
Optimal Control of Multi-Dimensional, Hybrid Ice-Skater M odel

Tejas R. Mehta, Deryck Yeung, Erik I. Verriest, Magnus Egerstedt

Abstract— In this paper, we study hybrid models that not
only undergo mode transitions, but also experience changes
in dimensions of the state and input spaces. An algorithmic
framework for the optimal control of such Multi-Mode, Multi -
Dimension (or M

3
D) systems is presented. We moreover derive

a detailed M
3
D model for an ice-skater, and demonstrate the

use of the developed framework on the ice-skater model.

I. INTRODUCTION

Hybrid systems, i.e. systems whose dynamics contain both
a continuous and a discrete component, have proved to
be useful tools when modelling complex physical systems,
where the dynamics changes among different dynamical
regimes in response to external as well as internal events.
Examples range from bipedal, walking robots [1], where
each leg undergoes a swing-phase and a stance-phase, and
high-velocity mobile robots [2], where the wheels transition
between rolling and slipping modes, to models in systems
biology [3], [4], in which regulatory networks inhibit or
excite different aspects of the cell dynamics. This paper
follows this tradition by focusing on constrained (physical)
systems (see for example [5]). However, rather than focusing
on modelling and analysis, we make the control of these
systems the explicit aim.

Unfortunately, producing computationally feasible algo-
rithms for hybrid control design has proved to be a daunting
task from a complexity point of view. As an example, one can
consider the problem of optimal control of hybrid systems,
where [6], [7] early on formulated variants of the hybrid
maximum principle. However, the leap from optimality con-
ditions to computational algorithms has proved computation-
ally infeasible except for restricted problem classes, such as
piecewise affine systems [8], systems in which the mode
schedule is predetermined [9], [10], to classes of suboptimal
solution methods [11], [12].

In this paper, we make no claims about solving the general,
hybrid optimal control problem, but rather focus our attention
on systems for which the mode sequence is fixed and given.
The control parameters then becomes the control signals
within each individual mode and parameterized character-
izations of the switching conditions and transition relations.
This work can be viewed as an extension of [13]. In [13]
a new class of systems, the so-called Multi-Mode, Multi-
Dimension (orM3D), was introduced where the dimension
of the system is allowed to change from mode to mode.
Furthermore, various state transition maps and an optimal
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control problem were considered. In this paper, however, we
will, as an extension, also allow the dimension of the control
space to change as the system undergoes mode switchings.
Due to the possible changes of dimensions in the control and
state space, it is necessary to introduce a new computational
algorithm to implement the optimality conditions. Although
it is possible to embed this algorithm into a more classical
and larger algorithm, our approach has the advantage that it
is significantly less demanding in terms of computational
time and complexity because only relevant variables are
computed. Moreover, we will consider a fairly elaborate
model of a ice-skater to illustrate the modeling and control
of M3D systems. This skating model will operate in four
different modes as the skater moves forward, where each
mode characterizes the particular motion of both skates. A
corresponding optimal control problem will be considered as
well.

The outline of this paper is as follows: In Section II,
the ice-skater model will be introduced as a vehicle for
illustrating the various modelling issues. Following this, in
Section III, M3D systems will be formally introduced and
optimality conditions will be derived within the frameworkof
the Calculus of Variations. This section moreover containsa
description of the development of a computational algorithm,
which is then applied to the ice-skater model in Section IV.
The conclusions are given in Section V.

II. A MOTIVATING EXAMPLE

In this section, we introduce aM3D model for an ice-
skater. Figure (1) shows the trajectories of both the left and
right skate (dotted lines) with respect to the forward motion
(from left to right).The human body is modelled by three
masses;m for each leg andM for the torso and head.
The skating motion is modelled as aM3D system having
four modes. These modes are the ‘Stride-Right’ (SR) mode,
the ‘Glide-Left’ (GL) mode, the ‘Stride-Left’ (SL) and the
‘Glide-Right’ (GR) mode. The detailed dynamics of each
mode are presented next.

