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Abstract— In this paper, we study hybrid models that not control problem were considered. In this paper, however, we
only undergo mode transitions, but also experience changes will, as an extension, also allow the dimension of the cdntro
in dimensions of the state and input spaces. An algorithmic space to change as the system undergoes mode switchings.

framework for the optimal control of such Multi-Mode, Multi - Due to th ible ch f di ; in th | and
Dimension (or M> D) systems is presented. We moreover derive ue to the possible changes of dimensions in the control an

a detailed M/*D model for an ice-skater, and demonstrate the State space, it is necessary to introduce a new computationa
use of the developed framework on the ice-skater model. algorithm to implement the optimality conditions. Althdug

it is possible to embed this algorithm into a more classical
. INTRODUCTION and larger algorithm, our approach has the advantage that it
Hybrid systems, i.e. systems whose dynamics contain boih significantly less demanding in terms of computational
a continuous and a discrete component, have proved time and complexity because only relevant variables are
be useful tools when modelling complex physical systemsomputed. Moreover, we will consider a fairly elaborate
where the dynamics changes among different dynamicaiodel of a ice-skater to illustrate the modeling and control
regimes in response to external as well as internal eventf. M3D systems. This skating model will operate in four
Examples range from bipedal, walking robots [1], wheralifferent modes as the skater moves forward, where each
each leg undergoes a swing-phase and a stance-phase, mode characterizes the particular motion of both skates. A
high-velocity mobile robots [2], where the wheels tramsiti corresponding optimal control problem will be considersd a
between rolling and slipping modes, to models in systemaell.
biology [3], [4], in which regulatory networks inhibit or ~ The outline of this paper is as follows: In Section Il,
excite different aspects of the cell dynamics. This papéhe ice-skater model will be introduced as a vehicle for
follows this tradition by focusing on constrained (phy$jica illustrating the various modelling issues. Following this
systems (see for example [5]). However, rather than fogusirSection I, M3 D systems will be formally introduced and
on modelling and analysis, we make the control of theseptimality conditions will be derived within the framewook
systems the explicit aim. the Calculus of Variations. This section moreover contains
Unfortunately, producing computationally feasible algodescription of the development of a computational algatith
rithms for hybrid control design has proved to be a dauntinghich is then applied to the ice-skater model in Section IV.
task from a complexity point of view. As an example, one caifhe conclusions are given in Section V.
consider the problem of optimal control of hybrid systems,
where [6], [7] early on formulated variants of the hybrid Il AMOTIVATING EXAMPLE
maximum principle. However, the leap from optimality con- [n this section, we introduce a/°D model for an ice-
ditions to computational algorithms has proved computatio Skater. Figure (1) shows the trajectories of both the leét an
ally infeasible except for restricted problem classeshsag 1ght skate (dotted lines) with respect to the forward mwtio
piecewise affine systems [8], systems in which the moddrom left to right).The human body is modelled by three
schedule is predetermined [9], [10], to classes of subadtimmasses;m for each leg andM for the torso and head.
solution methods [11], [12]. The skating motion is modelled as D system having
In this paper, we make no claims about solving the generdpur modes. These modes are the ‘Stride-Righirz§ mode,
hybrid optimal control problem, but rather focus our atiemt the ‘Glide-Left’ (GL) mode, the ‘Stride-Left’ §L) and the
on systems for which the mode sequence is fixed and givefglide-Right’ (GR) mode. The detailed dynamics of each
The control parameters then becomes the control signdliode are presented next.
within each individual mode and parameterized character-« SL mode

izations of the switching conditions and transition relat. Throughout the skating motion, the angles of the left
This work can be viewed as an extension of [13]. In [13]  and the right skate with respect to theixis are denoted
a new class of systems, the so-called Multi-Mode, Multi- by a; anda,., respectively.

