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SUMMARY 

An existing shear stress theory and lubricant rheo-

logical model were studied and evaluated by applying them to 

traction prediction in a sliding elastohydrodynamic point 

contact. A computer program was written to calculate shear 

stresses in the contact based on the theory, and to numeri

cally integrate over the contact area to yield the traction. 

The results of such calculations, using measured film thick

nesses and moving surface temperatures, were compared with 

measured tractions under several conditions of normal load 

and sliding speed. The comparison showed that the theory 

gives a relatively good traction prediction for high speeds, 

but that it appears to break down at lower speeds, where 

calculated tractions significantly exceed the measured values 

Possible explanations for this disparity include the occur

rence of asperity interactions at low speeds and thin films, 

and the onset of non-Newtonian lubricant behavior at the 

higher shear stresses which occur in the low speed range. 

The effect on the traction of variations in the lubri

cant material properties was studied by varying the input 

parameters to the computer program. The traction was found 

to be increased by an increase in the inlet viscosity of the 

lubricant, and by a decrease in its temperature-viscosity 

dependence. A weaker increase in traction was obtained by 



increasing the fluid's pressure-viscosity dependence. 

In order to make the theory applicable to engineering 

use, a formula for calculating the film thickness was ap

plied, as well as an iterative method for determining the 

temperature of the moving surface. The film thickness cal

culation was found to yield satisfactory results for most 

hydrocarbon oils. The method for determining the temperature 

is adequate for use in traction calculations at high speeds, 

but becomes less satisfactory as the speed decreases. 



CHAPTER I 

INTRODUCTION 

The determination of the traction force in elasto-

hydrodynamic contacts is of primary importance in the under

standing of many lubricated mechanisms. However, due to the 

physical complexity of the problem, no simple model describ

ing quantitatively the generation of traction in an EHD 

contact has yet been generally accepted. It is the purpose 

of this thesis to evaluate the theory of maximum film tem

perature and shear stress, as well as the rheological model 

of the lubricant, proposed by Jakobsen 1973 (1) and Jakobsen 

and Winer 1974 (2). This evaluation is performed by applying 

the theory to elastohydrodynamic point contacts in pure 

sliding, and comparing the results of these calculations with 

experimental data. 

The phenomenon of elastohydrodynamic lubrication (EHD) 

arises in practice in gears, cams, and rolling element bear

ings. It occurs in cases where load is sufficiently high, 

and is carried over a sufficiently small surface area, that 

the hydrodynamic pressures generated cause significant 

elastic deformation of the bearing material. This deforma

tion has the effect of enlarging the contact area between 

bearing surfaces, allowing for the formation of a full (al-
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though thin) hydrodynamic film which carries the load. The 

presence of this film is responsible for the relatively long 

life of the above-mentioned components, and is therefore 

highly desirable. 

In view of the above, the study of elastohydrodynamic 

lubrication necessitates a combination of the fields of 

elasticity, fluid mechanics, and lubricant rheology. Much 

of the early EHD research was devoted to the prediction of 

film thickness, primarily because of its great importance in 

the life of bearing elements. However, in recent years, 

more attention has been paid to an analytical representation 

of the generation of traction, or frictional resistance to 

the bearing motion due to viscous shearing of the lubricant. 

The traction force is directly related to the power loss in 

mechanical components. Furthermore, traction studies are in 

part motivated by a desire to predict the onset of skidding 

in rolling element bearings, according to Cheng 1974 (3) . 

Theoretical analyses of the generation of traction 

force have not met with the same degree of success as have 

the film thickness studies, due to complications caused by 

the larger role of thermal effects in the former, and by 

difficulties in finding a rheological model which is adequate 

at high pressures. Models proposed by Crook 1961 (4), Kannel 

and Walowit 1971 (5), and Allen, Townsend and Zaretsky 1970 

(6) all assumed isothermal bearing surfaces, a condition 

which, based on experimental temperature measurements by 



Turchina, Sanborn and Winer 1974 (7), appears to be violated 

physically, particularly when a great deal of sliding is 

present. Cheng and Sternlicht 1965 (8) and Cheng 1965 (9) 

included thermal effects in a numerical analysis dealing 

primarily with line contacts in the prediction of film thick

ness, pressure, and temperature. While these investigations 

give a great deal of insight into the effects of thermal 

behavior in the analysis, the complexity of the numerical 

iteration technique limits the usefulness of this model for 

the prediction of traction for a wide range of physical sit

uations . 

Archard and Baglin 1974 (14,15), in an attempt to 

develop a general model for traction, used physical reasoning 

in forming non-dimensional groups, much as was done in pre

vious film-thickness investigations. As a result of assuming 

isothermal conditions, a Newtonian fluid, and an exponential 

pressure-viscosity relation, the immediate value of their 

theory is limited to low sliding speeds where thermal effects 

are less important. However, the model is significant in 

that it systematizes and generalizes traction studies to 

include rolling and sliding, flooded and starved conditions, 

and forms a foundation on which further solutions based on 

thermal effects and different rheological models may be 

built. 

The theory advanced by Jakobsen 1973 (1) and Jakobsen 

and Winer 1974 (2) takes thermal effects into account, while 
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limiting to a few graphical steps the work required to find 

the shear stress at a point in the sliding EKD contact. The 

method is thus suitable for predicting tractions while 

eliminating the restrictions imposed by the assumption of 

isothermal walls. The present work seeks to replace the 

need for the dimensionless charts of Jakobsen 1974 (1) by the 

use of a computer program, facilitating the computation of 

tractions over the EHD contact. By comparing the calculations 

with experimental measurements, an evaluation of the model is 

possible. 

Another primary difficulty in the development of a 

realistic model to predict traction has been the lack of an 

adequate description of the behavior of the lubricant under 

the extreme physical conditions of pressure, shear stress, 

and temperature gradients, as well as the short time of 

exposure, in the EHD contact. Such conditions are difficult 

to duplicate in viscometric measurements. Consequently, 

numerous fluid rheological models have been proposed for EHD 

analysis. Smith 1962 (10), in order to explain his experi

mental results, suggested that, at high shear stress, a 

phenomenon of yield occurs in the fluid, analogous to the 

yield stress of a plastic solid. Crook 1963 (11) attributed 

viscoelastic properties to the lubricant in order to account 

for the results of his measurements, and Dyson 1970 (12) 

employed a similar viscoelastic model in a theoretical devel

opment. Indeed, there seem to be nearly as many different 
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rheological models as there are investigators, whether to 

explain experimental results or to support a theoretical 

development. 

Jakobsen 1973 (1) proposed a Newtonian model employ

ing a power-exponential temperature-viscosity function which 

contains two material parameters, each of which is a function 

of pressure. His expression of the variation of viscosity 

with pressure and temperature resulted from the correlation 

of measurements on a capillary viscometer at shear stress 

levels only 3-5 times less than the average shear expected 

in an elastohydrodynamic contact. Previous investigations 

attained continuous shear stress levels three orders of mag

nitude less than this average value. The present work applies 

the Newtonian viscosity model to the EHD situation of a point 

contact in pure sliding. 

Therefore, by applying both the theory and the rheo

logical model of Jakobsen to the calculation of traction in 

an elastohydrodynamic point contact, this thesis attempts to 

evaluate the theory and the model as applied to elastohydro

dynamic lubrication. Furthermore, a means for calculating 

the surface temperature, to be used in place of a measured 

temperature distribution, is presented and evaluated for use 

in traction calculations. The effect on such computations 

of using calculated rather than measured film thickness is 

also explored. 

While the terminology of this thesis is consistent 
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with the literature in the field, some clarification of 

terms is warranted. "Traction" and "traction force" refer 

to that force, arising in the contact area, which resists 

the relative motion of the bearing surfaces. The "traction 

coefficient" is the ratio between the traction force and the 

normal load. It is therefore analogous to the coefficient 

of friction in ordinary sliding. The "sliding speed" is the 

relative velocity between the bearing surfaces. Furthermore, 

a "point contact" is not in fact a point, but a region. Due 

to the geometry of the bearing surfaces, the contact is a 

single point in the unloaded condition. However, upon ap

plication of the load, the bearing surfaces deform elastical-

ly in the neighborhood of the point, causing the point to 

enlarge into a region. 
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CHAPTER II 

APPLICATION OF THE THEORY TO AN 

EHD POINT CONTACT IN PURE SLIDING 

The theory and rheological model of Jakobsen is ap

plicable for finding the shear stress at a point in a sliding 

elastohydrodynamic contact. The theory may be applied to a 

determination of the traction force by evaluating the shear 

stress at a number of locations in the contact and integrat

ing over the contact area. It is the aim of this chapter to 

summarize the theory and to illustrate its application to an 

EHD point contact. 

Summary of the Theory 

The assumptions which form the basis for the theory, 

presented in detail in Jakobsen 1973 (1) and Jakobsen and 

Winer 1974 (2), are restated here for convenience. The lu

brication situation, with major assumptions, is as shown in 

Figure 1. Surface 1 is stationary, and surface 2 moves with 

constant velocity in the x, - direction, u, = UH. The film 

thickness is h. 

According to both theory and experiments, the change 

of film thickness over most of an EHD contact is very small 

compared with the size of the contact. The bearing surfaces 

are therefore assumed parallel in the vicinity of the point 



-*• UH 

T 2 2 ^ 

x2 

+ x l Viscous Lubricant 

u1 = UH 
x3= h 

Tl l u1=0 
x Xo=0 

Assumptions 

1. 

2. 

3. 

4. 

5. 

6. 

Ul = 

U2 = 

P 

T 

U1 (x3) ; Ua (0) - 0; u1(h) = UH 

u3 = 0 

= constant 

= T(X3) ; T(0) = T1? T(h) - T2 

= constant 

= constant 

Figure 1. The Lubrication Situation, with Major Assumptions. 



at which the shear stress is being calculated, although film 

thicknesses are allowed to vary from point to point. 

While temperature variations are recognized to exist 

in the x-. - and x„ - directions, the gradients of temperature 

in these directions are much smaller than in the x^ - direc

tion. Typical experimental data shows an average temperature 

gradient over the film thickness (i.e. in the x^ - direction) 

of approximately 5xl08oK/m (2xl07oR/in); in the x± and x2 -

directions, an average gradient over the contact is 9xl04oK/m 

(4x10 °R/in). This represents a difference of four orders of 

magnitude. Therefore, temperature is assumed to be pointwise 

independent of x-> and x?. Furthermore, since the effect of 

convection is shown to be small compared with conduction in 

the x^ - direction, the resulting distortion of flow veloci

ties is neglected. 

Because surface 2 is moving, the major portion of heat 

generated through viscous dissipation is carried away by this 

surface, and the stationary surface, 1, is assumed adiabatic. 

Over the major portion of the contact, the component of shear 

stress due to the pressure gradient is much smaller than that 

due to sliding motion. Consequently, the pressure is as

sumed pointwise constant. Detailed discussion of these last 

two assumptions is found in Jakobsen 1973 (1) Chapter V. In 

addition, body forces are neglected, and density and thermal 

conductivity are assumed constant. 

A Newtonian rheological model of the lubricant, em-
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ploying a linear relationship between shear stress and shear 

rate, is used. The viscosity is the coefficient of propor

tionality, and is a function of pressure and temperature. 