• SL mode:
Throughout the skating motion, the angles of the left
and the right skate with respect to thex-axis are denoted
by αl andαr, respectively.
During this mode, the skater applies a forceu on the
right skate along the line of the body as shown in figure
(2). The mass of the torso (M) and of the right leg (m)
are assumed to be resting on the left skate during this
acceleration. Therefore, the total mass going along the
left skate ism+M . Accordingly, the mass on the right
skate ism. As the right skate pushes outward, the same
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force is being applied to the right and left skate by
the ice, but in the opposite direction. The components
perpendicular to each skate edge are cancelled by the
forces normal in the plane. The remaining components
along the skate edge are responsible for the forward
motion. The friction between the ice and both skates is
proportional to the normal force. The proportionality
constant, in turn, is a function of the velocity [14].
This friction, however, is significantly smaller than air
friction that accounts for 75% of the resistance [14]. The
air friction force satisfiesµkv2, whereµk is a constant
depending on the drag coefficient, frontal area, and the
posture of the skater [16]. A physical constraint is the
distanceR, R =

√

(xl − xr)2 + (yl − yr)2 between
the two skates. Furthermore, the heading angleθ is
constrained to beαl ≤ θ ≤ αr. Using Newton’s second
law, the state equations are readily obtained:

ẋl = vl cos(αl)

ẏl = vl sin(αl)

v̇l =
u

m + M
sin(αl − θ) −

µk

m + M
v2

c

ẋr = vr cos(αr)

ẏr = vr sin(αr)

v̇r =
u

m
sin(αr − θ) −

µk

m
v2

c

where µk is the air friction coefficient andvc =
(m+M)vl+mvr

M+2m
is the velocity of the center mass. Also,

the heading angleθ = tan−1(xl−xr

yl−yr
).

• GL mode:
This mode is the continuation of the previous mode,
where the skater rests on his left skate while the right
skate is lifted in the air for repositioning. The state
equations, obtained by setting the applied forces to zero
in the previous mode, are

ẋl = vl cos(αl)

ẏl = vl sin(αl)

v̇l = −
µk

M + 2m
v2

l

• SR mode:
After the right skate has been replanted, the right skate
begins its striding phase, while the left skate applies
the force. This is similar to theSL mode with the
role reversal between the left and right skates. The state
equations are

ẋl = vl cos(αl)

ẏl = vl sin(αl)

v̇l =
u

m
sin(θ − αl) −

µk

m
v2

c

ẋr = vr cos(αr)

ẏr = vr sin(αr)

v̇r =
u

m + M
sin(θ − αr) −

µk

m + M
v2

c

wherevc = mvl+(m+M)vr

M+2m
.

• GR mode:
The end of the previous mode leads to the Glide-Right
mode, where the skater glides on his right skate. This
is the right skate analogue of the ‘GL mode,’ and the
corresponding state equations are

ẋr = vr cos(αr)

ẏr = vr sin(αr)

v̇r = −
µk

M + 2m
v2

r

The boundary conditions at mode switching instants can
be determined by physical arguments. Assuming the conser-
vation of momentum, the velocity of the left skate at the

onset of theGL from SL mode isv+
l =

mv−

r +(M+m)v−

l

M+2m
.

Since the position of left skate is determined from the end
of SL, the position of the left skate at the onset ofGL
satisfiesx+

l = x−

l andy+
l = y−

l . We further denote this set
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of conditionsFSL. During theGL mode, the right skate is
being repositioned a distance ofrx units forward to prepare
for the SR mode. Therefore, at the onset of theSR mode,
x+

r = x−

l + rx andy+
r = y−

l − ry. Furthermore, the position
and velocity of the left skate continues from the end ofGL.
Hence,x+

l = x−

l , y+
l = y−

l , v+
l = v−l , and v+

r = v−l .We
denote this transition map asFGL. By similar arguments, the
transition mapFSR from theSR mode to theGR mode is
x+

r = x−

r , y+
r = y−

r , v+
r = (m+M)vr+mvl

M+2m
, and the transition

mapFGR from GR to SL is x+
l = x−

r + rx, y+
l = y−

r + ry,
v+

l = v−r , x+
r = x−

r , y+
r = y−

r , andv+
r = v−r .