Dimension (orM?3D), was introduced where the dimension During this mode, the skater applies a forceon the
of the system is allowed to change from mode to mode. right skate along the line of the body as shown in figure
Furthermore, various state transition maps and an optimal (2). The mass of the torso (M) and of the right leg (m)
are assumed to be resting on the left skate during this
The authors are with the School of Electrical and Computegitaering, acceleration. Therefore, the total mass going along the
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Body rotation
Stride Left (SL)

Glide Left (GL) o, 4% -7

- Replant Left Skate __,—’—
; oY e | .,
~~~,% Right Skate

Fig. 1. Skating trajectories using the proposetf D model.

Replant Right Skate

F

the heading anglé = tan*l(ﬁ).

o GL mode
This mode is the continuation of the previous mode,
where the skater rests on his left skate while the right
skate is lifted in the air for repositioning. The state
equations, obtained by setting the applied forces to zero
in the previous mode, are

Left skate trajectory
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l]z = U sin(oq)
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/| o SR mode

. o Fo _ After the right skate has been replanted, the right skate

Fig. 2. Depicted is the force applied during td, mode begins its striding phase, while the left skate applies

the force. This is similar to theS. mode with the

role reversal between the left and right skates. The state

force is being applied to the right and left skate by equations are

the ice, but in the opposite direction. The components

perpendicular to each skate edge are cancelled by the :C'l - C.Os(al)

forces normal in the plane. The remaining components 7 = wvsin(ay)

along the skate edge are responsible for the forward o = ﬁsin(o —aqp) — ﬁvf

motion. The friction between the ice and both skates is . m m
proportional to the normal force. The proportionality r = vrcos(ar)

constant, in turn, is a function of the velocity [14]. Yr = vpsin(ay)

This friction, however, is significantly smaller than air O, = v sin(f — o) — Hi v?
friction that accounts for 75% of the resistance [14]. The m+ M m+ M

mu;+(m~+M)v,

S . 5 .
air friction force satisfies:, v, wherep; is a constant wherew, = H{m]

depending on the drag coefficient, frontal area, and the , R mode

posture of the skater [16]. A physical constraint is the  The end of the previous mode leads to the Glide-Right
distanceR, R = +/(z1 — )2 + (w1 — y,)? between mode, where the skater glides on his right skate. This

the two skates. Furthermore, the heading anjles is the right skate analogue of th&'L mode, and the
constrained to be; < 0 < «,.. Using Newton’s second corresponding state equations are

law, the state equations are readily obtained:

) T, = wpcos(ay)
X = U COS(OQ) . .
) ) Ur = vpsin(ay)
9 = wsin(og) . e o
v = ——
o = “ sin(a; — 0) — A v? " M+2m "
. m+ M m+ M The boundary conditions at mode switching instants can
ir = wypcos(ar) be determined by physical arguments. Assuming the conser-
Yr = vpsin(a,) vation of momentum, the velocity of the left skate at the
b = Lsin(a, —0) — M2 onset of theGL from SL mode isv;t = "=t 0t
m m Since the position of left skate is determlned from the end
where py, is the air friction coefficient andv. = of SL, the position of the left skate at the onset GfL

{mitMoitmen s the velocity of the center mass. Also, satisfiess;” = ;7 andy;” = y;". We further denote this set



at the switching instants. The transition functions at the
rmsg/' NGL switching time instants are given as

Ip(i+1)(7.l.+) — ppr@) (Ip(i) (Ti_)va(i))’ 2)

for i = 1,...,N. Here, F?() e ¢2 : R x R¥"
R""" is a twice-differentiable discrete-state transition
) ‘/rmcg function, andw?® € R¥""” is a control parameter. For ease
o of notation, let's parameterize the state and control vscto

by their sequential index rather than the identifiét). Thus
if we start with the initial stater;(0), the state trajectory

