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It is not the strongest of the species that survive, nor the most intelligent,

but the one most responsive to change.

Charles Darwin
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SUMMARY

Deep Neural Networks (DNNs) are increasingly prevalent, but deciphering their oper-
ations is challenging. Such a lack of clarity undermines trust and problem-solving during
deployment, highlighting the urgent need for interpretability. How can we efficiently sum-
marize concepts models learn? How do these concepts evolve during training? When
models are at risk from potential threats, how do we explain their vulnerabilities?

We address these concerns with a human-centered approach, by developing novel sys-
tems to interpret learned concepts, their evolution, and potential vulnerabilities within deep
learning. This thesis focuses on three key thrusts:

(1) Scalable Automatic Visual Summarization of Concepts. We develop NEURO-
CARTOGRAPHY, an interactive system that scalably summarizes and visualizes con-
cepts learned by a large-scale DNN, such as InceptionV1 trained with 1.2M images.
A large-scale human evaluation with 244 participants shows that NEUROCARTOG-
RAPHY discovers coherent, human-meaningful concepts.

(2) Insights to Reveal Model Vulnerabilities. We develop scalable interpretation tech-
niques to visualize and identify internal elements in DNNs, which are susceptible
to potential harms, aiming to understand how these defects lead to incorrect pre-
dictions. We develop first-of-its-kind interactive systems such as BLUFF that visu-
ally compares the activation pathways for benign and attacked images in DNNs, and
SKELETONVIS that explains how attacks manipulate human joint detection in human
action recognition models.

(3) Scalable Discovery of Concept Evolution During Training. Our first-of-its-kind
CONCEPTEVO unified interpretation framework holistically reveals the inception and
evolution of learned concepts and their relationships during training. CONCEPTEVO

enables powerful new ways to monitor model training and discover training issues,
addressing critical limitations of existing post-training interpretation research. A
large-scale human evaluation with 260 participants demonstrates that CONCEPTEVO

identifies concept evolutions that are both meaningful to humans and important for
class predictions.

This thesis contributes to information visualization, deep learning, and crucially, their
intersection. We have developed open-source interactive interfaces, scalable algorithms,
and a unified framework for interpreting DNNs across different models. Our work impacts
academia, industry, and the government. For example, our work has contributed to the
DARPA GARD program (Garanteeing AI Robustness against Deception). Additionally,
our work has been recognized through a J.P. Morgan AI PhD Fellowship and 2022 Rising
Stars in IEEE EECS. NEUROCARTOGRAPHY has been highlighted as a top visualization
publication (top 1%) invited to SIGGRAPH.
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CHAPTER 1

INTRODUCTION

Deep Neural Networks (DNNs) have demonstrated remarkable success across various ap-
plications, including human action recognition for video understanding [1, 2], intelligent
image retrieval and captioning [3, 4, 5], and machine vision for medical imaging [6, 7].

Despite their successes, understanding how DNNs work and what they have learned
remains a fundamental challenge. The black box nature of DNNs, stemming from their
vast parameter space, hinders people from auditing and trusting their decision-making pro-
cesses. When models underperform or fall victim to malicious attacks, there is a lack
of actionable guidance for understanding vulnerabilities and implementing effective fixes.
Conventional approaches such as hyperparameter tuning, while enhancing model perfor-
mance, offer limited insights into the causes of underperformance and directions for vul-
nerability improvements [8]. Moreover, existing interpretation approaches predominantly
center around post-training analysis [9, 10], leaving a significant gap in understanding the
evolution of models during the training process. This chasm includes a lack of insight into
training deficiencies such as poor generalizability [11, 12, 13] and convergence failures
[14, 15], which can potentially result in wasting time and resources [16, 17], if the training
ultimately fails to achieve desired outcomes.

The challenges outlined above have sparked a call to action for interpreting deep
learning, prompting pivotal questions: How can we scalably discover and summarize con-
cepts learned within DNNs? How do we identify and explain vulnerabilities in DNNs?
How does the evolution of learned concepts unfold throughout DNNs’ training process?
This thesis introduces novel algorithms and visual interactive techniques designed to ad-
dress these challenges.

1.1 Thesis Goal: Motivation and Vision

Through my extensive research across diverse fields such as machine learning interpretabil-
ity, defense mechanisms against adversarial attacks on DNNs, and information visualiza-
tion over the past five years, I have come to an important insight: the key to unlocking the
full potential of DNNs lies in human-centered interpretation.

DNNs excel when augmenting human capabilities, but their full empowerment is con-
tingent upon clear interpretability. Without transparency, people may struggle to trust,
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Figure 1.1: An overview of my interdisciplinary research where I design and develop scal-
able interactive discovery of concepts, vulnerabilities, and evolutions in deep learning.

employ, or amend these models effectively. Given that humans are the primary users of
DNNs, aligning interpretability with human cognition is essential. This fundamental belief
drives the overarching goal of my thesis: to bridge the gap between complex DNN ar-
chitectures and intuitive human understanding, through a comprehensive human-centered
interpretation of the inner workings, vulnerabilities, and evolutions of DNNs.

1.2 Thesis Overview

To enable human-centered DNN interpretability on their inner workings, vulnerabilities,
and evolutions, this thesis focuses on answering three complementary research questions:
how to summarize concepts learned in DNNs (Part I); how to explain their vulnerabilities
(Part II); and how to reveal concept evolutions in training process (Part III). Considering the
immense complexity of DNN parameters, scalability is an integral part of my thesis. Sim-
ilarly, to enrich the interpretation process from a human perspective, my thesis integrates
carefully designed interactive elements and visualization techniques. Fig 1.2 summarizes
how the three complementary research questions are answered by the corresponding parts
of this thesis and example works.

1.2.1 Part I: Scalable Automatic Visual Summarization of Concepts

Deep Neural Networks (DNNs) have become ubiquitous across various domains; however,
their intricate architecture and numerous parameters make their interpretation notably chal-

2
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Figure 1.2: This thesis consists of three parts. Each part is represented by one block with
its research question and example works that map to the chapters of the thesis.

lenging. Without effective interpretations, people might struggle to comprehend and trust
the results generated by these models. As a response, this part focuses on interpreting a
large-scale DNN’s inner workings, by visually summarizing the fundamental concepts it
learns and how these concepts contribute to the model’s behavior.

NEUROCARTOGRAPHY: Scalable Automatic Visual Summarization of Concepts in Deep
Neural Networks (Chapter 3)

We introduce NEUROCARTOGRAPHY, an interactive system that scalably summarizes and
visualizes concepts learned by neural networks (Fig 1.3). It automatically discovers and
groups neurons that detect the same concepts, and describes how such neuron groups inter-
act to form higher-level concepts and the subsequent predictions NEUROCARTOGRAPHY

introduces two scalable summarization techniques: (1) neuron clustering groups neurons
based on the semantic similarity of the concepts detected by neurons (e.g., neurons de-
tecting “dog faces” of different breeds are grouped); and (2) neuron embedding encodes
the associations between related concepts based on how often they co-occur (e.g., neurons
detecting “dog face” and “dog tail” are placed closer in the embedding space). Through a
large-scale human evaluation, we demonstrate that our technique discovers neuron groups
that represent coherent, human-meaningful concepts. And through usage scenarios, we de-
scribe how our approaches enable interesting and surprising discoveries, such as concept
cascades of related concepts or the existence of isolated concepts.
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Figure 1.3: NEUROCARTOGRAPHY scalably summarizes concepts learned in a DNN, by
automatically discovering and visualizing groups of neurons detecting similar concepts. 1.
Within Graph View (at C), users can explore the interaction of neuron clusters—represented
as nodes in the graph—that collaboratively influence a specific class prediction, such as the
Maltese dog class. Clicking on a cluster (circle) visualizes the concepts detected by its
member neurons, paired with corresponding dataset examples (at D). 2. For the clicked
cluster, its constituent neurons are highlighted in Neuron Projection View (at A), which
spatially organizes neurons by related concepts, positioning similar concepts in closer prox-
imity. 3. In Neuron Projection View, when users select a specific neuron, such as one for
“dog face,” Neuron Neighbor View (at B) shows the selected neuron’s closely related ones
and their concepts, like neurons for “furry body” or “furry head.”

SUMMIT: Scaling Deep Learning Interpretability by Visualizing Activation and Attribution
Summarizations (Chapter 4)

NEUROCARTOGRAPHY builds on foundations of research my earlier PhD research
SUMMIT, the first interactive system that scalably visualizes what features each neuron
has learned and how those features interact to make predictions. NEUROCARTOGRAPHY

extends these ideas to automatically cluster and embed the learned concepts. SUMMIT in-
troduces two scalable summarization techniques: (1) activation aggregation discovers im-
portant neurons, and (2) neuron-influence aggregation identifies relationships among such
neurons. SUMMIT combines these techniques to create the novel attribution graph that
reveals and summarizes crucial neuron associations and substructures that contribute to a
model’s outcomes. SUMMIT scales to large data, such as the ImageNet dataset with 1.2M
images, and leverages neural network feature visualization and dataset examples to help
users distill large, complex neural network models into compact, interactive visualizations.
The SUMMIT visualization runs in modern web browsers and is open-sourced.
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Figure 1.4: BLUFF enables interactive visualization of how adversarial attacks infiltrate
DNNs that cause incorrect outcomes. For example, it clarifies why an InceptionV1 mis-
classifies adversarial giant panda images, that are crafted by the Projected Gradient Descent
(PGD) attack, as armadillo. PGD perturbed pixels to induce “brown bird” feature, an ap-
pearance more likely shared by an armadillo (small, roundish, brown body) than a panda,
activating more features that contribute to the armadillo (mis)classification (e.g., “scales,”
“bumps,” “mesh”). The adversarial pathways, formed by these neurons and their connec-
tions, overwhelm the benign panda pathways and lead to the ultimate misclassification.

1.2.2 Part II: Insights to Reveal Model Vulnerabilities

In the preceding part, we focus on interpreting the decision-making process of a normally
performing DNN. However, DNNs are not infallible; they can occasionally be susceptible
to potential harms such as adversarial attacks. Small, human-imperceptible noise injected
into inputs can easily fool DNNs into making wrong predictions, raising alarms for safety-
critical applications, such as autonomous driving and data-driven healthcare [18, 19, 20,
21, 22, 23]. How can we identify and interpret the vulnerabilities inherent in DNNs? To
address this concern, we have developed first-of-its-kind interactive systems:

1. BLUFF that visualizes and compares the activation pathways for benign and at-
tacked images in vision-based DNNs.

2. SKELETONVIS that visualizes and explains how attacks manipulate human joints
in human action recognition models.
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Figure 1.5: The interface of SKELETONVIS, visualizing how the Fast Gradient Method
attack manipulates the left foot joints detected by the Detectron2 Keypoint R-CNN model.
(A) The Skeleton View shows the joints perturbed to unexpected locations. (B) Timeline
View reveals the attacked joints spuriously jumping around from one frame to the next,
leading to a “spike” in the average joint displacement across attacked frames. These manip-
ulations finally sway the ST-GCN action detection model into misclassifying the attacked
frames as “exercising with exercise ball,” instead of the correct “lunge” classification.

BLUFF: Interactively Deciphering Adversarial Attacks on Neural Networks (Chapter 5)

BLUFF is an interactive visualization tool for demystifying adversarial attacks on vision-
based DNNs. It visualizes how attacks inhibit neurons detecting concepts essential for the
benign class and excite those driving misclassification (Fig 1.4). At its core, BLUFF visually
compares activation pathways—comprising neurons and their interrelations showing strong
activation to input images—resulting from both benign and adversarial inputs. BLUFF

pinpoints where a model is exploited by an attack, how they are used, and what impact the
exploitation has on the final prediction, across multiple attack strengths, revealing various
strategies that adversarial attacks employ to inflict harm on a model. By offering side-by-
side visual comparisons of these pathways, users can readily discern the divergence points
where adversarial pathways deviate from their corresponding benign pathways, resulting
in an incorrect prediction.

SKELETONVIS: Interactive Visualization for Understanding Adversarial Attacks on Hu-
man Action Recognition Models (Chapter 6)

With BLUFF, we acquire a deeper understanding about the impact of adversarial attacks
on image classifiers. We extend to the domain of human-action recognition, driven by its
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widespread real-world applications such as home robotics, healthcare for the aging popula-
tion, and surveillance. We present SKELETONVIS, an interactive system that enhances un-
derstanding the impacts of adversarial attack on human pose detection models, visualizing
manipulated joint detections (Fig 1.5). Furthermore, SKELETONVIS provides quantitative
measurements across video frames to capture the abnormal signals present in the attacked
frames, helping users easily identify the specific frames exploited by the attacks.

1.2.3 Part III: Scalable Discovery of Concept Evolution During Training

The previous two parts primarily focus on interpreting fully trained DNNs in terms of their
learned concepts and vulnerabilities. That is, such interpretation occurs after the training
process. Moreover, many existing approaches predominantly center around post-training
interpretation [10, 9], offering limited insights into how models evolve as they are trained,
even though interpreting the model evolution has emerged as a promising direction to mon-
itor the network training [9, 8]. Crucially, a gap exists in our understanding of how a model
progresses during training and its association with model deficiencies like poor general-
izability [13, 11, 12] or convergence failures [15, 14]. Relying solely on post-training
interpretation poses challenges for real-time discovery and diagnosis during training, po-
tentially resulting in the inefficient use of time and resources [16, 17], particularly if the
training ultimately fails to achieve desired outcomes. How can we help people interpret the
dynamic evolution of a model as it is trained?

CONCEPTEVO: Interpreting Concept Evolution in DNN Training (Chapter 7)

We develop CONCEPTEVO, a first-of-its-kind general unified interpretation framework of
DNNs that reveals the inception and evolution of learned concepts during training (Fig 1.6).
CONCEPTEVO introduces two novel technical contributions: (1) an algorithm that gener-
ates a unified semantic space, enabling side-by-side comparison of different models during
training, and (2) an algorithm that discovers and quantifies important concept evolutions
for class predictions. It aids in uncovering potential issues during model training and pro-
vides insights into their causes, such as: (1) severely harmed concept diversity caused by
incompatible hyperparameters (e.g., overly high learning rate) as shown in Fig 1.6b; and (2)
slowly evolving concepts despite rapid increases in training accuracy in overfitted model
as shown in Fig 1.6c. A large-scale human evaluation with 260 participants demonstrates
that CONCEPTEVO identifies concept evolutions that are both meaningful to humans and
important for class predictions.
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Figure 1.6: CONCEPTEVO creates a unified semantic space that enables side-by-side com-
parison of concepts learned by different models during training. Within this space, neurons
(represented as dots) that detect similar concepts (such as a dog face or a car wheel) are
embedded and aligned at similar location. This layout makes it straightforward to visualize
the inception and evolution of these concepts across different DNN models during training.
Additionally, CONCEPTEVO serves as a diagnostic tool for identifying potential issues in
model training. For example, in (b2), if a model starts losing the diversity of its learned
concepts, CONCEPTEVO can flag this as a concern. To illustrate, (b1) visualizes the evo-
lution of a well-trained VGG16 that shows gradual concept formations and refinements.
In (b2), a VGG16 suboptimally trained with a large learning rate rapidly loses the ability
to detect most concepts. In (b3), a overfitted VGG16 without dropout layers shows slow
concept evolutions despite rapid training accuracy increases. We abbreviate “top-5 train-
ing/test accuracies” as “train/test acc.”

1.3 Thesis Statement

By adopting human-centered approaches, we can enhance our understanding of the intrin-
sically complex DNNs, by:

1. summarizing learned concepts through scalable automatic algorithms and visualiza-
tions,

2. revealing vulnerabilities exploited by adversarial attacks, and

3. discovering evolutions of concepts during training.
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1.4 Research Contributions

This thesis makes research contributions to multiple fields, including interactive data visu-
alization, machine learning, and more importantly their intersection, by interpreting DNNs’
learned concepts (Part I), vulnerabilities (Part II), and evolutions (Part III).

New scalable systems for global, unified model interpretation.
• NEUROCARTOGRAPHY introduces two innovative scalable concept summarization

techniques, neuron clustering and neuron embedding, to automatically represent
the vast conceptual space of all neurons in large DNNs and their relationships,
offering a holistic interpretation of large datasets like ImageNet with 1.2M images.
By avoiding exhaustive comparisons between neuron pairs’ concepts, our methods
achieve linear time complexity with respect to the number of neurons, far surpassing
the conventional quadratic time. A large-scale human evaluation with 244 partici-
pants shows that these concept summarization techniques discover coherent, human-
meaningful concepts (Chapter 3).

• CONCEPTEVO is the first unified framework for interpreting model training of
multiple DNNs, by refining our neuron embedding algorithm to synchronize the
conceptual spaces from different models across training epochs into a unified seman-
tic space. This alignment not only streamlines the comparative analysis of different
model training processes, but also provides a powerful means to monitor model train-
ing and detects training anomalies. Our extensive human evaluation, involving 260
participants, demonstrates that our framework identifies concept evolutions that are
both meaningful to humans and important for class predictions (Chapter 7).

• We develop BLUFF and SKELETONVIS, each a first-of-its kind interactive system
for deciphering attacks to DNNs. BLUFF visualizes and compares the activation
pathways for benign and attacked images in vision-based neural networks (Chap-
ter 5). SKELETONVIS visualizes and explains how attacks manipulate human joints
in human action recognition models (Chapter 6).

Surprising discoveries and new insights.

• BLUFF sheds light on the previously unknown vulnerabilities of DNNs. Notably, we
are the first to visualize and characterize the variation in attack strategies based
on attack intensity. For instance, milder attacks may adopt a ‘death by a thou-
sand cuts’ approach, while stronger attacks focus on exploiting a select few neurons.
These discoveries can guide the creation of robust defensive measures, such as the
elimination of susceptible neurons from the model. (Chapter 5)

• NEUROCARTOGRAPHY is among the first system to map the comprehensive con-
cept landscape of large DNNs, revealing unexpected phenomena, such as the ex-
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istence of isolated concept—a unique feature not tied to any particular image charac-
teristics (e.g., “watermark” concept can appear on almost any kinds of images). Such
surprising insights help guide model compression, suggesting the potential removal
of such isolated neuron clusters. (Chapter 3)

• CONCEPTEVO empowers users with new ways to identify potential model train-
ing issues such as: (1) incompatible hyperparameters (e.g., overly high learning rate)
severely harm concept diversity; and (2) concepts in overfitted models evolve slowly
despite rapid training accuracy increases. Leveraging these insights allows for timely
interventions, like halting training early when concept diversity is at risk. (Chapter 7)

Democratizing access to interpretability research through open-source systems.

• Prioritizing user convenience, our interactive visual systems, such as NEUROCAR-
TOGRAPHY (Chapter 3), BLUFF (Chapter 5), and SKELETONVIS (Chapter 6), are
presented as interactive web applications. These tools are universally accessible,
compatible with any modern web browser, and free from the hassles of additional
installations or the constraints of specific hardware.

• To foster a collaborative environment for DNN interpretability, we have made the
source codes of our algorithms available to the public, including NEUROCAR-
TOGRAPHY (Chapter 3), BLUFF (Chapter 5), and CONCEPTEVO (Chapter 7).

1.5 Impact

This thesis is making impact to academia, industry, and the government.

• NEUROCARTOGRAPHY (Chapter 3) has been highlighted as a top visualization pub-
lication (top 1% of 442 submissions) invited to present at SIGGRAPH.

• BLUFF (Chapter 5), SKELETONVIS, NEUROCARTOGRAPHY (Chapter 3), and CON-
CEPTEVO (Chapter 7) have been contributing to the multi-million dollar DARPA
GARD (Guaranteeing AI Robustness against Deception) program in understanding
model robustness and devising effective defenses.

• This dissertation has been recognized by a 2021 J.P. Morgan AI PhD Fellowship,
among the only 15 awards in the world. Additionally, it was highlighted in 2022 Ris-
ing Stars in EECS, an international academic career workshop focusing on electrical
engineering, computer science, and artificial intelligence.

• Research ideas developed in this dissertation contributed to multiple high-impact
projects aimed at broadening the access to high-quality machine learning education.
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Among them are the NVIDIA Data Science Teaching Kit [24] now freely available
to thousands of educators around the world, and CNN Explainer [25] that has been
integrated into academic programs at institutions worldwide, such as Georgia Tech
(Deep Learning), University of Wisconsin-Madison (Intro to AI), and University of
Kyoto (Bioengineering).

1.6 Prior Publications and Authorship

The research in this thesis results from years of collaboration with my advisor, Duen Horng
(Polo) Chau, and colleagues at Georgia Institute of Technology. To honor their contribu-
tions, the first-person plural perspective will be used throughout. Relevant publications are
detailed in Table 1.1.
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Part I: Scalable Automatic Visual Summarization of Concepts

Chapter 3: NeuroCartography: Scalable Automatic Visual Summarization of Concepts in
Deep Neural Networks. Haekyu Park, Nilaksh Das, Rahul Duggal, Austin
P. Wright, Omar Shaikh, Fred Hohman, Duen Horng Chau. IEEE Visualiza-
tion Conference (VIS), 2021.

Chapter 4: Summit: Scaling Deep Learning Interpretability by Visualizing Activation
and Attribution Summarizations. Fred Hohman, Haekyu Park, Caleb
Robinson, and Duen Horng (Polo) Chau. IEEE Visualization Conference
(VIS), 2019.

Part II: Insights to Reveal Model Vulnerabilities

Chapter 5: Bluff: Interactively Deciphering Adversarial Attacks on Deep Neural Net-
works. Nilaksh Das*, Haekyu Park*, Zijie J. Wang, Fred Hohman, Robert
Firstman, Emily Rogers, Duen Horng Chau. (*Authors contributed equally)
IEEE Visualization Conference (VIS), 2020.

Chapter 6: SkeletonVis: Interactive Visualization for Understanding Adversarial Attacks
on Human Action Recognition Models. Haekyu Park, Zijie J. Wang, Ni-
laksh Das, Anindya S. Paul, Pruthvi Perumalla, Zhiyan Zhou, Duen Horng
Chau. The AAAI Conference on Artificial Intelligence, Demo, 2021.

Part III: Scalable Discovery of Concept Evolution During Training

Chapter 7: Concept Evolution in Deep Learning Training: A Unified Interpretation
Framework and Discoveries. Haekyu Park, Seongmin Lee, Benjamin Hoover,
Austin Wright, Omar Shaikh, Rahul Duggal, Nilaksh Das, Kevin Li, Judy
Hoffman, Duen Horng (Polo) Chau. International Conference on Informa-
tion and Knowledge Management, 2023.

Table 1.1: The publications mapped to the thesis outline
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CHAPTER 2

BACKGROUND AND RELATED WORK

A DNN takes as input a data instance and outputs its prediction (e.g., class label). Trans-
forming the input to the output involves billions of numerical computations, the scale of
which is incomprehensible to humans. Recent research aims to summarize these calcu-
lations into abstract human-understandable representation. In this chapter, we provide an
overview of existing research for neural network interpretability that motivates our work.

2.1 Interpreting Well-Performing Fully-trained DNNs

2.1.1 DNN Interpretation Through Local Surrogate Explanation Models

An effective strategy for interpreting the predictions made by complex models is to adopt
a simpler explanation model that serves a dual purpose: First, it should aptly approximate
the behavior of the complex original model, at least around a specific instance (i.e., being
locally faithful). Second, it should be simple enough to be readily understood by humans.

For example, Local Interpretable Model-agnostic Explanations (LIME) [26] is designed
to create an interpretable explanation model, such as a linear regression or a decision tree,
that closely mimics the original model’s predictions for a particular instance and its neigh-
boring data instances. Fig 2.1 presents an example of LIME explaining a Google’s Incep-
tion neural network [27]. LIME first approximates the image classifier as a linear model
that processes input images using super-pixels as features, with the most influential super-
pixels corresponding to the highest coefficients in the linear model, where it can high-
light the crucial super-pixels for each class prediction. For example, the first subfigure of
Fig 2.1b shows that a super-pixel representing “fretboard” is important for the “Electric
guitar” prediction, which looks quite natural to humans.

Similarly, SHapley Additive exPlanations (SHAP) [30] identifies a linear explanation
model that can approximate the prediction for a specific input data instance. Such lin-
ear explanation model is intentionally crafted to compute importance scores for individual
features, represented by the features’ corresponding Shapely values [31, 32]. Fig 2.2 il-
lustrates SHAP’s explanation for a VGG16 model [33]. Much like LIME explanations do,
SHAP explanations compute the importance score (i.e., Shapely value) for each segmented
component of an input image.
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(a) Input image (b) LIME explanation for Electric guitar, Acoustic guitar, and Labrador

Example of a Surrogate Explanation Approach: LIME

Figure 2.1: LIME simplifies neural network image classifier predictions into an eas-
ily understandable linear model. It uses super-pixels as input features, highlighting the
most influential ones with higher coefficient weights. For example, for an input image
(Fig 2.1a) classified as Electric guitar (p = 0.32), Acoustic guitar (p = 0.24), and Labrador
(p = 0.21), LIME identifies most influential features (super-pixels) for each class predic-
tion. It flags the super-pixel representing “fretboard” as important for the “Electric guitar”
prediction (Fig 2.1b). The figures have been sourced from the LIME paper [26].

0.0
SHAP value

0.1-0.1 0.2-0.2

(a) Input image (b) SHAP explanation for Strawberry and Granny Smith (a type of apple)
More important

Example of a Surrogate Explanation Approach: SHAP

Figure 2.2: SHAP interprets neural network image classifier predictions using a linear
model that treats input images as collections of super pixels. It calculates the importance
scores for each super pixel using Shapely values, with higher values indicating greater
importance. For example, for an input image containing both an apple and strawberry (Fig
2.2a), SHAP identifies and highlights the relevant image segments for the “Strawberry”
and “Granny Smith” (a type of apple) class predictions by made by a VGG16. The figures
have been sourced the SHAP GitHub readme [28] and one of its example notebook [29].

Introducing surrogate explanation models comes with a notable limitation: it often yield
inconsistent explanations, raising concerns about their reliability and robustness [34, 35,
36, 37, 38]. This inconsistency arises because surrogate explanations do not adequately
consider the distribution of feature values, relying on random perturbations for generating
(synthetic) contextual data points around a specific instance [34, 39]. Even minor local
data variations can result in significant interpretation differences [37, 38]. Moreover, sur-
rogate explanations tend to oversimplify complex original models into very simple ones,
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which can significantly misrepresent highly nonlinear DNNs [40]. They are also vulner-
able to various risks such as adversarial attacks and biases [35, 39]. This inconsistency
and vulnerability stem from the surrogate model’s divergence from the original network,
potentially causing it to overlook crucial structural aspects in the original model [40, 41].

2.1.2 Direct Input Feature Attribution: Salience Methods

To address the vulnerability associated with surrogate explanations, a fundamental alter-
native is to gain a direct understanding of the network itself, bypassing any intermediary
surrogate explanations. A viable approach is to evaluate how variations in input features
influence the output directly through the network. This helps identify specific input fea-
tures of greater importance, particularly those whose variations result in more significant
output changes.

For example, salience methods [42, 43, 44] quantify the sensitivity of the output to
each input pixel (feature) by computing the gradient of the loss function for a class with
respect to the input pixels. This computation generates a saliency map, which shows the
significance of input pixels for the class prediction, featuring both high negative and pos-
itive values. Additionally, Grad-CAM [45] computes the gradient from the loss function
to the last convolutional layer (rather than all the way back to the image), generating a
coarse localization map that highlights important regions within the image. As depicted
in Fig 2.3, saliency maps visually exemplify the importance of individual pixels for image
predictions. For example, they help clarify the recognition of a dog’s face in the “Wheaten
Terrier” image prediction.

However, these methods face a challenge, as crucial image pixels often lack meaningful
or detailed information to comprehend the workings of the black box [46, 47, 48, 49]. For
example, in the medical domain, interpreting what an saliency map precisely elucidates
can be challenging due to potential ambiguity; a group of pixels might represent multiple
overlapping shapes, textures, and landmarks [48, 50]. Merely localizing the region of
an image does not reveal precisely what elements within that area the network deemed
valuable [49, 50]. This inherent ambiguity introduces the risk of both misinterpretation
and overinterpretation of the explanations [48, 49].

2.1.3 Concept-Based Interpretation by Looking into the Network

To overcome the limitation of salience methods, which often provide incomplete explana-
tions that fail to convey why a deep learning model makes a specific prediction, recent stud-
ies have shifted their focus towards explaining high-level, human-understandable concepts
learned within the deep neural networks and their relevance to the models’ predictions.
This deeper understanding is achieved through a thorough examination of the network’s
internal processes.
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Figure 2.3: Saliency maps for two different inputs processed by an InceptionV3 model
trained on ImageNet [51]. These maps are generated using various techniques: Grad (Gra-
dient explanations) [42], SmoothGrad [43], and GradCam [45]. These saliency maps high-
light the significance of individual pixels concerning image predictions (darker means more
important), such as the recognition of a dog’s face for the “Wheaten Terrier” image predic-
tion. These figures have been sourced from [44].

Concept
Visualization

(A Dog Neuron)

DeconvNet Optimization
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+ Regularization DGN

Various Single Neuron Concept Visualization Techniques

Figure 2.4: Visualization of a single neuron’s detected concept (in this case, a neuron
detecting a dog’s face) created using various techniques such as DeconvNet [52], optimiza-
tion [53], optimization with regularization [54], and Deep Generator Network (DGN) [55].
The figures have been sourced from [52, 56, 54, 55].