As mentioned previously, the viscosity-temperature depend

ence is expressed by the power-exponential function 

/ (E/T)Q , 
u = n/c - e (1) 

where u is the dimensionless viscosity, c-j is a dimensioned 

constant ( = 10 Ns/m2 when n is in Ns/m 2), E is a charac

teristic temperature, and Q is a temperature-viscosity co

efficient. Both E and Q are functions of pressure. Jakobsen 

1973 (1) has shown that Equation (1) gives a reasonable de

scription of lubricant viscosity within the range of temper

ature and shear stress normally found in an elastohydrodynamic 

contact. 

Through integrations of the energy equation and the 

equations of motion, reduced by the above assumptions and the 

given rheological model, the theory provides a means of cal

culating the shear stress T at any point in a sliding elasto

hydrodynamic contact. The following parameters must be known: 

the temperature of the moving surface, T2; the film thickness, 

h; the thermal conductivity of the fluid, k, the sliding 

speed, UH; and the viscosity parameters, Q and E. These 

latter two are found by taking, from viscometric data on the 
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lubricant, the viscosity at two different temperatures and 

the pressure at the point in question, and solving equation 

(1) for Q and E. This calculation is represented in the 

form of dimensionless charts in the appendix to Jakobsen and 

Winer 1974 (2), and has also been incorporated into the com

puter program of the following chapter. It should be noted 

that E has units of temperature and that Q is dimensionless. 

In this work, the temperatures at which the viscosity is 

taken are 38° and 99° (100° and 210° F). These are two tem

peratures at which standard viscometric measurements are 

often made, and they also correspond roughly to the range of 

temperatures expected for an EHD contact operating under 

average conditions. 

In order to select these viscosities from the lubri

cant data, the pressure at the point in question must be 

known. Therefore, some assumption about the pressure dis

tribution in the contact has to be made. Jakobsen 1973 (1) 

suggests the use of a Hertzian distribution as an approxima

tion to the actual pressures, which may in fact depend on 

lubricant properties and operating conditions. The computer-

generated solutions to the EHD problem summarized in Dowson 

and Higginson 1966 (13) and those of Cheng and Sternlicht 

1965 (8) show pressure distributions which appear to converge 

to the Hertzian as the speed decreases and the load increases. 

The major deviations from the Hertzian in these solutions 

occur in two areas. First, the solutions tend to exceed the 



Hertzian pressures near the inlet, where pressures are lower 

than at the center and the film thickness is larger; there

fore, this deviation is not expected to contribute signifi

cantly to the total traction. The computer solutions also 

show a sharp pressure spike on the outlet side; the width of 

the spike, however, seems to indicate that its integrated 

effect on the total traction will be small. 

It should be emphasized that Jakobsen's theory does 

not require the use of a Hertzian pressure distribution. 

There is currently a great deal of controversy about the 

actual shape of the pressure distribution in EHD contacts, 

due in part to a shortage of reliable experimental data. 

However, in this traction study, the Hertzian distribution 

is used because of its simplicity and its apparent applica

bility to a wide range of operating conditions. 

Application to Traction Calculations 

In the present work, the basic equations of the theory 

summarized above are solved numerically through the use of a 

Fortran computer program. The program was designed to eval

uate the shear stress at various points in the EHD contact, 

and to perform a numerical integration over the contact area 

to yield the traction force. 

Using Jakobsen's 1973 (1) dimensionless notation, the 

condition of an adiabatic stationary wall is shown to result 

in the relation 
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^2 - 1 
^ 4 = " ;TT V(Q,^3) dQ ( 2 ) 

where 

7T1 = T l / E TT = T 2 / E TT3 - Q 

C1 (UH)
2 

TT. = ?£ s 9 = T/E 
4 2k E 

and u (9 , TT -j) is the assumed viscosity function, dependent on 

temperature and pressure. The only unknown in (2) is TT,, so 

that this equation may be used to solve for the temperature 

of the stationary wall at the point under consideration. 

This is accomplished by introducing the arbitrary temper

ature TT (TT << TT„) and rearranging (2) to yield 

^1 -1 ^2 -1 
/ -1 y(e,TO de = / u(e,Trj de + n. (3) 

7T 3 IT 3 4 
O O 

The right hand side is evaluated on the computer by perform

ing a numerical integration from TT to IT, and adding in the 
o 2 

computed value of TT,. A similar integration is performed on 

the expression on the left side of (3), stopping when the 

value of the integral is equal to the right side of the equa

tion. At this point, the temperature TT, has been reached i 

the integration, and is therefore determined. 

Once the stationary surface temperature is evaluated 

in this manner, the shear stress may be found from 

n 
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7T5 = 1 /2 T T 4
1 / 2 / / [TT4 " fl y ( C T T 3 ) ^ ^ 1 / 2 d 9 (4) 

where TT is the dimensionless shear stress given by 

Th 
^5 " c1(UH) 

All parameters on the right-hand side of equation (4) are 

known, so that it may be evaluated numerically and the shear 

stress at the point determined. 

This process of calculating the shear stress at a 

point is repeated systematically throughout the Hertzian 

contact. The stress is evaluated at equal intervals along 

the centerline of the contact, as well as along one or more 

lines parallel to the centerline (see Figure 2a). To facil

itate the numerical integration method used, there must be 

an odd number of points in each of these lines. Symmetry of 

the flow geometry about the centerline is taken advantage of 

in evaluating the stress throughout the contact. It then 

remains to calculate the double integral of the shear stress 

over the contact area to determine the traction. That is, 

Tr = // x dx^x (5) 
contact 

Integration is the x, - direction along each of the 

lines of shear stress is done numerically by Simpson's method, 
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-*x-

Inlet 

2a. Typical Contact Locations of Points 
for Shear Stress Calculation 

fr*H 
C _ £ E 

D 
C 

G X. 

2b. Integration in the x~ - direction 

Figure 2. Traction Calculation by Numerical Integration. 
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This is made possible by the equal spacing and the even 

number of intervals between points in each of these lines. 

Since it is not always convenient, however, to have 

the lines themselves spaced equidistant from one another, 

Simpson's method may not be used without modification for 

integration in the X2 - direction. Simpson's composite rule 

is based on passing connected parabolic segments through 

equally spaced data points and calculating the sum of the 

areas under each of these segments as an approximation to the 

integral. This same general method may be applied to the 

case here where the spacing is irregular. 

Referring now to Figure 2b, since the values of both 

the abscissa and the ordinate of points A, B, and C are 

known, a parabola may be passed through these three points 

by the use of Newton's divided difference formula (see Scheid 

1968 (16)). This parabola is then integrated using the 

abscissas of points A and C as limits of integration. The 

process is repeated using, in turn, points C, D, E, and points 

E, F, G. The only requirement is that, since three points are 

used at a time, there must be an even number of intervals 

across the contact. This is automatically satisfied by the 

symmetry about the centerline - for every interval to the 

left of center, there is a duplicate interval to the right. 

Truncation error using this method is expected to be com

parable to that of Simpson's method, since both use a quad

ratic approximation. 
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In this way, the shear stress is calculated and 

integrated over the surface of the contact to determine the 

traction force. The Fortran program written to perform these 

calculations is listed and documented in Appendix B. 
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CHAPTER III 

COMPARISON OF MEASURED AND 

CALCULATED TRACTIONS 

Experimental measurements of the traction is an 

elastohydrodynamic point contact in pure sliding were made, 

and the results compared to calculations using the theory 

summarized in Chapter II. The contact consisted of a ro

tating steel ball whose surface slid with constant speed on 

a stationary flat surface of synthetic sapphire. Dimensions 

and physical parameters of the contact are given in Appendix 

A. Both measurements and calculations were made at sliding 

speeds ranging from .35 to 12.7 meters per second (13.7 to 

500 inches per second), and at normal loads of 67 and 334 

newtons (15 and 75 pounds). The lubricant used was a naph-

thenic hydrocarbon oil, designated as Fluid Nl in Sanborn 

1969 (17) and Sanborn and Winer 1973 (18,19), and as Fluid 

F in Novak 1968 (20). Physical characteristics of the fluid 

may be found in these references. 

Traction Calculations 

Initial calculations were made based on a normal load 

of 67 N (15 lb.), and sliding speeds of .35, .70, 1.40, 2.54, 

5.1 and 12.7 m/s (13.7, 27.4, 55, 100, 200, and 500 ips). 

The load resulted in a peak Hertzian pressure of approximately 



1.03 x 10 N/mz (150,000 psi) and a circular contact with a 

Hertzian radius of .18 mm (.007 in). 

The temperature distribution on the surface of the 

moving ball for each of the sliding speeds was known from 

measurements made using the infrared technique described in 

Turchina, Sanborn, and Winer 1973 (7). The distribution of 

film thickness in the contact area was also known from 

measurements made using the optical interference technique 

of Sanborn 1968 (7) and Sanborn and Winer 1973 (18). 

The required pressure-viscosity data for the fluid 

Nl was obtained from Novak 1968 (20). However, because the 

viscosity data was only recorded at pressures up to 1.38 x 

108 N/m2 (20,000 psi.) at both 38° and 99°C (100° and 210°F), 

it was necessary to extrapolate the experimental curves up 

9 9 
to the maximum Hertzian pressure of 1.03 x 10 N/m^ (150,000 

psi). This extrapolation was performed using Roelands' 1966 

(21) pressure-viscosity correlation, given by the equation: 

log n - 1.8 - dog n - 1.8) (1 + 2 — ) 2
 (6) 

1.96x10° 

where n is the viscosity at atmospheric pressure, Z is a 

parameter which is independent of pressure, n and n are in 

Ns/m^ and p has units of N/m2. 

Calculation of the shear stresses along the centerline 

and along only one additional parallel line .13 mm (.005 in) 

from the centerline was found to yield sufficient accuracy. 
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The points at which these calculations were made were sep

arated by a distance of .025 mm (.001 in) in each line. 

Pressures at each point were computed from the Hertz equation 

for a point contact 

p, 0 0 1/2 
^hz , 2 2. ,-,v 

p = ——(a - r ) (7) a 

where a is the radius of the contact and r is the distance 

of the point from the center of the contact. Viscosities at 

these pressures were then found from the correlation of 

equation (6). 

At this point, all necessary input data for the de

termination of the traction at the six speeds was known, and 

the program could be run. The results are given in the form 

of traction coefficients, defined as the ratio between the 

traction force and the normal load. Computer output from a 

typical run is shown in Appendix C. 

Ball temperature and film thickness data were also 

available for conditions of a 334 N (75 lb) normal load and 

speeds of .70, 1.40, 2.50, and 5.1 m/s (27.4, 55, 100, and 

200 ips). The resulting Hertzian contact had a radius of 

.30 mm (.012 in) and maximum Hertzian pressure was approxi-

mately 1.7 x 10 N/m^ (250,000 psi). The shear stress was 

again calculated at points separated by .025 mm (.001 in) 

along two lines - the centerline and a parallel line .20 3 mm 

(.008 in) from the centerline. Pressure calculations and 



viscosity extrapolations were made as in the case of the 

67 N (15 lb) load. 

Results of the traction calculations are summarized 

in Table 1. 