» ) . _will be given as follows:
of conditionsFsy,. During theGL mode, the right skate is

Fig. 3. State Transition

being repositioned a distance of units forward to prepare oi(t) = fi(zi(t),ui(t)), whent € [r,_1,7;) )
for the é*R mode. Therefczre, at the onset of the? moq_e, Tip1(Tit) = Fi(2i(:), ws), (4)
xf =z +r, andy} =y, —r,. Furthermore, the position _ _ »
and velocity of the left skate continues from the endsgf.  for @ = 1,...,N. Note here once again, that € R™,

Hence,x?" — (E;, yl+ — y;, Ul+ — ’U;, andv;f‘ — v;.We U; € R™i whent S [Tifl,Ti), andwi = ka
denote this transition map @ ... By similar arguments, the ~ Now that we have a characterization of the state trajectory,

transition mapFsx from the SR mode to theGR mode is We can formulate an optimal control problem. More specif-
et =z, yf =y, vf = (m+]1\\441712r+mvz and the transition ically, the problem is to determine the optimal continuous
T T Ir rYr m 1

map Far from GRt0 SLis o) = o 471, yb = y= 47 control signalu;(¢t) fori =1,..., N, discrete control signal
v =v-, ot = 3o, yt =y landvq _ U—_l T fori = 1,...,N — 1, and switching time vectoF =
: oo T [71,...,75v—1]T in order to minimize a performance index
IIl. OPTIMALITY CONDITIONS Ny N-1
Having motivated the need for optimal control of multi- J:Z; /T ff(xi’ui)dt +Z;¢i(zi(n_)’wi)+¢(x]v (mv)) (8)

dimensional hybrid systems in the previous section, in this
section we begin by formalizing the optimal control problemHere L; € C? : R™ x R™ — R is the instantaneous cost
Then we use variational arguments to derive the necessdfymodei, while ¢; € C* : R™ x R* — R is a state
conditions for optimality. Once these conditions are ot transition cost between modes ade C* : R*™Y — R is

we will present a numerical algorithm that utilizes thesdhe terminal cost. In the next subsection, we will derive the
optimality conditions to converge to a local solution foeth optimal control via calculus of variations.

optimal control parameters. B. Optimality Conditions

A. Problem Formulation In this section, we derive the optimality conditions for the

The dynamical system discussed in this paper corresporRf@blem defined above using a variational approach. This
to a specific class of hybrid systems, where the dimension 8PProach avoids the explicit computation of the pertudei
the state and control space changes between different moé @ clever choice of the Lagrange multipliers. Adjoining
of operation. We assume that switches between the differdh dynamical constraints (3) to the cost (5) via different
dynamics is time-driven, where the switching-time vecto29range multipliers (or co-states);(t) & R, defined
7= [r,....7v_1]T is also a control parameter. However,0Ver time mtervgl(_ri._l,n), will not aIt_e_r the valug ofJ.
the ordering of the modes is assumed fixed. Also, the initidfloreover, by adjoining the state transition constraintthat
time 7, = 0 and final timery = 7" will be assumed fixed. It SWitching times (4) via Lagrange multipliefs < Ribxmats,
will be beneficial to introduce an identifipts), taking values and assuming that the optimal control variables are chosen,
in a finite set, denoting the mode of operation during the tim@€ obtain the optimal cosf.
interval [r;_1,7;). As mentioned earlier, the dimensions of Defining the HamiltoniansH; (i, Ai, us) = Li(wi, u;) +
the state and control spaces vary from mode to mode. Hence/ (i, ui), the augmented (but unaltered from an evalua-
we letz() € R™ while w?® € R™"” . Now, the state {ON Paint of view) cost is given by

evolution during time intervalr;_1, 7;) is given by o= Z/T {Hi(a:i \ ui)—)\i:'ci} e ©)
G = PO (2P0 (1), PO (1)), I =177

-1 N

where /70 € ¢2 - R x R R s a twice- +ZM1' [E(l’i(ﬂ‘_),wi) —xi+1(n+)}+z bi(wi(mi—), wi).

differentiable continuous-state transition function irode  =! =1

p(#). Thus the control, thus far, consists of a continuous In the equation above, we lepy(zy(Tn—),wy) =

time inputu?®(.) for each modep(1),...,p(N) and the @y (z,(7n)).

