 

and all of these future possibilities prove that 3DMaC can increase the utility and 

applications of flow cytometry by bringing its advantages to bear on current questions in 

the field of biomaterials. 
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