
OPTIMAL SIMULTANEOUS FLOW IN 

SINGLE PATH COMMUNICATION NETWORKS 

A THESIS 

Presented to 

The Faculty of the Division of 

Graduate Studies and Research 

by^ 

Robert Mi" Siegmann 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

in the School of Information and Computer Science 

Georgia -Institute of Technology 

January, 19 71 



OPTIMAL SIMULTANEOUS FLOW IN 

SINGLE PATH COMMUNICATION NETWORKS 

Approved:_ 

Pranas gunde, Chairman  

; y .. y^i ., 

Miroslav Vala^ f^\ 

^'^AKJ3yx^^^\n^,df^_^.^. 

Daniel, C. Fielder 

George W/ 5rown 

Date approved by Chairman: Feb. 12, 1971 



11 

ACKNOWLEDGMENTS 

Writing this dissertation was an intellectual as well as an edu

cational experience. I am solely responsible for its contents, but I 

recognize that it is based on the efforts of many individuals. I 

gratefully acknowledge their support and dedicate this dissertation to 

them. 

The person to whom I owe the deepest gratitude is my wife, Carol. 

She consistently supported and encouraged me through the entire process. 

Secondly, I wish to thank Dr. Vladimir Slamecka. Without his wisdom 

and backing this dissertation would not have been written. 

My thesis advisors deserve a special word of appreciation. My 

principal advisor, Dr. Pranas Zunde, taught me much more than is evi

denced in this document. Doctors Miroslav Valach and John J. Jarvis 

spent many hours with me in shaping and refining my thesis into its 

final form. Also Doctors Daniel C. Fielder, Alex Orden, William Goffman, 

and George W. Brown were kind enough to read and comment on my work. 

I acknowledge the moral support of my friend John Gehl, the 

excellent typing of the drafts by Mrs. Lyn Jackson, and the final copy 

by Mrs. Betty Sims. 

This dissertation was partially supported under Grant GN-655 

from the National Science Foundation. The financial support of this 

organization is sincerely appreciated. 



Ill 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGMENTS ii 

LIST OF FIGURES v 

SUMMARY vi 

Chapter 

I. INTR'..̂ DUCTION 1 

Background and Objective 
Outline of Paper 
Terminology and Notation 
Communication Networks 
Information Flow and Cost 
Network Flow 
The Single Path Approach 
Arc Weight and Least Weighted Paths 
Path Length 

II. THE PATH ALGORITHM. 

Introduction 
Comparison of Floyd and Path Algorithm 
Additional Features of the Path Algorithm 
The Path-Finding Problem and Solution 
The Path Algorithm 
Proof of the Path Algorithm 
Example 
The Auxiliary Algorithm 

I I I . SOLUTION TO NETWORK PROBLEM i+1 

Introduction 
The Problem Statement 
The Solution Approach 
The Network Algorithm: Phase I 
Proof of Phase I Algorithm 
Introduction to Phase II Algorithm 
The Network Algorithm: Phase II 
Proof of Phase II Algorithm 
Computational Considerations 



IV 

Chapter Page 

IV. NECESSARY CONDITIONS AND COST BOUNDS 76 

Introduction 
Necessary Conditions 
Cost Bounds 
Bounds on Path Length 
The Path Optimization Algorithm 

V. EXAMPLE OF SOLUTION METHOD 94 

Problem Description 
Phase I Solution 
Phase II Solution 
Final Results 

VI. SUMMARY AND CONCLUSIONS 114 

Summary of Results and Conclusions 
Further Areas of Study 

APPENDIX 117 

Enumeration Theorems 
Computer Simulation Programs and Sample Printout 

BIBLIOGRAPHY 122 

Graph Theory and Network Theory Books 
Communication and Information Networks 
Structure and Connectivity of Graphs 
Related Graph Theory Topics 
Path-Finding and Optimization Algorithms 
Flow and Synthesis Considerations in Networks 

VITA 143 



LIST OF FIGURES 

Figure Page 

2.1 FORTRAN Program of Path and Floyd Algoritnms 22 

2.2 Execution Times for Path and Floyd Algorithms 25 

2.3 Ratio of Execution Times for Path/Floyd Algorithm . . . . 25 

2.M- Execution Time for Length Constrained Least 
Weighted Paths in a 20-Node NeLwork . . . . . . . . . . 28 

2.5 The Path Algorithm 33 

2.6 Communication Network and Path Table Solution 38 

2.7 Auxiliary Algorithm 4-0 

3.1 Phase I Algorithm 45 

3.2 Phase II Algorithm 56 

M-.l Path Optimization Algorithm 91 

4.2 Two Variations of the POA 92 

5.1 XYZ Corporation Communications Network 9 5 

5.2 Necessary Condition Calculations 97 

5.3 Path Table for Phase I Solution 99 

5.4 Arc Flow Tabulation 100 

5.5 Solution Tree 112 

5.6 Minimum Cost Solution to Communication Problem 113 

7.1 FORTRAN Programs Used in Computer Simulation 120 

7.2 Sample Simulation Program Printout 121 



VI 

SUMMARY 

This dissertation documents a method for finding an optimum solu

tion to a communication network design problem in which only one path is 

selected for message transmission between each pair of stations in a 

directed network. The method finds a minimum cost network flow con

figuration which satisfi'-̂ -s all the m^csage flovj r-mstraints while allow

ing all messages to flow simultaneously, i.e., ai the same tirce. The 

results are based on techniques drawn from the optimization literature 

and concepts taken from graph and network theory. The solution method 

can be applied in part or in whole to various types of scientific, 

technical, or business information networks. 

In order to use the solution method, the exact configuration of 

nodes and arcs in a strongly connected communication network must be 

known. Also required are the unit cost and maximum number of messages 

allowed on each arc, the message flow requirements for each pair of net

work nodes, and the maximum length of any communication path. The solu

tion method will find a least cost solution (if one exists) having a 

single path flow between each pair of stations and satisfying all the 

message flow constraints simultaneously. The optimum solution is 

expressed in terms of the sequence of arcs which define each path and 

the total cost of the network flow. 

The solution method is,based on three algorithms. The first is 

a versatile path finding technique called the path algorithm which finds 
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the least cost restricted length path between all pairs of stations in 

the network. It produces the actual sequence of arcs along each of 

these paths and finds the maximum flow capacity for each path. The 

second and third algorithms integrate the path algorithm into a branch 

and bound technique to find a global solution to the network problem. 

All three algorithms are described, proved and illustrated. 

Also included in the dissertation are: (l) A computer simula

tion comparison of the relative speed of the path: algorithm and one of 

the fastest known shortest path algorithms; (2) r.'acessary conditions 

for a network to be solved by the solution method and bounds on the 

cost of a network solution; (3) a complete example of the use of the 

solution method; (4) a summary of the dissertation results and a list 

of some follow-on areas of study; and (5) an extensive bibliography of 

related literature. 



CHAPTER I 

INTRODUCTION 

Background and Objective 

This dissertation documents a method of applying graph theoretical 

and optimization techniques to solve a real world problem encountered in 

the design of certain types of comm :/!ication net'' •-rks. The problem is a 

variation of the minimum cost, simultaneous flow aetwork problem (here

after referred to as "the network problem") for networks in which the 

message flow between each pair of stations is constrained to a single 

transmission path. The complete problem definition is delayed until 

Chapter III in order to allow time to develop the necessary terminology 

and concepts. Incorporated in the problem description is the require

ment that no path in the network have a length greater than a pre-set 

maximum value. The solution method described herein will find the 

global optimum solution for any netv/ork configuration if such a solution 

exists. 

The literature search which preceded our work on the simultaneous 

flow network problem revealed a marked tendency by its contributors to 

consider the problem from the point of view of linear programming (i.e., 

L.P.) [F28,FM-3]. Instead of attacking the problem from an L.P. point 

of view, our effort was purposely oriented toward introducing a new 

solution approach. 

Bibliographic references are denoted in this manner throughout 
the dissertation. 



The motivation for selecting the network problem can be traced to 

several sources: 

1. It is easily argued that mathematical tools for designing 

communication systems are considerably less developed than the tools 

available for analyzing such systems after they are operational. 

2. According to current trends and predictions in the informa

tion and communication industry, increased interest will be demonstrated 

in the decade of the IG'̂ O's towards fonsolidatin.'::; geographically dis

persed components of information systems by intei-oonnected communication 

networks. 

3. The concepts related to the topic of graph theory offer a 

rich and promising future for use in modeling many diverse types of 

information systems. 

Outline of the Paper 

The contents of each chapter in the dissei:̂ tation are briefly 

summarized in this section. The overall documentation strategy was to 

present the basic results by using a descriptive approach strengthened 

with theorems and proofs and illustrated with appropriate examples. 

We discuss overall considerations about the dissertation in 

Chapter I. Also included in this introductory chapter are the defini

tion of terms and conventions used throughout the paper. Chapter II is 

devoted to the description of an algorithm which finds optimum paths in 

a network. The algorithm is proved and illustrated in this chapter. 

In Chapter III the two-phased algorithmic solution (called "the network 

algorithm") to the minimum cost simultaneous flow problem is presented. 



The proof that the network algorithm finds a global optimum is also 

contained in the chapter. Chapter IV contains theorems which establish 

necessary conditions and cost bounds for the network problem. The net

work algorithm is demonstrated in Chapter V where it is used to solve a 

communication flow problem for a large, decentralized company. 

Concluding remarks about the dissertation results and fruitful 

areas for further research are presented in Chapter VI. Supporting 

results to certain topi'.o in the die:".ertation ar. presented i" the 

Appendix. An extensive bibliography is given in six sections which are 

representative of the many facets of this dissertation topic. 

Terminology and Notation 

There is a large number of definitions which have to be given in 

this paper in order to acquaint the reader with the required concepts. 

The policy here is to define a term when needed, beginning with a DEF 

in the left margin. Because many aspects of a network, such as its 

nodes, its arcs and its paths, are sets of well-defined elements, set 

notation is frequently used. It is assumed that the reader is familiar 

with set theory and the standard v/ays of describing sets. 

DEF A diveoted netb^ork^ G, is a pair of finite sets (N,A) where A is a 

subset of the Cartesian product set defined on NxN. An individual 

element of N is called a node and an individual element of A is 

called an arc. Multiple arcs between nodes are not permitted. 

There is frequent use of a geometric (i.e., pictorial) represen

tation of the relational network definition given above. For example, 

the directed network G can be defined in either of the following ways: 
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G = (N,A) 

N = {1,2,3,4} 

A = {(1,2),(1,3),(2,3),(3,2),(3,4),(4,1)} 

The number of nodes in the node set N (i.e., its cardinality) is always 

referred to as "n" and "he number of arcs in the irc set A is always 

referred to as "m." An element aeA can eirher be written as a or it can 

be written in terms of its defining nodes as [x,yll' where the arc a is 

directed from node x to node y. Note the use of [ ]' to denote an arc. 

Certain kinds of ordered sets play an important role in our work. 

The most basic ones are now defined. 

DEF A route [x ,x ] is an ordered set of arcs 

[x-L^x^] = {[x^jX^]',[x,.,,x.^]',. . . ,[x^_j^,x^]'} 

in which the second node of each arc in the set (except the last) 

is the first node of the next arc in the set. Note the use of 

square brackets without a prime to denote a route between a node-

pair. 

DEF A oi/ole is a route [x^ ,x ] in which the first node in the route is 
^ I n 

the same as the last node, i.e., x =x . 



DEF A simple path TT (x,y) is a route [x,y] which does not contain a 

cycle. 

The concept of "simple path" is of fundamental importance in this 

dissertation. A simple path between node x and node y is always denoted 

by 7T (x,y), 7T'(x,y), or 7T(x,y); whereas the collection of all the simple 

paths from x to y is written as 7T(x,y). Sometimes the ordered pair 

(x,y) is dropped from 7T(x,y) when referring to a simple path having 

unspecified end-points ̂  e.g., TT is .-. designation tor a simp^ j path. 

Frequently, the word "simple" is dropped from "ŝ iî ple path," since 

simple paths are our only concern in this dissertation. 

A path could be defined in terms of the ordered set of nodes 

along the path. In order to distinguish this from the equivalent 

definition in terms of arcs, we define the following terms: 

DEF The node set NS(TT ) of a path TT is the ordered set of nodes on 

the path TT . 

DEF The aro set AS(TT ) of a path TT is the ordered set of arcs on 

the path TT . 

We conclude this section on terminology with the following defi

nitions : 

DEF A loop is an arc a = [x,y]' in which x=y. 

Loops are useful to include in some types of directed networks, 

but since they are not needed in our work, we omit them from all further 

consideration. 



DEF The length of a path £(TT ) is the number o± arcs in the arc set 

ASCTT ) or one less than the number of nodes in the node set 

NS(Tr"). 

The concept of path length is extremely useful to us and is used 

throughout the dissertation. 

DEF A node-pair (x,y) is an ordered pair of two distinct nodes x 

and y. 

The T.arm "node-pair" is used .o refer to the general communica

tion relationship from node x to node y. The set of all node-pairs NP 

is defined as: 

NP = {(i,j)|i,i£N, i^-j}. 

Communication Networks 

In this dissertation the concern is with a particular kind of 

communication network in which information always flows in one direction 

on a single fixed path between each pair of stations. The concept of a 

directed graph is used to model this as follows: Each node in the graph 

represents a station and a directed arc represents the one-directional 

transmission line between two stations. Since the flow of messages in 

a network always has associated sending and receiving stations, the 

concept of a node-pair takes on an important significance. 

DEF A strongly oonneated network is a directed network in which at 

least one path exists between each node-pair in the network. 



DEF The S'imultaneous flow of messages in a network requires that 

messages be transmitted between all node-pairs concurrently. 

Any particular message has a unique origin node and destination 

node, and the network is designed to handle all required message 

flows simultaneously. 

Although a general communication network does not have to be 

strongly connected and does not have to have simultaneous transmission 

of messages between its 'lode-pairs , iany types of ĵ ommunication systems 

require these properties. This dissertation is i-Lrected to and oriented 

around such networ̂ ks . 

This concept of a communication network includes many communica

tion systems in which the configuration of nodes and arcs in the network 

is based on fixed parameters. This includes all networks having pre-

established and fixed message routing between stations, many networks 

having directional message flows, and some non-electrical networks. 

Our concept of a communication network is, therefore, general enough to 

include a wide range of practical netv/ork configurations. 

For example, the results can be applied in part or in whole to 

network design problems in the following proposed or operational com

munication networks: 

—Management Information Systems (e.g., Lockheed's INTERLOC). 

—Science Literature Networks (e.g., Hungary's TECHNOINFORM). 

—Educational Networks (e.g., EDUNET and ERIC). 

—News Media (e.g., UPI). 

—Library Networks (e.g., NELINET). 



—Military Communication Systems (e.g., AUTODIN). 

—Military Command and Control Networks (e.g., WWMCCS). 

—Medical Literature Networks (e.g., MEDLARS). 

—Hospital Networks (e.g., THOMIS). 

— Police Networks (e.g., NCIC). 

—Business Networks (e.g., SABRE). 

As mentioned earlier, the network design of the types of networks 

listed above has always suffered fr'--:̂n a lack of q'lantitative design 

tools. Because of the stochastic nature of the operational use of such 

networks, probability theory, queuirg theory and stochastic processes 

are frequently applied to the analysis of network operation. These are 

reasonably refined modeling tools and are extremely useful for network 

analysis. Unfortunately, quantitative tools for network design are 

virtually nonexistent. The network designer is generally forced to use 

simulation in order to test various design configurations. This indi

rect and sometimes time-consuming activity is frequently helpful, but 

it does not always produce optimum results. The lack of adequate tools 

for network design is the most pressing problem facing network 

designers. 

Information Flow and Cost 

An individual arc in a communication network represents a channel 

over which information is transmitted. In facr, since a single arc may 

be used by many different paths in a network, the total information flow 

on the arc depends on the number of paths using the arc and their 



respective flows. Two of the most important characteristics of this 

flow of information are expressed in terms of amount and cost. 

In order to solve the network problem, the amount of information 

(i.e., messages) transmitted between the stations in the network must be 

known. This message flow between different node-pairs must be given in 

some type of equivalent information unit. In this dissertation an 

information unit will be defined as a message having a standard length. 

Therefore, t'le amount of informi^tion flow on an • -'c, on a patii, or 

between a node-pair is the number of equivalent andard messages trans

mitted per time period. 

The cost which is associated with an arc Is the unit cost for 

each message transmitted over the arc. To find the total cost per time 

period in an arc, the amount of information flow on an arc is multiplied 

by the unit cost of flow for that arc. The concept of cost is important 

in our work, because the overall cost of a network configuration is used 

as the variable which is minimized in solving network design problems. 

Network Flow 

Network flow theory was introduced in 19 56 by Ford and Fulkerson 

when they published their max-flow, min-cut theorem [F15]. This well-

known theorem states that the maximum flow from node x to node y in any 

network is equal to the value of the minimum cut over all cut sets 

separating x and y. This was the first definitive result in relating 

the dynamic concept of flow with the static concept of cut set. Unfor

tunately, this theorem does not hold for a network having simultaneous 

flows [F61]. 
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In this section we define the terms which relate to the dynamic 

flow aspects of a network having a single transmission path between each 

node-pair. 

DEF The flow on an ara a, f(a), is the amount of information trans

mitted over the arc a per unit of time. 

DEF The capacity of an aro a, b(a), is the maximum amount of informa

tion which can be transmitted over arc a per unit of time. 

DEF The unit cost of an arc a, c(a), is the unit cost of transmitting 

information which flows on arc a. 

DEF The capacity of a path TT (x^y)^ h\i\ (x,y)J , between node-pair 

(x,y) is the maximum amount of information which can be trans

mitted over the path , and is equal to the smallest capacity of 

the path's component arcs. That is, 

b(^"(x,y)] E b"(x,y) 5b(^") = Min [b(a)]. 
aeAS(̂ ''0 

DEF The flow on a path TT (x^y)^ f (TT (x,y)J , is the amount of infor

mation transmitted over the path per unit of time, i.e., 

f(TT"(x,y)] z f''(x,y) - f(^'^). 

=^ , k ^ 

DEF The unit cost of a path TT (x^y)^ c [TT (x,y)J , is the unit cost of 

transmitting messages over the path and is the sum of the unit 

cost of each arc in the arc set of the path. That is: 
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C(TT (x,y)) = c (x,y) = C(TT ) = I c(a). 
a£AS(TT''-) 

DEF A minimum cost path v;(Xjy) for node-pair (x,y) is a path between 

(x,y) having a minimum cost. That is: 

^(x,y) = <̂ TT'\x,y) I c[7T'(x,y)] = Min {c [̂  ' (x,y )] } .>. 
TT'(x,y )6Tr(x,y) ^ 

A minimum cost path Tr(x,y) is defin^'i in a relat • ê way because a path 

may have to satisfy additional conditions (e.g., a length con-'craint) 

before it is considered as an element of Ti(x,y), which is the collection 

of all the paths beti'jeen x and y. 