switching time vectofr. Now we perturb (6) in such a way that — wu; + ev;
Note that since the state trajectory switches betwedor i = 1,....N, 7, — 7; + ¢0; andw; — w; + ew; for

different dimensions, the state trajectories are disoootis 7 =1,..., N — 1. With ¢ << 1, this perturbation induces a



sequence of perturbatiofis; } in the state trajectories;, e.g.  Using integration by parts, the integral terms in (10) ferth
x; — x; + en;. Note thatdy = 5 = 0 since the initial and reduces to
final times are assumed fixed. The first order approximation

N B
o T rOH; OH,; .
of the perturbed cost/,, is given b = i+ —Lu — Nim; | dt —
p .. is g y 5K Z/ [ax_nJrauiu /\n}dt
Ti+€eb; N
Z/ (2, Nis ) — A :c dt—f—Z/ i(z, ug)dt — - Z [/\i(Ti_)ni(Ti_) - /\i(7i71+)77i(7'i—1+)} (11)
Ti— 1 1=1

N o pricatedia Substitutingd into §.J, and choosing)\; in the intervals

0H; )
Z LZ(:cZ,uZ dt+eZ/ 8 771 R —/\im]dt (1,1, 7;) to solve

— Jri . OH,
1=1 - ¢ . . .
N1 i oz, (xu i uz)v (12)
+ Z 1 {Fi((:vi(ﬁ- + €0;)—), w; + ew;)—ziy1(7; + 691-)4—)] yields
i=1 J N-1 N-1
+e Hi [—.771'(7'1'—) - 77i+1(7'i+)} + (7) =1V Ti-1 i1 i=1
i=1 O N-1
N
O + Z i1 (i) = pi | Dipr (T +) +
+Z¢Z((l‘l((7}+€91) ) w; + €w; -i-ezaxZ i_)- = [ ]
i=1 i=1 N—-1 OF, 6¢
Note that we explicitly used the fact th#t(x;(t), u;(t)) — + {Hi% T o Ai(Ti_):|77i(Ti_) +
i(t) is zero in the open intervalg;_1,7;_1 + €6;_1) and 131(1) ! !
(7i, 7 + eby). o , +[— - /\N(TN_)}nN(TN_)a (13)
Now the first variation in the performance index (5) can oxn
be expressed as the limit fer— 0 of where
T — 7T OH; 0¢; oF
57 = i 7N ®) A=Toh o and Bi= B )
Thus using (6) and (7), it follows that Ci = [Li(d?i,ui) - Li+1(17i+laui+1)} T+
N oF 0¢i
0H,; 0H, . T f () — s T ) (e
5 = Z/ {350- Wi+ Sotvi— A |t + +[‘“axi filri) = wifina (rik) + 5o il |- @)
N Here we used the fact thaty(zy(Tn—),wn) =
57 Ly, 0; — Li(zi,us)|r 01 + <I>N(:vn(ﬁy)) and 771(0+_) = 0. The c;omputation of the
= perturbationsn;} is avoided by choosing
N—-1
oF OF . i = Xix1 (Ti+), (16)
+ i [T%(Ti_)ei + i £Ci+1(7'i+)91} + i 3})7’- 06
i=1 Li Wi Ai(Ti—) = ,LLZ—l + Z, and (17)
N—-1 aF (r“)(;t'l 6:101-
) ) d
+ Z i g (7i=) = miaa (i) + A7) = o (18)
oo . 5@ O These conditions specify the boundary conditions of the co-
+Z [(% (=)0 + 5 wit o (Tz—)] (9) state defined by (12).

With this choice of the co-state, the first order variation
Reordering the sum, reorganizing terms, and rememberiio§ J reduces to

thatfy = Oy = 0, we get N N-1 N-1
=17Ti-1 i=1 i=1

0J = Z/ a L i Vi — 1771:|dt +Z |: :Cuuz
Ti xl Ui Sinced;, w;, andy; are independent, the necessary conditions
for optimality are the vanishing ofi;’s, B;'s, and C;’s in
—Li+1($i+17uz'+1)L 0; +Z [Mi%fi(ﬂ’_) — pi fir1(Ti+)  (13). These results are summarized in a theorem below:

Theorem 3.1:Given a multi-dimensional hybrid system

39251 — of the form (3) and (4), an extremum to the performance
+6 } Z {a mi(7i=) = m+1(n+)} + index J in (5) is attained when the control variables for

No1 B 3¢ i=1,...,N, , andw;, fori =1,...,N — 1, are chosen

Z Z [ 177(71'—)] (10) as follows: _ ' . _

= = T Euler-Lagrange Equations)\; = — 5 (23, Aiyug), with



when t € (r?), 7®)),

te (ri1,m), fori=1,...,N.