III. OPTIMALITY CONDITIONS

Having motivated the need for optimal control of multi-
dimensional hybrid systems in the previous section, in this
section we begin by formalizing the optimal control problem.
Then we use variational arguments to derive the necessary
conditions for optimality. Once these conditions are obtained,
we will present a numerical algorithm that utilizes these
optimality conditions to converge to a local solution for the
optimal control parameters.

A. Problem Formulation

The dynamical system discussed in this paper corresponds
to a specific class of hybrid systems, where the dimension of
the state and control space changes between different modes
of operation. We assume that switches between the different
dynamics is time-driven, where the switching-time vector
~τ = [τ1, . . . , τN−1]

T is also a control parameter. However,
the ordering of the modes is assumed fixed. Also, the initial
time τ0 = 0 and final timeτN = T will be assumed fixed. It
will be beneficial to introduce an identifierp(i), taking values
in a finite set, denoting the mode of operation during the time
interval [τi−1, τi). As mentioned earlier, the dimensions of
the state and control spaces vary from mode to mode. Hence,
we let xp(i) ∈ R

np(i)

, while up(i) ∈ R
mp(i)

. Now, the state
evolution during time interval[τi−1, τi) is given by

ẋp(i) = fp(i)(xp(i)(t), up(i)(t)), (1)

where fp(i) ∈ C2 : R
np(i)

× R
mp(i)

→ R
np(i)

is a twice-
differentiable continuous-state transition function in mode
p(i). Thus the control, thus far, consists of a continuous
time input up(i)(·) for each modep(1), . . . , p(N) and the
switching time vector~τ .

Note that since the state trajectory switches between
different dimensions, the state trajectories are discontinuous

at the switching instants. The transition functions at the
switching time instants are given as

xp(i+1)(τi+) = F p(i)(xp(i)(τi−), wp(i)), (2)

for i = 1, . . . , N . Here, F p(i) ∈ C2 : R
np(i)

× R
kp(i)

→
R

np(i+1)

is a twice-differentiable discrete-state transition
function, andwp(i) ∈ R

kp(i)

is a control parameter. For ease
of notation, let’s parameterize the state and control vectors
by their sequential index rather than the identifierp(i). Thus
if we start with the initial statex1(0), the state trajectory
will be given as follows:

ẋi(t) = fi(xi(t), ui(t)), when t ∈ [τi−1, τi) (3)

xi+1(τi+) = Fi(xi(τi), wi), (4)

for i = 1, . . . , N . Note here once again, thatxi ∈ R
ni ,

ui ∈ R
mi when t ∈ [τi−1, τi), andwi = R

ki .
Now that we have a characterization of the state trajectory,

we can formulate an optimal control problem. More specif-
ically, the problem is to determine the optimal continuous
control signalui(t) for i = 1, . . . , N , discrete control signal
wi for i = 1, . . . , N − 1, and switching time vector~τ =
[τ1, . . . , τN−1]

T in order to minimize a performance index

J=

N
∑

i=1

∫ τN

τi−1

Li(xi, ui)dt +

N−1
∑

i=1

φi(xi(τi−), wi)+Φ(xN (τN )) (5)

Here Li ∈ C2 : R
ni × R

mi → R is the instantaneous cost
in mode i, while φi ∈ C2 : R

ni × R
ki → R is a state

transition cost between modes andΦ ∈ C2 : R
nN → R is

the terminal cost. In the next subsection, we will derive the
optimal control via calculus of variations.

B. Optimality Conditions

In this section, we derive the optimality conditions for the
problem defined above using a variational approach. This
approach avoids the explicit computation of the perturbations
with a clever choice of the Lagrange multipliers. Adjoining
the dynamical constraints (3) to the cost (5) via different
Lagrange multipliers (or co-states),λi(t) ∈ R

1×ni , defined
over time interval(τi−1, τi), will not alter the value ofJ .
Moreover, by adjoining the state transition constraints atthe
switching times (4) via Lagrange multipliersµi ∈ R

1×ni+1 ,
and assuming that the optimal control variables are chosen,
we obtain the optimal cost̄J0.

