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CHAPTER I 

INTRODUCTION 

Toward a Unifying Approach for Automata Theory 

The theory of linguistic automata is a branch of automata theory 

that is of particular interest to Information and Computer Science. The 

theory of linguistic automata is concerned with the relationship between 

formal languages and their recognizers or acceptors (essentially 

abstract machines without output). This branch of automata theory 

received its initial impetus from Chomsky [5]. A first application to 

computer science was gained when the syntax of ALGOL was defined by a 

context-free grammar [9]. And from this beginning, the ideas of syntax-

directed compilation and the concept of a compiler compiler were 

developed. At present formal languages and automata are so intertwined 

that to speak of one is to speak of the other. The results that fol

lowed emphasized the properties of language families as defined by gen

erative schemes (grammars) or as the acceptance sets of devices (recog

nizers). The aim has been to characterize each class of languages by a 

kind of automaton through theorems of the form: If L is generated by a 

grammar of type X then there is an automaton of kind Y which recognizes 

precisely L. And, also to characterize kinds of automata by theorems of 

the form: If L is recognized by an automaton of kind Y then there is a 

grammar of type X which generates precisely L [15], A proliferation of 



results has stimulated efforts directed at finding a unifying approach 

to linguistic automata. The principal unifying results are those 

obtained by the teams of Ginsburg and Greibach [11] and Hopcroft and 

Ullman [18]. 

The work of Ginsburg and Greibach is oriented towards formal 

languages. Rather than obtaining a language by means of a grammar or 

recognizer, they defined a formal language as a family of sets of words 

called an abstract family of languages that is closed under the 

language-theoretic operations of union, product, Kleene closure, e-free 

homomorphism, inverse homomorphism, and intersection of the language 

with a regular set. Using this approach, they were able to specify an 

abstract family of languages that corresponds to each of the classical 

families of formal languages (i.e., regular sets, context-free, context-

sensitive, and recursively enumerable sets). As the automaton counter

part of an abstract family of languages, they devised a recognizer which 

they call an abstract acceptor. An abstract acceptor can be viewed as 

a non-deterministic finite automaton with auxiliary storage. The Gins

burg and Greibach version of the language-automaton characterization is 

that corresponding to every abstract family of acceptors there is an 

abstract family of languages and conversely, corresponding to every 

abstract family of languages there is an abstract family of acceptors 

[29]. 

In contrast, the work of Hopcroft and Ullman has a machine orien

tation. They introduced a recognizer which they call a balloon automaton. 

A balloon automaton is basically a linear bounded automaton with 



auxiliary storage. Their objective was to specify subsets of balloon 

automata, called closed classes, that would correspond to particular 

classes of recognizers. They proposed that whenever some new recognizer 

is devised one would show that it is equivalent to a closed class of 

balloon automata and thus have the language-theoretic properties of 

balloon automata automatically proven for it. However, they were unable 

to determine closed sets of balloon automata whose acceptance sets coin

cided with each of the classical families of languages. 

This type of program has some inherent problems. For suppose 

that the intuitive motivation used in formulating a new recognizer can 

be captured by some prescription for translating the recognition proce

dure of this new recognizer into some standard abstract machine, as for 

example the balloon automaton. This involves some construction which 

shows how one machine "simulates" another. Fisher has perceived the 

difficulty of this procedure quite clearly: 

However the concept of simulation of one machine by another is 
extremely difficult to define precisely. For too stringent a 
definition excludes cases in which one intuitively feels a bona 
fide simulation is being performed. Too liberal a definition 
allows the use of encodings of input and output in which the real 
computational work is done by the encoding and decoding algorithms 
and not by the machine which is supposedly performing the simula
tion [10]. 

To obviate this difficulty, we need a precise mathematical 

methodology for ascertaining the relationship between one machine and 

another. An algebraic setting seems appropriate. We need to develop a 

standard abstract machine which is itself an algebra and a uniform pre

scription or method for reformulating other machines as algebras of the 

same type. The reformulation of a machine should capture its 



computational procedure so that it is reflected in the computational 

procedure of this standard machine. Once machines have been so captured, 

we can proceed to relate machines via the concepts of universal algebra. 

We note that the significant accomplishments resulting from 

imposing an algebraic structure on machines have only dealt with abstract 

machines which are in essence variants of finite automata. The lattice-

theoretic approach has been one such successful endeavor [15], The 

point of departure for this approach has been the set of partitions on 

the state set of a sequential machine that satisfy the substitution 

property. A sequential machine (finite automaton with output) is a 

quintuple M=<S,1,0,6,X> where S is the state set, I is the input alpha

bet, 0 is the output alphabet, 6 is the next state function from Sxl to 

S, and X is the output function. The function X is either from S to 0 

if M is taken as the Moore model or from Sxl to 0 if M is taken as the 

Mealy model of a sequential machine. A partition TT on the state set S 

has the substitution property if and only if xEyCrr) implies that 

6(x,a) =6(y,a)(7T-) for all ael. Partitions satisfying the substitution 

property are also called admissible partitions. The set of all such 

admissible partitions on the state set of a sequential machine then 

forms a finite lattice when two binary operations are defined on this 

set. The lattice-theoretic approach has led to the development of a 

theory of machine decomposition C2'4]. Machine decomposition considers 

whether and, if so, how a sequential machine can be constructed from 

other component machines (again the Mealy-Moore types) interconnected in 

series and parallel. 



The semigroup approach is the other extensively developed means 

for imposing an algebraic structure on machines [22], This theory deals 

not only with the question of machine decomposition but also with decom

position [2H], Machine composition concerns what behavior may be re

alized by interconnecting an arbitrary number of component machines of 

specific kinds (minimal building blocks). Machine composition for the 

semigroup approach involves the characterization of minimum essential 

kinds of component machines needed to realize the behavior of an arbi

trary sequential machine. 