In networks in which flows exist simultaneously between all node-

pairs , a particular arc may be used to carry messages between several 

node-pairs. In order to account for this, the following definitions 

are required: 

DEF A path flow oomponentj f (IT (x,y)) , is the amount of flow 

required on arc a by the flow on the path 7r (x,y). Alter

native symbols for a path flow component are: 

f (TT""'(x,y)] 5 f '"(x,y) E f (̂ ''*). 

Now the earlier definition of arc flow can be expressed in terms 

of path flow components. 

DEF The flow on avQ a, f(a), is the sum of all its paths flow com

ponents . That is: 
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(i,i)£NP "" 

A node-pair represents a required communication connection 

(therefore, it can represent a path) over which information is trans

mitted. In setting up a design problem, we are given the amount of 

information which is required to be transmitted between each node-pair. 

This is called the node-pair flow requirement and is defined as: 

DEF A node-pair flow requirement^ r(x,y), is .le amount of information 

required to flow (over a single path) frci- node x to node y. 

The following definitions complete the definitional base needed 

in this dissertation. These terms refer to collections of paths between 

all node-pairs in a network. 

DEF A network path set {TT"(i,j)} is a collection of n(n-l) paths in 

which one path TT (x,y) is selected for each node-pair (x,y) in 

the network. That is: 

[T\ (i,j)} = {Ty"(x,y) |7y"(x,y)£7y(x,y) for all (x,y)£NP}. 

A minimum cost path set is represented as {TT(i,j)}. 

The following terms are needed to describe the network algorithm 

of Chapter III. In this algorithm the required flow between two nodes 

(i.e., the flow requirement) is assigned to each node-pair in a manner 

which leads to the solution of the problem. 
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DEF A simultaneous flow assignment [f[i\ (i,j)J} is an allocation of 

the node-pair flow requirement r(x,y) to each path TT (x,y) (and 

therefore to the arcs in each path) in a network path set. That 

I S : 

{f (Tr"(i , j )] } = <{f(a)|aeA, 

r ( x , y ) i f a£Tr"(x,y)l 
f TT (x,y)J - . . ,̂  , 

a^ ^ [0 otherwise J 

f (a ) - ,̂ . I ^ f^(/(x,y.O]> . 
Ti- ( x , y ) e {Tr"( i , ] ) } 

DEF A feasible simultaneous flow assignment is a simultaneous flow 

assignment to the node-pairs in a network path set such that: 

f(a)<h(a) for all aeA. 

DEF The oast of a simultaneous flow assignment^ COST, is defined in 

either of the following alternative ways: 

a. COST = I f(7T*''(i,j)] • c(7T'"'(i,j)] or 
(i,j)eNP 

b. COST = \ f(a) • c(a) where f(a) = 1 ^ (TT^djj) 
aeA (i,j)eNP ^ 

for the simultaneous flow assignment (ffir (ijj)]}. 
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The Single Path Approach 

The path approach for investigating the structural aspects of 

graphs is not new. Kirchhoff [D35] showed in the 19th century that 

paths have close relationships with other graph theory concepts. The 

application of path-oriented approaches to network design problems, how

ever, has been hampered by the fact that an enormous number of paths may 

exist even in moderate-sized networks. For example, a directed network 

•J: 1 

having ten nodes and ninety arcs hâ : almost one million simple paths. 

Fortunately, there are ways to find paths in ne;..-orks without making an 

unreasonable number of computations. 

One method is to associate a weight (i.e., cost) with each arc 

and to find the least-weighted paths. This drastically reduces the num

ber of paths which have to be considered. For example, a maximum of 

3,24-0 paths have to be examined in the ten-node network mentioned above 

in order to find one least weighted path for each of the 90 node-pairs. 

The theory and applications discussed in this dissertation are 

oriented tovzards finding the optimum single transmission path between 

each node-pair. Since there are 90 node-pairs in a ten-node network, 

only 90 optimum paths need be found. The optimum single path between a 

node-pair is one which optimizes the path weight. The ability to work 

only with optimum paths demonstrates the power of our solution method. 

See Chapter VII for the derivation of the following formulas: 

n-2 
1. n(n-l) I x! 

x=0 

n-2 
X 

2. n(n-l)^(n-2)/2 
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This method is presented in more detail by considering the concept of 

arc weight and path length. 

Arc Weight and Least Weighted Paths 

The term "weight" generically refers to any one of a number of 

parameters which can be associated with the arcs of a network. For 

example, time, distance, cost, capacity, reliability and value are pos

sible arc weights. By assigning one type of weight (e.g., cost) to all 

the arcs in a network many differem kinds of pi- .!)lems can be lescribed 

and studied. In this dissertation arc cost is usually defined as the 

arc weight, for this is generally the most important optimization vari

able in a communication network. 

DEF The weight of avc a, w(a), is an assigned positive or negative 

real number which numerically represents some variable associ

ated with the arc. 

DEF The weight of a path TT (x^y)^ W^TT (xjy)], is a calculated posi

tive or negative real number which is obtained as the sum of the 

weights in the arc set of path TT (x,y). That is : 

'"(x,y) Ew(Tr"(x,y)) = \ w(a). 
aeASCrr-) 

The term "shortest path" is frequently used in connection with 

path finding algorithms. However, it has a double meaning because it 

may refer to (l) a path of least length, or (2) a path of least weight, 

The term is avoided whenever possible in this dissertation since arc 



16 

length is never used as arc weight. Whenever the term is used, it is 

always used in the sense of (2). To find the least weighted path 

between two nodes x and y, all paths between x and y must be implicitly 

checked and then the path having the minimum or least weight can be 

selected. Since more than one path may have the least weight, multiple 

paths having the same least weight value are possible. Fortunately, 

the theorems on which our work is based allow us to select, arbitrarily, 

any least weighted path ^or each node-pair. ThiF capability forms the 

bridge between the use of a shortest path optimin̂ ation procedure and the 

solution of problems requiring single path transmission between all 

node-pairs. 

Path Length 

The length of a path is an important consideration in communica

tion networks. The length of a path was defined as the number of arcs 

in the arc set of the path. Subscripting a path designation (e.g., TT ) 

will be used as a means of displaying the length of a path. For 

example, rr (x,y) is a least weighted path of length four between node-

pair (x,y). The length subscript is also used for weights (e.g., 

w (x,y) is the weight of path IT (x,y)). 

The length of a path in a communication system is frequently an 

important design consideration. For example, the different types of 

connecting or switching stations along a transmission path influence the 

overall operation of certain types of communication systems. Frequently 

the strength and/or reliability of the transmitted message signal can 

be described as a decreasing function of the number of such connecting 
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or switching stations along a path. A valid means of keeping the signal 

within acceptable limits is to restrict the length of all acceptable 

paths in the network. The ability to restrict path length is embedded 

in the network problem which is considered in this dissertation. The 

results obtained in this dissertation by constraining path length are 

new and extend the state of the art for the types of networks con

sidered. 

Consider, for example, a communications network connecting geo

graphically dispersed users of scientific information. Assume that a 

computerized library or data bank of scientific abstracts exists at the 

center of the network. Formatted requests are transmitted from users 

to the computer, and fixed length responses are directed back to the 

users. This is the basic type of network considered in this disserta

tion, for messages can be represented in terms of a standard length and 

the maximum number of arcs along each path (i.e., its length) can be 

fixed in order to insure proper transmission. 
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CHAPTER II 

THE PATH ALGORITHM 

Introduction 

A crucial step in finding the solution to the network problem 

discussed in the next chapter is the determination of a least cost path 

between each node-pair in the network. The solution to a number of 

practical problems dealing with networks is realized by finding the 

least weighted paths (sometimes called the shortest path) between the 

nodes in the network. For example, finding a communication system with 

the least number of relay stations, finding the fastest way out of a 

maze, and finding the shortest bus route in a city are all mathematically 

equivalent to the classical least weighted path problem. 

In this chapter we develop an algorithm, called the path algo

rithm, to find least weighted paths between all node-pairs in a network. 

The algorithm is based on a forward dynamic programming approach [AOl]. 

The algorithm is discussed in detail because it provides a systematic 

means of finding least weighted labeled paths which are constrained by 

path length. Any modification of another shorted path algorithm which 

achieves the same results can be used in place of the path algorithm in 

the solution algorithm of Chapter III. 

In order to solve the network problem, a method must be created 

for finding only those least weighted paths which are less than or equal 

in path length (i.e., number of arcs in the path) to a pre-set integer 
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L. That is, the network problem requires a least weighted path 'iT(x,y) 

such that £(TT(x,y)]<L for each node-pair (x,y)£NP. 

Numerous shortest path algorithms have been documented in the 

literature. Two surveys (Pollack [E36] and Dreyfus [ElOj) illustrate 

the many variations in the shortest path algorithms which exist. The 

"path algorithm" uses the well-known forward dynamic programming 

approach to find least weighted paths. The underlying recursion rela

tion for the path algorithm is: 

w (x,y) = Min [w (x,k) + w (k,y)I|. 
P keN ^ 

k̂ x,y 

Our approach excludes loops from consideration in finding least weighted 

paths between node-pairs and therefore node k in the recursion relation 

cannot be node x or node y. Other approaches exist which permit node k 

to vary over all nodes in the network. The recursion relation states 

that if the least weighted path from node x to node y passes through 

node k , then the path from x to k must be the least weighted path 

between node-pair (x,k ). 

Equivalent approaches for finding least weighted, length con

strained paths can be found in the literature. In general these ap

proaches are based on matrix multiplication [EM-Oj or related methods 

dealing with the variable adjacency matrix [D29]. 

It is informative to compare the path algorithm with the popular 

shortest path algorithms (e.g., Floyd [E13], Dantzig [EOSj, and Murch-

land [E27J). These algorithms find all the shortest paths in a network, 
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but are based on a computational method which precludes the effective 

manipulation of path length. This shortcoming of these algorithms can 

be illustrated by considering how the Floyd algorithm finds the shortest 

path between node-pair (1,4) in the following partial network: 

w(a)=l 
w(b)=3 
w(c)=l 
w(d)=l • s ^ ^ 

1 2 

Let the maximum path length L be equal to two. In the Floyd algorithm 

(see Figure 2.1) the least weighted path Tr(l,4) is found by using the 

weights of the paths w(l,2) and w(2,4). Since the least weighted path 

7T(2,4) = {c,d}, the least weighted path IT(1,4) is 7T(1,4) = {a,c,d} which 

happens to be of length three. Unfortunately, the weight w(2,4) of the 

path 17(2,4) = {c,d} overlays the weight w(2,4) of the path 7T(2,4) = {b} 

in the computations and is thereafter never computed again. 

The underlying reason why the Floyd algorithm (and other algo

rithms mentioned) cannot easily handle the length-constrained problem is 

inherent in the computational method used by the algorithm. This method 

can be briefly explained as follows: 

Method 1. For all k ,i , j = l,... ,n 

IF w(i,k) + w(k,j)<w(i,j) , 

THEN w(i,j)^w(i,k) +w(k,j). 

An algorithm based on' this method finds a least weighted path 

7T(x,y) = {x=x ,x , ...,x ,...,x =y} between node-pair (x,y) by using the 
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least weighted paths TT(X,X ) and TT(X ,y) for any x eTr(x,y). Now if we 

restrict p to be equal to r-1, then the least weighted path -nix^y) is 

found by using TT (X.X ) and TT^CX ,y). That is: 
P P 1 P 

w .(x,y) = w (X5X ) + w,(x ,y). 
p+1 p p 1 p -̂  

This modification of method 1 is now stated as 

Method 2. For all i ,k , j=l,... ,n 

IF w (i,k) + w (k,j) < w(i,j), ^ 

THEN w ,(i,j) ̂  w (i,k) + w,(k,j) p+1 p 1 '-̂  

> For all p=l,... ,L 

An algorithm based on method 2 overcomes the length difficulty 

discussed in the previous example. Since it calculates 7T(1,4) one arc 

at a time 5 it terminates when TT (l,M-) = (a,b}. The path TT (l,M-) = 

{a,c,d} found by method 1 has a smaller weight, but it violates the 

length restriction (i.e., L=2) and therefore is not found by method 2. 

Comparison of Floyd and Path Algorithms 

We show in this section that the path algorithm is much closer 

to the Floyd algorithm in terms of required storage space and speed than 

might be expected. Even though the Floyd algorithm does not find length-

constrained least weighted paths, it does represent a popular method of 
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finding least weighted paths. It is one of the fastest known algorithms 

and serves as a reasonable standard for comparison purposes. 

Figure 2.1 illustrates the similarity of the two algorithms in 

terms of their respective FORTRAN programs. The maximum number of 

executed instructions and the total number of storage locations required 

by these two programs are given in the following table: 

Executed Instructions Storage 
Algorithm Additions Comparisons Stores Locations 

Floyd n^ n^(2n+l) 2n^ n^ 

Path n^(n-l)^ n^(n-l)(2n-l) 3n^(n-l)^ n^ 

From the above table it would appear that the computer program 

for the path algorithm requires n times more storage locations and ap

proximately n times more executed instructions than the program for the 

Floyd algorithm; however, by making minor modifications to the path 

algorithm program, the two programs actually become much closer in terms 

of storage requirements and execution time. 

With some additional instructions the three-dimensional array, 

W[P,I,K], used in the FORTRAN version of the path algorithm can be con

verted into several two-dimensional arrays, thereby only requiring 

2 
approximately 2n storage locations more than the n required by the 

Floyd algorithm. 
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DO 40 1=1,N 

DO 40 P=1,L 

DO 40 K=1,N 

IF W[P,I,K]=INF 10, 40, 40 

10 DO J=1,N-1 

IF W[1,K,J] = INF 20, 40, 40 

20 W=W[P,I,K]+W[1,K,J] 

IF W=SW[I,J] 30, 40, 40 

30 SW[I,J]=W 

W[P+1,I,J]=W 

40 CONTINUE 

Computer Program of Path Algorithm 

DO 40 1=1,N 

DO 40 J=1,N 

IF W[J,I]=INF 10, 40, 40 

10 DO 40 K=1,N 

IF W[I,K]=INF 20, 40, 40 

20 W=W[J,I]+W[I,K] 

IF W=W[J,K] 30, 40, 40 

30 W[J,K]=W 

40 CONTINUE 

Computer Program of Floyd Algorithm 

Figure 2.1. FORTRAN Program of Path and Floyd Algorithms 
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It appears from the FORTRAN programs in Figure 2.1 that the 

execution times of the two algorithms differ by a multiplicative factor 

of L, the value of the length constraining P loop. Therefore, as L-̂ -l, 

the execution times of the two algorithms become approximately equal. 

As L->-n, the path algorithm appears to execute n times the instructions 

required by the Floyd algorithm. 

Because of the numerous computations required in the algorithms, 

a computer simulation program was written in order to compare the rela

tive execution times of the two algorithms. An obvious efficiency was 

included in the path algorithm program. Instructions were added to 

terminate it if no least weighted paths were found in any iteration. 

The FORTRAN programs used in the simulation and a typical printout are 

given in the appendix and entitled "Computer Simulation Programs and 

Sample Printout." 

The computer simulation program was written in FORTRAN and exe

cuted on the UNIVAC 110 8. It produced the interesting and unexpected 

result that the path algorithm takes approximately twice the execution 

time required by the Floyd algorithm. This ratio of two tended to be 

independent of the number of nodes and the number of arcs in a network. 

In the simulation random strongly connected networks were created 

—with arc weights ranging from 0 to 15, 

—having the following number of nodes: 5, 10, 15, 20 and 30, 

— and containing either n(n-l) arcs or approximately ~ arcs. 

The results of the computer simulation are summarized on Figures 

2.2 and 2.3. Each value which is plotted represents the average of the 
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execution time of ten networks having the indicated number of nodes 

and arcs. Figure 2.2 gives the actual execution times for networks 

having 5 to 30 nodes. The upper and lower curves on Figure 2.2 repre

sent, respectively, the execution times for the path and the Floyd 

algorithm. The two types of arc densities (i.e., n(n-l) arcs or 

arcs) used are indicated by different marks (i.e., • and x). Figure 2.3 

is obtained directly from Figure 2.2 and gives the ratio of the execu

tion time of the path to the Floyd algorithm. Note that this ratio is 

consistently less than or equal to two and that the path algorithm tends 

to be a little faster for networks having fewer arcs. 

The computer simulation was not intended to be exhaustive and the 

results, though interesting, are only suggestive. We can conclude, how

ever, that the two algorithms are reasonably close to one another in 

execution time for the types of networks considered in the simulation. 

The simulation work had to be terminated in order to continue the main 

topic of the dissertation. However, it uncovered a natural follow-on 

area for further research. 

Additional Features of the Path Algorithm 

The loop structure of the path algorithm allows it to find the 

least weighted path between a particular node-pair (x,y) in —th the 

time required to find paths for all node-pairs. This is accomplished 

by setting the I loop index to any node x (l<x<n) and then executing 

the rest of the algorithm. Because of its loop structure, the Floyd 

algorithm cannot be manipulated in this manner. Therefore, combining 

the above comments with those discussed in the previous section, it is 
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strongly suggestive that the path algorithm is approximately — times 

faster than the Floyd algorithm in finding the least weighted path for 

any particular node-pair (x,y) in a network. 

In later chapters, the path algorithm will be used to find length 

constrained least weighted paths. A question naturally arises: How 

does the execution time of the path algorithm vary for different values 

of path length? We modified the computer simulation programs used in 

the previous section in order to determine an empirical answer to this 

question. The results are given in Figure 2.4. In this figure the 

cumulative increase in execution time is plotted against increasing 

values of path length for two 20-node networks. The first network con

tained 50 arcs whose longest least weighted path was of length six. The 

second network contained 380 arcs and had a longest path of length four. 

The figure illustrates the effect the path length restriction has on the 

execution time of a 20-node network having different numbers of arcs. 

The Path Finding Problem and Solution 

The path algorithm was created in order to solve a path finding 

problem which arises in communication networks. This problem is 

formally stated below and is tailored to the path requirements developed 

in the next chapter. 

Given: 

Gl. A set N of n nodes where l<n<°°. 

G2. A set A of m arcs where n-l<m<n(n-l). 

G3. A weight w(a) for each acA where w(a) is a real number. 

G4. A maximum length L for any path where L is an integer 
between 2 and n-1. 
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Find: 

Fl. The least weight w(i,j) for the path 7r(i,j), 

(a) for all (i,j)eNP, or 
(b) for a particular (x,y). 

