
OPTIMAL SIMULTANEOUS FLOW IN

SINGLE PATH COMMUNICATION NETWORKS

A THESIS

Presented to

The Faculty of the Division of

Graduate Studies and Research

by^

Robert Mi" Siegmann

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in the School of Information and Computer Science

Georgia -Institute of Technology

January, 19 71

OPTIMAL SIMULTANEOUS FLOW IN

SINGLE PATH COMMUNICATION NETWORKS

Approved:_

Pranas gunde, Chairman

; y .. y^i .,

Miroslav Vala^ f^\

^'^AKJ3yx^^^\n^,df^_^.^.

Daniel, C. Fielder

George W/ 5rown

Date approved by Chairman: Feb. 12, 1971

11

ACKNOWLEDGMENTS

Writing this dissertation was an intellectual as well as an edu

cational experience. I am solely responsible for its contents, but I

recognize that it is based on the efforts of many individuals. I

gratefully acknowledge their support and dedicate this dissertation to

them.

The person to whom I owe the deepest gratitude is my wife, Carol.

She consistently supported and encouraged me through the entire process.

Secondly, I wish to thank Dr. Vladimir Slamecka. Without his wisdom

and backing this dissertation would not have been written.

My thesis advisors deserve a special word of appreciation. My

principal advisor, Dr. Pranas Zunde, taught me much more than is evi

denced in this document. Doctors Miroslav Valach and John J. Jarvis

spent many hours with me in shaping and refining my thesis into its

final form. Also Doctors Daniel C. Fielder, Alex Orden, William Goffman,

and George W. Brown were kind enough to read and comment on my work.

I acknowledge the moral support of my friend John Gehl, the

excellent typing of the drafts by Mrs. Lyn Jackson, and the final copy

by Mrs. Betty Sims.

This dissertation was partially supported under Grant GN-655

from the National Science Foundation. The financial support of this

organization is sincerely appreciated.

Ill

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ii

LIST OF FIGURES v

SUMMARY vi

Chapter

I. INTR'..̂ DUCTION 1

Background and Objective
Outline of Paper
Terminology and Notation
Communication Networks
Information Flow and Cost
Network Flow
The Single Path Approach
Arc Weight and Least Weighted Paths
Path Length

II. THE PATH ALGORITHM.

Introduction
Comparison of Floyd and Path Algorithm
Additional Features of the Path Algorithm
The Path-Finding Problem and Solution
The Path Algorithm
Proof of the Path Algorithm
Example
The Auxiliary Algorithm

I I I . SOLUTION TO NETWORK PROBLEM i+1

Introduction
The Problem Statement
The Solution Approach
The Network Algorithm: Phase I
Proof of Phase I Algorithm
Introduction to Phase II Algorithm
The Network Algorithm: Phase II
Proof of Phase II Algorithm
Computational Considerations

IV

Chapter Page

IV. NECESSARY CONDITIONS AND COST BOUNDS 76

Introduction
Necessary Conditions
Cost Bounds
Bounds on Path Length
The Path Optimization Algorithm

V. EXAMPLE OF SOLUTION METHOD 94

Problem Description
Phase I Solution
Phase II Solution
Final Results

VI. SUMMARY AND CONCLUSIONS 114

Summary of Results and Conclusions
Further Areas of Study

APPENDIX 117

Enumeration Theorems
Computer Simulation Programs and Sample Printout

BIBLIOGRAPHY 122

Graph Theory and Network Theory Books
Communication and Information Networks
Structure and Connectivity of Graphs
Related Graph Theory Topics
Path-Finding and Optimization Algorithms
Flow and Synthesis Considerations in Networks

VITA 143

LIST OF FIGURES

Figure Page

2.1 FORTRAN Program of Path and Floyd Algoritnms 22

2.2 Execution Times for Path and Floyd Algorithms 25

2.3 Ratio of Execution Times for Path/Floyd Algorithm 25

2.M- Execution Time for Length Constrained Least
Weighted Paths in a 20-Node NeLwork 28

2.5 The Path Algorithm 33

2.6 Communication Network and Path Table Solution 38

2.7 Auxiliary Algorithm 4-0

3.1 Phase I Algorithm 45

3.2 Phase II Algorithm 56

M-.l Path Optimization Algorithm 91

4.2 Two Variations of the POA 92

5.1 XYZ Corporation Communications Network 9 5

5.2 Necessary Condition Calculations 97

5.3 Path Table for Phase I Solution 99

5.4 Arc Flow Tabulation 100

5.5 Solution Tree 112

5.6 Minimum Cost Solution to Communication Problem 113

7.1 FORTRAN Programs Used in Computer Simulation 120

7.2 Sample Simulation Program Printout 121

VI

SUMMARY

This dissertation documents a method for finding an optimum solu

tion to a communication network design problem in which only one path is

selected for message transmission between each pair of stations in a

directed network. The method finds a minimum cost network flow con

figuration which satisfi'-̂ -s all the m^csage flovj r-mstraints while allow

ing all messages to flow simultaneously, i.e., ai the same tirce. The

results are based on techniques drawn from the optimization literature

and concepts taken from graph and network theory. The solution method

can be applied in part or in whole to various types of scientific,

technical, or business information networks.

In order to use the solution method, the exact configuration of

nodes and arcs in a strongly connected communication network must be

known. Also required are the unit cost and maximum number of messages

allowed on each arc, the message flow requirements for each pair of net

work nodes, and the maximum length of any communication path. The solu

tion method will find a least cost solution (if one exists) having a

single path flow between each pair of stations and satisfying all the

message flow constraints simultaneously. The optimum solution is

expressed in terms of the sequence of arcs which define each path and

the total cost of the network flow.

The solution method is,based on three algorithms. The first is

a versatile path finding technique called the path algorithm which finds

VI1

the least cost restricted length path between all pairs of stations in

the network. It produces the actual sequence of arcs along each of

these paths and finds the maximum flow capacity for each path. The

second and third algorithms integrate the path algorithm into a branch

and bound technique to find a global solution to the network problem.

All three algorithms are described, proved and illustrated.

Also included in the dissertation are: (l) A computer simula

tion comparison of the relative speed of the path: algorithm and one of

the fastest known shortest path algorithms; (2) r.'acessary conditions

for a network to be solved by the solution method and bounds on the

cost of a network solution; (3) a complete example of the use of the

solution method; (4) a summary of the dissertation results and a list

of some follow-on areas of study; and (5) an extensive bibliography of

related literature.

CHAPTER I

INTRODUCTION

Background and Objective

This dissertation documents a method of applying graph theoretical

and optimization techniques to solve a real world problem encountered in

the design of certain types of comm :/!ication net'' •-rks. The problem is a

variation of the minimum cost, simultaneous flow aetwork problem (here

after referred to as "the network problem") for networks in which the

message flow between each pair of stations is constrained to a single

transmission path. The complete problem definition is delayed until

Chapter III in order to allow time to develop the necessary terminology

and concepts. Incorporated in the problem description is the require

ment that no path in the network have a length greater than a pre-set

maximum value. The solution method described herein will find the

global optimum solution for any netv/ork configuration if such a solution

exists.

The literature search which preceded our work on the simultaneous

flow network problem revealed a marked tendency by its contributors to

consider the problem from the point of view of linear programming (i.e.,

L.P.) [F28,FM-3]. Instead of attacking the problem from an L.P. point

of view, our effort was purposely oriented toward introducing a new

solution approach.

Bibliographic references are denoted in this manner throughout
the dissertation.

The motivation for selecting the network problem can be traced to

several sources:

1. It is easily argued that mathematical tools for designing

communication systems are considerably less developed than the tools

available for analyzing such systems after they are operational.

2. According to current trends and predictions in the informa

tion and communication industry, increased interest will be demonstrated

in the decade of the IG'̂ O's towards fonsolidatin.'::; geographically dis

persed components of information systems by intei-oonnected communication

networks.

3. The concepts related to the topic of graph theory offer a

rich and promising future for use in modeling many diverse types of

information systems.

Outline of the Paper

The contents of each chapter in the dissei:̂ tation are briefly

summarized in this section. The overall documentation strategy was to

present the basic results by using a descriptive approach strengthened

with theorems and proofs and illustrated with appropriate examples.

We discuss overall considerations about the dissertation in

Chapter I. Also included in this introductory chapter are the defini

tion of terms and conventions used throughout the paper. Chapter II is

devoted to the description of an algorithm which finds optimum paths in

a network. The algorithm is proved and illustrated in this chapter.

In Chapter III the two-phased algorithmic solution (called "the network

algorithm") to the minimum cost simultaneous flow problem is presented.

The proof that the network algorithm finds a global optimum is also

contained in the chapter. Chapter IV contains theorems which establish

necessary conditions and cost bounds for the network problem. The net

work algorithm is demonstrated in Chapter V where it is used to solve a

communication flow problem for a large, decentralized company.

Concluding remarks about the dissertation results and fruitful

areas for further research are presented in Chapter VI. Supporting

results to certain topi'.o in the die:".ertation ar. presented i" the

Appendix. An extensive bibliography is given in six sections which are

representative of the many facets of this dissertation topic.

Terminology and Notation

There is a large number of definitions which have to be given in

this paper in order to acquaint the reader with the required concepts.

The policy here is to define a term when needed, beginning with a DEF

in the left margin. Because many aspects of a network, such as its

nodes, its arcs and its paths, are sets of well-defined elements, set

notation is frequently used. It is assumed that the reader is familiar

with set theory and the standard v/ays of describing sets.

DEF A diveoted netb^ork^ G, is a pair of finite sets (N,A) where A is a

subset of the Cartesian product set defined on NxN. An individual

element of N is called a node and an individual element of A is

called an arc. Multiple arcs between nodes are not permitted.

There is frequent use of a geometric (i.e., pictorial) represen

tation of the relational network definition given above. For example,

the directed network G can be defined in either of the following ways:

3
G = (N,A)

N = {1,2,3,4}

A = {(1,2),(1,3),(2,3),(3,2),(3,4),(4,1)}

The number of nodes in the node set N (i.e., its cardinality) is always

referred to as "n" and "he number of arcs in the irc set A is always

referred to as "m." An element aeA can eirher be written as a or it can

be written in terms of its defining nodes as [x,yll' where the arc a is

directed from node x to node y. Note the use of []' to denote an arc.

Certain kinds of ordered sets play an important role in our work.

The most basic ones are now defined.

DEF A route [x ,x] is an ordered set of arcs

[x-L^x^] = {[x^jX^]',[x,.,,x.^]',. . . ,[x^_j^,x^]'}

in which the second node of each arc in the set (except the last)

is the first node of the next arc in the set. Note the use of

square brackets without a prime to denote a route between a node-

pair.

DEF A oi/ole is a route [x^ ,x] in which the first node in the route is
^ I n

the same as the last node, i.e., x =x .

DEF A simple path TT (x,y) is a route [x,y] which does not contain a

cycle.

The concept of "simple path" is of fundamental importance in this

dissertation. A simple path between node x and node y is always denoted

by 7T (x,y), 7T'(x,y), or 7T(x,y); whereas the collection of all the simple

paths from x to y is written as 7T(x,y). Sometimes the ordered pair

(x,y) is dropped from 7T(x,y) when referring to a simple path having

unspecified end-points ̂ e.g., TT is .-. designation tor a simp^ j path.

Frequently, the word "simple" is dropped from "ŝ iî ple path," since

simple paths are our only concern in this dissertation.

A path could be defined in terms of the ordered set of nodes

along the path. In order to distinguish this from the equivalent

definition in terms of arcs, we define the following terms:

DEF The node set NS(TT) of a path TT is the ordered set of nodes on

the path TT .

DEF The aro set AS(TT) of a path TT is the ordered set of arcs on

the path TT .

We conclude this section on terminology with the following defi

nitions :

DEF A loop is an arc a = [x,y]' in which x=y.

Loops are useful to include in some types of directed networks,

but since they are not needed in our work, we omit them from all further

consideration.

DEF The length of a path £(TT) is the number o± arcs in the arc set

ASCTT) or one less than the number of nodes in the node set

NS(Tr").

The concept of path length is extremely useful to us and is used

throughout the dissertation.

DEF A node-pair (x,y) is an ordered pair of two distinct nodes x

and y.

The T.arm "node-pair" is used .o refer to the general communica

tion relationship from node x to node y. The set of all node-pairs NP

is defined as:

NP = {(i,j)|i,i£N, i^-j}.

Communication Networks

In this dissertation the concern is with a particular kind of

communication network in which information always flows in one direction

on a single fixed path between each pair of stations. The concept of a

directed graph is used to model this as follows: Each node in the graph

represents a station and a directed arc represents the one-directional

transmission line between two stations. Since the flow of messages in

a network always has associated sending and receiving stations, the

concept of a node-pair takes on an important significance.

DEF A strongly oonneated network is a directed network in which at

least one path exists between each node-pair in the network.

DEF The S'imultaneous flow of messages in a network requires that

messages be transmitted between all node-pairs concurrently.

Any particular message has a unique origin node and destination

node, and the network is designed to handle all required message

flows simultaneously.

Although a general communication network does not have to be

strongly connected and does not have to have simultaneous transmission

of messages between its 'lode-pairs , iany types of ĵ ommunication systems

require these properties. This dissertation is i-Lrected to and oriented

around such networ̂ ks .

This concept of a communication network includes many communica

tion systems in which the configuration of nodes and arcs in the network

is based on fixed parameters. This includes all networks having pre-

established and fixed message routing between stations, many networks

having directional message flows, and some non-electrical networks.

Our concept of a communication network is, therefore, general enough to

include a wide range of practical netv/ork configurations.

For example, the results can be applied in part or in whole to

network design problems in the following proposed or operational com

munication networks:

—Management Information Systems (e.g., Lockheed's INTERLOC).

—Science Literature Networks (e.g., Hungary's TECHNOINFORM).

—Educational Networks (e.g., EDUNET and ERIC).

—News Media (e.g., UPI).

—Library Networks (e.g., NELINET).

—Military Communication Systems (e.g., AUTODIN).

—Military Command and Control Networks (e.g., WWMCCS).

—Medical Literature Networks (e.g., MEDLARS).

—Hospital Networks (e.g., THOMIS).

— Police Networks (e.g., NCIC).

—Business Networks (e.g., SABRE).

As mentioned earlier, the network design of the types of networks

listed above has always suffered fr'--:̂n a lack of q'lantitative design

tools. Because of the stochastic nature of the operational use of such

networks, probability theory, queuirg theory and stochastic processes

are frequently applied to the analysis of network operation. These are

reasonably refined modeling tools and are extremely useful for network

analysis. Unfortunately, quantitative tools for network design are

virtually nonexistent. The network designer is generally forced to use

simulation in order to test various design configurations. This indi

rect and sometimes time-consuming activity is frequently helpful, but

it does not always produce optimum results. The lack of adequate tools

for network design is the most pressing problem facing network

designers.

Information Flow and Cost

An individual arc in a communication network represents a channel

over which information is transmitted. In facr, since a single arc may

be used by many different paths in a network, the total information flow

on the arc depends on the number of paths using the arc and their

respective flows. Two of the most important characteristics of this

flow of information are expressed in terms of amount and cost.

In order to solve the network problem, the amount of information

(i.e., messages) transmitted between the stations in the network must be

known. This message flow between different node-pairs must be given in

some type of equivalent information unit. In this dissertation an

information unit will be defined as a message having a standard length.

Therefore, t'le amount of informi^tion flow on an • -'c, on a patii, or

between a node-pair is the number of equivalent andard messages trans

mitted per time period.

The cost which is associated with an arc Is the unit cost for

each message transmitted over the arc. To find the total cost per time

period in an arc, the amount of information flow on an arc is multiplied

by the unit cost of flow for that arc. The concept of cost is important

in our work, because the overall cost of a network configuration is used

as the variable which is minimized in solving network design problems.

Network Flow

Network flow theory was introduced in 19 56 by Ford and Fulkerson

when they published their max-flow, min-cut theorem [F15]. This well-

known theorem states that the maximum flow from node x to node y in any

network is equal to the value of the minimum cut over all cut sets

separating x and y. This was the first definitive result in relating

the dynamic concept of flow with the static concept of cut set. Unfor

tunately, this theorem does not hold for a network having simultaneous

flows [F61].

10

In this section we define the terms which relate to the dynamic

flow aspects of a network having a single transmission path between each

node-pair.

DEF The flow on an ara a, f(a), is the amount of information trans

mitted over the arc a per unit of time.

DEF The capacity of an aro a, b(a), is the maximum amount of informa

tion which can be transmitted over arc a per unit of time.

DEF The unit cost of an arc a, c(a), is the unit cost of transmitting

information which flows on arc a.

DEF The capacity of a path TT (x^y)^ h\i\ (x,y)J , between node-pair

(x,y) is the maximum amount of information which can be trans

mitted over the path , and is equal to the smallest capacity of

the path's component arcs. That is,

b(^"(x,y)] E b"(x,y) 5b(^") = Min [b(a)].
aeAS(̂ ''0

DEF The flow on a path TT (x^y)^ f (TT (x,y)J , is the amount of infor

mation transmitted over the path per unit of time, i.e.,

f(TT"(x,y)] z f''(x,y) - f(^'^).

=^ , k ^

DEF The unit cost of a path TT (x^y)^ c [TT (x,y)J , is the unit cost of

transmitting messages over the path and is the sum of the unit

cost of each arc in the arc set of the path. That is:

11

C(TT (x,y)) = c (x,y) = C(TT) = I c(a).
a£AS(TT''-)

DEF A minimum cost path v;(Xjy) for node-pair (x,y) is a path between

(x,y) having a minimum cost. That is:

^(x,y) = <̂ TT'\x,y) I c[7T'(x,y)] = Min {c [̂ ' (x,y)] } .>.
TT'(x,y)6Tr(x,y) ^

A minimum cost path Tr(x,y) is defin^'i in a relat • ê way because a path

may have to satisfy additional conditions (e.g., a length con-'craint)

before it is considered as an element of Ti(x,y), which is the collection

of all the paths beti'jeen x and y.

In networks in which flows exist simultaneously between all node-

pairs , a particular arc may be used to carry messages between several

node-pairs. In order to account for this, the following definitions

are required:

DEF A path flow oomponentj f (IT (x,y)) , is the amount of flow

required on arc a by the flow on the path 7r (x,y). Alter

native symbols for a path flow component are:

f (TT""'(x,y)] 5 f '"(x,y) E f (̂ ''*).

Now the earlier definition of arc flow can be expressed in terms

of path flow components.

DEF The flow on avQ a, f(a), is the sum of all its paths flow com

ponents . That is:

12

(i,i)£NP ""

A node-pair represents a required communication connection

(therefore, it can represent a path) over which information is trans

mitted. In setting up a design problem, we are given the amount of

information which is required to be transmitted between each node-pair.

This is called the node-pair flow requirement and is defined as:

DEF A node-pair flow requirement^ r(x,y), is .le amount of information

required to flow (over a single path) frci- node x to node y.

The following definitions complete the definitional base needed

in this dissertation. These terms refer to collections of paths between

all node-pairs in a network.

DEF A network path set {TT"(i,j)} is a collection of n(n-l) paths in

which one path TT (x,y) is selected for each node-pair (x,y) in

the network. That is:

[T\ (i,j)} = {Ty"(x,y) |7y"(x,y)£7y(x,y) for all (x,y)£NP}.

A minimum cost path set is represented as {TT(i,j)}.

The following terms are needed to describe the network algorithm

of Chapter III. In this algorithm the required flow between two nodes

(i.e., the flow requirement) is assigned to each node-pair in a manner

which leads to the solution of the problem.

13

DEF A simultaneous flow assignment [f[i\ (i,j)J} is an allocation of

the node-pair flow requirement r(x,y) to each path TT (x,y) (and

therefore to the arcs in each path) in a network path set. That

I S :

{f (Tr"(i , j)] } = <{f(a)|aeA,

r (x , y) i f a£Tr"(x,y)l
f TT (x,y)J - . . ,̂ ,

a^ ^ [0 otherwise J

f (a) - ,̂ . I ^ f^(/(x,y.O]> .
Ti- (x , y) e {Tr"(i ,]) }

DEF A feasible simultaneous flow assignment is a simultaneous flow

assignment to the node-pairs in a network path set such that:

f(a)<h(a) for all aeA.

DEF The oast of a simultaneous flow assignment^ COST, is defined in

either of the following alternative ways:

a. COST = I f(7T*''(i,j)] • c(7T'"'(i,j)] or
(i,j)eNP

b. COST = \ f(a) • c(a) where f(a) = 1 ^ (TT^djj)
aeA (i,j)eNP ^

for the simultaneous flow assignment (ffir (ijj)]}.

14

The Single Path Approach

The path approach for investigating the structural aspects of

graphs is not new. Kirchhoff [D35] showed in the 19th century that

paths have close relationships with other graph theory concepts. The

application of path-oriented approaches to network design problems, how

ever, has been hampered by the fact that an enormous number of paths may

exist even in moderate-sized networks. For example, a directed network

•J: 1

having ten nodes and ninety arcs hâ : almost one million simple paths.

Fortunately, there are ways to find paths in ne;..-orks without making an

unreasonable number of computations.

One method is to associate a weight (i.e., cost) with each arc

and to find the least-weighted paths. This drastically reduces the num

ber of paths which have to be considered. For example, a maximum of

3,24-0 paths have to be examined in the ten-node network mentioned above

in order to find one least weighted path for each of the 90 node-pairs.

The theory and applications discussed in this dissertation are

oriented tovzards finding the optimum single transmission path between

each node-pair. Since there are 90 node-pairs in a ten-node network,

only 90 optimum paths need be found. The optimum single path between a

node-pair is one which optimizes the path weight. The ability to work

only with optimum paths demonstrates the power of our solution method.

See Chapter VII for the derivation of the following formulas:

n-2
1. n(n-l) I x!

x=0

n-2
X

2. n(n-l)^(n-2)/2

15

This method is presented in more detail by considering the concept of

arc weight and path length.

Arc Weight and Least Weighted Paths

The term "weight" generically refers to any one of a number of

parameters which can be associated with the arcs of a network. For

example, time, distance, cost, capacity, reliability and value are pos

sible arc weights. By assigning one type of weight (e.g., cost) to all

the arcs in a network many differem kinds of pi- .!)lems can be lescribed

and studied. In this dissertation arc cost is usually defined as the

arc weight, for this is generally the most important optimization vari

able in a communication network.

DEF The weight of avc a, w(a), is an assigned positive or negative

real number which numerically represents some variable associ

ated with the arc.

DEF The weight of a path TT (x^y)^ W^TT (xjy)], is a calculated posi

tive or negative real number which is obtained as the sum of the

weights in the arc set of path TT (x,y). That is :

'"(x,y) Ew(Tr"(x,y)) = \ w(a).
aeASCrr-)

The term "shortest path" is frequently used in connection with

path finding algorithms. However, it has a double meaning because it

may refer to (l) a path of least length, or (2) a path of least weight,

The term is avoided whenever possible in this dissertation since arc

16

length is never used as arc weight. Whenever the term is used, it is

always used in the sense of (2). To find the least weighted path

between two nodes x and y, all paths between x and y must be implicitly

checked and then the path having the minimum or least weight can be

selected. Since more than one path may have the least weight, multiple

paths having the same least weight value are possible. Fortunately,

the theorems on which our work is based allow us to select, arbitrarily,

any least weighted path ^or each node-pair. ThiF capability forms the

bridge between the use of a shortest path optimin̂ ation procedure and the

solution of problems requiring single path transmission between all

node-pairs.