A common approach is to decode and visualize the concepts a single neuron has learned
by identifying input patterns that strongly trigger the neuron’s responses. For example, De-
convNet visualization reveals the input stimuli that excite individual neurons through a
top-down projection: it takes a neuron’s activation map (i.e., the activation of the layer to
which the neuron belongs, with all other neurons’ activation maps set to zero) and pro-
cesses it through an approximate inverse network of the original model (i.e., DeconvNet)
until reaching the input pixel space [52]. Feature visualization techniques generate syn-
thesized images to maximize neuron activations, revealing concepts that strongly activate
these neurons [56, 57]. For example, gradient-based approach [53] formulates an optimiza-
tion problem to maximize neuron activations and subsequently performs gradient ascent in
the input space to obtain the synthetic optimal image. However, such gradient methods
can be vulnerable, tending to generate high-frequency patterns as adversarial examples that
may not occur in real-life scenarios and may not represent what the neuron genuinely de-
tects. Some approaches introduce regularization techniques to address this challenge [54].
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Figure 2.5: The circuits-study [58] explores the neural networks’ sub-graphs, which are
composed closely interconnected features connected by weights, forming circuits. Such
circuits can be meticulously analyzed for a deeper understanding. For example, consider
a neuron that detects cars (right). By using concepts from preceding layers (left) such as
“windows,” “car body,” and “wheels,” the neuron identifies windows at the upper part, due
to the upper portion of its convolutional filter, and wheels at the bottom. The figures have
been sourced from [58].

Another approach [55] trains a deep generator network to produce high-quality synthetic
images that not only represent the concepts learned by each neuron but also appear real-
istic. Fig 2.4 illustrates examples of the visualization of “dog face” concept detected by a
neuron, using these methods.

These techniques for visualizing single neuron concepts have provided compelling in-
sights into how DNNs construct their internal hierarchical representations: earlier layers
focus on low-level concepts (e.g., colors, textures), while higher layers handle high-level
concepts [53]. Expanding upon these insights, various methods have been developed not
only to identify the concepts of a neuron but also to reveal relationships between them.
For example, the study on hierarchical modular representation maps out a tree-structured
relationship among hidden layer units in models trained with MNIST digit data, explain-
ing how lower-level features, such as simple lines and curves, hierarchically evolve into
more intricate features, like combinations of multiple curves for the digit “3” [59]. Simi-
larly, Circuits-study examines the connections between neurons, suggesting that concepts
detected by neurons are interlinked by weights, thereby either exciting and restraining con-
cepts among them [58], as illustrated in Fig 2.5.

Several studies have emerged to quantify concept-based interpretation. For example,
TCAV utilizes vectorized activations in each layer, employing them in a binary classifica-
tion task to determine the quantitative sensitivity of an interpretable concept (e.g., a striped
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Adversarial examples, generated by imperceptible perturbations,
result in misclassification

School Bus Noise Predicted as
Ostrich

Dog Noise Predicted as
Ostrich

+ = + =

Figure 2.6: Adversarial examples that deceive AlexNet [63]: Injecting imperceptible noise
(center) into an input image (left) produces an adversarial image (right) misclassified as
Ostrich. The figures have been sourced from [64].

pattern) to a model’s decision for a specific class prediction (e.g., zebra) [47]. Network
Dissection [60] and Net2Vec [61] introduce methods for quantifying interpretability by
measuring the alignment between filter activations and concepts. ACE [62] extends TCAV
by automatically generating concepts, such as image segmentations, while TCAV typically
requires a predefined set of concepts. ACE’s automatic concept generation allows for both
quantification and the discovery of important concepts influencing class predictions.

2.2 Interpreting Malfunctioning DNNs That Are under Attack

While DNNs have made remarkable strides across various applications, it is imperative to
acknowledge their susceptibility to potential threats, particularly adversarial attacks. These
attacks aim to confuse a given DNN model into making incorrect predictions by adding
carefully crafted, but seemingly imperceptible perturbations to the input. For example,
as depicted in Fig 2.6, when imperceptible, non-random perturbations are applied to an
image, it becomes possible to change a DNN’s prediction. The vulnerability of DNNs to
the adversarial attacks raises significant concerns, especially in safety-critical domains such
as autonomous driving and data-driven healthcare [19, 20, 21, 65].

Several studies have probed into the underlying causes of this vulnerability. One promi-
nent hypothesis, as proposed in [19], posits that the inherent linearity within neural net-
works significantly contributes to their susceptibility to adversarial perturbations. Linear
models may inadvertently assign excessive importance to perturbed signals, often at the
expense of more significant signals. Zhang et al. [66] have developed a method to identify
vulnerable neurons, particularly those whose activation intensity varies sensitively between
benign and adversarial examples. Ilyas et al. [67] demonstrated that adversarial examples
can be directly attributed to the presence of non-robust features. These features, derived
from patterns in the data distribution, are highly predictive yet brittle, making them in-
comprehensible to humans. Furthermore, Zheng et al. [68] have delved into interpreting
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DeconvNet visualizes the evolution of concepts detected by each neuron
Layer 1 Layer 3 Layer 5

Evolution of a Neuron for Green

Diagonal pattern

Eye Fox face

Car wheel Training epochAdjacent ovals

Figure 2.7: DeconvNet visualization [52] can track the evolution of neurons’ detected con-
cept during training. Here are examples of concept evolution for some neurons, observed
at epochs 1, 2, 5, 10, 20, 30, 40, and 64. It appears that the lower layers of DNNs converge
relatively quickly, within just a few epochs. In contrast, the upper layers take more time,
solidifying only after a substantial number of epochs (between 40 to 50). This highlights
the importance of allowing DNNs to train until they achieve full convergence. The figures
have been sourced from the DeconvNet visualization paper [52].

the classification process of adversarial examples, revealing how these perturbations affect
the prediction. Notably, their observations indicate that adversarial perturbations tend to
influence latent variables gradually, layer by layer, rather than directly altering features in
adversarial examples.

Several visual analytics approaches have been developed to visually interpret adver-
sarial attacks on DNNs. AEVis [69] compares critical neurons and their connections for
both benign and adversarial inputs, facilitating the investigation of adversarial examples’
working mechanisms. Ma et al. [70] have created a visual analytics framework to explain
and explore model vulnerabilities to adversarial attacks. This framework employs a mul-
tifaceted visualization scheme designed to support the analysis of data poisoning attacks
from various perspectives, including models, data instances, features, and local structures.

2.3 Interpreting Evolution of DNNs During Training

Existing literature has predominantly emphasized the interpretation of fully trained DNNs,
analyzing their learned concepts and vulnerabilities. Such interpretations typically occur
after the model has completed its training, offering limited insights into the model’s evolu-
tion during its training phase [10, 9]. This limitation persists despite the growing recogni-
tion of the importance of monitoring model evolution during training [9, 8].

This oversight leaves an unresolved gap: understanding a model’s progression during
training and its implications for potential deficiencies. These deficiencies can encompass
issues such as inadequate generalizability [13, 11, 12] and convergence failures [15, 14].
Relying solely on post-training interpretation hampers real-time diagnosis during the train-
ing process. This can lead to inefficiencies, potentially squandering time and resources,
especially if the desired outcomes remain unachieved [16, 17].
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To bridge this critical gap, several studies have ventured into this domain, aiming to
interpret DNNs during their training. These studies delve into the transformation of data
representations within models across epochs, and the implications of these changes for per-
formance [71, 72, 73]. DeconvNet-based concept visualization method [52] visualizes the
evolution of concepts detected by neurons during training. As seen in Fig 2.7, it observed
that lower layers of the model tend to converge within a few epochs, while the upper layers
require a considerable number of epochs (typically 40-50) to fully develop, underscoring
the importance of allowing models to train until convergence. DeepEyes [74] investigates
the dynamic behavior of individual neurons for various classes during the training process.
Similarly, DGMTracker [8] offers an analysis of weight, activation, and gradient shifts over
training time. Other techniques provide a 2D projection of neuron evolution in relation to
specific labels [75, 76], although this might narrow our comprehension to only the labels in
view. DeepView [77] proposes metrics to determine the evolutionary diversity of neurons
for classification tasks.
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OVERVIEW

While DNNs have become widely used across various domains, yet interpreting their in-
ner workings still remains challenging. With limited tools for interpretation, people may
struggle to effectively scrutinize and comprehend the rationale behind these models’ deci-
sions. Notably, there has been a push from both government and industry to enhance model
interpretability [78, 79].

Responding to this need, Part I focuses on interpreting DNNs’ decision-making logic,
particularly through the visualization and summarization of important concepts learned
within large-scale DNNs. Part I begins with NEUROCARTOGRAPHY (Chapter 3), an inter-
active system that scalably summarizes and visualizes concepts learned by neural networks.
It automatically discovers and groups neurons that detect similar concepts, and describes
how such neuron groups interact to form higher-level concepts and the subsequent predic-
tions. Additionally, it encodes such concepts and their semantic relationships into vectors,
offering a coherent visual map of the entire concepts a model has learned. Chapter 3 is
adapted from work that was published at VIS 2021 [80].

Chapter 3
NEUROCARTOGRAPHY: Scalable Automatic Visual Summarization of Con-
cepts in Deep Neural Networks. Haekyu Park, Nilaksh Das, Rahul Duggal,
Austin P. Wright, Omar Shaikh, Fred Hohman, Duen Horng Chau. IEEE Visu-
alization Conference (VIS), 2021.

NEUROCARTOGRAPHY is inspired by SUMMIT, which summarizes and visualizes what
concepts individual neurons detect and how those concepts interact to make predictions.
Chapter 4 is adapted from SUMMIT, that was published at VIS 2019 [78].

Chapter 4
SUMMIT: Scaling Deep Learning Interpretability by Visualizing Activa-
tion and Attribution Summarizations. Fred Hohman, Haekyu Park, Caleb
Robinson, and Duen Horng (Polo) Chau. IEEE Visualization Conference (VIS),
2019.
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CHAPTER 3

NEUROCARTOGRAPHY: SCALABLE AUTOMATIC VISUAL
SUMMARIZATION OF CONCEPTS IN DEEP NEURAL

NETWORKS

Existing research on making sense of deep neural networks often focuses on interpret-
ing single neurons. However, this approach often does not fully represent how multiple
neurons collaboratively encode complex concepts. We present NEUROCARTOGRAPHY,
an interactive system that scalably summarizes and visualizes concepts learned by neu-
ral networks. It automatically discovers and groups neurons that detect the same con-
cepts, and describes how such neuron groups interact to form higher-level concepts and
the subsequent predictions. NEUROCARTOGRAPHY introduces two scalable summariza-
tion techniques: (1) neuron clustering groups neurons based on the semantic similarity of
the concepts detected by neurons (e.g., neurons detecting “dog faces” of different breeds
are grouped); and (2) neuron embedding captures the associations between related con-
cepts based on how often they co-occur (e.g., neurons detecting “dog face” and “dog tail”
are placed closer in the embedding space). An essential feature of our techniques is their
efficiency. NEUROCARTOGRAPHY calculates the relationships of all neuron pairs in lin-
ear time, as opposed to the traditionally used quadratic time. Designed for large datasets,
NEUROCARTOGRAPHY can handle data as extensive as the ImageNet dataset, which con-
tains 1.2M images. The interface of NEUROCARTOGRAPHY tightly integrates the scalable
summarization techniques, visualizing the relationships between concepts in a 2D space
while also providing overviews of neuron groupings. Through extensive human evalua-
tion, we demonstrate that NEUROCARTOGRAPHY identifies neuron groupings that corre-
spond to clear, human-understandable concepts. And through usage scenarios, we describe
how NEUROCARTOGRAPHY enables interesting and surprising discoveries, such as con-
cept cascades of related and isolated concepts. The NEUROCARTOGRAPHY visualization
runs in modern browsers and is openly available as an open-source resource.

3.1 Introduction

Deep Neural Networks (DNNs) have demonstrated remarkable success in many applica-
tions, such as object detection [81, 82], speech recognition [83, 84], and data-driven health
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care [85, 86]. However, they are often considered opaque due to their complex structure
and large number of parameters. To help practitioners and researchers more confidently and
responsibly deploy machine learning models, there have been major efforts and calls from
both government and industry to enable greater model interpretability [79, 78]. There
is research that aims to explain models’ predictions based on the inputs, such as regions
of input images that contribute the most to the models’ predictions [62, 47, 87, 45, 42].
However, such techniques often do not describe how and where the input features are used
within the model. Recent research posits a key step towards answering these questions
is to interpret neurons (also called channels), since they are highly activated for specific
features from the input data [88, 56, 78, 89, 90]. While neuron-level interpretation may
be a promising approach to discover insights, inspecting individual neurons can be time-
consuming; furthermore, individual inspection does not easily reveal how multiple neurons
may detect the same features, which means users could easily miss the bigger picture of
the DNNs’ decision-making processes. For example, Fig 3.2 shows that the “dog face”
concept is detected by multiple neurons in InceptvionV1 model. Although it is a well-
documented phenomenon that multiple neurons detect similar concepts [91] (especially
in model pruning research [92, 93, 94, 95]), there is a lack of research in (1) developing
scalable summarization techniques to discover concepts collectively learned by multiple
neurons, and (2) enabling users to interactively interpret such concepts and their similari-
ties. NEUROCARTOGRAPHY aims to fill this critical research gap.

Contributions. In this work, we contribute:
• NEUROCARTOGRAPHY, an interactive system that scalably summarizes and visual-

izes fundamental concepts that contribute to the behaviors of large-scale image classifier
models (Fig 3.1), such as InceptvionV1 [27]. NEUROCARTOGRAPHY automatically dis-
covers groups of neurons that detect the same concepts and describes how such neuron
groups interact to form higher-level concepts and the subsequent predictions (Sec 3.6).

• Two scalable concept summarization techniques: (1) neuron clustering groups neu-
rons based on the semantic similarity of the concepts that neurons detect (e.g., neurons
detecting “dog faces” of different breeds are grouped); and (2) neuron embedding en-
codes the associations between related concepts based on how often they co-occur (e.g.,
neurons detecting “dog face” and “furry body” are placed closer in the embedding space,
as seen in Fig 3.1A, B). Both efficient techniques avoid naively comparing all neuron
pairs, resulting in a time complexity that is linear to the number of neurons, rather than
quadratic time. Our techniques scale to large data, such as ImageNet ILSVRC 2012 with
1.2M images [51] (sec 3.5).

• Interactive exploration of Concept Cascade enables users to selectively initialize and
examine how a concept detected by a neuron group would trigger higher-level concepts
across subsequent layers in a neural network. NEUROCARTOGRAPHY visualizes the
user-selected concept’s “cascading effect,” helping users interpret the successive concept
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initiations and relationships (Sec 3.6.2).

• Empirical findings through large-scale human evaluation and discovery scenarios.
Through a large-scale human evaluation, we demonstrate that NEUROCARTOGRAPHY

detects neuron groups representing coherent concepts with consistent meaningful human
interpretations (Sec 3.7). We describe how NEUROCARTOGRAPHY can help discover
several interesting and surprising findings through usage scenarios, like identifying con-
cept cascades for related classes (e.g., dogs of different breeds) and identifying isolated
concepts that are unrelated to all other concepts in a neural network (Sec 3.8).

• An open-sourced, web-based implementation that helps broaden people’s access to
neural network interpretability research without the need for advanced computational re-
sources. Our code and data are open-sourced1, and the system is available at the following
public demo link: https://poloclub.github.io/neuro-cartography/.

3.2 Design Challenges

Our goal is to build an interactive visual summarization of concepts learned by neural net-
works. Concretely, we aim to help users better understand what concepts are represented
internally by groups of neurons, and how these concepts are transformed into the final
prediction through interactions among neuron groups. We identify the following five de-
sign challenges (C1 - C4) associated with developing our summarization techniques and
designing NEUROCARTOGRAPHY.

C1 Discovering neurons that detect similar concepts. Existing research on DNN inter-
pretability tends to focus on inspecting individual neurons [78, 56, 55]. While helpful,
neuron-level inspection cannot easily reveal how clusters of neurons may detect the
same concept, even though it is common for multiple neurons to detect similar fea-
tures [92, 93, 94, 96]. As a result, users can easily miss higher-order interactions that
explain how DNNs operate.

C2 Understanding the associations between related concepts. Interpreting individual
features represented by a neural network can be useful to understand what the model
sees from input data [56, 55]. However, a model doesn’t base its prediction on a
single feature from the input. Instead, the final prediction is often an amalgamation of
multiple concepts detected by the model. This raises fundamental questions about the
associations between related concepts. For example, when a concept is detected by a
neural network (e.g., “dog face”), what other concepts are likely to be detected at the
same time, and how are they related (e.g., would “dog tail” and “dog leg” be strongly
related to “dog face”)?

1https://github.com/poloclub/neuro-cartography
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Clicking a neuron
adds it to the
Neuron Neighbor View.

Neuron Projection View

1. Sarah starts exploring
graph view. She selects
neuron cluster for
"dog face'' (pink).

Graph View

Cluster Popup

2. Sarah explores neuron
embedding, and wonders why
one "dog face" neuron is farther
away from the rest.

3. Sarah discovers the "dog face"
neuron is surrounded by other
dog-related concepts like
"furry body" and "furry head".

Neuron Neighbor View
4e-734

Figure 3.1: NEUROCARTOGRAPHY scalably summarizes concepts learned by deep neural
networks, by automatically discovering and visualizing groups of neurons that detect the
same concepts. 1. Our user Sarah starts exploring which neuron clusters (shown as cir-
cles) play an important role for InceptionV1 to predict the Maltese dog class, through the
Graph View (at C), which clusters neurons based on the semantic similarity of the con-
cepts detected by the neurons, and shows how those concepts interact to form higher-level
concepts. Selecting the neuron cluster for “dog face” (in pink) visualizes its member neu-
rons’ features with example patches in the Cluster Popup (at D). 2. Member neurons are
highlighted in the global Neuron Projection View (at A), which summarizes all neurons’
concepts from all layers by projecting them on a 2D space, placing related concepts closer
together; Sarah wonders why one “dog face” neuron (#734) is farther away from the rest.
3. Adding that neuron to the Neuron Neighbor View (at B) enables discovery of the most
related neurons (nearby blue neurons in projection), such as “furry body” (neuron 4e 3x3-
146) and “furry head” (4d 3x3-45), suggesting that the proximate projection region is in
fact capturing dog-related concepts. Concepts of neurons and neuron groups are manually
labeled.

C3 Scaling up concept summarization to all classes, neurons, and large datasets. Re-
cent research in our visualization community has started to prioritize scalability to
support large datasets [78, 97]. However, understanding how those approaches may
extend to enable the discovery of groups of similar neurons—and encode semantic
relatedness of concepts detected by the neurons—remains unclear. In the context of
our work, computing neuron relationships can be computationally expensive. A naive
algorithm to measure the neuron similarity would require comparing all neuron pairs,
which is computationally expensive (i.e., time complexity is quadratic in the number
of neurons). This naturally leads us to the question: how can we more efficiently
support grouping neurons and encoding concept relatedness for complex DNNs?
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NeuroCartography groups neurons
based on how they are similarly activated
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Figure 3.2: To summarize the concepts learned by a DNN, NEUROCARTOGRAPHY groups
neurons based on how similarly they are activated, e.g., by the “dog face” concept. Here,
neurons 460 and 483 in layer mixed4c of InceptionV1 model are similarly activated by the
“dog face” concept, and are grouped in the same cluster by our approach.

C4 Understanding concept influence in a network. A promising approach to interpret
a model’s internal behaviour involves understanding how the model detects and com-
bines features during inference [58, 69]. Recent research has proposed approaches
to help users interpret how features may be connected [78, 89], but these approaches
are performed at the neuron level, and are limited to only analyzing the relationships
of neurons across two adjacent layers, instead of across the whole network. To this
end, our work aims to answer a broader set of questions: How can a group of neu-
rons detecting a concept trigger other concepts across the connections and layers of a
DNN? Furthermore, how can we design an interactive visualization to support flexible
exploration of such a “concept cascade”?
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3.3 Design Goals

We distill the design challenges identified in Sec 3.2 to the following design goals (G1-G4)
that guide NEUROCARTOGRAPHY’s development.

G1 Clustering similar neurons based on activation overlap. We aim to address a major
research gap in existing work by developing techniques to discover neurons that detect
the same features (C1). Specifically, we build on prior research findings that neurons
tend to selectively respond to certain input features; in the context of DNNs, this means
such neurons’ activation maps have larger values at locations where the feature is
present in the input image [98, 99]. Our idea is to group neurons based on how similar
their activation maps are by (1) comparing the locations of the highly-activated values
in the maps (Sec 3.5.1) and (2) visualizing the concepts that are detected by such
neuron groups (Sec 3.6.2).

G2 Encoding concept associations between related concepts. We aim to analyze and
visualize how concepts are related based on how often they co-occur (C2). Our in-
tuition is that neurons detecting highly related concepts (e.g., “dog face”, “dog tail”)
are frequently co-activated. We aim to preserve these concept associations by learn-
ing vector representations for neurons that detect concepts associations on large image
datasets (Sec 3.5.2). Furthermore, we visualize the concept embedding to enable users
to interactively explore and understand related concepts across different level of ab-
straction such as “dog face” (higher level) and “dog eyes” (lower level) (Sec 3.6.1).

G3 Scalable summarization of concepts learned by a neural network. We aim to scale
up neuron clustering (G1) and neuron embedding (G2) techniques to all neurons and
all images by avoiding an explicit comparison of all neuron pairs (Sec 3.5). For scal-
able neuron clustering, we aim to project neurons’ activation patterns into a reduced
dimension and hash neurons into buckets by using these reduced projections as the
key. Using this technique, we can hash similar neurons in the same bucket with high
probability; more importantly, we can do this in time linear to the number of neurons
instead of quadratic (Sec 3.5.1). For scalable neuron embeddings, we aim to subsam-
ple neuron pairs and use the sampled pairs to learn neuron vectors that will preserve
the general properties of concept relatedness. From these vectors, we can infer concept
relatedness of any neuron pair without comparing them directly (Sec 3.5.2).

G4 Interactive interface to explore Concept Cascade We aim to design and develop an
interactive interface that enables users to selectively initialize and examine how a con-
cept detected by a neuron group would trigger higher-level concepts across subsequent
layers in a neural network C2. NEUROCARTOGRAPHY visualizes the user-selected
concept’s cascade effect, helping users interpret the successive concept initiations and
relationships (Sec 3.6.2).
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3.4 Model Choice and Background

In this work, we demonstrate our approach using InceptionV1 [57], a prevalent, large-
scale image classifier that achieves top-5 accuracy of 89.5% on the ImageNet dataset that
contains over 1.2 millions images across 1000 classes. InceptionV1 consists of multiple
inception modules of parallel convolutional layers. In each module, there are four layers:
an input layer, an intermediate layer where kernels’ size are 3x3, another intermediate layer
where kernels’ size are 5x5, and an output layer. Each inception module is given a name
of the form “mixed{number}{letter},” where the {number} and {letter} denote the loca-
tion of a layer in the network. In InceptionV1, there are 9 such modules: mixed3{a,b},
mixed4{a,b,c,d,e}, and mixed5{a,b}. The input and output layer are given by the module
name. For the intermediate layers, an suffix of either 3x3 or 5x5 is appended. For example,
mixed3b is an earlier input layer and mixed3b 3x3 is an intermediate layer. While there are
more technical complexities in each inception module, we follow existing interpretability
literature and consider the 9 mixed layers as the primary layers of the network [56, 100].
Although this work uses specific architectural choice, the proposed summarization and vi-
sualization techniques are general and can be applied to other neural network architectures
in other domains.

3.5 Scalable Neural Network Summarization

NEUROCARTOGRAPHY introduces two new scalable summarization techniques: (1) neu-
ron clustering groups neurons based on the semantic similarity of the concepts detected
by those neurons, and (2) neuron embedding encodes the associations between related
concepts based on how often they co-occur. NEUROCARTOGRAPHY leverages these tech-
niques to summarize concepts learned by neural networks. We formulate neuron clusterings
in Sec 3.5.1, describe neuron embeddings in Sec 3.5.2, and detail how we filter concepts
that are important for the prediction of each class in Sec 3.5.3.

3.5.1 Neuron Clustering

We aim to discover groups of neurons within the same layer that detect the same concepts.
Our main idea is to group neurons that have similar activation maps. A neuron’s activation
map is a 2D image representing the neuron’s response to an input instance, computed by
the convolution of a trained kernel applied to the previous layer. A neuron’s activation
map reflects features detected by a neuron, showing increased values in regions of the map
where detected features exist. Thus, if two neurons have similar activation maps, where
highly activated areas of two activation maps largely overlap, we group the neurons. For
example, in Fig 3.2, two neurons 460 and 483 in layer mixed4c of InceptionV1 are grouped
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by our approach, since their activation maps have high values on similar areas. Our neuron
clustering approach has two phases. First, in the preprocessing stage, we cluster neurons
quickly and efficiently without looking at neurons’ activation maps in detail. Next, in
the main clustering stage, we further divide the preprocessed neuron groups based on the
degree of overlap in the neurons’ activation maps.

Preprocessing: Group Neurons Based on Common Preferred Images

The preprocessing stage aims to efficiently and quickly cluster neurons before comparing
neurons’ activation maps in detail. Our main idea is to group neurons if they are highly
activated by many common images. For each neuron i, we first find a set of k images that
maximally activate i. We sort the images by the maximum value of activation maps of i for
given those images, and take the first k images. We denote the set of top k images for i as
Xi. For two neurons i and j, we define their similarity as the Jaccard similarity of Xi and
Xj as follows.

Definition 1 Concept Similarity Based on Top Images. Given two neurons i and j, and
the neurons’ top image sets Xi and Xj , we define the similarity of i and j as the Jaccard
similarity between Xi and Xj . This value is 0 when the two image sets are disjoint, and 1
when they are equal. Neurons i and j are more similar when the Jaccard similarity is closer
to 1. We formally define the similarity of i and j in Eq. (3.1)

SimTopImgs(i, j) =
|Xi ∩Xj|
|Xi ∪Xj|

(3.1)

To scalably group neurons based on the common image sets, NEUROCARTOGRAPHY

uses two techniques: (1) Min-Hashing efficiently approximates the Jaccard similarity be-
tween two neurons’ top image sets; (2) Locality-Sensitive Hashing (LSH) efficiently hashes
similar neurons in terms of the Jaccard similarity into the same buckets with high probabil-
ity. It is a popular technique to use Min-Hashing and LSH to efficiently estimate Jaccard
similarity between two sets and find sets of similar items, due to their scalability and theo-
retical guarantees on the accuracy of finding nearest neighbors [101, 102, 103, 104, 105].

Min-Hashing. It is computationally costly to measure the Jaccard similarity between
large sets due to the expensive set intersection and union operations that Eq. (3.1) involves.
Min-Hashing [101] efficiently estimates the Jaccard similarity. Let h be a hash function
that randomly maps the entire items {1, ..., N} to {1, ..., N} in one-to-one correspondence.
Let hmin be a min-hash function that outputs the minimum value retrieved from the function
h: for a set S, hmin(S) = mins∈S(h(s)). The key property of Min-Hashing is that the prob-
ability of the hmin values of two sets being equal is equal to the Jaccard similarity between
the sets. Formally, for two sets S1 and S2, Pr[hmin(S1) = hmin(S2)] = Jaccard Similarity
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between S1 and S2. For each neuron i, we define Ii as the index of images in Xi. By using
the theoretical property of Min-Hashing, Pr[hmin(Ii) = hmin(Ij)] = SimTopImgs(i, j).

Locality-Sensitive Hashing (LSH). Min-Hashing efficiently estimates the similarity of
two neurons’ top common images. However, it is still computationally expensive to mea-
sure the similarity of all neuron pairs. LSH is a scalable technique that finds reasonable
approximations for grouping similar items without comparing all item pairs [104, 106,
107]. For each neuron i and its top images’ index set Ii, we produce n Min-hash values
h1(Ii), ..., hn(Ii) with n hash functions h1, ..., hn. Then we partition the n values into b

bands, each consisting of r values, such that n = b × r. For each band, we hash neurons
into the same buckets where r hash values of such neurons are identical. Then we finally
cluster i and j in the same group, if they appear in the same bucket in at least one band.
Theoretically, the probability that neuron i and j will hash to the same bucket in at least
one of the b bands is 1 − (1 − sr)b, where s is the true Jaccard Similarity between Ii and
Ij [107].

Main Clustering: Group Neurons Based on Overlap of Activation Maps

While the preprocessing stage offers an efficient approach for preliminary neuron grouping,
the main clustering stage performs finer clustering based on overlap of activation maps. In
the preprocessing stage, for example, neurons for “cars” and neurons for “roads” might be
grouped together, as those concepts may frequently co-occur in the same images. The main
clustering stage further divides these neurons into different groups based on the concepts
encoded in the activation map of the neurons. Within a preprocessed group, we finally
cluster neurons in the same group, if highly activated part of the neurons’ activation maps
overlap significantly. We formally define the similarity of neurons i and j used in the main
clustering stage as follows.

Definition 2 Concept Similarity Based on Activation Map. Given an input image x and
two neurons i, j in the same layer, we denote their activation map as Zi(x) and Zj(x). To
take only highly activated parts in each activation map, we quantize the activation maps as
Qi(x) = Zi(x) > 0 and Qj(x) = Zj(x) > 0, where the quantized activation maps are a
boolean matrix (i.e., true means high activation). We define the concept similarity of i and
j in Eq. (3.2), where ∧ and ∨ are element-wise and and or operation respectively, and
numTrue(·) returns the number of true values in the input matrix. If numTrue(Qi(x) ∨
Qj(x)) = 0, the similarity between i and j is defined as 0.