F2. The arc set {7r(i,j)} for the least weighted path Ti(i,j), 

(a) for all (i,j)€NP, or 
(b) for a particular (x,y). 

Subject to: 

il(TT(i,j))<L for all (i,j)€NP. 

The path algorithm, introduced in the previous section and 

explained in detail in the next section, solves the above constrained 

path finding problem. The FORTRAN version of the path algorithm, listed 

in Figure 2.1, was used to illustrate the overall method. Before dis

cussing the path algorithm in detail, we comment on some aspects of the 

algorithm. 

1. Condition F2 in the above statement of the problem requires 

that the actual sequence of arcs along each path be found. This is 

accomplished in the path algorithm by creating a matrix [n ] of node 

labels for each node x. This matrix is created by the algorithm in 

order to store the least weighted backward link for the path 7r(x,y) in 

the network. 

DEF The baokuard link n (y,z) in the matrix [n ] is the node just 
X X 

prior to node z in the node set NS(7r(x,y)J . 

Since it can be proved that the least weighted path from any node x to 

any other node y cannot contain a cycle, the single link n (y,z) is 
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sufficient to trace the entire path backwards from node y to node x. 

An additional algorithm, called the auxiliary algorithm (AA), is re

quired to identify the actual arc sets from the matrix Cn ] for each 

node-pair. This algorithm is discussed later in the chapter. 

2. Conditions (a) and (b) under Fl and F2 in the above problem 

statement specify that the algorithm is to be used to find either all 

paths or a single path in the network. Since the loop structure of the 

algorithm is set up to find all the least weighted paths emanating from 

a single node before advancing to another node, it can be used to find 

the least weighted path for any specific node-pair (x,y). This is 

achieved by restricting the value of i in the algorithm to the first 

node x in the desired node-pair (x,y). 

3. Negative arc weights can be used in the algorithm. However, 

cycles cannot be stored in the matrix Cn ]. Therefore, networks having 

cycles with negative weights cannot be handled by the current path 

algorithm. If no negative cycles are present in a network, the algo

rithm will automatically find simple paths. (See Lemma 2.3.) 

4. Since the least weighted path between a node-pair is not 

necessarily unique, the algorithm is set up to find the first such path 

which it encounters. This means that a least weighted path having the 

shortest length is always selected, because the path algorithm grows 

paths by appending one arc at a time. 

In the event the path algorithm were extended to solve other 

types of network problems, â  number of variations is possible within 

the computational framework. Some of these are: 
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—Path weight calculated as a function of several variables. 

—Calculation of paths having maximum weight. 

—Calculation of Hamiltonian cycles. 

—Retention of all least weighted paths for each node-pair. 

The Path Algorithm 

After the initialization step, the path algorithm is defined by 

the sequence of steps lettered below. See Figure 2.5 for the corre

sponding flow chart. 

Initialization 

—Set w (i,j)^INF for all (i,j)eNP and all p=l,...,L. 

— Set w(i,j)^INF for all (i,j)£NP. 

— For each arc [x,y]'£A, n (yjy)^^ and w, (x jy)-(-w[x,y] ' . 
X _L 

—To find least weighted paths for all node-pairs , set nj_=l 
and n^=n. To find the least weighted path for node-pair 
(x,y), set n =x and n^=x. 

A. Set the i index equal to n . 

B. Set the p index equal to 1. 

C. Set the k index equal to 1. 

D. If i=k, then go to 0; otherwise continue. 

E. If there is a path of length p, TT (i,k)5 between node-pair (i,k), 

then continue to step F. If not, go to step 0. 

F. Set the j index equal to 1. 

G. If i=j or k=j, then go to Step M. If not, continue to step H. 

H. If there is an arc, w (k,j), between node-pair (k,j), then continue 

to step I. If not, go to M. 
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I. Calculate the weight w (i,j) of the new path TT (i,j) as follows: 

w (i,j)<-w (i,k) + Wj^(k,j). 

J. 

K. 

If the weight, w (i,j), of the new path between (i,j) is less than 

the weight w(i,j) of all previously found paths for node-pair 

(i,j), then go to K. Otherwise, go to step M. 

Store the backward link k and the new weight \'(i,j) as follows: 

1. n^(j,s) ̂  <] 
ri.(k,s) for s = l,...,n; s;̂j 

[k for s=j 

2. w(i,j)^w (i,j)^w"(i,j). 

M. If the j index has ranged over all nodes, then go to step 0. If 

not, go to step N. 

N. Increment the j index by one. 

Go to step G. 

0. If the k index has ranged over all nodes, go to step Q. 

If not, go to step P. 

P. Increment the k index by one. 

Go to step D. 

Q. If the p index has ranged over all nodes, l<p<L, then continue to 

step S. If not, go to step R. 

R. Increment the p index by one. 

Go to step C. 

S. If the i index has range'd over all nodes, l<n <n <n, then go to 

step U. Otherwise go to step T. 
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T. Increment the i index by one. 

Go to step B. 

U. Terminate the algorithm. 

Proof of the Path Algorithm 

Lemma 2.1 

Only the least weighted paths of length p are required to calcu

late the least weighted paths of length p+1 where path weight is calcu

lated as the sum of the weights of the arcs along the path. 

Proof. Assume that a path TT [x,y] is not a least weighted path 

of length p between node-pair (x,y). That is, there exists another 

path 7T [x,y] of length p such that WCTT )>w('n" ). p o r - p p 

Create the path TT (X,Z) of length p+1 by concatenating the 

path TT (x,y) with the arc [y,z]'. Let the weight of arc [y,z]' be equal 

to w, . Therefore, the weight of TT ^(X,Z) is WCTF ^) = WCTT ) + W^ . 
1 p+1 p+1 p 1 

However, TT is not the least weighted path of length p+1 between (x,z) 

because if path TT is used instead of TT to find a path TT , between x 
P P ^ p+1 

and z, 

W(TT ^) = W(TT ) + w >W(TT ) + W, = W(TT ^ ) . 
p+1 p 1 p 1 p+1 

Therefore, a path of length p which is not a least weighted path cannot 

be used to calculate a path of length p+1 which is a least weighted 

path. D 
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LemiTia 2.2 

The least weighted paths of length p are used in the path algo

rithm to find the least weighted paths of length p+1 for each node-pair 

Proof. Step I in the algorithm finds the weight of all paths of 

length p+1 between node-pair (i,j) as follows: 

w (i,j) = w (i k) + w^[k,j]' 

for each node-pair (i,j) and all keN, î k̂̂ ĵ. This calculation finds the 

weight of every path TT (i,j) given the least weighted paths TT (i,k) 

and the arcs [k,j]'. Steps I, J, and K in the algorithm insure that 

only least weighted paths of length p are used to find the least weighted 

paths of length p+1 for each node-pair (i,j). Specifically, 

—Step I uses only paths of length p to calculate the weights of 
paths of length p+1 for each (i,j). 

—Steps J and K (overall values of keN, i^k^j) retain only the 
path of length p+1 between (ijj) which has least weight. 

Thus the lemma is proved. D 

Lemma 2.3 

When p=n in the path algorithm, then alt least weighted simple 

paths in a network on n nodes have been examined. 

Proof. If p=n, then the p index in the algorithm runs from 1 to 

n-1 and all least weighted paths of length 1 to n-1 are found. The 

maximum length of a simple path is n-1 (for if this were not the case, 

at least one node would appear twice on the path and the path would not 
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be simple. Therefore, the algorithm examines all least weighted simple 

paths. D 

Theorem 2.1 

The path algorithm finds a path 7r(i,j) having least weight 

w(7T(i,j)) for each node-pair (i,j). That is: 

w(7T(i,j)] = Min {w(7T (i,j)J} for each (i,j)eNP. 
l<p<L P 

Proof. From Lemma 2.3, all least weighted simple paths are con

sidered by the algorithm when p=n. If L<n, then the algorithm considers 

only those simple paths 7r(i , j ) 3-£[7T(i ,]* )J <L. This can be verified by 

examining the p index loop in the algorithm. For a given p, the least 

weighted paths of length p, TT (i,j), are used to find the least weighted 

paths of length p+1, i.e., TT (i,j). By stopping the algorithm at 

p=L-l, no paths TT( i , j ) 3-£(TT(i ,j )) >L can be created. 

From Lemma 2.2, the algorithm finds, for each node-pair, the 

least weighted path of length p+1 from the least weighted paths of 

length p, i.e. , 

^ [ ^ +i^i»:i)] = ^i^ ̂ ^(^ (ijk)] + w(7T (k,j)]}. 
P keN P 

k^i,j 

Now if the weight WJTT (i,j)) associated with path TT _̂  (i,j) is less 

than the weight w(i,j) calculated to date for the node-pair (i,j), i.e., 

W(TT (i,j))<w(i,j), 
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then the new path of length p+1 is the least weighted path found so far 

by the iterative procedure. It is, therefore, stored as the current 

least cost weight w(i,j) for node-pair (i,j). Since this process con

tinues over all p<L, 

w (7T(i,j)) = Min {W(TT (i,j)] ,w(Tr (i,j)] ,. . . ,w(iT (i,j)) }. 

Min {w(^ (i,j)] }• 
l<p<L P 

This method is sufficient to find the least weighted paths for all node-

pairs (i,j) because of LeiniTia 2.1. [] 

Exainple 

An example is now given to demonstrate how to use the path 

algorithm to solve an actual problem. Consider the five-node network 

shown on Figure 2.6 and assume that the arcs represent communication 

lines and the nodes represent stations in a communication network. Note 

that the network is strongly connected and therefore each station can 

send messages to all other stations. Associated with each communication 

line is a fixed cost which is assigned to the weight of the arc. We 

desire to use the path algorithm to find the least cost paths of any 

length (i.e., L=n) between all node-pairs in the network. 

Figure 2.6 gives the incremental, as well as the final, solution 

to the above problem. This tabular layout is called a path table and is 

used to show the step-by-step results obtained from the path algorithm. 

The entries which are encircled in the path table represent paths that 
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Arc Cost 

2 
3 
2 
4 
1 
2 
-1 
1 

Path Table 

(i,j) TT-^(i,j) W-L(i,j) TT2(i,J) ̂ 2(1,]) ^3(1,]) W3(i,j) ^^(i,j) Wi^(i,j) TT(i, j) w(i,j ) 

(1,2) a 2 {a} 2 

(1-3) ac 4 (adf?) 12 {a,c} 4 

(1,4) ad 6 ace 5 {a,c,e} 5 

(1,5) adf 8 acef 7 {a,c,e,f} 7 

(2,1) b 3 (3?) 5 (cefT) 4 {b} 3 

(2,3) c 2 (3E) 10 (c) 2 

(2,4) d 4 ce 3 {c,ej 3 

(2,5) df 6 cef 5 {c,e,f} 5 

(3,1) efg 2 (efhb^ 7 {e,f,g} 2 

(3,2) efh 4 (Sa) 4 {e,f,h} 4 

(3,4) e 1 {e} 1 

(3,5) ef 3 {e,f} 3 

(4,1) fg 1 (S) 6 {f,g} 1 

(4,2) fh 3 cS) 3 {f,h} 3 

(4,3) fi 6 fhc 5 {f,h,c} 5 

(4,5) f 2 {f} 2 

(5,1) g -1 (S> 4 {g} -1 

(5,2) h 1 CE) 1 {h} 1 

(5,3) i 4 he 3 {h,c} 3 

(5,4) J 2 

oo 
5 
5 

hce 4 {j} 2 

Figure 2.6. Communication Network and Path Table Solution 
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are potential candidates for the least cost path (from step I of 

Figure 2.5), but have weights which are greater than or equal to a 

previously calculated path weight for the same node-pair (i.e., fail 

to qualify in step J). 

Auxiliary Algorithm 

The path algorithm gives as an output the matrices, [w] and [n.,]. 

Now [n.] contains all the links which are needed to reconstruct all the 
1 

least weighted paths back to node i in the network. In this section 

an algorithm (called "the auxiliary algorithm") is presented which finds 

the network path set PS as well as the capacity of each path in the set. 

The network path set is referred to as {7T(i,j)} and the path capacities 

as b(7r(i,j)J for each (i,j)eNP. 

The auxiliary algorithm is presented in flow chart form on Figure 

2.7. Because of the simplicity of the algorithm, a formal discussion 

and proof are omitted. Note that if no path is found by the path algo

rithm for node-pair (x,y), then {Tr(x,y)} = 0 and b(_7T(x,y)J = MAX. 
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Termina te 

U ( i , j ) K 
{ [ n X j , k ) , k ] ' } 

J i ik i . i ) i__ 
/K 

- 5 < ^ [ n i ( j , k ) , k P > - j £ L 
b(TT(i,j jJ.--

k^n^(j,k) 1^ 
No 

b ( n ( i , j ) ) ^ 
b [ n . ( ] , k ) , k ] ' 

Figure 2 . 7 . Auxi l iary Algorithm 
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CHAPTER III 

SOLUTION TO NETWORK PROBLEM 

Introduction 

In this chapter the simultaneous flow, minimum cost problem for 

single path networks is solved. The solution is expressed in the form 

of a two-phased soluti'...'. algorithm cnich is calj a "the netwox-̂ k algo

rithm" (NA). The network algorithm is described in a general way so 

that it can be applied to any network configuration which is adequately 

defined. If an optimum solution exists for any given network configu

ration, it can always be found by using the network algorithm. The 

algorithm is illustrated in Chapter V where it is used to solve a com

munication problem for a large, decentralized company. 

The simultaneous flow problem has been studied by many people 

since its introduction in 1958 by Ford and Fulkerson [F13]. The most 

recent solutions use a linear programming approach to solve the 

undirected minimum cost formulation of the problem (e.g.. Tang [F60j, 

Gomory and Hu [F28], Tomlin [F64], and Hu [A13]). Slight variations 

are common in the expression of the problem as evidenced by the bipath 

solution of Tang and the handling of directed networks by Tomlin. A 

description of the variation of the problem which is considered in this 

dissertation now follows. 
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The Network Problem 

The network problem solved in this chapter is formally stated 

below. The network G(N,A) under consideration must be strongly con

nected with a finite node set N containing n nodes (l<n) and a finite 

arc set A containing m arcs [n-l<m<n(n-l)j . 

Given: 

1. The cost per unit flow c(a) for each aeA, where c(a)>0. 

2. The maximum flow capacity b(a) fui' each aeA where b(a)>0 

3. The node-pair flow requirement ril,j) for each node-pair (i,j)£NP 

and r(i , j)^0. 

4. The maximum length (i.e., number of arcs) L for any simple path 

7T(i,j) where l<L<n-l. 

Find: 

A network path set {7T( i , j ) ,i/( i , j )£NP) (i.e., a solution) having 

a simultaneous flow assignment {f [7T(i , j )J ,V-(i , j )£NP} which satisfies the 

following neiTDork conditions: 

1. Minimum Cost. The overall cost of a network flow assignment 

is a minimum over all possible network path sets. That is: 

COST = _ Min { I f(^(i,j)] • c(T^(i,j))} 
{7T(i,j)} (i,j)£NP 

2. Path Length. The length il[7T(i,j)J of each path 7T(i,j) for 

all (i,j)£NP is less than or equal to L. That is: £(7T(i,j))<L for all 

(i,j)€NP. 
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3. Flow Requirements. The flow assignment f[TT(i,j)j along the 

path 7T(1,J) for all (i,j)eNP is greater than or equal to the flow 

requirement r(i,j) for node-pair (i,j). That is: f [17(1, j ) J >r( i , j ) for 

all (i,j)eNP. 

^-. Arc Capacity. The flow f(a) on arc a for all aeA is less than 

or equal to the arc capacity b(a). That is: f(a)<b(a) for all aeA. 

Uheve: 

COST E Minimum cos i. of a netwojk solution f• rr the netwoi-k G(N,A). 

7r(i,j) E The simple path between node-pair (i,j). 

AS (71(1,j)] E The arc set of the path 7T(i,j). 

f(7T(i,j)J E The flow on path 7T(i,j). 

r(i,j) E The flow requirement for node-pair (i,j). 

0 if a^AS(^(i,j)] . 

r(i,j) if a€AS(TT(i,j)) . 
f (i.D) 

a 

f(a) = y f(i,n)= The total flow on arc aeA. 
(i,j)eNP "̂  

b(a) E The maximum flow capacity on arc aeA. 

c(a) E The cost per unit flow on arc aeA. 

£(7T(i,j)J E The length of the simple path irCijj). 

L E The maximum length of any simple path. 

The Solution Approach 

A solution expressed in terms of a network path set {7r(i,j)j 

't̂ (i,j)eNP} is required to solve the network problem. The sequence of 

arcs for each node-pair in this set represents the path over which mes

sages should be sent in order to relize the minimum overall cost of 
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message flow in the network. In order to simplify the notation, the 

term "solution" will be used in a general sense in this chapter. That 

is, any bona fide network path set can be considered a solution. In 

order to distinguish different solutions, the following notation is 

used to denote solution K: {ird , j ) ,V(i , j )£NP} . 

The network conditions 1 and M- are referred to, respectively, as 

the optimality and feasibility conditions. An acceptable solution is 

defined as a solution which first satisfies conditions 2, 3 and 4, and 

is then selected as a least cost solution which satisfies condition 1. 

It is, therefore, properly referred to as an optimum feasible solution. 

The path algorithm (PA), developed in Chapter II, is an integral 

part of the solution approach discussed in this chapter. It is used in 

both phases of the network algorithm to find a solution which satisfies 

network conditions 1 and 2. In the Phase I algorithm a solution is 

found which satisfies network conditions 1, 2 and 3. The Phase II algo

rithm finds a solution (if one exists) which satisfies all four condi

tions. That is, it finds an acceptable solution to the network problem, 

The Network Algorithm: Phase I 

See Figure 3.1 for a flow chart of the following algorithm. The 

inputs to Phase I are: 

1. The set of arcs A in a strongly connected network SCN. 

2. The unit cost c(a) for each aeA. 

3. The maximum flow capacity b(a) for each aeA. 

4. The maximum path length L. 

The sequence of steps required in the Phase I algorithm now follows: 
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Initialization 

115 e PA and AA to 
find 
(1) c(i(i,j)) 
(2) AS(7r(i,j )) 
(3) b(TT(i,j)) 
for all (i,j)eNP. 

Assign flow for each node-pair (i,j): 
f(^(i,3))>(i.j)ifb(u(i,j))^r(i,j). 

t _<P otherwise. 
T^{(i,j)|f(TT(i,j))-(j)}. 

AS(^(i,j))^(() for all (i,j)eT. 

Select (x,y)3-
r(x,y)=Min[r(i,j)] 

(i,j)eT. 

Eliminate from the 
SCN all arcs a such 
that b(a)<r(x,y). 

Use PA and AA to find 
(1) c(n(x,y)) 
(2) AS(TT(x,y)) 
(3) b(Tr(x,y)) 
for node-pair (x,y). 