Path Length

The length of a path is an important consideration in communica

tion networks. The length of a path was defined as the number of arcs

in the arc set of the path. Subscripting a path designation (e.g., TT)

will be used as a means of displaying the length of a path. For

example, rr (x,y) is a least weighted path of length four between node-

pair (x,y). The length subscript is also used for weights (e.g.,

w (x,y) is the weight of path IT (x,y)).

The length of a path in a communication system is frequently an

important design consideration. For example, the different types of

connecting or switching stations along a transmission path influence the

overall operation of certain types of communication systems. Frequently

the strength and/or reliability of the transmitted message signal can

be described as a decreasing function of the number of such connecting

17

or switching stations along a path. A valid means of keeping the signal

within acceptable limits is to restrict the length of all acceptable

paths in the network. The ability to restrict path length is embedded

in the network problem which is considered in this dissertation. The

results obtained in this dissertation by constraining path length are

new and extend the state of the art for the types of networks con

sidered.

Consider, for example, a communications network connecting geo

graphically dispersed users of scientific information. Assume that a

computerized library or data bank of scientific abstracts exists at the

center of the network. Formatted requests are transmitted from users

to the computer, and fixed length responses are directed back to the

users. This is the basic type of network considered in this disserta

tion, for messages can be represented in terms of a standard length and

the maximum number of arcs along each path (i.e., its length) can be

fixed in order to insure proper transmission.

18

CHAPTER II

THE PATH ALGORITHM

Introduction

A crucial step in finding the solution to the network problem

discussed in the next chapter is the determination of a least cost path

between each node-pair in the network. The solution to a number of

practical problems dealing with networks is realized by finding the

least weighted paths (sometimes called the shortest path) between the

nodes in the network. For example, finding a communication system with

the least number of relay stations, finding the fastest way out of a

maze, and finding the shortest bus route in a city are all mathematically

equivalent to the classical least weighted path problem.

In this chapter we develop an algorithm, called the path algo

rithm, to find least weighted paths between all node-pairs in a network.

The algorithm is based on a forward dynamic programming approach [AOl].

The algorithm is discussed in detail because it provides a systematic

means of finding least weighted labeled paths which are constrained by

path length. Any modification of another shorted path algorithm which

achieves the same results can be used in place of the path algorithm in

the solution algorithm of Chapter III.

In order to solve the network problem, a method must be created

for finding only those least weighted paths which are less than or equal

in path length (i.e., number of arcs in the path) to a pre-set integer

19

L. That is, the network problem requires a least weighted path 'iT(x,y)

such that £(TT(x,y)]<L for each node-pair (x,y)£NP.

Numerous shortest path algorithms have been documented in the

literature. Two surveys (Pollack [E36] and Dreyfus [ElOj) illustrate

the many variations in the shortest path algorithms which exist. The

"path algorithm" uses the well-known forward dynamic programming

approach to find least weighted paths. The underlying recursion rela

tion for the path algorithm is:

w (x,y) = Min [w (x,k) + w (k,y)I|.
P keN ^

k̂ x,y

Our approach excludes loops from consideration in finding least weighted

paths between node-pairs and therefore node k in the recursion relation

cannot be node x or node y. Other approaches exist which permit node k

to vary over all nodes in the network. The recursion relation states

that if the least weighted path from node x to node y passes through

node k , then the path from x to k must be the least weighted path

between node-pair (x,k).

Equivalent approaches for finding least weighted, length con

strained paths can be found in the literature. In general these ap

proaches are based on matrix multiplication [EM-Oj or related methods

dealing with the variable adjacency matrix [D29].

It is informative to compare the path algorithm with the popular

shortest path algorithms (e.g., Floyd [E13], Dantzig [EOSj, and Murch-

land [E27J). These algorithms find all the shortest paths in a network,

20

but are based on a computational method which precludes the effective

manipulation of path length. This shortcoming of these algorithms can

be illustrated by considering how the Floyd algorithm finds the shortest

path between node-pair (1,4) in the following partial network:

w(a)=l
w(b)=3
w(c)=l
w(d)=l • s ^ ^

1 2

Let the maximum path length L be equal to two. In the Floyd algorithm

(see Figure 2.1) the least weighted path Tr(l,4) is found by using the

weights of the paths w(l,2) and w(2,4). Since the least weighted path

7T(2,4) = {c,d}, the least weighted path IT(1,4) is 7T(1,4) = {a,c,d} which

happens to be of length three. Unfortunately, the weight w(2,4) of the

path 17(2,4) = {c,d} overlays the weight w(2,4) of the path 7T(2,4) = {b}

in the computations and is thereafter never computed again.

The underlying reason why the Floyd algorithm (and other algo

rithms mentioned) cannot easily handle the length-constrained problem is

inherent in the computational method used by the algorithm. This method

can be briefly explained as follows:

Method 1. For all k ,i , j = l,... ,n

IF w(i,k) + w(k,j)<w(i,j) ,

THEN w(i,j)^w(i,k) +w(k,j).

An algorithm based on' this method finds a least weighted path

7T(x,y) = {x=x ,x , ...,x ,...,x =y} between node-pair (x,y) by using the

21

least weighted paths TT(X,X) and TT(X ,y) for any x eTr(x,y). Now if we

restrict p to be equal to r-1, then the least weighted path -nix^y) is

found by using TT (X.X) and TT^CX ,y). That is:
P P 1 P

w .(x,y) = w (X5X) + w,(x ,y).
p+1 p p 1 p -̂

This modification of method 1 is now stated as

Method 2. For all i ,k , j=l,... ,n

IF w (i,k) + w (k,j) < w(i,j), ^

THEN w ,(i,j) ̂ w (i,k) + w,(k,j) p+1 p 1 '-̂

> For all p=l,... ,L

An algorithm based on method 2 overcomes the length difficulty

discussed in the previous example. Since it calculates 7T(1,4) one arc

at a time 5 it terminates when TT (l,M-) = (a,b}. The path TT (l,M-) =

{a,c,d} found by method 1 has a smaller weight, but it violates the

length restriction (i.e., L=2) and therefore is not found by method 2.

Comparison of Floyd and Path Algorithms

We show in this section that the path algorithm is much closer

to the Floyd algorithm in terms of required storage space and speed than

might be expected. Even though the Floyd algorithm does not find length-

constrained least weighted paths, it does represent a popular method of

22

finding least weighted paths. It is one of the fastest known algorithms

and serves as a reasonable standard for comparison purposes.

Figure 2.1 illustrates the similarity of the two algorithms in

terms of their respective FORTRAN programs. The maximum number of

executed instructions and the total number of storage locations required

by these two programs are given in the following table:

Executed Instructions Storage
Algorithm Additions Comparisons Stores Locations

Floyd n^ n^(2n+l) 2n^ n^

Path n^(n-l)^ n^(n-l)(2n-l) 3n^(n-l)^ n^

From the above table it would appear that the computer program

for the path algorithm requires n times more storage locations and ap

proximately n times more executed instructions than the program for the

Floyd algorithm; however, by making minor modifications to the path

algorithm program, the two programs actually become much closer in terms

of storage requirements and execution time.

With some additional instructions the three-dimensional array,

W[P,I,K], used in the FORTRAN version of the path algorithm can be con

verted into several two-dimensional arrays, thereby only requiring

2
approximately 2n storage locations more than the n required by the

Floyd algorithm.

23

DO 40 1=1,N

DO 40 P=1,L

DO 40 K=1,N

IF W[P,I,K]=INF 10, 40, 40

10 DO J=1,N-1

IF W[1,K,J] = INF 20, 40, 40

20 W=W[P,I,K]+W[1,K,J]

IF W=SW[I,J] 30, 40, 40

30 SW[I,J]=W

W[P+1,I,J]=W

40 CONTINUE

Computer Program of Path Algorithm

DO 40 1=1,N

DO 40 J=1,N

IF W[J,I]=INF 10, 40, 40

10 DO 40 K=1,N

IF W[I,K]=INF 20, 40, 40

20 W=W[J,I]+W[I,K]

IF W=W[J,K] 30, 40, 40

30 W[J,K]=W

40 CONTINUE

Computer Program of Floyd Algorithm

Figure 2.1. FORTRAN Program of Path and Floyd Algorithms

24

It appears from the FORTRAN programs in Figure 2.1 that the

execution times of the two algorithms differ by a multiplicative factor

of L, the value of the length constraining P loop. Therefore, as L-̂ -l,

the execution times of the two algorithms become approximately equal.

As L->-n, the path algorithm appears to execute n times the instructions

required by the Floyd algorithm.

Because of the numerous computations required in the algorithms,

a computer simulation program was written in order to compare the rela

tive execution times of the two algorithms. An obvious efficiency was

included in the path algorithm program. Instructions were added to

terminate it if no least weighted paths were found in any iteration.

The FORTRAN programs used in the simulation and a typical printout are

given in the appendix and entitled "Computer Simulation Programs and

Sample Printout."

The computer simulation program was written in FORTRAN and exe

cuted on the UNIVAC 110 8. It produced the interesting and unexpected

result that the path algorithm takes approximately twice the execution

time required by the Floyd algorithm. This ratio of two tended to be

independent of the number of nodes and the number of arcs in a network.

In the simulation random strongly connected networks were created

—with arc weights ranging from 0 to 15,

—having the following number of nodes: 5, 10, 15, 20 and 30,

— and containing either n(n-l) arcs or approximately ~ arcs.

The results of the computer simulation are summarized on Figures

2.2 and 2.3. Each value which is plotted represents the average of the

25

w
c
o
o
0)
GO

0)

6
•H
E--

O
•H

O
0)

7
• Approximately n (n - l) Arcs in Network

6 X Approximately — ^ I — ^rcs in Network / '

/

5 Path Algorithm

/
/

i+ /
/

/
3 /

.̂ ̂ F^ojTd

2 #̂ ^ r g o r i t h m
-^ -̂

•̂ ^
^ ^'

1

I - - . ^

^-^ s i- -
10 15 20 25

Network Size (i.e. Number of Nodes)

30 I
Figure 2.2. Execution Times for Path and Floyd Algorithms

0)

S
•H

o
M
-H
;d
o
Q)
X
W
Us

o
o
•H
-M
fO

10 15 20 25
Network Size (i.e. Number of Nodes)

30

Figure 2.3. Ratio of Execution Times for Path/Floyd Algorithm

25

execution time of ten networks having the indicated number of nodes

and arcs. Figure 2.2 gives the actual execution times for networks

having 5 to 30 nodes. The upper and lower curves on Figure 2.2 repre

sent, respectively, the execution times for the path and the Floyd

algorithm. The two types of arc densities (i.e., n(n-l) arcs or

arcs) used are indicated by different marks (i.e., • and x). Figure 2.3

is obtained directly from Figure 2.2 and gives the ratio of the execu

tion time of the path to the Floyd algorithm. Note that this ratio is

consistently less than or equal to two and that the path algorithm tends

to be a little faster for networks having fewer arcs.

The computer simulation was not intended to be exhaustive and the

results, though interesting, are only suggestive. We can conclude, how

ever, that the two algorithms are reasonably close to one another in

execution time for the types of networks considered in the simulation.

The simulation work had to be terminated in order to continue the main

topic of the dissertation. However, it uncovered a natural follow-on

area for further research.

Additional Features of the Path Algorithm

The loop structure of the path algorithm allows it to find the

least weighted path between a particular node-pair (x,y) in —th the

time required to find paths for all node-pairs. This is accomplished

by setting the I loop index to any node x (l<x<n) and then executing

the rest of the algorithm. Because of its loop structure, the Floyd

algorithm cannot be manipulated in this manner. Therefore, combining

the above comments with those discussed in the previous section, it is

27

strongly suggestive that the path algorithm is approximately — times

faster than the Floyd algorithm in finding the least weighted path for

any particular node-pair (x,y) in a network.

In later chapters, the path algorithm will be used to find length

constrained least weighted paths. A question naturally arises: How

does the execution time of the path algorithm vary for different values

of path length? We modified the computer simulation programs used in

the previous section in order to determine an empirical answer to this

question. The results are given in Figure 2.4. In this figure the

cumulative increase in execution time is plotted against increasing

values of path length for two 20-node networks. The first network con

tained 50 arcs whose longest least weighted path was of length six. The

second network contained 380 arcs and had a longest path of length four.

The figure illustrates the effect the path length restriction has on the

execution time of a 20-node network having different numbers of arcs.

The Path Finding Problem and Solution

The path algorithm was created in order to solve a path finding

problem which arises in communication networks. This problem is

formally stated below and is tailored to the path requirements developed

in the next chapter.

Given:

Gl. A set N of n nodes where l<n<°°.

G2. A set A of m arcs where n-l<m<n(n-l).

G3. A weight w(a) for each acA where w(a) is a real number.

G4. A maximum length L for any path where L is an integer
between 2 and n-1.

28

.20

w
Td

o
a
Q)
W

(D

s
•H

O
•H
-P
O
(U
X
w
Td

(U

w
H
w
-p o

15

.10

.05

X 50 Arcs in Network

• 380 Arcs in Network

Path Length

Figure 2.4. Execution Time for Length Constrained Least
Weighted Paths in a 20-node Network

29

Find:

Fl. The least weight w(i,j) for the path 7r(i,j),

(a) for all (i,j)eNP, or
(b) for a particular (x,y).

F2. The arc set {7r(i,j)} for the least weighted path Ti(i,j),

(a) for all (i,j)€NP, or
(b) for a particular (x,y).

Subject to:

il(TT(i,j))<L for all (i,j)€NP.

The path algorithm, introduced in the previous section and

explained in detail in the next section, solves the above constrained

path finding problem. The FORTRAN version of the path algorithm, listed

in Figure 2.1, was used to illustrate the overall method. Before dis

cussing the path algorithm in detail, we comment on some aspects of the

algorithm.

1. Condition F2 in the above statement of the problem requires

that the actual sequence of arcs along each path be found. This is

accomplished in the path algorithm by creating a matrix [n] of node

labels for each node x. This matrix is created by the algorithm in

order to store the least weighted backward link for the path 7r(x,y) in

the network.

DEF The baokuard link n (y,z) in the matrix [n] is the node just
X X

prior to node z in the node set NS(7r(x,y)J .

Since it can be proved that the least weighted path from any node x to

any other node y cannot contain a cycle, the single link n (y,z) is

30

sufficient to trace the entire path backwards from node y to node x.

An additional algorithm, called the auxiliary algorithm (AA), is re

quired to identify the actual arc sets from the matrix Cn] for each

node-pair. This algorithm is discussed later in the chapter.

2. Conditions (a) and (b) under Fl and F2 in the above problem

statement specify that the algorithm is to be used to find either all

paths or a single path in the network. Since the loop structure of the

algorithm is set up to find all the least weighted paths emanating from

a single node before advancing to another node, it can be used to find

the least weighted path for any specific node-pair (x,y). This is

achieved by restricting the value of i in the algorithm to the first

node x in the desired node-pair (x,y).

3. Negative arc weights can be used in the algorithm. However,

cycles cannot be stored in the matrix Cn]. Therefore, networks having

cycles with negative weights cannot be handled by the current path

algorithm. If no negative cycles are present in a network, the algo

rithm will automatically find simple paths. (See Lemma 2.3.)

4. Since the least weighted path between a node-pair is not

necessarily unique, the algorithm is set up to find the first such path

which it encounters. This means that a least weighted path having the

shortest length is always selected, because the path algorithm grows

paths by appending one arc at a time.

In the event the path algorithm were extended to solve other

types of network problems, â number of variations is possible within

the computational framework. Some of these are:

31

—Path weight calculated as a function of several variables.

—Calculation of paths having maximum weight.

—Calculation of Hamiltonian cycles.

—Retention of all least weighted paths for each node-pair.

The Path Algorithm

After the initialization step, the path algorithm is defined by

the sequence of steps lettered below. See Figure 2.5 for the corre

sponding flow chart.

Initialization

—Set w (i,j)^INF for all (i,j)eNP and all p=l,...,L.

— Set w(i,j)^INF for all (i,j)£NP.

— For each arc [x,y]'£A, n (yjy)^^ and w, (x jy)-(-w[x,y] ' .
X _L

—To find least weighted paths for all node-pairs , set nj_=l
and n^=n. To find the least weighted path for node-pair
(x,y), set n =x and n^=x.

A. Set the i index equal to n .

B. Set the p index equal to 1.

C. Set the k index equal to 1.

D. If i=k, then go to 0; otherwise continue.

E. If there is a path of length p, TT (i,k)5 between node-pair (i,k),

then continue to step F. If not, go to step 0.

F. Set the j index equal to 1.

G. If i=j or k=j, then go to Step M. If not, continue to step H.

H. If there is an arc, w (k,j), between node-pair (k,j), then continue

to step I. If not, go to M.

32

I. Calculate the weight w (i,j) of the new path TT (i,j) as follows:

w (i,j)<-w (i,k) + Wj^(k,j).

J.

K.

If the weight, w (i,j), of the new path between (i,j) is less than

the weight w(i,j) of all previously found paths for node-pair

(i,j), then go to K. Otherwise, go to step M.

Store the backward link k and the new weight \'(i,j) as follows:

1. n^(j,s) ̂ <]
ri.(k,s) for s = l,...,n; s;̂j

[k for s=j

2. w(i,j)^w (i,j)^w"(i,j).

M. If the j index has ranged over all nodes, then go to step 0. If

not, go to step N.

N. Increment the j index by one.

Go to step G.

0. If the k index has ranged over all nodes, go to step Q.

If not, go to step P.

P. Increment the k index by one.

Go to step D.

Q. If the p index has ranged over all nodes, l<p<L, then continue to

step S. If not, go to step R.

R. Increment the p index by one.

Go to step C.

S. If the i index has range'd over all nodes, l<n <n <n, then go to

step U. Otherwise go to step T.

33

wi(k,j
^INF?.

Yes

No
W"(l,j)^
w (1 ,k) +
wx(k,i)

_

, w(i , j)-
, j)^w 'Hi , j)

, w(i , j)-«-v/" (i ,1)
n i (j , j)^k
Update row ^i(:-)

Figure 2.5. The Path Algorithm

34

T. Increment the i index by one.

Go to step B.

U. Terminate the algorithm.

Proof of the Path Algorithm

Lemma 2.1

Only the least weighted paths of length p are required to calcu

late the least weighted paths of length p+1 where path weight is calcu

lated as the sum of the weights of the arcs along the path.

Proof. Assume that a path TT [x,y] is not a least weighted path

of length p between node-pair (x,y). That is, there exists another

path 7T [x,y] of length p such that WCTT)>w('n"). p o r - p p

Create the path TT (X,Z) of length p+1 by concatenating the

path TT (x,y) with the arc [y,z]'. Let the weight of arc [y,z]' be equal

to w, . Therefore, the weight of TT ^(X,Z) is WCTF ^) = WCTT) + W^ .
1 p+1 p+1 p 1

However, TT is not the least weighted path of length p+1 between (x,z)

because if path TT is used instead of TT to find a path TT , between x
P P ^ p+1

and z,

W(TT ^) = W(TT) + w >W(TT) + W, = W(TT ^) .
p+1 p 1 p 1 p+1

Therefore, a path of length p which is not a least weighted path cannot

be used to calculate a path of length p+1 which is a least weighted

path. D

35

LemiTia 2.2

The least weighted paths of length p are used in the path algo

rithm to find the least weighted paths of length p+1 for each node-pair

Proof. Step I in the algorithm finds the weight of all paths of

length p+1 between node-pair (i,j) as follows:

w (i,j) = w (i k) + w^[k,j]'

for each node-pair (i,j) and all keN, î k̂̂ ĵ. This calculation finds the

weight of every path TT (i,j) given the least weighted paths TT (i,k)

and the arcs [k,j]'. Steps I, J, and K in the algorithm insure that

only least weighted paths of length p are used to find the least weighted

paths of length p+1 for each node-pair (i,j). Specifically,

—Step I uses only paths of length p to calculate the weights of
paths of length p+1 for each (i,j).

—Steps J and K (overall values of keN, i^k^j) retain only the
path of length p+1 between (ijj) which has least weight.

Thus the lemma is proved. D

Lemma 2.3

When p=n in the path algorithm, then alt least weighted simple

paths in a network on n nodes have been examined.

Proof. If p=n, then the p index in the algorithm runs from 1 to

n-1 and all least weighted paths of length 1 to n-1 are found. The

maximum length of a simple path is n-1 (for if this were not the case,

at least one node would appear twice on the path and the path would not

36

be simple. Therefore, the algorithm examines all least weighted simple

paths. D

Theorem 2.1

The path algorithm finds a path 7r(i,j) having least weight

w(7T(i,j)) for each node-pair (i,j). That is:

w(7T(i,j)] = Min {w(7T (i,j)J} for each (i,j)eNP.
l<p<L P

Proof. From Lemma 2.3, all least weighted simple paths are con

sidered by the algorithm when p=n. If L<n, then the algorithm considers

only those simple paths 7r(i , j) 3-£[7T(i ,]*)J <L. This can be verified by

examining the p index loop in the algorithm. For a given p, the least

weighted paths of length p, TT (i,j), are used to find the least weighted

paths of length p+1, i.e., TT (i,j). By stopping the algorithm at

p=L-l, no paths TT(i , j) 3-£(TT(i ,j)) >L can be created.

From Lemma 2.2, the algorithm finds, for each node-pair, the

least weighted path of length p+1 from the least weighted paths of

length p, i.e. ,

^ [^ +i^i»:i)] = ^i^ ̂ ^(^ (ijk)] + w(7T (k,j)]}.
P keN P

k^i,j

Now if the weight WJTT (i,j)) associated with path TT _̂ (i,j) is less

than the weight w(i,j) calculated to date for the node-pair (i,j), i.e.,

W(TT (i,j))<w(i,j),

37

then the new path of length p+1 is the least weighted path found so far

by the iterative procedure. It is, therefore, stored as the current

least cost weight w(i,j) for node-pair (i,j). Since this process con

tinues over all p<L,

w (7T(i,j)) = Min {W(TT (i,j)] ,w(Tr (i,j)] ,. . . ,w(iT (i,j)) }.

Min {w(^ (i,j)] }•
l<p<L P

This method is sufficient to find the least weighted paths for all node-

pairs (i,j) because of LeiniTia 2.1. []

Exainple

An example is now given to demonstrate how to use the path

algorithm to solve an actual problem. Consider the five-node network

shown on Figure 2.6 and assume that the arcs represent communication

lines and the nodes represent stations in a communication network. Note

that the network is strongly connected and therefore each station can

send messages to all other stations. Associated with each communication

line is a fixed cost which is assigned to the weight of the arc. We

desire to use the path algorithm to find the least cost paths of any

length (i.e., L=n) between all node-pairs in the network.

Figure 2.6 gives the incremental, as well as the final, solution

to the above problem. This tabular layout is called a path table and is

used to show the step-by-step results obtained from the path algorithm.

The entries which are encircled in the path table represent paths that

Communication Network

38

Arc Cost

2
3
2
4
1
2
-1
1

Path Table

(i,j) TT-^(i,j) W-L(i,j) TT2(i,J) ̂ 2(1,]) ^3(1,]) W3(i,j) ^^(i,j) Wi^(i,j) TT(i, j) w(i,j)

(1,2) a 2 {a} 2

(1-3) ac 4 (adf?) 12 {a,c} 4

(1,4) ad 6 ace 5 {a,c,e} 5

(1,5) adf 8 acef 7 {a,c,e,f} 7

(2,1) b 3 (3?) 5 (cefT) 4 {b} 3

(2,3) c 2 (3E) 10 (c) 2

(2,4) d 4 ce 3 {c,ej 3

(2,5) df 6 cef 5 {c,e,f} 5

(3,1) efg 2 (efhb^ 7 {e,f,g} 2

(3,2) efh 4 (Sa) 4 {e,f,h} 4

(3,4) e 1 {e} 1

(3,5) ef 3 {e,f} 3

(4,1) fg 1 (S) 6 {f,g} 1

(4,2) fh 3 cS) 3 {f,h} 3

(4,3) fi 6 fhc 5 {f,h,c} 5

(4,5) f 2 {f} 2

(5,1) g -1 (S> 4 {g} -1

(5,2) h 1 CE) 1 {h} 1

(5,3) i 4 he 3 {h,c} 3

(5,4) J 2

oo
5
5

hce 4 {j} 2

Figure 2.6. Communication Network and Path Table Solution

39

are potential candidates for the least cost path (from step I of

Figure 2.5), but have weights which are greater than or equal to a

previously calculated path weight for the same node-pair (i.e., fail

to qualify in step J).

