TESTING EQUALITY OF AUTOCOVARIANCE FUNCTIONS
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Abstract: This paper introduces a simple frequency domain test to discern whether two
stationary time series have the same autocovariance function. The driving idea is that two
stationary short-memory autocovariances coincide over all lags if and only if the correspond-
ing spectral densities agree. As the spectral density is easily estimated via the periodogram,
and the asymptotics of the periodogram are well known, a statistic based on the log-ratio
of periodogram ordinates is proposed and explored. An application of the method is given.
The exposition is made accessible to a general audience, although rudimentary familiarity
with spectral densities and periodograms is assumed.
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1 Introduction.

The modern time series analyst is savvy in both time and frequency domains. The view-
points are complementary and provide different insights, with some issues being more trans-
parent in the frequency domain (proving that the sum of two independent ARMA series
is again ARMA for example), while other issues are more succinctly cast within the time
domain (recursive ARMA forecasting for example). This short paper presents a frequency



domain test for discerning whether (or not) two series have the same autocovariance func-
tion.

Suppose that {X;} and {Y;} are stationary series with finite second moments and au-
tocovariances vx (h) = Cov(Xy, Xiyp) and vy (h) = Cov(Yy, Yiyp) at lag h. We take {X,}
and {Y;} as independent; extensions to more than two series and to correlated cases may
merit consideration, but we keep the issue simple here. Our research objective is to develop
a test for whether or not

vx (h) =y (h) (1.1)

for all integral lags h. To ensure existence of a spectral density, it is assumed that {X;}
and {Y;} have short-memory in that

Y hx(h)<oo and ) |yy(h)] < oo; (1.2)
h=0 h=0

this is the case for any causal autoregressive moving-average (ARMA) time series. Under
short-memory, the spectral density of {X;}, denoted by fx(w) at frequency w € [0,27),
exists (is finite) and is given by

1 oo

Z e M yx (h), (1.3)

fx(w) = o=
27 "
where ¢ = y/—1; a similar formula holds for fy(-).
Testing for equality of autocovariances arises in inference and quality control settings.
For example, a (1 — a) x 100% large sample confidence interval for an unknown mean
u = E[X;] from the sample Xy, ..., X, 1 is

n—1 1/2
Yizaﬂ ln_l {VX(O) +22 (1 - h/n) '?X(h)}‘| ) (1'4)
h=1
where z, is the upper (1—a)th quantile of the standard normal distribution, X = % Z?:_ol Xy
is the sample series average, and §x(h) is a suitably good estimate of vx(h). In many
settings, such as application of (1.4), a surrogate estimate of vx(-) would be useful and is
available upon suitable ‘digging’. Such is the case in climate time series where two adjacent
towns typically experience similar weather and hence enjoy similar autocovariances. The
notion of a reference series in climatology is developed in Easterling and Peterson (1995)
and the references therein. If {X;} and {Y;} have equivalent autocovariances, then one
can of course substitute 4y (h) for 4x(h). Besides confidence intervals for mean series
values, autocovariances are key quantities for inferences involving linear trends (cf. Lee and
Lund 2004) and in forecasting future series values (cf. Brockwell and Davis 1991). Another
surrogate-driven example arises in astronomical classification problems. For example, if the
sampled autocovariances of a star under study resemble those for a known white dwarf star,
then one has evidence that the star under study may also be a white dwarf. Yet another



use of surrogate autocovariances lies in quality control for correlated processes. Here, a new
machine may need to be calibrated to produce items similar to an old machine.

Thus, a fundamental statistical question tests whether two series are drawn from pro-
cesses with the same autocovariances. The objective of this paper is to present a simple
frequency domain test for this purpose. The rest of this paper proceeds as follows. The
next section motivates a test statistic for equality of autocovariance functions. Section 3
provides a simulation example for general feel; Section 4 closes with an application to two
temperature series from stations at Athens and Atlanta, GA, USA.

2 The Test Statistic.
The spectral density of {X;} at frequency w € [0,27) is typically estimated by the peri-
odogram, denoted by Ix(w) and defined as

2
(2.1)
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(cf. Chapter 10 of Brockwell and Davis 1991). As I'x (w) uniquely determines {X;}=4 from
its values at the Fourier frequencies w; = 27j/n only, we focus exclusively on these Fourier

1

frequencies. The conjugate symmetry relationships I(—w) = I(w) and I(21 — w) = [(w)
further reduce the problem to consideration of w; = 27wj/n for 0 < j < [n/2], where |z]
denotes the greatest integer less than or equal to . For simplicity of exposition, we take n
as an even integer henceforth so as to render n/2 whole.