Defining the Hamiltonians,Hi(xi, λi, ui) = Li(xi, ui) +
λifi(xi, ui), the augmented (but unaltered from an evalua-
tion point of view) cost is given by

J̄0 =

N
∑

i=1

∫ τi

τi−1

[

Hi(xi, λi, ui)−λiẋi

]

dt+ (6)

+

N−1
∑

i=1

µi

[

Fi(xi(τi−), wi) − xi+1(τi+)
]

+

N
∑

i=1

φi(xi(τi−), wi).

In the equation above, we letφN (xN (τN−), wN ) =
ΦN (xn(τN )).

Now we perturb (6) in such a way thatui → ui + ǫνi

for i = 1, . . . , N , τi → τi + ǫθi and wi → wi + ǫωi for
i = 1, . . . , N − 1. With ǫ << 1, this perturbation induces a



sequence of perturbations{ηi} in the state trajectoriesxi, e.g.
xi → xi + ǫηi. Note thatθ0 = θN = 0 since the initial and
final times are assumed fixed. The first order approximation
of the perturbed cost,̄Jǫ, is given by

J̄ǫ=

M
∑

i=1

∫ τi

τi−1

[

Hi(xi, λi, ui) − λiẋ
]

dt+

N
∑

i=1

∫ τi+ǫθi

τi

Li(xi, ui)dt −

−

N
∑

i=1

∫ τi−1+ǫθi−1

τi−1

Li(xi, ui)dt +ǫ

N
∑

i=1

∫ τi

τi−1

[∂Hi

∂xi

ηi +
∂Hi

∂ui

νi − λiη̇i

]

dt

+

N−1
∑

i=1

µi

[

Fi

(

(xi(τi + ǫθi)−), wi + ǫωi

)

−xi+1(τi + ǫθi)+)
]

+ǫ

N−1
∑

i=1

µi

[∂Fi

∂xi

ηi(τi−) − ηi+1(τi+)
]

+ (7)

+

N
∑

i=1

φi

(

(xi((τi + ǫθi)−), wi + ǫωi

)

+ ǫ

N
∑

i=1

∂φi

∂xi

η(τi−).

Note that we explicitly used the fact thatfi(xi(t), ui(t)) −
ẋi(t) is zero in the open intervals(τi−1, τi−1 + ǫθi−1) and
(τi, τi + ǫθi).

Now the first variation in the performance index (5) can
be expressed as the limit forǫ → 0 of

δJ = lim
ǫ→0

J̄ǫ − J̄0

ǫ
. (8)

Thus using (6) and (7), it follows that

δJ =
N

∑

i=1

∫ τi

τi−1

[∂Hi

∂xi

ηi +
∂Hi

∂ui

νi − λiη̇i

]

dt +

+
N

∑

i=1

Li(xi, ui)|τi
θi − Li(xi, ui)|τi−1θi−1 +

+

N−1
∑

i=1

µi

[ ∂F

∂xi

ẋi(τi−)θi +
∂F

∂wi

ωi − ẋi+1(τi+)θi

]

+

+

N−1
∑

i=1

µi

[∂Fi

∂xi

ηi(τi−) − ηi+1(τi+)
]

+

+

N
∑

i=1

[∂φi

∂xi

ẋi(τi−)θi +
∂φi

∂wi

ωi +
∂φi

∂xi

η(τi−)
]

. (9)

Reordering the sum, reorganizing terms, and remembering
that θ0 = θN = 0, we get

δJ =

N
∑

i=1

∫ τi

τi−1

[∂Hi

∂xi

ηi +
∂Hi

∂ui

νi − λiη̇i

]

dt +

N−1
∑

i=1

[

Li(xi, ui)

−Li+1(xi+1, ui+1)
]

τi

θi +

N−1
∑

i=1

[

µi

∂F

∂xi

fi(τi−) − µifi+1(τi+)

+
∂φi

∂xi

fi(τi−)
]

θi +

N−1
∑

i=1

µi

[∂Fi

∂xi

ηi(τi−) − ηi+1(τi+)
]