Auxiliary Algorithm

The path algorithm gives as an output the matrices, [w] and [n.,].

Now [n.] contains all the links which are needed to reconstruct all the
1

least weighted paths back to node i in the network. In this section

an algorithm (called "the auxiliary algorithm") is presented which finds

the network path set PS as well as the capacity of each path in the set.

The network path set is referred to as {7T(i,j)} and the path capacities

as b(7r(i,j)J for each (i,j)eNP.

The auxiliary algorithm is presented in flow chart form on Figure

2.7. Because of the simplicity of the algorithm, a formal discussion

and proof are omitted. Note that if no path is found by the path algo

rithm for node-pair (x,y), then {Tr(x,y)} = 0 and b(_7T(x,y)J = MAX.

40

i ^ l

] ^ 1

Yes

k^j
Tr(i , j)^4)

b(TT(i,j))^MAX

]Vj+l

i^ i+l K

LEGEND

{ i r d ,])] = Network pa th s e t of a r c s i n l e a s t
we igh ted p a t h between (i , j) .

n - (j , k) = Link node f o r node k on t h e l e a s t
we igh ted pa th T r (i ,]) .

b (T r (i , j)) = Capac i ty of pa th T T (L ,]) .

b [i , j] ' -=- Capac i ty of a r c [i , j j ' .

Yes

i=n? ^ > ^

Termina te

U (i , j) K
{ [n X j , k) , k] ' }

J i ik i . i) i__
/K

- 5 < ^ [n i (j , k) , k P > - j £ L
b(TT(i,j jJ.--

k^n^(j,k) 1^
No

b (n (i , j)) ^
b [n . (] , k) , k] '

Figure 2 . 7 . Auxi l iary Algorithm

41

CHAPTER III

SOLUTION TO NETWORK PROBLEM

Introduction

In this chapter the simultaneous flow, minimum cost problem for

single path networks is solved. The solution is expressed in the form

of a two-phased soluti'...'. algorithm cnich is calj a "the netwox-̂ k algo

rithm" (NA). The network algorithm is described in a general way so

that it can be applied to any network configuration which is adequately

defined. If an optimum solution exists for any given network configu

ration, it can always be found by using the network algorithm. The

algorithm is illustrated in Chapter V where it is used to solve a com

munication problem for a large, decentralized company.

The simultaneous flow problem has been studied by many people

since its introduction in 1958 by Ford and Fulkerson [F13]. The most

recent solutions use a linear programming approach to solve the

undirected minimum cost formulation of the problem (e.g.. Tang [F60j,

Gomory and Hu [F28], Tomlin [F64], and Hu [A13]). Slight variations

are common in the expression of the problem as evidenced by the bipath

solution of Tang and the handling of directed networks by Tomlin. A

description of the variation of the problem which is considered in this

dissertation now follows.

42

The Network Problem

The network problem solved in this chapter is formally stated

below. The network G(N,A) under consideration must be strongly con

nected with a finite node set N containing n nodes (l<n) and a finite

arc set A containing m arcs [n-l<m<n(n-l)j .

Given:

1. The cost per unit flow c(a) for each aeA, where c(a)>0.

2. The maximum flow capacity b(a) fui' each aeA where b(a)>0

3. The node-pair flow requirement ril,j) for each node-pair (i,j)£NP

and r(i , j)^0.

4. The maximum length (i.e., number of arcs) L for any simple path

7T(i,j) where l<L<n-l.

Find:

A network path set {7T(i , j) ,i/(i , j)£NP) (i.e., a solution) having

a simultaneous flow assignment {f [7T(i , j)J ,V-(i , j)£NP} which satisfies the

following neiTDork conditions:

1. Minimum Cost. The overall cost of a network flow assignment

is a minimum over all possible network path sets. That is:

COST = _ Min { I f(^(i,j)] • c(T^(i,j))}
{7T(i,j)} (i,j)£NP

2. Path Length. The length il[7T(i,j)J of each path 7T(i,j) for

all (i,j)£NP is less than or equal to L. That is: £(7T(i,j))<L for all

(i,j)€NP.

43

3. Flow Requirements. The flow assignment f[TT(i,j)j along the

path 7T(1,J) for all (i,j)eNP is greater than or equal to the flow

requirement r(i,j) for node-pair (i,j). That is: f [17(1, j) J >r(i , j) for

all (i,j)eNP.

^-. Arc Capacity. The flow f(a) on arc a for all aeA is less than

or equal to the arc capacity b(a). That is: f(a)<b(a) for all aeA.

Uheve:

COST E Minimum cos i. of a netwojk solution f• rr the netwoi-k G(N,A).

7r(i,j) E The simple path between node-pair (i,j).

AS (71(1,j)] E The arc set of the path 7T(i,j).

f(7T(i,j)J E The flow on path 7T(i,j).

r(i,j) E The flow requirement for node-pair (i,j).

0 if a^AS(^(i,j)] .

r(i,j) if a€AS(TT(i,j)) .
f (i.D)

a

f(a) = y f(i,n)= The total flow on arc aeA.
(i,j)eNP "̂

b(a) E The maximum flow capacity on arc aeA.

c(a) E The cost per unit flow on arc aeA.

£(7T(i,j)J E The length of the simple path irCijj).

L E The maximum length of any simple path.

The Solution Approach

A solution expressed in terms of a network path set {7r(i,j)j

't̂ (i,j)eNP} is required to solve the network problem. The sequence of

arcs for each node-pair in this set represents the path over which mes

sages should be sent in order to relize the minimum overall cost of

44

message flow in the network. In order to simplify the notation, the

term "solution" will be used in a general sense in this chapter. That

is, any bona fide network path set can be considered a solution. In

order to distinguish different solutions, the following notation is

used to denote solution K: {ird , j) ,V(i , j)£NP} .

The network conditions 1 and M- are referred to, respectively, as

the optimality and feasibility conditions. An acceptable solution is

defined as a solution which first satisfies conditions 2, 3 and 4, and

is then selected as a least cost solution which satisfies condition 1.

It is, therefore, properly referred to as an optimum feasible solution.

The path algorithm (PA), developed in Chapter II, is an integral

part of the solution approach discussed in this chapter. It is used in

both phases of the network algorithm to find a solution which satisfies

network conditions 1 and 2. In the Phase I algorithm a solution is

found which satisfies network conditions 1, 2 and 3. The Phase II algo

rithm finds a solution (if one exists) which satisfies all four condi

tions. That is, it finds an acceptable solution to the network problem,

The Network Algorithm: Phase I

See Figure 3.1 for a flow chart of the following algorithm. The

inputs to Phase I are:

1. The set of arcs A in a strongly connected network SCN.

2. The unit cost c(a) for each aeA.

3. The maximum flow capacity b(a) for each aeA.

4. The maximum path length L.

The sequence of steps required in the Phase I algorithm now follows:

45

Initialization

115 e PA and AA to
find
(1) c(i(i,j))
(2) AS(7r(i,j))
(3) b(TT(i,j))
for all (i,j)eNP.

Assign flow for each node-pair (i,j):
f(^(i,3))>(i.j)ifb(u(i,j))^r(i,j).

t _<P otherwise.
T^{(i,j)|f(TT(i,j))-(j)}.

AS(^(i,j))^(() for all (i,j)eT.

Select (x,y)3-
r(x,y)=Min[r(i,j)]

(i,j)eT.

Eliminate from the
SCN all arcs a such
that b(a)<r(x,y).

Use PA and AA to find
(1) c(n(x,y))
(2) AS(TT(x,y))
(3) b(Tr(x,y))
for node-pair (x,y).

Assign:
f(x,y)^r(x,y)
T^T-{(x,y)}.

Yes

No
Solution.

Calculate
f(a)

for all aeA.

Yes

Optimum
Solut ion.

Figure 3 . 1 . Phase I Algorithm

45

A. Initialize the set of node-pairs T; i.e., T-<-(|). (The node-pairs

which are eventually placed in set T require individual handling

to find paths with required capacity.)

B. Use the path algorithm (PA) and the auxiliary algorithm (AA) to

find for each node-pair (i,j) in SCN such that il[7T(i,j J ̂ L, (1) the

cost of the least cost path c[7T(i,j)J; (2) the least cost arc set

AS(7T(i,j)); (3) the path capacity b(TT(i,j)]. (Since SCN is strongly

connected, at least one path exists between each node-paxr.)

C. Assign node-pair flow requirements to each path. If the calculated

capacity b(7T(x,y)J of a path is greater than or equal to the flow

requirements, then assign a flow between node-pair (x,y) equal to

the flow requirements. If b[7T(x,y)J is less than r(x,y), then not

enough flow can be assigned to that particular path to satisfy the

flow requirements. Therefore, place in set T the node-pairs which

do not currently have paths which can carry the required flow, i.e.,

T = {(i,j)|r(i,3)>b(^(i,j)) ,-t/(i,j)eNP}.

Set AS('iT(i,j)]̂ (f) for all (i,j)£T, since the paths 7T(i,j) have not

been found which can carry the required flow.

D. If set T is empty (i.e., flow has been assigned to all paths

7T(i,j)), then go to step K. If T contains at least one element,

then continue to step E.

47

E. Find a node-pair (x,y) in T which has a least value for its flow

requirements. That is, select (x,y)3-r(x,y) = Min [r(i,j)}.

F. Eliminate from the SCN for the remaining steps in Phase I all arcs

a having their flow capacity b(a) less than the flow requirement

r(x,y). (These arcs can be eliminated because they cannot be used

to carry the flow requirements for any node-pair remaining in set

T.)

G. Use the path algorithm (PA) and the auxiliary algorithm (AA) to find

for node-pair (x,y) in SCN such that £ (7r(x,y)J <L, (l) the cost of

the least cost path c[7r(x,y)j; (2) the least cost arc set

AS[7r(x,y)]; (3) the path capacity b[7r(x,y)].

H. If AS(7T(x,y)) = ((), then the PA could not find a least weighted

path of length L or less between node-pair (x,y). Therefore, go to

step I which terminates the algorithm. If AS (7r(x,y)]?=((), then the PA

has found a least weighted path for node-pair (x,y). Continue to

step J.

I. Exit from the Phase I algorithm. A path could not be found between

node-pair (x,y) which has length L or less and/or can carry the flow

requirement r(x,y).

J. Assign the node-pair flow requirement r(x,y) to the path flow

f(7r(x,y)] for node-pair (x,y).

Eliminate node-pair (x,y) from the set T.

Go to step D.

48

K. (At this point in the algorithm a network path set (frCi,]'),

•t/(i,j)eNP} has been found for the SCN where Tr(i,j) represents the

least cost path between (i,j) which satisfies network conditions

1, 2 and 3.) Calculate the flow f(a) for each arc aeA. Use the set

of flows {f (7T(i ,j)) ,-t/(i ,j)eNP} to calculate f(a) as follows;

f(a) = I f (i,j) for all aeA,
(i,j)eNP "̂

where

if a4A(7T(i,j))l
f^,(i,j)=<| _ '> for all (i,j)£NP.

r(i ,j) if aeA(7T(i,j)) J

L. If f(a)<b(a) for all aeA, then continue to step M. If not, go to

step N.

M. The Phase I algorithm has found a solution to the network problem

which satisfies the four network conditions. Output the following

1. The network path set {7T(i , j) ,V(i , j)eNP}.

2. The flow f(a) for each aeA.

3. The total network cost, COST, as calculated by:

COST = I f(a) • c(a).
aeA

Terminate the Phase I algorithm.

N. At this point in the Phase I algorithm, a solution has been found

which satisfies conditions 1, 2 and 3. Phase II is required in

49

order to satisfy condition 4.

Terminate the Phase I algorithm.

Proof of Phase I Algorithm

Lemma 3.1

If a least cost path set {ird ,j) ,V(i , j)eNP} is found by the Phase

I algorithm such that the path flow f[7T(i,j)J = r(i,j), then the net

work cost, COST - Y f ["""(isj)] • c[7r(i,j)J, is a minimum.
(i,j)eNP

Proof. Regardless of the network path set (TT (i , j) ,-(/(i , j)eNP}

selected by the Phase I algorithm, the flow which is assigned to each

path 7T (i,j) is always the same; that is:

f(/(i,j)j = r(i,j).

This assignment is performed in step C or step J of the Phase I algo

rithm.

By Theorem 2.1, the path algorithm always finds the least cost

path 7r(i,j) for each node-pair. Since each f[7r(i,j)J is multiplied by

the unit cost c[7T(i,j)J of path Tr(i,j), a minimum value for each

c(7r(i,j)] results in a minimum cost, COST, for the network because,

I Min{f (^(i,j)) • c(^(i,j))} = Min{5; f(^(i,j)] • c(^(i,j)]}.

Therefore, as long as a least cost path is found for each node-pair,

the calculation of the total cost is a minimum. D

50

Lemma 3.2

Given an assignment of flow to the paths in a network path set

{^'(i,j),-t^(i,j)eNP}, then

I f(^'(i,j)] • c(TT'(i,i)] = I f(a) • c(a)
(i,j)£NP ci£A

where f(a) = ^ f [jT'Ci,])] for all a£A and
(i,j)eNP "̂

c(a) = J, c (7r'(i,j)j for all aeA.
(i,j)€NP "̂

Proof.

I f|;^'(i,j)] • C(^'(i,j)) = I [f(7r'(i,j)) . I C (TT'(i,j)]]
(i,j)eNP (i,j)£NP a£A

I I tfj^'a,])) . C (TT'd,:)]]
(i,j)£NP a£A ^

I I [f (^'(i,])) • c(^'(i,j)]]
aeA (i,j)£NP

- I
aeA (i,j)€NP''

I c f^'(i,j))
(i,j)eNP

I f(a) • c(a). D
aeA

Theorem 3.1

The Phase I algorithm finds a network path set {7r(i , j) ,-t̂ (i, j)eNP}

such that:

51

1. COST = I f(TT(i,j)) • c(Tr(i,j)] = I f(a) • c(a)
(i,j)£NP aeA

where COST is the minlmuin total cost of any network path set which

satisfies the following conditions:

2. £(Tr(i,j)]<L for all (i,j)£NP.

3. f(^(i,j)] = r(i,j) for all (i,j)£NP.

Proof. We begin the proof by establishing the fact that the

Phase I algorithm finds a least cost path for each node-paii^ (>̂ jy) which

is constrained by conditions 2 and 3 above.

In step C in the Phase I algorithm a node-pair (x,y) is placed in

set T if the capacity of the path Tr(x,y) is less than the required

capacity r(x,y) for the node-pair. For each node-pair (x,y) in the

network not placed in set T, Theorem 2.1 guarantees that a least cost

path Tr(x,y) is found and that condition 2 holds for the path. Step C

in the algorithm satisfies condition 3 as the required flow is assigned

to the path.

Special handling is performed by the algorithm for those node-

pairs in set T. New paths must be found between these node-pairs which

have a capacity greater than or equal to their respective flow require

ments. Since the capacity of a path is calculated as:

b[^(x,y)] = Min {b(a)},
aeA(7T(x,y))

arcs a' having a capacity less than the required path capacity r(x,y)

cannot be used to create a path between (x,y). If the arcs a' are

52

eliminated from consideration for each (x,y) and the path algorithm then

used. Theorem 2.1 can be used to guarantee that a least cost path is

found (if it exists) which satisfies condition 2. Step J in the algo

rithm satisfies condition 3. Since each (x,y)eT is selected in turn

such that:

r(x,y) = Min {r(i,j)},
(i,J)eT

the arc elimination at step F eliminates only those arcs a' which are

less than r(x,y) and are, therefore, ineligible for use on any path

between (x,y).

Since the Phase I algorithm finds the minimum cost path for each

node-pair, we apply Lemma 3.1 to these separate results in order to

validate network condition 1 for the entire network path set. Lemma 3.2

completes the proof by confirming that the two equations for computing

total network cost are equivalent. D

Introduction to Phase II Algorithm

The Phase II algorithm uses a branch and bound philosoph}/- to

solve the network problem. The real power in a branch and bound

approach lies in the way branches are constructed and bounds used in a

particular algorithm to achieve the desired results. Fortunately, the

overall Phase II optimization problem is consistent with and readily

adapted to a branch and bound method of solution.

In the Phase II algorithm a solution tree, abbreviated ST, is

constructed for the network problem being solved. Each node in the

53

solution tree represents a possible solution to the network problem.

That is 5 each node represents a network path set for the given problem.

Network conditions 1 and 4- play a significant role in the algorithm

while the other two conditions are automatically satisfied for all

solutions which are considered. Earlier we remarked that if a solution

satisfies network condition 1 it is called an optimum solution; if a

solution satisfies network condition 4- it is called a feasi-bte sotuti-on.

Thus an optimum feasible solution is desired for the network problem.

The Phase II algorithm initializes the solution tree by placing

the infeasible solution found in Phase I at the root node. Phase II

then generates new nodes in the tree until it either finds an optimum

feasible solution or finds that no optimum solution exists.

There are four kinds of terminal nodes in ST. They are labeled

and defined as follows:

NS - Nodes signifying that no solution is possible.

IS - Nodes representing solutions which are infeasible.

FS - Nodes representing non-optimum, feasible solutions (i.e., a solu
tion which satisfies conditions 2, 3 and 4, but not 1).

OS - Nodes representing an optimum, feasible solution (only one of
these is selected by the algorithm).

The cost of each solution node in ST, COST, is calculated and assigned

to the node and is used by the algorithm as the bound for the node. A

cost equal to MAX (i.e., a very large number) is assigned to NS nodes

since no cost can be calculated for them.

The Phase II algorithm selects an IS solution node in ST and

examines those arcs aeA of its infeasible solution for which f(a)>b(a).

54

The algorithm then reassigns the excess flow in any arc which has a

flow greater than its capacity to other arcs and thereby creates new

solution nodes in ST. The creation of new nodes in ST from an IS node

is called "branching" or "flow reassignment." The new nodes created by

flow reassignment can be any of the four types of nodes already dis

cussed (i.e., NS, IS, FS, OS). The process of determining the type of

node created by flow reassignment is called "evaluation."

Lemma 3.4, given near the end of this chapter, guarantees that

the cost (i.e., bound) associated with each node in ST along any path

from the root node will be greater than or equal to the cost (i.e. ,

bound) of the preceding or parent IS node. Therefore, no further

branching is necessary for an NS node whose cost equals MAX or an IS

or FS node whose cost is greater than the cost of another FS node. One

of the FS nodes having least cost is selected as the optimum feasible

solution OS to the original network problem.

The overall Phase II algorithm is organized in the following

major sections (steps are discussed in the next section):

—Reassignment of flow for an IS node. Steps C-H.

—Evaluation of new nodes created by flow reassignment.
Steps I-Q.

—Determination of whether a new FS node qualifies as the
optimum solution to the network problem. Steps R-T.

Since the algorithm is based on a branch and bound philosophy,

traditional branch and bound characteristics of the algorithm are now

presented.

Branching Charaater-istio. Overflow arc(s) in IS node.

55

Bounding Charaoteristia. Cost of flow for solution node.

Branching Policy. Choose an infeasible solution having the

smallest number of overflow arcs.

Optimum Feasible Solution. A solution which satisfies network

conditions 1, 2, 3 and M-.

Convergence Criterion. At least one new arc will be eliminated

from consideration from a node-pair for each new node in the solution

tree.

Root Node. Infeasible solution from Phase I.

The Network Algorithm: Phase II

The corresponding flow chart of the steps in the Phase II algo

rithm is given in Figure 3.2. The sequence of steps now follows.

A. Initialize the Phase II algorithm.

1. Place the infeasible solution from Phase I into the root node

of the solution tree ST and calculate the cost of the Phase I

solution.

2. Create the set IS of infeasible solution nodes on which branch

ing has not been performed; i.e., IS = {K|K is an IS node and

the flow on solution K has not been reassigned}. (Note that the

root node is the only element of IS at this time.)

3. Initialize the minimum cost; i.e., COST-̂ MAX.

4. Create the history set H(K) for the root node R=K; i.e.,

H(K) = {(a,i,j)|Va£A and -f (i , j)eNP3r(i , j)>b(a) } .

55

Initialization

Create for each KelS:
OA(K) = {a|a€{^(i,j)}^,f(a)>b(a)}
Select:
K'eIS^|OA(K')| = Min [|OA(K')|].

KelS

Select:
a'eOA(K')".

Create:

AU(a') = {(i,j)|a'e^(i,])V^(i,j)e{^(i,j)}^,}.

Create: AE(a') = {S|ScAU(a'), f(a') =
J^f^,(i,j)<b(a'), for (i,j)eAU(a') - S where
sets S contain no supersets in AE(a')}.

Update:

OA(K')•'•> =
OA(K'):': - {a'}.

No

Yes ^

Create:
OR(K') = {j|j = {s^,S2,...,s^,...,s^}, q =

and s eAE(a)}.
r r

|OA(K')| OR(K') = {j|j = {s^,S2,...,s^,...,s^}, q =

and s eAE(a)}.
r r

Create a new node in ST for every JeOR(K').
Create: OR(K ')--VOR(K ') .

NP'VNP.

Figure 3.2. Phase II Algorithm

57

^

Select: JeOR(K')=':.

Set: J"-^J,
L a b e l new node J ' J

i
Select: (a',X5y)e J"-'".
Find: B = U | (a,x ,y)eJ-'>}.

Find: y = {a'|(a',x,y)eH(K')}
Create: 6 = {e,Yl-

Eliminate
arcs

I from SCN.

Use PA and AA to find:

(1) c(u(x,y))]
(2) AS(T:(x,y)) t'for node-pair (x,y)
(3) b(u(x,y)) J

Assign: {Tr(x,y)} -*-AS(Tf(x,y)).

Assign: {f (7T(x ,y))] -(-r(x,y).

Yes Set:

COST(J')^MAX. -3
Restore 6 to SCN.
Update J" and NP-.
Assign New Path: [^(x,y)} -^^(x,y).

Assign Flow; {f (̂ (x,y))} ̂ ,-^r(x,y).
u

No

Create: H(J')^H(K')uJ.

Assign: {Tr(i ,]) }j ,^{Tr(i ,j)}^, \ For all

Assign: {f (^(i ,i)) 1^ ,^{f (̂ (i , j)) }^, J (i,j)eNP>'

Calculate:
(1) f(a) for all aeA.
(2) COSTCJO = I f(a)-c(a).

aeA

Figure 3.2. Phase II Algorithm (Continued)

58

No

Label Node
Feasible.

No

Set: COST^COST(J').

Assign: {u(i , j) l̂ p̂ f̂TiCi , j) }j ,.

{f(^(i,j))}QP^-{f(^(i,j))}^^

Update:
IS^IS-{K|KeIS and C0ST(K)>C0ST or

COST(K)>COST}.
OR(K')''«̂ R(K')''̂ -J.

Label Node
Infeasible.

1
Set:

IS^ISuJ'

Solution satisfy ing all conditions has
been found.

Output:

1. {TT(i
'̂ -'•̂ OPT

for all (i ,j)£NP.