SimActMap(i, j) =
numTrue(Qi(x) ∧Qj(x))

numTrue(Qi(x) ∨Qj(x))
(3.2)

The similarity SimActMap(i, j) in Eq. (3.2) can be interpreted as the Jaccard similar-
ity of highly activated parts in activation maps of i and j. We leverage Min-Hashing and
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LSH in the main clustering phase again for improved scalability. For each neuron group
G created in the preprocessing stage, we sample t images from the union of every belong-
ing neuron’s top k images. We denote the set of such sampled images as XG. Formally,
XG = sample(∪i∈GXi, t), where sample(S, t) randomly samples t items in set S. The
main reason we use the sampled images (instead of all images) is that using all images is
not very useful; because neurons selectively respond to only some images, the neurons are
not activated at all by many images. To compare the similarity of two neurons, we only
consider cases where both neurons are highly activated. Thus, we sample images from the
union of top k images produced in the preprocessing stage, which includes many images
that are likely to activate many neurons in the group G. For each group G produced in
the preprocessing phase and for each image x ∈ IG, we run LSH to further group neurons
based on the activation map. Then we finally group two neurons in the same bucket if the
two neurons are hashed in the same bucket for least one image in IG.

Hyperparameter Selections for Neuron Clustering

Our neuron clustering approach uses a few hyperparameters, where the total number of
neurons in InceptionV1 (n) is 6,860: t is the maximum number of sampled images for each
preprocessed neuron group, k is the number of top images (among 1.2M images) for each
neuron, b is the number of bands in LSH, and r is the size of the bands. t helps reduce
runtime through sampling; a larger value means using more samples (thus longer runtime).
We experimented with values in [50, 200] and observed little change in the results, thus we
decided on t = 100. A larger k increases the chances of discovering more neuron pairs
that are similarly activated. However, a value that is too large (e.g., 1M) means most neu-
rons would have highly similar or identical sets of top images. We decided on k = 200,
the highest value that provided good clustering while keeping total runtime reasonable. A
larger b provides more opportunities to group neurons that have high Jaccard similarities.
For preprocessing, we experimented with values in [5, 2500] and the clustering results sta-
bilized after b reached 1500, thus we used b = 2000. For main clustering, we experimented
with values in [5, 32], and used b = 20 as clustering results did not change beyond that. A
larger r allows us to prune neuron pairs with low Jaccard similarities. However, a value
that is too large could prune neuron pairs even if they have high Jaccard similarities. Thus,
we aimed to pick a value that is not too large, or too small. We experimented with values
in [2, 5] for preprocessing, and [2, 30] for main clustering, and found the “middle” values
of 3 and 15, respectively, provided good coherence among examples image patches in the
cluster results.
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3.5.2 Neuron Embedding

To encode associations between concepts detected by neurons, we learn neuron embed-
dings that preserve the relatedness of such concepts, where neurons that detect more related
concepts are located closer in the embedding space. Our embedding approach consists of
two steps.

• Step 1. Learn vector representations of all neurons to encode relatedness among
neurons’ concepts. (Sec 3.5.2)

• Step 2. Reduce the dimensions of the learned vector representation to 2D for visual-
ization (Sec 3.5.2), which we will describe in Sec 3.6.1.

The decision to adopt a two-step approach to first generate higher-dimensional vector
representations for neurons (Step 1) was motivated by prior work [108, 109, 110], where
abstract concepts are better captured by higher-dimensional representations, which opens
up the possibilities for supporting interpretation tasks at higher fidelity.

Step 1: Encode Relatedness of Neurons’ Concepts via Vector Representations

The objective function J to minimize of our embedding approach is defined in Eq. (3.3),
where D is a set of sampled neuron pairs detecting highly related concepts, Vi is the embed-
ding vector of neuron i to learn, and σ(x) is the sigmoid function (i.e., σ(x) = 1/(1+e−x)).

J =
∑

(i,j)∈D

− log(σ(Vi · Vj)) (3.3)

The objective function induces the embedding vectors Vi and Vj of neurons i and j detecting
highly related concepts to yield high σ(Vi · Vj). A large value of the dot product of two
vectors indicates that the vectors are far from the origin in the same direction. The sigmoid
function controls the magnitude of dot product, so that those vectors do not move too far
away from the origin. Thus, the objective function induces vectors of highly related neurons
to be located closely and moderately far away from the origin. Our use of cross-entropy
loss was motivated by prior work [110] where no predefined classes or labels are available,
which is the case here (i.e., no concept labels for each neuron).

To sample neurons of highly related concepts, we find neurons that are frequently co-
activated. We reuse the top k images for each neuron which are obtained at the prepro-
cessing stage of neuron clustering (Sec 3.5.1). For each image, we first generate a list of
neurons that have such image in the neuron’s top k images. Then, we sample neuron pairs
from the top neuron list. We first randomly shuffle the neuron list, apply a sliding window
of size 2 on the shuffled list, and sample pairs of neurons that are co-occurred in the sliding
window. A good property of using sampled neuron pairs instead of all pairs is that sampled
pairs indirectly can imply the relation of all neuron pairs. If two pairs (a, b) and (b, c) of
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highly related items are sampled, we can infer that (a, c) is also highly related. Our em-
bedding approach efficiently learns and preserves such indirect concept relatedness, as well
as direct relatedness straightly from the sampled pairs. Note that the number of sampled
pairs is linear to the number of neurons, not quadratic. This sampling approach results in
the training data of size linear to the number of neurons, and the time complexity of our
neuron embedding method is linear to the number of neurons.

To further speed up the optimization process, we use negative sampling approach: con-
cretely, we find pairs of non-related neurons and induce their embedding vectors far apart.
For a given neuron, we find another non-related neuron by randomly sampling one among
all neurons in the same layer. The new objective is defined in Eq. (3.4), where M is the
size of negative sampling for a pair of related neurons (i, j).

J =
∑

(i,j)∈D

(
− log(σ(Vi · Vj))

+
M∑

m=1

(
− log(1− σ(Vi · Vm))− log(1− σ(Vj · Vm))

)) (3.4)

We use gradient descent to learn neuron vector representations that optimize J . The deriva-
tives of objective function J with respect to the neuron vector Vi and Vj are as in Eq. (3.5)
and (3.6).

∂J

∂Vi

= −
(
1− σ(Vi · Vj)

)
Vj +

M∑
m=1

σ(Vi · Vm)Vm (3.5)

∂J

∂Vj

= −
(
1− σ(Vi · Vj)

)
Vi +

M∑
m=1

σ(Vj · Vm)Vm (3.6)

We update the embedding by gradient descent as in Eq. (3.7), where γ is the learning rate.
Further algorithm details are described in Appendix A.

Vi ← Vi − γ
∂J

∂Vi

, Vj ← Vj − γ
∂J

∂Vj

(3.7)

Step 2: Dimensionality Reduction

To project neurons’ vector representations learned in the previous step onto a 2D space,
we use UMAP, a non-linear dimensionality reduction technique that preserves global data
structures and local neighbor relations [111].
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Hyperparameter Selection for Neuron Embedding

Our neuron embedding uses a few hyperparameters: size of negative sampling M , number
of epochs, and learning rate γ for training. Tuning M helps prevent overfitting; a value
that is too large could introduce significant noise during training. Epochs and learning rate
affect the training runtime and quality. More epochs usually causes more distinct clusters
to form. We experimented with different combinations of hyperparameter values and found
these chosen ones provide a good visual results: M=10, epoch=30, γ=0.01.

3.5.3 Filtering Each Class’s Important Model Substructures

Important Neurons and Neuron Groups

Our goal is to summarize important model substructures (i.e., neuron groups) that con-
tribute to a model’s class prediction. To do so, we follow an approach similar to [78], and
adapt our implementation to include neuron groups. The importance of each neuron i in
layer l for the prediction for a class c is computed as the number of images of c by which
i is maximally activated. Whether a neuron i in layer l is highly activated for an image x

is decided by the maximum value of activation map of i for x (i.e., max(Z l
i(x))). For an

image x for a class c, we find 5 most activated neurons for each layer as suggested in [78].
After obtaining the importance of each neuron for a class c, we then compute impor-

tance of each neuron group for c. For a neuron group G, we take 10 neurons at most that
have the highest importance for c, to avoid overcrowding the visualization, while we also
observe that 10 neurons are enough to explain what concepts the group is detecting. We
then compute the importance of G for c as the average of importance score of at most the
top 10 neurons.

Important Connections among Neurons and Neuron Groups

Important neurons and neuron groups summarize concepts that are important for a class
prediction. We further want to describe how those concepts interact to form higher level
abstractions, by representing the connections between the model substructures. We follow
similar steps in [78] to compute the influence from each neuron in a given layer to each
other neuron in a successive layer. At a high-level, for a given class c, the influence of each
neuron-neuron connection is the number of images of c that use such connection as a major
path to transmit high activation signal. Thus, if two neurons have strong influence values,
it means that the neuron in an earlier layer activated the other neuron in a subsequent layer
for many images of the selected class. Finally, to detect if an image uses a connection as
a major path, we compute the maximum convolution value of activation map correspond-
ing to the source neuron multiplied with a slice of learned kernel tensor between the two
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neurons. We refer the reader to [78] for a more in-depth treatment of this approach. Our
implementation deviates from [78] in the last step, when aggregating influence values for
each neuron group. For two neuron groups G1 and G2, we compute average of the influ-
ence values between any neuron in G1 and any neuron in G2, and use such average value
as the connection weight between G1 and G2.

3.6 User Interface

Based on our design goals (Sec 3.3) and our neural network summarization techniques (Sec
3.5), we present NEUROCARTOGRAPHY, an interactive system that summarizes concepts
detected by neuron clusters (Fig 3.1). The NEUROCARTOGRAPHY interface consists of
three components: (1) the header shows metadata and contains a few controls for the Graph
View, (2) Neuron Projection View and Neuron Neighbor View provides a global overview
of all neurons (Sec 3.6.1), and (3) Graph View visualizes concept relations (Sec 3.6.2).

3.6.1 Neuron Projection View and Neuron Neighbor View: Global Overview of Neu-

rons’ Concept

The Neuron Projection View (Fig 3.1A) aims to show a global overview of all neurons in a
model, such that neurons detecting more related concepts are positioned closer. We project
embedding of all neurons computed in Sec 3.5.2 onto a 2D space.

In the Neuron Projection View, each neuron is represented as a rectangle. Hovering
over a neuron shows representative example patches to explain such neuron’s concepts
(Fig 3.3). Users can focus on a neuron by clicking the corresponding rectangle. As a
result, the selected neuron is marked with inner white rectangle, and the selected neuron’s
neighbors are highlighted with blue in the embedding space. Also, at the bottom left,
Neuron Neighbor View displays the neighbor neurons with their example patches (Fig 3.3).
At the top, Neuron Projection View provides multiple filtering options, such as showing all
neurons, neurons for a selected class, and neurons for selected clusters. Users can freely
zoom and pan in the view.

3.6.2 Graph View: Neuron Clusters and their Interaction

The goal of Graph View is to visualize what concepts are detected by which clusters of
neurons, and how those clusters collaborate to form higher-level concepts and the final pre-
diction (Fig 3.1C). Graph View provides two modes through toggle button in the header: (1)
class exploration mode (Sec 3.6.2) to visualize concepts important for a user-selected class
and (2) concept cascade mode (Sec 3.6.2) to selectively activate a concept and examine its
cascade effect.
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Clicking a neuron highlights
other neurons that detect
the most related concepts
in the Neuron Projection View
and the Neuron Neighbor View.

Hovering over a neuron
shows the neuron's
example patches.

Figure 3.3: Neuron Projection View visualizes associations between related concepts based
on co-occurrence, by projecting neurons on a 2D space where each rectangle is a neuron.
Hovering over a neuron shows its example data patches in a popup. Clicking a neuron
selects it, marking it with a white dot at its center. Related neurons are in blue, and related
example patches are displayed in Neuron Neighbor View (at bottom left).

Class exploration

When a user selects a class in the header, Graph View shows a subgraph of the entire
neural network that is relevant for the class prediction (Sec 3.5.3). The nodes (circles) are
neuron clusters or individual neurons within the same layers, displayed in the order of their
important scores computed in Sec 3.5.3. The edges represent influence among the nodes,
where edge weights are computed in Sec 3.5.3. Thicker edges indicate more important
connections. Users can filter the graph based on the importance score, using the a slider in
the header. The graph visualization is shown in a zoomable and panable canvas.

When a user hovers over a node, NEUROCARTOGRAPHY first highlights the node and

37



the edges connected to the hovered node with pink, then displays the Cluster Popup (Fig
3.1D) view, which contains example patches. User can pin interesting nodes by clicking
them. The pinned nodes are highlighted in the Neuron Projection View and the Graph View
with pink. Neuron Projection View and Graph View are tightly integrated: hovering over
a neuron in Neuron Projection View highlights its belonging cluster in the Graph View,
and hovering over a node in Graph View highlights its member neurons in the Neuron
Projection View. Users can filter neurons in the Neuron Projection View to focus on pinned
nodes using the dropdown menu in the header.

Concept Cascade: Successive Concept Detection Initiated by a User-Selected Concept

Besides displaying how detected concepts interact within two adjacent layers for given
images of a class, Graph View visualizes how one concept can influence multiple other
concepts across all layers and classes through a concept cascade. Users can enter the con-
cept cascade mode by toggling the button in the header (Fig 3.4, at 1). Then, users can
click a concept cluster node to select it and manually activate the selected concept cluster
(Fig 3.4, at 2), without feeding any input images. Clicking causes the neuron cluster to
induce a concept cascade that triggers higher-level concepts across subsequent layers in the
model. Manual concept stimulation involves first setting every value in the activation map
of the selected cluster’s member neurons to 1, then forward-feeding such activation to the
next layers through existing connections between neurons. In the concept cascade, neuron
clusters that are highly related to Maltese dog, and strongly contribute to the prediction
“furry face,” are included as part of the class’s graph summary (Fig 3.4, left). The cascade
also includes concepts that related to the Maltese dog class, but are not as important for its
prediction, such as “bear face” and “black dog face.” We highlight such concepts and their
connections on the right side of the class’s graph summary (Fig 3.4, right).

3.6.3 System Implementation

To broaden access to our work, NEUROCARTOGRAPHY is web-based and can be accessed
from any modern web-browser. NEUROCARTOGRAPHY uses the standard HTML/CSS/JavaScript
stack, and D3.js for rendering SVGs. We ran all our deep learning code on a NVIDIA DGX
1, a workstation with 8 GPUs (each with 32GB of RAM), 80 CPU cores, and 504GB of
RAM. With this machine we could generate everything required for all 1000 ImageNet
classes under 24 hours. The most computation intensive part was computing all neurons’
activation maps for all images (once for determining top-k images for each neuron; once
for main clustering stage; each run was about 5 hours). Each of the other processes, thanks
to the scalability of Min-Hashing, LSH, and the sampling-based neuron embedding, took
less than an hour.
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1. Click the toggle button
in the header to switch to
the concept cascademode

Original graph of
selected class (Maltese dog)

Additional concepts triggered by
the selectively activated node2. Click a node

to initiate concept cascade

Figure 3.4: Clicking a concept cluster node activates the concept, causing the neuron cluster
to induce a concept cascade that triggers higher-level concepts across subsequent layers
in the model. Left: in the concept cascade, some neuron clusters are strongly contributing
to current class’s prediction and are shown in the class’s graph summary. Right: Concepts
less related are shown on the right hand side.

3.7 Human Experiment to Evaluate NEUROCARTOGRAPHY

To validate the human interpretability of the clusters discovered with NEUROCARTOG-
RAPHY, we conducted a large-scale human evaluation using Amazon Mechanical Turk, a
standard practice for computer vision tasks [112], basing our experimental design on sim-
ilar work in image [62] and language [113] based cluster interpretability studies. For the
experiment each user was presented a series of tasks like the task shown in Fig 3.6. In each
task we display the example patches for 6 neurons which are composed of 6 randomly sam-
pled neurons, or 5 neurons from a cluster (determined either by NEUROCARTOGRAPHY or
hand selected) as well as one ‘intruder’ neuron which is randomly sampled from the rest of
the network. Users were told that each task contains either all random patches, or a cluster
of 3-5 related neurons, and were asked to identify which, if any, of the shown patches form
a cohesive cluster and could select any number of the given options. By not disclosing the
number of intruders users are forced to only select clusters which are fully coherent among
themselves (as opposed to simply finding the least representative example). We can then
measure ‘false positives’ (where users mistakenly identify the intruder as part of the clus-
ter) and ‘false negatives’ (where users may decide to not include patches from the cluster).
This style of study measures the performance of human annotators against model output
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Figure 3.5: ROC Curve for user estimations of cluster inclusion. Both hand picked and
NEUROCARTOGRAPHY generated clusters perform well overall, implying that the clusters
generated are interpretable enough to be consistently recognised by different users.

as ground truth, the inverse of standard machine learning metrics, in order to understand
the difficulty of the interpretation task that the interpretability method (in our case clusters
from NEUROCARTOGRAPHY) provides. We assume that higher performance by humans
equates to an easier task for humans to interpret, highlighting a better methodology for pro-
viding explainability. Our evaluation specifically takes the inverse framing of other studies
which ask users to positively identify the intruder rather than the cluster [113, 62]. We
do this in order to independently measure the ‘false negative’ class of errors that are not
possible to detect using pure intruder detection.

For our study, we generated 99 unique sets of neurons such as those in Fig 3.6, of which
43% were generated using NEUROCARTOGRAPHY, 43% were generated from hand picked
clusters, and 14% were generated completely at random with no underlying cluster. These
sets were used to populate 9 different questionnaires of 11 sets which Amazon Mechanical
Turk workers located within the U.S. completed, receiving compensation of $1 per ques-
tionnaire and taking an average time of 7 minutes to complete. An average of 42 unique
workers completed each questionnaire, for a total of 3374 unique human judgements of
clusters from 244 unique workers overall.
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True Negative True PositiveFalse NegativeTrue Positives

NeuroCartography Detected Cluster

User Label
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User Selections

Figure 3.6: Example question from MTurk evaluation. Users were presented with six
neuron patches and asked to determine if there is a coherent cluster and if so provide a
short label. In this example of a NEUROCARTOGRAPHY generated cluster we can see
which neuron is the out of cluster intruder, which neurons are in the cluster, which options
the user selected, and the classification results of true positives for the neurons the user
correctly selected, true negative for not selecting the intruder, and a false negative error for
not selecting a neuron that is in the cluster.

3.7.1 Cluster Cohesion

The measure of cluster cohesion used in other intruder detection experiments is accuracy on
the binary prediction task on whether a user correctly identified the intruder. In our study
this is equivalent to the false positive rate for cluster inclusion predictions. For the random
baseline, the false positive rate was found to be 30.6%± 3.1% (showing how easy it is for
humans to find spurious patterns where none exist) while hand picked clusters had a false
positive rate of 6.1% ± 1.2%, and NEUROCARTOGRAPHY generated clusters had a false
positive rate of 11.8% ± 1.7%. With 95% confidence intervals, both clustering techniques
significantly outperformed the baseline on the binary task.

However, in real applications, and in the context of this study, users have varying thresh-
olds for how similar neurons must be in order to be included within the same cluster, even
if they are using the same underlying similarity heuristic for their judgements. Because
our study design gave participants a choice for the number of options to select within a
given set, each neuron’s inclusion is essentially an independent judgement of whether it fits
within the cluster (if the user determines a cluster exists). By getting enough of these inde-
pendent measurements for each neuron we can use the proportion of users who choose to
include a neuron within a cluster as a score of how likely users expect it to be included, or
how cohesive the specific neuron is with the the context of the whole cluster. By using this
score instead of binary accuracy, we can evaluate the full space of trade-offs between false
negative and false positive errors using the receiver operative characteristic (ROC) which
provides a fuller, threshold-independent picture of performance, offering a more robust
variation of the specific experimental setup and balance of options and intruders [114].
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The score used to define the ROC in Fig 3.5 was calculated using the percentage of
users including a given neuron within a cluster in the case that the user determines there is
a cluster present in the set (that is they select 3, 4, or 5 neurons as opposed to 0). We used
this method for both hand selected and NEUROCARTOGRAPHY generated clusters (and ex-
cluded the random baseline as it contains no true positive values). Taking the area under
the curve (AUC) of the ROC for each clustering method (Fig 3.5) we find again that hand
selected clusters again outperform NEUROCARTOGRAPHY, but that both perform substan-
tially better than chance with AUC values of 0.97 ± 0.04 for hand created clusters and
0.91 ± 0.04 for NEUROCARTOGRAPHY. This result shows that NEUROCARTOGRAPHY

produces clusters that are nearly as interpretable as hand crafted clusters across different
inclusion thresholds, and are both much more reliably detected than chance.

3.7.2 Label Cohesion

To further understand the consistency of the patterns agreed upon by users, we asked users
to describe individual clusters they selected. Without a ground truth for cluster descriptions,
we looked to statistically compare how different users labeled the same clusters in order to
see the consistency of the discovered concept. To compare cluster level descriptions, we
rely on sentence level embeddings from the Universal Sentence Encoder (USE)[115]. USE
works by projecting sentences into embeddings which can be compared (using cosine sim-
ilarity) to identify the presence of similar ideas. USE similarity is preferred to word choice
overlap metrics used in [62], since it captures semantic similarity of the actual concepts
being discussed regardless of phrasing (for example matching labels describing the same
set with “dots,” “circles,” and “round objects”).

First, in order to build a baseline for semantic similarity values, we calculated the av-
erage pairwise similarity between all labels across different clusters throughout the dataset
to be 0.301 ± .003. Then for each unique set, we found the average pairwise similarity
between the labels from all of the users with labels for that specific set. These average
within-group similarities for each class of cluster are 0.59 ± 0.05 for hand picked clusters
and 0.51 ± 0.05 for NEUROCARTOGRAPHY generated clusters. Both of these results are
significantly higher than the baseline, showing semantic consistency between how users
understand the clusters that they detect. Complementary future evaluation may assess the
degree to which the neuron groups are capturing redundant semantics (e.g., track accuracy
changes as neurons are pruned).
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3.8 Usage Scenarios

3.8.1 Automatically Discovering Backbone Concept Pathways for Related Classes

DNNs are known to learn general concepts: this generalizability is widely leveraged in
transfer learning, model compression, and model robustness research [116, 117]. How-
ever, it is challenging to automatically discover and interpret which key concepts are pro-
gressively combined or connected internally in a model, or how such “backbone” concept
pathways may be shared across related classes. Recent research has proposed approaches
to help users interpret how features may be connected [78], but such approaches are per-
formed at the neuron level, limited to only analyzing the relationships of neurons across
two adjacent layers, instead of across the whole network. The biggest drawback is the
dependence on manual processes.

NEUROCARTOGRAPHY’s Concept Cascade can help automatically discover backbone
concept pathways for related classes across all layers. Users can selectively activate a con-
cept and examine the concept’s cascade effect to interpret the successive concept initiations
in layer layers, while identifying concepts’ general relationships to related classes. For ex-
ample, while inspecting the Maltese dog class, we found a cluster detecting “dog face” in
mixed4c (Fig 3.7). Through Concept Cascade mode, we manually activate this concept to
trigger and discover its related concepts in subsequent layers not only for the Maltese dog
class, but also for other breeds of dogs such as Beagle and Appenzeller. Through these
concept cascades, we visualize how concepts may evolve over the network, such as from
the generic “dog face” concept to the specific “furry dog face” concept in later layers.

Backbone concept pathways can also be used to highlight learned generalize properties,
like “curve detectors” (Fig 3.8). Existing work [118] has observed that several neurons in
the earlier layers detect curves of different orientations. Even though these detectors were
discovered manually, their analysis yields interesting properties of the curve concepts, like
how sensitive the curve detectors are to curvature and what orientations do they respond
to. Using NEUROCARTOGRAPHY, we automatically discovered more curve detectors in
InceptionV1. We selected a node in mixed3b 5x5 layer which detects a curve of a specific
orientation, selectively activated in the Concept Cascade mode, and discovered the curve
detectors across layers such as neurons shown in Fig 3.8. We also observed that those
curve detectors are clustered in the preprocessing stage of our clustering algorithm, but not
grouped by the main clustering stage. This is because the curve detectors are highly selec-
tive for orientations, causing highly activated regions of the activation maps are different
by the detectors.
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Figure 3.7: Through Concept Cascade, users manually activate the “dog face” concept to
discover its related concepts in subsequent layers, not only for the current “Maltese dog”
class but also for other breeds of dogs. Concept Cascade helps users visualize how concepts
may evolve over the network, such as from the more generic “dog face” concept to the more
specific “furry dog face” concept in later layers. Concepts are manually labeled.
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Figure 3.8: Concept Cascade automatically discovers neurons that detects curve of specific
orientations, which have been manually found in [118].
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3.8.2 Finding Isolated Concepts

While inspecting the Neuron Projection View, we noticed a small number of neurons are
distinctively positioned very far away from all other neurons in the embedding space (Fig
3.9, right). Inspecting such isolated neurons reveals that they are detecting the “watermark”
concept (see example from mixed5b-337 layer at Fig 3.9, top-left). Interestingly, as wa-
termarks can appear on almost any kinds of images independent of the image content that
the watermarks are placed above (e.g., copyright watermark can appear on an image of a
car, a dog, or a pineapple), this means the neurons responsible for detecting watermarks
would frequently co-activate with each other, but such “watermark neurons” co-activate
relatively less so with the neurons detecting the concepts that describe the image content
since watermarks are not associated with only some specific features. NEUROCARTOGRA-
PHY’s neuron embedding algorithm is able to discover this interesting phenomenon about
the watermark neurons, placing them close together to reflect the concept coherence for wa-
termark, and away from other neurons to reflect the watermark’s non-specificity for image
content. NEUROCARTOGRAPHY allows us to easily verify our observations and conclu-
sions. For example, selecting mixed5b-337, a watermark neuron (Fig 3.9, top-left), in the
Neuron Projection View brings in its most related neurons in the Neuron Neighbor View
(e.g.,mixed5b-86, mixed4c-342, mixed4e-296), which are all watermark neurons as well.
These neurons are also clustered in the Graph View (e.g., in mixed5b layer, neurons #337,
#113, #289, and #86 appear in the same neuron cluster).

3.9 Conclusion, Limitations and Future Work

We have presented NEUROCARTOGRAPHY, an interactive system that scalably summa-
rizes and visualizes concepts learned by DNNs via scalable concept summarization tech-
niques for neuron clustering and neuron embedding. Through a large-scale human eval-
uation, we have demonstrated that our techniques discover neuron groups that represent
coherent, human-meaningful concepts. Our system runs in modern browsers and is open-
sourced. Below, we discuss limitations of our approach and future research directions for
extending this investigation.

Further dissecting poly-semantic neurons. We believe our work has taken a major step
in addressing the research challenging of automatically and scalably grouping neurons that
detect the same concept, going beyond manual, neuron-level inspection (e.g., [88, 78, 61,
54]) to provide a higher-level perspective for the knowledge learned by a network. Our
work, however, is not designed for “dissecting” neurons that may become activated for
multiple seemingly unrelated concepts, which has been observed in recent work, e.g, [58].
For example, in InceptionV1, at least poly-semantic neuron that responds to cat faces,
fronts of cars, and cat legs [58]. NEUROCARTOGRAPHY cannot “split” this neuron into
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discovered by Neuron Projection View

Figure 3.9: NEUROCARTOGRAPHY reveals the interesting phenomenon about the isolated
“watermark” concept (example image at top-left), that watermarks are not specific to any
image features (i.e., can appear on almost any kinds of images), thus watermark neurons
are placed far away from all other neurons due to relatively low co-activations (see Neuron
Projection View on the right).

multiple neuron, each detecting one concept and put that newly created neuron into its
logical neuron cluster with other similar neurons in the network. Tackling poly-semantic
neurons is an exciting and challenging direction for future work.