Assign: 
f(x,y)^r(x,y) 
T^T-{(x,y)}. 

Yes 

No 
Solution. 

Calculate 
f(a) 

for all aeA. 

Yes 

Optimum 
Solut ion. 

Figure 3 . 1 . Phase I Algorithm 
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A. Initialize the set of node-pairs T; i.e., T-<-(|). (The node-pairs 

which are eventually placed in set T require individual handling 

to find paths with required capacity.) 

B. Use the path algorithm (PA) and the auxiliary algorithm (AA) to 

find for each node-pair (i,j) in SCN such that il[7T(i,j J ̂ L, (1) the 

cost of the least cost path c[7T(i,j)J; (2) the least cost arc set 

AS(7T(i,j)); (3) the path capacity b(TT(i,j)]. (Since SCN is strongly 

connected, at least one path exists between each node-paxr.) 

C. Assign node-pair flow requirements to each path. If the calculated 

capacity b(7T(x,y)J of a path is greater than or equal to the flow 

requirements, then assign a flow between node-pair (x,y) equal to 

the flow requirements. If b[7T(x,y)J is less than r(x,y), then not 

enough flow can be assigned to that particular path to satisfy the 

flow requirements. Therefore, place in set T the node-pairs which 

do not currently have paths which can carry the required flow, i.e., 

T = {(i,j)|r(i,3)>b(^(i,j)) ,-t/(i,j)eNP}. 

Set AS('iT(i,j )]̂ (f) for all (i,j)£T, since the paths 7T(i,j) have not 

been found which can carry the required flow. 

D. If set T is empty (i.e., flow has been assigned to all paths 

7T(i,j)), then go to step K. If T contains at least one element, 

then continue to step E. 
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E. Find a node-pair (x,y) in T which has a least value for its flow 

requirements. That is, select (x,y)3-r(x,y) = Min [r(i,j)}. 

F. Eliminate from the SCN for the remaining steps in Phase I all arcs 

a having their flow capacity b(a) less than the flow requirement 

r(x,y). (These arcs can be eliminated because they cannot be used 

to carry the flow requirements for any node-pair remaining in set 

T.) 

G. Use the path algorithm (PA) and the auxiliary algorithm (AA) to find 

for node-pair (x,y) in SCN such that £ (7r(x,y)J <L, (l) the cost of 

the least cost path c[7r(x,y)j; (2) the least cost arc set 

AS[7r(x,y)]; (3) the path capacity b[7r(x,y)]. 

H. If AS(7T(x,y)) = ((), then the PA could not find a least weighted 

path of length L or less between node-pair (x,y). Therefore, go to 

step I which terminates the algorithm. If AS (7r(x,y)]?=((), then the PA 

has found a least weighted path for node-pair (x,y). Continue to 

step J. 

I. Exit from the Phase I algorithm. A path could not be found between 

node-pair (x,y) which has length L or less and/or can carry the flow 

requirement r(x,y). 

J. Assign the node-pair flow requirement r(x,y) to the path flow 

f(7r(x,y)] for node-pair (x,y). 

Eliminate node-pair (x,y) from the set T. 

Go to step D. 
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K. (At this point in the algorithm a network path set (frCi,]'), 

•t/(i,j )eNP} has been found for the SCN where Tr(i,j) represents the 

least cost path between (i,j) which satisfies network conditions 

1, 2 and 3.) Calculate the flow f(a) for each arc aeA. Use the set 

of flows {f (7T(i ,j )) ,-t/(i ,j)eNP} to calculate f(a) as follows; 

f(a) = I f (i,j) for all aeA, 
(i,j)eNP "̂  

where 

if a4A(7T(i,j))l 
f^,(i,j)=<| _ '> for all (i,j)£NP. 

r(i ,j) if aeA(7T(i,j)) J 

L. If f(a)<b(a) for all aeA, then continue to step M. If not, go to 

step N. 

M. The Phase I algorithm has found a solution to the network problem 

which satisfies the four network conditions. Output the following 

1. The network path set {7T(i , j ) ,V( i , j )eNP}. 

2. The flow f(a) for each aeA. 

3. The total network cost, COST, as calculated by: 

COST = I f(a) • c(a). 
aeA 

Terminate the Phase I algorithm. 

N. At this point in the Phase I algorithm, a solution has been found 

which satisfies conditions 1, 2 and 3. Phase II is required in 
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order to satisfy condition 4. 

Terminate the Phase I algorithm. 

Proof of Phase I Algorithm 

Lemma 3.1 

If a least cost path set {ird ,j ) ,V(i , j )eNP} is found by the Phase 

I algorithm such that the path flow f[7T(i,j)J = r(i,j), then the net

work cost, COST - Y f ["""(isj)] • c[7r(i,j)J, is a minimum. 
(i,j)eNP 

Proof. Regardless of the network path set (TT (i , j ) ,-(/(i , j )eNP} 

selected by the Phase I algorithm, the flow which is assigned to each 

path 7T (i,j) is always the same; that is: 

f(/(i,j)j = r(i,j). 

This assignment is performed in step C or step J of the Phase I algo

rithm. 

By Theorem 2.1, the path algorithm always finds the least cost 

path 7r(i,j) for each node-pair. Since each f[7r(i,j)J is multiplied by 

the unit cost c[7T(i,j)J of path Tr(i,j), a minimum value for each 

c(7r(i,j)] results in a minimum cost, COST, for the network because, 

I Min{f (^(i,j)) • c(^(i,j))} = Min{5; f(^(i,j)] • c(^(i,j)]}. 

Therefore, as long as a least cost path is found for each node-pair, 

the calculation of the total cost is a minimum. D 
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Lemma 3.2 

Given an assignment of flow to the paths in a network path set 

{^'(i,j),-t^(i,j)eNP}, then 

I f(^'(i,j)] • c(TT'(i,i)] = I f(a) • c(a) 
(i,j)£NP ci£A 

where f(a) = ^ f [jT'Ci,])] for all a£A and 
(i,j)eNP "̂  

c(a) = J, c (7r'(i,j)j for all aeA. 
(i,j)€NP "̂  

Proof. 

I f|;^'(i,j)] • C(^'(i,j)) = I [f(7r'(i,j)) . I C (TT'(i,j)]] 
(i,j)eNP (i,j)£NP a£A 

I I tfj^'a,])) . C (TT'd,:)]] 
(i,j)£NP a£A ^ 

I I [f (^'(i,])) • c(^'(i,j)]] 
aeA (i,j)£NP 

- I 
aeA (i,j)€NP'' 

I c f^'(i,j)) 
(i,j)eNP 

I f(a) • c(a). D 
aeA 

Theorem 3.1 

The Phase I algorithm finds a network path set {7r(i , j ) ,-t̂ (i, j )eNP} 

such that: 
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1. COST = I f(TT(i,j)) • c(Tr(i,j)] = I f(a) • c(a) 
(i,j)£NP aeA 

where COST is the minlmuin total cost of any network path set which 

satisfies the following conditions: 

2. £(Tr(i,j)]<L for all (i,j)£NP. 

3. f(^(i,j)] = r(i,j) for all (i,j)£NP. 

Proof. We begin the proof by establishing the fact that the 

Phase I algorithm finds a least cost path for each node-paii^ (>̂ jy) which 

is constrained by conditions 2 and 3 above. 

In step C in the Phase I algorithm a node-pair (x,y) is placed in 

set T if the capacity of the path Tr(x,y) is less than the required 

capacity r(x,y) for the node-pair. For each node-pair (x,y) in the 

network not placed in set T, Theorem 2.1 guarantees that a least cost 

path Tr(x,y) is found and that condition 2 holds for the path. Step C 

in the algorithm satisfies condition 3 as the required flow is assigned 

to the path. 

Special handling is performed by the algorithm for those node-

pairs in set T. New paths must be found between these node-pairs which 

have a capacity greater than or equal to their respective flow require

ments. Since the capacity of a path is calculated as: 

b[^(x,y)] = Min {b(a)}, 
aeA(7T(x,y)) 

arcs a' having a capacity less than the required path capacity r(x,y) 

cannot be used to create a path between (x,y). If the arcs a' are 
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eliminated from consideration for each (x,y) and the path algorithm then 

used. Theorem 2.1 can be used to guarantee that a least cost path is 

found (if it exists) which satisfies condition 2. Step J in the algo

rithm satisfies condition 3. Since each (x,y)eT is selected in turn 

such that: 

r(x,y) = Min {r(i,j)}, 
(i,J)eT 

the arc elimination at step F eliminates only those arcs a' which are 

less than r(x,y) and are, therefore, ineligible for use on any path 

between (x,y). 

Since the Phase I algorithm finds the minimum cost path for each 

node-pair, we apply Lemma 3.1 to these separate results in order to 

validate network condition 1 for the entire network path set. Lemma 3.2 

completes the proof by confirming that the two equations for computing 

total network cost are equivalent. D 

Introduction to Phase II Algorithm 

The Phase II algorithm uses a branch and bound philosoph}/- to 

solve the network problem. The real power in a branch and bound 

approach lies in the way branches are constructed and bounds used in a 

particular algorithm to achieve the desired results. Fortunately, the 

overall Phase II optimization problem is consistent with and readily 

adapted to a branch and bound method of solution. 

In the Phase II algorithm a solution tree, abbreviated ST, is 

constructed for the network problem being solved. Each node in the 
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solution tree represents a possible solution to the network problem. 

That is 5 each node represents a network path set for the given problem. 

Network conditions 1 and 4- play a significant role in the algorithm 

while the other two conditions are automatically satisfied for all 

solutions which are considered. Earlier we remarked that if a solution 

satisfies network condition 1 it is called an optimum solution; if a 

solution satisfies network condition 4- it is called a feasi-bte sotuti-on. 

Thus an optimum feasible solution is desired for the network problem. 

The Phase II algorithm initializes the solution tree by placing 

the infeasible solution found in Phase I at the root node. Phase II 

then generates new nodes in the tree until it either finds an optimum 

feasible solution or finds that no optimum solution exists. 

There are four kinds of terminal nodes in ST. They are labeled 

and defined as follows: 

NS - Nodes signifying that no solution is possible. 

IS - Nodes representing solutions which are infeasible. 

FS - Nodes representing non-optimum, feasible solutions (i.e., a solu
tion which satisfies conditions 2, 3 and 4, but not 1). 

OS - Nodes representing an optimum, feasible solution (only one of 
these is selected by the algorithm). 

The cost of each solution node in ST, COST, is calculated and assigned 

to the node and is used by the algorithm as the bound for the node. A 

cost equal to MAX (i.e., a very large number) is assigned to NS nodes 

since no cost can be calculated for them. 

The Phase II algorithm selects an IS solution node in ST and 

examines those arcs aeA of its infeasible solution for which f(a)>b(a). 
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The algorithm then reassigns the excess flow in any arc which has a 

flow greater than its capacity to other arcs and thereby creates new 

solution nodes in ST. The creation of new nodes in ST from an IS node 

is called "branching" or "flow reassignment." The new nodes created by 

flow reassignment can be any of the four types of nodes already dis

cussed (i.e., NS, IS, FS, OS). The process of determining the type of 

node created by flow reassignment is called "evaluation." 

Lemma 3.4, given near the end of this chapter, guarantees that 

the cost (i.e., bound) associated with each node in ST along any path 

from the root node will be greater than or equal to the cost (i.e. , 

bound) of the preceding or parent IS node. Therefore, no further 

branching is necessary for an NS node whose cost equals MAX or an IS 

or FS node whose cost is greater than the cost of another FS node. One 

of the FS nodes having least cost is selected as the optimum feasible 

solution OS to the original network problem. 

The overall Phase II algorithm is organized in the following 

major sections (steps are discussed in the next section): 

—Reassignment of flow for an IS node. Steps C-H. 

—Evaluation of new nodes created by flow reassignment. 
Steps I-Q. 

—Determination of whether a new FS node qualifies as the 
optimum solution to the network problem. Steps R-T. 

Since the algorithm is based on a branch and bound philosophy, 

traditional branch and bound characteristics of the algorithm are now 

presented. 

Branching Charaater-istio. Overflow arc(s) in IS node. 
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Bounding Charaoteristia. Cost of flow for solution node. 

Branching Policy. Choose an infeasible solution having the 

smallest number of overflow arcs. 

Optimum Feasible Solution. A solution which satisfies network 

conditions 1, 2, 3 and M-. 

Convergence Criterion. At least one new arc will be eliminated 

from consideration from a node-pair for each new node in the solution 

tree. 

Root Node. Infeasible solution from Phase I. 

The Network Algorithm: Phase II 

The corresponding flow chart of the steps in the Phase II algo

rithm is given in Figure 3.2. The sequence of steps now follows. 

A. Initialize the Phase II algorithm. 

1. Place the infeasible solution from Phase I into the root node 

of the solution tree ST and calculate the cost of the Phase I 

solution. 

2. Create the set IS of infeasible solution nodes on which branch

ing has not been performed; i.e., IS = {K|K is an IS node and 

the flow on solution K has not been reassigned}. (Note that the 

root node is the only element of IS at this time.) 

3. Initialize the minimum cost; i.e., COST-̂ MAX. 

4. Create the history set H(K) for the root node R=K; i.e., 

H(K) = {(a,i,j)|Va£A and -f (i , j )eNP3r(i , j )>b(a) } . 
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Initialization 

Create for each KelS: 
OA(K) = {a|a€{^(i,j)}^,f(a)>b(a)} 
Select: 
K'eIS^|OA(K')| = Min [|OA(K')|]. 

KelS 

Select: 
a'eOA(K')". 

Create: 

AU(a') = {(i,j)|a'e^(i,])V^(i,j)e{^(i,j)}^,}. 

Create: AE(a') = {S|ScAU(a'), f(a') = 
J^f^,(i,j)<b(a'), for (i,j)eAU(a') - S where 
sets S contain no supersets in AE(a')}. 

Update: 

OA(K')•'•> = 
OA(K'):': - {a'}. 

No 

Yes ^ 

Create: 
OR(K') = {j|j = {s^,S2,...,s^,...,s^}, q = 

and s eAE(a )}. 
r r 

|OA(K')| OR(K') = {j|j = {s^,S2,...,s^,...,s^}, q = 

and s eAE(a )}. 
r r 

Create a new node in ST for every JeOR(K'). 
Create: OR(K ' )--VOR(K ' ) . 

NP'VNP. 

Figure 3.2. Phase II Algorithm 
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^ 

Select: JeOR(K')=':. 

Set: J"-^J, 
L a b e l new node J ' J 

i 
Select: ( a',X5y )e J"-'". 
Find: B = U | (a,x ,y )eJ-'>}. 

Find: y = {a'|(a',x,y)eH(K')} 
Create: 6 = {e,Yl-

Eliminate 
arcs 

I from SCN. 

Use PA and AA to find: 

(1) c(u(x,y)) ] 
(2) AS(T:(x,y)) t'for node-pair (x,y) 
(3) b(u(x,y)) J 

Assign: {Tr(x,y)} -*-AS(Tf(x,y)). 

Assign: {f ( 7T( x ,y) ) ] -(-r(x,y ). 

Yes Set: 

COST(J')^MAX. -3 
Restore 6 to SCN. 
Update J" and NP-. 
Assign New Path: [^(x,y)} -^^(x,y). 

Assign Flow; {f (̂ ( x,y))} ̂ ,-^r(x,y). 
u 

No 

Create: H(J')^H(K')uJ. 

Assign: {Tr(i ,] ) }j ,^{Tr(i ,j )}^, \ For all 

Assign: {f (^(i ,i ) ) 1^ ,^{f (̂ ( i , j )) }^, J (i,j)eNP>' 

Calculate: 
(1) f(a) for all aeA. 
(2) COSTCJO = I f(a)-c(a). 

aeA 

Figure 3.2. Phase II Algorithm (Continued) 
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No 

Label Node 
Feasible. 

No 

Set: COST^COST(J'). 

Assign: {u(i , j ) l̂ p̂ f̂TiCi , j ) }j ,. 

{f(^(i,j))}QP^-{f(^(i,j))}^^ 

Update: 
IS^IS-{K|KeIS and C0ST(K)>C0ST or 

COST(K)>COST}. 
OR(K')''«̂ R(K')''̂ -J. 

Label Node 
Infeasible. 

1 
Set: 

IS^ISuJ' 

Solution satisfy ing all conditions has 
been found. 

Output: 

1. {TT(i 
'̂ -'•̂ OPT 

for all (i ,j)£NP. 

2. f(a) for all aeA . 

3. The optimum cost COST. 

Figure 3.2. Phase II Algorithm (Continued) 



59 

The history set H(K) for node K is the set of triplets (a,i,j) 

in which arc a will not be used to construct a path between 

node-pair (i,j) for solution node K and for any solution created 

from node K. 

5. Calculate the maxiinum cost of the Phase II solution. That is: 

COST = I b(a) • c(a). 
aeA 

B. Find the s e t of overflow a rcs OA(K) for each i n f e a s i b l e s o l u t i o n 

node KelS. That i s : Create OA(K) = {a I a e l i r d , j ) }^,f (a )>b(a) } , for 
A. 

each KelS. Select a solution node K'elS having the minimum number 

of overflow arcs. That is: |OA(K')| = Min{|OA(K)|}. Create a 
kelS 

working set 0A( K ' )"^A(K'). 

C. Select any overflow arc a'£OA(K') in solution node K'. 

D. Create the arc utilization set AU(a') of node-pairs (i,j) such that 

the overflow arc a' is on the path 7T(i,j) in the network solution 

{w(i,j)}^,. That is: 

AU(a') = {(i,j)|a'eTr(i,j) for all irCi , j )e {̂ (i , j ) }^, } . 

E. Find a set AE(a') of subsets ScAU(a') such that: 

(l) If S is removed from AU(a'), then the flow f(a') for all node-

pairs remaining in AU(a') is; 

f(a') = I f ,(io) ^ b(a'). 
(i,j)eAU(a')-S ^ 
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(2) If S cAE(a') and S cAE(a') such that S ^s then remove S 

from AE(a'); i.e., all sets ScAE(a') contain no supersets in 

AE(a'). 

(The significance of this step in the algorithm is discussed in 

Lemma 3.5. The set AE(a') contains summary information concerning 

the overflow characteristics of arc a'.) 

F. Eliminate arc a' from the set OA(K'). That is, 

OA(K' )'VoA(K' )'''' - {a'}. 

G. If the set OA(K') is empty, continue to step H. If not, go to 

step C. 

H. Redefine the set AE(a') as a set of triplets {(a' ,i,j)|(i,j)eAE(a') } 

for each a'eOA(K'). 

Create a set OR(K') in which each element JeORCK') consists of one 

element S from each of the q sets AE(a')j i.e., OR(K') = 

{J|j = {s^jS^,... ,s^,... ,s }, q = |OA(K')|, and s^eAE(a^)}. 