For a collection of m distinct Fourier frequencies wi,ws,...,w:, such that 0 < w; <
coo < Wy < m, the Ix(w;) are asymptotically independent exponential random variables
with means E[lx(wj)] = fx(w;) (cf. Proposition 10.3.2 in Brockwell and Davis 1991).
The simple crux of this paper can now be easily stated: if {X;} and {Y;} have the same
autocovariances, then {Rg}?i 21 defined by

r, = Ixwo)/fx(we) _ Ix(we)
‘ IY(WZ)/JCY(WZ) Iy(wg)

is distributed approximately as the ratio of two independent exponentially distributed ran-

(2.2)

dom variables, with numerator and denominator both having unit mean (henceforth referred
to as standard). From asymptotic independence of the periodogram, it follows that R; and
R; are asymptotically independent when ¢ # j. Observe that a functional form for the spec-
tral density is not required to compute the R,’s. Equation (2.2) and its log transformation
will serve as key elements in our analysis.

We reiterate the well-known fact that the ‘raw’ periodogram Ix(w) is an inconsistent
estimator of the spectral density fx(w); specifically, var(Ix(w;)) does not tend to zero as
n — oo. Wahba (1980), states “it will be hopelessly wiggly even when f(w) is a smooth
function” and n — oo. However, under vast generality (cf. Theorem 5.2.6 of Brillinger 1981;
Section 10.4 of Brockwell and Davis; Chapter 3 of Shumway and Stoffer 2000),



Ix(we) % fx(we)Ex, (2.3)

where ngj is interpreted as approximately independent and identically distributed over dis-
tinct frequencies and Ex, denotes a standard exponential random variable. For w = 0
and w = m, the right-hand side of (2.3) must be modified to 2f(w¢)Ex . We ignore these
two ‘outer Fourier frequencies’ and work only with the Fourier frequencies strictly in (0, 7);
since this excludes only Ry, its effect on overall results will be negligible asymptotically.
Taking a logarithm in (2.3) yields a regression equation (called Wahba’s formulation)

log(Ix (we)) = log(fx (wr)) + log(Ex e)- (2.4)
Subtracting versions of (2.4) for {X;} and {Y;} yields

log(Ix (we)) — log(Iy (we)) = log(fx (we)) —log(fy (we)) +1og(Ex e/ Ey,e)- (2.5)

Thus, under a null hypothesis of equal autocovariance functions, fx(w) = fy(w) except on
a subset of (0, 7) with Lebesgue measure zero (which we tacitly ignore) and Dy := log(Ry)
has a distribution equivalent to that of log(E1/E>), where E; and E» are independent stan-
dard exponential variates. The next result explicitly identifies this probabilistic structure,
perhaps familiar from Whittwer (1984), Lawless (1982), and Johnson et al. (1995) amongst
others.

Lemma 1. Under the ‘null hypothesis’ that yx(h) = vy (h) for every integral h > 0,
Dy =log(Ix(wy)/Iy(wy)) has the log-logistic probability density, given by

e.’L‘

f(l“):m7

x € R, (2.6)
for each 1 < /¢ <n/2.

Proof. Let F; and E5 be two independent standard exponential random variables and
set U = E1/Fy and V = E,. The joint distribution of U and V' can be verified to have
probability density function

fov(u,v) =vexp{—v(l+w)}, wu,v>0. (2.7)
Integrating out V yields the distribution of U:

1

/ fov(u,v)dv = a u>0

o > 0, (2.8)

where the fact that I'(2) = 1 has been used to carry out the above integration. It now
follows that D = log(U) has density as claimed in (2.6). &



Several methods now suggest themselves for a test of equal autocovariances. An empir-
ical check merely constructs a probability plot of the ranked D;’s against the distribution
in Lemma 1.

For more quantifiable inferences, a simple statistic is merely the sample average of
absolute deviations, viz.

9 n/2
AD = =" |Dy|. (2.9)
n
=1
Large values of AD are critical. From Lemma 1, one can verify that E|Dy| = log4 and

Var|D, | = 7%/3 — (log4)%. Hence, a central limit theorem based ath level hypothesis test
rejects equal autocovariances when AD exceeds E|Dy| + zo{Var|Dy|/(n/2)}"/?, which is

log4 + z4 77#/3;512%4)2 .