Integrating NEUROCARTOGRAPHY into more applications. Currently, our work fo-
cuses on using NEUROCARTOGRAPHY to enhance interpretability of DNNs. As DNNs
are increasingly used in an ever-increasing variety of applications, our approaches can help
practitioners and researchers assess the effectiveness of their ideas. For example, in the
neural network compression community, several methods [96, 92, 93, 94] leverage po-
tential neuron redundancies to generate compressed models while maintaining prediction
accuracy. NEUROCARTOGRAPHY can help researchers interpret the semantic similarity
between the compressed model and the original, uncompressed models, which helps them
assess if their techniques are indeed preserving the “gist” of the knowledge important for
prediction, or if they are leveraging some other features of the data of the model. Currently,
concepts need to be manually labeled; automatic labeling will increase the tool’s usability.
Also, current Neuron Projection View presents all neurons in the same plot even though
some concepts’ abstraction levels could be very different; our future work includes provid-
ing users with the ability to select layers that they want to investigate. We look forward
to seeing the impact that NEUROCARTOGRAPHY may contribute, from assisting evalua-
tion of existing techniques (e.g., model compression, adversarial attacks and defenses), to
developing new ones.
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Visualizing other neural network models. We have justified our model choice in sec-
tion 3.4; we are working to extend support to other CNN models. Our approach can easily
be adapted to simpler models (e.g., VGG [33]). For more complex networks (e.g., ResNets
[119], small extensions would be needed to handle more types of connections present in
the network (e.g., skip connections could be represented as skip-layer edges in the graph
view).
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CHAPTER 4

SUMMIT: SCALING DEEP LEARNING INTERPRETABILITY BY
VISUALIZING ACTIVATION AND ATTRIBUTION

SUMMARIZATIONS

Deep learning is increasingly used in decision-making tasks. However, understanding how
neural networks produce final predictions remains a fundamental challenge. Existing work
on interpreting neural network predictions for images often focuses on explaining predic-
tions for single images or neurons. As predictions are often computed based off of millions
of weights that are optimized over millions of images, such explanations can easily miss
a bigger picture. We present SUMMIT, the first interactive system that scalably and sys-
tematically summarizes and visualizes what features a deep learning model has learned
and how those features interact to make predictions. SUMMIT introduces two new scalable
summarization techniques: (1) activation aggregation discovers important neurons, and (2)
neuron-influence aggregation identifies relationships among such neurons. SUMMIT com-
bines these techniques to create the novel attribution graph that reveals and summarizes
crucial neuron associations and substructures that contribute to a model’s outcomes. SUM-
MIT scales to large data, such as the ImageNet dataset with 1.2M images, and leverages
neural network feature visualization and dataset examples to help users distill large, com-
plex neural network models into compact, interactive visualizations. We present neural net-
work exploration scenarios where SUMMIT helps us discover multiple surprising insights
into a state-of-the-art image classifier’s learned representations and informs future neural
network architecture design. The SUMMIT visualization runs in modern web browsers and
is open-sourced.

Deep learning is increasingly used in decision-making tasks, due to its high perfor-
mance on previously-thought hard problems and a low barrier to entry for building, train-
ing, and deploying neural networks. Inducing a model to discover important features from
a dataset is a powerful paradigm, yet this introduces a challenging interpretability problem
— it is hard for people to understand what a model has learned. This is exacerbated in
situations where a model could have impact on a person’s safety, financial, or legal sta-
tus [120]. Definitions of interpretability center around human understanding, but they vary
in the aspect of the model to be understood: its internals [121], operations [122], mapping
of data [123], or representation [26]. Although recent work has begun to operationalize
interpretability [124], a formal, agreed-upon definition remains open [125, 126].
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Existing work on interpreting neural network predictions for images often focuses on
explaining predictions for single images or neurons [45, 43, 56, 100]. As large-scale model
predictions are often computed from millions of weights optimized over millions of im-
ages, such explanations can easily miss a bigger picture. Knowing how entire classes are
represented inside of a model is important for trusting a model’s predictions and decipher-
ing what a model has learned [26], since these representations are used in diverse tasks
like detecting breast cancer [127, 128], predicting poverty from satellite imagery [129],
defending against adversarial attacks [130], transfer learning [131, 132], and image style
transfer [133]. For example, high-performance models can learn unexpected features and
associations that may puzzle model developers. Conversely, when models perform poorly,
developers need to understand their causes to fix them [134, 26]. As demonstrated in Fig
4.1, InceptionV1, a prevalent, large-scale image classifier, accurately classifies images of
tench (yellow-brown fish). However, our system, SUMMIT, reveals surprising associations
in the network that contribute to its final outcome: tench is dependent on an intermedi-
ate person-related “hands holding fish” feature (right callout) influenced by lower-level
features like “scales,” “person,” and “fish”. There is a lack of research in developing
scalable summarization and interactive interpretation tools that simultaneously reveal im-
portant neurons and their relationships. SUMMIT aims to fill this critical research gap.

Contributions. In this work, we contribute:

• SUMMIT, an interactive system for scalable summarization and interpretation for
exploring entire learned classes in prevalent, large-scale image classifier models, such
as InceptionV1 [27]. SUMMIT leverages neural network feature visualization [56, 135,
57, 42, 53] and dataset examples to distill large, complex neural network models into
compact, interactive graph visualizations (Sec 4.5).

• Two new scalable summarization techniques for deep learning interpretability: (1)
activation aggregation discovers important neurons (Sec 4.4.1), and (2) neuron-influence
aggregation identifies relationships among such neurons (Sec 4.4.2). These techniques
scale to large data, e.g., ImageNet ILSVRC 2012 with 1.2M images [51].

• Attribution graph, a novel way to summarize and visualize entire classes, by combin-
ing our two scalable summarization techniques to reveal crucial neuron associations and
substructures that contribute to a model’s outcomes, simultaneously highlighting what
features a model detects, and how they are related (Fig 4.2). By using a graph represen-
tation, we can leverage the abundant research in graph algorithms to extract attribution
graphs from a network that show neuron relationships and substructures within the entire
neural network that contribute to a model’s outcomes (Sec 4.4.3).

• An open-source, web-based implementation that broadens people’s access to inter-
pretability research without the need for advanced computational resources. Our work
joins a growing body of open-access research that aims to use interactive visualiza-
tion to explain complex inner workings of modern machine learning techniques [136,
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Figure 4.1: With Summit, users can scalably summarize and interactively interpret deep
neural networks by visualizing what features a network detects and how they are related. In
this example, InceptionV1 accurately classifies images of tench (yellow-brown fish). How-
ever, SUMMIT reveals surprising associations in the network (e.g., using parts of people)
that contribute to its final outcome: the “tench” prediction is dependent on an intermediate
“hands holding fish” feature (right callout), which is influenced by lower-level features like
“scales,” “person,” and “fish”. (A) Embedding View summarizes all classes’ aggregated
activations using dimensionality reduction. (B) Class Sidebar enables users to search, sort,
and compare all classes within a model. (C) Attribution Graph View visualizes highly
activated neurons as vertices (“scales,” “fish”) and their most influential connections as
edges (dashed purple edges).

137, 72]. Our computational techniques for aggregating activations, aggregating in-
fluences, generating attribution graphs and their data, as well as the SUMMIT visual-
ization, are open-sourced1. The system is available at the following public demo link:
https://fredhohman.com/summit/.

• Neural network exploration scenarios. Using SUMMIT, we investigate how a widely-
used computer vision model hierarchically builds its internal representation that has merely
been illustrated in previous literature. We present neural network exploration scenarios
where SUMMIT helps us discover multiple surprising insights into a prevalent, large-scale
image classifier’s learned representations and informs future neural network architecture
design (Sec 4.6).

• Broader impact for visualization in AI. We believe our summarization approach that
builds entire class representations is an important step for developing higher-level expla-

1Visualization: https://github.com/fredhohman/summit.
Code: https://github.com/fredhohman/summit-notebooks.
Data: https://github.com/fredhohman/summit-data.
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Figure 4.2: A high-level illustration of how we take thousands of images for a given class,
e.g., images from white wolf class, compute their top activations and attributions, and
combine them to form an attribution graph that shows how lower-level features (“legs”)
contribute to higher-level ones (“white fur”), and ultimately the final outcome.

nations for neural networks. We hope our work will inspire deeper engagement from
both the information visualization and machine learning communities to further develop
human-centered tools for artificial intelligence [136, 138].

4.1 Design Challenges

Our goal is to build an interactive visualization tool for users to better understand how neu-
ral networks build their hierarchical representation. To develop our summarization tech-
niques and design SUMMIT, we identified five key challenges.

C1. SCALABILITY Scaling up explanations and representations to entire classes, and
ultimately, datasets of images. Much of the existing work on interpreting neural
networks focuses on visualizing the top independent activations or attributions for a
single image [45, 43, 56, 100]. While this can be useful, it quickly becomes tire-
some to inspect these explanations for more than a handful of images. Furthermore,
since every image may contain different objects, to identify which concepts are rep-
resentative of the learned model for a specific class, users must compare many image
explanations together to manually find commonalities.

C2. INFLUENCE Discovering influential connections in a network that most repre-
sents a learned class. In dense neural network models, scalar edge weights directly
connect neurons in a previous layer to neurons in a following layer; in other words,
the activation of single neuron is expressed as a weighted sum of the activations from
neurons in the previous layer [139]. However, this relationship is more complicated
in convolutional neural networks. Images are convolved to form many 2D activation
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maps, that are eventually summed together to form the next layers activations. There-
fore, it becomes non-trivial to determine the effect of a single convolutional filter’s
effect on later layers.

C3. VISUALIZATION Synthesizing meaningful, interpretable visualizations with im-
portant channels and influential connections. Given a set of top activated neurons
for a collection of images, and the impact convolutional filters have on later layers,
how do we combine these approaches to form a holistic explanation that describes an
entire class of images? Knowing how entire classes are represented inside of a model
is important for trusting a model’s predictions [26], aiding decision making in disease
diagnosis [127, 128], devising security protocols [130], and fixing under-performing
models [134, 26].

C4. INTERACTION Interactive exploration of hundreds of learned class representa-
tions in a model. How do we support interactive exploration and interpretation of
hundreds or even thousands of classes learned by a prevalent, large-scale deep learn-
ing model? Can an interface support both high-level overviews of learned concepts
in a network, while remaining flexible to support filtering and drilling down into spe-
cific features? Whereas C1 focuses on the summarization approaches to scale up
representations, this challenge focuses on interaction approaches for users to work
with the summarized representations.

C5. RESEARCH ACCESS High barrier of entry for understanding large-scale neu-
ral networks. Currently, deep learning models require extensive computational re-
sources and time to train and deploy. Can we make understanding neural networks
more accessible without such resources, so that everyone has the opportunity to learn
and interact with deep learning interpretability?
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Ex. LeCun, 2015

Figure 4.3: A common, widely shared example illustrating how neural networks learn hier-
archical feature representations. Our work crystallizes these illustrations by systematically
building a graph representation that describe what features a model has learned and how
they are related. We visualize features learned at individual neurons and connect them to
understand how high-level feature representations are formed from lower-level features.
Ex. taken from Yann LeCun, 2015.

4.2 Design Goals

Based on the identified design challenges (Sec 4.1), we distill the following main design
goals for SUMMIT, an interactive visualization system for summarizing what features a
neural network has learned.

G1. Aggregating activations by counting top activated channels. Given the activations
for an image, we can view them channel-wise, that is, a collection of 2D matrices
where each encodes the magnitude of a detected feature by that channel’s learned
filter. We aim to identify which channels have the strongest activation for a given
image, so that we can record only the topmost activated channels for every image, and
visualize which channels, in aggregate, are most commonly firing a strong activation
(C1). This data could then be viewed as a feature of vector for each class, where the
features are the counts of images that had a specific channel as a top channel (Sec
4.4.1).

G2. Aggregating influences by counting previous top influential channels. We aim
to identify the most influential paths data takes throughout a network. If aggregated
for every image, we could use intermediate outputs of the fundamental convolutional
operation used inside of CNNs (C2) to help us determine which channels in a previ-
ous layer have the most impact on future channels for a given class of images (Sec
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4.4.2).

G3. Finding what neural networks look for, and how they interact. To visualize how
low-level concepts near early layers of a network combine to form high-level con-
cepts towards later layers, we seek to form a graph from the entire neural network,
using the aggregated influences as an edge list and aggregated activations as ver-
tex values. With a graph representation, we could leverage the abundant research in
graph algorithms, such as Personalized PageRank, to extract a subgraph that best cap-
tures the important vertices (neural network channels) and edges (influential paths)
in the network (Sec 4.4.3). Attribution graphs would then describe the most activated
channels and attributed paths between channels that ultimately lead the network to a
final prediction (C3).

G4. Interactive interface to visualize classes attribution graphs of a model. We aim to
design and develop an interactive interface that can visualize entire attribution graphs
(Sec 4.5). Our goal is to support users to freely inspect any class within a large neural
network classifier to understand what features are learned and how they relate to one
another to make predictions for any class (C4). Here, we also want to use state-of-
the-art deep learning visualization techniques, such as pairing feature visualization
with dataset examples, to make channels more interpretable (Sec 4.5.3).

G5. Deployment using cross-platform, lightweight web technologies. To develop a
visualization that is accessible for users without specialized computational resources,
in SUMMIT we use modern web browsers to visualize attribution graphs (Sec 4.5).
We also open-source our code to support reproducible research (C5).

4.3 Model Choice and Background

In this work, we demonstrate our approach on InceptionV1 [27], a prevalent, large-scale
convolutional neural network (CNN) that achieves top-5 accuracy of 89.5% on the Ima-
geNet dataset that contains over 1.2 millions images across 1000 classes. InceptionV1 is
composed of multiple inception modules: self-contained groups of parallel convolutional
layers. The last layer of each inception module is given a name of the form “mixed{number}{letter},”
where the {number} and {letter} denote the location of a layer in the network; for exam-
ple, mixed3b (an earlier layer) or mixed4e (a later layer). In InceptionV1, there are 9 such
layers: mixed3{a,b}, mixed4{a,b,c,d,e}, and mixed5{a,b}. While there are more techni-
cal complexities regarding neural network design within each inception module, we follow
existing interpretability literature and consider the 9 mixed layers as the primary layers of
the network [56, 100]. Although our work makes this model choice, our proposed summa-
rization and visualization techniques can be applied to other neural network architectures
in other domains.
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Figure 4.4: Our approach for aggregating activations and influences for a layer l. Aggre-
gating Activations: (A1) given activations at layer l, (A2) compute the max of each 2D
channel, and (A3) record the top activated channels into an (A4) aggregated activation ma-
trix, which tells us which channels in a layer most activate and represent every class in the
model. Aggregating Influences: (I1) given activations at layer l − 1, (I2) convolve them
with a convolutional kernel from layer l, (I3) compute the max of each resulting 2D acti-
vation map, and (I4) record the top most influential channels from layer l − 1 that impact
channels in layer l into an (I5) aggregated influence matrix, which tells us which channels
in the previous layer most influence a particular channel in the next layer.

4.4 Creating Attribution Graphs by Aggregation

SUMMIT introduces two new scalable summarization techniques: (1) activation aggrega-
tion discovers important neurons, and (2) neuron-influence aggregation identifies relation-
ships among such neurons. SUMMIT combines these techniques to create the novel attribu-
tion graph that reveals and summarizes crucial neuron associations and substructures that
contribute to a model’s outcomes. Attribution graphs tell us what features a neural net-
work detects, and how those features are related. Below, we formulate each technique, and
describe how we combine them to generate attribution graphs (Sec 4.4.3) for CNNs.

4.4.1 Aggregating Neural Network Activations

We want to understand what a neural network is detecting in a dataset. We propose sum-
marizing how an image dataset is represented throughout a CNN by aggregating individual
image activations at each channel in the network, over all of the images in a given class.
This aggregation results in a matrix, Al for each layer l in a network, where an entry Al

cj

roughly represents how important channel j (from the lth layer) is for representing im-
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ages from class c. This measure of importance can be defined in multiple ways, which we
discuss formally below.

A convolutional layer contains Cl image kernels (parameters) that are convolved with
an input image, X , to produce an output image, Y , that contains Cl corresponding chan-
nels. For simplicity, we assume that the hyperparameters of the convolutional layer are
such that X and Y will have the same height H and width W , i.e., X ∈ RH×W×Cl−1 and
Y ∈ RH×W×Cl . Each channel in Y is a matrix of values that represent how strongly the
corresponding kernel activated in each spatial position. For example, an edge detector ker-
nel will produce a channel, also called an activation map, that has larger values at locations
where an edge is present in the input image. As kernels in convolutional layers are learned
during model training, they identify different features that discriminate between different
image classes. It is commonly thought that CNNs build hierarchical feature representations
of input images, learning simple edge and shape detectors in early layers of the network,
which are combined to form texture detectors, and finally relevant object detectors in later
layers of the network [52] (see Fig 4.3).

A decision must be made on how to aggregate activations over spatial locations in a
channel and aggregate activations over all images in a given class. Ultimately, we want to
determine channel importance in a CNN’s representation of a class. As channels roughly
represent concepts, we choose the maximum value of a channel as an indicator of how
strongly a concept is present, instead of other functions, such as mean, that may dampen
the magnitude of relevant channels.

Alongside Fig 4.4, our method for aggregation is as follows:
• Compute activation channel maximums for all images. For each image, (A1) obtain its

activations for a given layer l and (A2) compute the maximum value per channel. This is
equivalent to performing Global Max-pooling at each layer in the network. Now for each
layer, we will have a matrix Z l, where an entry Z l

ij represents the maximum activation of
image i over the jth channel in layer l.

• Filter by a particular class. We consider all rows of Z l whose images belong to the
same class, and want to aggregate the maximum activations from these rows to determine
which channels are important for detecting the class.

• Aggregation Method 1: taking top kM1 channels. For each row, we set the top kM1

largest elements to 1 and others to 0, then sum over rows. Performing this operation
for each class in our dataset will result in a matrix Al from above where an entry Al

cj is
the count of the number of times that the jth channel is one of the top kM1 channels by
maximum activation for all images in class c. This method ignores the actual maximum
activation values, so it will not properly handle cases where a single channel activates
strongly for images of a given class (as it will consider kM1 − 1 other channels), or cases
where many channels are similarly activated over images of a given class (as it will only
consider kM1 channels as “important”). This observation motivates our second method.
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• Aggregation Method 2: taking top kM2% of channels by weight. We first scale rows
of Z l to sum to 1 by dividing by the row sums, Z ′l

ij =
Zl
ij∑N

n=1 Z
l
nj

, where N is the number

of images. Instead of setting the top kM2 elements to 1, as in Method 1, we set the m

largest elements of each row to 1 and the remaining to 0. Here, m is the largest index such
that

∑m
j∈sorted Z′l

i
Z ′l

ij ≤ kM2, where kM2 is some small percentage. In words, this method
first sorts all channels by their maximum activations, then records channels, starting from
the largest activated, until the cumulative sum of probability weight from the recorded
channels exceeds the threshold. Contrary to Method 1, this method adaptively chooses
channels that are important for representing a given image, producing a better final class
representation.

Empirically, we noticed the histograms of max channel activations was often power law
distributed, therefore we use Method 2 to (A3) record the top kM2 = 3% of channels to
include in the (A4) Aggregated Activations matrix Al. In terms of runtime, this process
requires only a forward pass through the network.

4.4.2 Aggregating Inter-layer Influences

Aggregating activations at each convolutional layer in a network will only give a local
description of which channels are important for each class, i.e., from examining Al we will
not know how certain channels come to be the most representative for a given class. Thus,
we need a way to calculate how the activations from the channels of a previous layer, l− 1,
influence the activations at the current layer, l. In dense layers, this influence is trivial to
compute: the activation at a neuron in l is computed as the weighted sum of activations
from neurons in l − 1. The influence of a single neuron from l − 1 is then proportional
to the activation of that neuron multiplied by the associated weight to the neuron being
examined from l. In convolutional layers, calculating this influence is more complicated:
the activations at a channel in l are computed as the 3D convolution of all of the channels
from l−1 with a learned kernel tensor. This operation can be broken down (shown formally
later in this section) as a summation of the 2D convolutions of each channel in l − 1 with
a corresponding slice of the appropriate kernel. The summations of 2D convolutions are
similar in structure to the weighted-summations performed by dense layers, however the
corresponding “influence” of a single channel from l − 1 on the output of a particular
channel in l is a 2D feature map. We can summarize this feature map into a scalar influence
value by using any type of reduce operation, which we discuss further below.

We propose a method for (1) quantifying the influence a channel from a previous layer
has on the activations of a channel in a following layer, and (2) aggregating influences into
a tensor, I l, that can be interpreted similarly to the Al matrix from the previous section.
Formally, we want to create a tensor I l for every layer l in a network, where an entry I lcij
represents how important channel i from layer l− 1 is in determining the output of channel
j in layer l, for all images in class c.
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First, using the notation from the previous section, we consider how a single channel
of Y is created from the channels of X . Let K(j) ∈ RH×W×Cl−1 be the jth kernel of our
convolutional layer. Now the operation of a convolutional layer can be written as:

Y:,:,j = X ∗K(j)

︸ ︷︷ ︸
3D convolution

=

Cl−1∑
i=1

X:,:,i ∗K(j)
:,:,i︸ ︷︷ ︸

2D convolution

(4.1)

In words, (I1) each channel from X is (I2) convolved with a slice of the jth kernel, and
the resulting maps are summed to produce a single channel in Y . We care about the 2D
quantity X:,:,i ∗ K(j)

:,:,i as it contains exactly the contributions of a single channel from the
previous layer to a channel in the current layer.

Second, we must summarize the quantity X:,:,i∗K(j)
:,:,i into a scalar influence value. Sim-

ilarly discussed in Sec 4.4.1, this can be done in many ways, e.g., by summing all values,
applying the Frobenius norm, or taking the maximum value. Each of these summarization
methods (i.e., 2D to 1D reduce operations) may lend itself well to exposing interesting
connections between channels later in our pipeline. We chose to (I3) take the maximum
value of X:,:,i ∗K(j)

:,:,i as our measure of influence for the image classification task, since this
task intuitively considers the largest magnitude of a feature, e.g., how strongly a “dog ear”
or “car wheel” feature is expressed, instead of summing values for example, which might
indicate how many places in the image a “dog ear” or “car wheel” is being expressed. Also,
this mirrors our approach for aggregating activations above.

Lastly, we must aggregate these influence values between channel pairs in consecutive
layers, for all images in a given class, i.e., create the proposed I l matrix from the pairwise
channel influence values. This process mirrors the aggregation described previously (Sec
4.4.1), and we follow the same framework. Let Ll

ij be the scalar influence value computed
by the previous step for a single image in class c, between channel i in layer l − 1 and
channel j in layer l. We increment an entry (c, i, j) in the tensor I lcij if Ll

ij is one of the top
kM1 largest values in the column Ll

:,j (mirroring Method 1 from Sec 4.4.2), or if Ll
ij is in

the top kM2% of largest values in Ll
:,j (mirroring Method 2 (Sec 4.4.1).

Empirically, we noticed the histograms of max influence values were not as often power
law distributed as in the previous aggregation of activations, therefore we use Method 1 to
(I4) record the top kM1 = 5 channels to include in the (I5) Aggregated Influence matrix
I l. Note that InceptionV1 contains inception modules, groups of branching parallel con-
volution layers. Our influence aggregation approach handles these layer depth imbalances
by merging paths using the minimum of any two hop edges through an inner layer; this
guarantees all edge weights between two hop channels are maximal. In terms of runtime,
this process is more computationally expensive than aggregating activations, since we have
to compute all intermediate 2D activation maps; however, with a standard GPU equipped
machine is sufficient. We discuss our experimental setup later in Sec 4.5.4.
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4.4.3 Combining Aggregated Activations and Influences to Generate Attribution Graphs

Given the aggregated activations Al and aggregated influences I l we aim to combine them
into a single entity that describes both what features a neural network is detecting and
how those features are related. We call these attribution graphs, and we describe their
generation below.

In essence, neural networks are directed acyclic graphs: they take input data, compute
transformations of that data at sequential layers in the network, and ultimately produce
an output. We can leverage this graph structure for our desired representation. Whereas a
common network graph has vertices and connecting edges, our vertices will be the channels
of a network (for all layers of the network), and edges connect channels if the channel in
the previous layer has a strong influence to a channel in an later, adjacent layer.

Using graph algorithms for neural network interpretability. Consider the aggre-
gated influences I l as an edge list; therefore, we can build an “entire graph” of a neural
network, where edges encode if an image had a path from one channel to another as a top
influential path, and the weight of an edge is a count of the number of images for a given
class with that path as a top influential path. Now, for a given class, we want to extract the
subgraph that best captures the important vertices (channels) and edges (influential paths)
in the network. Since we have instantiated a typical network graph, we can now leverage
the abundant research in graph algorithms. A natural fit for our task is the Personalized
PageRank algorithm [140], which scores each vertex’s importance in a graph, based on
both the graph structure and the weights associated with the graph’s vertices and edges.
Specifically, SUMMIT operates on the graph produced from all the images of a given class;
the algorithm is initialized by and incorporates both vertex information (aggregated activa-
tions Al) and edge information (aggregated influences I l) to find a subgraph most relevant
for all the provided images. We normalize each layer’s personalization from Al by dividing
by max Al value for each layer l so that each layer has a PageRank personalization within
0 to 1. This is required since each layer has a different total number of possible connec-
tions (e.g., the first and last layers, mixed3a and mixed5b, only have one adjacent layer,
therefore their PageRank values would be biased small). In summary, we make the full
graph of a neural network where vertices are channels from all layers in the network with
a personalization from Al, and edges are influences with weights from I l.

Extracting attribution graphs. After running Personalized PageRank for 100 itera-
tions, the last task is to select vertices based on their computed PageRank values to extract
an attribution graph. There are many different ways to do this; below we detail our ap-
proach. We first compute histograms of the PageRank vertex values for each layer. Next,
we use the methodology described in Sec 4.4.1 for Method 2, where we continue pick-
ing vertices with the largest PageRank value until we have reached kM2% weight for each
layer independently. Empirically, here we set kM2 = 7.5% after observing that the PageR-
ank value histograms are roughly power law, indicating that there are only a handful of
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channels determined important. Regarding the runtime, the only relevant computation is
running PageRank on the full neural network graph, which typically has a few thousands
vertices and a few hundred thousand edges. Using the Python NetworkX2 implementa-
tion [140], Personalized PageRank runs in about 30 seconds for each class.

4.5 The SUMMIT User Interface

From our design goals in Sec 4.2 and our aggregation methodology in Sec 4.4, we present
SUMMIT, an interactive system for scalable summarization and interpretation for exploring
entire learned classes in large-scale image classifier models (Fig 4.1).

The header of SUMMIT displays metadata about the visualized image classifier, such
as the model and dataset name, the number of classes, and the total number data instances
within the dataset. As described in Sec 4.3, here we are using InceptionV1 trained on
the 1.2 million image dataset ImageNet that contains 1000 classes. Beyond the header,
the SUMMIT user interface is composed of three main interactive views: the Embedding
View, the Class Sidebar, and the Attribution Graph View. The following section details the
representation and features of each view and how they tightly interact with one another.

4.5.1 Embedding View: Learned Class Overview

The first view of SUMMIT is the Embedding View, a dimensionality reduction overview
of all the classes in a model (Fig 4.1A). Given some layer l’s Al matrix, recall an entry in
this matrix corresponds to the number of images from one class (row) that had one channel
(column) as a top channel. We can consider A as a feature matrix for each class where
the number of channels in a layer corresponds to the number of features. For reduction
and visualization, the Embedding View uses UMAP: a non-linear dimensionality reduction
that better preserves global data structure, compared to other techniques like t-SNE, and
often provides a better “big picture” view of high-dimensional data while preserving local
neighbor relations [111]. Each dot corresponds to one class of the model, with spatial
position encoding their similarity. To explore this embedding, users can freely zoom and
pan in the view, and when a user zooms in close enough, labels appear to describe each
class (point) so users can easily see how classes within the model compare. Clicking on a
point in the Embedding View will update the selection for the remaining views of SUMMIT,
as described below.

Selectable neural network minimap. At the top of the Embedding View sits a small
visual representation of the considered neural network; in this case, InceptionV1’s primary
mixed layers are shown (Fig 4.5). Since we obtain one Al matrix for every layer l in the
model, to see how the classes related to one another at different layer depths within the

2NetworkX: https://networkx.github.io/
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network, users can click on one of the other layers to animate the Embedding View. This is
useful for obtaining model debugging hints and observing at a high-level how classes are
represented throughout a network’s layers.

Figure 4.5: Selectable network minimap animates the Embedding View.

4.5.2 Class Sidebar: Searching and Sorting Classes

Underneath the Embedding View sits the Class Sidebar (Fig 4.1B): a scrollable list of all the
class of the model, containing high-level class performance statistics. The first class at the
top of the list is the selected class, whose attribution graph is shown in the Attribution Graph
View, to be discussed in the next section. The Class Sidebar is sorted by the similarity of
the selected class to all other classes in the model. For the similarity metric, we compute
the cosine similarity using the values from Al. Each class is represented as a horizontal
bar that contains the class’s name, a purple colored bar that indicates its similarity to the
selected class (longer purple bars indicate similar classes, and vice versa), the class’s top-1
accuracy for classification, and a small histogram of all the images’ predicted probabilities
within that class (i.e., the output probabilities from the final layer) (Fig 4.6). From this
small histogram, users can quickly see how well a class performs. For example, classes
with power law histograms indicate high accuracy, whereas classes with normal distribution
histograms indicate underperformance. Users can then hypothesize whether a model may
be biasing particular classes over others, or if underperforming classes have problems with
their raw data.

class

similarity

accuracy

probabilities(to selected class)

Figure 4.6: Class Sidebar visual encoding.

Scrolling for context. To see where a particular class in the sidebar is located in the
Embedding View, users can hover over a class to highlight its point and label the Embed-
ding View above (Fig 4.1A-B). Since the Class Sidebar is sorted by class similarity, to see
where similar classes lie compared to the selected class, all classes in the Class Sidebar
visible to the user (more technically, in the viewbox of the interface) are also highlighted
in the Embedding View (Fig 4.1A-B). Scrolling then enables users to quickly see where
classes in the Class Sidebar lie in the Embedding View as classes become less similar to
the originally selected class to visualize.
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Sorting and selecting classes. To select a new class to visualize, users can click on any
class in the Class Sidebar to update the interface, including resorting the Class Sidebar by
similarity based on the newly selected class and visualize the new class’s attribution graph
in the Attribution Graph View. Users can also use the search bar to directly search for a
known class instead of freely browsing the Class Sidebar and Embedding View. Lastly,
the Class Sidebar has two additional sorting criteria. Users can sort the Class Sidebar by
the accuracy, either ascending or descending, to see which classes in the model have the
highest and lowest predicted accuracy, providing a direct mechanism to begin to inspect
and debug underperforming classes.