Create a new node in ST branching from node K' for every element 

JeOR(K'). 

(Each element J in OR(K') represents a solution having a minimum 

increase in cost over solution K' and eliminating the infeasibility 

on the arcs a'eOA(K'). See Lemma 3.5 for an explanation.) 

Create a working copy OR(K')" of set OR(K'); i.e., OR(K')'VoR(K')• 

I. Select one of the sets JeOR(K') for evaluation. 

Label the new node being evaluated J'. 

Create a working copy J of set J; i.e., J -̂ J. 
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Create a set of all node-pairs NP"; i.e., NP ̂ NP. 

J. Select any element (a',x,y)eJ . 

Find those arcs 3 which cannot be used by a path between (Xjy) in 

the reassignment of overflow for solution node J'. That is: 

3 - {a|(a,x,y)£j }. 

Find those arcs y which cannot be used by a path between (Xjy) for 

the solution at node K'. That is: 

Y = {a|(a,x,y)€H(K')}. 

Create the set of all arcs 6 which aanyiot be used by a path between 

(x,y) for solution node J. 

6 = {3.,Y}. 

K. Eliminate the arcs 6 from the SCN. 

(These arcs 6 are restricted from being used on a path between node-

pair (x,y) . ) 

L. Use the path algorithm (PA) and the auxiliary algorithm (AA) to 

find the following for node-pair (xjy) in SCN where all path lengths 

are less than or equal to L. 

(1) The least cost path 7T(x,y). 

(2) The cost c(7r(x,y)] of path 7r(x,y). 
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(3) The capacity b(7T(x,y)j of path 7T(x,y). 

M. If TT(x,y) = (|), then the path algorithm was unable to find a path. 

In this case go to step N. If the path set is not empty, then con

tinue to step 0. 

N. Set the cost of node J' equal to MAX: i.e., COST(J')^MAX. 

Go to step V. 

0. Restore the eliminated arcs 6 to the network. 

Eliminate all references to the node-pair (x,y) in the set J and 

NP'\ That is: j" = j" - {(a,x,y)|aeA} and NP" = NP" - {(x,y)}. 

A s s i g n t h e new p a t h 7T(x,y) t o t h e s o l u t i o n a t node J ' . 

Tha t i s : {7T(X ,y) } ,-^TT( x , y ) . 

Assign the required flow r(x,y) to the path Tr(x,y). 

That is: {f(^(x,y))}j,^r(x,y). 

P. If J = (|), go to step Q, for all flows have been reassigned for the 

new node J'. If not, then continue to step J. (When set J is 

empty, then a new solution node J' has been created in the solution 

tree.) 

Q. Create a history set H(J') for node J' which contains the accumula

tion of arc eliminations. That is: 

H(J')^H(K')uJ. 

Assign the previous least cost network path sets {7T(i,j)} , and 

simultaneous flow assignments {f(7T(i,j)J} to solution node J' for 
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all node pairs (i,j)€NP . 

Find the flow f(a) for the solution at node J'; i.e., 

f(a) = I f (i,j) for all aeA 
(i,j)€NP " 

Calculate the cost of the solution for node J': 

COS^ (J') = I f(a) • c(a) 
aeA 

R. If the solution at node J' is feasible (i.e., f(a)<b(a) for all 

aeA), then label the node "feasible" and go to step T. If not, 

label it "infeasible" and go to Step S. 

S. Place the solution node J' into the set of infeasible nodes IS. 

That is: IS = ISuJ' . 

Go to step V. 

T. If the cost of solution node J' is minimum (i.e., COST (J')<COST), 

then go to step U. If not, go to step V/. 

U. Set the minimum cost, COST, equal to the cost of solution node J'; 

i.e., CQST^COST(J'). 

Store the solution paths {Tr(i,j)} into {7r(i,j)} as the optimum 
U (J-T i 

feasible solution. 

V. Eliminate any node from the set IS having a cost greater than the 

optimum cost or greater than the maximum cost. That is: 
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IS = IS - {KJKelS and COST(K)>CQST or COST(K)>COST}. 

Update the unevaluated node set: OR(K')"^OR(K')" - J. 

W. If all unevaluated nodes in the solution tree have been evaluated 

(i.e., OR(K') = (f)), then continue to step X. If not, go to step I. 

X. If the flow in all infeasible nodes has been reassigned (i.e., IS = 

<|)), then continue to step Y. If not, go to step B. 

Y. If the optimum solution has been found (i.e., COST<MAX), then con

tinue to step Z. If not, the problem has no solution and the algo

rithm terminates. 

Z . The Phase II algorithm has found a solution which satisfies all the 

network conditions. Output the following: 

1. The network path set {7r(i , j ) ,f (i , j )eNP} . 

2. The arc flow f(a) for all aeA which is computed from the network 

flows {f(^(i,j)) ,î (i,j)eN?}Qp̂ . 

3. The cost of the optimum solution, COST. 

Terminate the Phase II algorithm. 

Proof of the Phase II Algorithm 

Lemma 3.3 

For any two sets J , J^eOR(K') where J and J„ are selected such 

that J cj the cost of the solution nodes J' and J' obtained, respec

tively, from sets J, and J„ satisfy the following inequality: 

COST (J') < COST (Jp. 
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Proof. At step J in the Phase II algorithm, the arc set 3 is 

obtained for each node-pair in J . Since J cj then either (l) B.̂ g 

for some node-pair (x,y) or (2) an additional set 3 will be created 

for a node-pair (x,y) occurring in J , but not in J . 

In the first case at least one additional arc will be eliminated 

from the network in calculating a least cost path at step L in the 

algorithm for solution node J . In the second case a new least cost 

path will be found for at least one additional node-pair in finding the 

solution for node J . Therefore, in either case, at least one addi

tional arc a' will be eliminated from consideration for some node-pair 

(x,y) in finding the solution for node Ĵ . 

Consider the paths between the node-pair (x,y) obtained above. 

Now the least cost path c(iT(x,y)J for node-pair (x,y) in solution J 

must be greater than or equal to c(i(x,y)) for solution j'. This is 

because an arc elimination restricts the selectivity of arcs which 

might be used on a path between (x,y). Since a new path must be found 

between the node pair, the cost of the path can either increase or stay 

the same. Since the total cost of any solution node J' can be calcu

lated as : 

COST(J') - I f(7r(i,j)] • c(7r(i,j)] 
(i,j)eNP 

for the network assignment {ffird ,j )] } 

and the flow f(TT(i,j)J between all node-pairs in solutions j' and j' is 
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the same (i.e., f(7r(i,j)J = rd^j)), it follows that: 

COST(J^) < COSTCJ^). 

This proves the lemma. D 

Lemma 3. M-

The cost associated with a solution node J' in solution tree is 

equal to or greater than (i.e., monotonically nondecreasing) the cost 

of its immediate predecessor solution node K' (i.e., COST(K')<COST(J') 

if solution node J' results from the branching at node K'). 

Proof. The solution which the Phase II algorithm finds for node 

J' is based primarily on the solution found for its immediate predeces

sor node K'. In step Q in the algorithm all least cost path sets not 

calculated in steps J through P for solution J' are assigned to it from 

the solution at node K'. 

Now at least one new path must be calculated for node J' which 

was not in the solution at node K'. This can be seen by considering the 

history sets H(K') and H(J') for solution nodes K' and J', respectively. 

Now H(K')<=H( J') . This is because the set H(J') contains additional 

elements (arcs and/or node-pairs) which were not in H(K'). If this is 

not the case, a contradiction occurs. The elements of the set J' were 

specifically chosen, because they were already being used by a path in 

the K' solution. If they were used in {Tr(i,j)} , then they could not 

be eliminated at an earlier solution node. Therefore, 
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H(K')c[H(K')uJ] = H(J'). 

By Lemma 3.3, COST(K')^COST(J') and the lemma is proved. Q 

Lemma 3.5 

Consider an infeasible solution node K'elS in the solution tree. 

The Phase II algorithm generates all possible solution nodes from node 

K' which: 

1. Reduce the overflow in all the overfly-/ arcs of solution K' 

(i.e., the algorithm makes the flow feasible in all infeasible arcs of 

solution K'). I 

2. Produce a minimum increase in cost from the node K' solution. 

Proof. Step E in the Phase II algorithm creates an arc elimina- " 

tion set AE(a'). Each SeAE(a') is a set of node-pairs (i,j) such that 

if arc a' is not used on the path Tr(x,y) for all (i,j)£S, then the t 
I 

remaining flow on arc a' is feasible. 

Each set SeAE(a') produces a solution J' having a minimum in- i 

crease in cost over solution K'. To prove this,first consider (1) the 

sets S ,S eAE(a') such that S cS . Let solution J be generated from , 

set S and solution j' from set S^. By Lemma 3.3, COST(j|)<COST(J'). I 

Therefore, the solution having a minimum increase in cost is generated , 

from set S . Next consider (2) the sets S ,S eAE(a') such that S cS . 

Now this case is not possible if S is generated as in step E, part 2 

of the Phase II algorithm. The smaller set S would lead to a solution 

which still had an overflow in arc a'. Therefore, each element 

S eAE(a') as obtained by the Phase II algorithm produces a feasible 

solution having a minimum increase in cost over solution K'. 
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Since each set S £AE(a') for each overflow arc a'eOACK') leads 

to a feasible solution at a minimum increase in cost, the collection of 

sets J = {S,,S^,...,S } also leads to feasible solutions having a mini-
1 2 q 

mum increase in cost. This is obvious because each element in OR(K') is 

created by using one set from AE(a') for each overflow arc a' at solu

tion K'. Therefore, when the elements J£OR(K') are used to generate new 

solutions 5 all overflow is eliminated in the infeasible arcs at a mini

mum increase in cost. 

This proves the lemma. D 

Lemma 3.6 

The Phase II algorithm terminates in a finite number of steps. 

Proof. Consider a strongly connected network (SCN) having a 

finite number of nodes and arcs. The Phase II algorithm creates a 

solution tree (ST) in order to find the optimum solution. Since the 

algorithm is based solely on creating and testing the solution nodes in 

ST, a proof that ST has a finite number of nodes is sufficient to prove 

the lemma. 

Each node in ST is created in order to attempt to reallocate flow 

away from overflow arcs in an infeasible solution in such a way that a 

least cost feasible solution is found if one exists. Steps Q and J in 

the algorithm insure that once an arc has been eliminated from being 

used on a path between a node-pair for solution node K', it will con

tinue to be eliminated for the same node-pair for all future solution 

nodes in ST emanating from node K'. 
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Now at least one new element is introduced into the history set 

H(J') which was not in H(K') where solution node J' is created by a 

branch from solution node K'. This was proved in Lemma 3.4. Also, 

when H(M') for some solution node M' contains all possible combinations 

of arcs and node-pairs as elements, the path algorithm will be unable 

to construct a path between any node-pair. This is because all arcs 

have been eliminated from the network. Therefore, the algorithm will 

not be able to create any new nodes in ST. 

Collecting the facts already established: 

—At least one new element is added to H(K') for each solution 
node K in ST. 

—An element added to H(K') is also included in H(J') for any 
solution node J' in the solution tree having node K' on the 
path between node J' and the root node. 

—When H(M') contains all combinations of arcs and node-pairs, 
then no additional nodes can be created from node M'. 

Therefore, the number of solution nodes along any path from the root 

node is finite. 

The number of paths from the root node in ST to any terminal 

node is also finite. This is true because only a finite number of new 

nodes is created for every infeasible node K' in ST. The finiteness of 

branching stems from the following facts: 

—Only a finite number of arcs a'eA can have overflow; i.e., 
OA(K') is always a finite set (step B in the algorithm). 

—Only a finite number of ways exist to reassign the overflow 
in an arc a'; i.e., AE(a') is always finite (step E in the 
algorithm). 

Since the solution tree has a finite number of new solution nodes 

emanating from each solution node and a finite number of paths exists in 
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ST from the root node to all terminal nodes, the solution tree has a 

finite number of nodes and the lemma is proved. D 

Theorem 3.2 

The Phase II algorithm finds a solution (if one exists) to the 

network problem which satisfies network conditions 1,2,3 and M- in a 

finite number of steps. 

Proof. The theorem is proved by considering each of the above 

conditions in turn. Lemmas 3.5 and 3.6 guarantee that the Phase II 

algorithm will generate feasible solutions (if any exist) having minimum 

increase in cost over the previous solution node in a finite number of 

steps. And network condition 2 is verified by Theorem 2.1 because all 

paths found in Phase I or Phase II of the algorithm are found by the 

path algorithm. 

Network condition 3 is satisfied by the Phase II algorithm in a 

manner similar to the way it was satisfied in the Phase I algorithm. In 

step A of Phase II all arcs aeA which have a capacity less than or equal 

to the requirements, i.e., b(a)<r(x,y) for each node-pair (x,y) in SCNj 

are placed in H(R') for the root node R'. These arcs, for the particu

lar node-pair (x,y), are eliminated from SCN at step K prior to using 

the path algorithm to find a least cost path 7T(x,y) between (x,y). 

Therefore, no path 'n"(x,y) found by the path algorithm can have a 

capacity less than r(x,y). Since f(7T(x,y)J is set equal to r(x,y) at 

step L and all flows for the root node satisfy condition 3 (Theorem 

3.1), then network condition 3 is satisfied for all solutions found in 

Phase II. 



71 

Network condition 4 is guaranteed in Phase II by the decision 

at step R. In order for a solution to be labeled feasible, it must 

meet the test given at this step. That is: f(a)<b(a) for all aeA. 

The proof that the Phase II algorithm satisfies network condition 

1 must now be established. Theorem 3.1 guarantees that the Phase II 

algorithm starts with the root node having a least cost solution. In 

Lemma 3.M- it is established that the cost of each solution node in ST 

on any path from the root node is mo.iotonically nondecreasing. In 

Lemma 3.5 it was proved that: 

—All permissible least cost ways are found to reduce all the 
overflow for an infeasible solution node. 

—Each newly created solution node J' represents a least cost 
increase in the solution cost over the previous solution node 
K' . 

Therefore, the cost of any feasible solution node found in ST represents 

the least cost way of arriving at that solution along a unique path in 

ST from the root node. This means that a feasible solution having the 

minimum increase in cost over the root node cost is an optimum solution 

to the network problem. Steps T and U check each feasible solution node 

created in ST and retain one having the smallest cost as the optimum 

feasible solution. 

Since each of the conditions stated in the theorem is satisfied 

by the Phase II algorithm, we have proven that the network algorithm 

solves the simultaneous flow network problem. D 
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Computational Considerations 

To this point in the chapter the solution algorithm has been 

described and its validity proved. In this section some topics related 

to improving the efficiency of our branch and bound algorithm are dis

cussed. Exact computational estimates of a branch and bound algorithm 

cannot be made because the creation of the solution tree completely 

depends on the specific problem being solved. Since programming and 

evaluating the algorithiu were not part of the research, we can only 

advance general comments about the algorithm based on hand calculations 

and our knowledge of programming techniques. It has been noted by Agin 

in a study of branch and bound algorithms [EOl] that, as computational 

experience is gained with a particular algorithm, simplifications are 

usually found which greatly reduce computation time. We have already 

found this to be true in our work with the solution algorithm and expect 

that its implementation on a computer will result in further steps 

toward computational efficiency. 

There is an increasing use of branch and bound algorithms in the 

literature. In many cases it is the only known solution method for 

certain types of problems. It should be judged primarily on this basis, 

according to Agin, rather than on its computational efficiencies. It 

is interesting to note, however, that a branch and bound solution to 

the integer programming problem requires significantly less computer 

time than the conventional analytical method [E23]. This suggests that 

with adequate computational experience, branch and bound approaches may 

actually be the best way to obtain global optimum, solutions to certain 

types of problems. 
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A list of computational considerations were compiled as the 

solution algorithm was developed. We now briefly discuss some of these 

considerations: 

1 . Algorithm Heuristics 

The algorithm is set up to branch from a node in the solution 

having the least number of overflow arcs. This heuristic tends to 

reduce the number of new nodes created while effectively searching for 

a feasible s>.lution. T.: the probleiv. solved to -late, this a];'i..ears to 

be a reasonably good heuristic. On Lhe other hand, using tht node 

having the least number of elements in its history set is an appealing 

alternative method for the selection of nodes for branching. 

Branch and bound algorithms tend to require a lot of storage 

space in a computer. In order to reduce the storage requirements of 

the algorithm, it is usually advantageous to find a feasible solution 

as fast as possible. Our branching heuristic accomplishes this by ad

vancing down a branch (i.e., paths) in the tree, and selecting at each 

step the node having the least nuniber of overflow arcs. This tends to 

quickly produce a feasible solution which can be used as a bound in 

eliminating non-optimum paths in the solution tree. 

Two other types of branching strategies are possible for the 

solution algorithm: 

1. Branch from lowest bound. 

2. Branch from newest active bounding problem. 

The first has the advantage that the total amount of computation is 

minimized while storage requirements may become large. The second 
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requires more time but uses a minimum amount of storage. The selection 

of a branching heuristic, in the end, must be based on empirical 

results. 

2. Linked Lists 

To simplify the description of the algorithm, several new sets 

were introduced for each node created in the solution tree. Each new 

set was created by adding elements to the related sets defined at the 

previous node. Two examples of these sets are (.1) the history set for 

the node and (2) the new paths (i.e., set of arcs) found by the path 

algorithm for the node. It is possible to define a single linked list 

for each of these sets for the entire problem. Whenever a new node is 

created, a record of changes (i.e., additions) at that node is stored 

with a link back to the record associated with the previous (i.e., 

parent) node in the tree. This forms a chained record which points 

from any solution node back to the root node. This record contains the 

complete contents of the particular set for the solution node in 

question. 

3. Short Cuts 

The computation time of the solution algorithm can be signifi

cantly reduced by eliminating nodes in the 'solution tree which have a 

low probability of producing feasible solutions. Probably the easiest 

method of doing this is to restrict the number of branches created by a 

node to some reasonable number. (Of course, the nodes having the least 

number of overflow arcs would be selected first.) When paths are indis

criminately eliminated in the solution tree, a global solution cannot 
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be guaranteed, but a satisfactory feasible solution may be obtained. 

The framework of the solution tree is amenable to numerous shortcuts by 

pruning branches. 

n. Equal Cost Paths 

The path algorithm always selects the first least cost path which 

it finds between a node-pair. Other least cost paths of the same length 

may exist but are disregarded until a need for them arises in the 

dynamics of a particular problem solution. Then they are recomputed. 

It may prove advantageous to identify all least cost paths, carry them 

through the steps in the algorithm and check them first when an 

overflow occurs. This may result in an overall reduction in computa

tional time, but it is hard to confirm this without extensive empirical 

evidence. 