.. Lo (p) mi . n; . 1xn;
Boundary COﬂdItIOﬁS)\N(TN—) = 63;1;, and )\i(q-l._) — iteration p s u” (t) € R™, xi(t) € R™, A;(t)f?f) . . (,)=
X . . T § . | lP time (¢
)\i+1 (Ti+) gfl + gih’ for i = 1’ . ’N — 1. 1 istandald update: :T
Optlmallty Conditions %—Ijz = O, gi}}: + Ai.,.l (Tl—f—) g—i = ul(i"“) — ﬂ/1(”1))%/ c pmi : However, ugpﬂj(t) € R™ when

!
; : | Ou; T (p+1) _(p+1)
0, andH;(7;—) — H;+1(mi+) = 0, where H; is the Hamilto- | when ¢ € (r?), 7 e @i,
. | =17 " N
nian HZ(I“AZ,'U%) = Lz(«rz,uz) +A1fl($“u1) iteration p + 1 |

I
|
\ ij:rl) / ) time (t)
C. Numerical Algorithms '
[regions of conflict!]

Now _that_ we ha_Ve derived the necessary conditionSgy. 4. Depicted here is a situation where the standard epfethod
for optimality, we introduce numerical algorithms thatleads to a conflict in dimensions of the contigl.
utilize these conditions to attain optimal control values:

- i;]g(t;)ahfzoer \;Vlt:h f gues; cf ;heaizrzggl(\t/?rﬁltorlle;@é u§”“> — updat e- u(ugp))
by A ’ i () (p) oH, '
(72 7Y fori=1,...,N, and letp = 0. - Utemp(t) = ;" — i u”
-whilep<ilor [JP — Jr-D| <¢ S if (Ti(lerl) > Ti(f)l & Ti(erl) > Ti(p))
1. Compute the state trajectorieg(t), for i = ) u(p+1)(t) — gy (£); T € [T(p+1) 7,}(p))
1,...,N, and cost/(*) forward in time from (1) Ry o)1
0 to T using (3), (4), and (5). Su ) = temp(7) + (8= T ey (T);
2. Compute the co-states\;(t), for i = teln” ).
1,...,N, backward in time fromT to 0 - elseif (7-1.(_”“1“1) > 7P g 7P < ri(p))
using (12), and (16) - (18). _ uEp“)(t) = Upemp(t); t € [Ti(lerl)7Ti(p+l))'
3. ComputeA;, B;, C; fori=1,..., N using ) p+1) ») (p+1) )
(14)_(15) - elseif (Tifl < Ti_1 & T; > T; )
4. Update the control variables and w; as - u§p+1)(t) = Utemp(t); t € [Ti(f)l,Ti(p)),
follow : -~ ulPV(8) = e (TP) + (= 7 Vitgemp (77
L+ _ () _ AP te [Ti(p ,Ti(erl)),
( ‘B o) o = PV ) = e (1)) + (7P, =V tttemp (17));
wPtY = w® ) p, ui ( +1)t6m1) i—1 i—1 temp (T;_1
¢ ¢ W terny ,Ti_p)l).