4.5.3 Attribution Graph View: Visual Class Summarization

The Attribution Graph View is the main view of SUMMIT (Fig 4.1C). A small header on top
displays some information about the class, similar to that in the Class Sidebar, and contains
a few controls for interacting with the attribution graph, to be described later.

Visualizing attribution graphs. Recall from Autorefsubsec:combine that an attribu-
tion graph is a subgraph of the entire neural network, where the vertices correspond to a
class’s important channels within a layer, and the edges connect channels based on their
influence from the convolution operation. Our graph visualization design draws inspi-
ration from recent visualization works, such as CNNVis [141], AEVis [69], and Build-
ing Blocks [100], that have successfully leveraged graph based representations for deep
learning interpretability. In the main view of SUMMIT, an attribution graph is shown in a
zoomable and panable canvas that visualizes the graph vertically, where the top corresponds
to the last mixed network layer in the network, mixed5b, and the bottom layer corresponds
to the first mixed layer, mixed3a (Fig 4.1C). In essence, the attribution graph is a directed
network with vertices and edges; in SUMMIT, we replace vertices with the correspond-
ing channel’s feature visualization. Each layer, denoted by a label, is a horizontal row of
feature visualizations of the attribution graph. Each feature visualization is scaled by its
magnitude of the number of images within that class that had that channel as a top channel
in their prediction, i.e., the value from Al. Edges are drawn connecting each channel to
visualize the important paths data takes during prediction. Edge thickness is encoded by
the influence from one channel to another, i.e., the value from I l.

Understanding attribution graph structure. This novel visualization reveals a num-
ber of interesting characteristics about how classes behave inside a model. First, it shows
how neural networks build up high-level concepts from low-level features, for example,
in the white wolf class, early layers learn fur textures, ear detectors, and eye detectors,
which all contribute to form face and body detectors in later layers. Second, the number
of visualized channels per layer roughly indicates how many features are needed to rep-
resent that class within the network. For example, in layer mixed5a, the strawberry class
only has a few large channels, indicating this layer has learned specific object detectors for
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strawberries already, whereas in the same layer, the drum class has many smaller channels,
indicating that this layer requires the combination of multiple object detectors working to-
gether to represent the class. Third, users can also see the overall structure of the attribution
graph, and how a model has very few important channels in earlier layers, but as the the
network progress, certain channels grow in size and begin to learn high-level features about
what an image contains.

Inspecting channels and connections in attribution graphs. Besides displaying the
feature visualization at each vertex, there are a number of different complementary data that
is visualized to help interpret what a model has learned for a given class attribution graph.
It has been shown that for interpreting channels in a neural network, feature visualization
is not always enough [56]; however, displaying example image patches from the entire
dataset next to a feature visualization helps people better understand what the channel is
detecting. We apply a similar approach, where hovering over a channel reveals 10 image
patches from the entire dataset that most maximize this specific channel (Fig 4.1C). Pairing
feature visualization with dataset examples helps understand what the channel is detecting
in the case where a feature visualization alone is hard to decipher. When a user hovers over
a channel, SUMMIT also highlights the edges that flow in and out of that specific channel
by coloring the edges and animating them within the attribution graph. This is helpful
for understanding which and how much channels in a previous layer contribute to a new
channel in a later layer. Users can also hover over the edges of an attribution graph to
color and animate that specific edge and its endpoint channels, similar to the interaction
used when hovering over channels. Lastly, users can get more insight into what feature
a specific channel has learned by hovering left to right on a channel to see the feature
visualization change to display four other feature visualizations generated with diversity: a
technique used to create multiple feature visualizations for a specific channel at once that
reveals different areas of latent space that a channel has learned [56]. This interaction is
inspired from commercial photo management applications where users can simply hover
over an image album’s thumbnail to quickly preview what images are are inside.

Dynamic drill down and filtering. When exploring an attribution graph, users can
freely zoom and pan the entire canvas, and return to the zoomed-out overview of the visu-
alization via a button included in the options bar above the attribution graph. In the case
of a large attribution graph where there are too many channels and edges, in the options
bar there is a slider that when dragged, filters the the channels of the attribution graph
by their importance from Al. This interaction technique draws inspiration from existing
degree-of-interest graph exploration research, where users can dynamically filter and high-
light a subset of the most important channels (vertices) and connections (edges) based on
computed scores [142, 143, 144, 145]. Dragging the slider triggers an animation where
the filtered-out channels and their edges are removed from the attribution graph, and the
remaining visualization centers itself for each layer. With the additional width and height
sliders, these interactions add dynamism to the attribution graph, where it fluidly animates
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and updates to users deciding the scale of the visualization.

4.5.4 System Design

To broaden access to our work, SUMMIT is web-based and can be accessed from any mod-
ern web-browser. SUMMIT uses the standard HTML/CSS/JavaScript stack, and D3.js3 for
rendering SVGs. We ran all our deep learning code on a NVIDIA DGX 1, a workstation
with 8 GPUs, with 32GB of RAM each, 80 CPU cores, and 504GB of RAM. With this ma-
chine we could generate everything required for all 1000 ImageNet classes—aggregating
activations, aggregating influences, and combining them with PageRank (implementation
from NetworkX) to form attribution graphs—and perform post-processing under 24 hours.
However, visualizing a single class on one GPU takes only a few minutes. The Lucid li-
brary is used for creating feature visualizations4, and dataset examples are used from the
appendix5 of [56].

4.6 Neural Network Exploration Scenarios

4.6.1 Unexpected Semantics Within a Class

A problem with deploying neural networks in critical domains is their lack of interpretabil-
ity, specifically, can model developers be confident that their network has learned what they
think it has learned? We can answer perplexing questions like these with SUMMIT. For ex-
ample, in Fig 4.1, consider the tench class (a type of yellow-brown fish). Starting from the
first layer, as we explore the attribution graph for tench we notice there are no fish or water
feature, but there are many “finger”, “hand”, and “people” detectors. It is not until a middle
layer, mixed4d, that the first fish and scale detectors are seen (Fig 4.1C, callout); however,
even these detectors focus solely on the body of the fish (there is no fish eye, face, or fin
detectors). Inspecting dataset examples reveals many image patches where we see people’s
fingers holding fish, presumably after catching them. This prompted us to inspect the raw
data for the tench class, where indeed, most of the images are of a person holding the fish.
We conclude that, unexpectedly, the model uses people detectors and in combination with
brown fish body and scale detectors to represent the tench class. Generally, we would not
expect “people” as an essential feature for classifying fish.

This surprising finding motivated us to seek another class of fish that people do not
normally hold to compare against, such as a lionfish (due to their venomous spiky fin
rays). Visualizing the lionfish attribution graph confirms our suspicion (Fig 4.7): there are

3D3.js: https://d3js.org/
4Lucid: https://github.com/tensorflow/lucid
5https://github.com/distillpub/post--feature-visualization
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Attribution graph substructure in lionfish class.
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Figure 4.7: An example substructure of the lionfish attribution graph reveals unexpected
texture features such as “quills” and “stripes,” which significantly influence the most ac-
tivated channels in a final layer responsible for identifying the “orange fish” feature. It is
noteworthy that some lionfish species are reddish-orange, and have white fin rays.

not any people object detectors in its attribution graph. However, we discover yet another
unexpected combination of features: there are few fish part detectors while there are many
texture features, e.g., stripes and quills. It is not until the final layers of the network where
a highly activated channel detects orange fish in water, which uses the stripe and quill
detectors. Therefore we deduce that the lionfish class is composed of a striped body in the
water with long, thin quills. Whereas the tench had unexpected people features, the lionfish
lacked fish features. Regardless, findings such as these can help people more confidently
deploy models when they know what composition of features results in a prediction.

4.6.2 Mixed Class Association Throughout Layers

While inspecting the Embedding View, we noticed some classes’ embedding positions shift
greatly between adjacent layers. This cross-layer embedding comparison is possible since
each layer’s embedding uses the previous layer’s embedding as an initialization. Upon
inspection, the classes that changed the most were classes that were either a combination
of existing classes or had mixed primary associations.

For example, consider the horsecart class. For each layer, we can inspect the nearest
neighbors of horsecart to check its similarity to other classes. We find that horsecart in
the early layers is similar to other mechanical classes, e.g., harvester, thresher, and snow-
plow. This association shifts in the middle layers where horsecart moves to be near animal
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Is a horsecart more mechanical or animal?
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unit 484

5b5a4e4d4c4b4a3b3a

mixed4c,
unit 300
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unit 597

wheelpeople horse hip horse gear

Figure 4.8: Using SUMMIT we can find classes with mixed semantics that shift their pri-
mary associations throughout the network layers. For example, early in the network, horse-
cart is most similar to mechanical classes (e.g., harvester, thresher, snowplow), towards
the middle it shifts to be nearer to animal classes (e.g., bison, wild boar, ox), but ultimately
returns to have a stronger mechanical association at the network output.

classes, e.g., bison, wild boar, and ox. However, horsecart flips back at the final convo-
lutional layer, returning to a mechanical association (Fig 4.8, top). To better understand
what features compose a horsecart, we inspect its attribution graph and find multiple fea-
tures throughout all the layers that contain people, spoke wheels, horse hips, and eventually
horse bodies with saddles and mechanical gear (Fig 4.8, bottom). Mixed semantic classes
like horsecart allow us to test if certain classes are semantic combinations of others and
probe deeper into understanding how neural networks build hierarchical representations.

4.6.3 Discriminable Features in Similar Classes

Since neural networks are loosely inspired by the human brain, in the broader machine
learning literature there is great interest to understand if decision rationale in neural net-
works is similar to that of humans. With attribution graphs, we can further to answer this
question by comparing classes throughout layers of a network.

For example, consider the black bear and brown bear classes. A human would likely
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Figure 4.9: With attribution graphs, we can compare classes throughout layers of a network.
Here we compare two similar classes: black bear and brown bear. From the intersection of
their attribution graphs, we see both classes share features related to bear-ness, but diverge
towards the end of the network using fur color and face color as discriminable features.
This feature discrimination aligns with how humans might classify bears.

say that color is the discriminating difference between these classes. By taking the inter-
section of their attribution graphs, we can see what features are shared between the classes,
as well as any discriminable features and connections. In Fig 4.9, we see in earlier lay-
ers (mixed4c) that both black bear and brown bear share many features, but as we move
towards the output, we see multiple diverging paths and channels that distinguish features
for each class. Ultimately, we see individual black and brown fur and bear face detec-
tors, while some channels represent general bear-ness. Therefore, it appears InceptionV1
classifies black bear and brown bear based on color, which may be the primary feature
humans may classify by. This is only one example, and it is likely that these discriminable
features do not always align with what we would expect; however, attribution graphs give
us a mechanism to test hypotheses like these.

4.6.4 Finding Non-semantic Channels

Using SUMMIT, we quickly found several channels that detected non-semantic, irrelevant
features, regardless of input image or class (verified manually with 100+ classes, com-
putationally with all). For example, in layer mixed3a, channel 67 activates to the image
frame, as seen in Fig 4.10. We found 5 total non-semantic channels, including mixed3a
67, mixed3a 190, mixed3b 390, mixed3b 399, and mixed3b 412. Upon finding these, we
reran our algorithm for aggregating activations and influences, and generated all attribu-
tion graphs with these channels excluded from the computation, since they consistently
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mixed3a
67

stronger
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Figure 4.10: Using SUMMIT on InceptionV1 we found non-semantic channels that detect
irrelevant features, regardless of the input image, e.g., in layer mixed3a, channel 67 is
activated by the frame of an image.

produced high activation values but were incorrectly indicating important features in many
classes. Although SUMMIT leverages recent feature visualization research [56] to visualize
channels, it does not provide an automated way to measure the semantic quality of chan-
nels. We point readers to the appendix of [56] to explore this important future research
direction.

4.6.5 Informing Future Algorithm Design

We noticed that some classes (e.g., zebra, green mamba) have only a few important chan-
nels in the middle layers of the network, indicating that these channels could have enough
information to act as a predictor for the given class. This observation implies that it may
be prudent to make classification decisions at different points in the network, as opposed
to after a single softmax layer at the output. More specifically, per the Al matrices, we can
easily find these channels (in all layers) that maximally activates for each class. We could
then perform a MaxPooling operation at each of these channels, followed by a Dense layer
classifier to form a new “model” that only uses the most relevant features for each class to
make a decision.

The inspiration for this proposed algorithm is a direct result of the observations made
possible by SUMMIT. Furthermore, our proposed methodology makes it easy to test whether
the motivating observation holds true for other networks besides InceptionV1. It could be
the case that single important channels for certain classes are a result of the training with
multiple softmax ‘heads’ used by InceptionV1; however, without SUMMIT, checking this
would be difficult.
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4.7 Discussion and Future Work

Interactive visual comparison of attribution graphs. Currently, SUMMIT interactively
visualizes single attribution graphs. However, there is great opportunity to support auto-
matically, visual comparison between multiple attribution graphs. Example comparison
operations include computing attribution graph difference, union, and intersection.

Mining attribution graphs for subgraph motifs. Since attribution graphs are regular
network graphs, we can leverage data mining and graph analysis techniques to find the
most common motifs, e.g., all mammal classes may have three specific channels that form
a triangle that is always activated highly, or maybe all car classes share only single path
throughout the network. Extracting these smaller subgraph motifs could give deep insight
into how neural networks arrange hierarchical concepts inside their internal structure.

Visualizing other neural network models. We justify our model choice in Sec 4.3,
but an immediate avenue for future work explores generating attribution graphs on other
CNN models. Simpler models like VGG [33] can be easily adapted with our approach, but
more complex networks like ResNets [119] will require a small modification for computing
attribution and influences (e.g., considering skip connections between layers as additional
graph edges). Our approach also may be adopted for exploring neural network components
of model architectures that provide activation information (e.g., the two individual networks
within a GAN [146], but not their interaction).

Better attribution graph generation. Computing neural network attribution remains
an active area of research: there is no consensus of the best way to compute attribution [100,
45, 147, 148, 149, 52, 42]. To generate attribution graphs, we use activation aggregation
as an initialization for personalized PageRank on the entire network from aggregated influ-
ences. While this is one effective way to generate attribution graphs, there could be other
ways to generate graph explanations that describe learned neural network representations.
If so, this will only improve the value of SUMMIT’s visualizations. For example, layer-wise
relevance propagation [150] could be used to seed our aggregation methods using relevance
scores instead of neuron activations. Conversely, exploring attribution graphs using less-
contributing channels could be a novel way to discover non-relevant features. However,
aggregation over spatial positions and instances, a main contribution of SUMMIT, will still
be necessary given any other measure of neuron importance.

Hyperparameter selections. Our approach has a few hyperparameters choices, includ-
ing determining how many channels to record per image when aggregating activations and
computing attribution graph influences, as well as what PageRank threshold to set for cre-
ating the final visualizations. However, since our approach was designed to take advantage
of data at scale, in our tests we do not see many differences in the limit that the number
of images increases. Note that while our approach benefits from scale, both the aggrega-
tion and visualization work on arbitrary dataset sizes, e.g., a single image, hundreds, or
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thousands.
Longitudinal evaluation of impacts in practice. We presented Summit to ML re-

searchers and scientists at industry and government research labs, and discussed plans to
conduct long-term studies to test Summit on their own models. We plan to investigate how
Summit may inform algorithmic model design, prompt data collection for ill-represented
classes, and discover latent properties of deployed models.

4.8 Conclusion

As deep learning is increasingly used in decision-making tasks, it is important to understand
how neural networks learn their internal representations of large datasets. In this work, we
present SUMMIT, an interactive system that scalably and systematically summarizes and
visualizes what features a deep learning model has learned and how those features interact
to make predictions. The SUMMIT visualization runs in modern web browsers and is open-
sourced. We believe our summarization approach that builds entire class representations
is an important step for developing higher-level explanations for neural networks. We
hope our work will inspire deeper engagement from both the information visualization
and machine learning communities to further develop human-centered tools for artificial
intelligence [138, 136].

70



Part II

Insights to Reveal Model Vulnerabilities

71



OVERVIEW

In the preceding part, our main focus was to decipher the inner workings of high-performing
DNNs. Despite their efficacy, DNNs remain vulnerable, particularly to adversarial attacks.
Perturbing inputs with minute, often indiscernible noise can mislead DNNs, resulting in
incorrect outcomes. This vulnerability is particularly concerning in safety-critical applica-
tions, such as autonomous vehicles or healthcare systems. Thus, a critical question arises:
How can we detect, interpret, and visualize these vulnerabilities in DNNs?

Part II introduces an interactive system that helps understand the susceptibility of DNNs
to adversarial attacks, by visualizing how the attack permeates the model’s internals (Chap-
ter 5). This chapter is adapted from work that was published at VIS 2020 [89].

Chapter 5
BLUFF: Interactively Deciphering Adversarial Attacks on Deep Neural
Networks. Nilaksh Das*, Haekyu Park*, Zijie J. Wang, Fred Hohman,
Robert Firstman, Emily Rogers, Duen Horng Chau. (*Authors contributed
equally). IEEE Visualization Conference (VIS), 2020.

Building on the insights gained from BLUFF, we expand our exploration into human-
action recognition models, given their increasing prevalence in domains like home robotics,
elder care, and security surveillance. We introduce another interactive system that explains
and visualizes how attacks target human joints in human action recognition models, de-
tailed in Chapter 6. This chapter is adapted from work that was published as an AAAI
2021 Demo [151].

Chapter 6
SKELETONVIS: Interactive Visualization for Understanding Adversarial
Attacks on Human Action Recognition Models. Haekyu Park, Zijie J.
Wang, Nilaksh Das, Anindya S. Paul, Pruthvi Perumalla, Zhiyan Zhou, Duen
Horng Chau. The AAAI Conference on Artificial Intelligence, Demo, 2021.
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CHAPTER 5

BLUFF: INTERACTIVELY DECIPHERING ADVERSARIAL
ATTACKS ON DEEP NEURAL NETWORKS

Deep neural networks (DNNs) are now commonly used in many domains. However, they
are vulnerable to adversarial attacks: carefully-crafted perturbations on data inputs that
can fool a model into making incorrect predictions. Despite significant research on devel-
oping DNN attack and defense techniques, people still lack an understanding of how such
attacks penetrate a model’s internals. We present BLUFF, an interactive system for visual-
izing, characterizing, and deciphering adversarial attacks on vision-based neural networks.
BLUFF allows people to flexibly visualize and compare the activation pathways for benign
and attacked images, revealing mechanisms that adversarial attacks employ to inflict harm
on a model. BLUFF is open-sourced and runs in modern web browsers.

5.1 Introduction

Deep neural networks (DNNs) serve as a major driving force behind recent technological
breakthroughs [152, 153, 154, 155, 156, 157]. However, their susceptibility to adversarial
attacks raises substantial concerns. Even minor, nearly imperceptible noise in inputs can
mislead DNNs [18, 19, 20, 21], alarming in safety-critical applications like autonomous
driving. Understanding these impacts on DNNs is vital [22, 23], but interpreting and ul-
timately defending against such attacks still remain fundamental research challenges [69].
Due to DNNs’ complexity, pinpointing the components exploited by the attacks is chal-
lenging. Also, there is a lack of research in understanding how varying attack “strengths”
influence neurons’ activation patterns [158]. For example, it remains unknown if a stronger
attack exploits the same neurons as a weaker attack, or if these sets are completely different.

To address the above challenges, we develop BLUFF (Fig 5.1), an interactive visual-
ization tool for discovering and interpreting how adversarial attacks mislead DNNs into
making incorrect decisions. Our main idea is to visualize activation pathways within a
DNN traversed by the signals of benign and adversarial inputs. An activation pathway
consists of neurons (also called channels or features) that are highly activated or changed
by the input, and the connections among the neurons. BLUFF finds and visualizes where a
model is exploited by an attack, and what impact the exploitation has on the final prediction,
across multiple attack strengths.
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Figure 5.1: With BLUFF, users interactively visualize how adversarial attacks infiltrate a
deep neural network, causing it to produce incorrect results. Here, a user can investigate the
reasons why an InceptionV1 model misclassifies adversarial giant panda images, which
have been manipulated using the Projected Gradient Descent (PGD) attack, as armadillo.
PGD successfully distorts pixels to induce the “brown bird” feature, an appearance more
commonly associated with armadillos (small, roundish, brown bodies) than pandas, activat-
ing additional concepts that contribute to the armadillo (mis)classification (e.g., “scales,”
“bumps,” “mesh”). The adversarial pathways, formed by these neurons and their con-
nections, overpower the benign panda pathways, ultimately leading to the incorrect clas-
sification. (A) Control Sidebar allows users to specify what data is to be included and
highlighted. (B) Graph Summary View visualizes pathways most activated or changed
by an attack as a network graph of neurons (each labeled by the channel ID in its layer)
and their connections. When hovering over a neuron, (C) Detail View presents its feature
visualization, representative dataset examples, and activation patterns over attack strengths.

We contribute:
• BLUFF, an interactive system for summarizing and interpreting how adversarial

perturbations penetrate DNNs to induce incorrect outcomes in InceptionV1 [27], a
large-scale prevalent image-classification model, over images from ImageNet ILSVRC
2012 [159]. To support reproducible research and broaden its access, we have open-
sourced BLUFF at https://poloclub.github.io/bluff.

• Visual characterization of activation pathway dynamics. Adversarial perturba-
tions manipulate activation pathways typically used for benign inputs to induce incor-
rect predictions. For example, an attack can inhibit neurons detecting important fea-
tures for the benign class and excite those that exacerbate misclassification. BLUFF

visualizes and highlights activation pathways exploited by an attack (Fig 5.2) and
shows how they mutate and propagate through a network.
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• Interactive comparison of attack escalation. BLUFF enables interactive compari-
son of activation pathways under increasing attack strengths, providing a new way for
understanding the essence of an attack (e.g., common trends of an attack across all
strengths) and its multi-faceted characteristics (e.g., various strategies that different
strengths may employ).

• Discovery usage scenarios. We describe how BLUFF can help discover surprising
insights into the vulnerability of DNNs, such as how unusual activation pathways
may be exploited by attacks.

5.2 BLUFF: Deciphering Adversarial Attacks

5.2.1 Design Goals

Through a literature survey, we have identified the following four design goals (G1-G4)
that guide BLUFF’s development.

G1 Untangling activation pathways. Benign activation pathways can significantly over-
lap with adversarial pathways, as some neurons are “polysemantic,” detecting multiple
concepts at the same time [58, 60]. We aim to identify neurons that respond differ-
ently between benign and attacked inputs, to help discover where and how a model is
exploited by an attack to induce incorrect predictions.

G2 Interpreting multiple activation pathways. Understanding the effects of adversarial
attacks is core to developing robust defenses [19, 160, 158]. We aim to visualize high-
level overviews of benign and adversarial activation pathways, and support drilling-
down into subpaths, to help shed light on how specific groups of neurons are exploited
to inflict harm on a model.

G3 Comparing attack characteristics. Existing works to interpret adversarial attacks
on deep neural networks often focus on visualizing the activation patterns for a single
adversarial input [97, 161]. We aim to visualize how the activation pathway changes as
the attack strength varies, to help users gain deeper insight into how the attack works
generally. Understanding model vulnerability under different attack strategies informs
more robust defenses [130, 162, 163].

G4 Lowering barrier of entry for interpreting and deciphering adversarial attacks.
The visualization community is contributing a variety of methods and tools to help
people more easily interpret different kinds of DNNs [78, 56, 60, 97, 69, 164, 165].
Efforts that aim to support deciphering adversarial attacks, however, are relatively
nascent [60, 69, 161]. We aim to make interpreting adversarial attacks more accessible
to everyone, following the footsteps of prior success from the community.
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Figure 5.2: Adversarial attacks confuse DNNs to make incorrect predictions (e.g., misclas-
sify benign panda as armadillo). BLUFF helps discover where such attacks occur and what
features are used.

5.2.2 Background: Neuron Importance and Influence

To discover activation pathways triggered by benign and adversarial inputs, BLUFF iden-
tifies important neurons and influential connections among such neurons. Drawing inspi-
ration from [78], BLUFF computes a neuron’s importance based on how strongly it is acti-
vated by all inputs, and the influence between neurons based on the intensity of activation
signals transmitted through the connection to the next layer. While providing a comprehen-
sive interpretation of pathways within a DNN remains a challenge [67, 166, 167], recent
studies [58, 78, 56] have shown that principal neuron activations in each layer effectively
act as the basis vectors for the entire DNN’s activation space. Thus, by characterizing im-
portant neurons’ activations at every layer, we can achieve an indicative sampling of vital
neurons throughout the network for a specific set of images.

Building upon this idea, BLUFF efficiently compiles activation pathways over multiple
contexts, focusing on the most crucial neurons for: (1) benign images from the original
class, on which the targeted attacks are performed; (2) benign images from the target
class, which the attacks try to flip the label to; and (3) successfully attacked images for a
particular attack strength (we support exploration with multiple strengths).

To begin, we consider the DNN modelM (InceptionV1), where Zq ∈ RHq ,Wq ,Dq is the
output tensor of the q’th layer ofM. Here, Hq,Wq and Dq are the height, width and depth
dimensions respectively. This implies that the layer has Dq neurons. We denote the d’th
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output channel (for d’th neuron) in the layer as Cdq ∈ RHq ,Wq . We index the values in the
channel as Cdq [h,w]. Given an input image xi, we find the maximum activation of each neu-
ron induced by the image using the global max-pooling operation: adq [i] = maxh,w Cdq [h,w].
This represents the magnitude by which the d’th neuron in the q’th layer maximally detects
the corresponding semantic feature from image xi. This technique of extracting maximal
activation as a proxy for semantic features has also demonstrated tremendous predictive
power in the data programming domain [168]. Finally, we pass all images from each of
original, target and attacked datasets. For each set, we aggregate adq [i] values for all im-
ages and quantify the importance of each neuron by the median value of such maximal
activations. We use medians for summarizing the neuron importance, because they are
less sensitive to extreme values. Consistent with the findings of [78], we observe that the
maximal activation values are power law distributed, implying that only a small minority of
neurons have highest importance scores. Hence to denoise inconsequential visual elements,
for each layer, we empirically filter the 10 most important neurons for benign images of
original and target classes, and 5 most important ones for attacked images of each attack
strength (i.e., at most 50 important neurons across all 10 attack strengths).

To compute influence of a connection between two neurons, we measure the signal
transmitted through the connection, computed by the convolution of the slice of the kernel
tensor between the two neurons over the source neuron’s channel activation. Since out-
put from the ReLU activation function is used as the neuron activation in an InceptionV1
model, it implies that the neuron importance scores that are propagated are non-negative.
Consequently, the model acts on these non-negative activation values. Hence, these acti-
vation values accumulate only for positively weighted convolution operations through con-
secutive layers, which has the effect of filtering out non-influential connections that may
even originate from important neurons. Inspired by [78], we take the maximum value in
the convolution for the influence of the connection. BLUFF deviates from [78] when ag-
gregating influence values across several images. We characterize the connection by taking
the median influence across all images from a given set. We take this approach since we
want to summarize the influence characteristics across multiple datasets (original, target
and attacked for different attack strengths), and each dataset is of a different size. Simple
counting may skew the results towards a particular dataset while the median value provides
a characteristic aggregation of the influence scores.

5.2.3 Realizing Design Goals in BLUFF’s Interface

BLUFF’s interface (Fig 5.1) consists of: A. Control Sidebar for selecting which data are
included, filtered, highlighted, and compared; B. Graph View that summarizes and visu-
alizes activation pathways as a graph; C. Detail View for interpreting the concept that a
neuron has detected, via feature visualization, representative dataset examples, and activa-
tion patterns over attack strengths. In the header (Fig 5.1, top), users can select a pair of
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original and target class. BLUFF then generates the main visualization in the Graph View
for how neural networks misclassify original images as target images when attacked, by
displaying the activation pathways of adversarial inputs.

(a) Attack Control
Panel

(b) Highlight Con-
trol Panel

(c) Filter Control
Panel

(d) Comparison Control
Panel

Figure 5.3: Control panels

Control Sidebar: Customizing Data Visualization Choices. Control Sidebar consists
of four panels: Attack control panel, Highlight Control Panel, Filter Control Panel, and
Comparison Control Panel (Fig 5.3).

Attack Control Panel allows users to manipulate the input images of the selected classes.
Users can first select the adversarial attack method with a drop-down menu and then select
the strength of the attack with a slider.

Highlight Control Panel allows users to select which type of activation pathways to vi-
sualize: pathways that are most activated, most changed, most inhibited, or most excited
by an attack. Highlight Control Panel is equipped with two sliders for refined visualization.
The first slider adjusts the percentage of neurons to be highlighted in each layer. As an illus-
tration, by setting the slider to “35%” and opting for the “most activated pathways,” BLUFF

highlights the upper 35% of activated neurons across all categories: the original class, the
target class, both classes, and those exploited by the attack. The second slider controls
the percentage of connections that will be emphasized between layers. For example, by
selecting “30%” along with the “most activated pathways” option, BLUFF highlights the
top 30% of the most activated connections between neighboring layers, specifically from
all positive connections among the highlighted neurons. The reason behind determining
percentages layer-wise, rather than from all layers collectively, stems from the inherent
variation in activation levels between layers. Taking the InceptionV1 model as an example,
the lower layers exhibit neurons and connections that are substantially more active, making
them not directly comparable to their activations in the deeper layers.