5 . Optimum Root Node Selection 

It is imperative to establish a good solution at the root node 

of a branch and bound solution tree. The entire method depends on the 

closeness of the root solution to the final optimum solution. The 

solution method in this dissertation was specifically designed around 

this consideration. In fact, the branch and bound algorithm (Phase II) 

is not even required if overflow does not occur in the minimum cost 

solution in Phase I. 
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CHAPTER IV 

NECESSARY CONDITIONS AND COST BOUNDS 

Introduction 

The solution algorithm discussed in the previous chapter is 

designed to find an acceptable solution to the simultaneous flow network 

problem if such a solution exists. In order to preclude futile attempts 

to find a nonexistent solution, it is advantageous to establish a set of 

necessary conditions in this chapter which can be applied directly to a 

network configuration. If any necessary condition is not satisfied, 

then the solution algorithm should not be used, for an acceptable solu

tion does not exist. 

Also included in this chapter are two theorems which establish 

upper and lower cost bounds for the solution of any network and a dis

cussion of bounds for path length. At the end of the chapter an algo

rithm is described which can be used to assist in calculating some of 

the conditions and bounds discussed in the chapter. 

As stated in Chapter III, the type of network which is considered 

in this dissertation is described by the following network parameters: 

—Arc costs c(a), aeA. 

—Arc capacities b(a), acA. 

—Node-pair capacity requirements r(i , j) ,(i , j)eNP. 

—Maximum path length L. 
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Any network which has values assigned to the above parameters is called 

a network definition or a netuork configuration. 

If all the values of a network configuration are known for a 

particular communication network, then the method of Chapter III can be 

applied to these values to solve the simultaneous flow problem. An 

acceptable solution to the problem is expressed in terms of a network 

path set, {Tr(i,j) ,V(i ,j)eNP} , which satisfies the following network 

conditions (see Chapter III for a detailed explanation): 

1. COST = Min{ I (a) • c(a)} = Min{ I f(^(i,j)) • c(^(i,j))}. 
aeA (i,j)£NP 

2. Jl(̂ (i,j))<L. 

3. f(̂ (i,j)] = r(i,j). 

4 . I f (̂ (i,j)] = f(a)<b(a). 
(i,j)€NP "̂  

It is always desirable to develop necessary conditions which 

require a minimum expenditure of computation effort and which are power

ful enough to detect network configurations that do not have acceptable 

solutions. Unfortunately, strong necessary conditions which are ele

gantly simple to apply are generally difficult to prove. In this chap

ter we state and prove three necessary conditions which cover a range 

from a gross test to a fine test of the defining parameters of a net

work. As the test conditions become more refined, the required compu

tations to test the condition become more involved. 

The research directed toward producing effective necessary and 

sufficient conditions produced fragmentary results and the results 

obtained were not significant enough to include herein. It is concluded 
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ditions are extremely difficult to develop. The establishment of such 

conditions is a prime candidate for follow-on research. 

The activity of establishing cost and path length bounds was 

approached from the vantage point of the earlier results and was not 

based on traditional greatest lower bound and least upper bound philoso

phies. The objective of the two sections in this chapter on bounds 

was to obtain reasonabl^i ways of d-.termining gross limits CL. the cost 

and length parameters of a communication network. 

The only optimization criterion (i.e., network condition 1) for 

the network problem is the total cost of a network solution which satis

fies all the network conditions. Since cost plays such a central role 

in our work, it was advisable to establish bounds on the overall network 

cost. These bounds can be found before the solution algorithm is 

actually applied to the problem. Two theorems are proved which can be 

used to find cost bounds for any network. These bounds can be found 

independently from, the necessary conditions and do not necessarily 

guarantee the existence of a solution within the bounds. 

Necessary Conditions 

Three necessary conditions are now stated and proved which must 

be satisfied in order for a network description to have an acceptable 

solution. These conditions basically involve the relationship between 

the node-pair requirement matrix R (i.e., r(i , j ) ,i/(i , j )eNP) and the arc 

capacity matrix B (i.e., b(i , j) ,V(i ,j)eNP). The weakest condition is 

presented first. 
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Theorem ^.1 

The following conditions must hold for each row [condition (a)J 

and each column [condition (b)) of the node-pair requirement matrix R 

and the arc capacity matrix B for an acceptable solution to exist for 

the simultaneous flow problem: 

(a) Max{r(x, j ) }<Max{b[x5 j ]'} for x fixed and jeN, ĵ x̂. 
J j 

(b) Max{r(i jy)}<Max{bLi jy] ' } for y f ixed and ieN, i^^y. 
i i 

Proof. Part (a) is proved first. Consider any node-pair (xjy) 

having a flow requirement r(x,y). For an acceptable solution to exist, 

it is necessary for a path TT (Xjy) to exist between the two nodes such 

that 

r(x,y)<b(TT"(x,y)) . (1) 

This is required because a single path must carry all the flow between 

each node-pair. From the definition of path capacity we have 

b(Tr''(x,y)] = Min {b(a)}. (2) 
aeTr"(x,y) 

Now the maximum required flow leaving node x and destined for any 

other node y must use one of the arcs [x,j]' for jeN, ĵ x̂. The maximum 

flow requirement Max{r(x,j)} cannot exceed the largest capacity of any 
j 

arc leaving node x. Thus, Max{b[x,j]'} can be used as an upper bound on 
j 

the capacity as follows: 



b[TT"(x,y)) = Min {b(a) }<Max{b[x, j ]'}. (3) 
a£7T-(x,y) j 

Combining Equations (1) and (3), we obtain: 

Max{r(x,j)}<Max{b[x,j]'} (4) 

j j 

which proves part (a) of the theorem. The proof of part (b) follows a 

similar argument. D 

Theorem 4.2 

The following conditions must hold between the respective row 

sums (condition (a)j and column sums (condition (b)j of the node-pair 

requirement matrix R and the arc capacity matrix B in order for an 

acceptable solution to exist for the simultaneous flow problem. 

(a) I r(x,])<2 b[x,j]' for x fixed and all jeN, j^x. 

j j 

(b) V r(i,y)<^ b[i,y]' for x fixed and all ieN, i?̂ y. 
i i 

Proof. We prove part (a) by first making the following pre

liminary calculations; 

—The maximum flow between node x and all other nodes in the 
network can be found by adding the capacities of all arcs 
leaving node x, i.e., 

I b[x,j]' for all jeN, ĵ x̂. 

j 

•The total flow requirement between node x and all the other 
nodes in the network can be found by summing the flow require
ments leaving node x; i.e., 
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I r(x,j) for all jeN, ĵ x̂. 
J 

Now in order to meet the total flow requirements to the other nodes in 

the network, the flow out of node x must first use the arcs [x,j]' for 

all jeN, j^x. That is: 

I rU,j)<l f[x,j]'. (1) 

J J 

By network condition 4 we know that f(a)<b(a) for all a£A. Since 

this condition is required of every arc, it is required for those ar̂ cs 

leaving node x. Therefore: 

I f [ x , j ] ' < 5 ; b [ x , j ] ' . (2) 
i i 

By combining (1) and (2) we get 

5; r(x,j)<5; b[x,j]' 
j j 

which proves part (a) of the theorem. The proof of part (b) follows in 

a similar fashion. D 

Theorem 4.3 

The following inequality is a necessary condition which must hold 

for each node-pair (x,y) in a network for an acceptable solution to 

exist for the simultaneous flow problem: 
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r(x,y) < Max {b [TT ' ( x,y )] } . D 
TT'e7T(x,y) 

Proof. From network condition 3, the flow along a path TT 

between node-pair (x,y) must be equal to the requirements for that node-

pair. That is: 

r(x,y) = f(."(x,y)]. (D 

Now the flow along any particular path TT (x,y) can never exceed the 

capacity of the path, i.e., 

f|;TT'\x,y)]<b(;TT"(x,y)]. (2) 

Now let b [TT(x,y)J be the largest capacity of any path TT'(x,y) which 

exists between (x,y). Since b [TT(x,y)j represents the upper bound on 

the capacity of any path between (x,y), 

b[TT"(x,y))<b"(TT(x,y)) = Max {b (TT ' (x,y)) } . (3) 
TT'€TT(x,y) 

By combining Equations (1), (2), and (3), we have the following desired 

result which proves the theorem. 

r(x,y) < Max {b [TT ' ( x,y)) } . D 
TT '£TT(x,y ) 
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In order to apply the necessary condition given in Theorem 4.3, 

it is necessary to devise a means of finding the maximum capacity of any 

path between (x,y) (i.e., Max{b [Tr(x,y)J }). Fortunately, a simple algo

rithm can be created which finds this value for each node-pair in the 

network. We call the algorithm the path optimization algorithm (POA) 

and describe it later in this chapter. It is a simplified variation of 

the path algorithm and can be used to find various kinds of optimum 

paths in a network. 

Starting with the B (maximum arc capacity) matrix of the network, 

we use the POA to find the B (maximum path capacity) matrix. Because 

the POA uses the same path finding philosophy as the path algorithm, the 

path length for any node-pair can be restricted as required in network 

condition 2. Thus, the POA is used to find the matrix B while guaran

teeing that the length of all paths which are considered is less than 

or equal to L. 

After B is found, every elem.ent b(x,y) must be compared with the 

corresponding element r(x,y) in R according to the statement of Theorem 

4.3. If r(x,y)<b(x,y) for all node-pairs (x,y), then the necessary 

condition as stated in the theorem is satisfied. If r(x,y)>b(x,y) for 

some (x,y), then an acceptable solution does not exist for the particu

lar network description being examined. 

Cost Bounds 

Network condition 1 is the criterion which is used by the network 

algorithm in finding an optimum solution to the network problem. In 

this section this condition is used along with other network conditions 
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to establish an upper and a lower cost bound for the total cost of 

transmitting the required flow over the network. 

Theorem 4.4 

An upper bound on the total cost (i.e., COST) of an acceptable 

network solution is COST = I b(a) • c(a). 
aeA 

Proof. According to network condition 1, the following formula 

can be used to calculate network cost: 

I f(a) • c(a). (1) 
aeA 

Now the maximum value of this expression must give the maximum 

network cost; i.e., 

COST =^ Max{ I f(a) • c(a)}. (2) 
aeA 

Since the unit cost c(a) of each arc is a constant and the maximum of a 

sum is the sum of the maximums, then (2) becomes 

Max{ I f(a) • c(a)} = I Max{f(a)} • c(a). (3) 
aeA aeA 

By network condition 4, b(a) is a maximum bound for f(a) since, 

f(a)<b(a) for all aeA. (4) 

Combining Equations (2), (3), and (4), the desired result is obtained 
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COST = I b(a) • c(a). D 

Theorem 4.5 

A lower bound on the total cost (i.e. , COST) of any network is 

COST = I r(i,j) • £(i,j) 
(i,j)eNP 

where cd."]") is the cost of the lea^t cost path between node-pair (i,j) 

Proof. To prove the theorem a network path set [TT (ijj), 

V(i,j)eNP}, whose total cost after being assigned the required flow 

yields the minimum value over all the other possible network path sets, 

must be found. That is: 

COST = Min { I ("̂ (i,:)] • c('̂ (i,j)]} 
u(i,j) (i,j)£NP 

I f(/(i,j)) • c(/(i,j)]. (1) 
(i,j)£NP 

By network condition 3: 

ff-̂ '̂ i,:)) = r(i,j) for all (i,j)£NP. (2) 

Therefore, the flow assignments remain the same regardless of the net

work path set being considered. Substituting Equation (2) into Equa

tion (1) and using the fact that the minimum of a sum is the sum of the 

minimums: 



Min { I f[u(i,-j)] . c[u(i,j)]} = 
Tr(l,j) (l,j)eNP 

I r(i,j) • Min {c[TT(i,j)]}. (3) 
(i,i)eNP Tr(l,j) 

This means that the network path set which is required is the one which 

produces the least cost paths c_(i,j) bet"ween each node-pair (i,j). 

Combining Equations (1), (2), and (3) we have the following desired 

result wlii :h proves the theorem: 

COST = I r(i,j) • c_(i„i). D 
(i,j)eNP 

In order to apply Theorem ^^.5^ a means of finding the minimum 

cost path for each node-pair (x,y) (i.e., the matrix C_) must be found. 

The POA is used for this purpose, thereby including the path length 

constraint in the process of obtaining the value of the least cost paths 

in the network. 

After C_ is found, the results of Theorem M-.5 are used to calcu

late a lower cost bound for the network. The element by element multi

plication of R and C_ must be performed and the products summed to arrive 

at the overall total. In the next section the use of the POA is ex

plained in detail. However, we note here that if the total cost, COST, 

is less than zero, no solution exists. A negative total cost means 

that a path of length k(l<k<L) does not exist between some node-pair, 

and the algorithm has assigned a large negative cost to that node-pair. 
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Bounds on Path Length 

Establishing upper and lower' bounds on the length of the least 

weighted paths in a network is an interesting problem which is 

indirectly related to our work. Since the path algorithm is set up to 

terminate calculations at a particular pre-set length and can be made to 

terminate at any iteration in which no nevi paths are found, there is no 

requirement to establish analytical bounds for path length. Finding 

bounds on uath lengths in our netw.:"ks is compoi .id̂,-d by the fact that 

a least weighted path between two nudes may not i:-<e the path having the 

shortest length. In this section we discuss sorue basic considerations 

which relate to bounds on the length of least weighted paths in strongly 

connected networks. 

Bratton [F0 6] was probalily the first person to give serious 

attention to determining bounds on length, given only the number of 

nodes (n) and the number of arcs (m) in a network. He considered net

works in which each arc has the same weight as all other arcs in the 

network. Even with a detailed investigation into the problem, his only 

general result is a conjecture which still remains unproven. This con

jecture can be stated as: 

MinlL}. ^̂ "-\' , - 2 . 
m - n -t- 1 

This lower bound on path length i s based on the well-known fac t s t h a t 

(1) the number of t o p o l o g i c a l cycles in an und i rec ted network i s equal 

t o m-n+1 and (2) a s t rong ly connected n-node network always e x i s t s 



which has a minimum path length of 2 and is composed of 2(n-l) arcs. 

Networks which exemplify this statement all have the same star form as 

illustrated by the following example: 

n = 6 

• -=̂ --̂  ni ^ 10 := 2(n-l) 

Min{L} - 2 

The lower bound on path length can be equal to n-1. This occurs 

when an n-node network having n arcs is strongl}^ connected. The only 

way to obtain this type of network is to construct a Hamiltonian cycle 

through all n nodes in the network. For example: 

n = 5 

m = 5 

Min{L} =: 4 = n-1 

The problem of establishing a minimum bound on path length, therefore, 

immediately reduces to the investigation of changes in path length 

which occur as the number of arcs in an n-node network varies from n 

to 2(n-l). Our preliminary research strongly suggests that a serious 

investigation into this problem will have to incorporate other struc

tural aspects of the network (such as the degrees of nodes) in deter

mining analytical bounds on path length. 



An upper bound on path length is probably more difficult to 

establish than a lower-bound. Since only simple paths are being con

sidered, no path length can be greater than n-1. A natural question 

arises: How can this trivial upper bound be reduced by knowing other 

types of structural information in a particular network? Our computer 

simulation results discussed in Chapter II unexpectedly shed some light 

on an answer to this question. In the computer runs on over 200 

networks of various si :es, the maxjinum least w. Lghted path lengths were 

always less than or equal to n/2 and were many :imes as low as n/M-. 

These maximum length values would undoubtedly vary with the number of 

arcs in the networks and the range of arc weights which are permitted; 

however, they do suggest that long paths are quite rare and that an 

upper bound for path length of approximately n/2 may exist for most 

networks. 

The Path Optimization Algorithm (POA) 

In order to take full advantage of the theorems in this chapter, 

it was necessary to devise an effective way of computing the B and C 

matrices. We utilize the path construction philosophy of the path 

algorithm of Chapter II and appropriately modify it to create a 

general path-oriented optimization algorithm. Because the algorithm 

finds paths one arc at a time, it can also be used to satisfy network 

condition 2 by constraining the length of all paths. The POA, then, is 

the primary means by which this length constant is incorporated into 

the results of this chapter. 
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The flow chart of the POA is given in Figure M-.l. Note the 

similarity of this flow chart with the one in Figure 2.1. Since the 

arc sets are not needed for each path, the steps to find them have been 

dropped from the algorithm. However, the length constraint feature has 

been retained. Refer to Chapter' II for a description of the individual 

steps in the algorithm. 

The POA can be used to optimize any path weight calculation for 

which the following conditions ho2.1: 

—The path weights are calciilated from the weights or their com
ponent arc weights. 

—The path weight of a path of length p+1 is calculated from 
the path weights of length p and those of length one. 

—Cycles do not interfere with the weight calculation. 

Now the path algorithm in Chapter II produced a minimum cost path 

between each node-pair in which: 

—The path costs were calculated as the sum of the component arc 
costs. 

—The optimum cost path was selected as the path of length 
k(l<k<L) v/hich had the minimum cost for each node-pair. 

—Negative cycles were excluded from consideration. 

Figure ^-.2 gives the summary information about two uses of the POA. 

Column 1 of the figure represents the essential features of the POA 

which finds the minimum cost path for each node-pair in a network. 

Theorem 2.1 gives the proof that this algorithm accomplishes this task. 

By modifying the POA'at steps A, B, and C, it can also be used to 

find the value of the maximum capacity path between each node-pair. In 

column 2 of Figure M-. 2, the modifications are shown which are necessary 
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f o r a l l ( l , j ) e N P 
w ^ ( i , j ) ^ [ i , j ] ' 

f o r a l l [ i , j ] ' e S C N 

w ( i , j )^-°° 
f o r a l l ( l , j ) e N P 

f o r a l l [ i , j ] ' eSCN 

A" 

Yes w ^ W p d j k ) j 

+wi(k,j) I 

Yes ^ - \ C ' 
< <w<w(i , j ) 

No\ 

Terminate 

w^Min 
[ W p ( i , k ) , 
._.. w , ( k , ] ) ] _ 

Figure H.l. Path Optimization Algorithm (POA) 
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Type of Problem Minimum Cost Maximum Capacity-

Initial Weight Arc Cost 

c[i,j]' 
Arc Capacity 

b[i,j]' 

Initialization 

^(is:) 
(Step A in Algorithm) 

oo _oo 

Path Weight 
Calculation 
(Step B) 

j w^Wp(i,k) 
-i v^^(k,:) 

w^Min 
r .p ( i ,k ) ,w^( i J ) ] 

Optimum Path 
Weight Selection 
(Step C) 

Min[w,w(i,j )] Max[w,w(i,j)] 

Optimum Weight 
w(i,j) 

Minimum Cost 

£.( i , j ) 
Maximum Capacity 

b(i,j) 

Figure 4.2. Two Variations of the POA 
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to calculate the maximum capacity for the node-pairs. The proof of this 

version of the algorithm follows the same argument used in the proof of 

Theorem 2.1 and is, therefore, not repeated here. The essential fea

tures of the maximum capacity calculations are: 

—The path capacities are calculated by finding the minimum value 
of the component arc capacities. 