2. f(a) for all aeA .

3. The optimum cost COST.

Figure 3.2. Phase II Algorithm (Continued)

59

The history set H(K) for node K is the set of triplets (a,i,j)

in which arc a will not be used to construct a path between

node-pair (i,j) for solution node K and for any solution created

from node K.

5. Calculate the maxiinum cost of the Phase II solution. That is:

COST = I b(a) • c(a).
aeA

B. Find the s e t of overflow a rcs OA(K) for each i n f e a s i b l e s o l u t i o n

node KelS. That i s : Create OA(K) = {a I a e l i r d , j) }^,f (a)>b(a) } , for
A.

each KelS. Select a solution node K'elS having the minimum number

of overflow arcs. That is: |OA(K')| = Min{|OA(K)|}. Create a
kelS

working set 0A(K ')"^A(K').

C. Select any overflow arc a'£OA(K') in solution node K'.

D. Create the arc utilization set AU(a') of node-pairs (i,j) such that

the overflow arc a' is on the path 7T(i,j) in the network solution

{w(i,j)}^,. That is:

AU(a') = {(i,j)|a'eTr(i,j) for all irCi , j)e {̂ (i , j) }^, } .

E. Find a set AE(a') of subsets ScAU(a') such that:

(l) If S is removed from AU(a'), then the flow f(a') for all node-

pairs remaining in AU(a') is;

f(a') = I f ,(io) ^ b(a').
(i,j)eAU(a')-S ^

60

(2) If S cAE(a') and S cAE(a') such that S ^s then remove S

from AE(a'); i.e., all sets ScAE(a') contain no supersets in

AE(a').

(The significance of this step in the algorithm is discussed in

Lemma 3.5. The set AE(a') contains summary information concerning

the overflow characteristics of arc a'.)

F. Eliminate arc a' from the set OA(K'). That is,

OA(K')'VoA(K')'''' - {a'}.

G. If the set OA(K') is empty, continue to step H. If not, go to

step C.

H. Redefine the set AE(a') as a set of triplets {(a' ,i,j)|(i,j)eAE(a') }

for each a'eOA(K').

Create a set OR(K') in which each element JeORCK') consists of one

element S from each of the q sets AE(a')j i.e., OR(K') =

{J|j = {s^jS^,... ,s^,... ,s }, q = |OA(K')|, and s^eAE(a^)}.

Create a new node in ST branching from node K' for every element

JeOR(K').

(Each element J in OR(K') represents a solution having a minimum

increase in cost over solution K' and eliminating the infeasibility

on the arcs a'eOA(K'). See Lemma 3.5 for an explanation.)

Create a working copy OR(K')" of set OR(K'); i.e., OR(K')'VoR(K')•

I. Select one of the sets JeOR(K') for evaluation.

Label the new node being evaluated J'.

Create a working copy J of set J; i.e., J -̂ J.

61

Create a set of all node-pairs NP"; i.e., NP ̂ NP.

J. Select any element (a',x,y)eJ .

Find those arcs 3 which cannot be used by a path between (Xjy) in

the reassignment of overflow for solution node J'. That is:

3 - {a|(a,x,y)£j }.

Find those arcs y which cannot be used by a path between (Xjy) for

the solution at node K'. That is:

Y = {a|(a,x,y)€H(K')}.

Create the set of all arcs 6 which aanyiot be used by a path between

(x,y) for solution node J.

6 = {3.,Y}.

K. Eliminate the arcs 6 from the SCN.

(These arcs 6 are restricted from being used on a path between node-

pair (x,y) .)

L. Use the path algorithm (PA) and the auxiliary algorithm (AA) to

find the following for node-pair (xjy) in SCN where all path lengths

are less than or equal to L.

(1) The least cost path 7T(x,y).

(2) The cost c(7r(x,y)] of path 7r(x,y).

62

(3) The capacity b(7T(x,y)j of path 7T(x,y).

M. If TT(x,y) = (|), then the path algorithm was unable to find a path.

In this case go to step N. If the path set is not empty, then con

tinue to step 0.

N. Set the cost of node J' equal to MAX: i.e., COST(J')^MAX.

Go to step V.

0. Restore the eliminated arcs 6 to the network.

Eliminate all references to the node-pair (x,y) in the set J and

NP'\ That is: j" = j" - {(a,x,y)|aeA} and NP" = NP" - {(x,y)}.

A s s i g n t h e new p a t h 7T(x,y) t o t h e s o l u t i o n a t node J ' .

Tha t i s : {7T(X ,y) } ,-^TT(x , y) .

Assign the required flow r(x,y) to the path Tr(x,y).

That is: {f(^(x,y))}j,^r(x,y).

P. If J = (|), go to step Q, for all flows have been reassigned for the

new node J'. If not, then continue to step J. (When set J is

empty, then a new solution node J' has been created in the solution

tree.)

Q. Create a history set H(J') for node J' which contains the accumula

tion of arc eliminations. That is:

H(J')^H(K')uJ.

Assign the previous least cost network path sets {7T(i,j)} , and

simultaneous flow assignments {f(7T(i,j)J} to solution node J' for

63

all node pairs (i,j)€NP .

Find the flow f(a) for the solution at node J'; i.e.,

f(a) = I f (i,j) for all aeA
(i,j)€NP "

Calculate the cost of the solution for node J':

COS^ (J') = I f(a) • c(a)
aeA

R. If the solution at node J' is feasible (i.e., f(a)<b(a) for all

aeA), then label the node "feasible" and go to step T. If not,

label it "infeasible" and go to Step S.

S. Place the solution node J' into the set of infeasible nodes IS.

That is: IS = ISuJ' .

Go to step V.

T. If the cost of solution node J' is minimum (i.e., COST (J')<COST),

then go to step U. If not, go to step V/.

U. Set the minimum cost, COST, equal to the cost of solution node J';

i.e., CQST^COST(J').

Store the solution paths {Tr(i,j)} into {7r(i,j)} as the optimum
U (J-T i

feasible solution.

V. Eliminate any node from the set IS having a cost greater than the

optimum cost or greater than the maximum cost. That is:

64

IS = IS - {KJKelS and COST(K)>CQST or COST(K)>COST}.

Update the unevaluated node set: OR(K')"^OR(K')" - J.

W. If all unevaluated nodes in the solution tree have been evaluated

(i.e., OR(K') = (f)), then continue to step X. If not, go to step I.

X. If the flow in all infeasible nodes has been reassigned (i.e., IS =

<|)), then continue to step Y. If not, go to step B.

Y. If the optimum solution has been found (i.e., COST<MAX), then con

tinue to step Z. If not, the problem has no solution and the algo

rithm terminates.

Z . The Phase II algorithm has found a solution which satisfies all the

network conditions. Output the following:

1. The network path set {7r(i , j) ,f (i , j)eNP} .

2. The arc flow f(a) for all aeA which is computed from the network

flows {f(^(i,j)) ,î (i,j)eN?}Qp̂ .

3. The cost of the optimum solution, COST.

Terminate the Phase II algorithm.

Proof of the Phase II Algorithm

Lemma 3.3

For any two sets J , J^eOR(K') where J and J„ are selected such

that J cj the cost of the solution nodes J' and J' obtained, respec

tively, from sets J, and J„ satisfy the following inequality:

COST (J') < COST (Jp.

65

Proof. At step J in the Phase II algorithm, the arc set 3 is

obtained for each node-pair in J . Since J cj then either (l) B.̂ g

for some node-pair (x,y) or (2) an additional set 3 will be created

for a node-pair (x,y) occurring in J , but not in J .

In the first case at least one additional arc will be eliminated

from the network in calculating a least cost path at step L in the

algorithm for solution node J . In the second case a new least cost

path will be found for at least one additional node-pair in finding the

solution for node J . Therefore, in either case, at least one addi

tional arc a' will be eliminated from consideration for some node-pair

(x,y) in finding the solution for node Ĵ .

Consider the paths between the node-pair (x,y) obtained above.

Now the least cost path c(iT(x,y)J for node-pair (x,y) in solution J

must be greater than or equal to c(i(x,y)) for solution j'. This is

because an arc elimination restricts the selectivity of arcs which

might be used on a path between (x,y). Since a new path must be found

between the node pair, the cost of the path can either increase or stay

the same. Since the total cost of any solution node J' can be calcu

lated as :

COST(J') - I f(7r(i,j)] • c(7r(i,j)]
(i,j)eNP

for the network assignment {ffird ,j)] }

and the flow f(TT(i,j)J between all node-pairs in solutions j' and j' is

66

the same (i.e., f(7r(i,j)J = rd^j)), it follows that:

COST(J^) < COSTCJ^).

This proves the lemma. D

Lemma 3. M-

The cost associated with a solution node J' in solution tree is

equal to or greater than (i.e., monotonically nondecreasing) the cost

of its immediate predecessor solution node K' (i.e., COST(K')<COST(J')

if solution node J' results from the branching at node K').

Proof. The solution which the Phase II algorithm finds for node

J' is based primarily on the solution found for its immediate predeces

sor node K'. In step Q in the algorithm all least cost path sets not

calculated in steps J through P for solution J' are assigned to it from

the solution at node K'.

Now at least one new path must be calculated for node J' which

was not in the solution at node K'. This can be seen by considering the

history sets H(K') and H(J') for solution nodes K' and J', respectively.

Now H(K')<=H(J') . This is because the set H(J') contains additional

elements (arcs and/or node-pairs) which were not in H(K'). If this is

not the case, a contradiction occurs. The elements of the set J' were

specifically chosen, because they were already being used by a path in

the K' solution. If they were used in {Tr(i,j)} , then they could not

be eliminated at an earlier solution node. Therefore,

67

H(K')c[H(K')uJ] = H(J').

By Lemma 3.3, COST(K')^COST(J') and the lemma is proved. Q

Lemma 3.5

Consider an infeasible solution node K'elS in the solution tree.

The Phase II algorithm generates all possible solution nodes from node

K' which:

1. Reduce the overflow in all the overfly-/ arcs of solution K'

(i.e., the algorithm makes the flow feasible in all infeasible arcs of

solution K'). I

2. Produce a minimum increase in cost from the node K' solution.

Proof. Step E in the Phase II algorithm creates an arc elimina- "

tion set AE(a'). Each SeAE(a') is a set of node-pairs (i,j) such that

if arc a' is not used on the path Tr(x,y) for all (i,j)£S, then the t
I

remaining flow on arc a' is feasible.

Each set SeAE(a') produces a solution J' having a minimum in- i

crease in cost over solution K'. To prove this,first consider (1) the

sets S ,S eAE(a') such that S cS . Let solution J be generated from ,

set S and solution j' from set S^. By Lemma 3.3, COST(j|)<COST(J'). I

Therefore, the solution having a minimum increase in cost is generated ,

from set S . Next consider (2) the sets S ,S eAE(a') such that S cS .

Now this case is not possible if S is generated as in step E, part 2

of the Phase II algorithm. The smaller set S would lead to a solution

which still had an overflow in arc a'. Therefore, each element

S eAE(a') as obtained by the Phase II algorithm produces a feasible

solution having a minimum increase in cost over solution K'.

68

Since each set S £AE(a') for each overflow arc a'eOACK') leads

to a feasible solution at a minimum increase in cost, the collection of

sets J = {S,,S^,...,S } also leads to feasible solutions having a mini-
1 2 q

mum increase in cost. This is obvious because each element in OR(K') is

created by using one set from AE(a') for each overflow arc a' at solu

tion K'. Therefore, when the elements J£OR(K') are used to generate new

solutions 5 all overflow is eliminated in the infeasible arcs at a mini

mum increase in cost.

This proves the lemma. D

Lemma 3.6

The Phase II algorithm terminates in a finite number of steps.

Proof. Consider a strongly connected network (SCN) having a

finite number of nodes and arcs. The Phase II algorithm creates a

solution tree (ST) in order to find the optimum solution. Since the

algorithm is based solely on creating and testing the solution nodes in

ST, a proof that ST has a finite number of nodes is sufficient to prove

the lemma.

Each node in ST is created in order to attempt to reallocate flow

away from overflow arcs in an infeasible solution in such a way that a

least cost feasible solution is found if one exists. Steps Q and J in

the algorithm insure that once an arc has been eliminated from being

used on a path between a node-pair for solution node K', it will con

tinue to be eliminated for the same node-pair for all future solution

nodes in ST emanating from node K'.

69

Now at least one new element is introduced into the history set

H(J') which was not in H(K') where solution node J' is created by a

branch from solution node K'. This was proved in Lemma 3.4. Also,

when H(M') for some solution node M' contains all possible combinations

of arcs and node-pairs as elements, the path algorithm will be unable

to construct a path between any node-pair. This is because all arcs

have been eliminated from the network. Therefore, the algorithm will

not be able to create any new nodes in ST.

Collecting the facts already established:

—At least one new element is added to H(K') for each solution
node K in ST.

—An element added to H(K') is also included in H(J') for any
solution node J' in the solution tree having node K' on the
path between node J' and the root node.

—When H(M') contains all combinations of arcs and node-pairs,
then no additional nodes can be created from node M'.

Therefore, the number of solution nodes along any path from the root

node is finite.

The number of paths from the root node in ST to any terminal

node is also finite. This is true because only a finite number of new

nodes is created for every infeasible node K' in ST. The finiteness of

branching stems from the following facts:

—Only a finite number of arcs a'eA can have overflow; i.e.,
OA(K') is always a finite set (step B in the algorithm).

—Only a finite number of ways exist to reassign the overflow
in an arc a'; i.e., AE(a') is always finite (step E in the
algorithm).

Since the solution tree has a finite number of new solution nodes

emanating from each solution node and a finite number of paths exists in

70

ST from the root node to all terminal nodes, the solution tree has a

finite number of nodes and the lemma is proved. D

Theorem 3.2

The Phase II algorithm finds a solution (if one exists) to the

network problem which satisfies network conditions 1,2,3 and M- in a

finite number of steps.

Proof. The theorem is proved by considering each of the above

conditions in turn. Lemmas 3.5 and 3.6 guarantee that the Phase II

algorithm will generate feasible solutions (if any exist) having minimum

increase in cost over the previous solution node in a finite number of

steps. And network condition 2 is verified by Theorem 2.1 because all

paths found in Phase I or Phase II of the algorithm are found by the

path algorithm.

Network condition 3 is satisfied by the Phase II algorithm in a

manner similar to the way it was satisfied in the Phase I algorithm. In

step A of Phase II all arcs aeA which have a capacity less than or equal

to the requirements, i.e., b(a)<r(x,y) for each node-pair (x,y) in SCNj

are placed in H(R') for the root node R'. These arcs, for the particu

lar node-pair (x,y), are eliminated from SCN at step K prior to using

the path algorithm to find a least cost path 7T(x,y) between (x,y).

Therefore, no path 'n"(x,y) found by the path algorithm can have a

capacity less than r(x,y). Since f(7T(x,y)J is set equal to r(x,y) at

step L and all flows for the root node satisfy condition 3 (Theorem

3.1), then network condition 3 is satisfied for all solutions found in

Phase II.

71

Network condition 4 is guaranteed in Phase II by the decision

at step R. In order for a solution to be labeled feasible, it must

meet the test given at this step. That is: f(a)<b(a) for all aeA.

The proof that the Phase II algorithm satisfies network condition

1 must now be established. Theorem 3.1 guarantees that the Phase II

algorithm starts with the root node having a least cost solution. In

Lemma 3.M- it is established that the cost of each solution node in ST

on any path from the root node is mo.iotonically nondecreasing. In

Lemma 3.5 it was proved that:

—All permissible least cost ways are found to reduce all the
overflow for an infeasible solution node.

—Each newly created solution node J' represents a least cost
increase in the solution cost over the previous solution node
K' .

Therefore, the cost of any feasible solution node found in ST represents

the least cost way of arriving at that solution along a unique path in

ST from the root node. This means that a feasible solution having the

minimum increase in cost over the root node cost is an optimum solution

to the network problem. Steps T and U check each feasible solution node

created in ST and retain one having the smallest cost as the optimum

feasible solution.

Since each of the conditions stated in the theorem is satisfied

by the Phase II algorithm, we have proven that the network algorithm

solves the simultaneous flow network problem. D

72

Computational Considerations

To this point in the chapter the solution algorithm has been

described and its validity proved. In this section some topics related

to improving the efficiency of our branch and bound algorithm are dis

cussed. Exact computational estimates of a branch and bound algorithm

cannot be made because the creation of the solution tree completely

depends on the specific problem being solved. Since programming and

evaluating the algorithiu were not part of the research, we can only

advance general comments about the algorithm based on hand calculations

and our knowledge of programming techniques. It has been noted by Agin

in a study of branch and bound algorithms [EOl] that, as computational

experience is gained with a particular algorithm, simplifications are

usually found which greatly reduce computation time. We have already

found this to be true in our work with the solution algorithm and expect

that its implementation on a computer will result in further steps

toward computational efficiency.

There is an increasing use of branch and bound algorithms in the

literature. In many cases it is the only known solution method for

certain types of problems. It should be judged primarily on this basis,

according to Agin, rather than on its computational efficiencies. It

is interesting to note, however, that a branch and bound solution to

the integer programming problem requires significantly less computer

time than the conventional analytical method [E23]. This suggests that

with adequate computational experience, branch and bound approaches may

actually be the best way to obtain global optimum, solutions to certain

types of problems.

73

A list of computational considerations were compiled as the

solution algorithm was developed. We now briefly discuss some of these

considerations:

1 . Algorithm Heuristics

The algorithm is set up to branch from a node in the solution

having the least number of overflow arcs. This heuristic tends to

reduce the number of new nodes created while effectively searching for

a feasible s>.lution. T.: the probleiv. solved to -late, this a];'i..ears to

be a reasonably good heuristic. On Lhe other hand, using tht node

having the least number of elements in its history set is an appealing

alternative method for the selection of nodes for branching.

Branch and bound algorithms tend to require a lot of storage

space in a computer. In order to reduce the storage requirements of

the algorithm, it is usually advantageous to find a feasible solution

as fast as possible. Our branching heuristic accomplishes this by ad

vancing down a branch (i.e., paths) in the tree, and selecting at each

step the node having the least nuniber of overflow arcs. This tends to

quickly produce a feasible solution which can be used as a bound in

eliminating non-optimum paths in the solution tree.

Two other types of branching strategies are possible for the

solution algorithm:

1. Branch from lowest bound.

2. Branch from newest active bounding problem.

The first has the advantage that the total amount of computation is

minimized while storage requirements may become large. The second

1^

requires more time but uses a minimum amount of storage. The selection

of a branching heuristic, in the end, must be based on empirical

results.

2. Linked Lists

To simplify the description of the algorithm, several new sets

were introduced for each node created in the solution tree. Each new

set was created by adding elements to the related sets defined at the

previous node. Two examples of these sets are (.1) the history set for

the node and (2) the new paths (i.e., set of arcs) found by the path

algorithm for the node. It is possible to define a single linked list

for each of these sets for the entire problem. Whenever a new node is

created, a record of changes (i.e., additions) at that node is stored

with a link back to the record associated with the previous (i.e.,

parent) node in the tree. This forms a chained record which points

from any solution node back to the root node. This record contains the

complete contents of the particular set for the solution node in

question.

3. Short Cuts

The computation time of the solution algorithm can be signifi

cantly reduced by eliminating nodes in the 'solution tree which have a

low probability of producing feasible solutions. Probably the easiest

method of doing this is to restrict the number of branches created by a

node to some reasonable number. (Of course, the nodes having the least

number of overflow arcs would be selected first.) When paths are indis

criminately eliminated in the solution tree, a global solution cannot

75

be guaranteed, but a satisfactory feasible solution may be obtained.

The framework of the solution tree is amenable to numerous shortcuts by

pruning branches.

n. Equal Cost Paths

The path algorithm always selects the first least cost path which

it finds between a node-pair. Other least cost paths of the same length

may exist but are disregarded until a need for them arises in the

dynamics of a particular problem solution. Then they are recomputed.

It may prove advantageous to identify all least cost paths, carry them

through the steps in the algorithm and check them first when an

overflow occurs. This may result in an overall reduction in computa

tional time, but it is hard to confirm this without extensive empirical

evidence.

5 . Optimum Root Node Selection

It is imperative to establish a good solution at the root node

of a branch and bound solution tree. The entire method depends on the

closeness of the root solution to the final optimum solution. The

solution method in this dissertation was specifically designed around

this consideration. In fact, the branch and bound algorithm (Phase II)

is not even required if overflow does not occur in the minimum cost

solution in Phase I.

76

CHAPTER IV

NECESSARY CONDITIONS AND COST BOUNDS

Introduction

The solution algorithm discussed in the previous chapter is

designed to find an acceptable solution to the simultaneous flow network

problem if such a solution exists. In order to preclude futile attempts

to find a nonexistent solution, it is advantageous to establish a set of

necessary conditions in this chapter which can be applied directly to a

network configuration. If any necessary condition is not satisfied,

then the solution algorithm should not be used, for an acceptable solu

tion does not exist.

Also included in this chapter are two theorems which establish

upper and lower cost bounds for the solution of any network and a dis

cussion of bounds for path length. At the end of the chapter an algo

rithm is described which can be used to assist in calculating some of

the conditions and bounds discussed in the chapter.

As stated in Chapter III, the type of network which is considered

in this dissertation is described by the following network parameters:

—Arc costs c(a), aeA.

—Arc capacities b(a), acA.

—Node-pair capacity requirements r(i , j) ,(i , j)eNP.

—Maximum path length L.

77

Any network which has values assigned to the above parameters is called

a network definition or a netuork configuration.

If all the values of a network configuration are known for a

particular communication network, then the method of Chapter III can be

applied to these values to solve the simultaneous flow problem. An

acceptable solution to the problem is expressed in terms of a network

path set, {Tr(i,j) ,V(i ,j)eNP} , which satisfies the following network

conditions (see Chapter III for a detailed explanation):

1. COST = Min{ I (a) • c(a)} = Min{ I f(^(i,j)) • c(^(i,j))}.
aeA (i,j)£NP

2. Jl(̂ (i,j))<L.

3. f(̂ (i,j)] = r(i,j).

4 . I f (̂ (i,j)] = f(a)<b(a).
(i,j)€NP "̂

It is always desirable to develop necessary conditions which

require a minimum expenditure of computation effort and which are power

ful enough to detect network configurations that do not have acceptable

solutions. Unfortunately, strong necessary conditions which are ele

gantly simple to apply are generally difficult to prove. In this chap

ter we state and prove three necessary conditions which cover a range

from a gross test to a fine test of the defining parameters of a net

work. As the test conditions become more refined, the required compu

tations to test the condition become more involved.

The research directed toward producing effective necessary and

sufficient conditions produced fragmentary results and the results

obtained were not significant enough to include herein. It is concluded

that due to the nature of the network problem, powerful sufficient con

ditions are extremely difficult to develop. The establishment of such

conditions is a prime candidate for follow-on research.

The activity of establishing cost and path length bounds was

approached from the vantage point of the earlier results and was not

based on traditional greatest lower bound and least upper bound philoso

phies. The objective of the two sections in this chapter on bounds

was to obtain reasonabl^i ways of d-.termining gross limits CL. the cost

and length parameters of a communication network.

The only optimization criterion (i.e., network condition 1) for

the network problem is the total cost of a network solution which satis

fies all the network conditions. Since cost plays such a central role

in our work, it was advisable to establish bounds on the overall network

cost. These bounds can be found before the solution algorithm is

actually applied to the problem. Two theorems are proved which can be

used to find cost bounds for any network. These bounds can be found

independently from, the necessary conditions and do not necessarily

guarantee the existence of a solution within the bounds.