Table 1. Calculated Traction Coefficients 

Sliding Speed Traction Coefficient 
m/s (ips) 67 N (15 lb) Load 334 N (75 lb) Load 

.35 (13.7) .432 

.70 (27.4) .212 .199 

1.40 (55) .084 .078 

2.50 (100) .042 .045 

5.1 (200) .028 

12.7 (500) .012 

Traction Measurements 

The traction force for each of the conditions of load 

and speed of the previous section was measured using the 

experimental apparatus described in detail in Sanborn 1969 

(17) and Sanborn and Winer 1973 (14). In this set-up, the 

normal load is applied to the rotating steel sphere. The 

sphere, support, and loading mechanism are mounted on an air 

bearing which provides rigidity in the vertical direction 

and friction-free movement in the direction parallel to the 

sliding velocity. During operation, the traction force 

causes the bearing assembly to be displaced in this direction. 



This force is measured by means of a load cell consisting 

of strain gages mounted on a cantilever beam. 

For the case of the 67 N (15 lb) load, it was not 

possible to obtain a traction reading at a speed of 12.7 m/s 

(500 ips) , due to excessive vibrations in the system at this 

speed. Measurements were obtained at the other five sliding 

speeds, however. 

When the load was increased to 334 N (75 lb), it was 

necessary to increase the stiffness of the traction load cell 

and recalibrate, in order to prevent excessive deflections 

due to the higher traction force expected. In addition, 

sufficient pressure could not be developed in the air bearing 

to support the higher normal load. Consequently, oil was 

used in the bearing in place of air. This, of course, in

creased the viscous friction in the bearing, but, due to the 

presence of a full oil film, coulomb friction remained absent 

and the traction reading was essentially unaffected. 

Results of the traction measurements are shown in 

Table 2 for both loading conditions. 

Table 2. Measured Traction Coefficients 

Sliding Speed Traction Coefficient 
m/s (ips) 67 N (15 lb) Load 334 N (75 lb) Load 

.35 (13.7) .156 

.70 (27.4) .128 .046 
1.40 (55) .074 .045 
2.54 (100) .059 .041 
5.1 (200) .042 



Comparison of Results 

Figure 3 shows a plot of both calculated and measured 

traction coefficients against sliding speed for the 67 N 

(15 lb) load. Figure 4 is a similar plot for the 334 N 

(75 lb) load. 

Both figures indicate that the calculated and mea

sured curves begin to diverge rather strongly as speed de

creases below a certain point. For the 67 M (15 lb) load, 

this point occurs at about 1.5 m/s (60 ips) while it is some

what greater than 2.5 m/s (100 ips) for the 334 N (75 lb) 

load. 

Because the film thickness decreases as the sliding 

speed decreases, there is a possibility that this divergence 

is related to asperity interaction. Such interaction may 

affect the traction in two ways. First, contact between as

perities on the ball and on the sapphire would tend to resist 

the sliding motion, thus increasing the measured traction. 

Second, such interaction would generate heat which would in 

turn lower the viscosity of the lubricant in the film, causing 

the traction to decrease. The traction model used for the 

calculations assumes that the only source of heat in the EHD 

contact is that due to viscous shearing of the lubricant. 

Therefore, if the second mode of asperity interaction is the 

dominant one in the cases under consideration, one would 

expect the calculated tractions to exceed the measured values, 

this did in fact occur at low speeds. The computational model 
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ignores the heat generated by the asperity contact; con

sequently, calculated film temperatures are less than actual 

ones, so that fluid viscosity is higher, resulting in a 

higher calculated traction. 

In addition, as the film thickness decreases, it is 

possible that the asperities themselves carry a part of the 

load, thus decreasing the pressure on the fluid. This would 

result in lower viscosity and therefore a lower traction 

than in the case of a full fluid film. Figures 3 and 4 show 

that calculated tractions do exceed measured values at low 

speeds. 

In order to further investigate the possibility of 

asperity interactions, surface profiles of both the steel 

ball and the sapphire were recorded on a Bendix Group XV 

Proficorder. The rms peak-to-valley surface roughness was 

found to be approximately .033 ym (1.3 yin.) for the ball and 

.013 ym (0.5 yin.) for the sapphire, yielding a composite 

peak-to-valley roughness of .046 ym (1.8 yin.). In addition, 

the centerline and minimum film thickness measurements were 

recorded as a function of speed in Figures 3 and 4 (for the 

high load, the centerline and minimum film thicknesses were 

the same). From Figure 3, the centerline film thickness 

where the two traction curves cross was about .13ym (5 yin.), 

and the minimum film thickness was .064 ym (2.5 yin.) there. 

In the case of the high load, the film thickness at the point 

of crossing was approximately .089 ym (3.5 yin.). It is 



interesting to note that this thickness for the high load 

case, in which the surfaces are nearly parallel over the 

entire contact, was bracketed by the minimum and centerline 

values in the low load case, in which definite side lobes of 

minimum film thickness exist. Since this minimum occurs 

over a relatively localized area, the thermal effects of 

asperity interaction would not become important at the same 

minimum film thickness as in the case of the high load, where 

the minimum occurs over virtually the entire contact. Using 

this reasoning, the differing values of minimum film thick

ness, at which measured and calculated traction curves for 

the two loads cross, do not appear to be contradictory. 

Since rms surface roughness is a statistical quantity, 

there are peaks in excess of the composite value of .046 ym 

(1.8 yin.). Therefore, the incipient of asperity interaction 

may be expected to occur when the ratio of composite surface 

roughness to film thickness (A) is somewhat greater than 1.0. 

Sibley 1971 (23) predicts noticeable surface distress for 

A < 1.5, and indicates some asperity interaction for A up to 

3.0. Accordingly, Figures 3 and 4 show the composite surface 

roughness along with the film thickness, and a band inside 

which films may be expected to experience some asperity inter

action. 

Using an average film thickness of .089 ym (3.5 pin.) 

for the two cases, A is slightly less than 2.0 at the point 

where the traction curves begin to diverge. These figures 



indicate that asperity interaction is a possibility in ex

plaining the deviation of the traction curves of Figures 3 

and 4, although it has not been proven to be the sole con

tributing factor. 

Another consideration in explaining the disparity 

between calculated and measured results is the behavior of 

the fluid under the extreme conditions imposed by a low 

sliding speed. It may be unreasonable to assume that a 

single rheological model is adequate to describe lubricant 

behavior throughout, such a wide range of operating conditions. 

Johnson and Roberts 1972 (24) suggest that, above some crit

ical shear stress, the fluid film behaves in the manner of a 

plastic solid rather than a viscous liquid. The possibility 

therefore exists that the rheological model used in this 

work breaks down when the shear stress in the film reaches a 

limiting value. 

For the 67 N (15 lb) load, the maximum shear stress 

calculated at 1.40 m/s (55 ips) was in the neighborhood of 

8.0 x 107 N/m2 (11,600 psi). Similarly, for the 334 N (75 lb) 

load at 2.54 m/s (100 ips) maximum shear in the contact was 

7 2 
calculated to be 8.1 x 10 N/m (11,800 psi). Each of these 

two cases corresponds to a point at which calculated and 

measured tractions began to deviate as the speed decreased. 

At higher speeds, calculated shear stresses were all lower 

than these values. At speeds lower than the transition 

speeds, these shear stresses were exceeded. The fact that 
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these maximum shear stresses were essentially the same lends 

credence to the possibility that the Newtonian rheological 

model of the lubricant used in the calculations fails to 

adequately describe fluid behavior at extremely high shear 

stresses. The maximum shear stresses at the transition 

speeds were close in magnitude to the critical shear stresses 

observed by Johnson and Roberts. 

At higher speeds, and therefore larger film thickness 

and low shear stresses, agreement between calculations and 

measurements appears to be quite good. The two traction 

curves of Figure 3 compare favorably with respect to the 

variation of traction with speed. Furthermore, if the curves 

of Figure 4 may be extended to higher speeds, the comparison 

is again quite favorable. For the low load, the calculated 

values were lower than measured at high speeds; this appears 

also to be the case upon extension of the curves for the high 

load. Part of this difference in the magnitude of the results 

may be explained by the uncertainty in extrapolating the 

fluid viscosities to higher pressures, as discussed in the 

following section. Furthermore, it should be recalled that 

the traction was calculated only in the Hertzian contact 

area. It is possible that, under certain conditions, signif

icant traction may be developed outside the Hertzian contact, 

particularly in the inlet region, and in cases where the 

assumption of a Hertzian pressure distribution may not be a 

good one. 
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In summary, the theory and rheological model under 

consideration yield reasonable results for the traction at 

sufficiently high sliding speeds. The calculated results 

differ significantly from measurements at low speeds, pos

sibly due either to asperity interaction at low film thick

nesses, or a breakdown of the rheological model at extremely 

high shear stresses. 

The Effect of Material Parameters 
on Traction Calculations 

Because of the extent of the extrapolation required 

to determine the fluid viscosity at the high pressures of 

the contact, different pressure-viscosity extrapolations were 

used to determine their effect on the calculated traction. 

In one approach, the shape of the pressure-viscosity curve 

for fluid Nl was taken to be the same as that for a similar 

naphthenic fluid (fluid 36-G of the ASME Pressure-Viscosity 

Report 1953 (22)). Data for this fluid was available up to 

6.9 x 108 N/m2 (100,000 psi) at 99 C (210 F) and 3.48 x 108 

N/m2 (50,000 psi) at 38 C (100 F). Traction results for this 

extrapolation were about 15% lower than those in Table 1. 

The viscosity extrapolated for the inlet temperature and the 

pressure at the center of the contact was less than that 

given by equation (6) by a factor of 3. 

In a second case, a Roelands extrapolation was used, 

but it was based on the assumption of a 10% uncertainty in 

8 2 Novak's 1968 (20) viscosity measurements at 1.4 x 10 N/m 
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(20,000 psi). This resulted in changes of the viscosity at 

the center of the contact by a factor of up to 2.5, and de

viations of approximately 10% from the tractions of Table 1. 

Despite the differences in the tractions computed 

using the several viscosity extrapolations, the dependence 

of traction on sliding speed remained unchanged in all cases 

studied. The ratio between tractions at two given speeds 

remained constant, regardless of the method of viscosity 

extrapolation. 

Results of this study of the effects of using various 

pressure-viscosity relations indicate that the traction model 

is fairly insensitive to changes in the pressure-viscosity 

dependence of the lubricant. The need for a great deal of 

extrapolation in the traction calculation may be regarded not 

so much as a weakness of the model, but rather as the result 

of a lack of data concerning the viscosity of this particular 

fluid at high pressures. 

In order to examine the effect of temperature-viscosity 

dependence on the calculated traction, a fictitious fluid was 

used in the program. This fluid was assumed to have the same 

pressure dependence and the same viscosity at the inlet tem

perature of 38° C (100° F) as the naphthenic Fluid Nl. Its 

viscosity at 99° C (210 F) was assumed to be greater than 

that of Fluid Nl by a factor of 2.8. This had the effect of 

reducing by 1/2 the exponential temperature-viscosity coef

ficient |i £l3.| . The viscosity-temperature behavior of this 



fictitious fluid is similar to that of a dimethyl siloxane, 

a lubricant with low temperature-viscosity dependence. 

In this calculation, all other parameters in the EHD 

contact (e.g. film thickness, moving surface temperature, 

thermal conductivity) were assumed to be the same as those 

for Fluid Nl for identical load and speed. If such a fluid 

were used in the contact, the film thickness should in fact 

change very little, since it is at most weakly dependent on 

the temperature-viscosity coefficient. The surface tempera

ture would probably be affected, however; keeping it the 

same as that for fluid Nl served only to isolate the effect 

of variations in the temperature-viscosity dependence of the 

fluid. 