+

+

N−1
∑

i=1

∂F

∂wi

ωi +

N
∑

i=1

[ ∂φi

∂wi

ωi +
∂φi

∂xi

η(τi−)
]

. (10)

Using integration by parts, the integral terms in (10) further
reduces to

δK =
N

∑

i=1

∫ τi

τi−1

[∂Hi

∂xi

ηi +
∂Hi

∂ui

νi − λ̇iηi

]

dt −

−
N

∑

i=1

[

λi(τi−)ηi(τi−) − λi(τi−1+)ηi(τi−1+)
]

.(11)

SubstitutingδK into δJ , and choosingλi in the intervals
(τi−1, τi) to solve

λ̇i = −
∂Hi

∂xi

(xi, λi, ui), (12)

yields

δJ =

N
∑

i=1

∫ τi

τi−1

Aiνidt +

N−1
∑

i=1

Biωi +

N−1
∑

i=1

Ciθi +

+

N−1
∑

i=1

[

λi+1(τi+) − µi

]

ηi+1(τi+1+) +

+

N−1
∑

i=1

[

µi

∂Fi

∂xi

+
∂φi

∂xi

− λi(τi−)
]

ηi(τi−) +

+
[ ∂Φ

∂xN

− λN (τN−)
]

ηN (τN−), (13)

where

Ai =
∂Hi

∂ui

, and Bi =
∂φi

∂wi

+ µi

∂F

∂wi

(14)

Ci =
[

Li(xi, ui) − Li+1(xi+1, ui+1)
]

τi

+

+
[

µi

∂F

∂xi

fi(τi−) − µifi+1(τi+) +
∂φi

∂xi

fi(τi−)
]

. (15)

Here we used the fact thatφN (xN (τN−), wN ) =
ΦN (xn(τN )) and η1(0+) = 0. The computation of the
perturbations{ηi} is avoided by choosing

µi = λi+1(τi+), (16)

λi(τi−) = µi

∂Fi

∂xi

+
∂φi

∂xi

, and (17)

λN (τN−) =
∂Φ

∂xN

. (18)

These conditions specify the boundary conditions of the co-
state defined by (12).

With this choice of the co-state, the first order variation
of J reduces to

δJ =
N

∑

i=1

∫ τi

τi−1

Aiνidt +
N−1
∑

i=1

Biωi +
N−1
∑

i=1

Ciθi. (19)

Sinceθi, ωi, andνi are independent, the necessary conditions
for optimality are the vanishing ofAi’s, Bi’s, and Ci’s in
(13). These results are summarized in a theorem below:

Theorem 3.1:Given a multi-dimensional hybrid system
of the form (3) and (4), an extremum to the performance
index J in (5) is attained when the control variablesui, for
i = 1, . . . , N , τi and wi, for i = 1, . . . , N − 1, are chosen
as follows:
Euler-Lagrange Equations: λ̇i = −∂Hi

∂xi
(xi, λi, ui), with



t ∈ (τi−1, τi), for i = 1, . . . , N .
Boundary Conditions: λN (τN−) = ∂Φ

∂xN
, and λi(τi−) =

λi+1(τi+)∂Fi

∂xi
+ ∂φi

∂xi
, for i = 1, . . . , N − 1.

Optimality Conditions: ∂Hi

∂ui
= 0, ∂φi

∂wi
+ λi+1(τi+) ∂F

∂wi
=

0, andHi(τi−)−Hi+1(τi+) = 0, whereHi is the Hamilto-
nian Hi(xi, λi, ui) = Li(xi, ui) + λifi(xi, ui).

C. Numerical Algorithms

Now that we have derived the necessary conditions
for optimality, we introduce numerical algorithms that
utilize these conditions to attain optimal control values:

- Initialize with a guess of the control variablesτ
(0)
i ,

w
(0)
i , for i = 1, . . . , N − 1, andu

(0)
i (t) with t ∈

[τ
(0)
i−1, τ

(0)
i ) for i = 1, . . . , N , and letp = 0.

- while p < 1 or |J (p) − J (p−1)| < ǫ
1. Compute the state trajectoriesxi(t), for i =

1, . . . , N , and costJ (p) forward in time from
0 to T using (3), (4), and (5).