Necessary Conditions

Three necessary conditions are now stated and proved which must

be satisfied in order for a network description to have an acceptable

solution. These conditions basically involve the relationship between

the node-pair requirement matrix R (i.e., r(i , j) ,i/(i , j)eNP) and the arc

capacity matrix B (i.e., b(i , j) ,V(i ,j)eNP). The weakest condition is

presented first.

79

Theorem ^.1

The following conditions must hold for each row [condition (a)J

and each column [condition (b)) of the node-pair requirement matrix R

and the arc capacity matrix B for an acceptable solution to exist for

the simultaneous flow problem:

(a) Max{r(x, j) }<Max{b[x5 j]'} for x fixed and jeN, ĵ x̂.
J j

(b) Max{r(i jy)}<Max{bLi jy] ' } for y f ixed and ieN, i^^y.
i i

Proof. Part (a) is proved first. Consider any node-pair (xjy)

having a flow requirement r(x,y). For an acceptable solution to exist,

it is necessary for a path TT (Xjy) to exist between the two nodes such

that

r(x,y)<b(TT"(x,y)) . (1)

This is required because a single path must carry all the flow between

each node-pair. From the definition of path capacity we have

b(Tr''(x,y)] = Min {b(a)}. (2)
aeTr"(x,y)

Now the maximum required flow leaving node x and destined for any

other node y must use one of the arcs [x,j]' for jeN, ĵ x̂. The maximum

flow requirement Max{r(x,j)} cannot exceed the largest capacity of any
j

arc leaving node x. Thus, Max{b[x,j]'} can be used as an upper bound on
j

the capacity as follows:

b[TT"(x,y)) = Min {b(a) }<Max{b[x, j]'}. (3)
a£7T-(x,y) j

Combining Equations (1) and (3), we obtain:

Max{r(x,j)}<Max{b[x,j]'} (4)

j j

which proves part (a) of the theorem. The proof of part (b) follows a

similar argument. D

Theorem 4.2

The following conditions must hold between the respective row

sums (condition (a)j and column sums (condition (b)j of the node-pair

requirement matrix R and the arc capacity matrix B in order for an

acceptable solution to exist for the simultaneous flow problem.

(a) I r(x,])<2 b[x,j]' for x fixed and all jeN, j^x.

j j

(b) V r(i,y)<^ b[i,y]' for x fixed and all ieN, i?̂ y.
i i

Proof. We prove part (a) by first making the following pre

liminary calculations;

—The maximum flow between node x and all other nodes in the
network can be found by adding the capacities of all arcs
leaving node x, i.e.,

I b[x,j]' for all jeN, ĵ x̂.

j

•The total flow requirement between node x and all the other
nodes in the network can be found by summing the flow require
ments leaving node x; i.e.,

81

I r(x,j) for all jeN, ĵ x̂.
J

Now in order to meet the total flow requirements to the other nodes in

the network, the flow out of node x must first use the arcs [x,j]' for

all jeN, j^x. That is:

I rU,j)<l f[x,j]'. (1)

J J

By network condition 4 we know that f(a)<b(a) for all a£A. Since

this condition is required of every arc, it is required for those ar̂ cs

leaving node x. Therefore:

I f [x , j] ' < 5 ; b [x , j] ' . (2)
i i

By combining (1) and (2) we get

5; r(x,j)<5; b[x,j]'
j j

which proves part (a) of the theorem. The proof of part (b) follows in

a similar fashion. D

Theorem 4.3

The following inequality is a necessary condition which must hold

for each node-pair (x,y) in a network for an acceptable solution to

exist for the simultaneous flow problem:

82

r(x,y) < Max {b [TT ' (x,y)] } . D
TT'e7T(x,y)

Proof. From network condition 3, the flow along a path TT

between node-pair (x,y) must be equal to the requirements for that node-

pair. That is:

r(x,y) = f(."(x,y)]. (D

Now the flow along any particular path TT (x,y) can never exceed the

capacity of the path, i.e.,

f|;TT'\x,y)]<b(;TT"(x,y)]. (2)

Now let b [TT(x,y)J be the largest capacity of any path TT'(x,y) which

exists between (x,y). Since b [TT(x,y)j represents the upper bound on

the capacity of any path between (x,y),

b[TT"(x,y))<b"(TT(x,y)) = Max {b (TT ' (x,y)) } . (3)
TT'€TT(x,y)

By combining Equations (1), (2), and (3), we have the following desired

result which proves the theorem.

r(x,y) < Max {b [TT ' (x,y)) } . D
TT '£TT(x,y)

83

In order to apply the necessary condition given in Theorem 4.3,

it is necessary to devise a means of finding the maximum capacity of any

path between (x,y) (i.e., Max{b [Tr(x,y)J }). Fortunately, a simple algo

rithm can be created which finds this value for each node-pair in the

network. We call the algorithm the path optimization algorithm (POA)

and describe it later in this chapter. It is a simplified variation of

the path algorithm and can be used to find various kinds of optimum

paths in a network.

Starting with the B (maximum arc capacity) matrix of the network,

we use the POA to find the B (maximum path capacity) matrix. Because

the POA uses the same path finding philosophy as the path algorithm, the

path length for any node-pair can be restricted as required in network

condition 2. Thus, the POA is used to find the matrix B while guaran

teeing that the length of all paths which are considered is less than

or equal to L.

After B is found, every elem.ent b(x,y) must be compared with the

corresponding element r(x,y) in R according to the statement of Theorem

4.3. If r(x,y)<b(x,y) for all node-pairs (x,y), then the necessary

condition as stated in the theorem is satisfied. If r(x,y)>b(x,y) for

some (x,y), then an acceptable solution does not exist for the particu

lar network description being examined.

Cost Bounds

Network condition 1 is the criterion which is used by the network

algorithm in finding an optimum solution to the network problem. In

this section this condition is used along with other network conditions

84

to establish an upper and a lower cost bound for the total cost of

transmitting the required flow over the network.

Theorem 4.4

An upper bound on the total cost (i.e., COST) of an acceptable

network solution is COST = I b(a) • c(a).
aeA

Proof. According to network condition 1, the following formula

can be used to calculate network cost:

I f(a) • c(a). (1)
aeA

Now the maximum value of this expression must give the maximum

network cost; i.e.,

COST =^ Max{ I f(a) • c(a)}. (2)
aeA

Since the unit cost c(a) of each arc is a constant and the maximum of a

sum is the sum of the maximums, then (2) becomes

Max{ I f(a) • c(a)} = I Max{f(a)} • c(a). (3)
aeA aeA

By network condition 4, b(a) is a maximum bound for f(a) since,

f(a)<b(a) for all aeA. (4)

Combining Equations (2), (3), and (4), the desired result is obtained

85

COST = I b(a) • c(a). D

Theorem 4.5

A lower bound on the total cost (i.e. , COST) of any network is

COST = I r(i,j) • £(i,j)
(i,j)eNP

where cd."]") is the cost of the lea^t cost path between node-pair (i,j)

Proof. To prove the theorem a network path set [TT (ijj),

V(i,j)eNP}, whose total cost after being assigned the required flow

yields the minimum value over all the other possible network path sets,

must be found. That is:

COST = Min { I ("̂ (i,:)] • c('̂ (i,j)]}
u(i,j) (i,j)£NP

I f(/(i,j)) • c(/(i,j)]. (1)
(i,j)£NP

By network condition 3:

ff-̂ '̂ i,:)) = r(i,j) for all (i,j)£NP. (2)

Therefore, the flow assignments remain the same regardless of the net

work path set being considered. Substituting Equation (2) into Equa

tion (1) and using the fact that the minimum of a sum is the sum of the

minimums:

Min { I f[u(i,-j)] . c[u(i,j)]} =
Tr(l,j) (l,j)eNP

I r(i,j) • Min {c[TT(i,j)]}. (3)
(i,i)eNP Tr(l,j)

This means that the network path set which is required is the one which

produces the least cost paths c_(i,j) bet"ween each node-pair (i,j).

Combining Equations (1), (2), and (3) we have the following desired

result wlii :h proves the theorem:

COST = I r(i,j) • c_(i„i). D
(i,j)eNP

In order to apply Theorem ^^.5^ a means of finding the minimum

cost path for each node-pair (x,y) (i.e., the matrix C_) must be found.

The POA is used for this purpose, thereby including the path length

constraint in the process of obtaining the value of the least cost paths

in the network.

After C_ is found, the results of Theorem M-.5 are used to calcu

late a lower cost bound for the network. The element by element multi

plication of R and C_ must be performed and the products summed to arrive

at the overall total. In the next section the use of the POA is ex

plained in detail. However, we note here that if the total cost, COST,

is less than zero, no solution exists. A negative total cost means

that a path of length k(l<k<L) does not exist between some node-pair,

and the algorithm has assigned a large negative cost to that node-pair.

87

Bounds on Path Length

Establishing upper and lower' bounds on the length of the least

weighted paths in a network is an interesting problem which is

indirectly related to our work. Since the path algorithm is set up to

terminate calculations at a particular pre-set length and can be made to

terminate at any iteration in which no nevi paths are found, there is no

requirement to establish analytical bounds for path length. Finding

bounds on uath lengths in our netw.:"ks is compoi .id̂,-d by the fact that

a least weighted path between two nudes may not i:-<e the path having the

shortest length. In this section we discuss sorue basic considerations

which relate to bounds on the length of least weighted paths in strongly

connected networks.

Bratton [F0 6] was probalily the first person to give serious

attention to determining bounds on length, given only the number of

nodes (n) and the number of arcs (m) in a network. He considered net

works in which each arc has the same weight as all other arcs in the

network. Even with a detailed investigation into the problem, his only

general result is a conjecture which still remains unproven. This con

jecture can be stated as:

MinlL}. ^̂ "-\' , - 2 .
m - n -t- 1

This lower bound on path length i s based on the well-known fac t s t h a t

(1) the number of t o p o l o g i c a l cycles in an und i rec ted network i s equal

t o m-n+1 and (2) a s t rong ly connected n-node network always e x i s t s

which has a minimum path length of 2 and is composed of 2(n-l) arcs.

Networks which exemplify this statement all have the same star form as

illustrated by the following example:

n = 6

• -=̂ --̂ ni ^ 10 := 2(n-l)

Min{L} - 2

The lower bound on path length can be equal to n-1. This occurs

when an n-node network having n arcs is strongl}^ connected. The only

way to obtain this type of network is to construct a Hamiltonian cycle

through all n nodes in the network. For example:

n = 5

m = 5

Min{L} =: 4 = n-1

The problem of establishing a minimum bound on path length, therefore,

immediately reduces to the investigation of changes in path length

which occur as the number of arcs in an n-node network varies from n

to 2(n-l). Our preliminary research strongly suggests that a serious

investigation into this problem will have to incorporate other struc

tural aspects of the network (such as the degrees of nodes) in deter

mining analytical bounds on path length.

An upper bound on path length is probably more difficult to

establish than a lower-bound. Since only simple paths are being con

sidered, no path length can be greater than n-1. A natural question

arises: How can this trivial upper bound be reduced by knowing other

types of structural information in a particular network? Our computer

simulation results discussed in Chapter II unexpectedly shed some light

on an answer to this question. In the computer runs on over 200

networks of various si :es, the maxjinum least w. Lghted path lengths were

always less than or equal to n/2 and were many :imes as low as n/M-.

These maximum length values would undoubtedly vary with the number of

arcs in the networks and the range of arc weights which are permitted;

however, they do suggest that long paths are quite rare and that an

upper bound for path length of approximately n/2 may exist for most

networks.

The Path Optimization Algorithm (POA)

In order to take full advantage of the theorems in this chapter,

it was necessary to devise an effective way of computing the B and C

matrices. We utilize the path construction philosophy of the path

algorithm of Chapter II and appropriately modify it to create a

general path-oriented optimization algorithm. Because the algorithm

finds paths one arc at a time, it can also be used to satisfy network

condition 2 by constraining the length of all paths. The POA, then, is

the primary means by which this length constant is incorporated into

the results of this chapter.

90

The flow chart of the POA is given in Figure M-.l. Note the

similarity of this flow chart with the one in Figure 2.1. Since the

arc sets are not needed for each path, the steps to find them have been

dropped from the algorithm. However, the length constraint feature has

been retained. Refer to Chapter' II for a description of the individual

steps in the algorithm.

The POA can be used to optimize any path weight calculation for

which the following conditions ho2.1:

—The path weights are calciilated from the weights or their com
ponent arc weights.

—The path weight of a path of length p+1 is calculated from
the path weights of length p and those of length one.

—Cycles do not interfere with the weight calculation.

Now the path algorithm in Chapter II produced a minimum cost path

between each node-pair in which:

—The path costs were calculated as the sum of the component arc
costs.

—The optimum cost path was selected as the path of length
k(l<k<L) v/hich had the minimum cost for each node-pair.

—Negative cycles were excluded from consideration.

Figure ^-.2 gives the summary information about two uses of the POA.

Column 1 of the figure represents the essential features of the POA

which finds the minimum cost path for each node-pair in a network.

Theorem 2.1 gives the proof that this algorithm accomplishes this task.

By modifying the POA'at steps A, B, and C, it can also be used to

find the value of the maximum capacity path between each node-pair. In

column 2 of Figure M-. 2, the modifications are shown which are necessary

91

f o r a l l (l , j) e N P
w ^ (i , j) ^ [i , j] '

f o r a l l [i , j] ' e S C N

w (i , j)^-°°
f o r a l l (l , j) e N P

f o r a l l [i , j] ' eSCN

A"

Yes w ^ W p d j k) j

+wi(k,j) I

Yes ^ - \ C '
< <w<w(i , j)

No\

Terminate

w^Min
[W p (i , k) ,
._.. w , (k ,])] _

Figure H.l. Path Optimization Algorithm (POA)

92

Type of Problem Minimum Cost Maximum Capacity-

Initial Weight Arc Cost

c[i,j]'
Arc Capacity

b[i,j]'

Initialization

^(is:)
(Step A in Algorithm)

oo _oo

Path Weight
Calculation
(Step B)

j w^Wp(i,k)
-i v^^(k,:)

w^Min
r .p (i ,k) ,w^(i J)]

Optimum Path
Weight Selection
(Step C)

Min[w,w(i,j)] Max[w,w(i,j)]

Optimum Weight
w(i,j)

Minimum Cost

£.(i , j)
Maximum Capacity

b(i,j)

Figure 4.2. Two Variations of the POA

93

to calculate the maximum capacity for the node-pairs. The proof of this

version of the algorithm follows the same argument used in the proof of

Theorem 2.1 and is, therefore, not repeated here. The essential fea

tures of the maximum capacity calculations are:

—The path capacities are calculated by finding the minimum value
of the component arc capacities.

—The maximum capacity path is selected as the path of length
k(l<k<L) which has the maximum value for its capacity.

—Cycles do not interfere with capacity t:.ilculations .

The minimum distance (i.e., length) calculation between nodes in

a network can also be obtained from the POA. Numerous methods are

employed in the literature from matrix multiplication [A12] to Boolean

operations [D59]. By assigning the weight of one to each arc which is

present in the network and using the minimum cost version of the algo

rithm, the minimum path length can be found for each node-pair.

94

CHAPTER V

EXAMPLE OF SOLUTION METHOD

Problem Description

The XYZ Corporation, a large decentralized company having five

corporate divisions spread throughout North and Central America, has

a communication network problem. Over its M-3 years of existence differ

ent types of communication patterns have developed between the widely

separated division headquarters. The Company now owns a network of

private communication lines among the divisions' headquarter offices.

These lines were purchased over a period of 15 years with no particular

objective in mind. The top management of the Company is quite concerned

over the fact that these existing communication lines are not being used

efficiently to transmit intracompany information from division to divi

sion. They have unequivocally stated that no plans for a company-wide

management information system will be approved until the present network

is operated in an optimal fashion.

The following facts are known about the existing communications

system:

—There are ten communication lines in the system over which
standard-length messages are sent.

—The unit cost of sending a message depends on the particular
communication lines used to transmit the message.

—The cost associated with sending messages over a single com
munication line is the product of the unit cost of the
communications line and the number of messages transmitted
over the line,

95

—The number of messages sent over a line per minute can be
no greater than the capacity of the line.

—The transmission error rate increases sharply for those
messages relayed by more than two stations.

An analysis of the number of messages sent between all the divi

sions was recently made. It included all messages and not only the ones

transmitted over the existing communication network. From this study

the average number of messages required per day between each pair of

divisions was determiij-rd. All the statistics Ci.̂ .icerning the configura

tion and use of the XYZ's corporate information network are presented

in the network description on Figure 5.1.

The communication problem facing the XYZ Corporation can be

simply stated as follows: What is the optimal routing of messages

between divisions of the Company in order to operate the information

system at minimal cost? A solution to this information network problem

is now found by applying the algorithm described in Chapter III.

Before initiating Phase I the three necessary conditions from

Chapter IV are checked and verified. The results are presented in

Figure 5.2.

Phase I Solution

The solution to the network problem is obtained by first applying

the Phase I algorithm which was given and explained in Chapter III. See

Figure 3.1 for a summarized description of this algorithm. The steps

discussed below refer to the corresponding steps used in the Phase I

algorithm. Branching in the algorithm occasionally causes nonsequen-

tially alphabetic labeling in the following description.

96

Interdivisional
Message Requirements

r (i , j)

- 3 2 1 3

6 - 3 2 3

2 1 - 7 4

4 3 2 - 3

2 1 2 5 -

Communicat ion
L ine C a p a c i t i e s

b (i , 3)

- > 1 2 3 4 5 - > 1 3

Communicat ion
L ine Uni t C o s t s

c (i , j)

1 2 3 4 5

1 - 20 0 0 0 1 - 2 - - -

2 0 - 10 5 10 2 - - 4 3 6

3 10 0 - 20 0 3 2 - - 1 -

4 0 0 0 - 20 4 - - - - 4

5 20 20 0 10 - 5 3 6 _ 3 _

Maximum Length of Any Communication Path is Three (i.e., L=3)

Figure 5.1. XYZ Corporation Communication Network

97

X M a x [r (x , j)]

J
M a x C b C x ,]] ']

1 3 20

2 6 10

3 7 20

^ • i+ 20

5 5 20

y M a x [r (i , y)]
i

M a x [b [i , y] ']
i

1 6 20

2 3 20

3 3 10

i+ 7 20

5 i+ 20

Theorem M-.l Calculations

X I r (x , j)
J

Ib (x , j)
i

1 9 20

2 li+ 25

3 1^ 30

i+ 12 20

5 10 50

y
i

) : b (i , y)
1

1 14 30

2 8 i+0

3 9 10

i+ 15 35

5 13 30

Theorem M-.2 Calculations

R =

- 3 2 1

6 - 3 2

2 1 - 7

i+ 3 2 -

2 1 2 5

- 20 10 10 10

10 - 10 10 10

20 20 - 20 20

20 20 10 _ 20

20 20 10 10

Theorem M-.3 Calculations

Figure 5.2. Necessary Condition Calculations

98

B. The path algorithm and auxiliary algorithm are used to produce the

results listed in Figure 5.3. The path taile contains only the

least cost paths found at each iteration. Note that the path

{g,h,a,b} between node-pair (4,3) having a minimum cost of 13 was

not used because it exceeds the length requirement.

C. The last two columns on Figure 5.3 can be used to determine if any

of the path capacities are less than their respective requirements.

In this example b (TFC i , j)] >r(i , j) for all (i,j)eNP; therefore the set

T remains empty.

K. The flow on any particular arc is the sum of the flows on all paths

using the arc. Figure 5.4 illustrates a systematic process of

determining the arc flow. The results are summarized in the follow-

ine table:

a a b c d e f g h i J

c(a) 2 4 3 6 2 1 4 3 6 3

b(a) 20 10 5 10 10 20 20 20 20 10

f(a) 16 15 3 6 9 11 16 12 2 5

L. A comparison of f(a) and b(a) for all aeA in the above table yields

f(b)>b(b). This infeasibility condition on arc b requires that the

Phase II algorithm be initiated.

99

Node
P a i r

Ti c d r) b(iT)
^ 2

c(-n^) b (^ .) h 0 (^ 3) hG^) A S (^ (i , j) l c (T T (i , j)) b (^ (i , j)) i ^ (i , j)

(1 , 2) a 2 20 {a} 2 20 3

(1 , 3) ab 6 10 { a , b } 6 10 2

(1 , 4) a c 5 5 (a , c } 5 5 1

(1 , S) a d 8 10 { a , d } 8 10 3

(2 , 1) b e 6 10 { b , e) 6 10 6

(2 , 3) b 4 10 {b} 4 10 3

(2 , 4) c 3 5 { c } 3 5 2

(2 , 5) d 6 10 {d} 6 10 3

(3 , 1) e 2 10 (e) 2 10 2

(3 , 2) e a 4 10 { e , a } 4 10 1

(3 , 4) f i 20 1
1

{ f l 1 20 7

(3 , 5) f g 5 20 j { f , g) 5 20 4

(4 , 1) gh 7 20 { g , h } 7 20 4

(4 , 2) g i 10 20 g h a 9 20 { g , h , a } 9 20 3

(4 , 3) g i b 14 10 j [g , i , b } 14 10 2

(4 , 5) g 4 20 { g } 4 20 3

(5 , 1) h 3 20 {.h} 3 20 2

(5 , 2) i 6 20 h a 5 20 { h , a j 5 20 1

(5 , 3) i b 10 10 h a b 9 10 { h , a , b } 9 10 2

(5 , 4) i 3 10 {] } 3 10 5

Figure 5.3. Path Table for Phase I Solution

100

Node
Pair

Node-Pair
Req't

A R C S Node
Pair

Node-Pair
Req't a b c d e f g h i J

(1,2) 3 3

(1,3) 2 2 2

(1,4) 1 1 1

(1,5) 3 3 3

(2,1) 6 5 5

(2,3) 3 3

(2,4) 2 2

(2,5) 3 3

(3,1) 2 2

(3,2) 1 1 1

(3,4) 7 7

(3,5) 4 4 4

(4,1) 4 4 4

(4,2) 3 3 3 3

(4,3) 2 2 2 2

(4,5) 3 3

(5,1) 2 2

(5,2) 1 1 1

(5,3) 2 2 2 2

(5,4) 5 5

Total Arc Flow 15 15 3 6 9 11 16 12 2 5

Figure 5.4. Arc Flow Tabulation

101

Phase II Solution

The Phase II algorithm is now applied to the results obtained in

Phase I. The solution steps are again labeled with the letters used in

the Phase II flow chart given in Figure 3.2.

A. The algorithm begins by calculating the cost of the Phase I solution

(i.e., the root node (R) of the solution tree).

COST(R) =)̂ f(a) • c(a) = 2J3.
aeA

D .

It also calculates the cost of the maximum cost. That is, COST =

I b(a) • c(a) = 2640.
aeA

Since the solution tree at this stage only contains the root node,

select it for branching.

Consider the single overflow arc b in this step. From Figure 5.3

find the node-pair paths which contribute to the total flow in this

arc and the amount contributed by each. A table containing this

information now follows:

Elements in AU(b)
i.e. (b,x,y)

(b,l,3) (b,2,l) (b,2,3) (b,4,3) (b,5,3)

Amount of Flow Contributed
i.e. r(x,y)

2 6 3 2 2

E. The flow in arc b must be reduced so that its flow does not exceed

its capacity. Since the capacity of b is ten, the flow in arc b can

be reduced to within capacity by eliminating the paths between the

102

f o l l o w i n g s e t s of n o d e - p a i r s :

AE(b) = < { (b , 2 , l) } , { (b , l , 3) , (b , 2 , 3) } , { (b , l , 3) , (b , 4 , 3) , (b , 5 , 3) }

{ (b , 2 , 3) , (b , 4 , 3) } , { (b , 2 , 3) , (b , 5 , 3) } > .