Calculations using this fluid resulted in a traction 

coefficient three times greater than that of Fluid Nl for the 

same conditions of load and speed. This indicates that the 

traction is increased by a decrease in the temperature-vis

cosity coefficient of the lubricant. The traction appears 

to be relatively sensitive to variations in the temperature-

viscosity coefficient. 

The effect of the base viscosity on the traction was 

also studied. Another fictitious fluid was used, having the 

same pressure dependence and the same temperature-viscosity 

coefficient over the range 38° - 99° C (100° - 210° F) as 

Fluid Nl, but having a viscosity at 38° C (100° F) three times 

that of Fluid Nl. Again, all other system parameters were 



held constant. The resulting traction coefficient was 

greater than that for Fluid Nl by a factor of 1.75. The 

traction therefore increases as the inlet viscosity increases. 

The only other lubricant parameter which is involved 

in the traction calculation is the thermal conductivity. In 

a study of Jakobsen's theory, Lambelet 1973 (25) shows a 

slight increase in the shear stress as the thermal conduc

tivity of the fluid increases. Furthermore, Carlson, et. al. 

1973 (26) indicate that the thermal conductivities for most 

hydrocarbon and methyl siloxane lubricants fall within a 10% 

range. Therefore, the thermal conductivity is not a strong 

factor in determining the traction. 

The above study indicates that the primary lubricant 

property variations which cause an increase in the traction 

are an increase in the inlet viscosity and a decrease in the 

temperature-viscosity dependence. Increasing the pressure-

viscosity dependence also increases the traction, but ap

parently to a lesser extent. Variations in thermal conduc

tivity appear to be of minor importance. 

In the actual substitution of fluids with different 

material parameters, traction variations of the magnitude 

indicated above are not to be expected. This is primarily 

because the surface temperatures for Fluid Nl were used in 

the calculations. Using a more viscous fluid, for instance, 

would increase the energy dissipation in the contact, thus 

increasing the temperature, and therefore decreasing the 
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traction until a lower steady state value is reached with 

higher surface temperatures. Temperatures and film thick

nesses for Fluid Nl were used only so as to allow independent 

variation of the material parameters. Consequently, the 

results of the calculations of this section should be viewed 

as relative variations only, rather than absolute magnitudes 

to be expected in actual lubrication situations. 



CHAPTER IV 

CALCULATION OF FILM THICKNESS 

In order to apply Jakobsen's theory to determining 

the traction in an elastohydrodynamic contact, the film 

thickness must be known throughout the contact. In the pre

vious chapter, film thickness measurements v/ere used for the 

purpose of evaluating the theory. However, in most engineer

ing applications, such measurements will not be available. 

It is therefore desirable to have some means of calculating 

the film thickness. 

Because thermal effects are less important in film 

thickness analyses than in traction studies, most film thick

ness formulas are based on isothermal conditions. In addi

tion, a large number of such formulas are expressed in terms 

of the dimensionless groups discussed in Dowson and Higginson 

1966 (13). Cheng 1972 (27) lists several of these formulas, 

most of which apply only to line contacts. The formula of 

Archard, however, is applicable to point contacts, and there

fore is the one which was studied. It is expressed as 

/R = 1.37 G - 7 4 U'74 P~*22 (8) 
nz 

where the dimensionless groups are 



3 6 

VU1 + U2 Phz 
G " a E U 2 E ' R P h z " ~E~ (9) 

In eauations (9), p, is the peak Hertzian pressure, E" is 
hz 

the reduced elastic modulus of the system, R is the reduced 

roller radius (equal to the ball radius in our system), and 

(u, + u-) = UH in the notation of this work. n and a come 

from the exponential pressure-viscosity relation 

n = n _ e 
aP (10) 

Equation (8) yields a value for the nominal film thick

ness. Although the film thickness may vary slightly through

out an actual EHD contact, the surfaces are nearly parallel, 

so that a single calculated value, such as that given by 

equation (8), may be used as a first approximation for the 

purpose of traction calculations. The effect on the shear 

stress calculation of using a single film thickness through

out the contact in a typical case is shown in Figure 5. The 

figure shows that, if the constant film thickness chosen is 

representative of the actual contact, the shear stress inte

grated over the contact would be affected only slightly. 

Before using a film thickness calculation in place of 

experimental data, it is useful to know the effect which in

accuracies in the result will have on the calculated traction. 

From the definition of the parameter IT , it is seen that 
5 
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That is, the shear stress at a point is inversely proportion

al to the film thickness. This strong dependence of the 

traction on film thickness indicates that the traction cal

culation is only as good as the film thickness used. An 

accurate calculation of the film thickness is therefore es

sential to the success of the traction determination. 

Appendix D lists the results of film thickness cal

culations compared to measurements for a number of fluids at 

various speeds, along with a description of the fluids. 

Based on these comparisons, several conclusions may be drawn 

as to the use of equation (8) in predicting the film thick

ness . 

Many lubricants do not strictly exhibit the expo

nential pressure-viscosity behavior of equation (10); that 

is, a may be a function of pressure. Therefore, following 

the suggestion of Jakobsen, Sanborn, and Winer 1974 (28), 

a* was used in equation (8) when available. a is found by 

integrating the experimental viscosity data over the entire 

pressure range. 

* r ,°° dp , -1 a = [ V o JTTFT1 t11' 

This makes a less dependent on any single viscosity data 



point, and accounts for the variation of a with pressure. 

It may therefore be thought of as a representative value of 

a over the range of pressures in the contact. 

Both n and a vary with temperature. Consequently, 

the temperature at which they are evaluated affects the cal

culated film thickness. In most cases, the inlet temperature 

yields satisfactory results. For the calculations summarized 

* o 
in Appendix 4, data for a and n was available at 100 F, 

which roughly corresponds to the inlet temperature at which 

the measurements had been made. 

As the sliding speed increases, the isothermal assump

tion used in developing equation (8) becomes less applicable. 

Shear heating of the lubricant at the inlet as it is forced 

between the bearing surfaces tends to decrease its viscosity 

and therefore decrease the film thickness. Greenwood and 

Kauzlarich 1973 (29) developed a formula for the computation 

of a thermal reduction factor <!>-,, the factor by which film 

thickness is reduced due to inlet heating. $<j? w a s calculated 

for several of the cases listed in Appendix D in order to 

evaluate heating effects in these instances. In all cases, 

<j)T was greater than .90, and exceeded .95 in the large major

ity of calculations. Due to its relatively small effect, the 

thermal reduction factor was not incorporated into the cal

culations of this study. In some cases of very high speed 

operation, however, its use may be warranted. 

From Figures 8-11 of Appendix D comparing calculated 



and measured film thicknesses, several conclusions may be 

drawn as to the applicability of Archard's film thickness 

formula to various types of fluids. Results of calculations 

using siloxane fluids were not particularly favorable (Figure 

8). This is most probably due to the tendency of these 

fluids to exhibit non-Newtonian behavior at elevated shear 

stress (see Jakobsen, Sanborn, and Winer 1973 (28)). In 

contrast, calculated results for the ordinary mineral oils 

correlate relatively well with measurements (Figures 9-11). 

Figures 9 and 10 indicate, however, that for polymer-blended 

hydrocarbon oils, the viscosity parameters of the base oil 

alone should be used. This is possibly a result of molecular 

degradation of the polymers in the EHD contact (see Walker, 

Sanborn, and Winer 1974 (30)). 

The capability to calculate film thickness using 

Archard's formula has been incorporated into the computer 

program listed in Appendix B. It was designed such that, by 

changing the input data, the same program may be used regard

less of whether the film thicknesses are calculated or read 

in as input. 



CHAPTER V 

CALCULATION OF MOVING SURFACE TEMPERATURE 

As in the case of film thickness, it is not always 

possible to measure the temperature of the moving surface 

for the purpose of calculating tractions. It is desirable 

to have available a means of calculating the temperature dis

tribution on the surface. 

The contact may be thought of as a circular source of 

heat energy moving with constant speed across the surface of 

the ball. Although the temperature distribution due to a 

moving circular source has not been analytically treated in 

detail, the problem of an infinitely wide band source of 

constant magnitude has been solved, and the results presented 

in Carslaw and Jaeger 1959 (31). Furthermore, Jaeger 1942 (32), 

in his original paper on the subject, shows that the temper

ature distribution due to the band source is similar in mag

nitude and shape to that of a square source, particularly at 

high speeds. This implies that the width of the source is 

not important, so that the temperature due to the circular 

source may be approximated by that of the band source. This 

is particularly convenient since the results of the latter 

analysis may be approximately expressed by a simple algebraic 

formula. The temperature rise at a point is given by 



AT - 2 q ( K . ) 1 / 2 v 1 / 2 (12) 
2 " ^ ^(UHT) X {12} 

when the source is located over the point, and by 

*T2 = ^ ^ w r ) 1 / 2 [ x l / 2 - <*-*>1/2' <»> 

after the source has passed the point. In equations (12) and 

(13), q is the strength of the source (heat per unit time 

per unit area) , k., and K are the thermal conductivity and 

thermal diffusivity, respectively, of the ball, x is the 

distance of the point from the leading edge of the source, 

and I is the length of the source in the direction of motion. 

It is worthwhile here to examine the conditions and 

assumptions made by Jaeger in deriving equations (12) and 

(13), and to compare them to the physical situation in the 

EHD contact. Both the velocity and the strength of the heat 

source must be constant. The sliding body (in this case the 

film) must be a non-conductor so that all of the heat gener

ated is taken up by the surface. 

This last assumption deserves closer examination. 

Allowing the moving substance to be a heat conductor compli

cates the results considerably. If this is the case, a frac

tion of the heat generated over the contact area passes to 

the moving surface, rather than the entire quantity of heat 

being taken up by the stationary surface. According to 



Jaeger, this fraction, which may be calculated, depends on 

the thermal properties of the two materials and on the 

sliding speed. For the EHD contact considered here, the 

fraction of heat which goes into the film was calculated to 

be considerably less than 1%. In addition, Jakobsen 1974 (1) 

has asserted that heat conduction parallel to the surfaces 

is relatively unimportant in the EHD contact, so that the 

assumption of a uni-directional heat flux implicit in equa

tions (12) and (13) is expected to be valid. 

The assumption of constant speed is obviously satis

fied, which leaves only the assumption of a constant heat 

source. The strength of the heat source at any point in the 

contact is the energy liberated per unit area per unit time, 

which is given simply by 

q = T(UH) (14) 

(see Cameron 1966 (33)). Since the shear stress varies over 

the contact area, q is not a constant. Substitution of equa

tion (14) into (12) and (13) yields, respectively, 

= 2^_{Smix/2 xi/2 
2 k t b w 

= 2 ^ ^ 1 / 2 ^ 1 / 2 _ {x_i)l/2] ( 1 6 
2 K t b TT 



In each of these equations, the temperature rise is a linear 

function of the shear stress. Therefore, the method of su

perposition applies, and the variable shear stress distribu

tion along any line parallel to the direction of motion may 

be approximated by a series of shear stress segments of 

constant magnitude along their length. The total temperature 

rise at a point is then the sum of the contributions from 

each of these segments. For illustrative purposes, a set of 

shear stress segments to approximate a typical centerline 

traction distribution is shown in Figure 6. 

This approach to determining the temperature of the 

moving surface may then be applied to each of the lines in 

the contact along which the traction is to be determined. 