2. Compute the co-statesλi(t), for i =
1, . . . , N , backward in time fromT to 0
using (12), and (16) - (18).

3. ComputeAi, Bi, Ci for i = 1, . . . , N using
(14)-(15).

4. Update the control variablesτi and wi as
follow :

τ
(p+1)
i = τ

(p)
i − γ(p)

τ Ci,

w
(p+1)
i = w

(p)
i − γ(p)

w Bi,

for i = 1, . . . , N −1,whereγ
(p)
τ andγ

(p)
w are

step size parameters.
5. Update the controlui using theupdate-u

sub-function (defined below):

u
(p+1)
i = update-u(u

(p)
i ).

6. p = p + 1
- end while

In the algorithm above,γ denotes the step-size, and an
efficient method among others is to use the Armijo step-
size [15]. This algorithm is similar to a gradient descent
algorithm, however there is one big distinction. Theτi’s
and wi’s can be readily updated in the negative gradient
direction as usual. However, the continuous control vector
ui cannot be updated using the standard approach because
of the change in dimensions between modes. To see why this
happens, consider the situation depicted in Figure 4. Here if
we update the controlui using the usual update method,
the u

(p+1)
i (t) ∈ R

mi when t ∈ [τ
(p)
i−1, τ

(p)
i ). However, upon

updating the switching times, there will be two regions of
conflict assuming the switching times change.

There are four distinct cases of conflict that can occur for
each controlui. To address the update issue and the regions
of conflict, we propose the followingupdate-u function:

time (t)τ
(p)
i−1 τ

(p)
i

when t ∈ (τ
(p)
i−1, τ

(p)
i ),

u
(p)
i (t) ∈ ℜ

mi , xi(t) ∈ ℜ
ni , λi(t) ∈ ℜ

1×ni .

time (t)τ
(p+1)
i−1 τ

(p+1)
i

However, u
(p+1)
i (t) ∈ ℜmi when

t ∈ (τ
(p+1)
i−1 , τ

(p+1)
i ).

iteration p

iteration p + 1

standard update:

u
(p+1)
i = u

(p)
i − γ(p)

u

∂Hi

∂ui

′

∈ ℜ
mi ,

when t ∈ (τ
(p)
i−1, τ

(p)
i ).

regions of conflict!

Fig. 4. Depicted here is a situation where the standard update method
leads to a conflict in dimensions of the controlui.

u
(p+1)
i = update-u(u

(p)
i )

- utemp(t) = u
(p)
i − γ

(p)
u

∂Hi

∂u
(p)
i

′

- if
(

τ
(p+1)
i−1 ≥ τ

(p)
i−1 & τ

(p+1)
i ≥ τ

(p)
i

)

- u
(p+1)
i (t) = utemp(t); t ∈ [τ

(p+1)
i−1 , τ

(p)
i ),

- u
(p+1)
i (t) = utemp(τ

(p)
i ) + (t − τ

(p)
i )u̇temp(τ

(p)
i );

t ∈ [τ
(p)
i , τ

(p+1)
i ).

- elseif
(

τ
(p+1)
i−1 ≥ τ

(p)
i−1 & τ

(p+1)
i ≤ τ

(p)
i

)

- u
(p+1)
i (t) = utemp(t); t ∈ [τ

(p+1)
i−1 , τ

(p+1)
i ).

- elseif
(

τ
(p+1)
i−1 ≤ τ

(p)
i−1 & τ

(p+1)
i ≥ τ

(p)
i

)

- u
(p+1)
i (t) = utemp(t); t ∈ [τ

(p)
i−1, τ

(p)
i ),

- u
(p+1)
i (t) = utemp(τ

(p)
i ) + (t − τ

(p)
i )u̇temp(τ

(p)
i );

t ∈ [τ
(p)
i , τ

(p+1)
i ),

- u
(p+1)
i (t) = utemp(τ

(p)
i−1)+(τ

(p)
i−1−t)u̇temp(τ

(p)
i−1);

t ∈ [τ
(p+1)
i−1 , τ

(p)
i−1).