—The maximum capacity path is selected as the path of length 
k(l<k<L) which has the maximum value for its capacity. 

—Cycles do not interfere with capacity t:.ilculations . 

The minimum distance (i.e., length) calculation between nodes in 

a network can also be obtained from the POA. Numerous methods are 

employed in the literature from matrix multiplication [A12] to Boolean 

operations [D59]. By assigning the weight of one to each arc which is 

present in the network and using the minimum cost version of the algo

rithm, the minimum path length can be found for each node-pair. 
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CHAPTER V 

EXAMPLE OF SOLUTION METHOD 

Problem Description 

The XYZ Corporation, a large decentralized company having five 

corporate divisions spread throughout North and Central America, has 

a communication network problem. Over its M-3 years of existence differ

ent types of communication patterns have developed between the widely 

separated division headquarters. The Company now owns a network of 

private communication lines among the divisions' headquarter offices. 

These lines were purchased over a period of 15 years with no particular 

objective in mind. The top management of the Company is quite concerned 

over the fact that these existing communication lines are not being used 

efficiently to transmit intracompany information from division to divi

sion. They have unequivocally stated that no plans for a company-wide 

management information system will be approved until the present network 

is operated in an optimal fashion. 

The following facts are known about the existing communications 

system: 

—There are ten communication lines in the system over which 
standard-length messages are sent. 

—The unit cost of sending a message depends on the particular 
communication lines used to transmit the message. 

—The cost associated with sending messages over a single com
munication line is the product of the unit cost of the 
communications line and the number of messages transmitted 
over the line, 
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—The number of messages sent over a line per minute can be 
no greater than the capacity of the line. 

—The transmission error rate increases sharply for those 
messages relayed by more than two stations. 

An analysis of the number of messages sent between all the divi

sions was recently made. It included all messages and not only the ones 

transmitted over the existing communication network. From this study 

the average number of messages required per day between each pair of 

divisions was determiij-rd. All the statistics Ci.̂ .icerning the configura

tion and use of the XYZ's corporate information network are presented 

in the network description on Figure 5.1. 

The communication problem facing the XYZ Corporation can be 

simply stated as follows: What is the optimal routing of messages 

between divisions of the Company in order to operate the information 

system at minimal cost? A solution to this information network problem 

is now found by applying the algorithm described in Chapter III. 

Before initiating Phase I the three necessary conditions from 

Chapter IV are checked and verified. The results are presented in 

Figure 5.2. 

Phase I Solution 

The solution to the network problem is obtained by first applying 

the Phase I algorithm which was given and explained in Chapter III. See 

Figure 3.1 for a summarized description of this algorithm. The steps 

discussed below refer to the corresponding steps used in the Phase I 

algorithm. Branching in the algorithm occasionally causes nonsequen-

tially alphabetic labeling in the following description. 
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Interdivisional 
Message Requirements 

r ( i , j ) 

- 3 2 1 3 

6 - 3 2 3 

2 1 - 7 4 

4 3 2 - 3 

2 1 2 5 -

Communicat ion 
L ine C a p a c i t i e s 

b ( i , 3 ) 

- > 1 2 3 4 5 - > 1 3 

Communicat ion 
L ine Uni t C o s t s 

c ( i , j ) 

1 2 3 4 5 

1 - 20 0 0 0 1 - 2 - - -

2 0 - 10 5 10 2 - - 4 3 6 

3 10 0 - 20 0 3 2 - - 1 -

4 0 0 0 - 20 4 - - - - 4 

5 20 20 0 10 - 5 3 6 _ 3 _ 

Maximum Length of Any Communication Path is Three (i.e., L=3) 

Figure 5.1. XYZ Corporation Communication Network 
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X M a x [ r ( x , j ) ] 

J 
M a x C b C x , ] ] ' ] 

1 3 20 

2 6 10 

3 7 20 

^ • i+ 20 

5 5 20 

y M a x [ r ( i , y ) ] 
i 

M a x [ b [ i , y ] ' ] 
i 

1 6 20 

2 3 20 

3 3 10 

i+ 7 20 

5 i+ 20 

Theorem M-.l Calculations 

X I r ( x , j ) 
J 

Ib (x , j ) 
i 

1 9 20 

2 li+ 25 

3 1^ 30 

i+ 12 20 

5 10 50 

y 
i 

) : b ( i , y ) 
1 

1 14 30 

2 8 i+0 

3 9 10 

i+ 15 35 

5 13 30 

Theorem M-.2 Calculations 

R = 

- 3 2 1 

6 - 3 2 

2 1 - 7 

i+ 3 2 -

2 1 2 5 

- 20 10 10 10 

10 - 10 10 10 

20 20 - 20 20 

20 20 10 _ 20 

20 20 10 10 

Theorem M-.3 Calculations 

Figure 5.2. Necessary Condition Calculations 
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B. The path algorithm and auxiliary algorithm are used to produce the 

results listed in Figure 5.3. The path taile contains only the 

least cost paths found at each iteration. Note that the path 

{g,h,a,b} between node-pair (4,3) having a minimum cost of 13 was 

not used because it exceeds the length requirement. 

C. The last two columns on Figure 5.3 can be used to determine if any 

of the path capacities are less than their respective requirements. 

In this example b (TFC i , j )] >r(i , j ) for all (i,j)eNP; therefore the set 

T remains empty. 

K. The flow on any particular arc is the sum of the flows on all paths 

using the arc. Figure 5.4 illustrates a systematic process of 

determining the arc flow. The results are summarized in the follow-

ine table: 

a a b c d e f g h i J 

c(a) 2 4 3 6 2 1 4 3 6 3 

b(a) 20 10 5 10 10 20 20 20 20 10 

f(a) 16 15 3 6 9 11 16 12 2 5 

L. A comparison of f(a) and b(a) for all aeA in the above table yields 

f(b)>b(b). This infeasibility condition on arc b requires that the 

Phase II algorithm be initiated. 
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Node 
P a i r 

Ti c d r ) b(iT ) 
^ 2 

c(-n^) b ( ^ . ) h 0 ( ^ 3 ) hG^) A S ( ^ ( i , j ) l c ( T T ( i , j ) ) b ( ^ ( i , j ) ) i ^ ( i , j ) 

( 1 , 2 ) a 2 20 {a} 2 20 3 

( 1 , 3 ) ab 6 10 { a , b } 6 10 2 

( 1 , 4 ) a c 5 5 ( a , c } 5 5 1 

( 1 , S ) a d 8 10 { a , d } 8 10 3 

( 2 , 1 ) b e 6 10 { b , e ) 6 10 6 

( 2 , 3 ) b 4 10 {b} 4 10 3 

( 2 , 4 ) c 3 5 { c } 3 5 2 

( 2 , 5 ) d 6 10 {d} 6 10 3 

( 3 , 1 ) e 2 10 ( e ) 2 10 2 

( 3 , 2 ) e a 4 10 { e , a } 4 10 1 

( 3 , 4 ) f i 20 1 
1 

{ f l 1 20 7 

( 3 , 5 ) f g 5 20 j { f , g ) 5 20 4 

( 4 , 1 ) gh 7 20 { g , h } 7 20 4 

( 4 , 2 ) g i 10 20 g h a 9 20 { g , h , a } 9 20 3 

( 4 , 3 ) g i b 14 10 j [ g , i , b } 14 10 2 

( 4 , 5 ) g 4 20 { g } 4 20 3 

( 5 , 1 ) h 3 20 {.h} 3 20 2 

( 5 , 2 ) i 6 20 h a 5 20 { h , a j 5 20 1 

( 5 , 3 ) i b 10 10 h a b 9 10 { h , a , b } 9 10 2 

( 5 , 4 ) i 3 10 { ] } 3 10 5 

Figure 5.3. Path Table for Phase I Solution 
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Node 
Pair 

Node-Pair 
Req't 

A R C S Node 
Pair 

Node-Pair 
Req't a b c d e f g h i J 

(1,2) 3 3 

(1,3) 2 2 2 

(1,4) 1 1 1 

(1,5) 3 3 3 

(2,1) 6 5 5 

(2,3) 3 3 

(2,4) 2 2 

(2,5) 3 3 

(3,1) 2 2 

(3,2) 1 1 1 

(3,4) 7 7 

(3,5) 4 4 4 

(4,1) 4 4 4 

(4,2) 3 3 3 3 

(4,3) 2 2 2 2 

(4,5) 3 3 

(5,1) 2 2 

(5,2) 1 1 1 

(5,3) 2 2 2 2 

(5,4) 5 5 

Total Arc Flow 15 15 3 6 9 11 16 12 2 5 

Figure 5.4. Arc Flow Tabulation 
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Phase II Solution 

The Phase II algorithm is now applied to the results obtained in 

Phase I. The solution steps are again labeled with the letters used in 

the Phase II flow chart given in Figure 3.2. 

A. The algorithm begins by calculating the cost of the Phase I solution 

(i.e., the root node (R) of the solution tree). 

COST(R) = )̂  f(a) • c(a) = 2J3. 
aeA 

D . 

It also calculates the cost of the maximum cost. That is, COST = 

I b(a) • c(a) = 2640. 
aeA 

Since the solution tree at this stage only contains the root node, 

select it for branching. 

Consider the single overflow arc b in this step. From Figure 5.3 

find the node-pair paths which contribute to the total flow in this 

arc and the amount contributed by each. A table containing this 

information now follows: 

Elements in AU(b) 
i.e. (b,x,y) 

(b,l,3) (b,2,l) (b,2,3) (b,4,3) (b,5,3) 

Amount of Flow Contributed 
i.e. r(x,y) 

2 6 3 2 2 

E. The flow in arc b must be reduced so that its flow does not exceed 

its capacity. Since the capacity of b is ten, the flow in arc b can 

be reduced to within capacity by eliminating the paths between the 
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f o l l o w i n g s e t s of n o d e - p a i r s : 

AE(b) = < { ( b , 2 , l ) } , { ( b , l , 3 ) , ( b , 2 , 3 ) } , { ( b , l , 3 ) , ( b , 4 , 3 ) , ( b , 5 , 3 ) } 

{ ( b , 2 , 3 ) , ( b , 4 , 3 ) } , { ( b , 2 , 3 ) , ( b , 5 , 3 ) } > . 

Note that the elements in AE(b) are the smallest sets which elimi

nate the overflow in arc b. 

H. Since only one arc had overflow, the set OR(R) is identical to the 

set AE(b). Create one branch from the root node in the solution 

tree for each of the elements in OR(R). This results in the follow

ing solution tree where the labels represent the way the overflow 

is reduced: 

(b,l,3) 
(b,2,3) 

COST = 293 

(b,l,3) 
(b,4,3) 
(b,5,3) 

(b,2,3) 
(b,4,3) 

(b,2,3) 
(b,5,3) 

I. Select, arbitrarily, node 1 for evaluation. 

J. Node-pair (2,1) is selected and the following arc sets are found for 

this node-pair: 
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3 = {b} Y = U} - (b,a} 

L. The arcs b and a are eliminated from the network and the path algo

rithm and auxiliary algorithm used to find the following least cost 

path between node-pair (2,1): 

'^(2,1) 

AS(^(2,l)j c(^(2,l)) 

{d,h} 9 

Q. Create the history set H(l) = {(a,2,1),(b,2,1)}, assign the required 

flow to 17(2,1) and calculate the flow on all arcs for the solution 

at node 1. 

a a b c d e f g h i J 

c(a) 2 4 3 6 2 1 4 3 5 3 

b(a) 20 10 5 10 10 20 20 20 20 10 

f(a) 15 9 3 12 3 11 15 18 2 5 

The cost of the node 1 solution is COST(l) = 311. 

R. An overflow is present on arc d at solution node 1. Therefore, the 

solution is infeasible and is placed in the set IS of infeasible 

nodes. 
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The remaining four branches from the root node result in solutions for 

which a cost cannot be obtained (i.e., COST = MAX). This is due to the 

fact that no alternative paths exist in the network to carry the flow 

between the respective node-pairs in the solution nodes 2, 3, M-, and 5 

when arc b is dropped from consideration. 

The results at this point in the solution are summarized in the 

following solution tree diagram: 

C0ST=311 

(Infeasible) 

COST = 29 3 (Infeasible) 

COST=MAX COST=MAX 

X. The infeasible node set IS contains one infeasible solution node 

(i.e., node 1). Therefore, the arc overflows in this solution must 

be examined next. 

B. Select solution node 1 for branching. 

D. Consider the single overflow arc d in this step. Find the node-pair 

paths which contribute to the total flow in this arc and the amount 

of flow contributed by each. That is: 
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Elements in /\U(d) 
i.e. (d,X,y) 

(d,l,5) (d,2,l) (d,2,5) 

Amount of Flow Contributed 
i.e. r(x,y) 

O 6 3 

E. The flow in arc d must be reduced to within capacity. Since the 

capacity of d is ten, the smallest sets which eliminate the over

flow in arc d are: 

AE(d) -{[(d,l,5)}, {(d,2,l)}, [(d,2,5)}>. 

H. Since only one arc had overflow, the set OR(l) is the same as the 

set AE(d). Create one branch from node 1 in the solution tree for 

each of the elements in 0R(1). This yields the following branches 

out of node 1. 

(d,2,5) 

I. Select solution node 11 for evaluation. 

J. Node-pair (1,5) is selected and the following sets are found: 

3 = {d} Y = 5 - {d} 



L. Arc d is eliminated from the network and the path and auxiliary 

algorithms used to find the following least cost path between node-

pair (1,5): 

^(1,5) 

AS (̂ (1,5)] C(TT(1,5)] 

{a,c,g} 9 

Q. Create the history set H(ll) = {(a,2,1),(b,2,1),(d,l,5)}, assign the 

required flow to Tr(l,5) and calculate the flow on all arcs for the 

solution at node 11. 

a a b c d e f g h i ] 

c(a) 2 4 3 6 2 1 4 3 6 3 

,b(a) 20 10 5 10 10 20 20 20 20 10 

f(a) 16 9 6 9 q 11 19 18 2 5 

The cost of the node 11 solution is COST(ll) = 314. 

R. An overflow is present on arc c in the above solution. Therefore, 

the solution is infeasible and is placed in the IS set of infeasible 

nodes for further branching. 

Steps I-R are repeated for solution nodes 12 and 13 and the following 

results obtained: 
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© 
C0ST=3m 

( I n f e a s i b l e ) 

1 ] COST = 311 
(Infeasible) 

& 
COST=MAX 

•© 
C0ST=314 

(Infeasible) 

X. The set IS now contains two infeasible solution nodes (i.e. , node 

11 and node 13). 

B. Select solution node 11 for̂  branching. 

D. Consider the single overflow arc c in this step. Find the node-

pair paths which contribute to the total flow in this arc: 

Elements in AU(c) 
i.e. (c,x,y) 

(c,l,4) (c,l,5) (c,3,4) 

Amount of Flow Contributed 
i.e. r(x,y) 

1 3 2 

E. To reduce the flow in arc c to within its capacity of 5, we create 

the sets: 

AE(c) =<{(c,l,H)}, {(c,l,5)}, {(c,3,4)}>. 

H. The set OR(ll) is the same as set AE(c) since only one arc has 

overflow. Create the following branches from solution node 11; 
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I . S e l e c t s o l u t i o n node 111 f o r e v a l u a t i o n . 

J . N o d e - p a i r ( 1 , 4 ) i s s e l e c t e d and t h e fo l lowj i ig s e t s found; 

3 = ( c ) Y = 6 = {c} 

L. Arc c is eliminated from the network and the path and auxiliary 

algorithm used to find the following least cost path between node-

pair (1,4): 

^ ( 1 , 4 ) 

A S ( ^ ( 1 , 4 ) ] C ( T T ( 1 , 4 ) ] 

{ a , b , f } 7 

Q. Create the history set H(lll) = {(a,2,1), (b,2,l), (d,l,5), 

(C,1,4)}, assign the required flow to TT(1,4) and calculate the flow 

on all arcs for the solution at node 111. 
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a a b c d e f g h i i 

c(a) o 4 3 5 2 1 4 3 6 3 

b(a) 20 10 5 10 10 20 20 20 20 10 

f(a) 15 10 5 9 3 12 19 18 2 5 

The cost of the solution at node 111 is COST(lll) = 316. 

R. No overflovj is found on the arcs in the node 111 solution, there

fore the solution is feasible. 

U. The feasible solution at node 111 is a candidate for the optimum 

feasible solution to the network problem. 

No infeasible solution nodes can be eliminated at this time, for 

the only one present in the tree is node 13 which has a cost equal to 

314. However, the minimum solution cost, COST, is set equal to 316 and 

future infeasible nodes having a greater cost can be dropped from con

sideration. 

Steps I-R are repeated for solution nodes 112 and 113 with the 

following results: 

COST:: 316 

(Feasible) 

12 ) COST = 314 
( I n f e a s i b l e ) 

COST = fiAX C0ST=318 
( I n f e a s i b l e ) 
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X. The set IS now contains one solution (node 13). (Node 113 is not 

placed in IS since C0ST(113)>CQST.) 

The step by step illustration of the Phase II algorithm terminates at 

this point. Node 13 requires branching and it is necessary to return 

to step B to continue the solution process until all infeasible nodes 

are handled. Since the basic use of the algorithm has been illustrated, 

we omit the details and summarize the results. 

Final Results 

Figure 5.5 illustrates the entire solution tree for the communi

cation network problem being solved. This chart was obtained by com

pleting all the steps required by the Phase II algorithm. Solution 

nodes 111 and 131 represent optimal, feasible solutions to the original 

problem. It is coincidental that both of these solution nodes give 

the identical cost and the identical network path set to the problem. 

The complete solution in terms of the optimal assignment of arcs to the 

paths betvjeen all node-pairs is given in Figure 5.6. 

Network conditions 2, 3, and 4- can be verified from the two 

tables in Figure 5.6. Network condition 2 is satisfied because no path 

in Table A has a length greater than 3. A comparison of columns 2 and 

3 of Table A shows that all the path capacities are greater than the 

flow requirements which are assigned to them. This means that condition 

3 is satisfied. Finally in Table B, the flows in the arcs are always 

less than or equal to the capacities of the arcs, thus validating 

condition 4. 
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With this optiniurn solution, the XYZ Corporation can set up the 

required transmission routes for' its existing communication system. 