Note that the elements in AE(b) are the smallest sets which elimi

nate the overflow in arc b.

H. Since only one arc had overflow, the set OR(R) is identical to the

set AE(b). Create one branch from the root node in the solution

tree for each of the elements in OR(R). This results in the follow

ing solution tree where the labels represent the way the overflow

is reduced:

(b,l,3)
(b,2,3)

COST = 293

(b,l,3)
(b,4,3)
(b,5,3)

(b,2,3)
(b,4,3)

(b,2,3)
(b,5,3)

I. Select, arbitrarily, node 1 for evaluation.

J. Node-pair (2,1) is selected and the following arc sets are found for

this node-pair:

10 3

3 = {b} Y = U} - (b,a}

L. The arcs b and a are eliminated from the network and the path algo

rithm and auxiliary algorithm used to find the following least cost

path between node-pair (2,1):

'^(2,1)

AS(^(2,l)j c(^(2,l))

{d,h} 9

Q. Create the history set H(l) = {(a,2,1),(b,2,1)}, assign the required

flow to 17(2,1) and calculate the flow on all arcs for the solution

at node 1.

a a b c d e f g h i J

c(a) 2 4 3 6 2 1 4 3 5 3

b(a) 20 10 5 10 10 20 20 20 20 10

f(a) 15 9 3 12 3 11 15 18 2 5

The cost of the node 1 solution is COST(l) = 311.

R. An overflow is present on arc d at solution node 1. Therefore, the

solution is infeasible and is placed in the set IS of infeasible

nodes.

10 4

The remaining four branches from the root node result in solutions for

which a cost cannot be obtained (i.e., COST = MAX). This is due to the

fact that no alternative paths exist in the network to carry the flow

between the respective node-pairs in the solution nodes 2, 3, M-, and 5

when arc b is dropped from consideration.

The results at this point in the solution are summarized in the

following solution tree diagram:

C0ST=311

(Infeasible)

COST = 29 3 (Infeasible)

COST=MAX COST=MAX

X. The infeasible node set IS contains one infeasible solution node

(i.e., node 1). Therefore, the arc overflows in this solution must

be examined next.

B. Select solution node 1 for branching.

D. Consider the single overflow arc d in this step. Find the node-pair

paths which contribute to the total flow in this arc and the amount

of flow contributed by each. That is:

10 5

Elements in /\U(d)
i.e. (d,X,y)

(d,l,5) (d,2,l) (d,2,5)

Amount of Flow Contributed
i.e. r(x,y)

O 6 3

E. The flow in arc d must be reduced to within capacity. Since the

capacity of d is ten, the smallest sets which eliminate the over

flow in arc d are:

AE(d) -{[(d,l,5)}, {(d,2,l)}, [(d,2,5)}>.

H. Since only one arc had overflow, the set OR(l) is the same as the

set AE(d). Create one branch from node 1 in the solution tree for

each of the elements in 0R(1). This yields the following branches

out of node 1.

(d,2,5)

I. Select solution node 11 for evaluation.

J. Node-pair (1,5) is selected and the following sets are found:

3 = {d} Y = 5 - {d}

L. Arc d is eliminated from the network and the path and auxiliary

algorithms used to find the following least cost path between node-

pair (1,5):

^(1,5)

AS (̂ (1,5)] C(TT(1,5)]

{a,c,g} 9

Q. Create the history set H(ll) = {(a,2,1),(b,2,1),(d,l,5)}, assign the

required flow to Tr(l,5) and calculate the flow on all arcs for the

solution at node 11.

a a b c d e f g h i]

c(a) 2 4 3 6 2 1 4 3 6 3

,b(a) 20 10 5 10 10 20 20 20 20 10

f(a) 16 9 6 9 q 11 19 18 2 5

The cost of the node 11 solution is COST(ll) = 314.

R. An overflow is present on arc c in the above solution. Therefore,

the solution is infeasible and is placed in the IS set of infeasible

nodes for further branching.

Steps I-R are repeated for solution nodes 12 and 13 and the following

results obtained:

10 7

©
C0ST=3m

(I n f e a s i b l e)

1] COST = 311
(Infeasible)

&
COST=MAX

•©
C0ST=314

(Infeasible)

X. The set IS now contains two infeasible solution nodes (i.e. , node

11 and node 13).

B. Select solution node 11 for̂ branching.

D. Consider the single overflow arc c in this step. Find the node-

pair paths which contribute to the total flow in this arc:

Elements in AU(c)
i.e. (c,x,y)

(c,l,4) (c,l,5) (c,3,4)

Amount of Flow Contributed
i.e. r(x,y)

1 3 2

E. To reduce the flow in arc c to within its capacity of 5, we create

the sets:

AE(c) =<{(c,l,H)}, {(c,l,5)}, {(c,3,4)}>.

H. The set OR(ll) is the same as set AE(c) since only one arc has

overflow. Create the following branches from solution node 11;

10 8

I . S e l e c t s o l u t i o n node 111 f o r e v a l u a t i o n .

J . N o d e - p a i r (1 , 4) i s s e l e c t e d and t h e fo l lowj i ig s e t s found;

3 = (c) Y = 6 = {c}

L. Arc c is eliminated from the network and the path and auxiliary

algorithm used to find the following least cost path between node-

pair (1,4):

^ (1 , 4)

A S (^ (1 , 4)] C (T T (1 , 4)]

{ a , b , f } 7

Q. Create the history set H(lll) = {(a,2,1), (b,2,l), (d,l,5),

(C,1,4)}, assign the required flow to TT(1,4) and calculate the flow

on all arcs for the solution at node 111.

109

a a b c d e f g h i i

c(a) o 4 3 5 2 1 4 3 6 3

b(a) 20 10 5 10 10 20 20 20 20 10

f(a) 15 10 5 9 3 12 19 18 2 5

The cost of the solution at node 111 is COST(lll) = 316.

R. No overflovj is found on the arcs in the node 111 solution, there

fore the solution is feasible.

U. The feasible solution at node 111 is a candidate for the optimum

feasible solution to the network problem.

No infeasible solution nodes can be eliminated at this time, for

the only one present in the tree is node 13 which has a cost equal to

314. However, the minimum solution cost, COST, is set equal to 316 and

future infeasible nodes having a greater cost can be dropped from con

sideration.

Steps I-R are repeated for solution nodes 112 and 113 with the

following results:

COST:: 316

(Feasible)

12) COST = 314
(I n f e a s i b l e)

COST = fiAX C0ST=318
(I n f e a s i b l e)

110

X. The set IS now contains one solution (node 13). (Node 113 is not

placed in IS since C0ST(113)>CQST.)

The step by step illustration of the Phase II algorithm terminates at

this point. Node 13 requires branching and it is necessary to return

to step B to continue the solution process until all infeasible nodes

are handled. Since the basic use of the algorithm has been illustrated,

we omit the details and summarize the results.

Final Results

Figure 5.5 illustrates the entire solution tree for the communi

cation network problem being solved. This chart was obtained by com

pleting all the steps required by the Phase II algorithm. Solution

nodes 111 and 131 represent optimal, feasible solutions to the original

problem. It is coincidental that both of these solution nodes give

the identical cost and the identical network path set to the problem.

The complete solution in terms of the optimal assignment of arcs to the

paths betvjeen all node-pairs is given in Figure 5.6.

Network conditions 2, 3, and 4- can be verified from the two

tables in Figure 5.6. Network condition 2 is satisfied because no path

in Table A has a length greater than 3. A comparison of columns 2 and

3 of Table A shows that all the path capacities are greater than the

flow requirements which are assigned to them. This means that condition

3 is satisfied. Finally in Table B, the flows in the arcs are always

less than or equal to the capacities of the arcs, thus validating

condition 4.

Ill

With this optiniurn solution, the XYZ Corporation can set up the

required transmission routes for' its existing communication system.

Hopefully, the management of the Corporation will continue to use the

network algorithm in the design of the networks for its future manage

ment information system.

112

C0ST=293
(I n f e a s i b l e)

C0ST=311
(I n - / - x
f eas - (2 j

4b l e)V—^
'̂̂ M^OST^MAX COST=MAX COST=MAX COST:=MAX

cosT=3m ('12 J
v(I n f e a s i b l e) ^ — ^

COST=MAX

C0ST=315 COST=MAX C0ST=318
(Feas ib l e) (I n f e a s i b l e)

C0ST=316 COST=MAX C0ST=318
(Feas ib l e) (I n f e a s i b l e)

Figure 5 . 5 . Solu t ion Tree

113

L^OlutiOD r ' a ths

Node
P a i r

1 Node-
P a i r
Re.) ' t s CapaclLy Cost: Arc Se t

(1 , 2) 3 20 2 a

(1 , 3) 2 10 6 a b

(1 , 4) 1 10 7 a b f

(1 , 5) 3 0 9 a c g

(2 , 1) (> 10 9 d h

(2 , 3) 3 10 4 b

(2 , M) 2
• ^

o c

(2 , 5) 3 10 6 d

(3 , 1) 10 2 e

(3 , 2) 1 10 4 e d

(3 , 4) 7 20 1 f

(3 , 5) 4 20 5 f g

(4 , 1) 4 20 7 g h

a (4 , 2) Q
vj 20 9 g h a

(4 , 3) 2 10 13 g i LJ

(4 , 5) 3 20 4 g

(5 , 1) 2 20 3 h

(5 , 2)
'

20 5 h a

(5 , 3) 9 10 9 h a b

(5 , 4) 5 10 3 J

S o l u t i o n Arcs

Ar'Co Cost C a p a c i t y Flow

a 2 20 16

b 4 10 10

c 3 5 5

d 6 10 9

e o 10 3

f 1 20 12

g 4 20 19

. h 3 20 18

i 5 20 2

J 3 10 5

T a b l e A T a b l e B

F i g u r e 5.G. Mininium Cor:t S o l u t i o n t o Communicat ion Problem

11'4

CHAPTER VI

SUMMARY AND CONCLUSIONS

Summary of Results and Conclusion

This dissertation documents a solution to a variation of the

simultaneous flow, minimum cost network flow problem. The solution

approach is based on the concept of least cost paths, and it uses a

branch and bound search technique to find the minimum cost solution.

The solution algorithm represents a new solution approach to problems

dealing with the optimal assignment of simultaneous flows in communica

tion networks.

Our first result was the creation of a versatile optimal path-

finding algorithm. The algorithm v/as described, proved, and illustrated

in Cl'iapter IM . îy using an incremental path creation concept (i.e.,

creating paths one arc at a time,), the path algorithm was designed to

find least v/eighted paths whose lengths are less than or equal to a

pre-set integer L. î ecause of the generalized use of arc weight in the

path algorithm, it has a wide applicability in .solving many types of

network optimization problems.

The main result of the dissertation was the solution of the net

work problem. The complete solution algorithm was presented in Chapter

III and illustrated in Chapter V. The tv70 phases of the algorithm were

discussed separately, but they are used in sequence to find a minimum

cost solution, if such a solution exists. The path algorithm is used as

115

an integral part oi tlie solution algorithm in order to find the actual

least corit values and arc sets for paths between all node-pairs.

Additional results were obtained in Chapter IV in the form of

necessary conditions and solution cost bounds for any strongly con

nected network which is adequately defined. The theorems proved in

Chapter IV are used to detect network configurations which (1) are not

solvable (i.e., do not satisfy a necessary condition) and (2) have a

solution cost (occurring within the cost bounds) vvhich is unacceptable.

Our solution approach to the network problem was intentionally

oriented around graph theory topics. Almost all previous results

reported in the literature were obtained within a linear programming

framework. Therefore, we have based our work on the conviction that the

problem can also be solved by using concepts based exclusively on ele

mentary graph theory. The positive results discussed above force us to

conclude that this conviction was validated. The extent of the valida

tion depends on more conclusive results obtained from the operational

use of the solution algorithm.

Further Areas of Study

Although our main objective was to demonstrate the existence of a

solution to the netv/ork problem, a number of interesting problems were

uncovered within tlie framework of the dissertation results. Now several

topics can be identified for refinement and further research.

1. Necessary and Sufficient Conditions. More analytical results

on this topic v/ould enhance the use of the solution algorithm.

116

Additional v/ays are-: needed to detect the existence of a solution before

applying the solutLon algorithm to a probJem.

2. Sliortcuts Ln the Algorithms. The algorithms discussed in

this dissertation repi'esent the general steps required to obtain a

solution. A detailed analysis of each algorithm should lead to simpli

fications and shortcuts which would save computational time or storage

locations. Also, a complete study of alternative heuristics would lead

to a more effective branch and bound technique.

3. Programming and Implementation. The solution algorithmi

should be programmed and operational statisrics gathered from various

types of ne/t^.iovk conf i gui'ations . Tlie results from this work would be

extremely useful in developing and extending all parts of the solution

algori llim.

M-. The Path Algorithm. The path algorithm was studied using

analytical as well as simulation tools. Our work should be extended

in order to complete its development for numerous problems where path

length is a constraining variable.

5. Science Information Netv7orks: Networks which handle scien

tific information have certain properties which make them amenable to

the results obtained in this disserxation. For example, formatted and

standard sized message transmissions are reasonably common in communi

cating science information. Continued research in specific applications

of the dissertation results is a natural area for further research.

117

APPENDIX

Enumeration Theorems

In this appendix, two path enumeration theorems are proved. The

theorems are used in Chapter I to find the number of different types of

paths in directed networks.

Theorem 7.1

The number of simple paths between all node-pairs in a complete,

loopless, directed network is:

n-2
i(n-l) I x!

x=0

n-2

Proof. Let (x ,y) be one of the n(n-l) node-pairs in a complete

loopless directed netv/ork. The desired result is obtained by consider

ing the simple paths of increasing length between (x,y).

The arc [x,y]' is the only path of length 1 between (x,y). Since

there are n-2 other nodes (other than x or y) in the network, there are

n-2 paths of length 2 which exist between (x,y). Now consider paths of

length 3. Let the two intermediate nodes between (x,y) be w and z.

There are n-2 ways to choose w and afterwards n-3 ways to choose z.

There are two nodes to select from a set of n-2 nodes and the order of

selection is important. Therefore, the number of paths of length 3 is

the permutation of n-2 nodes taken 2 at a time. That is: (n-2)(n-3).

118

Fatli;-: o l I r i cpeas lng l e n g t h fo l low t h e same p)a t t e rn as t h e c a s e of

p a t h s of l e n g t h -̂' v%'lt.h t h e fo l l ov / ing overa l J . rc - . :u l t :
"~2 (,^

V n - 2
I x! ..IS Lhe nuniber o l d x r e c t o d paLlis of l e n g t h 1 t o n - 1

x=0 ' '"
between nodo-p<ilr (x , y) (I . e . , x=0 t o n - ?) . S ince t h i s r e s u l t lioldL. fo r

each of t i ie n (n - l j n o f i e - p a i r s , t h e theorem i s p r o v e d . []

Theorem 7.2

The maximum nunl^er of s i m p l e pat l i s dotween a l l n o d e - p a i r s as

found by tlic path al-(;^oi i-thm f o r a c c m p l c t e , l^oi \ezs d i r e c t e ne twork i s :

n (n - l) ^ (n - 2) / 2 .

Proof. Let (x,y) be one of the n(n-l) node-pairs in a complete,

loopless network. Tfie desired î esult is obtained by using the looping

framework ot the path algorithm and considering the simple paths of

increasing length betx»/een (x,y).

The arc [x,y]' is the only path of length one between (x,y).

However, this arc Is not found by the algoritlim because it is part of

the definition of the network. Now paths of length two are created by

appending two paths of length ore. Since there are n-2 other nodes

(i.e., other than x and y) in the netv/ork and there exist arcs betv/een

all distinct nodes, there are n-2 simple paths of length 2 between

node-pair (x,y).

Beginning with paths of length 3, the results begin to differ

v/ith Theorem 7.1. The reason for this is based on the vray the path

algorithm finds paths of next higher length. The algorithm uses the

119

least weighted paths of length p and paths of length one (i.e., arcs)

to create paths of length p+1. The algorithm selects one path TT (X,Z)

of length p containing p+1 nodes for each node-pair and then appends

the remaining (n-p) arcs one at a time to this path. This creates

(n-p) possible new paths of length pfl between node-pair (x,y). One of

these is selected as the path having least weight and the process is

repeated for n-2 iterations. At the final iteration only one simple

path exists between (x,y).

Since the above process exists for all node-pairs, the number of

calculations are:

n(n-l)[(n-2) + (n-3)-f.. .tl] = n(n-l)^(n-2)/2 . D

Computer Simulation Programs and Sam.ple Printout

In order to obtain some of the results discussed in Chapter II

a computer simulation program was written in FORTRAN and executed on

the UNIVAC 110 8 at the Georgia Tech Computer Center. The basic version

of the Floyd and path algorithms actually used in the simulation program

is given in Figure 7.1. Over 200 random networks were generated and

executed by the algorithms. One of the 20-node networks is listed in

matrix form in Figure 7.2 along with the output produced by the simu

lation program. Note that since no weights were assigned to the arcs in

the main diagonal of the random input matrix in Figure 7.2 (i.e.,

w(i,i)=+°°), non-zero weights were found for cycles and are shown in the

diagonal of the shortest path matrix.

120

PATH ALGORITHM
^7^ CALL TIM£(DUMfICLK)

DO 60 I = 1»N
ISWT = 0
DO 56 IP = 1»N
IF(ISWT) 60»'+B»60

«4« ISWT = 1
DO 56 K = 1»N
IF(INP(IP»I»K),EQ.INF) GO TO 56
DO 55 J =1,N
lFaNPa»K,J) .EO.INF) GO TO 55
IW = INP(lP»ifK) + IHpa»K»J)
lF(IW,GE,ipTH(IfJ)) 00 TO 55
IPTH(1,J) - IW
INP(IP+lfI,J) = IW
iPLN(i) = JP +1
ISWT = 0

55 CONTINUE
56 CONTINUE
60 CONTINUE

CALL TIMElDUMfJCLK)

CALL TIME(DUMfICLK)
FLOYD ALGORITHM

DO 51 I =1,N
DO 51 J=:l»N
IF(IN(J»I) .Eti.INF) GO TO 51
DO 50 K=lfN
IFdNdfK) .EQ.INF) GO TO 50
IW = iN{JfI) + IN<IfK)
IF(IW.GE,IN(J»K)) GO TO 50
IN (JfK) = IW

50 CONTINUE
51 CONTINUE

CALL TIME(DUM»JCLK)

Figure 7.1. FORTRAN Programs Used in Computer Simulation

121

RANDOM INPUT MATRIX 20X20

0
0
0
0
0
0
0
0
2
7
0
0
0
0
0
0
2
9
0

0

0
0
0
0
0
1

l**
0
0
0
0
0
0
0
0
10
0
0

0
0

0
0
0
0
7
6
0
0
0
0
0
0
0
2
2
0
0

0
0
0

* * 4 i

0
0
1
7
0
0
0
0
0
0
0
0
7
0
0
0

0
0
0
0

0
6
11
0
0
0
0
0
0
0
7
6
0
0
0

0
0
0
0
2

b
0
0
0
0
0
0
0
1
1
0
0
0
0

0
0
0
0
5
0

0
0
0
0
0
0
0
5
10
n
0
0
0

0
0
0
5
3
0
0

0
0
6
10
0
0
0
0

0 ***
0 0

0
0
2
l**
0
0
0
0
0
0

0
2
l**
0
0
0
0
0
0

0
1
7
0
0
0
0
0
0
0

0
5
0
0
0
0
0
0
0
1

* 4 i *

2
0
0
0
0
n
0
0
0

12
U
0
0
0
0
0
0
0
3
0

•
0
0
0
0
0
0
0
5

5
0
0
0
0
0
0
0

13
0
0

• *•
0
0
n
0
0

0

0
0
0
0
0
0
0

15
10
0
0
0
0

••*
0
0
0

10
1
0

0
0
0
n
0
0
6
2
0
0
0
0
0
0

•••
0
fl
0
0
0

0
0
0
0
0
1
6
0
0
0
0
0
0
0
1

,•*

n
0
0
2
3
0
0
0
0
0
0
0
1

l**
0
0

e ^**
0 0
0 0
0 0

0
0
0

0
0
0
0
0
0
0
0
5
6
0
0
0

*••
0 *••
0 U

1
1
0
0
0
0
0
0
0

l̂ *
2
0
0
0
0
0
0
0

,••

FLOyD ALGORITHM
TIME OF EXECi;TION
SHORTEST PATH MATRIX
12 16 8 13 12

0500 SECS

t»

9

6
8
16
7
5
11
2
7
3
7
8
10
15
11
2
9
8

16
12
6
H
12
7
1

14
14
23
11
11
6
6
11
10
10
7

16

12
12

H
5
13
5
7
7

10
15
11
3
8
10
12
2
2
7
16

17
17
9
6
12
1
7
12
15
20
16
8
12
6
11
7
15
12
21

16
16
8
9
8
6
10
11
14
19
15
7
15
8
7
6
14
11
20

14
18
!*•

8
2
2
6
3
13
16
21
13
9
8
1
1
8
16
9
18

17
21
18
12
5
11
11
7
16
19
24
17
12
12
5
10
11
19
13
22

15
15
11
5
3
U
6
7
14
13
22
10
10
5
5
10
9
13
6
15 15

7

U
b
7
11
19
8
12
6
9
14
10
2
14
13
18
8
8
6

12
2
7
8
6
14
9
3
11
4
19
1
7
8
8
13
9
9
9
6

13
3
8
9
7
15
10
4
12
1

20
2
8
9
9
14
10
10
10
7

12
5
b
10
9
17
U
6
13
3

19
4
9
11
11
16
6
8
12
5

5
9
9
5
11
17
6
10
4
7
12
8
6
13
11
16
11
7
4
13

12
10
6
2
8
14
3
9
10
8
19
5
7
14
8
13
8
8
1

10

14
17
13
7
5
13
6
2
13
15
21
12
9
7
7
12
8
15
8
17

14
18
14
8
3
1
6
3

13
16
21
13
9
8
1
2
8
16
9
18

6
10
10
2
3
11
3
9
b
8
13
9
1

14
6
10
9
8
5
14

10
14
12
4
10
16
5
11
9
12
17
11
b
6
10
15
11
12
7
16

9
4
1
5
6
14
6
5
8
5
14
2
4
9
10
13
3
3
8
7

PATH ALGORITHM
TIME OF EXECUTION
PATH LENGTH 6 6 5
SHORTEST PATH MATRIX
12 16 8 13 12

1050
5

SECS
5 fa 6

4
9
6
8
16
7
5
11
2
7
3
7
8
10
15
11
2
9
8

16
12
6
4
12
7
1

14
14
23
11
11
6
6
U
10
10
7

16

12
12
4
5
13
5
7
7
10
15

U
3
8
10
12
2
2
7
16

14 17 15 7 12 13 12 5 12
17 16 18 21 15 11 2 3 5 9 10
17 16 14 18 11 6 7 8 6 9 6
9 8 8 12 5 7 8 9 10 5 2
6 9 2 5 3 11 6 7 9 11 8
12 8 2 11 11 19 14 15 17 17 14
1 6 6 11 6 8 9 10 11 6 3
7 10 3 7 7 12 3 4 6 10 9
12 11 13 16 14 6 11 12 13 4 10
15 14 16 19 13 9 4 1 3 7 8
20 19 21 24 22 14 19 20 19 12 19
16 15 13 17 10 10 1 2 4 8 5

8 7 9 12 10 2 7 8 9 6 7
12 15 8 l2 5 14 8 9 11 13 14
6 8 1 5 5 13 8 9 11 11 8
11 7 1 10 10 18 13 14 16 16 13
7 6 8 11 9 8 9 10 8 11 8
15 14 16 19 13 8 9 10 8 7 8
12 11 9 13 6 6 9 10 12 4 1
21 20 18 22 15 15 6 7 5 13 10

Figure 7.2. Sample Simulation Prog

14
17
13
7
5
13
6
2
13
15
21
12
9
7
7
12
8
15
8
17

14
18
14
8
3
1
6
3
13
16
21
13
9
8
1
2
8
16
9
18

6
10
10
2
3
11
3
9
5
8
13
9
1

14
8
10
9
8
5
14

10
14
12
4
10
16
5
11
9
12
17
11
5
6
10
15
11
12
7
16

11
9
b
1
7
li
2
8
lU
7

18
4
6
13
7
12
7
7

10
9

9
4
1
5
6
14
6
5
8
5
14
2
4
9
10
13
3
3
8
7

ram Printout

122

BIBLIOGRAPHY

A significant anount of the literature on graph theory and

information networks was reviewed in order to support the research

documented in this dissertation. Much of the material was not I'elated

or was only tangentially related, to our areas of interest. The cita

tions to tiiose topics which were related are inc ided in our BiDliog-

raphy. For ease of reference, we have organized the citations into

the following subject categories:

A. Grapli and lletwork Theory Books

B. Communication and Information Networks

C. St:ructure and Connectivity of Graphs

D. Related Graph Theory Topics

B. Path-P'inding and Optimization Algorithms

F. Flow and Synthesis Considerations in Networks

123

A. Graph and Network Theory Books

AOl. Bellman, K., Dynarnia Fi'ogvarrmtng. Princeton: Princeton Univ.
Press, 19b7.