Since the temperature calculation requires a known shear 

stress distribution, and the shear stress computation requires 

a known temperature distribution, an iteration procedure was 

set up which proceeds as follows: 

(1) Assume a shear stress distribution along the 

line of the contact. 

(2) Use this assumed distribution to calculate moving 

surface temperatures. 

(3) Calculate the shear stress distribution based on 

the temperatures of step (2). 

(4) Compare assumed and calculated shear stress dis

tributions. If the convergence criterion is satisfied, ter

minate. Otherwise, revise the assumed distribution and return 
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Figure 6. The Set-up of Shear Stress Segments along the Centerline. 



to step (2). 

Using this method, the only required temperature data 

is the inlet temperature of the moving surface. This may be 

estimated, since calculations have shown that the final dis

tributions are not very dependent on this inlet temperature. 

The procedure for setting up a segmented shear stress 

distribution from the assumed distribution, calculating the 

temperatures at the moving surface, and performing the itera

tion process outlined above were incorporated into the com

puter program in Appendix B. Therefore, as in the case with 

the film thickness, the program has the capability to cal

culate the traction whether or not detailed moving surface 

temperature data is available. 

Convergence of the iteration scheme is said to occur 

either when the average calculated shear stress along the 

line changes by less than 0.2% in successive iterations, or 

when the difference between the assumed and average shear 

stress at each point on the line is less than 5%. The pro

gram incorporates an ad hoc method of updating the assumed 

shear stress distribution which was found, by several trials, 

to speed the convergence process. Convergence along each 

line is generally achieved in seven or fewer iterations; if 

convergence has not been attained after 10 iterations, the 

process is terminated and the results up to that point printed 

out. 

An evaluation of the validity of this application of 



Jaeger's temperature formulation to the EHD contact, in

dependent of Jakobsen's traction model, was attempted. Using 

the experimental ball temperatures employed in the calcula

tions of Chapter III, the inverse process of that described 

above was performed. That is, equations (15) and (16) were 

used to find the distribution of shear stress over the con

tact which would result in the measured temperatures. These 

shear stresses were then integrated over the Hertzian contact 

area to yield the tractions which, in turn, may be compared 

to the experimentally-determined tractions. These computa-

tions were performed for the five speeds and 1.03 x 10 N/m 

(150,000 psi) peak Hertz pressure. The results are shown in 

Figure 7. 

The traction coefficients predicted by the temperature 

model alone are seen to be significantly lower than those 

measured at low sliding speeds. This model depends only on 

the magnitude of the shear stress in the contact, regardless 

of any particular rheological model or the presence or ab

sence of asperity interaction. Therefore, the disparity 

between the predicted and measured tractions of Figure 7 may 

not be explained by non-Newtonian lubricant behavior or by 

asperity interactions. However, as mentioned previously, 

the assumption that the moving circular source of heat may be 

approximated by a band source was shown by Jaeger 1942 (32) 

to be less valid at low speeds, and in the direction of the 

disparity in Figure 7. This is due to the greater role of 
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end effects at lower speeds. The validity of the assumption 

depends on the magnitude of the dimensionless speed parameter 

v=«SIi (17) 

The parameter I is the length of the shear stress segment, 

which is equal to or less than the diameter of the contact. 

As seen in Figure 6, the segment length becomes smaller near 

the top of the stack. Jaeger shows very good agreement be

tween the band source and the source of finite width for 

V >_ 10. The value of V, for a speed of .70 m/s (27.4 ips) 

and shear stress segments of average length .20 mm (.008 in.)f 

is 7.3. Therefore, for the lower speeds, and particularly 

for the calculations away from the centerline where shear 

stress segments are necessarily shorter, the model predicts 

significantly lower temperatures than measured. 

In addition, the calculations on which Figure 7 is 

based evaluated the shear stress only within the Hertzian 

contact area. As mentioned in Chapter III, significant trac

tions may occur outside this area under certain conditions, 

which would also account for some of the discrepancy between 

the curves. 

Although the above temperature model has been shown to 

be somewhat limited in its applicability, it should be noted 

that, in Jakobsen's theory, the dependence of the shear 

stress on the moving surface temperature is not particularly 
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strong. Lambelet 19 73 (25), in a study of Jakobsen's theory, 

shows that, for an increase in the ball temperature of 43 C 

(110 F), the calculated shear stress drops only 35%. 

The temperature model was used with Jakobsen's theory 

in the form of the program in Appendix B to predict the trac

tion for Fluid Nl with a load of 67 N (15 lbs) and a sliding 

speed of 1.40 m/s (55 ips). The resulting traction coef

ficient using the iteration procedure was .052. This is com

pared with the calculated value, using measured temperatures, 

of .084, and a measured traction coefficient of .074. Based 

on Figure 7, the comparison would be more favorable at the 

higher speeds. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Summary of Conclusions 

An evaluation of Jakobsen's 1973 (1) theory of trac

tion generation applied to a sliding elastohydrodynamic 

contact, coupled with his proposed rheological model of the 

lubricant, has been performed. A computer program based on 

the theory was written and was used to predict the traction 

coefficient for several conditions of speed and load, using 

experimentally-determined film thickness and ball tempera

tures. Experimental traction measurements were made to pro

vide a basis for comparison of the calculated results. 

The theory was found to predict realistic values for 

the traction at high speeds. Predicted tractions were slight

ly lower than measured, possibly due either to shear stresses 

outside the Hertzian contact area, or to inaccuracies in 

extrapolating fluid viscosity data. The variation of trac

tion with speed at the higher sliding velocities compared 

well between calculations and measurements. 

However, as the speed decreased beyond a certain point, 

the calculated tractions significantly exceeded the measured 

values. One possible explanation for this disparity is that, 

at low speeds, the separation between bearing surfaces be-



came sufficiently small as to allow asperity interactions. 

This could have the effect of introducing an additional 

source of heat into the contact, one not taken into account 

by the theory. It is also possible that, as the film thick

ness decreases, part of the load is carried by the asperities 

themselves, thus decreasing the fluid pressure. This would 

have the effect of decreasing the viscosity and therefore 

the traction would decrease also. 

A further possibility is the breakdown of the proposed 

rheological model at high shear stress. As the sliding speed 

decreases, the calculated shear stress was found to increase. 

If the fluid in reality exhibits solid-like behavior and a 

plastic yielding of the fluid at shear stress levels above 

some critical value, calculated tractions could be consider

ably higher than those measured. 

Based on Jakobsen's theory, an evaluation of the ef

fect on the traction of variations in the fluid parameters 

was performed. The traction was found to increase with an 

increase in base viscosity and a decrease in temperature-

viscosity dependence of the lubricant. A weaker traction 

increase resulted from an increase in the pressure-viscosity 

dependence of the fluid. Variation in the thermal conduc

tivity was found to have very little effect on the traction. 

In addition, an attempt was made to make the theory 

applicable to engineering use by providing a means for cal-
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culating film thickness and moving surface temperatures. 

Film thicknesses were calculated by means of Archard's point 

contact formula. Good correlation between calculated and 

measured values was found for ordinary hydrocarbon oils. 

For polymer-blended mineral oils, the viscosity parameters 

of the base oil alone should be used in the formula. Tem

perature calculations were based on Jaeger's formulation of 

the temperature distribution due to a moving source of heat. 

An evaluation of this formulation as applied to the EHD 

contact showed that the theory becomes more realistic as the 

sliding speed increases. Since the temperature calculation 

requires knowledge of the shear stress distribution, an 

iteration procedure must be implemented in the traction cal

culation. Because of the relatively mild dependence of the 

traction on the moving surface temperature, this procedure 

has been shown to give an adequate temperature distribution 

for the purpose of calculating traction at high speeds. 

Recommendations for Further Research 

Further investigation into the effects of asperity 

interaction and non-Newtonian lubricant behavior at high 

shear stress is warranted. These are two possible explana

tions for the discrepancy at low speeds between calculations 

and measurements (although other factors may be present). 

Therefore, it is desirable to separate the effects of these 

two phenomena, so that their individual contributions to the 
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traction may be determined. This could be accomplished by 

using fluids of different viscosities in the contact. A 

fluid with sufficiently high viscosity would result in film 

thicknesses large enough that the non-Newtonian effects alone 

could be evaluated. Conversely, a very low-viscosity fluid 

could result in extremely thin films at lower shear stress 

levels, where asperity interactions would be assured when 

the behavior remains Newtonian. Accurate profiles of the 

bearing surfaces recorded both before and after operation in 

the EHD contact could reveal the occurrence of interactions 

sufficient to alter the profile. In this way, the onset of 

asperity contact could be determined. 

Since non-Newtonian lubricant behavior appears to 

occur at high shear stresses, it would be interesting to 

employ different rheological models with Jakobsen's theory. 

A composite model which is linear at low shear stress levels 

but becomes non-Newtonian at higher levels seems to be ap

propriate according to the results of this work. Further 

research into the existence and determination of the critical 

stress at which non-Newtonian behavior begins is warranted. 

The variation of this stress with conditions of pressure, 

temperature, and fluid properties is an important question 

which could be investigated. 

There is a need for further analytical study into the 

traction generated outside the Hertzian contact area, partic

ularly in the inlet region. As long as the contribution from 



the Hertzian contact area alone is considered, Jakobsen's 

theory may be expected to yield low results for the total 

traction. 

Improvements on the temperature model of Chapter V 

are needed to make it applicable to cases in which the dimen-

sionless speed parameter is small. In its present form, the 

temperature model may be used in traction calculations, but 

its applicability to the low speed cases is open to question. 

It appears, then, that the shear stress theory of 

Jakobsen, whether used alone or with the moving surface model 

based on Jaeger's formulation, is adequate for predicting the 

traction of sliding elastohydrodynamic contacts at high 

speeds. The speed at which the theory becomes applicable 

depends on such factors as normal load and film thickness. 

For the conditions of this study, realistic tractions were 

predicted at speeds over 2.5 m/s (100 ips). Further work is 

required to extend the theory to cases of lower sliding 

speeds, where deviations from experimental results are sig

nificant. 
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APPENDICES 



APPENDIX A 

PHYSICAL PARAMETERS OF THE EHD CONTACT 

Stationary Bearing Surface 

Sapphire, flat surface 
Thermal Conductivity 25.1 W/m°k(3.14 lb f/°F sec) 
Thermal Diffusivity 7.94 x 10~6 m2/sec (1.23 x 10 

in2/sec) 

Moving Bearing Surface 

AISI 52100 Steel sphere, radius .625 in. 
Thermal Conductivity 34.7 W/m°k(4.34 lb f/°F sec) 
Thermal Diffusivity 9.56 x 10~6 m2/sec (1.49 x 10 

in2/sec) 
Sliding Velocity .35-12.7 m/s (13.7-500 ips) 

Lubricant 

Naphthenic base oil, Fluid Nl (17,18,19) 
Thermal Conductivity .13 W/m°k(.0167 lb f/°F sec) 
Viscosity at 38° C (100° F) 2.2 x 10~2 Ns/m2 (22 
Viscosity at 99° C (210° F) 3.2 x 10""3 "Ns/m2 (3.2 

Reduced elastic modulus of bearing surfaces E" = 2.86 x 

N/m2 (41.4 x 106 psi) 
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APPENDIX B 

LISTING OF FORTRAN COMPUTER PROGRAM 

TO CALCULATE TRACTION 

The following pages contain a documented listing of 

the computer program used to calculate the traction coef

ficient of a sliding EHD point contact. The meanings of each 

of the major input variables are given within the body of the 

program, along with instructions for its use. 