Filter Control Panel aims to enhance a more concentrated exploration of users navigat-
ing the visualization of activation pathways in BLUFF. Given that a dense collection of
neurons and edges can become visually overwhelming, the Filter Control Panel mitigates
such a visual clutter by offering three distinct filtering options: visualizing the full graph,
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revealing only user-pinned neurons, or focusing exclusively on the highlighted neurons.
When users pin a neuron, its identifying number is displayed above it for easy reference.

Comparison Control Panel enables users to compare two distinct attack strengths. When
users switch to and activate the comparison mode, the range slider becomes available for
setting these strengths: the left knob represents the milder attack, while the right knob cor-
responds to the stronger one. Additionally, users can decide which connections to visualize,
whether they are influenced by the weaker or the stronger attack

Graph View: Visualizing Activation Pathway Summaries. Graph View (Fig 5.1B) sum-
marizes InceptionV1’s responses to inputs under different contexts in a unified graph. It
focuses on InceptionV1’s 9 mixed layers (mixed3a, mixed3b ... mixed5b), following exist-
ing interpretability literature [56, 100, 78]. Neurons important solely for the original class
are presented as green nodes, those essential for the target class appear in blue, neurons
significant for both classes are presented in orange, and those important for successfully
attacked images are in red. Organized horizontally, the neurons are grouped by their roles
in the sequence of original, both, target, and exploited by attack. Vertically, they align
with the neural network layers: the uppermost row corresponds to the last mixed network
layer (mixed5b), which is closest to the output layer, while the bottom aligns with the first
mixed layer (mixed3a), near the input. Each neuron is visualized as a rounded rectangle
and colored by its corresponding group. Each connection between two neurons is visual-
ized as a curved line, where the width is linearly scaled by the influence values computed
as described in Sec 5.2.2.

Out of all neurons, BLUFF highlights those that are most activated or changed based
on the user-specified settings from the Highlight Control Panel. BLUFF highlights neurons
by coloring them darker and connections by making others invisible (Fig 5.4). This high-
lighting approach naturally visualizes the pathways of activation signal passing through
neurons and their connections, while preserving the context of all potentially relevant neu-
rons nearby. This approach can also help compare the neurons that are highly activated by
benign against adversarial images. All neurons displayed in BLUFF are already the most
activated neurons in benign images, regardless of whether they are highlighted or not. On
top of the neurons that are important for benign images, BLUFF highlights neurons that are
highly activated by adversarial images. This helps distinguish neurons that are activated
by benign as well as adversarial images, as compared to neurons only activated by benign
images.

To help users more easily interpret the concepts that a neuron is detecting, alongside
each neuron, BLUFF shows (1) a feature visualization, an algorithmically generated image
that maximizes the neuron’s activation, and (2) dataset examples, cropped from real images
in the dataset, that also highly activate the neuron [56]. Hovering on a neuron shows the
corresponding feature visualization and dataset examples as seen in Fig 5.1C, where ad-
versarial images successfully induce the “brown bird” feature, an appearance more likely
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Figure 5.4: Visualization of highlighted neurons and connections

shared by an armadillo (small, roundish, brown body) than a panda, which in turn activates
more features in subsequent layers that contribute to the (mis)classification of armadillo.
These visual explanations help translate abstract activation pathways into the composition
and flow of learned concepts (G2).

Detail View. When hovering on each neuron, a Detail View pops up to provide more
information about the neuron (as seen in Figure 5.1C), display the feature visualization for
the neuron and four example image patches to represent the detected concept the neuron
detects. The Detail View also presents a line plot that displays the median activation values
for: (1) images of the original class (green); (2) images of the target class (blue); and (3)
adversarial images (gray). The horizontal axis represents the attack strength. Thus, each
data point in the line plot represents a median activation value at a particular attack strength.

Visualizing Exploited Activation Pathways. An adversarial input is often a slightly per-
turbed version of a benign input, which means the activation pathways of an benign image
and those of its adversarial counterpart would be similar at the input layer [69], yet decid-
edly different at the output layer — the benign pathways lead to the original prediction,
while the adversarial pathways lead to the target prediction. Given the similar starting
points but different outcomes, the adversarial activation pathways must have deviated from
the benign pathways. BLUFF helps discover vulnerable neurons and connections that con-
tribute to such deviations and the resulting misclassification, by highlighting the neurons
and connections that are excited (or inhibited, oppositely) the most by an attack (Fig 5.1A)
(G1). A pathway excited by an attack means its constituent neurons are activated more
than expected (i.e., pathway contains more target features). Fig 5.1 shows an example of
where the attack excites multiple features and connections to induce the target prediction
of armadillo (e.g., “scales,” “bumps,” “mesh,” and “brown bird” thanks to its similarity to
armadillos’ roundish, brown body). Computationally, in layer q, a neuron d’s excitation
amount is ãqd[attacked]− ãqd[benign], where ãqd[benign] and ãqd[attacked] are the neuron’s
importance for some benign and attacked images respectively (as described in Sec 5.2.2).

Comparing Attacks with Varying Strengths. BLUFF offers the Compare Attacks mode
that visualizes and compares the pathway differences between a weaker attack and a stronger
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Figure 5.5: Visual encoding of neurons based on which attack strengths they respond to

attack (G3). BLUFF visually encodes the neurons based on which attack strengths they re-
sponded to (Fig 5.5), drawing inspiration from Alper et al [169]. Each neuron consists of an
inner and an outer rectangle: the inner rectangle is colored when the neuron is in the activa-
tion pathways of the weaker attack; whereas the outer rectangle is colored when the neuron
is in the activation pathways of stronger attack. Thus, our design can visually encode all
four possible comparison results, enabling us to use hue to represent the four neuron con-
texts (i.e., neurons targeted by either weaker or stronger attacks, or those targeted by both
or none of them). Our terminology for weaker and stronger attacks are relative, as we do
not assert any explicit threshold for weak or strong attack strengths.

Cross-platform deployment through standard web technologies. To facilitate repro-
ducible research and enhance accessibility, BLUFF uses standard web technologies includ-
ing HTML, CSS, JavsScript, and D3.js. BLUFF can be accessed from any modern web
browser (G4) at https://poloclub.github.io/bluff. We ran all the computa-
tions for neurons’ importance and connections’ influence on a NVIDIA DGX-1 workstation
equipped with 8 GPUs (each with 32GB memory), 80 CPU cores, and 504GB RAM.

5.3 Discovery Usage Scenarios

In the forthcoming demonstrations, we present how BLUFF enhance the understanding
of adversarial attacks while also revealing the strategies these attacks employ to confuse
a DNN. Our chosen scenarios draw upon the vast pool of 1000 classes available in the
ImageNet dataset [159], which comprises approximately 1.2 million images.

5.3.1 Understanding How Attacks Penetrate DNNs

Consider a DNN classifier tasked with identifying snakes, such as the highly venomous
diamondback snake and the milder vine snake whose venom results in only slight swelling.
In Fig 5.6, BLUFF’s Graph View uncovers the unusual tactic used by adversarial diamond-
back images: they activate unexpected neural pathways, leading to an incorrect prediction
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Figure 5.6: BLUFF helps users understand how an attack penetrates a model, by visualizing
activation pathways that are additionally exploited by the attack. In this example, BLUFF

highlights the neurons and connections that PGD attack exploits (red) to make the model
confuse adversarial diamondback snake images as vine snake.

of vine snakes. Intriguingly, these activated or exploited neurons are tuned to detect the
“blue color” (e.g., blue birds as seen in Fig 5.6, right column).

This is surprising because vine snakes, which is the intended target class of the attack,
are primarily green, not blue. This finding implies that the PGD attack may be taking
advantage of the “blue color” concept pathway as an alternative route to connect with the
pathways for vine snake characteristics like “green leaves” and “green bumps” (Fig 5.6,
middle column). We also noticed that PGD uses “snake-like” pathways that are important
for both source and target classes (Fig 5.6, left column), which is reasonable given that
both the original and target classes are snakes. Identifying these neural pathways that are
taken advantage of during an attack offers fundamental insights for devising robust defense
mechanisms, potentially by neutralizing these alternative neural routes. Another illustrative
example can be found in Fig 5.1, where pathways associated with the adversarial armadillo
class overshadow those of the benign panda class, resulting in a misclassification.

5.3.2 Variation in Attack Strategies Based on Intensity

Adversarial attacks vary in intensity from subtle to pronounced disturbances, as illustrated
in Fig 5.7. Does the strategy behind an attack change according to its intensity, or does it
remain consistent?
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Figure 5.7: Using BLUFF’s “Compare Attacks” mode, we examine PGD’s different strate-
gies for misclassifying diamondback images into vine snake class for two attack strengths
(0.1 vs 0.5). The weaker attack exploits more alternative neurons (i.e., features that are not
typically activated by benign inputs) than the stronger attack does.

With BLUFF’s Compare Attacks mode, users can conduct a comparative analysis of
these variations. To exemplify, let’s evaluate attacks on diamondback images with the
aim of misclassifying them as vine snake. By adjusting the attack strength to the lower
end (0.1) and the higher end (0.5), and focusing on the top 30% of the most activated
neurons in each layer, an intriguing pattern emerges in Fig 5.7. Specifically, weaker attacks
appear to exploit a substantial number of red neurons (28 in total). This contrasts starkly
with the stronger attack, which only affects 9 of such neurons. These neurons are not
particularly crucial to identifying either snake variety but are markedly influenced by the
attack. Diving deeper into the example image patches of these neurons, we noticed that the
images encompass a diverse set of semantic themes, such as textitspider legs, blue bird and
car hood, seemingly unrelated to snakes.

Moreover, this pattern was not exclusive to the snake images. When ambulance were
attacked to be misclassified as street sign, the weaker exploited 42 red neurons compared to
the 16 exploited by its stronger counterpart. Similarly, in the case of attacks turning panda
into armadillo, 29 neurons were exploited by the weaker attack, and only 8 were exploited
by the stronger attack.

Piecing together these observations, we infer that milder attacks tend to utilize a broader
array of unrelated semantic concepts to trigger misclassifications. This phenomenon can be
metaphorically likened to a strategy of “death by a thousand cuts,” where numerous slight
disturbances on neurons collectively achieve the misclassification.
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5.3.3 Correlating Class Similarity with Exploitation Intensity

An adversarial attack changes a data instance’s predictions from its original class to a target
class of the attacker’s choosing. However, some class changes may be “easier” (e.g., from
one type of dog to another), and some “harder” (e.g., from an animal to a vehicle). How
does class similarity correlate with the magnitude of changes that an attack needs to induce
inside a model?

Dissimilar class pairs −→ strong neuron inhibition. While attacks generally inhibit
features from the original class, so that features of the target adversarial class are rela-
tively detected more, we found that the magnitude of neuron inhibition is much higher
when the original and target classes are very different. For example, Fig 5.8-left shows that
adversarial ambulance images need to strongly inhibit car-related neurons (i.e., big drop
in their activation) to misclassify such images as street signs due to strong class dissimi-
larities. Conversely, as shown in Fig 5.8-right, adversarial brown bear images only need
to mildly inhibit brown-fur neurons to induce misclassification of black bear due to close
class resemblance. We made similar observations for other dissimilar (e.g., giant panda vs.
armadillo), and similar class pairs (e.g., vine snake vs. green snake).

Dissimilar classes −→more neurons exploited. BLUFF helps reveal unusual pathways
that an attack exploits to induce incorrect predictions. Such unusual pathways (colored red
in Graph View) typically consist of neurons and connections that are neither commonly
traversed by benign original images, nor benign target images; rather they are exploited
unexpectedly by the adversarial images. We found that these unusual pathways are more
heavily used — and they consist of more neurons and connections — when the original and
target classes are dissimilar (e.g., ambulance vs. street sign; giant panda vs. armadillo).
The unusual pathway for the ambulance class pair contains 136 neurons, and the giant
panda pair contains 85, across all attack strengths. For similar class pairs (e.g., brown bear
vs. black bear; vine snake vs. green snake, both with green bodies), their unusual pathways
are dramatically more compact, 28 neurons for the bears, and 16 for the snake for all attack
strengths.

5.4 Conclusion and Future Work

We present BLUFF, an interactive system for visualizing, characterizing, and deciphering
adversarial attacks on DNNs. We believe our visualization, summarization, and comparison
approaches will help promote user understanding of adversarial attacks, and support dis-
coveries to design a proper defense. Our next step is to use BLUFF to help construct robust
defenses against attacks. We plan to extend BLUFF to support interactive neuron editing
(e.g., “deleting” a neuron from model), so that the user may empirically identify and act
on vulnerable neurons and observe the effects on the resulting pathway and prediction in
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Figure 5.8: The most inhibited neurons for the dissimilar class pair (ambulance, street
sign), and a similar class pair (brown bear, black bear). Left: adversarial ambulance images
need to strongly inhibit car-related neurons (i.e., big drop in their activation) to misclassify
such images as street signs due to strong class dissimilarities. Right: adversarial brown
bear images only need to mildly inhibit brown-fur neurons to induce misclassification of
black bear due to close resemblances.

real-time. We also plan to extend BLUFF to work for adversarially-trained models [19, 160,
158], to help people gain deeper insights that explain their robustness. Additionally, after
receiving positive preliminary feedback from researchers, students and collaborators who
were given the opportunity to try out BLUFF, we plan to conduct user studies to evaluate
our tool’s usability and functionality.
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CHAPTER 6

SKELETONVIS: INTERACTIVE VISUALIZATION FOR
UNDERSTANDING ADVERSARIAL ATTACKS ON HUMAN

ACTION RECOGNITION MODELS

Skeleton-based human action recognition is becoming pivotal for video applications, span-
ning domains such as home robotics, eldercare healthcare systems, and surveillance. Yet,
the susceptibility of these models to adversarial attacks raises red flags, especially when
considering their integration into safety-critical environments. Gaining insight into the
mechanisms by which these attacks can deceive human action recognition models is vital
for devising robust defenses. In response, we present SKELETONVIS, the first interactive
system that visualizes the intricacies of such adversarial tactics, fostering a deeper under-
standing of their operation.

6.1 Introduction

Skeleton-based human action recognition is increasingly vital in video-centric applications,
ranging from home robotics to eldercare and surveillance, as evidenced by several stud-
ies [1, 2, 170]. These models, which analyze the complex movements and interconnections
of human joints, demonstrate high predictive accuracy [1]. However, they face a significant
challenge that they are vulnerable to adversarial attacks; subtle perturbations, almost imper-
ceptible to the human eye, can trick these models into making incorrect predictions [171,
172]. This vulnerability issue is of particular concern in safety-critical applications like
autonomous driving systems.

To enhance the resilience of these models against such attacks, understanding their sus-
ceptibility is crucial. Leveraging the power of interactive visual analytics systems, which
have proven effective in exposing deep learning model vulnerabilities [89, 90, 173], we
introduce SKELETONVIS (see Fig 6.1). SKELETONVIS is the first interactive visualization
tool designed specifically to explain how adversarial attacks manipulate inputs to cause
incorrect model predictions.
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Figure 6.1: The interface of SKELETONVIS, visualizing how the Fast Gradient Method
manipulates the left foot joints detected by the Detectron2 Keypoint R-CNN model. (A)
The Skeleton View shows the joints perturbed to unexpected locations. (B) Timeline View
reveals the attacked joints spuriously jumping around from one frame to the next, leading
to a “spike” in the average joint displacement across attacked frames. These manipulations
finally sway the ST-GCN action detection model into misclassifying the attacked frames as
“exercising with exercise ball,” instead of the correct “lunge” classification.

6.2 The SKELETONVIS System

SKELETONVIS is developed to provide in-depth insights into adversarial attacks targeting
skeleton-based human action recognition systems. It operates by analyzing two types of
inputs: a benign video clip, such as one showing a person lunging, and its “attacked” coun-
terpart, which might depict a seemingly similar activity like exercising with a gym ball.
These attacked versions are meticulously crafted by applying subtle pixel-level perturba-
tions to the original, benign clips (as depicted in Fig 6.1A).

SKELETONVIS visualizes the human joints detected in both benign and adversarial
videos, highlighting how these joints may become misaligned, thus leading to incorrect
predictions. SKELETONVIS also measures and displays atypical patterns in the manipu-
lated frames, enabling users to pinpoint the specific frames that are targeted by attacks.
Furthermore, SKELETONVIS integrates quantitative measurements to highlight irregulari-
ties in the adversarial frames, thereby guiding users to the specific frames most impacted
by the attack, as illustrated in Fig 6.1B.
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6.2.1 Extracting Human Joints to Predict Action and Visualize Attack

SKELETONVIS offers a visualization interface to interpret the impacts of adversarial at-
tacks on an end-to-end skeleton-based human action recognition system. The human-action
recognition system operates in two fundamental phases. First, it identifies 17 pivotal hu-
man joints in each video frame, using Detectron2’s body joint R-CNN model [174], which
produces a spatial confidence map for every identified joint. The extracted joint informa-
tion forms the foundational visualization layer within SKELETONVIS, allowing users to
observe and analyze the spatial distribution of detected joints in each frame. Second, after
joint extraction, it infers the human action by integrating the spatial confidence map of the
detected joints, by employing ST-GCN [1] which is a state-of-the-art skeleton-based action
detection model. As adversarial perturbations are introduced to this end-to-end system,
SKELETONVIS visualizes their effects, specifically highlighting discrepancies and anoma-
lies in joint detections and their subsequent influence on action inferences.

6.2.2 Skeleton View: Explaining How Attacks Manipulate Detection of Human Joints

Skeleton View, as depicted in Fig 6.1A, visually explains how the attacks are manipulating
the human joint positions to cause misclassification. This explanation is facilitated through
two distinct visualization models: the Comparison View (Fig 6.1A-1) that overlays the
benign and adversarial joint positions for direct comparison and the Split View (Fig 6.1A-
2) that presents these positions separately for clearer distinction.

Comparison View enables a spatial comparison between benign and adversarial frames,
by superimposing the two sets of detected joints. For example, by revealing that the left
foot is detected in unexpected locations in adversarial frames, users can more easily glean
insights into why the pose detection model misclassifies the video (e.g., person lunging) as
an incorrect action (e.g., exercising with an exercise ball).

Split View compares movement of the human joints in the benign and adversarial clips.
For a clip, we visualize the trajectory of a human joint as follows. Let x1,x2, ...,xT be the
sequence of the coordinates of a human joint in a clip. We display the movement as in Fig
6.1A-2, where joints from earlier frames (i.e., x1,x2, ...) are visualized as more transparent
dots, and those from frames (i.e., xT ,xT−1, ...) are visualized as more opaque dots. The
joint trajectories and frames of the benign video are shown at the top, and those of the
adversarial videos are shown at the bottom.

6.2.3 Timeline View: Visualizing Abnormal Signals from Adversarial Attacks

To help users discover attacked frames, SKELETONVIS quantifies and visualizes the pose
detection models’ responses to benign and attacked videos in the Timeline View (Fig 6.1B),
enabling users to interactively compare and more easily pinpoint frames that they need to
be wary of.
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At the upper section of Timeline View, users can closely inspect a video segment (de-
fined as a specific range of frames) by selecting the segment’s thumbnail. This action not
only highlights the chosen thumbnail but also displays its associated average joint displace-
ment values in a line chart. In this chart, the horizontal axis denotes the sequence of frames,
while the vertical axis quantifies the displacement occurring from one frame to the next.

At the bottom of Timeline View, users can interact with controls which are similar to
those found in standard video players, to select specific frames for analysis. The interactive
timeline consists of a frame slider and time buttons. Moving the knob on the frame slider
sets the selected frame in Comparison View (Fig 6.1A-1) and the segment in Split View
(Fig 6.1A-2). Pressing the “Play” button pauses or resumes the video playback. The “Fast
backward” and “Fast forward” buttons at both ends bring users to the very beginning and
the very end of the clip respectively. The “Forward” and “Backward” buttons step forward
or backward by one frame.

6.3 Conclusion

SKELETONVIS is the first-of-its-kind interactive system that visualizes how an adversarial
attack affects a human action recognition system with videos. By employing a dual visu-
alization strategy with Skeleton View and Timeline View, it visualizes and quantifies spatial
and temporal discrepancies in joint detections and their subsequent influence on human
action inferences. Such a comprehensive visualization becomes helpful for understanding
and potentially mitigating the impact of adversarial perturbations on skeleton-based human
action recognition systems.
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Part III

Scalable Discovery of Concept Evolution

During Training
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OVERVIEW

The previous two parts focus on the interpretation of fully developed DNNs, examining
their learned concepts and potential vulnerabilities. Yet, most research, including these
prior parts, primarily focuses on insights after the training has concluded [9, 10].

The post-training approaches offer limited insights into how DNNs evolve as they are
trained, even though interpreting the model evolution can be crucial for efficient network
training monitoring [8, 9]. There is a discernible knowledge gap regarding the models’
developmental progress during training and how it ties to issues such as limited gener-
alizability [11, 12, 13] or convergence failures [14, 15]. Relying solely on post-training
interpretations can impede real-time timely interventions and resource wastage, especially
if the training fails to realize the intended outcomes [16, 17]. How can we help people
interpret the dynamic evolution of a DNN as it is trained?

In Part III, we present the first-of-its-kind general unified interpretation framework of
DNNs that reveals the inception and evolution of learned concepts during training (Chap-
ter 7). This chapter is adapted from work that was published at CIKM 2023 [175].

Chapter 7
Concept Evolution in Deep Learning Training: A Unified Interpretation
Framework and Discoveries. Haekyu Park, Seongmin Lee, Benjamin
Hoover, Austin Wright, Omar Shaikh, Rahul Duggal, Nilaksh Das, Kevin Li,
Judy Hoffman, Duen Horng Chau. International Conference on Information
and Knowledge Management, 2023
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CHAPTER 7

CONCEPT EVOLUTION IN DEEP LEARNING TRAINING: A
UNIFIED INTERPRETATION FRAMEWORK AND DISCOVERIES

We present CONCEPTEVO, a unified interpretation framework for deep neural networks
(DNNs) that reveals the inception and evolution of learned concepts during training. Our
work addresses a critical gap in DNN interpretation research, as existing methods primarily
focus on post-training interpretation. CONCEPTEVO introduces two novel technical con-
tributions: (1) an algorithm that generates a unified semantic space, enabling side-by-side
comparison of different models during training, and (2) an algorithm that discovers and
quantifies important concept evolutions for class predictions. Through a large-scale human
evaluation and quantitative experiments, we demonstrate that CONCEPTEVO successfully
identifies concept evolutions across different models, which are not only comprehensible to
humans but also crucial for class predictions. CONCEPTEVO is applicable to both modern
DNN architectures, such as ConvNeXt, and classic DNNs, such as VGGs and InceptionV3.

7.1 Introduction

Interpreting the inner workings of Deep Neural Networks (DNNs) has become crucial for
instilling trust in the models [26], debugging them [176], and guarding against harms such
as embedded bias or adversarial attacks [89, 177, 178]. As a fundamental type of DNN,
convolutional neural networks have garnered significant interest in understanding their in-
ternal mechanism. Saliency-based interpretation methods aim to identify important image
regions for predictions [45, 42]. Concept-based interpretation methods identify concepts
detected by DNNs, such as “dog face” in Fig 7.1, and their role in forming higher-level
concepts and predictions [80, 58, 62, 47, 60]. These methods connect a concept with sets
of images or image patches that explain the concept, using shared visual characteristics
among the images to enhance human understanding of the concept [179, 56, 62]. Neuron-
level concept interpretation methods focus on concepts that elicit strong activation in that
neuron [56, 179, 80].

However, existing approaches predominantly focus on post-training interpretation [9,
10], providing limited insights into their training processes. Crucially, understanding the
progression of concepts detected by individual neurons, which we refer to as the neuron’s
concept evolution, and its association with model deficiencies like poor generalizability
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Figure 7.1: CONCEPTEVO creates a unified semantic space that enables side-by-side com-
parison of different models during training (top: VGG19; middle: InceptionV3; bottom:
ConvNeXt). CONCEPTEVO embeds and aligns neurons (dots) that detect similar concepts
(e.g., dog face, circle, car wheel) to similar locations.

[11, 12, 13] or convergence failures [14, 15] remains underexplored. Relying solely on
post-training interpretation poses challenges for real-time discovery and diagnosis during
training, potentially wasting time and resources [16, 17], if the training ultimately fails to
achieve desired outcomes. Interpreting the DNN training process also enhances effective
monitoring [77, 8, 180, 181].

To fill these gaps, our work contributes as follows:

1. CONCEPTEVO, a unified interpretation framework that reveals the inception
and evolution of concepts during DNN training (Sec 7.2), with two novel technical
contributions1:

• An algorithm that generates a unified semantic space that enables side-by-side com-

1CONCEPTEVO has been made open source: https://github.com/poloclub/ConceptEvo.
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parison of different models during training (Fig 7.1, 7.2). CONCEPTEVO is appli-
cable to both modern ConvNeXt and classic DNNs like VGGs and InceptionV3.

• An algorithm that discovers and quantifies important concept evolutions for class
predictions (Fig 7.3).

2. Extensive evaluation (Sec 7.3). A large-scale human-based experiments involving
260 participants and quantitative experiments demonstrate that CONCEPTEVO iden-
tifies concept evolutions that are not only meaningful to humans but also important
for class predictions.

3. Discoveries on model evolution (Sec 7.3.5). We highlight how CONCEPTEVO aids
in uncovering potential issues during model training and provides insights into their
causes, such as: (1) severely harmed concept diversity caused by incompatible hy-
perparameters (e.g., overly high learning rate) as shown in Fig 7.2b; and (2) slowly
evolving concepts despite rapid increases in training accuracy in overfitted model as
shown in Fig 7.2c.

7.2 Method

7.2.1 Desiderata of Interpreting Concept Evolution

D1 General interpretation of concept evolution across different models. Comparing
the training of different models is essential for determining which model is trained
better or which training strategy is more effective [11, 182]. Thus, we aim to develop
a general method that enables side-by-side comparison and interpretation of concept
evolution across different models. (Sec 7.2.2)

D2 Revealing and quantifying important evolution of concepts. We aim to identify
internal changes that significantly impact the prediction of a specific class, as under-
standing the most influential components can lead to effective model improvements
[183]. For example, we seek to determine the importance of a neuron’s concept evolu-
tion, such as the transition from “brown color” to “brown furry leg” in the prediction
of a “brown bear” class. We aim to automatically discover these important changes in
concepts for class predictions. (Sec 7.2.3)

D3 Discoveries. Can the interpretation of how a model evolves help identify training
problems and provide insights for addressing them, advancing prior work that focuses
on interpreting and fixing models post-training [183]? For example, can we help de-
termine if a model’s training is on the right track and if interventions are necessary to
improve accuracy? (Sec 7.3.5)
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Figure 7.2: CONCEPTEVO identifies potential training issues. (a) A well-trained VGG16
shows gradual concept formations and refinements. (b) A VGG16 suboptimally trained
with a large learning rate, rapidly losing the ability to detect most concepts. (c) An overfit-
ted VGG16 without dropout layers, showing slow concept evolutions despite rapid training
accuracy increases. We abbreviate “top-5 training/test accuracies” as “train/test acc.”

7.2.2 General Interpretation of Concept Evolution

We desire an interpretation of model evolution that is comparable across different mod-
els. However, direct comparison between concepts in different models at different training
stages is challenging. Different models are independently trained; thus, the learned con-
cepts are not aligned by default. Even for the same model, activation patterns can change
considerably over training epochs.

To address this challenge, we propose a two-step method. In step 1, we create a base
semantic space that captures the concepts identified by a base model at a specific training
epoch. This semantic space serves as a fundamental reference for concept representation.
In step 2, we project the concepts from other models spanning all epochs onto the base se-
mantic space, resulting in a unified semantic space where similar concepts across different
models and epochs are mapped to similar locations.

We selected an optimally, fully trained model as our base model to ensure comprehen-
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sive concept coverage. For example, we used a fully trained VGG19 model [184] as the
base model for Fig 7.1 and 7.2.

Step 1: Creating the base semantic space. To create the base semantic space, we use
neurons as a unit to identify and represent concepts, inspired by studies that demonstrate
neurons’ selective activation for specific concepts [183, 56, 99]. By using neurons, we
can pinpoint areas of interest in models, enabling focused troubleshooting, particularly in
identifying abnormal training patterns within specific groups of neurons. Building on prior
work [80], we embed neurons that strongly respond to common inputs in similar locations.
As neuron-concept relationships may not always be one-to-one [58, 185], we aim to gen-
eralize to many-to-many relationships. For example, polysemantic neurons responsive to
multiple concepts are embedded between those concepts.

Step 1.1: Finding stimuli. CONCEPTEVO creates stimuli for each neuron by collect-
ing a set of k images that result in the highest maximum in the neuron’s activation map.
For neurons associated with a single concept, their stimuli will be more alike, while for
polysemantic neurons, their stimuli may consist of multiple concepts.

Step 1.2: Sampling frequently co-activated neuron pairs. CONCEPTEVO creates a
multiset D, which consists of sampled pairs of strongly co-activated neurons from the base
model Mb at epoch tb. First, for each image x, it creates a list of neurons that are strongly
co-activated by x, by collecting neurons with x in their stimuli. Next, it randomly shuffles
each list of co-activated neurons and samples neuron pairs using a sliding window of length
two over the shuffled neurons. The sampled neuron pairs are added to D. This sampling
process is repeated E times to obtain diverse neuron pairs. Note that a specific neuron
pair can appear multiple times in D, with their frequency of appearance increasing as more
images are shared by their stimuli. This leads to a closer embedding of more frequently
co-activated neurons in the unified semantic space.