A02. Berge, C. Theory of Graphs and Its Appliaations. New York:
V/iley, 196 2. (Translation.)

A03. Busacker, R. G., and Saaty, T. L. Finite Graphs and Networks.
New York: McGraw-Hill, 196 5.

A04. Erdos , P., and Katona, G. (eds.). Theory of Graphs. Proceedings
of the Colloquium held at Tihany, Hungary, Sept. 1966. New
York: Academ.ic Press, 1968.

A05. Fiedler, Miroslav (ed.). Theory of Graphs and Its Applioations.
Proceedings of the Symposium held in Smolenice in June 1963.
Nev/ York: Academic Press, 1964-.

A06. Flament, C. Applioations of Graph Theory to Group Structure.
Englewood Cliffs, N. J.: Prentice-Hall, 1963.

A07. Ford, L. R., and Fulkerson, D. R. Flows in Networks. Princeton:
Princeton University Press, 1952.

A08. Frank, H., and Frisch, I. T. CommuniQation and Transmission Net
works. (To be published.)

A09. Harary, F. (ed.). A Seminar on Graph Theory. New York: Holt,
Rinehart & Winston, 19 67.

AlO. Harary, F. Graph Theory. NL-W York: Addison Wesley, 1969.

All. Harary, F. (ed.). Proof Techniques in Graph Theory. New York:
Academic Press, 19 69.

A12. Harary, F., Norman, R. Z., and Cartwright, D. Structural Models:
An Introduction to the Theory of Directed Graphs. New York:
Wiley, 196 5.

A13. Hu, T. C. Integer Programming and Network Flows. New York:
Addison Wesley, 19 70.

AIJ4. Kaufmann, A. Graphs^ Dynamic Programming and Finite Games.
New York: Academic Press, 1967.

A15. Kim, W. H., and Chien, R. T. W. Topological Analysis and Synthe
sis of Communication Networks. New York: Columbia University
Press, 1962.

124

A16. Konig, D. Theovie dev endliohen und unendliohen Graphen.
Akadernische Verlags Gesellschaft 14.B.H. 19 35. Also by
Chelsea Publishing Co., 1950.

A17. Ore, Oystein. Theory of Graphs. American Math. Soc., 1962.

A18. Ore, Oystein. Graphs and Their Uses, New York: Random House,
1953.

A19. Ponstein, J. Matrices in Graph and fretwork Theory. Royal Van
Gorcum Ltd., 1966.

A20. Seshu, S., and Reed, M. B. Linear Graphs and Eleotrioal Networks.
New York: Addison-V/esley , 1961.

A21. Theory of Graphs. Proceedings of the International Symposium,
Rome, 1956. New York: Gordon and Breach (Paris: Dumod),
1967.

A22. Tutte, W. T. Connectivity in Graphs. ^Math. Expositions No. 15.
Toronto: University of Toronto Press, 1956.

B. Communication and Information Networks

BOl. Bagrunovskii, K. A. "The Statement of a Problem in the Analysis
of a Network Diagram." (In Russian.) Vyohisl. Sistemy 11
(1964): 71-93.

BO2. Becker, J. "Information Network Prospects in the U. S." Library
Trends 17 (Jan. 19 69): 306-317.

B03. Becker, J., and Olsen, W. C. "Information Networks." Cuadra,
C. A. (ed.). Annual Review of Information Science and Tech
nology^ Vol. 3, 1968. pp. 289-327.

B0M-. Block, G., and Judd, D. R. "Computer Networks." Science Journal
(Sept. 1967): 19-40.

B05. BoHobas, B. "A Problem of the Theory of Communication Networks."
Acta Math. Acad. Sci. Hungar. 19 (1968): 75-80.

B06. Brown, G. V/. , Miller, J. G., and Keenan, T. A. (eds.) . Edunet:
Report on the Summer Study on Information Networks. New York:
Wiley, 1967.

B07. Chartrand, G. "A Graph-Theoretic Approach to a Communications
Problem." J. SIAM Appl. Math. 14 (1966): 778-781.

125

BOS. Cherry, F. Colin. "Generalized Concepts of Networks." Proc.
Symposium on Information Networks^ Polytechnic Inst, of
Brooklyn, 195U. pp. 175-184.

B09. Fox, Jerome (ed.). Proc. Symposium on Information Networks^
April 19 54. New York: Polytechnic Inst, of Brooklyn, 19 54.

BIO. Hakimi, S. L. Application of Graph Theory to the Synthesis of
Networks. Research Report, Northwestern University, Evanston,
111. , October 25, 1965.

Bll. Iri, M. "On the Basic Theory of General Information Networks and
Its Applications." Doctoral Thesis submitted to the Division
of Research in Math, and Physical Sciences, Graduate School of
the University of Tokyo, March 19 60.

B12. Iri, M. "Theory of General Information Networks: An Algebraic
and Topological Foundation to the Theory of Information Hand
ling Systems." Proc. Sympos. Math. Theory of Automata (New
York, 1962), Polytechnic Inst, of Brooklyn. pp. 415-435.

B13. Kalaba, R. E. "On Some Communication Network Problems." Proc.
Symp. Applied Math. Vol. X. Amer. Math. Soc., 1960.

B14. Kessler, M. M. Technical Information Flow Patterns. Lincoln
Labs., Lexington, Mass., MIT, 1961. Also in WJCC , 1961.

B15. MacKenzie, Kenneth D. "Decomposition of Communication Networks."
J. Math. Psychology 4 (1967): 162-174.

B16. Nance, R. E. "An Analytic Model of a Library Network." J. ASIS
21 (Jan.-Feb. 1970): 58-65.

B17. Overhage, C. F. G. "Information Networks." Cuadra, C. A. (ed.),
Annual Review of Information Science and Technology^ Vol. 4,
1969. pp. 339-377.

B18. Ponstein, J. "Matrix Description of Networks." J.SIAM ^ (1961):
233-268.

B19. Roginskiy, V. N. "Designing the Structure of Communications Net
works." Engineering Cybernetics (May-June 196 3): 148-152.

B20. Samuelson, Kjell. "Systems Design Concepts for Automated Inter
national Netv̂ orks." Proc. ASIS Annual Meeting, 1969. Vol. 6.
p. 431.

126

B21. Scantlebury, R. A., et ^1. "The Design of a Message Switching
Centre for a Digital Communications Network." Pvoo. Fourth
Congress of the Intl. Fed. for Info. Vroo., Edinburgh, 5-10
August 1968.

B22. Shaw, M. E. "Random vs. Systematic Distribution of Information
in Communication Nets." «7. Personnel 25 (19 56): 59-69.

B23. Shimbel, A. "Applications of Matrix Algebra to Communication
Nets." Bull. Math. Biophysics 13 (1951): 165-178.

B24. Sunaga, T., and Iri, M. "Theory of Communication and Transporta
tion Networks ." RAAG Memoirs 2 (1952): ̂ +̂ +4-̂ +68.

B25. Swanson, R. "Information System Network—Let's Profit From What
We Know." Office of Aero. Res., USAF, June 1966.

B26. Tolchan, A. Y. "A Method for Optimizing the Structure of a Com
munications Net." (In Russian.) Pvob. PQT. Inf. 15 (1963):
42-60.

B27. Wall, Eugene. "Possibilities of Articulation of Information
Systems Into a Network." ABI 19 (April 1968): 181-187.

B28. Weinberg, A. M., et al. Soienoe^ Government and Information.
The President's Science Advisory Committee. The White House,
Washington, D. C., Jan. 10, 1963.

B29. Yaged, B., Jr. "Basic Planning for Future Communications Net
works." 1968 IFAC Symposium: Optimal Systems Planning^
June 20-22, 1968. pp. 36-53.

C. Structure and Connectivity of Graphs

COl. Akers, S. B., Jr. "A Modification of Lee's Path Connection
Algorithm." IEEE Trans. EC 1^ (Feb. 1967): 97-98.

C02. Beineke , L. W., and Harary, F. "The Connectivity Function of a
Graph." Mathematika 14 (1967): 197-202.

C03. Bellert, S. "Topological Considerations and Synthesis of Linear
Networks by Means of the Method of Structural Numbers." Arch.
Elektroteohniki 12 (1963): 473-500.

C04. Bollobas, B. "On Graphs With at Most Three Independent Paths Con
necting Any Two Vertices." Studia Soi. Math. Hungar. 1
(1966): 137-140.

127

CO5. Bollobas, B. "Graphs of a Given Diameter." In: Erdos (ed.),
Theory of Graphs, Budapest, 1968. pp. 29-36.

C06. Cartwright, D. , and Gleason, T. C. "The Number of Paths and
Cycles in a Graph." Psyahometrika 31 (June 1966): 179-199.

C07. Cartwright, D., and Harary, F. "The Number of Lines in a Digraph
of Each Connectedness Category." SIAMRev. 3 (1961): 309-314.

COS. Chartrand, G., and Harary, F. "Graphs With Prescribed Connec
tivities." Erdos (ed.). Theory of Graphs^ Budapest, Akademiai
Kiado, 1968. pp. 61-63.

C09. Chen, Y. C. "The Connectedness of Directed Graphs and Applica
tions." Ph.D. Dissertation, Department of Electrical Engineer
ing, Columbia University, New York, 1966.

CIO. Chen, Y. C , and Wing, 0. "Connectivity of Directed Graphs."
ProQ. Second Allerton Conference on Circuit and Systems Theory^
Sept. 1964. pp. 530-543.

Cll. Chen, Y. C , and Wing, 0. "Some Properties of Cycle-Free Directed
Graphs and the Identification of the Longest Path." J. Frank
lin Inst. 281 (1966): 293-301.

C12. Cummius, R. L. "Hamiltonian Circuits in Tree Graphs." Ph.D.
Dissertation, Digital Computer Lab., Univ. of Illinois, 1962.

C13. Dirac, G. A. "Connectedness and Structure in Graphs." Rend. Giro.
Mat. Palermo 9 (1961): 114-124.

C14. Dirac, G. A. "Connectivity Theorems for Graphs." Qtrly J. Math.
Oxford^ Ser. (2), 3 (19 52): 171-174.

C15. Dirac, G. A. "Some Results Concerning the Structure of Graphs."
Can. Math. Bull. 6 (1963): 183-210.

C16. Edmonds, J. "Existence of k-Edge Connected Ordinary Graphs V/ith
Prescribed Degrees." J. Res. ISIat. Bur. Stand. Sect. B 68
(1964): 73-74.

C17. Gallai, T. "On Directed Paths and Circuits." Erdos, P., and
Katona, G. (eds.). Theory of Graphs. Budapest, 1968.

C18. Goldman, A. J. "Realizing the Distance Matrix of a Graph." J.
Res. Nat. Bur. Stand. Sect. B70B (1965): 153-154.

C19. Griswold, R. G. "Connectivity and Pseudo Trees in Directed
Graphs." Ph.D. Dissertation, Rensselaer Poly. Inst., 1964.

128

C20. Guillemin, E. A. "How to Grow Your Own Trees From Given Cut-Set
or Tie-Set Matrices." lEE Trans. CT 6 (May 19 59): 110-125.

C21. Hakimi, S. L. "Optimum Locations of Switching Centers and the
Absolute Centers and Medians of a Graph." Op. Res. 12 (195M-):
450-459.

C22. Hakimi, S. L., and Yau, S. S. "Distance Matrix of a Graph and
Its Realizability." Qtrly App. Math. 22 (1954): 305-317.

C2 3. Harary, F. "The Maximum Connectivity of a Graph." Proc. Nat.
Acad. Soi. USA 48 (1962): 1142-1145.

C24. Harary5 F., and Ross, I. C. "A Procedure for Clique Detection
Using the Croup Matrix." Sociornetvy ?'' ('vi57): 20L 216.

C25. Harary, F., and Ross, I. C. "Identification of the Liaison Per
sons of an Organization Among the Structure Matrix." Mgmt.
SQI. (April-July 1955): 251-258.

C26. Harary, F., and Trauth, C. A., Jr. "Connectedness of Products of
Two Directed Graphs." J. SIAM 14 (1956): 2 50-254.

C27. Hobbs, A. M., and Grossman, J. V/. "Thickness and Connectivity in
Graphs." J. Res. Nat. Bur. Stand. , Sect. B (to appear).

C28. Jensen, K., and LaPatra, J. V!. "Topologically Distinct Subsets
in a Complex Network." Proo. Third Allerton Conf.^ 1955.
pp. 868-878.

C29. Johnson, M., Dulmage, A. L., and Mendelsohn. "Connectivity and
Reducibility Graphs." Can. J. Math. 14 (1962): 529-539.

C30. Kahn, A. B. "Topological Sorting of Large Networks." Comm. ACM
5 (1962): 558-552.

C31. Kleitman, D. J. "Methods for Investigating the Connectivity of
Large Graphs." IEEE Trans. CT 16 (May 1959): 232-233.

C32. Luce, R. D. "Networks Satisfying Minimality Conditions." Amer.
J. Math. 75 (1953): 825-835.

C33. Mayeda, W. "Properties of Classes of Paths." Report R-212,
Coordinated Science Lab., University of Illinois, Urbana, 111.,
May 1964.

C34. Milic, M. M. "A Graph Theory Approach to the Analysis of Multi-
terminal Element Networks." PvoQ. Fourth Allerton Conf.^ 1965.
pp. 218-223.

129

C35. Minty, G. J. "A Simple Algorithm for Listing All Trees of a
Graph." IEEE Trans. CT 12 (March 1965): 120.

C36. Moon, J. W. "On Cliques in Graphs." Israel J. Math. 3 (March
1965): 23-28.

C37. Murty, U. S. R., and Vijayan, K. "On Accessibility in Graphs."
Sankhya, Ser. A, 26 (1965): 270-302.

C38. Norman, R. L. "A Matrix Method for Location of Cycles of a
Directed Graph." Am. Inst. Chern. Eng. J. 11 (1965): 450-452.

C39. Ore, 0. "Studies on Directed Graphs, I." Annals of Math. 63
(1956): 383-406.

C40. Ore, 0. "Studies on Directed Graphs, II." Annals of M^i.th. 64
(1956): 142-158.

C41. Pennington, A. J. "Fundamental Connection Matrices." Proo.
First Allerton Conf., 1963. pp. 579-588.

C42. Pereira, J. M. S. "Some Results on the Tree Realization of a
Distance Matrix." Symposium on the Theory of Graphs^ Rome,
1966. pp. 383-388.

C43. Piekarski, Marian. "Listing of All Possible Trees of a Linear
Graph." IEEE Trans. CT 12 (March 1965): 124-125.

C44. Ponstein, J. "Self-Avoiding Paths and the Adjacency Matrix of a
Graph." J. SIAM 14 (1966): 600-609.

C45. Prihar, Z, "Topological Properties of Telecommunication Net
works." Froo. lEE 44 (19 56): 927-933.

C46. Ramamoorthy, C. V. "Analysis of Graphs by Connectivity Consider
ations." J ACM 12, (1966): 211-222.

C47. Ramamoorthy, C. V. "Connectivity Considerations of Graphs Repre
senting Discrete Sequential Systems." IEEE Trans. EC 14
(Oct. 1965): 724-727.

C48. Sabidussi, G. "Graphs with Given Group and Given Graph-Theoretic
Properties." Can. J. Math. 9 (19 57): 515-525.

049. Sachs, H. "Construction of Non-Hamiltonian Planar Regular Graphs
of Degrees 3, 4 and 5 V'/ith Highest Possible Connectivity."
International Symposium on Theory of Graphs^ Rome, 1966. pp.
373-382.

130

C50. Shimbel, A. "Structural Parameters of Co"mmunication Netv/orks . "
Bull. Math. Biophysics 15 (1953): 501-507.

C51. Trauth, C. A. "On the Connectedness of Directed Graphs Under
Binary Operations." Ph.D. Dissertation, Dept. of Math.,
Univ. of Mich., 196 3.

052. Tutte, W. T. "The Thickness of a Graph." Eedevl. Akad. Wetensah.
Proo. (1963). pp. 567-577.

05 3. Unger, S. H. "An Algorithm for Finding the Reachability Matrix
of a Directed Linear Graph." IEEE Trans. CT 16 (Feb. 1969):
130-132.

C5M-. Vizing, V. G. "On the Number cf Edges in . ^raph With •jiven
Radius." (In Russian.) Dokl. Akad. Nauk. SSSH 173 (i967):
1245-1246.

C55. Watkins, M. F. "A Lower Bound for the Number of Vertices of a
Graph." Amer. Math. Monthly 74 (19 67): 297.

C56. Whitney, H. "Oongruent Graphs and the Connectivity of Graphs."
Amer. J. Math. 54 (19 32): 150-168.

057. Wing, 0., and Kim, W. H. "The Path Matrix and Its Realizability."
IEEE Trans. CT 6 (19 59): 267-272.

058. Wing, 0., and Kim, W. H. "The Path Matrix and Switching Func
tions." J. Franklin Inst. 268 (1959): 251-269.

D. Related Grapti Theory Topics

DOl. Ahlborn, T.J. "On Directed Graphs and Related Topological
Spaces." M.A. Thesis, Kent State University, August 1964.

D02. Ash, R. B., and Kim, W. H. "On the Realizability of a Circuit
Matrix." IRE Trans. CT 6 (1959): 219-233.

D03. Auslander, L., and Trent, H. M. "On the Realization of a Linear
Graph Given Its Algebraic Specification." J. Aooustiaal Soo.
of America 33 (Sept. 1961): 1183-1192.

D04. Baraukin, E. W. "Precedence Matrices." Univ. of Chicago Manage
ment Sciences Research Report, Research Project No. 26,
December 1953.

D05. Bedrosian, S. D. "Evaluation of Network Determinants Via the Key
Subgraph." Proo. First Allerton Conf. , 1963. pp. 589-602.

131

006. Bedrosian, S. D. "Minimizing Vulnerability in a Communications
Network." Proo. Second Allertofi Conf.^ 1964. pp. 70-80.

D07. Bhargava, T. M., and Ahlborn, T. J. "-On Topological Spaces Asso
ciated With Digraphs." Aota. Math. Aoad. Soi. Eungav. 19
(1968): 47-52.

D08. Boesch, F. T., and Frisch, I. T. "On the Smallest Disconnecting
Set in a Graph." IEEE Trans. CT 15 (Sept. 1968): 286-288.

D09. Boesch, F. T., and Thomas, R. £. "Optimal Damage Resistant Com
munications Networks." Proo. 1968 IEEE International Conf. on
Communioations. pp. 588-69 3.

DIG. Bratton, D. Efficient Communioation Networks. Cowles Commission
Discussion Paper in Econ. No. 2119, Feb. 23, 1955.

Dll. Cederbaum, I. "Applications of Matrix Algebra to Network Theory."
IRE Trans. CT 6 (May 19 59): 12 7-137.

D12. Chen, Vi/ai-Kai. "Generation of Trees and k-Trees. " Proo. Third
Allerton Conf. ^ Oct. 1965. pp. 889-899.

D13. Denel, D. R., and Gill, A. "Some Decision Problems Associated
With Weighted Directed Graphs." J. SIAM Appl. Math. 14 (Sept.
1966): 9 70-9 79.

D14. Dirac, G. A. "Short Proof of Menger's Graph Theorem." Mathe-
matika 13 (1966): 42-44.

D15. Dunn, W. R. , and Chan, S. P. "Topological Formulation of Netv>rork
Functions Without Generation of k-Trees." Proo. Sixth AlZerton
Conf., 1968. pp. 822-831.

D15. Erdos , P., and Gallai , T. "Graphs v/ith Prescribed Degrees of
Vertices." (In Hungarian.) Mat. Lapok 11 (19 60): 264-274.

D17. Erdos, P., and Stone, A. "On the Structure of Linear Graphs."
Bull. Arner. Math. Soo. 52 (1946): 1087-1091.

D18. Foulkes, J. P. "Directed Graphs and Assembly Schedules." Proo.
Syrnp. App. Math. Vol. 10, American Math. Soc. (1960). pp.
281-2 89.

D19 . Frank, H. "Analysis of Network by Vertex Reduction." Proo.
Seoond Allerton Conf., 1964. pp. 485-507.

D20. Gould, R. "Graphs and Vector Spaces." J. Math, and Phys. 37
(19 58): 193-214.

132

D21. rlakimi, S. L. "On Realizability of a Set of Integers as Degrees
of the Vertices of a Linear Graph, I." J. SIAM Appl. Math.
10 (Sept. 1962): 495-506.

D22. Hakimi, S. L. "On Realizability of a Get of Integers as Degrees
of the Vertices of a Linear Graph, II, Uniqueness." J. SIAM
Appl. Math. 11 (March 19 63): 135-147.

D23. Hakimi, S. L. "On Realizability of a Set of Trees." IEEE Trans.
CT 8 (March 19 61): 11-18.

D2'4. Hakimi, S. L. "On the Degrees of the Vertices of a Directed
Graph." J. Franklin Inst. 279 (April 1965): 290-308.

D25. Hakimi, S. L. "On the Trees of a Graph anc Their Genei jtion."
J. Franklin Inst. 272 (Nov. 1961): 347-359.

D26. Hakimi, S. L. "Recent Progress and New Problems in Applied
Graph Theory." IEEE Region Six Conference Reoordj 1966.

D27. Hakimi, S. L., and Green, D. G. "Generation and Realization of
Trees and k-Trees." IEEE Trans. CT 11 (June 1964): 247-255.

D28. Harary, F. "On the Line-Group of Two Terminal Series-Parallel
Networks." J. Math. Phys. 38 (19 59): 112-118.

D29. Harary, F. "The Determinant of the Adjacency Matrix of a Graph."
SIAM Revieio 4 (1962): 202-210.

D30. Harary, Y. "Unsolved Problems in the Theory of Graphs." Publ.
Math. Inst. Hung. Aoad. Sai., Ser. A, 5 (i960): 63-95.

D31. Harary, F., and Plamer, E. M. "Enumeration of Locally Restricted
Digraphis." Can. J. Math. 18 (1966): 853-850.