- elseif
(

τ
(p+1)
i−1 ≤ τ

(p)
i−1 & τ

(p+1)
i ≤ τ

(p)
i

)

- u
(p+1)
i (t) = utemp(t); t ∈ [τ

(p)
i−1, τ

(p+1)
i ),

- u
(p+1)
i (t) = utemp(τ

(p)
i−1)+(τ

(p)
i−1−t)u̇temp(τ

(p)
i−1);

t ∈ [τ
(p+1)
i−1 , τ

(p)
i−1).

- end if

The idea here is totrim and extend the control ui as
necessitated by the change in the switching times. The
extension is done by using a first-order Taylor approximation.
The instance shown in Figure 4 corresponds to the when
τ

(p+1)
i−1 > τ

(p)
i−1 and τ

(p+1)
i > τ

(p)
i . In this case, sinceτi−1

increased, the beginning (e.g. whent = [τ
(p−1)
i−1 , τ

(p)
i−1))

is trimmed. Also sinceτi increased, the end (e.g. when
t = [τ

(p−1)
i , τ

(p)
i )) must be extended. The other cases are

similar.

IV. OPTIMAL CONTROL OF ICE SKATER

In this section, we derive the optimal control of the ice
skater model presented in Section II using the algorithms
from the previous section. In particular, we assume the skater
has an initial velocity ofvc(0) = 1 m/s and it is desired
to achieve a velocity ofvd = 3 m/s in T seconds while
minimizing the energy expenditure (or work done). With this
goal in mind, the following performance index is proposed:



J =

∫ T

0

C1(u(t)D(t))dt + C2(vc(T ) − vd)
2, (20)

whereC1 andC2 are scalar weights,u(t) andD(t) represent
the force applied by the skater and the distance travelled
by the skates, respectively. In order to fit problem into the
general framework presented in Sections II and III. First, note
that u(t) = 0 in the GL and GR modes, henceL(t) = 0
in these modes. The instantaneous cost during theSL and
SR mode is L(t) = C1

(

u(t) sin(θ(t))
(

xl(t) + xr(t)
)

+
u(t) cos(θ(t))

(

yl(t)+yr(t)
))

, wherexl(t), yl(t), xr(t), yr(t)
are the x and y coordinates of the left and right skates,
respectively andθ = tan−1(xl−xr

yl−yr
). Moreover, we note that

φi(xi(τi−), wi) = 0 andΦ(xN (τN )) = C2(vc(τN ) − vd)
2.

For the purpose of the simulation, it is assumed that the
state transitions (Fi) are autonomous (e.g. no discrete control
wi), and alsoαl = π

6 and αr = −π
6 are assumed fixed.

In this case, the control consists of the switching timesτi

and the continuous controlui(t). We will start in theSL
mode and transition between different modes as specified in
Figure 2. In the simulation, the initial skate positions are
x0 = [0, 0, 1, 0.25,−0.25, 1] and we assume an skater of
average body type [16]:M = 40 kg, m = 20 kg, µk =
0.157 kg

m
, vd = 3 m

s
, T = 3 s, C1 = 0.01, andC2 = 50.

Figure 5 shows the optimal switching times by displaying the
active mode as a function of time, and Figure 6 depicts the
trajectory using the optimal controlui and optimal switching
timesτi.

0 0.5 1 1.5 2 2.5 3

SL

GL 

SR

GR 

time (t)

m
od

e

Fig. 5. Depicted is the active mode as a function of time for the optimal
switching times.
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Fig. 6. Depicted is the optimal trajectory staring inSL mode and switching
between theGL, SR, GR modes.

V. CONCLUSIONS

In this paper, we presented an algorithmic framework for
the optimal control of systems that experience changes in
dimensions of the state and input spaces between different
modes of operation. These changes in the dimensions can be
imposed as infinite-dimensional state constraints, but these
constraint typically add significant computational overhead.
Instead, we introduced a non-standard Multi-Mode, Multi-
Dimension (M3D) model and derived optimality conditions
for such systems using variational arguments. We moreover
derived a detailedM3D model for an ice-skater, and demon-
strated the viability of the presented methods through an
optimal control example of the ice-skater.
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