Step 1.3: Learning neuron embedding. The objective function, defined by Eq (7.1),
represents a negative log likelihood to learn neuron embeddings; intuitively, (1) co-activated
neuron pairs with a larger inner product (and spatially closer embeddings) are more likely
to indicate similar concepts, while (2) randomly paired neurons with a lower inner product
(and spatially farther embeddings) are less likely to be conceptually similar. The randomly
paired neurons serve as negative examples, enabling high-quality vector representations
of concepts, similar to the negative sampling approach used in Word2Vec algorithm [110,
186]. This neuron embedding approach allows for the representation of many-to-many re-
lationships between neurons and concepts. For example, a polysemantic neuron, which is
co-activated by multiple distinct groups of neurons representing different concepts, is at-
tracted towards these groups, resulting in its spatial location between them. In the objective
function, vt

n,M is an embedding of neuron n in model M at epoch t. r is a randomly se-
lected neuron. R is the number of randomly sampled neurons for each co-activated neuron
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pair in D. σ(·) is the sigmoid function (i.e., σ(x) = 1/(1 + e−x)).

J1 = −
∑

(n,m)∈D

(
log

(
σ(vtb

n,Mb
· vtb

m,Mb
)
)
+

R∑
r=1

log
(
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· vtb

r,Mb
)
)
+

R∑
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log
(
1− σ(vtb
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)
)) (7.1)

We randomly initialize the neuron embeddings and learn the embeddings by gradient
descent. Eq (7.2) and (7.3) present the derivative to update the neuron embeddings. Further
details about neuron embedding algorithm are described in Appendix A.
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Step 2: Unifying the semantic space of different models at different epochs.
Step 2.1: Image embedding. Different models, with varied architectures and neurons,

can share the commonality of being trained on the same dataset. Leveraging this, we con-
sider that if two neurons from different models are strongly activated by the same inputs,
they likely detect the same concept. To represent neurons’ concepts across models, we
use image embeddings as a bridge: we compute image embeddings that approximate the
original neuron embeddings in the base model, and these image embeddings are then used
to approximate the neuron embeddings in other models.

A neuron’s embedding typically represents a more detailed concept (e.g., car wheel as
shown in Fig 7.1) extracted from the entire images (e.g., car images) that include various
concepts (e.g., car wheels, loads, and more). Thus, we consider that collective embeddings
of neurons can approximate the image embedding. Similarly, we assume that a neuron’s
embedding can be formed by collectively considering the embeddings of images to which
the neuron strongly responds, In particular, we aim to encode a common concept (e.g., car
wheel) across the stimuli (e.g, car images) into the neuron’s embedding. To approximate
a neuron’s embedding, we consider linearly combining the embeddings of the stimuli of
the neuron, reinforcing the common concepts (e.g., car wheel) by summing the shared fea-
tures encoded in the image embeddings. Unrelated concepts (e.g., backgrounds or different
colors of cars) which may occur randomly and vary in presence (or absence) across stim-
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uli can be disregarded by summing and zeroing out such unrelated concepts’ (positive and
negative) contributions. To aggregate the embeddings, we adopt the standard practice of
averaging across the important images as in previous seminar work [183, 62, 47]. Eq (7.4)
presents the neuron embedding approximation, where X tb

n,Mb
is the set of stimuli of neuron

n in the base model Mb at epoch tb.

v′tb
n,Mb

=
1

|X tb
n,Mb
|

∑
x∈Xtb

n,Mb

vx (7.4)

Eq (7.5) presents the objective function to minimize the difference between the original
and the approximated embedding of neurons in the base model, where NMb

is a set of all
neurons in the base model. We randomly initialize the image embeddings and learn them
by gradient descent. Eq (7.6) shows the derivative used to update an image’s embedding,
where NMb,x is the set of neurons in Mb whose stimuli includes an input x.
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2
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The image embedding approach may have a limitation as it can only represent images
from the top-k stimuli of neurons in the base model. Consequently, if none of the images
in a neuron’s stimuli are not covered by the base model, the neuron itself remains unrepre-
sented. With a large number of images, the top-k sets of stimuli for two models may have
a low chance of overlapping. To address this issue, we use a randomly sampled images
(10% sampled) instead of using all of them to increase the chance of overlapping. Addi-
tionally, we indirectly represent images that are not covered by the base model’s stimuli
by adopting a similar approach as in Step 1; instead of representing neurons based on their
co-activation by common images, we represent images based on how they make common
neurons co-activated. For each image x, CONCEPTEVO identifies the k most activated neu-
rons by x, denoted as N tb

Mb,x
. Images x1 and x2 are paired if there are common neurons in

N tb
Mb,x1

and N tb
Mb,x2

. The paired images are added to the multiset of image pairs denoted as
S. Image pairs in S may appear more than once (i.e., S is a multiset), indicating that those
images can stimulate more common neurons, leading to a closer embedding. The image
embeddings are learned in a similar manner to the neuron embedding approach, with the
embeddings for images that are already represented by the base model being fixed.

Step 2.2: Approximating embedding of neurons in other models at different epochs.
After embedding images in Step 2.1, CONCEPTEVO approximates neuron embeddings of
other models at other epochs by averaging the embedding of images in each neuron’s stim-
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uli that are covered by the base model. If none of the images in a neuron’s stimuli are
covered by the base model, it averages the indirectly derived image embeddings. Step 2.2
is the only necessary (sub)step when projecting concepts in a new model onto the unified
semantic space. There is no need to repeat Step 1 and Step 2.1.

To visualize the neuron embeddings, we use UMAP, a non-linear dimensionality re-
duction method that preserves both the global data structures and local neighbor relations
[111]. To assist in understanding the concepts that neurons strongly respond to, we com-
pute example patches which are cropped images that maximally activate the neuron (e.g.,
example patches of neurons for the “dog face” concept in Fig 7.1) [56].

7.2.3 Concept Evolutions Important for a Class

Our objective, as discussed in D2, is to uncover crucial concept evolutions that impact class
predictions. For example, how important is the evolution of a neuron’s concept (e.g., from
“furry animals’ eyes” to “human neck”) to the prediction for a class (e.g., “bow tie”)?
Inspired by [47], we quantify the significance of a concept evolution by evaluating how
sensitive a class prediction is to the evolutionary state of the concepts.

Eq (7.8) defines such sensitivity of the class c prediction with respect to the concept
evolution of neuron n in layer l in model M , from epoch t to t′, given an input x. Zt

l,M(x)

is the activation map of all neurons in l at t for x. The function ht
l,M,c(·) : Rhl×wl×sl → R

takes Zt
l,M(x) as input and provides the logit value for class c, where hl, wl, and sl are

height, width, and the number of neurons in l, respectively. ∆Zt,t′

n,l,M(x) is the activation
change of n from t to t′, as defined in Eq (7.7), where 0a,b is a zero matrix of a rows and
b columns. The directional derivative in Eq (7.8) indicates how sensitively a prediction for
class c would change if the activation in layer l changes towards the direction of neuron
n’s evolution. A positive value indicates that the concept evolution of neuron n positively
contributes to the prediction for class c.
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Figure 7.3: CONCEPTEVO identifies and quantifies important concept evolutions for class
prediction. For example, in a VGG16, it discovers that concepts evolving towards human-
related attributes, such as “orange circles” → “hand” in the top row, are important for
the “bow tie” class. The importance score for this evolution is 0.92, meaning that such a
concept evolution enhances predictions for 92% of bow tie images.

We finally measure the importance of concept evolution of a neuron n in layer l in model
M from epoch t to t′ for class c, by aggregating the importance across class c images, as in
Eq (7.9), where Xc is the set of images labeled as c.

I t,t
′

n,l,M,c =
|{x ∈ Xc : St,t′

n,l,M,c(x) > 0}|
|Xc|

(7.9)

Fig 7.3 illustrates important concept evolutions for the “bow tie” class discovered by
CONCEPTEVO, such as evolutions from abstract concepts to “hand,” “neck,” and “face”
concepts. Surprised by the many evolutions towards human-related concepts, we inspected
the raw images for the bow tie class and found that the majority of the images (over 70%)
depict a person wearing a bow tie.

7.2.4 Runtime and Time Complexity

We designed CONCEPTEVO with a focus on practicality, considering the need for real-
time interpretation during model training. To ensure this, we aimed to keep the runtime
of our approach shorter than a single training epoch, allowing simultaneous training and
interpretation. Our approach meets this requirement. Below, we report the runtime of CON-
CEPTEVO when using an NVIDIA A6000 GPU with 40GB RAM and the 10% randomly
sampled ImageNet dataset [51] with 120 K images.
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In the two-step concept evolution interpretation method of CONCEPTEVO (described
in Sec. 7.2.2), Step 1, which creates the base semantic space, completes in less than 30
minutes. Step 2, which unifies the semantic space of models across epochs, takes less
than 3 hours for Step 2.1 (image embedding) and less than 1 hour for Step 2.2 (identifying
stimuli of a non-base model and approximating the embedding of its neurons).

Step 2.2 (∼1 hour) is the only procedure that needs to be performed when projecting
concepts in a new model onto the unified semantic space, and its runtime is shorter than
training a model for an epoch (e.g., ConvNeXt takes 1.56 hours). This means that CON-
CEPTEVO’s interpretation can be performed concurrently with model training. Step 1 (∼30
minutes) and Step 2.1 (∼3 hours) are one-time computations that can be reused, making
CONCEPTEVO a practical and efficient choice.

General Interpretation of Concept Evolution (Sec 7.2.2). Now, we provide a detailed
analysis of the time complexity of CONCEPTEVO’s two-step concept evolution interpreta-
tion method described in Section 7.2.2. The “steps” mentioned here correspond to the steps
outlined in Section 7.2.2.

Step 1: Creating the base semantic space. Step 1 has an overall time complexity of
O(|NMb

| · |I|), where NMb
is the set of neurons in Mb, and I is the set of images.

In Step 1.1, the time complexity is O(|NMb
| · |I|). For each neuron, collecting the top k

images from |I| images takes O(|I| · k). This process involves maintaining a sorted list of
length k, which stores the top-k images observed so far. At each iteration for an image x,
we compare x to the smallest top-k item in the list. If x results in a higher activation for the
neuron, we insert x into the list and remove the previous smallest top-k item. Identifying
the proper spot to insert x and inserting it (if necessary) takes O(k), and k is small (e.g., 10).
Thus, the total time for collecting the top k images from |I| images is O(|I| · k) = O(|I|).
Therefore, for all neurons, Step 1.1 has a time complexity of O(|NMb

| · |I|).
In Step 1.2, the time complexity is O(|NMb

|). Step 1.2 consists of two sub steps. First,
for each image x, collecting neurons with x in their stimuli takes O(|NMb

|), as it requires
iterating through all stimuli of all neurons, which is a total of O(k · |NMb

|). Second, for
each image x and its corresponding co-activated neurons, sampling neuron pairs from the
list of co-activated neurons with the sliding window takes O(k · |NMb

|) = O(|NMb
|). This

results in O(|NMb
|) pairs of neurons. The sampling process is repeated E times, thus the

total time for Step 1.2 is O(E · (|NMb
|+ |NMb

|)) = O(|NMb
|).

Step 1.3 takes O(|NMb
|), as the number of generated neuron pairs in Step 1.2 is O(|NMb

|).
One epoch of gradient descent in Step 1.3 takes O(|NMb

| · R) = O(|NMb
|) , resulting in a

final time complexity of O(|NMb
|).

Overall, the time complexity of Step 1 is O(|NMb
| · |I|) + O(|NMb

|) + O(|NMb
|) =

O(|NMb
| · |I|). One advantage of this approach is its linear time complexity with respect

to the number of neurons, instead of quadratic time. This is because it avoids the need to
compare and represent concepts for all pairs of neurons, and instead focuses on sampled
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pairs of neurons.
Step 2: Unifying the semantic space. Overall, Step 2 has a time complexity of O(|NMb

|·
|I|). In Step 2.1, the time complexity is O(|NMb

| · |I|). This is because optimizing J2 takes
O(|I|) time to learn O(|I|) vectors, and approximately representing images not covered by
the base model’s stimuli also takes O(|NMb

| · |I|), similar to Step 1 (since it adapts Step 1).
To represent the concepts of neurons in a non-base model M within the unified semantic
space, Step 2.2 takes O(|NM | · |I|). This step involves computing stimuli for each neuron
in M , where NM is the neurons in M , using a similar approach as in Step 1.1.

Concept Evolution Important for a Class (Sec. 7.2.3). Identifying important concept
evolutions for each class c entails a computational time complexity of O(|I| · |NMb

|), since
the computation of neuron sensitivity (Eq (7.8)) relies on the number of images labeled
as c (which is O(|I|)). In terms of runtime, on average, this process took 37 minutes for
VGG16, InceptionV3, and ConvNeXt models.

7.3 Experiment

We evaluate how well CONCEPTEVO satisfies the desired properties for interpreting con-
cept evolution (Sec 7.2.1, D1-3) by addressing the following research questions:

Q1 Alignment. How effectively does CONCEPTEVO align concepts of different models
at different training stages in the unified semantic space? (Sec 7.3.2, for D1)

Q2 Meaningfulness. To what extent are the discovered concept evolutions semantically
meaningful? (Sec 7.3.3, for D1)

Q3 Importance. How important are the discovered concept evolutions in terms of their
impact on class prediction? (Sec 7.3.4, for D2)

Q4 Discoveries. How does CONCEPTEVO contribute to the discovery of insightful find-
ings? (Sec 7.3.5, for D3)

7.3.1 Experiment Settings

Datasets and models. We examine concept evolutions in representative image classifiers
trained on ILSVRC2012 (ImageNet) [51]. The models we investigate include a modern
model, such as ConvNeXt [187] which draws inspiration from recent architectures such
as ResNet [188], ResNeXt [189], and vision transformers [190, 191]. Additionally, we
investigate classic models such as VGG16 [184], VGG19 [184], VGG16 without dropout
layers [192], and InceptionV3 [87]. To ensure comparable accuracies, we trained these
models using the hyperparameters reported in prior work [184, 87, 187].

Hyperparameter settings. To create a unified semantic space that optimally balances
coherence among neighboring neurons with computational efficiency, we carefully selected
the following hyperparameters within their respective test ranges: the number of stimuli per

102



Figure 7.4: MTurk questionnaire example. Participants are presented with six neurons’
example patches and asked to determine if they are a semantically coherent group. If they
identify a coherent group, they provide a short label for that group. In the provided exam-
ple, the first five neurons are semantically similar, detected and grouped by CONCEPTEVO.
The rightmost is randomly sampled and unrelated to others. Here, a participant correctly
identifies the first four neurons as a coherent “dogs” concept (four true positives), misses
the fifth neuron (one false negative), and correctly identifies the intruder as unrelated (one
true negative).

neuron (k) was tested from 5 to 30, with a chosen value of 10 for balancing the coherence
and efficiency; the dimension of neuron and image embeddings was set to 30 (tested from 5
to 100); the learning rate for neuron embedding was set to 0.05 and for image embedding,
it was set to 0.1 (tested from 0.001 to 0.5); and the number of randomly sampled neurons
per neuron pair (R) was set to 3 (tested from 0 to 5).

7.3.2 Alignment of Neuron Embeddings

To ensure the effectiveness of CONCEPTEVO in aligning concepts across models and epochs,
we conducted a large-scale human evaluation using Amazon Mechanical Turk (MTurk),
following the methodology of prior work [80, 62]. The evaluation focused on four cate-
gories: (1) hand-picked sets of neurons representing similar concepts, which served as a
baseline; (2) neuron groups detected by CONCEPTEVO from the base model (a well-trained
VGG16); (3) neuron groups in the same model at different training epochs, detected by
CONCEPTEVO; (4) neuron groups from different models at different epochs, detected by
CONCEPTEVO. To collect the neuron groups, we applied K-means clustering on the neuron
embeddings within the unified semantic space.

We conducted concept classification tasks with 260 MTurk participants, where each
participant completed nine unique tasks. In each task, participants were presented with six
neurons presented in a random sequence. Five of these neurons had similar concepts that
are either identified by CONCEPTEVO or were hand-picked, while one neuron served as a
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Figure 7.5: The ROC Curve, illustrating human estimations, demonstrates the notable
alignability of concepts identified by CONCEPTEVO, consistently observed across vari-
ous models and epochs.

randomly chosen “intruder” neuron. To help participants understand the concept of each
neuron, we provided nine example image patches. Participants were not informed about the
potential presence of intruders and were asked to select as many neurons as they believed
to be semantically similar. They were also asked to provide a brief description of the con-
cept they perceived. This process, as illustrated in Fig 7.4, essentially forms a classification
task, treating the participants as classifiers and the grouped neurons as true labels. A total
of 10,950 individual classification tasks were generated for the test set. From this fram-
ing, we consider success based on the level of agreement of participants with the model’s
determination. Fig 7.5 shows an ROC curve with the participants’ determinations, demon-
strating the high discernibility and alignment of CONCEPTEVO-detected concepts. Even
when sampling concepts across different epochs and models, the AUC scores remain con-
sistently high, ranging from 0.90 for sampling within the base model to 0.86 for sampling
across different models and training epochs.

7.3.3 Meaningfulness of Concept Evolution

Concepts discovered by CONCEPTEVO should be meaningful and informative to humans.
We evaluate the interpretive consistency of the concepts labeled and described by the partic-
ipants, as shown in Fig 7.4. To handle variations in phrasing for the labels, we use sentence-
level embeddings from the Universal Sentence Encoder (USE) [115]. USE captures the
semantic similarity between phrases, such as “vehicle wheels,” “cars,” and “trucks”, which
should have high USE similarity. To establish a baseline for similarity, we calculate the
average pairwise similarity between all labels, resulting in a value of 0.28. Subsequently,
we measure the average pairwise similarity between the labels provided by participants
for individual concepts within each category from 7.3.2. The results are as follows: (1)
the average concept similarity for hand-picked concepts is 0.455, (2) the average concept
similarity for concepts from the base model is 0.40, (3) the average concept similarity for
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concepts within the same model but different epoch is 0.40, and (4) the average concept
similarity for concepts from different models and different epochs is 0.38. All of these
values significantly exceed the baseline similarity value of 0.28. This indicates that the
concepts discovered through CONCEPTEVO are reliable and meaningful, even when as-
sessed by different people.

7.3.4 Concept Evolutions Important to a Class

CONCEPTEVO quantifies and identifies important concept evolutions, as seeb in Fig 7.6. In
InceptionV3, it reveals concept evolutions from abstract to bird-specific concepts, crucial
for classifying “Goldfinch.” Similarly, in ConvNeXt, it discovers evolutions from abstract
concepts to dog-related concepts that are important for classifying the “Shetland sheepdog”
class. As training progresses, some neurons become more specialized. For example, in the
first row of Fig 7.6, a neuron initially detecting abstract concepts of a dark background
evolves to detect a dark-eyed circle and later to detect a head with a dark eye. Appendix B
provides additional examples of concept evolutions that are important to class predictions.

Figure 7.6: CONCEPTEVO discovers concept evolutions important for class predictions.
For example, it discovers bird-related evolutions important for the “Goldfinch” class in
InceptionV3, and dog-related evolutions important for the “Shetland sheepdog” class in
ConvNeXt. Some neurons become increasingly specialized as training progresses. For
example, in the first row, a neuron that initially detects abstract concept of dark background
evolves to detect dark-eyed circle, and then further evolves to detect head with a dark eye.
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To evaluate the effectiveness of CONCEPTEVO in discovering important concept evo-
lutions, we measure the changes in accuracy when evolutions are reverted, similar to how
prior work evaluated concept importance in fully-trained models [183, 62]. By reverting
a neuron’s activation map from t′ to t, we evaluate the prediction accuracy at t′. A larger
drop in accuracy indicates a higher importance for the concept evolution of that neuron. To
determine the stages of evolution to evaluate, we identify the epochs with the closest top-1
training accuracies to the milestones of 25%, 50%, and 75%. Specifically, for VGG16, the
evolution stages are 5→21 and 21→207; for InceptionV3, 1→11 and 11→121; and for
ConvNeXt, 1→3 and 3→96.

As CONCEPTEVO measures concept evolution’s importance for a single neuron (Eq 7.9),
it is natural to evaluate accuracy changes by reverting each neuron’s evolution individually
and aggregating the changes. However, due to the large number of neurons, this approach
is computationally prohibitive. Instead, we propose a more practical approach that reverts
multiple evolutions in a layer at a time and aggregates the accuracy changes across lay-
ers. The evaluation process consists of five steps for each class c and evolution stage from
epoch t to t′. Step 1: Sample 128 images for class c, which corresponds to approximately
10% of the total images for that class (∼1300 images). Step 2: Compute the importance of
concept evolutions for all neurons, using Eq (7.9). Step 3: Rank the neurons in each layer
based on their evolution importance and divide them into four importance bins: 0-25th per-
centile (most important), 25-50th percentile, 50-75th percentile, and 75-100th percentile.
Step 4: Revert the evolutions of neurons in each bin, compute the accuracy at epoch t′, and
measure the accuracy changes compared to the non-reverted accuracy. Step 5: Average
the accuracy changes across layers for the four bins. To mitigate sampling bias in Step 1,
we repeat the procedure five times independently. We average the accuracy changes across
100 classes randomly chosen from ImageNet’s 1,000 classes2.

Fig 7.7 illustrates the impact of reverting evolutions in different importance bins on
the top-1 training accuracy of VGG16, InceptionV3, and ConvNeXt. Notably, reverting
higher-importance evolutions (lower percentiles) results in larger accuracy drops, confirm-
ing the effectiveness of CONCEPTEVO in quantifying and identifying important concept
evolutions. Interestingly, reverting the least important evolutions (75-100th percentile)
sometimes leads to increased accuracy. This suggests that the least important evolutions
may interfere with the corresponding class predictions. As a baseline, we reverted 25%
randomly selected evolutions, resulting in an accuracy drop between the 25-50th percentile
and the 50-75th percentile. Furthermore, we evaluated the changes in the top-5 training,
top-1 test, and top-5 test accuracies when reverting evolutions in the same four bins, re-
inforcing our key finding that reverting higher-importance evolutions results in a larger
accuracy drop. Appendix C provides additional results for top-5 training, top-1 test, and
top-5 test accuracy changes when some evolutions are reverted to a previous epoch.

2Standard deviations of the average accuracy changes across the classes between the five runs are very
low (e.g., 9.2e-5 for top-1 training accuracy and 2.1e-4 for top-1 test accuracy, for the 21→207 evolution).
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Figure 7.7: We evaluate the ability of CONCEPTEVO to quantify and identify important
concept evolutions for 100 randomly selected classes. Neurons are ranked by their evolu-
tion importance score and then divided into four bins: 0-25th (top 25% most important),
25-50th, 50-75th, 75-100th percentiles. By reverting higher-importance evolutions, we
observed a larger drop in top-1 training accuracy, demonstrating the effectiveness of CON-
CEPTEVO in quantifying and identifying important concept evolutions. As a baseline, for
comparison, we also measured the accuracy drop when randomly reverting 25% (i.e., the
same number of neurons in each bin) evolutions, which fell between the 25-50th and 50-
75th percentile bins.

7.3.5 Discovery

Incompatible hyperparameters harm concept diversity. CONCEPTEVO’s aligned neu-
ron concept embedding helps identify problems caused by incompatible hyperparameters
and offer insights into their impact on model performance. For example, in Fig 7.2b, CON-
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Figure 7.8: An example of “background” concept detected by VGG16 and ConvNeXt
that are trained with overly large learning rates, when the accuracy is very low. In the
last convolutional layer in these models, a notable percentage (over 30%) of neurons show
exclusive intense activation in response to backgrounds of images.

CEPTEVO reveals that a VGG16 suboptimally trained with an excessively high learning
rate3 exhibits a drastic accuracy drop over training epochs. Early signs of problems, such as
the “atrophying” of neuron concepts that degrade concept diversity and only detect lower-
level concepts, become apparent even before the accuracy reaches 0. The loss of diversity
is so severe that it cannot be recovered even with 40 additional training epochs. A simi-
lar pattern is observed in a ConvNeXt model trained with a high learning rate4, as shown
in Fig 7.9a. In cases where the accuracy is low in VGG16 and ConvNeXt, we observe a
significant reduction in concept diversity, especially in the last convolutional layers. For
example, as seen in Fig 7.8, almost all neurons in VGG16 and over 30% of neurons in
ConvNeXt predominantly detect “background” concepts.

In the case of an InceptionV3 unstably trained with a large learning rate5, CONCEPTEVO

reveals a similar yet slightly different scenario. As depicted in Fig 7.9b, the accuracy sig-
nificantly drops at epoch 70, but interestingly, it recovers after a few more epochs. This
recovery is likely due to the persistence of a large number of concepts at epoch 70 and the
increasing diversity of concepts, despite the low accuracy.

These examples demonstrate that CONCEPTEVO can provide actionable insights to de-
termine whether interventions, such as stopping the training, might be beneficial. Severe
damage to concept diversity, as observed in Fig 7.2b and 7.9a, suggests that stopping the
training might be more beneficial, as the model is unlikely to recover even with further
epochs, compared to a better ability to recover the concept diversity as depicted in Fig 7.9b.

To quantitatively study concept diversity, we use differential entropy which measures
the uncertainty in a continuous variable [193]. We compute the differential entropy for each
dimension of neuron embeddings and average the values across the dimensions6. Higher
values indicate more diverse concepts. In a VGG16 suboptimally trained with a large

30.05, larger than an optimal learning rate 0.01 presented in prior work
40.02, larger than an optimal learning rate 0.004 used in prior work
51.5, larger than an optimal rate of 0.045 used in prior work
6We average the differential entropy across reduced 2D embeddings, instead of the original dimension,

since computing the differential entropy for some high dimensional vectors leads to infinity.
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Figure 7.9: A suboptimally trained ConvNeXt and an unstably trained InceptionV3 with
large learning rate experience decreased concept diversity and convergence in certain re-
gions (e.g., right side to detect lower-level concepts), specifically when these models’ train-
ing accuracies drop (as seen in the second column). Interestingly, the training accuracy of
InceptionV3 recovers, because the concepts become more diverse starting from epoch 70,
showing a better recovery resilience.

learning rate (Fig 7.2b), the differential entropy decreases: 1.89→1.48→-1.80→-1.80 for
epochs 3, 12, 13, 14, indicating a loss of concept diversity. Similarly, in a suboptimally
trained ConvNeXt (Fig 7.9a), the differential entropy decreases: 1.83→1.64→1.59→1.52
for epochs 13, 14, 15, 16. In contrast, optimally trained models show increasing differential
entropy, indicating that concepts become more diverse over epochs. For example, in an op-
timally trained VGG16 (Fig 7.2a), the differential entropy increases: 1.10→1.90→2.06→2.09
for epochs 0, 5, 21, 207. In the case of an unstably trained InceptionV3 (Fig 7.9b),
the differential entropy decreases until epoch 70 (lowest accuracy) and then rebounds:
1.82→1.32→1.54→1.80 for epochs 4, 70, 71, 100, indicating that its concept diversity
was initially damaged but later restored.

Overfitting slows concept evolution. Overfitting is a common issue in DNN training
[194, 195]. Using CONCEPTEVO, we have discovered that concepts in overfitted models
evolve at a slower pace, despite experiencing rapid increases in training accuracy. To inten-
tionally induce overfitting, we modified a VGG16 (Fig 7.2c) by removing its dropout layers
which are known to help mitigate overfitting [192]. Additionally, we overfit a ConvNeXt
model by setting the weight decay of the AdamW optimizer to 0, reducing its regularization
effect [196]. These models are overfitted expectedly7.

7In VGG16, at epoch 30, its top-1 train, top-5 train, top-1 test, top-5 test accuracies are 0.99, 1, 0.37, 0.61,
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We observed that overfitted models show slower concept evolution compared to their
corresponding well-trained models. To increase the top-1 training accuracy from approxi-
mately 0.25 to 0.5 and from approximately 0.5 to 0.75, the neuron embeddings in a well-
trained VGG16 model (Fig 7.2a) move an average Euclidean distance of 2.08e-4 and 2.90e-
4, respectively. In contrast, the overfitted VGG16 model (Fig 7.2b) exhibits much slower
movement, with neuron embeddings only shifting by 1.94e-4 and 1.76e-4 for the same
accuracy increments. Similarly, for the well-trained ConvNeXt model, raising the top-1
training accuracy from approximately 0.25 to 0.5 and from approximately 0.5 to 0.75 cor-
responds to neuron embeddings moving an average distance of 1.49e-4 and 1.33e-4, respec-
tively. Conversely, the overfitted ConvNeXt model shows slower movement, with neuron
embeddings shifting by only 1.48e-4 and 1.27e-4 for the same accuracy increments.

7.3.6 Comparison with Existing Approaches

We compare CONCEPTEVO with existing methods for representing evolving concepts. Ex-
isting methods are not optimized to capture changes across epochs; they can only be applied
to one epoch at a time, independently of other epochs. In our comparison, we consider Neu-
roCartography [80] and ACE [62]. ACE represents concepts using image segments that ac-
tivate a layer. We use the final layer to follow the approach described in the original work.
For image segments, we use the Broden dataset [60]. For 2D visualization of concepts,
we use UMAP [111]. To ensure alignment across epochs, we run UMAP for all epochs
simultaneously, avoiding misalignment caused by independent epoch-based reduction.