It is worth commenting that Kolmogorov-Smirnov type distances involving

M= log(Ix.¢) — log(I
1£§§/QI og(Ix,e) —log(Ily,)|

were experimented with, but demonstrated poor power in simulations. In view of the
inconsistency of the periodogram noted earlier, this is not surprising. This also supports
using a statistic based on all values of the periodogram. Although the hypothesis test
above has a rejection region structured on the central limit assumption that D; and D;
are independent when ¢ # j, this is not overly crucial. Indeed, this independence holds
approximately for each finite sample size n; moreover, we comment that D; and D; are
indeed exactly independent when i # j for all n when {X,} is Gaussian; Davis and Mikosch
(1999) provide extensions to the non-Gaussian case.

3 Simulation Performance.

To gain some practical feel for the methods in the last section in a large sample setting, we
simulate a series of length n = 1000 of two independent first-order autoregressive (AR(1))
series { X} and {Y;}. Both have autoregressive parameter 0.5 and a white noise variance of
unity; hence {X;} and {Y;} indeed have equivalent autocovariances. A histogram aggregated
from 50,000 independent draws of AD is plotted in the top graphic in Figure 1. At level
5% (z0.95 = 1.645), 2571 simulations reject equality of autocovariances; hence, the empirical
type I error of the test 2571/50000 = 0.0514 is close to its theoretical value of 0.05. The
bars on the z-axis indicate the theoretical mean (dashed) and 95%th quantile (solid).

To gain some feel for power aspects, we simulate a third series {Z;}, a sample of length
n = 1000 from an AR(1) model with autoregressive parameter 0.95 and white noise variance
of unity. In this case, {X;} and {Z;} do not have equal autocovariances. Figure 2 reports
a histogram of 50,000 independent draws of AD, computed from log-periodogram ratios of
{X:} and {Z;}, and reveals reasonably good separation from the null distribution. At level



1800
1600
1400
1200
1000
800
600
400
200
0

_200 I I I I I
1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

Figure 1: Histogram of 50,000 AD draws from AR(1) processes with equal autocovariances.
The bars below the x-axis demarcate the theoretical mean (dashed) and 95%th quantile
(solid).
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Figure 2: Histogram of 50,000 AD draws from two AR(1) processes with non-equal autoco-
variances. The bars below the z-axis demarcate the theoretical mean and 95%th quantile
of the null distribution.

5%, one rejects equal autocovariances in 47877 of the 50000 (95.75%) simulations. This is
an excellent empirical power for a test of such nonparametric nature.

Moving to small sample size performance, we consider series lengths of n = 100 and
compare 50000 draws of AD from a Gaussian AR(1) {X;} with autoregressive parame-
ter 0.50 and white noise variance of unity against a first order moving-average (MA(1))
{Y;} with moving-average coefficient of 2.0 and a unit white noise variance. In this case,
autocovariances are not equal. At level 5%, the test rejects the null hypothesis of equal
autocovariances 78.78% of the time. This is reasonable power for a time series test with
such a small sample size.

4 An Application.

We close this work with a study of temperatures from Athens and Atlanta, Georgia, USA.
Athens and Atlanta both lie in the Piedmont region of north Georgia and are approximately
75 miles apart. Figure 3 plots monthly averaged temperatures (averaged over all days in
month) for these two stations during the period Jan 1950 — Dec 2003. There are 648
observations in each series.

As seasonality arises in temperature series taken from temperate zone latitudes (winter
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Figure 3: Athens and Atlanta temperatures in the period Jan 1950 — Dec 2003.

temperatures are colder and more variable than summer temperatures), we first standardize
each series by month via subtracting a monthly sample mean and then dividing by a monthly
sample standard deviation. Lund et al. (1995) explains more on the stationarizing effects
of seasonal standardizations. The sample autocovariance functions for the Athens and
Atlanta seasonally standardized series are displayed in Figure 4. The dashed lines here are
95% confidence bounds (pointwise) for white noise.

Figures 3 and 4 support the local folklore that Athens and Atlanta enjoy similar weather.
More formally, the AD statistic here is 0.5220, which strongly supports (empirical p-value
0.5164) the hypothesis of equal autocovariances.

Hence, the measurements from Athens and Atlanta appear to have equal autocovariance
functions. As the seasonal mean and standard deviations from the two sites are also very
similar, the two towns are indeed similar climatologically. Implications of this are that
one site could serve as a reference station for the other. This is very useful should a new
gauge need to be calibrated, a forecast of future series values need to be made, or the
quality /legitimacy of future values at one location be questioned.

We close by remarking that Athens and Atlanta temperatures are indeed correlated.
Future work will consider extension of the above methods to cases where {X;} and {Y;} are
correlated (not easy), and to settings with three or more series.
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Figure 4: Athens and Atlanta sample autocovariances.
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