In its present form, the program accepts input param

eters in the English system of units, as noted in the program. 

For convenience, Table 3 lists conversion factors for use in 

converting from SI units to the English units required in 

the program. 



Table 3. Conversion Factors 

Quantity Multiply (SI) By 
To Get 
(English) 

Length m 39.37 in. 

Pressure, shear 
stress N/m2 1.450 x 10~4 psi 

Speed m/s 39.37 in/sec 

Temperature °k 1.80 °R 

Thermal 
Conductivity W/m°k .125 lb f/°F sec 

Thermal 
Diffusivity m2/s 1550 in2/sec 

Viscosity Ns/m2 1 x 103 cp 



c********************************************************** 
C THIS PROGRAM COMPUTES THF TRACTION COEFFICIENT FOR A 
C SLIDING EHD POINT CONTACj BY CALCULATING THE SHEAR 

STRESS AT VARIOUS LOCATIONS AND INTEGRATING OVER THE 
C CONTACT. FILM THICKNESSES AND MOVING SURFACE TEMP-
C ERATURES MAY EITHER BE INPUT OR CALCULATED. 
C ***NOTE***lNpUT VARIABLES AND THElR UNITS DEFINED BEFORE 
C EACH READ STATEMENT. SPECIAL NOTE$: 
c * PROVIDE DATA ONLY IF BALL TEMP, TO BF CALCULATED 
c i PROVIDE DATA ONLY IF FILM THICKNESS TO BE CALCULATED 
c***************************+****************************** 

[)IMEN5I0N Y<30)'TlNT(3n) »YY(3) »XX(3) 
H = U.O 
T2=o.O 
REAL KT»KTB»L 

C SET NT=0 IF NO 3ALL TEMp. DATA PROVIDFDI =3 OTHERWISE 
C SET NH=0 IF NO FILM THICKNESS DATA PROVIDED* "1 OTHERWISE 

REA[)(5,;550)NT,NH 

c TILF»T2SF: TEMPERATURES AT WHICH VISCOSITIES ARE 

c PROVIDED (R) 

c KT: THERMAL CONDUCTIVITY OF FLUID (LB/SEC-F) 
C KTB: THERMAL CONDUCTIVITY OF BALL (LB/SEC-r) 

c DIFF: THERMAL DIFFUSIVITY OF BALL (IN-IN/S^C) 
READ(5,350)TlLFfT2SFrKTfKTBfDlFF 

c UH: SLIDING SPEED <IN/SEC) 

c MI: NO, OF LINES ALONG WHICH CALCULATIONS ARE 
C TO BE MADE 
C L: NORMAL LOAD(LBF) 
C R: REDUCED ROLLER RADIUS (IN) 

REAo<5,350)UHfMl,L,R 
I F C N H . F Q . D G O TO 20 

C &ALPH: 3ASE VISCOSITY Ay INLET TE^P»<Cp) 
C &ETA: ĉ ASE VISCOSITY AT IMLET TEMP. (Cp) 
C &ALPH; PRESSURE-VISCOSITY COEFFICIENT AT INLET TEMP(1/PSI) 
c &ED: REDUCED ELASTIC MODULUS OF SURFACES (Psi) 
c &PHZ: MAX. HERTZ PRESSURE IN CONTACT (PSD 

REAo(5,350)ALPHrETA»ED(PHZ 
G=ALPH*ED 
U=<ETA*UH)/(2.*ED*R*68g!5000.) 
P=PHZ/ED 
H = 1.37*R*(G**,7^)*(U**.7l+)/(P**.22) 

20 I F ( N T . E Q . D G O TO 21 

c *T2: INLET BALL TEMPERATURE (R> 
READ(5»350)T2 

21 WRlTE(6»90i)UH»KT'TlLF,KTB,T2SF,DlFFrLrR 
9 o i F O R M A T ( / / » UH = »»F10.? ,» IN/SEC'*7y>»KT = »»FlO.*f» 

l 1 L V S E C - F t / 
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2» TiLF = »»F10.2»f RfMOX,»KTR = •'Fl0.<4,» LB/SEC-F*/ 
3' T2SF = •iFlO*2i

f R'MOX^'OIFF = SFlO.^f* IN-IN/SEC'/ 
<*' LOAD = NFlo.lr* LBFf, 8X»»HERTZIAN RADIUS = •» 
5F7,^,» IN,'/) 
M=Mi+i 

CALL SUBROUTINE FOR EVALUATING SHEARS ALON'; LINE AND 
INTEGRATING IN xl-DlRECTiON 
DO 22 i=2»M 
CALL LlNE(TlLF»T2SF»KT,KT3,0IFFfUH»T2fHfY(I)»TlNT(I)rR) 

22 CONTiNuE 
PERFORM INTEGRATION IN X?-DIRECTION» TAKING THREE 
POINTs AT A TIME* AND SUMMING INTEGRATED RESULTS 
TRAc=0.0 
Y<1)=0.0 
TlNT(l)=OtO 
DO 23 I=l»Ml 
TINT(2*M-I)=TINT(I) 
Y(2*M-I)=2.0*R-Y(I) 

23 CONTINUE 
00 2^ I=1#M1 
DO 25 J=l»3 
LL=?*i-2+J 
XX(j)=Y(LL) 
YY(j)=TINT(LL) 

25 CONTINUE 
Yl=CYY(2>-YY(l))/<XX(2)-XX(l)) 
Y2=(YY(3)-YY(2)>/<XX(3)-XX(2)) 
Y3=(Y2-Y1)/(XX<3)-XX(1)) 
A = Y3 

3=Yi-(xX(l)+Xxl2)>*Y3 
C=YY(1)-XX(1)*Y1+XXU)*XX(2)*Y3 
0TR=(A/3.)*(XX<3)**3-Xy(l)**3)+(B/2.)*(xy(3)*«2-
1XX(1)**2)+C*(XX(3)-XX(1 )) 
TRAC=TRAC+DTR 

2H CONTINUE 
TC=(TRAC/L)*loO, 
WRlTE(6rlOo) TC 

100 F0Rv|AT(/////l5X» •TRACTION COEFFICIENT s *fFlO»3> 
1' pER CENT'//) 

350 FOR.viATO 
STOp 
END 



SUBROUTINE LlNE<TlLF#T?sF,KT#KTB»DlFF,UH,T2»H2,Yf 
1TINT,R) 

C+*******+*^+^^****^********^*****+**+**************^*+*+** 
C THIS SUBROUTINE READS IN DATA FOR A LINE OF POINTS IN 
c THE CONTACT* AND INTEGRATES THE SHEAR STRESS ALONG THIS 
C LINE (IN XI-DIRECTION) 
C DATA trOR THIS SUBROUTINE MUST BE PRoVyDED ^OR EACH 
C LINE CALCULATED,, 
C ***NOTE***INpUT VARIABLES AND THEIR UNITS DEFINED BEFORE 
C EACH READ STATEMENT. SPFCIAL NOTES; 
c • PROVIDE DATA ONLY IF BALL TEMP, TO BE CALCULATED 

« PROVIDE DATA ONLY IF BALL TEMP, MEASURED 
c 4 PROVIDE DATA ONLY IF FILM THICKNESS TO BE CALCULATED 

* PROVIDE DATA ONLY IF FILM THICKNESS MEASURED 
C********************************************************** 

REAL KTrKTB 
DIMENSION QlFT(30>»niFF2(30) 

C NI MO, OF POINTS IN LINE TO BE CALCULATED 
c YI: DISTANCE OF LINE FROM CENTERLINE (IN> 
C DELX: DISTANCE BETWEEN PolNTS (IN) 

READ(5#350)N,Yl»DELX 
DIMENSION MM(30) 
DIMENSION X<30>'H<30),T2S<30)»TAU(3o>»CPS(30)tCPL<30) 
DIMENSION TAPP(30>»Hl(3o) 
DIMENSION Q(30)»E(30)rTFTlL(30)fTFTpS(30)»TAPP2(30) 
WRlTE(6»55l)Yl 

551 F0RMAT(/////9X''COMPUTED ON A LlNE • f P ^ f 1 IN, FROM 
1 CENTERLINE.•) 
Nl=N-l 

C X(I)• NUMBER OF POINT I 
C CPS(x): VISC. AT PRESSURr OF PT, ff TFMP.Ti.LF (Cp) 
C CPL^I): VISC. AT PRESSURE OF PT, I> TFMP.ToSF(CP) 

REAp(5,350) (X(D ,CPS(I),CPL(I)rI=2tNl) 
Y=R-Y1 

C IF FILM THICKNESS NOT INpUT* GO TO 90 
IF(H2.GT.O.O)GO TO 90 

C +H(I>: MEASURED FILM THICKNESS AT pOINj I (TN) 
READ(5,350)(H(I)»I=2»NI) 
SO TO 91 

90 DO 92 I=2'Nl 
H(I)=H? 

92 CONTINUE 
C IF BALL TEMPS. INPUT, GO TO 65* OTHERWISE START 
C ITERATION PROCESS 

91 IF(T2.LE.O.O)GO TO 65 
C *TAPP(D: ESTIMATED SHEAR STRESS AT PT. I (esl) 

READ(5>350)(TAPP(I)'I=i»N) 

TFMP.Ti.LF
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T2S(l)=T2 
TAU(l)=o.O 
TAU(N)rO.O 
LM=n 
TAVpzo.O 
DO 61 I=2»Nl 
DIFF2(I)=1O,**6 

61 CONTINUE 
NN = o 

C CALL SUBROUTINE TO CALCULATE BALL TEMpS, BASED ON TAPP 
20 CALL M0TEM(TAPP#T2,DELx»N»KTBiDlFF>uH,T2S) 

GO TO 66 
C WT2SU): MEASURED BALL TEMP. AT PT, I (R) 

65 READ(5.350)(T2S(DrI=2tNl) 
FOR EACH POINT CALL SUBROUTINE TO FiNn SHEAR STRESS 
66 DO ic I=2»N1 

CALL SHEAR(CPS(I)'T1LF,CPL(I),T2SF»KT.H(T),UH»T2S<I), 
lTAU(l)fi,Q(l),E(I>,TFTjL(I)rTFT2S(I)) 

10 CONTINUE 
PERFORM INTEGRATION IN Xi-DIRECTI()N - SIMPSON'S METHOD 

YE=0.0 
YO=0,0 
00 1? I=2'Nlr2 
YE = YE + TAU(D 

12 CONTINUE 
N2=N-2 
DO i5 I=3»N2»2 
YO =YO+TAU(I) 

15 CONTINUE 
TAVrlt/(3,*(N-l))*(

£+.*YE + 2.*Y0) 
TINT=(0ELX/3,)*(^.*YE+P #*Y0) 

IF TEMPERATURES WERE PROvlDED, GO To PRINT SECTION* 
C OTHERWISE CONTINUE ITERATION PROCESS 

IF(T2.LE.O.O)GO TO 31 
DTAv=ABS(TAV2-TAV>/TAV 

C TEST FOR CONVERGENCE OF AVERAGE SHEAR(DTAV) 
IF(OTAV.LT.0.002)LM=LM+1 
IF(LM.EQ.O)GO TO 25 
WRlTE(6»550> 

550 F0RMAT(//5X»»AVE. TAU STABLE. TAPP GlVFN BELOWt) 
WRITE(6*350>(TAPP<I)pI=2fNl) 
SO TO 31 

25 NV=o 
C TEST FOR CONVERGENCE OF SHEAR AT EACH POINT 

DO 3C 1=2»N1 
IF(TAPP(I),LE#0,0>G0 To 29 
D I F T ( I ) = A 8 S ( ( T A P P ( I ) - T / » U ( I ) ) / T A P P ( I ) ) 
I F ( 3 I F T ( I ) . L T . O # 0 5 ) ^ 0 T 0 30 