D32. Harary, F., and Tutte, W. T. "The Number of Plane Trees With a
Given Partition." Mathematika 11 (1964): 99-101.

D33. Harary, P., and Wilcox, G. "Boolean Operations on Graphs." Math.
Soand. 20 (19 67): 41-51.

D34. Hatcher, T. R. "The Vertex Matrix and the Cut Set Schedule as
Special Cases of a More General Matrix." IEEE Trans. CT 5
(1958): 369-370.

D35. Kirchhoff, G. "Uber die Auflosung der Gleichungen, auf welche
man bei der Untersuchung der linearen Verteilung galvanischer
Strome gefilhrt wird." Ann. Phys. Chem. 72 (1847): 497-508.

133

D36. Lasser, D. J. "Topological Ordering of a List of Randomly Num
bered Elements of a Network." Comri. of the ACM ̂ (1951):
167-168.

D37. Mayeda, V/. "Reducing Computation Time in the Analysis of Net
works by Digital Computer." IEEE Trans. CT 6 (March 1959):
136-137.

D38. McAndrew, M. H. "The Polynomial of a Directed Graph." Proo.
Amer. Math. Soo. 16 (19 65): 303-309.

D39. Mayeda, W., et al. "Generation of Complete Trees." IEEE Trans.
CT 15 (June 1968): 101-105.

DM-0. Meetham, A. R. "Algorithm to 'ssist in Fi • ing the Coii- Lete
Subgraph of a Given Graph.'' Nature^ J'uiy 2, 1966. p. 105.

D41. Myers, B. R., and Auth, L. V., Jr. "The Numĥ er and Listing of
All Trees in an Arbitrary Graph." Pvoc. Third Alterton Conf.,
October 1965. pp. 906-912.

042. Opler, A. "A Brief Survey of Topological Representations." Proo.
ADI (1964): 499-502.

D43. O'Neill, P. V., and Slepian, P. "The Number of Trees in a Net
work." Proo. Third Alterton Conf., October 1965. pp. 900-905,

D44. Ore, 0. "Sex in Graphs." Proo. Amer. Math. Soo. 7 (1960): 533-
539 .

D45. Pape, Uwe. "The Transformation and Analysis of Netv/orks by Means
of Computer Algorithms." international J. of Computer Math.
3 (1968): 75-110.

DU6. Parthasarathy, K. R. "Enumeration of Ordinary Graphs V/ith Given
Partition." Can. J. Math. 20 (19 68): 40-^7.

D47. Pelikan, J. "Valency Conditions for thje Existence of Certain
Subgraphs." Erdos (ed.) , Theory of Graphs^ 1968. pp. 251-258,

D48. Ponstein, J. "A Generalization of the Incidence Matrices of a
Graph." International Symposium on Theory of Graphs^ Rome,
1966. pp. 315-332.

D49. Ramamoorthy, C. V. "Generating Functions of Abstract Graphs With
Systems Applications." Doctoral Thesis, Harvard Univ., May
1964.

134

D50. Reed, M. B., and Seshu, S. "On Topology and Netxvork Theory."
Proo. Univ. of 111. Symp. on Cirouit Analysis (1955). pp.
2-1 to 2-16.

D51. Rescigno, A., and Segre, G. "On Some Topological Properties of
the Systems of Compartments." Bull. Math. Biophysics 26
(1964): 31-38.

D52. Resh, J. A. "On Networks and Bi-Complete Graphs." Univ. of
Illinois, Urbana, Coordinate Science Lab., Report July 1963.

D5 3. Ross, I. C , and Harary, F. "The Square of a Tree." Bell System
Teoh. Journal 39 (1960): 641-647.

D54. Sabidujsi, G. "Th.̂= Centrality Lndex of a G. ph." Inter,.ational
Symposium on Thtiory of Graphs, Rome, 1966.

D55. Shein, N. P., and Frisch, I. T. "Vertex Weighted Trees With
Fewest Relay Vertices." J. SIAM Appl. Math. 17 (Sept. 1969):
897-903.

D56. Trent, H. M. "Note on the Enumeration and Listing of All Possible
Trees in a Connected Linear Graph." PvoQ. National Aoad. Soi.
U. S. (October 1954). pp. 1004-1007.

D57. Tutte, W. T. "An Algorithm for Determining Whether a Given
Binary Matroid is Graphic." ProQ. Amer. Math. Soa. 11 (1960):
905-917.

D58. Unger, S. H. "GIT--A Heuristic Program for Testing Parts of
Directed Line Graphs for Isomorphism." Comm. ACM 1 (Jan.
1954): 27.

D59. Warshall, S. "A Theorem on Boolean Matrices." J. ACM 9 (1962);
11-12.

D60. Yau, S. S. "A Generalization of the Cut Sets for Application to
Communication Nets." Ph.D. Thesis, Department of Electrical
Engineering, Univ. of 111., Urbana, 111., June 1961.

D61. Zaretskiy, K. A. "Construction of a Tree by the Collection of
Distances Between Terminal Vertices." Uspekhi Matemat. Nauk.
20 (1965); 90-92.

E. Path-Finding and Optimization Algorithms

EOl. Agin, N. "Optimal Seeking with Branch and Bound." Mgmt Soi. 13
(Dec. 1966): B176-B185.

135

E02. Burt, J. M. "All Shortest Distances in Large Serial Networks."
Western Mgmt. Sci. Inst., UCLA, July 1970.

E03. Bellman, R. and Kalaba, R. "On the kth Best Policies." J. SIAM
Appl. Math. 8 (1960): 582-588.

£04. Clarke, S., Krikorian, A. and Rausen, J. "Computing the N Best
Loopless Paths in a Network," J. SIAM Appl. Math. 11 (1963):
1095-1102.

EOS. Danielson, G. H. "On Finding the Simple Paths and Circuits in
a Graph." IEEE Trans. CT 15 (Sept. 1968): 29 4-29 5.

E06. Dantzig, G. B. "All Shortest Routes in a Graph." Operations
Research Technical Report 61-3, Stanfort University, Nov.
1966.

E07. Dantzig, G. B. "On the Shortest Route Through a Network." Rand
Corporation Report P-13M-, Santa Monica, California, 19 59.

E08. Deo, N. , and Hakimi, S. L. "Shortest Generalized Hamiltonian
Path." Proo. Third Allerton Conf. (October 1965), pp. 879-887

E09. Dijkstra, E. "A Note on Two Problems in Connection with Graphs."
Numer. Math. 1 (1959): 269-271.

ElO. Dreyfus, S. E. "An Appraisal of Some Shortest-Path Algorithms."
Operations Research 17 (May-June 1969): 39 5-412.

Ell. Farbey, B. A., Land, A. H., and Murchland, J. P. "The Cascade
Algorithm for Finding All Shortest Distances in a Directed
Graph." Mgmt. Soi. 14 (Sept. 19 67): 19-28.

E12. Fielder, D. C. "Step by Step Formation of Matrices from Objects
in Sequence." IEEE Tra?2S. Education 12 (March 1969): 66-69.

E13. Floyd, R. W. "Algorithm 97, Shortest Path." Corm. ACM 5 (1962):
345.

E14. Hoffman, W., and Pavley, R. "A Method for the Solution of the
Nth Best Path Problem." J. ACM 6 (1959): 506-514.

E15. Hu, T. C. "A Decomposition Algorithm for Shortest Paths in a
Network." Operations Research 16 (1968): 91-102.

E16. Fiu, T. C. Multi-Terminal Shortest Paths. Operations Research
Center, Univ. of Calif, at Berkeley, ORC 65-11 (1965).

135

E17. Hu, T. C. "Revised Algorithms for Shortest Paths." J. SIAM Appl,
Math. 15 (1967): 207-218.

E18. Hu, T. C , and Torres, W. T. "Shortcut in the Decomposition
Algorithm for Shortest Paths in a Network." IBM J. of Eesearoh
& Development (July 19 69): 387-39 0.

E19. Jarvis, John J. "Optimal Attach and Defense of a Command and
Control Communications Network." Ph.D. Dissertation, Johns
Hopkins University, Baltimore, Md., 1968.

E20. Kamae, Takahiko. "A Systematic Method for Finding All Directed
Circuits and Enumerating All Directed Paths." IEEE Trans. CT
14 (June 1967): 166-171.

E21. Klee, V. "String Algorithm for Shortest Paths in Directed Net
works." Operations Research 12 (19 64): 428-432.

E22. Kruskal, J. B., Jr. "On the Shortest Spanning Subtree of a Graph
and the Traveling Salesman Problem." Proo. Amer. Math. Sao. 7
(1956): 48-50.

E23. Lawler, E. L., and Wood, D. E. "Branch and Bound Methods: A
Survey." Operations Research 14 (1966): 699-719.

E24. Michle, W, "Link-Length Minimization in Netvzorks," Operations
Research 6 (19 58): 232-243.

E25. Mills, G. "A Decomposition Algorithm for the Shortest-Route
Problem." Operations Research 14 (19 66): 279-291.

E26, Moore, E. F. "Shortest Path Through a Maze." Proc. International
Symposium on Switching Circuits^ Harvard Univ. (19 59):
285-292.

E27. Murchland, J. D. "A New Method for Finding All Elementary Paths
in a Complete Directed Graph." Report LSE-TNT-22, London
School of Economics, October 1965.

E28. Murchland, J. D. "An Inductive Matrix Method for Finding All
Shortest Paths in a Directed Graph." Report LSE-TNT-25,
London School of Economics, March 29, 1966.

E29 . Parikh, S. C , and Frisch, I. T. "Finding the Most Reliable
Routes in a Communications System." IEEE Trans. CS 11
(December 1963): 402-407.

E30. Parthasarathy, K. R. "Enumeration of Paths in Digraphs."
Psyohometrika 29 (1964): 153-165.

137

E31. Paul, A. J. "Generation of Directed Trees, 2-Trees and Paths
Without Duplication." Ph.D. Dissertation, University of
Illinois, Urbana, Illinois, 1965.

E32. Peart, R. M., Randolph, P. H., and Bartlett, T. E. "The Shortest
Route Problem." Operations Researoh 8 (1960): 866-868.

E33. Peteanu, V. "An Algebra of the Optimum Path in Networks."
Mathematioa (Cluj) 9 (1967): 335-342.

E34. Pollack, M. "Solution of the kth Best Route Through a Network."
J. Math. Anal, and Appl. 3 (1961): 547-559.

E35. Pollack, M. "The kth Best Route Through a Network." Operations
Researoh 9 (19.1): 578-580.

E36. Pollack 5 M., and Wiehenson, W. "Solutions of Shortest-Route
Problem--A Review." Operations Researc-: 8 (1960): 224-230.

E37. Ponstein, J. "Self Avoiding Paths and the Adjacency Matrix of a
Graph." J. SIAM Appl. Math. 14 (1966): 600-609.

E38. Prim, R. C. "Shortest Connection Networks and Some Generaliza
tions." Bell Systems Tech. 36 (November 1957): 1389-1401.

E39. Raimond, J. F. "Minimaximal Paths in Disjunctive Graphs by
Direct Search." IBM J. Res. andDev. (July 1969): 391-399.

E40. Saigal, R. "A Constrained Shortest Path Problem." Operations
Research 16 (1968): 205-209.

E41. Sakarovitch, M. "The K Shoi'test Routes and K Shortest Chains in
a Graph." Univ. of Calit. at Berkeley, ORC-66-32, Oct. 1966.

E42. Taga, Y., and Suzuki, T. "On the Estimation of Average Length of
Chains in a Communicative Pattern." Amer. Inst. Stat. Math. 9
(1958): 149-156.

E43. Thorelli, L. E. "An Algorithm for Computing All Paths in a
Graph." BIT 6 (1966): 347-349.

F. Flow and Synthesis Considerations in Networks

FOl. Ali, A. A. "On the Analysis of Weighted Communications Networks."
IEEE Trans. CT 16 (May 1969): 223-225.

138

F02. All, A. A. "Synthesis of Communication Nets." Ph.D. Thesis,
University of London, 1965.

F03. Ash, R. B., and Kim, W. H. "On the Synthesis of Information
Networks." Delivered at the Conference of the Union Radio-
Scientifique Internationale, Pennsylvania State Univ., October
19 5 8.

FOi+. Arinal, J. C. "Maximal Biflow on Undirected Network." IBM J. of
Res. and Dev. 13 (July 1969): 373-379.

F05. Boldyreff, A. "Determination of the Maximal Steady State Flow of
Traffic Through a Railroad Network." Operations Research 3
(1955): 443-446.

F06. Bratton, D. Efficient Communication Networi:.s. Cowles Commission
Discussion Paper in Econ., No. 2119, Feb. 23, 1955.

F07. Cauer, VI. Synthesis of Linear Communication Networks. Mew York:
McGraw-Hill, 1958. Translated by G. E. Knausenberger and
J. 'A. War field.

F0 8. Chien, R. T. "A Method for Computing Maximum flows Through a
Communications Network." Proceedings of the Sixth Nat. Symp.
on Communication Systems (1960). pp. 282-285.

F09 . Chien, R. T. "Synthesis of a Communications Netv/ork." IBM J. of
Res. and Dev. 4 (I960): 311-320.

I'lO. Chien, R. T., Gomory, R. E., Hu, T. C. "Communication Networks."
Part yil of "Progress in Circuit Theory, 1960-1963," edited by
Louis Weinberg. IEEE Tram;. CT 11 (March 19 64): 2-29.

Fll. Deo, i-J. , and Hakimi, S. L. "Minimum Cost Increase of the Terminal
Capacities of a Communications Network." IEEE Trans. Comm.
Tech. 14 (Feb. 1956): 63-64.

FT2. Ellus, P., Feinstein, A., and Shannon, C. E. "A Note on the
Maxim.um Flow Through a Network." IEEE Trans. Info. Theory 2
(1956): 117-119.

ri3. Ford, E. R., Jr., and Fulkerson, D. R. "A Suggested Computation
for Maximal Multi-Commodity Network Flows." Management Science
5 (Oct. 1958): 97-101.

F14. Ford, L. R., and Fulkerson, D. R. "Constructing Maximal Dynamic
Flows from Static Flows." Operations Research 6 (195 8): 419-
433.

139

F15. Ford, L. R., and Fulkerson, D. R. "Maximal tlow Through a Met-
work." Can. J. Math. 8 (1956): 399-'+0'+.

F16. Foster, R. M. "Topological and Algebraic Considerations in Net
work Synthesis." Proa, Symp. on Modern Network Synthesis^
Polytechnic Inst, of Brooklyn, 19 52. pp. 8-18.

F17. Frank, H. "Dynamic Communications Netv/orks." IEEE Trans. Comm.
Tech. 15 (Apr. 1967): 156-153.

F18. Frank, H. "Vulnerability of Communications Networks." IEEE
Trans. Comm. Tech. 15 (Dec. 1957): 778-789.

F19. Frank, H. "Dynamic Communication Networks with Capacity Con
straints." IEEE Trans. Com.i. Tech. 17 (vugust 1969): 432-437.

F20. Frank, H., and Hakimi, S. L. "On the Optimum Synthesis of
Statistical Communication Networks Pseudo Parametric Tech
niques." J. Franklin Inst. 284 (December 1967): 407-415.

F21. Frank, H., and Hakimi, S. L. "Parametric Analysis of Statistical
Communication Networks." Quarterly of Applied Mathematics 25
(July 1968): 249-253.

F22. Frisch, I. T., and Sen, D. K. "Algorithms to Realize Directed
Communication Nets." IEEE Trans. CT 14 (Dec. 1957): 370-379.

F23. Frisch, I. T., and Kim, W. H. "Realization of Communication Net
works with Maximum Information Flow." Proo. Seventh National
Symposium on Corrmunications Systems^ 1961. pp. 254-261.

F24. Frisch, I. T., and Shein, N. P. "Necessary and Sufficient Condi
tions for Realizability of Vertex-Weighted Communications
Networks." IEEE International Conference on Communications^
1958. pp. 682-687.

F25. Fulkerson, D. R., "A Network Flow Feasibility Theorem and Combina
torial Applications." Can. J. Math. 11 (19 59): 440-451.

F26. Gale, D. "A Theorem on Flows in Networks." Pacific J. Math. 7
(1957): 1073-1082.

F27. Gale, D. "Transient Flows in Networks." Mich. Math. J. 6 (1958):
59-53.

F28. Gomory, R. E., and Hu, T. C. "An Application of Generalized
Linear Programming to Network Flows." J. SIAM Appl. Math. 10
(1952): 250-283.

140

F29. Gomory, R. F., and Hu, T. C. "Multi-Commodity Netv/ork Flows."
IBM Research Report RC-865, January 16, 1963.

F30. Gomory, R. E., and Hu, T. C. "Multi-Terminal Network Flows."
J. SIAM Appl. Math. 9 (December 1961): 551-570.

F31. Gomory, R. E. "Synthesis of a Communications Network." J. SIAM
Appl. Math. 12 (June 1964): 348-369.

F32. Gould, R. "The Application of Graph Theory to the Synthesis of
Contract Networks." PTOO. of International Symposium on the
Theory of Switching. Annals of the Comp. Lab. of Haî vard
Univ., No. 29, 1957.

F33. Hakimi, S. L. "Analysis and Design of Comm inications N>:tworks
With Memory." J. Franklin Inst. 287 (19D9): 1-17.

F34. Hakimi, S. L. "An Algorithm for the Construction of the Least
Vulnerable Comm. Network or the Graph V/ith the Maximum Con
nectivity." IEEE Trans. CT 16 (May 1969): 229-230.

F35. Hakimi, S. L. "Simultaneous Flows Through a Communications Net
work." IEEE Trans. CT 9 (June 1962): 169-175.

F36. Hobbs , E. W., and MacVJilliams, F. J. "Topological Network Analy
sis as a Computer Program." IRE Trans. CT 6 (March 1959): 135

F37. Hu, T. C. "Multicommodity Network Flows." Operations Research
11 (1963): 344-360.

F38. Hu, T. C. "On the Feasibility of Simultaneous Flows in a Net
work." Operations Research 12 (19 54): 359-360.

F39. Hu, T. C. "Recent Advances in Network Flows." J. SIAM Appl.
Math. 10 (1968): 354-359.

F40. Iri, Masao. "Algebraic and Topological Foundations of the Analy
sis and Synthesis of Oriented Switching Circuits." RAAG
Memoirs 2 (1958): 469-518.

F41. Jewell, W. S. "A Primal-Dual Multi-Commodity Flow Algorithm."
Operations Research Center Report ORG 66-24, Univ. of Califor
nia at Berkeley, September 1965.

r42. Jewell, W. S. "Multi-Commodity Netv/ork Solutions." Operations
Research Center Report ORG 66-23, University of California at
Berkeley, September 1966.

141

FL̂ 3. Kalaba, R., and Jancosa, -̂1. "Optimal Design and Utilization of
Communication Networks." Management Soienoe 3 (l<j5G): 33-3'-l-.

FL̂ 4. Kim, W. H., and Chien, R. T. Topologioal Analysis and Synthesis
of Communioations Networks. New York: Columbia University
Press, 1962.

FM-5. Kleinrock, L. "Gome Results on the Design of Communications
Nets." IEEE International Conference of Communications
1968. pp. 699-705.

FM-6. Luce, Macy, Christie and Hay. "Information Flow in Task Oriented
Groups." MIT Res. Lab. Electronics Tech. Report No. 264, 1953,

FU7. Mayeda, V/. "Maximum Flow Through a Communications Network."
Interim Report No. 13, Univ. of 111., DA-11-022-ORD-1983
(1960).

F48. Mayeda, W. "Maximum Flow Under Controlled Edge Flows." IEEE
International Conference on Communications 196 8. pp. 69 4-69 8.

F49. Mayeda, W. "Synthesis of Switching Functions by Linear Graph
Theory." IBM J. Res, and Dev. 4 (1960): 320-328.

F50. Mayeda, V/. "Terminal and Branch Capacity Matrices of a Communi
cation Net." IRE Trans. CT 7 (1960): 260-269.

F51. Okada, S. "Algebraic and Topological Foundations of Network
Synthesis." Proc. Symp. on Modern Network Synthesis. Poly
technic Inst, of Brooklyn, 1955. pp. 283-322.

F52. Onaga, K. "Optimum Flows in General Communications Netv/orks."
J. Franklin Inst. 283 (April 1967): 308-327.

F53. Parker, S. R., and Lohse, H. J. "A Direct Procedure for the
Synthesis of Network Graphs From a Given Fundamental Loop or
Cut-Set Matrix." IEEE Trans. CT 16 (May 1969): 221.

F54. Resh, J. A. "On the Synthesis of Oriented Communication Nets."
IEEE Trans. CT 12 (Decenber 1965): 540-546.

F55. Roboeker, J. T. Concerning Mlulti-Commodity Flows. Rand Corpora
tion Report RM-1799, 19 56.

F56. Saigal, R. I4ulticommodity Flews in Directed Networks. Operations
Research Center Report ORG 6 7-38, Univ. of Calif, at Berkeley,
September 1967.

F57. Sakarovitch, M. "The Multicommodity Maximum Flow Problem."
Operations Research Center ORG 66-25, Univ. of Calif., Sept.
1966.

14 2

F̂ 'R. Sen, D. K., and Frlsch, I. T. "Synthe^-.i3 of Oriented Cornn.unlca-

tlon Mets." Proo. IEEE Symp. on Ciqnal Transmission and
Processing (Columbia Univ., Uevi York, 1965). pp. '30-101.

rS'j. Tang, D. T. "Bi-Path Networks and Multi-C:ornmodity Flows." IEEE
Trans. CT 11 (Dec. 1964): 468-474.

F60. Tang, D. T. "Communication Netv/orks With Simultaneous Flov/

Requirements." IEEE Trans. CT "^ (1962): 176-182.

F51. Tang, D. T. "On Flows in Communications Network." ProQ. Second
Allerton Conf. , Sept. 1964. pp. 83-97.

F6 2. Tang, D. T. "Optimal Trees For Simultaneous Flow Renuiremonts."

ProQ. ^^at. Eleo. Conf. 19 (Oct. 1963): 28-32.

F6 3. Tang, D. T. and Chien, R. T. "Analysis and Synthesis Techniques

oF Oriented Communication Nets." IEEE Trans. CT 7 (19bl):
39-43.

F64. Tomlin, J. A. "Minimum Cost Multicommodity Network Flows."

Operations Research. 14 (196 6): 45-91.

F65. Tuller, W. G., and Cheatham, T. P., Ir. "Communication Theory and

Network Syntliesis." Symp. on Information i^etbJorks^ Polytechnic

Inst, of Brooklyn, April 1954.

F66. Tuy, H. "Some Theorems on Netvjork Flows" in Theory of Graphs.
Proceedings of the Colloquium held at Tihany, Hungary, Sept.

1966. pp. 173-184.

F'67. V/ing, u. "iMinimal Realization oi a Communications Network Under
Uniform Cost." laW Res. Rpt. FS 0026, August 1960.

F68. Wing, 0., and Chien, R. T. "Optimal Synthesis of a Comimuni cations

Net." IEEE Trans. CT 7 (19 61): 44-49.

143

VITA

Robert Martin Siegmann was born on June 2, 19 36, in Charleston,

South Carolina. He received the degree of B.S. (Mathematics) from the

College of Charleston in 19 58, the degree of M.S. (Mathematics) from

the University of South Carolina in 1960, and the degree of M. S.

(Information Science) from the Georgia Institute of Technology in 1968.

He was employed by the International Business Machines Corpora

tion from 1960 to 1966 and has been on educational leave from IBM

since 1966. He has held part-time positions teaching at the University

of South Carolina, American University and Georgia Tech. He is cur

rently employed as a Research Associate at Georgia Tech.