fori=1,.. ., N —1,wherev) and~{ are - el seif (Ti(:{l) <7®) g 77D < Ti(p))
step size parameters. 41 _ 1
5. Update the contrak; using theupdat e- u - U(EPH)) (t) = utemp(tzv)t € [Ti(()%’ Y, "
sub-function (defined below): -t :1Utemp(ﬁfp1)+(ﬁf1 —t)titemp(1;27);
uP) — updat e- u(u(_p)) te [Ti(—-f )7Ti(_p)1)
' v -end if
6. p=p+1
- end while The idea here is tarim and extend the control u; as

mecessitated by the change in the switching times. The
pe_xtension is done by using a first-order Taylor approxinmatio

efficient method among others is to use the Armijo ste ) N
size [15]. This algorithm is similar to a gradient descenil-(r;frl')nStance shown in Figure 4 corresponds to the when

algorithm, however there is one big distinction. Thgs Ti—1 =~ ~ ) and 7Pt > 7P in this case, since;
and w;'s can be readily updated in the negative gradierificreased, the beginning (e.g. when= (27D 72y
direction as usual. However, the continuous control vectd$ trimmed. Also sincer; increased, the end (e.g. when
u; cannot be updated using the standard approach becadse [Ti(p_l),fi(p))) must be extended. The other cases are

of the change in dimensions between modes. To see why tisignilar.
happens, consider the situation depicted in Figure 4. Here i

In the algorithm above; denotes the step-size, and a

we u da)te the control,; using }h)e u(s;JaI update method, IV. OPTIMAL CONTROL OF ICE SKATER
Jrl my . . . . .
the u;"" () € R™ whent € [r,”),7;"). However, upon | this section, we derive the optimal control of the ice

updating the switching times, there will be two regions Ofyater model presented in Section Il using the algorithms
conflict assuming the switching times change. from the previous section. In particular, we assume thesskat
There are four distinct cases of conflict that can occur fdnas an initial velocity ofv.(0) = 1 m/s and it is desired
each controk;. To address the update issue and the regioris achieve a velocity ob; = 3 m/s in T seconds while
of conflict, we propose the followingpdat e- u function:  minimizing the energy expenditure (or work done). With this
goal in mind, the following performance index is proposed:



V. CONCLUSIONS

In this paper, we presented an algorithmic framework for
whereC, andC, are scalar weights,(t) andD(t) represent the opt!mal control of systems that experience changes n
. . ddmensmns of the state and input spaces between different
the force applied by the skater and the distance travelle . ! . :
modes of operation. These changes in the dimensions can be

T
J= /0 Cy (u(t) D(t))dt + Ca(vo(T) — va)?,  (20)

by the skates, respectively. In order to fit problem into the
general framework presented in Sections Il and Ill. Firsten
that u(¢t) = 0 in the GL and GR modes, hencd.(t) = 0
in these modes. The instantaneous cost duringStheand
SR mode is L(t) = Cy(u(t)sin(0(t))(zi(t) + - (t)) +
u(t) COS(H(t)) (yl (t)+yr (t)))a Wherexl(t)v yl(t)7 Ly (t)7 Yr (t)
are the x and y coordinates of the left and right skates
respectively and = tan*l(ﬁ). Moreover, we note that
¢i(zi (=), w;) = 0 and ®(xn (7n)) = Co(ve(Tn) — va)?.
For the purpose of the simulation, it is assumed that the
state transitionsk;) are autonomous (e.g. no discrete controly
w;), and alsoa; = & anda, = —% are assumed fixed.
In this case, the control consists of the switching times 2]
and the continuous contral;(t). We will start in theSL
mode and transition between different modes as specified in
Figure 2. In the simulation, the initial skate positions arel
xo = [0,0,1,0.25,—0.25,1] and we assume an skater of
average body type [16]M = 40 kg, m = 20 kg, ur =
0.157 %2, vy =3 2, T =3 5, C; = 0.01, and Cy = 50.
Figure 5 shows the optimal switching times by displaying the
active mode as a function of time, and Figure 6 depicts thé]
trajectory using the optimal control, and optimal switching [6]
times ;.

(4
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Fig. 5. Depicted is the active mode as a function of time fer ¢iptimal
switching times.
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Fig. 6. Depicted is the optimal trajectory staringS. mode and switching
between theZL, SR, GR modes.

imposed as infinite-dimensional state constraints, butethe
constraint typically add significant computational ovexthe
Instead, we introduced a non-standard Multi-Mode, Multi-
Dimension (/D) model and derived optimality conditions
for such systems using variational arguments. We moreover
derived a detailed/? D model for an ice-skater, and demon-
strated the viability of the presented methods through an
optimal control example of the ice-skater.
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