2 9 N|V = NJV+I 

30 CONTINUE 
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IF(NV.GT,0)GO TO <+0 
C PRINT FINAL DISTRIBUTION^ ALONG THE LTNE 

31 WRlTE(6»905) 
905 F0RMAT(//5Xr'FINAL DISTRIBUTIONS ALoNG LTNE'//) 

WRITE(6»900 ) 
900 F 0 R v j A T ( 2 X » f L 0 C N t f 7 x » , Q f »^X» »E ( R > * ' 3 X , ' T 1 ( F ) ' , 3 X i 

1»T2 ( F ) » , 2 X r ' H ( U l N ) • t ? X » • T A U < p S P / > 
DO 59 I = 2 » N 1 
H l ( l ) = ( 1 0 » * * 6 ) * H ( U 
WRlTE(6»90«*)IrQ(l)»E(I) ,TFT1L (I > > T F T 2 S (I) rHlfl) f TAUCI) 

904 FORMATCPX'IS^XfFe.Sr^vrFS.OfSX^Fs.x^y^rs.i^XfFS.lf 
1^X»P7.0) 

59 CON Tl N U E 

WRlTE(6»702)TAV 
702 F0Rv |AT( / / / 5X#*AVERAGE S H E A R S ' , F i 0 . 2 , ' P S I ' ) 

WRITE(6»703 ) T INT 
703 F0RMAT(/5X,'LINE INTEGRAL r ',FlO,2,« LHF/IN') 
21 RETURN 

C C IF 10 ITERATIONS PERFORMED* EXIT 
40 IF(NN.GT.9)G0 TO 50 
71 W R I T E < 6 P 7 0 D T A V 

7oi F0R^AT(//5x»'CALCULATED AVE. TAuftIpEllt5,'PSI'/> 
WRITE(6»710)TINT 

710 F 0 R M A T ( 5 X » ' I N T E G R A L OVER THE LINE = %1PF11.5> 
1» LBF/IN'/) 
WRlTE(6r72l) 

721 F0RMAT(5X»'INSUFFICIENT CONVERGENCE. ALTER TApp'//) 
C AD HOc PROCEDURE FOR UPDATING TAPP TO FACILITATE 
C CONVERGENCE 

16 DO in I=2rNl 
IF(,MN.LT.5)G0 TO <*2 
IF(QIFTCI).GT.0,05>QO T0 51 
lF(,MM(I).NEtl)GO TO 53 
TAPp(D=TApP?tI) 
oO TO «+l 

53 lF(olFT(I),LT.DIFF2(I))G0 TO 42 
DIFT(I)=DIFF2(I) 
TAPp(i)=TApP2(I) 
GO TO 41 

51 IF(DIFT(I).LT.DIFF2<I))G0 TO i»2 
IF(DIFF2(D.GT.O,05)GO TO 47 
MM(D = i 
TAPp(i)=TApP2(I) 

GO TO 41 
47 A=rAPP(I) 

TAPp(i) = .50*(TAPP<D+T^PP2(I)) 
TAPp2(I)=A 
GO TO 41 

42 TAPP2(D =TAPP(D 
TAPp(i) = ,3o*TAPP(D^.fln*TAu(I) 
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t+1 CONTINUE 
43 TAPp(i)=o.O 

TAPp(N)=0«0 
NN=NM+1 
OO 18 I=2»N1 
DIFF?(I)=DIFT(I) 

18 CONTINUE 
TAV2=TAV 

C IF CONVERGENCE NOT ACHIEVED* RETURN FoR ANOTHER ITERATION 
GO TO ?o 

50 WRlTE(6»730) 
730 F0RMAT(//5X»'CONVERGENCE INCOMPLETE AFTER 10* 

if ITERATIONS, TAPP GIVEN BELOW,') 
wRlTE(6»35o> (TAPPd) >I=2»Nl) 
SO TO 31 

350 FORMAT*) 
END 

SUBROUTINE MOTEM(TAU,TAMB»DELX'N»KTBrDIFP»UH,T) 
C********************************************************** 
C SUBROUTINE FOR CALCULATING MOVING SURFACE TEMP,»T* 
C BY SETTING UP SHEAR S T R E S S SEGMENTS BASED ON TAU, THEY 
C ARE SET UP BY MOVING FROM INLET TO OUTLET* CREATING OR 
C TERMINATING ALL OR PART 0F A SEGMENT DEPENDING ON 
C WHETHER SHEAR 1$ INCREASING OR DECREASING AT THAT POINT, 
C J IS THE NUMBER OF THE PolNT CURRENTLY UNDER CONSIDERA-
C TION. WE TRY TO FIND THE TEMPERATURE AT J DUE To THE 
C UPSTREAM SHEAR, 
C********************************************************** 

DIMENSION TAU(30)*M(30)tTT(30)»CO(3o)rCA(30) 
DIMENSION DELT(30>»T(3n) 
REAL KTB 
C=(?./KT3)*SQRT(DIFF*UH/3.14159) 

L = 0 
SUMTBO-.O 
KK = o 
Td)=TAMB 
DO 200 J=2,N 
IF(TAU(J) ,LT,TAU(U-1) )r,0 TO 20 

• C SET Up A NEW SEGMENT 
KK=KK+1 
M(KK)=l 

C H £ I G H T OF SEGMENT NO, KK IS TT 
TT(KK)=o.5*(TAU(J-l)+TAU<J)J-SUMT 
SUMT=SUMT+TT(KK) 

C CO(KK) is DISTANCE FROM j TO B E G G I N G OF SEGMENT KK 
C, CA(KK) is DISTANCE FROM j TO END 0^ S£GMFNT KK 

CD(KK)=0.0 
CA(KK)=0.0 



L = *K 
LL=l 
GO TO 100 

20 IF(TAU(J).GT.SUMT)G0 TO 80 
C DECIDE WHETHER TO END ALL OR PART OF TOP SEGMENT, 
C DEPENDING ON VALUE OF TAU(J) 

IF((SUMT-TAU(J)) #LT.(0.33*TT(L))>GO TO 30 

IF((SUMT-TAU(J)),LT.(0#75*TT(L))>G0 TO 40 

c END TOP SEGMENT AT A LOCATION BETWEEN POINT J AND J-I 
S=<TAU(J-1)-TAU(J))/DE| X 
X = ( T A U ( J - 1 ) - S U M T + 0 . 5 * T T ( L ) ) / S 

CA(L)r-l,0*X 
iV|(L)=o 
S U M T = S U M T - T T ( L ) 

00 51 I=L»1*-1 
IF(M(I).EQ.1)L=I 
IF(M(I).EQ.1)G0 TO 52 

51 CONTINUE 
GO TO 200 

C CHECK TO SEE IF NEXT SEGMENT SHOULD BE ENDED 
52 IF(sl)MT.GT.TAU(J))GO TO 20 

GO TO 100 
30 I F ( T A U ( J + 1 ) # S T . T A U ( J ) ) G O TO 100 

KK=KK+1 
IF( (KK-D.EQ.l)GO TO 3? 
Ll=L+2 
DO 31 l=KK,Llf-l 
rTd)-TT(I-l) 

c E.JD ENTIRE TOP SEGMENT 
CD(i)=cD(I-l) 
CA(i)=CA(I-l) 
MU)=M(I~1) 

31 CONTINUE 
C END HALF OF NEXT SEGMENT 

32 T T < L + 1 ) = 0 . 5 * T T < L ) 
M(L+1)=0 
C A ( L + 1 ) = - 1 . 0 * D E L X 

CD(L+I)=CD(L) 

T T ( L ) = 0 . 5 * T T ( L ) 
SUMT=SUMT-TT(L+l) 
LL=j 
GO TO 100 

40 lF(TAU(J+l).GT.TAU<J))p;0 TO 100 
CA(L)=-1.0*DELX 
M(L)=0 

SUMT=SUMT-TT(L) 
L=L-i 
DO n2 I=L#0»-i 
IF(M(I).EQ,1)L=I 
lF(w(i) .EQ.DGO TO 41 
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^2 CONTINUE 
*+l l*--0 

30 TC 100 
80 IF<LL.EQ.O)GO TO 100 
ADD ON ANOTHER SMALL SEGMENT 

IF((TAU(J)-5UMT),LT«(0.25*TT(L+I)))fi0 TO 100 
S U M T = S U M T + 0 . 5 * T T ( L + 1 ) 
T T ( L ) = T T ( L ) + 0 . 5 * T T ( L + 1 ) 

TT<L+1)=0.5*TT(L+1> 
100 DELT(J)=OtO 
SUM CONTRIBUTIONS OF EACH SEGMENT TO DETERMINE TEMP* 
no uo X=I»KK 
CO<I)=CD(I)^DELx 
I F ( M ( I ) . E Q , 0 ) C A ( D = C A ( I ) + D E L X 

r)ELT(J)=DELT(J)+C*TT(l)*(SORT(CD<D)-SQRT(CA(I) ) ) 
110 CONTINUE 

T(J)=TAMB+DELT(J) 
200 CONTINUE 

RETURN 
END 

SUBROUTINE SHEAR(CpS,^LF»CPUT2SF»KT,H>UH»T2S,TAU, 
1I>Q,E,TFUL>TFT2S> 

C********************************************************** 
C THIS SUBROUTINE COMPUTES THE SHEAR STRESS M A POINT 
C BY NUMERICALLY INTEGRATING JAKOBSEN'S FORMULA FOR 
C THE ADIABATIC WALL CASE 
C********************************************************** 

DIMENSION DT(305)'DREYH<305)rDDsU(3o5),DSU(305) 
DIMENSION VRD5U(305) #DpSSU(305) ,DsSij<305) 
D I M E N S I O N R I O V ( 3 0 5 ) » T V O V ( 3 0 S ) 

REAL KT % 

Q=(AL0G((AL0G(CPS))/(AL0G(CPL))))/UL0G(fT2SF)/(TlLF))) 
A=(ALOG(CPS)J*(TlLF)**o 
E=A**(i,/Q) 
Cl=l,/6895000. 
PI2=T2S/E 
CALL DETEMp(lfPI2fQ'«ls0»D) 
Pl^=Cl*UH*UH/(2t*KT*E) 
D=D + Pi<* 
CALL DETEMp(2rPIlrQ'»l50'D) 
T1L =PH*E 
PI3 = Q 
DOELTA=(Pll-Pl2)/IOO, 
DDLL=DOELTA 
DT(1)=PI2 
DSU(l)=o.O 
VRDSU(1)=1#/((PI^)**»5) 
OSSu(l)=0.0 
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3REYH(1)=EXP{(1./DT(1))**PI3) 

00 50 J=2»300 
QT(j)=DT(J-l>+DDEL. 
IF<DT(J).GT.PI1)GO TO ? \ 
OREYH(J)=ExP( (l./DTU) )**PI3) 
DDSU(J-1)=(2.*DDEL)/(DREYH(J)+OREYH(J-1)) 