The results show that CONCEPTEVO effectively aligns concepts across epochs, while
existing methods exhibit misalignment. In Fig 7.10a, the “car-related” concept neurons
consistently appear at the bottom in epochs 2, 5, and 207. In contrast, Fig 7.10b demon-
strates that the “car-related” neurons represented by NeuroCartography exhibit flipping,
rotation, and shifting across epochs. Similarly, Fig 7.10c shows that the “car-related” im-
age segments represented by ACE exhibit significant shifting as the concept space changes
during training.

7.4 Conclusion and Future Work

CONCEPTEVO is a unified interpretation framework for DNNs that reveals the inception
and evolution of detected concepts throughout the training process. Through both large-
scale human experiments and quantitative analyses, we have showcased the effectiveness
of CONCEPTEVO in discovering concept evolutions that facilitate human interpretation
of model training across different models. This framework not only aids in identifying

respectively. In ConvNeXt, at epoch 32, its top-1 train, top-5 train, top-1 test, top-5 test accuracies are 0.94,
0.99, 0.57, 0.80, respectively.
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Figure 7.10: We compare the representation of concepts in VGG16 using ConceptEvo
with existing methods. (a) The results show that CONCEPTEVO effectively aligns learned
concepts across training epochs, by projecting similar concepts to similar embedding loca-
tions. (b) In contrast, concepts represented by NeuroCartography exhibit flipping, rotation,
and shifting across epochs, indicating misalignment. (c) Similarly, concepts represented
by ACE undergo significant shifting, as the entire concept space (layer activation space)
changes during training, indicating misalignment as well.

potential training problems but also provides guidance for interventions to achieve more
stable and effective training outcomes.

In our future work, we plan to expand the scope of our investigation to include other
types of models, such as object detectors, reinforcement learning systems, and language
models. Additionally, we aim to enhance the alignment of concepts across different models
during training. Currently, our framework operates under the assumption that an image
can be represented by linear combinations of various neurons. However, more complex
relationships may exist beyond linear associations. Thus, we aspire to improve the concept
alignment by considering these non-linear relationships, enabling a more comprehensive
and accurate representation of concepts across different models.
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Part IV

Conclusions and Future Directions
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CHAPTER 8

CONCLUSIONS AND FUTURE DIRECTIONS

This thesis contributes scalable algorithms and novel interactive interfaces to interpret
Deep Neural Networks (DNNs)—whether they are functioning optimally, sub-optimally, or
evolving. Specifically, this thesis focuses on summarizing concepts learned within DNNs
(Part I), revealing their vulnerabilities to adversarial attacks (Part II), and discovering the
evolution of concepts during training process.

8.1 Research Contributions

This thesis makes research contributions to multiple fields, including interactive data visu-
alization, machine learning, and more importantly their intersection.

New scalable systems for global, unified model interpretation.
• NEUROCARTOGRAPHY introduces two innovative scalable concept summarization

techniques, neuron clustering and neuron embedding, to automatically represent
the vast conceptual space of all neurons in large DNNs and their relationships,
offering a holistic interpretation of large datasets like ImageNet with 1.2M images.
By avoiding exhaustive comparisons between neuron pairs’ concepts, our methods
achieve linear time complexity with respect to the number of neurons, far surpassing
the conventional quadratic time. A large-scale human evaluation with 244 partici-
pants shows that these concept summarization techniques discover coherent, human-
meaningful concepts (Chapter 3).

• CONCEPTEVO is the first unified framework for interpreting model training of
multiple DNNs, by refining our neuron embedding algorithm to synchronize the
conceptual spaces from different models across training epochs into a unified seman-
tic space. This alignment not only streamlines the comparative analysis of different
model training processes, but also provides a powerful means to monitor model train-
ing and detects training anomalies. Our extensive human evaluation, involving 260
participants, demonstrates that our framework identifies concept evolutions that are
both meaningful to humans and important for class predictions (Chapter 7).

• We develop BLUFF and SKELETONVIS, each a first-of-its kind interactive system
for deciphering attacks to DNNs. BLUFF visualizes and compares the activation
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pathways for benign and attacked images in vision-based neural networks (Chap-
ter 5). SKELETONVIS visualizes and explains how attacks manipulate human joints
in human action recognition models (Chapter 6).

Surprising discoveries and new insights.

• BLUFF sheds light on the previously unknown vulnerabilities of DNNs. Notably, we
are the first to visualize and characterize the variation in attack strategies based
on attack intensity. For instance, milder attacks may adopt a ‘death by a thou-
sand cuts’ approach, while stronger attacks focus on exploiting a select few neurons.
These discoveries can guide the creation of robust defensive measures, such as the
elimination of susceptible neurons from the model. (Chapter 5)

• NEUROCARTOGRAPHY is among the first system to map the comprehensive con-
cept landscape of large DNNs, revealing unexpected phenomena, such as the ex-
istence of isolated concept—a unique feature not tied to any particular image charac-
teristics (e.g., “watermark” concept can appear on almost any kinds of images). Such
surprising insights help guide model compression, suggesting the potential removal
of such isolated neuron clusters. (Chapter 3)

• CONCEPTEVO empowers users with new ways to identify potential model train-
ing issues such as: (1) incompatible hyperparameters (e.g., overly high learning rate)
severely harm concept diversity; and (2) concepts in overfitted models evolve slowly
despite rapid training accuracy increases. Leveraging these insights allows for timely
interventions, like halting training early when concept diversity is at risk. (Chapter 7)

Democratizing access to interpretability research through open-source systems.

• Prioritizing user convenience, our interactive visual systems, such as NEUROCAR-
TOGRAPHY (Chapter 3), BLUFF (Chapter 5), and SKELETONVIS (Chapter 6), are
presented as interactive web applications. These tools are universally accessible,
compatible with any modern web browser, and free from the hassles of additional
installations or the constraints of specific hardware.

• To foster a collaborative environment for DNN interpretability, we have made the
source codes of our algorithms available to the public, including NEUROCAR-
TOGRAPHY (Chapter 3), BLUFF (Chapter 5), and CONCEPTEVO (Chapter 7).

8.2 Impact

This thesis is making impact to academia, industry, and the government.
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• NEUROCARTOGRAPHY (Chapter 3) has been highlighted as a top visualization pub-
lication (top 1% of 442 submissions) invited to present at SIGGRAPH.

• BLUFF (Chapter 5), SKELETONVIS, NEUROCARTOGRAPHY (Chapter 3), and CON-
CEPTEVO (Chapter 7) have been contributing to the multi-million dollar DARPA
GARD (Guaranteeing AI Robustness against Deception) program in understanding
model robustness and devising effective defenses.

• This dissertation has been recognized by a 2021 J.P. Morgan AI PhD Fellowship,
among the only 15 awards in the world. Additionally, it was highlighted in 2022 Ris-
ing Stars in EECS, an international academic career workshop focusing on electrical
engineering, computer science, and artificial intelligence.

• Research ideas developed in this dissertation contributed to multiple high-impact
projects aimed at broadening the access to high-quality machine learning education.
Among them are the NVIDIA Data Science Teaching Kit [24] now freely available
to thousands of educators around the world, and CNN Explainer [25] that has been
integrated into academic programs at institutions worldwide, such as Georgia Tech
(Deep Learning), University of Wisconsin-Madison (Intro to AI), and University of
Kyoto (Bioengineering).

8.3 Future Directions

While this dissertation has laid the groundwork for scalably and visually interpreting DNNs,
it also unlocks new research directions along broadening the range of interpretable model
types, protecting models from vulnerabilities, and optimizing the training process.

8.3.1 Expanding Interpretability to a Broader Spectrum of DNNs

This thesis focuses on interpreting the intricate workings of DNNs, that can serve as a
foundational stepping stone towards broader horizons in other domains.

One immediate field for the application of our NEUROCARTOGRAPHY methodology is
within specialized image domains, such as medical imaging. By adapting our techniques,
we can summarize the concepts learned by DNNs, potentially revolutionizing fields such as
radiology and providing more transparent DNN-powered diagnoses. This not only fortifies
trust between medical professionals and machine learning models but also broadens the
interpretability horizon.

Moreover, the insights gleaned from interpretation of image classification models through
NEUROCARTOGRAPHY can be extended to cutting-edge image generative models, includ-
ing the likes of Stable Diffusion [197] and DALL-E [198]. Given that NEUROCARTOG-
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RAPHY offers visual representations of concept encoding by individual neurons, it is con-
ceivable to adapt this for generative models. The focus would then shift to deciphering the
encoding of text prompts within neurons and understanding the subsequent transformation
of these encodings into image generation.

Looking beyond image models, our interpretation techniques hold promise for diverse
data types, such as language models. As NEUROCARTOGRAPHY’s concept summariza-
tion techniques are based on co-activation of neurons—rather than visual cues—we can
decipher the intricate connections and activations in language models, leading to deeper
insights into their linguistic processing dynamics.

8.3.2 Troubleshooting Models: Identifying and Shielding Vulnerable Neurons

DNNs, with their intricate architectures and expansive capabilities, present a compelling
paradox within the machine learning community. While their advanced structure fuels un-
paralleled performance, it also shrouds them in the veil of interpretability challenges, leav-
ing them vulnerable to both internal inconsistencies and external threats, such as adversar-
ial attacks. Addressing these challenges calls for advanced tools capable of autonomously
and interactively detecting, diagnosing, and resolving these issues. The depth of insights
gleaned from this thesis can serve as the cornerstone for crafting such tools.

For example, when a DNN is subjected to adversarial attack, BLUFF can highlight
the most vulnerable neurons and their connections — either being intensely excited or
inhibited — thereby pinpointing the model’s vulnerable pathways. Using the visual insights
provided by BLUFF, we can envision a tool that empowers people to swiftly detect and
eradicate these vulnerabilities. By selectively deactivating these susceptible neurons, users
can potentially hinder the progression of threats deeper into the network, streamlining the
troubleshooting process.

8.3.3 Real-time Monitoring and Steering of Network Training

In today’s rapidly advancing world of deep learning, real-time monitoring and guidance
during model training have become essential. Often, practitioners are left wondering if
a model’s training is progressing as expected or if there are issues that might impede its
optimal learning.

Using CONCEPTEVO, we can establish clear benchmarks by studying common suc-
cessful training patterns. This enables trainers to instantly determine if a model is on the
right trajectory or if recalibrations are necessary. By doing so, we can conserve valuable
time and resources, avoiding their use in unnecessary suboptimal training.

Furthermore, we can envision real-time training monitoring system that immediately
alert trainers when models deviate from their expected training trajectory. These timely no-
tifications prompt immediate actions such as adjusting training settings, redirecting train-
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ing, or even pausing the training process. Such proactive, real-time monitoring ensures
training remains efficient while maintaining the highest quality.

Additionally, we can consider a tool that allows DNN trainers to directly influence
training in real-time. If the model is not picking up on certain important concepts, trainers
can have the flexibility to modify the training data. This might include adding tougher
challenges, such as adversarial examples, to address and reinforce areas where the model’s
understanding is lacking, ensuring a comprehensive understanding of those concepts.

8.4 Conclusion

My research exploration in interpreting DNNs’ learned concepts, vulnerabilities, and evo-
lutions has solidified a core belief: DNNs achieve their fullest potential not just through
computational strength but when they align with human insights and trust. Thus, this the-
sis pushes for a human-focused perspective on DNN interpretability. I see a future where
data-centric technologies enhance human intelligence, establishing a symbiotic relation-
ship between humans and machines. This dissertation is an initial step towards this vision.
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APPENDIX A

NEURON EMBEDDING

We provide additional information on the neuron embedding algorithm employed in both
NEUROCARTOGRAPHY (Chapter 3) and CONCEPTEVO (Chapter 7).

A.1 Formulating Neuron Embedding

We frame the neuron embedding algorithm as a maximum likelihood estimation problem:
how can we learn neuron embeddings that optimally capture the conceptual similarity be-
tween neurons based on their co-activation? We formulate the likelihood of the similarity
of concepts detected by two neurons n and m in a DNN M , as in Eq (A.1). In the equation,
σ(·) is the sigmoid function (i.e., σ(x) = 1/(1 + e−x)), and vn is the embedding of n.

P (n,m) = σ(vn · vm) (A.1)

We define the likelihood objective function to maximize as in Eq (A.2). V is the set of
neuron embeddings. D is the multiset of pairs of neurons that are strongly co-activated by
many common images, as described in Chapter 7. r is a randomly-sampled neuron in M .
R is the number of randomly-sampled neurons for each neuron pair (n,m). Intuitively, 1
a pair of neurons with larger inner product of their embeddings has a higher likelihood of
co-activation and higher similarity of their concepts, and 2 randomly paired neurons are
likely to have lower value of inner product and less likely to be conceptually similar.

P (D|V ) =
∏

(n,m)∈D

(
P (n,m)︸ ︷︷ ︸

1 Co-activated
neuron pairs

·
R∏

r=1

(1− P (n, r)) (1− P (m, r))︸ ︷︷ ︸
2 Random neuron pairs

)

=
∏

(n,m)∈D

(
σ(vn · vm)︸ ︷︷ ︸
1 Co-activated
neuron pairs

·
R∏

r=1

(1− σ(vn · vr)) (1− σ(vm · vr))︸ ︷︷ ︸
2 Random neuron pairs

) (A.2)

Based on Eq (A.2), we define the negative log-likelihood objective function J1 to min-
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imize, as in Eq (A.3). We randomly initialize the neuron embeddings and then learn the
embeddings by using gradient descent that optimizes the objective function. For each pair
of strongly co-activated neurons (n,m) ∈ D, we compute the derivative to update the
neurons’ embedding as in Eq (A.4) and (A.5).

J1 = −
∑

(n,m)∈D

(
log

(
σ(vtb

n,Mb
· vtb

m,Mb
)
)
+

R∑
r=1

log
(
1− σ(vtb

n,Mb
· vtb

r,Mb
)
)
+

R∑
r=1

log
(
1− σ(vtb

m,Mb
· vtb

r,Mb
)
))
(A.3)

∂J1
∂vn

= (1− σ(vn · vm)) vm −
R∑

r=1

σ(vn · vr) vr (A.4)

∂J1
∂vm

= (1− σ(vn · vm)) vn −
R∑

r=1

σ(vm · vr) vr (A.5)

Eq (A.6) and (A.7) present the derivative of the sigmoid and the log of sigmoid function
used to calculate Eq (A.4) and (A.5).

dσ(x)

dx
=

d 1
(1+e−x)

dx

=
−(1 + e−x)′

(1 + e−x)2

=
−(−e−x)

(1 + e−x)2

=
(e−x + 1− 1)

(1 + e−x)2

=
1

(1 + e−x)
· (1 + e−x)− 1

1 + e−x

= σ(x) ·
(
1− σ(x)

)

(A.6)
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d log(σ(x))

dx
=

σ′(x)

σ(x)

=
σ(x)(1− σ(x))

σ(x)
· · · by Eq (A.6)

= 1− σ(x)

(A.7)

A.2 Pseudocode for Neuron Embedding

As outlined in the CONCEPTEVO (Chapter 7), the neuron embedding algorithm can be
summarized in the following steps:

• Step A: Identifying stimuli

• Step B: Sampling frequently co-activated neuron pairs

• Step C: Learning the neuron embedding

We present a pseudocode of the neuron embedding algorihtm in Algorithm 1. For step
A, it uses Algorithm 2 for computing stimuli for each neuron. For step B, it also uses
Algorithm 3 for computing strongly co-activated neurons for each image and Algorithm 4
for sampling co-activated neuron pairs. Finally, for step C, it learns the neuron embedding,
following Equation (A.4) and (A.5).
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Algorithm 1 Neuron embedding
Input: X: the set of all images, and hyperparameters: k, E, α, R
Output: V : the set of neuron embeddings

// Step A: Get stimuli of all neurons
N := the set of all neurons in Mb

X := a list of size |N | to store stimuli for all neurons
for n ∈ N do
Xn = getStimuli(n, X, k)
X[n] = Xn

end for

// Step B: Sample neuron pairs
D := an empty multiset
for x ∈ X do
Nx = getStronglyCoActivatedNeurons(x, X,N )
D = UpdateNeuronPairs(D, Nx)

end for

// Step C: Learn neuron embeddings
V = a list of randomly initialized neuron embeddings
for i in [1, ..., E] do

for (n,m) ∈ D do
vn = V [n]
vm = V [m]
vn = vn − α ∂J1

∂vn
(Eq (A.4))

vm = vm − α ∂J1
∂vm

(Eq (A.5))
V [n] = vn

V [m] = vm

end for
end for

Return V
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Algorithm 2 getStimuli
Input: n: a neuron, X: the set of all images, and k: a hyperparameter for the length of
stimuli

Output: Xn: the stimuli of n

Xn := an empty list of length k
A := a list of length k filled with -inf
l = the layer to which n belongs
for x ∈ X do
Zn,l(x) = activation map of n in l given x
M = Max(Zn,l(x)) ∈ R
if A[k − 1] < M then
i = the smallest index such that M ≥ A[i]
for j ∈ [k − 1, ..., i+ 1] do
A[j] = A[j − 1]
Xn[j] = Xn[j − 1]

end for
A[i] = M
Xn[i] = x

end if
end for

Return Xn

Algorithm 3 getStronglyCoActivatedNeurons
Input: x: an image, X: stimuli of all neurons, N : the set of all neurons

Output: Nx: strongly co-activated neuron pairs for x

Nx := an empty set
for neuron n ∈ N do
Xn = X[n] (i.e., n’s stimuli)
if x ∈ Xn then
Nx = Nx ∪ {n}

end if
end for

Return Nx
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Algorithm 4 UpdateNeuronPairs
Input: D: a previous set of neuron pairs, Nx: strongly co-activated neuron pairs for x

Output: D: the updated set of neuron pairs

RN = the randomly ordered Nx

s = |Nx|
for i in [0, ... s− 1] do
p = (RN [i], RN [i+ 1])
D = D ∪ {p}

end for

Return D
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APPENDIX B

EXAMPLES OF CONCEPT EVOLUTION FOR CLASS
PREDICTIONS

We provide additional examples for Section 7.2.3, presenting concept evolutions that are
important to a class prediction. For example, Figure B.1, B.2, B.3, B.4, B.5, and B.6 show
examples of concept evolutions in a VGG16 for classes “Shetland sheepdog,” “Ladybug,”
“Payphone,” “Oxcart,” “Fire engine,” and “Cassette.” For each class, three important con-
cept evolutions out of all evolutions that have the score larger than 0.8 are shown, which is
in about top 0.5% according to the scores.
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Shetland Sheepdog
Concepts (epoch 5) evolve to ... Dog-related concepts (epoch 21)

Concepts (epoch 21) evolve to ... Animal-related concepts (epoch 207)

Importance
score [0, 1]

0.98

0.98

0.96

0.94

0.90

0.88

Conv2d_24-354Conv2d_24-354Conv2d_24-354Conv2d_24-354

Conv2d_17-365Conv2d_17-365 Conv2d_17-365Conv2d_17-365

Conv2d_17-460Conv2d_17-460 Conv2d_17-460Conv2d_17-460

Conv2d_28-300Conv2d_28-300 Conv2d_28-300Conv2d_28-300

Conv2d_19-449Conv2d_19-449 Conv2d_19-449Conv2d_19-449

Conv2d_28-183Conv2d_28-183 Conv2d_28-183Conv2d_28-183

Figure B.1: Concept evolutions in a VGG16 important for “Shetland sheepdog” class.
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Ladybug
Concepts (epoch 5) evolve to ... Red colors / dots concepts (epoch 21)

Concepts (epoch 21) evolve to ... Red colors / dots concepts (epoch 207)

Importance
score [0, 1]

0.96

0.96

0.96

0.98

0.90

0.90

Conv2d_12-170Conv2d_12-170 Conv2d_12-170Conv2d_12-170

Conv2d_17-138Conv2d_17-138 Conv2d_17-138Conv2d_17-138

Conv2d_17-508Conv2d_17-508 Conv2d_17-508Conv2d_17-508

Conv2d_12-67Conv2d_12-67

Conv2d_12-194Conv2d_12-194

Conv2d_12-67Conv2d_12-67

Conv2d_12-194Conv2d_12-194

Conv2d_17-332Conv2d_17-332 Conv2d_17-332Conv2d_17-332

Figure B.2: Concept evolutions in a VGG16 important for “Ladybug” class.
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Payphone
Concepts (epoch 5) evolve to ... Keypad-related concepts (epoch 21)

Concepts (epoch 21) evolve to ... Numbers / circles concepts (epoch 207)

Importance
score [0, 1]

0.98

0.96

1.0

0.94

0.86

0.82

Conv2d_19-370Conv2d_19-370 Conv2d_19-370Conv2d_19-370

Conv2d_12-152Conv2d_12-152 Conv2d_12-152Conv2d_12-152

Conv2d_17-68Conv2d_17-68 Conv2d_17-68Conv2d_17-68

Conv2d_21-48Conv2d_21-48 Conv2d_21-48Conv2d_21-48

Conv2d_21-150Conv2d_21-150 Conv2d_21-150Conv2d_21-150

Conv2d_28-5Conv2d_28-5Conv2d_28-5Conv2d_28-5 Conv2d_28-5Conv2d_28-5

Figure B.3: Concept evolutions in a VGG16 important for “Payphone” class.

128



Oxcart
Concepts (epoch 5) evolve to ... Human-related concepts (epoch 21)

Concepts (epoch 21) evolve to ... Human-related concepts (epoch 207)

Importance
score [0, 1]

0.98

0.98

0.96

0.96

0.92

0.90

Conv2d_21-409Conv2d_21-409 Conv2d_21-409Conv2d_21-409

Conv2d_19-10Conv2d_19-10 Conv2d_19-10Conv2d_19-10

Conv2d_17-228Conv2d_17-228 Conv2d_17-228Conv2d_17-228

Conv2d_21-355Conv2d_21-355

Conv2d_26-274Conv2d_26-274 Conv2d_26-274Conv2d_26-274

Conv2d_21-355Conv2d_21-355

Conv2d_21-215Conv2d_21-215 Conv2d_21-215Conv2d_21-215

Figure B.4: Concept evolutions in a VGG16 important for “Oxcart” class.
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Fire Engine
Concepts (epoch 5) evolve to ... Car-related concepts (epoch 21)

Conv2d_14-195Conv2d_14-195 Conv2d_14-195Conv2d_14-195

Conv2d_19-338Conv2d_19-338 Conv2d_19-338Conv2d_19-338

Conv2d_17-289Conv2d_17-289 Conv2d_17-289Conv2d_17-289

Importance
score [0, 1]

Concepts (epoch 21) evolve to ... Car-related concepts (epoch 207)

1.0

1.0

1.0

0.98

0.96

0.92

Conv2d_21-422Conv2d_21-422 Conv2d_21-422Conv2d_21-422

Conv2d_21-32Conv2d_21-32 Conv2d_21-32Conv2d_21-32

Conv2d_21-369Conv2d_21-369 Conv2d_21-369Conv2d_21-369

Figure B.5: Concept evolutions in a VGG16 important for “Fire engine” class.
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Figure B.6: Concept evolutions in a VGG16 important for “Cassette” class.
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APPENDIX C

EVALUATION OF IMPORTANCE OF CONCEPT EVOLUTION

In Sec 7.3.4, we present the top-1 training accuracy changes when evolutions are reverted,
which shows that reverting higher importance evolutions leads to greater accuracy drop.
Figure C.1 provides additional results for top-5 training, top-1 test, and top-5 test accu-
racy changes when some evolutions are reverted to a previous epoch. We observe similar
tendency as in the main paper: reverting higher importance evolutions leads to greater ac-
curacy drop.

Figure C.1: Evaluation on how well CONCEPTEVO can find important concept evolutions
for 100 random classes. We ranked neurons in the decreasing order of evolution importance
computed by CONCEPTEVO, and placed them in 4 importance bins: 0-25th (most impor-
tant), 25-50th, 50-75th, 75-100th percentiles. Reverting higher-importance evolutions leads
to greater accuracy drop, confirming CONCEPTEVO’s effectiveness in identifying impor-
tant concept evolutions. For a baseline, we also computed the accuracy drop when 25%
(i.e., the same number of neurons in each bin) of randomly selected evolutions were re-
verted, observing that the accuracy drop of random reversion is between that of 25-50th
and 50-75th percentile bin.

132



REFERENCES

[1] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional networks for
skeleton-based action recognition,” in Thirty-second AAAI conference on artificial
intelligence, 2018.

[2] V. Choutas, P. Weinzaepfel, J. Revaud, and C. Schmid, “Potion: Pose motion rep-
resentation for action recognition,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2018, pp. 7024–7033.

[3] Q. You, H. Jin, Z. Wang, C. Fang, and J. Luo, “Image captioning with semantic
attention,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 4651–4659.

[4] C. Yang, X. Lu, Z. Lin, E. Shechtman, O. Wang, and H. Li, “High-resolution image
inpainting using multi-scale neural patch synthesis,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 6721–6729.

[5] J. Wan et al., “Deep learning for content-based image retrieval: A comprehensive
study,” in Proceedings of the 22nd ACM international conference on Multimedia,
2014, pp. 157–166.

[6] Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen, “Medical image classi-
fication with convolutional neural network,” in 2014 13th international conference
on control automation robotics & vision (ICARCV), IEEE, 2014, pp. 844–848.

[7] J. Latif, C. Xiao, A. Imran, and S. Tu, “Medical imaging using machine learning
and deep learning algorithms: A review,” in 2019 2nd International conference
on computing, mathematics and engineering technologies (iCoMET), IEEE, 2019,
pp. 1–5.

[8] M. Liu, J. Shi, K. Cao, J. Zhu, and S. Liu, “Analyzing the training processes of deep
generative models,” IEEE transactions on visualization and computer graphics,
vol. 24, no. 1, pp. 77–87, 2017.

[9] T. Laugel, M.-J. Lesot, C. Marsala, X. Renard, and M. Detyniecki, “The dangers of
post-hoc interpretability: Unjustified counterfactual explanations,” IJCAI, 2019.

[10] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi,
“A survey of methods for explaining black box models,” ACM computing surveys
(CSUR), vol. 51, no. 5, pp. 1–42, 2018.

[11] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss landscape
of neural nets,” Advances in neural information processing systems, vol. 31, 2018.

133



[12] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep
learning (still) requires rethinking generalization,” Communications of the ACM,
vol. 64, no. 3, pp. 107–115, 2021.

[13] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On
large-batch training for deep learning: Generalization gap and sharp minima,” 5th
International Conference on Learning Representations, ICLR, 2017.

[14] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond,”
ICLR, 2018.

[15] S. Arora, N. Cohen, N. Golowich, and W. Hu, “A convergence analysis of gradient
descent for deep linear neural networks,” International Conference on Learning
Representations (ICLR), 2019.

[16] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A survey,” The
Journal of Machine Learning Research, vol. 20, no. 1, pp. 1997–2017, 2019.

[17] J. Safarik, J. Jalowiczor, E. Gresak, and J. Rozhon, “Genetic algorithm for auto-
matic tuning of neural network hyperparameters,” in Autonomous Systems: Sen-
sors, Vehicles, Security, and the Internet of Everything, SPIE, vol. 10643, 2018,
pp. 168–174.

[18] S.-T. Chen, C. Cornelius, J. Martin, and D. H. P. Chau, “Shapeshifter: Robust physi-
cal adversarial attack on faster r-cnn object detector,” in Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, Springer, 2018,
pp. 52–68.

[19] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” CoRR, vol. abs/1412.6572, 2014.

[20] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world,” in Artificial intelligence safety and security, Chapman and Hall/CRC, 2018,
pp. 99–112.

[21] Y. Qin, N. Carlini, G. Cottrell, I. Goodfellow, and C. Raffel, “Imperceptible, robust,
and targeted adversarial examples for automatic speech recognition,” in Interna-
tional conference on machine learning, PMLR, 2019, pp. 5231–5240.

[22] A. Ross and F. Doshi-Velez, “Improving the adversarial robustness and interpretabil-
ity of deep neural networks by regularizing their input gradients,” in Proceedings
of the AAAI Conference on Artificial Intelligence, 2018.

134



[23] G. Tao, S. Ma, Y. Liu, and X. Zhang, “Attacks meet interpretability: Attribute-
steered detection of adversarial samples,” Advances in Neural Information Pro-
cessing Systems, vol. 31, 2018.

[24] NVIDIA, Dli data science teaching kits, https://blogs.nvidia.com/blog/2021/02/
25/dli-data-science-teaching-kits/, 2021.

[25] Z. J. Wang et al., “Cnn explainer: Learning convolutional neural networks with in-
teractive visualization,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 27, no. 2, pp. 1396–1406, 2020.

[26] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should i trust you?” explaining the
predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining, 2016, pp. 1135–1144.

[27] C. Szegedy et al., “Going deeper with convolutions,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 1–9.

[28] S. Lundberg and S.-I. Lee. “The github readme for SHAP: A unified approach to
explain the output of any machine learning model.” Accessed: September 1, 2023.
().

[29] S. Lundberg and S.-I. Lee. “Example notebook demonstrating how to use the model
agnostic kernel shap algorithm to explain predictions from the vgg16 network in
keras.” Accessed: September 1, 2023. ().

[30] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predic-
tions,” Advances in neural information processing systems, vol. 30, 2017.

[31] S. Lipovetsky and M. Conklin, “Analysis of regression in game theory approach,”
Applied Stochastic Models in Business and Industry, vol. 17, no. 4, pp. 319–330,
2001.
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