Hopefully, the management of the Corporation will continue to use the 

network algorithm in the design of the networks for its future manage

ment information system. 
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C0ST=293 
( I n f e a s i b l e ) 

C0ST=311 
( I n - / - x 
f eas - ( 2 j 

4b l e )V—^ 
'̂̂ M^OST^MAX COST=MAX COST=MAX COST:=MAX 

cosT=3m ('12 J 
v( I n f e a s i b l e ) ^ — ^ 

COST=MAX 

C0ST=315 COST=MAX C0ST=318 
(Feas ib l e ) ( I n f e a s i b l e ) 

C0ST=316 COST=MAX C0ST=318 
(Feas ib l e ) ( I n f e a s i b l e ) 

Figure 5 . 5 . Solu t ion Tree 
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L^OlutiOD r ' a ths 

Node 
P a i r 

1 Node-
P a i r 
Re.) ' t s CapaclLy Cost: Arc Se t 

( 1 , 2 ) 3 20 2 a 

( 1 , 3 ) 2 10 6 a b 

( 1 , 4 ) 1 10 7 a b f 

( 1 , 5 ) 3 0 9 a c g 

( 2 , 1 ) ( > 10 9 d h 

( 2 , 3 ) 3 10 4 b 

( 2 , M ) 2 
• ^ 

o c 

( 2 , 5 ) 3 10 6 d 

( 3 , 1 ) 10 2 e 

( 3 , 2 ) 1 10 4 e d 

( 3 , 4 ) 7 20 1 f 

( 3 , 5 ) 4 20 5 f g 

( 4 , 1 ) 4 20 7 g h 

a ( 4 , 2 ) Q 
vj 20 9 g h a 

( 4 , 3 ) 2 10 13 g i LJ 

( 4 , 5 ) 3 20 4 g 

( 5 , 1 ) 2 20 3 h 

( 5 , 2 ) 
' 

20 5 h a 

( 5 , 3 ) 9 10 9 h a b 

( 5 , 4 ) 5 10 3 J 

S o l u t i o n Arcs 

Ar'Co Cost C a p a c i t y Flow 

a 2 20 16 

b 4 10 10 

c 3 5 5 

d 6 10 9 

e o 10 3 

f 1 20 12 

g 4 20 19 

. h 3 20 18 

i 5 20 2 

J 3 10 5 

T a b l e A T a b l e B 

F i g u r e 5.G. Mininium Cor:t S o l u t i o n t o Communicat ion Problem 



11'4 

CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Summary of Results and Conclusion 

This dissertation documents a solution to a variation of the 

simultaneous flow, minimum cost network flow problem. The solution 

approach is based on the concept of least cost paths, and it uses a 

branch and bound search technique to find the minimum cost solution. 

The solution algorithm represents a new solution approach to problems 

dealing with the optimal assignment of simultaneous flows in communica

tion networks. 

Our first result was the creation of a versatile optimal path-

finding algorithm. The algorithm v/as described, proved, and illustrated 

in Cl'iapter IM . îy using an incremental path creation concept (i.e., 

creating paths one arc at a time,), the path algorithm was designed to 

find least v/eighted paths whose lengths are less than or equal to a 

pre-set integer L. î ecause of the generalized use of arc weight in the 

path algorithm, it has a wide applicability in .solving many types of 

network optimization problems. 

The main result of the dissertation was the solution of the net

work problem. The complete solution algorithm was presented in Chapter 

III and illustrated in Chapter V. The tv70 phases of the algorithm were 

discussed separately, but they are used in sequence to find a minimum 

cost solution, if such a solution exists. The path algorithm is used as 



115 

an integral part oi tlie solution algorithm in order to find the actual 

least corit values and arc sets for paths between all node-pairs. 

Additional results were obtained in Chapter IV in the form of 

necessary conditions and solution cost bounds for any strongly con

nected network which is adequately defined. The theorems proved in 

Chapter IV are used to detect network configurations which (1) are not 

solvable (i.e., do not satisfy a necessary condition) and (2) have a 

solution cost (occurring within the cost bounds) vvhich is unacceptable. 

Our solution approach to the network problem was intentionally 

oriented around graph theory topics. Almost all previous results 

reported in the literature were obtained within a linear programming 

framework. Therefore, we have based our work on the conviction that the 

problem can also be solved by using concepts based exclusively on ele

mentary graph theory. The positive results discussed above force us to 

conclude that this conviction was validated. The extent of the valida

tion depends on more conclusive results obtained from the operational 

use of the solution algorithm. 

Further Areas of Study 

Although our main objective was to demonstrate the existence of a 

solution to the netv/ork problem, a number of interesting problems were 

uncovered within tlie framework of the dissertation results. Now several 

topics can be identified for refinement and further research. 

1. Necessary and Sufficient Conditions. More analytical results 

on this topic v/ould enhance the use of the solution algorithm. 
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Additional v/ays are-: needed to detect the existence of a solution before 

applying the solutLon algorithm to a probJem. 

2. Sliortcuts Ln the Algorithms. The algorithms discussed in 

this dissertation repi'esent the general steps required to obtain a 

solution. A detailed analysis of each algorithm should lead to simpli

fications and shortcuts which would save computational time or storage 

locations. Also, a complete study of alternative heuristics would lead 

to a more effective branch and bound technique. 

3. Programming and Implementation. The solution algorithmi 

should be programmed and operational statisrics gathered from various 

types of ne/t^.iovk conf i gui'ations . Tlie results from this work would be 

extremely useful in developing and extending all parts of the solution 

algori llim. 

M-. The Path Algorithm. The path algorithm was studied using 

analytical as well as simulation tools. Our work should be extended 

in order to complete its development for numerous problems where path 

length is a constraining variable. 

5. Science Information Netv7orks: Networks which handle scien

tific information have certain properties which make them amenable to 

the results obtained in this disserxation. For example, formatted and 

standard sized message transmissions are reasonably common in communi

cating science information. Continued research in specific applications 

of the dissertation results is a natural area for further research. 
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APPENDIX 

Enumeration Theorems 

In this appendix, two path enumeration theorems are proved. The 

theorems are used in Chapter I to find the number of different types of 

paths in directed networks. 

Theorem 7.1 

The number of simple paths between all node-pairs in a complete, 

loopless, directed network is: 

n-2 
i(n-l) I x! 

x=0 

n-2 

Proof. Let (x ,y) be one of the n(n-l) node-pairs in a complete 

loopless directed netv/ork. The desired result is obtained by consider

ing the simple paths of increasing length between (x,y). 

The arc [x,y]' is the only path of length 1 between (x,y). Since 

there are n-2 other nodes (other than x or y) in the network, there are 

n-2 paths of length 2 which exist between (x,y). Now consider paths of 

length 3. Let the two intermediate nodes between (x,y) be w and z. 

There are n-2 ways to choose w and afterwards n-3 ways to choose z. 

There are two nodes to select from a set of n-2 nodes and the order of 

selection is important. Therefore, the number of paths of length 3 is 

the permutation of n-2 nodes taken 2 at a time. That is: (n-2)(n-3). 
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Fatli;-: o l I r i cpeas lng l e n g t h fo l low t h e same p )a t t e rn as t h e c a s e of 

p a t h s of l e n g t h -̂' v%'lt.h t h e fo l l ov / ing overa l J . rc - . :u l t : 
"~2 ( ,^ 

V n - 2 
I x! ..IS Lhe nuniber o l d x r e c t o d paLlis of l e n g t h 1 t o n - 1 

x=0 ' '" 
between nodo-p<ilr ( x , y ) ( I . e . , x=0 t o n - ? ) . S ince t h i s r e s u l t lioldL. fo r 

each of t i ie n ( n - l j n o f i e - p a i r s , t h e theorem i s p r o v e d . [] 

Theorem 7.2 

The maximum nunl^er of s i m p l e pat l i s dotween a l l n o d e - p a i r s as 

found by tlic path al-(;^oi i-thm f o r a c c m p l c t e , l^oi \ezs d i r e c t e ne twork i s : 

n ( n - l ) ^ ( n - 2 ) / 2 . 

Proof. Let (x,y) be one of the n(n-l) node-pairs in a complete, 

loopless network. Tfie desired î esult is obtained by using the looping 

framework ot the path algorithm and considering the simple paths of 

increasing length betx»/een (x,y). 

The arc [x,y]' is the only path of length one between (x,y). 

However, this arc Is not found by the algoritlim because it is part of 

the definition of the network. Now paths of length two are created by 

appending two paths of length ore. Since there are n-2 other nodes 

(i.e., other than x and y) in the netv/ork and there exist arcs betv/een 

all distinct nodes, there are n-2 simple paths of length 2 between 

node-pair (x,y). 

Beginning with paths of length 3, the results begin to differ 

v/ith Theorem 7.1. The reason for this is based on the vray the path 

algorithm finds paths of next higher length. The algorithm uses the 
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least weighted paths of length p and paths of length one (i.e., arcs) 

to create paths of length p+1. The algorithm selects one path TT (X,Z) 

of length p containing p+1 nodes for each node-pair and then appends 

the remaining (n-p) arcs one at a time to this path. This creates 

(n-p) possible new paths of length pfl between node-pair (x,y). One of 

these is selected as the path having least weight and the process is 

repeated for n-2 iterations. At the final iteration only one simple 

path exists between (x,y). 

Since the above process exists for all node-pairs, the number of 

calculations are: 

n(n-l)[(n-2) + (n-3)-f.. .tl] = n(n-l)^(n-2)/2 . D 

Computer Simulation Programs and Sam.ple Printout 

In order to obtain some of the results discussed in Chapter II 

a computer simulation program was written in FORTRAN and executed on 

the UNIVAC 110 8 at the Georgia Tech Computer Center. The basic version 

of the Floyd and path algorithms actually used in the simulation program 

is given in Figure 7.1. Over 200 random networks were generated and 

executed by the algorithms. One of the 20-node networks is listed in 

matrix form in Figure 7.2 along with the output produced by the simu

lation program. Note that since no weights were assigned to the arcs in 

the main diagonal of the random input matrix in Figure 7.2 (i.e., 

w(i,i)=+°°), non-zero weights were found for cycles and are shown in the 

diagonal of the shortest path matrix. 
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PATH ALGORITHM 
^7^ CALL TIM£(DUMfICLK) 

DO 60 I = 1»N 
ISWT = 0 
DO 56 IP = 1»N 
IF(ISWT) 60»'+B»60 

«4« ISWT = 1 
DO 56 K = 1»N 
IF(INP(IP»I»K),EQ.INF) GO TO 56 
DO 55 J =1,N 
lFaNPa»K,J) .EO.INF) GO TO 55 
IW = INP(lP»ifK) + IHpa»K»J) 
lF(IW,GE,ipTH(IfJ)) 00 TO 55 
IPTH(1,J) - IW 
INP(IP+lfI,J) = IW 
iPLN(i) = JP +1 
ISWT = 0 

55 CONTINUE 
56 CONTINUE 
60 CONTINUE 

CALL TIMElDUMfJCLK) 

CALL TIME(DUMfICLK) 
FLOYD ALGORITHM 

DO 51 I =1,N 
DO 51 J=:l»N 
IF(IN(J»I) .Eti.INF) GO TO 51 
DO 50 K=lfN 
IFdNdfK) .EQ.INF) GO TO 50 
IW = iN{JfI) + IN<IfK) 
IF(IW.GE,IN(J»K)) GO TO 50 
IN (JfK) = IW 

50 CONTINUE 
51 CONTINUE 

CALL TIME(DUM»JCLK) 

Figure 7.1. FORTRAN Programs Used in Computer Simulation 
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RANDOM INPUT MATRIX 20X20 
*** 

0 
0 
0 
0 
0 
0 
0 
0 
2 
7 
0 
0 
0 
0 
0 
0 
2 
9 
0 

0 
*** 

0 
0 
0 
0 
0 
1 

l** 
0 
0 
0 
0 
0 
0 
0 
0 
10 
0 
0 

0 
0 

*** 
0 
0 
0 
0 
7 
6 
0 
0 
0 
0 
0 
0 
0 
2 
2 
0 
0 

0 
0 
0 

* * 4 i 

0 
0 
1 
7 
0 
0 
0 
0 
0 
0 
0 
0 
7 
0 
0 
0 

0 
0 
0 
0 

*** 
0 
6 
11 
0 
0 
0 
0 
0 
0 
0 
7 
6 
0 
0 
0 

0 
0 
0 
0 
2 

*** 
b 
0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 

0 
0 
0 
0 
5 
0 

*** 
0 
0 
0 
0 
0 
0 
0 
5 
10 
n 
0 
0 
0 

0 
0 
0 
5 
3 
0 
0 

*** 

0 
0 
6 
10 
0 
0 
0 
0 

0 *** 
0 0 

0 
0 
2 
l** 
0 
0 
0 
0 
0 
0 

0 
2 
l** 
0 
0 
0 
0 
0 
0 

*** 
0 
1 
7 
0 
0 
0 
0 
0 
0 
0 

0 
5 
0 
0 
0 
0 
0 
0 
0 
1 

* 4 i * 

2 
0 
0 
0 
0 
n 
0 
0 
0 

12 
U 
0 
0 
0 
0 
0 
0 
0 
3 
0 

*•* 
0 
0 
0 
0 
0 
0 
0 
5 

5 
0 
0 
0 
0 
0 
0 
0 

13 
0 
0 

• *• 
0 
0 
n 
0 
0 

0 

0 
0 
0 
0 
0 
0 
0 

15 
10 
0 
0 
0 
0 

••* 
0 
0 
0 

10 
1 
0 

0 
0 
0 
n 
0 
0 
6 
2 
0 
0 
0 
0 
0 
0 

••• 
0 
fl 
0 
0 
0 

0 
0 
0 
0 
0 
1 
6 
0 
0 
0 
0 
0 
0 
0 
1 

,•* 

n 
0 
0 
2 
3 
0 
0 
0 
0 
0 
0 
0 
1 

l** 
0 
0 

e ^** 
0 0 
0 0 
0 0 

0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
5 
6 
0 
0 
0 

*•• 
0 *•• 
0 U 

1 
1 
0 
0 
0 
0 
0 
0 
0 

l̂ * 
2 
0 
0 
0 
0 
0 
0 
0 

,•• 

FLOyD ALGORITHM 
TIME OF EXECi;TION 
SHORTEST PATH MATRIX 
12 16 8 13 12 

0500 SECS 

t» 

9 

6 
8 
16 
7 
5 
11 
2 
7 
3 
7 
8 
10 
15 
11 
2 
9 
8 

16 
12 
6 
H 
12 
7 
1 

14 
14 
23 
11 
11 
6 
6 
11 
10 
10 
7 

16 

12 
12 

H 
5 
13 
5 
7 
7 

10 
15 
11 
3 
8 
10 
12 
2 
2 
7 
16 

17 
17 
9 
6 
12 
1 
7 
12 
15 
20 
16 
8 
12 
6 
11 
7 
15 
12 
21 

16 
16 
8 
9 
8 
6 
10 
11 
14 
19 
15 
7 
15 
8 
7 
6 
14 
11 
20 

14 
18 
!*• 

8 
2 
2 
6 
3 
13 
16 
21 
13 
9 
8 
1 
1 
8 
16 
9 
18 

17 
21 
18 
12 
5 
11 
11 
7 
16 
19 
24 
17 
12 
12 
5 
10 
11 
19 
13 
22 

15 
15 
11 
5 
3 
U 
6 
7 
14 
13 
22 
10 
10 
5 
5 
10 
9 
13 
6 
15 15 

7 

U 
b 
7 
11 
19 
8 
12 
6 
9 
14 
10 
2 
14 
13 
18 
8 
8 
6 

12 
2 
7 
8 
6 
14 
9 
3 
11 
4 
19 
1 
7 
8 
8 
13 
9 
9 
9 
6 

13 
3 
8 
9 
7 
15 
10 
4 
12 
1 

20 
2 
8 
9 
9 
14 
10 
10 
10 
7 

12 
5 
b 
10 
9 
17 
U 
6 
13 
3 

19 
4 
9 
11 
11 
16 
6 
8 
12 
5 

5 
9 
9 
5 
11 
17 
6 
10 
4 
7 
12 
8 
6 
13 
11 
16 
11 
7 
4 
13 

12 
10 
6 
2 
8 
14 
3 
9 
10 
8 
19 
5 
7 
14 
8 
13 
8 
8 
1 

10 

14 
17 
13 
7 
5 
13 
6 
2 
13 
15 
21 
12 
9 
7 
7 
12 
8 
15 
8 
17 

14 
18 
14 
8 
3 
1 
6 
3 

13 
16 
21 
13 
9 
8 
1 
2 
8 
16 
9 
18 

6 
10 
10 
2 
3 
11 
3 
9 
b 
8 
13 
9 
1 

14 
6 
10 
9 
8 
5 
14 

10 
14 
12 
4 
10 
16 
5 
11 
9 
12 
17 
11 
b 
6 
10 
15 
11 
12 
7 
16 

9 
4 
1 
5 
6 
14 
6 
5 
8 
5 
14 
2 
4 
9 
10 
13 
3 
3 
8 
7 

PATH ALGORITHM 
TIME OF EXECUTION 
PATH LENGTH 6 6 5 
SHORTEST PATH MATRIX 
12 16 8 13 12 

1050 
5 

SECS 
5 fa 6 

4 
9 
6 
8 
16 
7 
5 
11 
2 
7 
3 
7 
8 
10 
15 
11 
2 
9 
8 

16 
12 
6 
4 
12 
7 
1 

14 
14 
23 
11 
11 
6 
6 
U 
10 
10 
7 

16 

12 
12 
4 
5 
13 
5 
7 
7 
10 
15 

U 
3 
8 
10 
12 
2 
2 
7 
16 

14 17 15 7 12 13 12 5 12 
17 16 18 21 15 11 2 3 5 9 10 
17 16 14 18 11 6 7 8 6 9 6 
9 8 8 12 5 7 8 9 10 5 2 
6 9 2 5 3 11 6 7 9 11 8 
12 8 2 11 11 19 14 15 17 17 14 
1 6 6 11 6 8 9 10 11 6 3 
7 10 3 7 7 12 3 4 6 10 9 
12 11 13 16 14 6 11 12 13 4 10 
15 14 16 19 13 9 4 1 3 7 8 
20 19 21 24 22 14 19 20 19 12 19 
16 15 13 17 10 10 1 2 4 8 5 

8 7 9 12 10 2 7 8 9 6 7 
12 15 8 l2 5 14 8 9 11 13 14 
6 8 1 5 5 13 8 9 11 11 8 
11 7 1 10 10 18 13 14 16 16 13 
7 6 8 11 9 8 9 10 8 11 8 
15 14 16 19 13 8 9 10 8 7 8 
12 11 9 13 6 6 9 10 12 4 1 
21 20 18 22 15 15 6 7 5 13 10 

Figure 7.2. Sample Simulation Prog 

14 
17 
13 
7 
5 
13 
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