DSU(J)=DDSU(J-D+DSU(J.1) 
lF(r^SU(J)«GE.Plt*)GO TO 21 
VRDsU(J)=l./((Pl4-DSU(j))**,5) 
0DSsU(J-l)=(DDEL/2.>*<vRDSU(J)+VRDSu(J-l)) 
DSSu<J)=DDSSU(J-l>+DSSu<J-l> 
RlOv(J) = (VRDSU(J)-VRDSu(J-D) 
TVO V(J) = . 0 5 * V R D S U U - 1 ) 
DDE:LT=.O5*OOELTA 
DDELTT=.OI*DDELTA 

C DECREASE STEPSIZE AS CURYE STEEPENS 
IF(DDEL.LT.(.5*DDELT))G0 TO 51 
IF(RIOV(J),GT.TVOV(J))D0EL=0DELT 
IF(RI0V(J).ST.(2.*TV0V(J)))DDEL=DDELTT 

51 Pl5=(DSSU(J)»/(2.*((DSu(J))**.5)) 
50 CONTiNUE 
21 TAU=PI5*UH*C1/H 

TFT2S=T2S-^59.67 
TFTiLzTlL-459,67 
RETURN 
END 

suaROUTiNE DETEMP(N»PI,pi3#PIOIoJ 
c********************************************************** 
C THIS SUBROUTINE COMPUTES THE INTEGRAL OF THE INVERSE 
C VISCOSITY FUNCTION FROM pjO TO PI, IN STEPS OF ODEL 
C********************************************************** 

DIMENSION DT<305)»DREYH<305),DDSU(3O5),DSU(305) 

PM=(l./piO)**Pl3 
IF(RM.LT.87.5)G0 TO 15 
PlO = EXP(-4. t+7/Pl3> 

15 0 D E L = . 0 0 2 5 
J T ( i ) r p i O 
OSU( l )=o.O 
O R E Y H ( l ) = E x P ( ( 1 . / D T < 1 ) ) * * P l 3 ) 
DO 10 J=2'300 

C INCREASE STEP As CURVE LEVELS OFF 
IF(J,GT.B1)DDEL=,005 
DT(j)=DT(J-l>+DDEL 
3REYH(J)=EXP((1./0T(J))**PI3) 
DDSU(J-1)=(2.*0DEL)/(DREYH(J)+DREYH(J-1)) 
:>SU(J)=QDSU<J-.1)+QSU(J_I) 
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IF N=? AND VALUE OF INTEGRALZD, THEN pETURM 
IF(N.E0.2)G0 TO 5 
lFtnT(j),LT*Pl)GO TO 10 

O=0sU(j-l)+((oSU(J)-DSu<J-l))*(Pl-DT(J-D))/(DT<J>-
10T(j-i)) 
RETURN 

IF N=i 4ND UPPER LI^IT Ic; REACHED, RE TURN 

5 lF(nSU(J).LT,D)GO TO ln 
PI=DT(j-l)+((DT(j)-DT(j-l))*(D-DSU(j-l)))/(DSU(j)-
1QSU(J-,)) 
RETURN 

10 CON TINUE 

WRlTE(6r^00) 
<+00 FORv|AT(5X>»LlMlT ExCEEnED. I N C R E A S F P IOM 

5TCp 
END 



APPENDIX C 

SAMPLE COMPUTER OUTPUT 

The following is a typical set of output from the com

puter program of Appendix B. Computations were made for 

Fluid Nl at a sliding speed of 2.54 m/s (100 ips) and a normal 

load of 67 N (15 lb). Measured values of film thickness and 

moving surface temperature were used. In addition to the 

traction coefficient, values for Q,E, surface temperatures, 

film thickness, and shear stress are given for each point at 

which calculations are made. 



UH • 100.00 IN/SEC 
T1LF • 669.6 7 R 
T2SF = 559.67 R 
LOAD « 15-0 LBF 

tADD Nl .PL1 

KT - .0 167 LB/SEC-F 
KTB = 4.3400 LB/SEC-F 
DIFF = .0149 IN-IN/SEC 
HERTZIAN RADIUS = .0070 IN 

COMPUTED ON A LINE .0050 IN. FROM CENTERLINE. 

FINAL DISTRIBUTIONS ALONG LINE 

LOCN 0 E (R) 

3.137 1239. 

Tl CF) 

224. 1 

T2 (F) H (UIN) TAU (PSD 

145.2 5.2 3634. 
3 3.044 1352. 269.4 153.7 5.2 4954. 
4 3.014 1402. 290.4 164.3 5.2 5341 . 
5 2.989 1442. 306.5 176. 1 5.2 5502. 
6 2.985 ; 451 . 310.6 186.9 5.2 5334. 
7 2.989 1442. 306.8 195*6 5.2 4873. 
8 3.014 1402. 291 .4 202.9 5.2 4077. 
9 3.044 1352. 2 72.0 206.9 4.4 3789. 
10 3.137 1239. 236.3 207.5 4.8 1751. 

AVERAGE SHEAR 

LINE INTEGRAL 

3959.46 PSI 

39.59 LBF/IN 
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COMPUTED ON A LINE .0000 IN. FROM CENTERLINE. 

FINAL DISTRIBUTIONS ALONG LINE 

LOCN Q E <R) Tl CF) T2 (F) H (UIN) TAU (PSD 

2 3 . 0 8 6 1 2 9 6 . 2 4 6 . 6 1 4 2 . 8 
3 2 , 9 9 3 1 4 3 7 . 3 0 4 . 5 1 5 5 . 1 
A 2 . 9 5 7 1 5 1 1 . 3 3 6 . 1 171 . 1 
5 2 . 9 3 8 1 5 5 7 . 3 5 5 . 7 1 8 7 . 8 
6 2 . 9 2 9 1 5 8 5 . 3 6 8 . 0 20 5 . 2 
7 2 . 9 2 3 1 6 0 3 . 3 7 5 . 6 221 . 2 
8 2 . 9 1 9 1 6 1 3 . 3 8 0 . 2 2 3 5 . 2 
9 2 . 9 2 3 1 6 0 3 . 3 7 5 . 8 2 4 5 . 4 

10 2 . 9 2 9 1 5 8 5 . 3 6 8 . 5 2 5 4 . 2 
1 1 2 . 9 3 8 1 5 5 7 . 3 5 6 . 9 2 6 0 . 0 
12 2 . 9 5 7 1 5 1 1 . 3 3 8 . 5 261 . 1 
13 2 . 9 9 3 1 4 3 7 . 3 1 0 . 8 2 5 8 . 8 
14 3 . 0 8 6 1 2 9 6 . 2 7 1 . 8 2 5 2 . 8 

7 . 8 302 5 . 
7 . 0 4 5 6 8 . 
7 . 1 4 8 9 8 . 
7 . 0 50 7 2 . 
7 . 0 4 9 8 6 . 
7 . 0 4 7 6 2 . 
7 . 0 4 5 7 2 . 
7 . 0 41 7 7 . 
7 . 1 3 7 2 3 . 
7 . 2 3 2 2 8 . 
7 . 7 2521 . 
7 . 7 1 8 3 5 . 
8 . 7 6 7 2 . 

AVERAGE SHEAR - 3449.43 PSI 

LINE INTEGRAL = 48.29 LBF/IN 

TRACTION COEFFICIENT = 4.220 PER CENT 



APPENDIX D 

FILM THICKNESS CALCULATIONS FOR 

VARIOUS FLUIDS 

Film thickness calculations based on Archard's equa

tion (8) were made for various lubricants for several condi

tions of load and speed. Table 4 gives a description of 

each fluid, the references from which data on the fluid was 

obtained, and the fluid's designation, both in the original 

references and in this work. 

Figures 8-11 show calculated values compared to the 

measured centerline film thicknesses under the same load and 

speed conditions. In a given figure, different data points 

for a single fluid correspond to different sliding speeds. 



Table 4. Fluid Descriptions 

gnation Ref erence 

3 3 4 
6 34 
7 34 
8 34 

12 34 
14 34 
I 34 

Nl 17 
N2 17 

Description 

Octylmethyl siloxane 
Decylmethyl siloxane 
Tetradecylmethyl siloxane 
Hexylmethyl siloxane 
Dimethyl siloxane 
Methyl-phenyl 
Fluorosilicone 
Naphthenic base oil 
Nl + 4% Polyalkylmethacrylate 

(PL4521) 
N3 17 Nl + 4% Polyalkylmethacrylate 

(PL4523) 
51 17 Diester 
52 17 Polybutene 
53 17 Dimethyl siloxane 
54 17 Trifluoropropylmethyl siloxane 
PI 17 Paraffinic bas oil 
P2 17 PI + 4% Polyalkylmethacrylate 
P3 17 PI + 8% Polyalkylmethacrylate 
P4 17 PI + 18% Polybutene 
P5 17 PI + 4.4% Polybutene 
A 3 5 Advanced ester 
B 3 5 Formulated advanced ester 

DN600 35 Polyalkyl aromatic 
D 35 Synthetic paraffinic oil + 

additive 
C 35 Naphthenic mineral oil + additive 

MCS460 35 Synthetic hydrocarbon 
MCS418 35 Modified polyphenyl ether 
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APPENDIX E 

NOMENCLATURE 

Description 

Radius of Hertzian contact 

Dimensioned constant (n/|n|) 

Material parameter in power-exponential 

viscosity relation 

Reduced elastic modulus of contact materials 

Dimensionless material parameter in Archard's 

formula (a E") 

Film thickness 

Thermal conductivity of lubricant 

Thermal conductivity of ball (moving surface) 

Length of moving heat source 

Pressure 

Maximum Hertz pressure in the contact 

Dimensionless load parameter in Archard's 

formula (-g-r) 

Strength of moving heat source (energy/unit 

time/unit area) 

Temperature-viscosity coefficient in power-

exponential relation (- TT^) 

Distance from center of contact 
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Description 

Reduced roller radius (equal to ball radius) 

Temperature 

Temperature of stationary surface 

Temperature of moving surface 

Traction coefficient 

Traction force 

Dimensionless speed parameter in Archard's 

,n0 (UH) 
formula (_2 ) 

2 E" R 
Velocities in X-. , x^r x^ directions 

Sliding speed 

Jaeger's dimensionless speed parameter {• 
2 K ' 

Distance from leading edge of heat source 

Coordinates in Cartesian coordinate system 

Roelands1 pressure-viscosity coefficient 

Exponential pressure-viscosity coefficient 

Pressure-viscosity coefficient obtained from 

the Weibull t r ans fo rma t ion [~n / P 1 

Temperature rise above inlet of point on 

moving surface 

Viscosity 

Viscosity at atmospheric pressure 

Dimensionless temperature (T/E) 

Thermal diffusivity of moving surface 

Composite rms peak-to-valley surface roughness 



H 1 

Description 

Dimensionless viscosity (n/c ) 

Dummy variable of dimensionless temperature 

Arbitrary dimensionless temperature (?r << TT„) 

Dimensionless stationary surface temperature 

(TT/E) 

Dimensionless moving surface temperature 

(T2/E) 

Dimensionless temperature-viscosity coefficient 

(Q) 

Dimensionless velocity parameter (c-, (UH) / 

2kE) 

Dimensionless shear stress parameter (ih/c^-

(UH) ) 

Density 

Shear stress 

Thermal reduction factor 
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