The semigroup associated with a machine is the set of all trans

formations of its state set induced by its input strings. Let M = 

<S,I,0,6,X> be a sequential machine. If ael and xeS then (x)a=6(x,a). 

The semigroup operation is functional composition. Hence, if a, bel and 

XES then (x)aob = [(x)a]b = (SCCx)a,b) = 6(6(x,a) ,b). The carrier of such 

a semigroup will be finite if and only if the state set S of M is 

finite [21]. A machine M is called a reset machine if and only if every 

input regarded as a transformation on the state set is an identity or a 

constant mapping [16], A semigroup S divides a semigroup R if there 

exists a subsemigroup R' c R and there exists an epimorphism from R' to 

S [21]. The principal decomposition result is that any machine (Mealy-

Moore type) can always be decomposed into simpler machines unless the 

original machine is a two-state reset machine or its associated semi

group is a simple group, i.e., the group has no proper normal subgroups. 

Conversely, the principal composition result is that any decomposable 

machine can be realized by loop-free synthesis from two-state reset 



machines and a subset of the machines derivable from the simple groups 

that divide the associated semigroup of the original machine [21]. 

The concept of heterogeneous algebra has been shovm to provide a 

formalism which is adaptable for the treatment of sequential machines 

[4], An algebra is a pair <A,F> where A is any set known as the carrier 

and F is a set of operations defined on the carrier A. In contrast, a 

heterogeneous algebra is a pair <B,L> where B is a non-empty family of 

sets, each of which is called a phylum, and L is a set of mappings from 

the Cartesian product of a subset of all phyla (B) to some other phylum 

of B. For example, the Mealy machine M=<S,1,0,6,X> formulated as a 

heterogeneous algebra becomes <{S,1,0},{6 ,X}> where B = {S,I,0} contains 

three phyla and /.= {6,X} contains two mappings: 6 from Sxl to S and X 

from Sxl to 0. Such algebraic concepts as subalgebra (submachine) and 

morphisms can be extended to machines via the heterogeneous algebras 

that characterized them. Similar algebraic concepts and methods are 

available in the lattice-theoretic and semigroup approaches mentioned. 

Various results can be obtained in all three cases using these algebraic 

concepts. Nevertheless, with the methodology developed from these 

approaches, only variants of finite automata can be dealt with. We will 

consider a wider set of machines and show how they can be meaningfully 

related. 

The central contribution of this research to Information and 

Computer Science is the explication of the theory of automata by means 

of the algebraic concepts of abstract digital computer and computer 

morphism. These concepts are shown to be sufficient to yield a unified 



algebraic treatment of a large portion of automata theory. We do so by-

showing how the classical theory of recognizers can be captured within 

the theory of abstract computers. 

Theory of Abstract Computers 

Since the theory of abstract computers has been elaborated else

where [20,26,27], we will merely sketch the theory here in order to 

provide the basic understanding needed for this application. 

Definition 1. The entity <S,A,C> is an abstract computer if and 

only if 

(1) S ?i 0, the null set 

(2) 0 ^ k ^S^ 

(3) CEA^ 

(4) S n k ^ 0. 

An abstract computer consists of a set of states S, a set of 

actions A, and a control unit C. The microbehavior of this device is 

embodied in a reading-selecting-applying routine. If we have a state 

xeS, this routine is executed by C "reading" x to obtain C(x). But as 

C(x)eA, we are "selecting" an action, and subsequently "applying" this 

action to x to obtain the next state (C(x))(x)eS. Macrobehaviors are 

obtained by repetition of the reading-selecting-applying routine. 

An abstract computer is a programmable, centrally-controlled, 

iterative, synchronous, non-interactive machine. Programming is the 

choice of an initial state and represents the extent of external control 

imposed on the computer. Once an initial state has been selected, the 

process that is generated is completely determined by the control unit, 



the central control of the computer. The state-transition function T 

for an abstract computer <S,A,C> is given by T(x) = (C(x))(x) for every 

xeS. There are many distinct computers with the same state-transition 

function. We say that a computer is iterative if T is defined for 

every finite ordinal T. The powers of T are defined recursively by T 

T + 1 T 

being the identity on S and T = TT . The computer is said to be 

synchronous if time (here discrete) coincides with the powers of the 

state-transition function T. The descriptor "synchronous" incorporates 

the idea that if at time t the computer is in state x, then at time 
x 

t the computer will be in the state T (x). Finally, "non-interactive" 

means that no member of S can act on another member of S to produce some 

state, the sets S and A being disjoint. 

For each xeS, the state-transition function T generates a unique 

infinite sequence T (x) = x,T(x),...T (x),... which we call a computa

tional process. The set CP of all computational processes is a subset 

of S where o) is the first limit ordinal omega. The process p is in CP 

if for every finite or<iinal xeo), P ( T ) = T (p(o)). Such a process is 

terminal if there exists a leo) such that P(T) = pd+l). The computer 

is said to stop in the state pd) when started in state p(o) if T is the 

smallest finite ordinal for which pd) = P(T+1). Because T is a func

tion', processes are either non-repeating or periodic after a possible 

initial finite delay. Terminal processes are those that eventually 

have period one. 

Definition 2. An abstract computer <S,A,C> is a finitary action 

computer if and only if 



(1) S s Y^ 

(2) For every xeS, [(C(x))(x)] and x are elements of S 

that differ only on a finite subset of X. 

Definition 3. A finitary action computer <S,A,C> is an abstract 

digital computer if and only if S is a Boolean algebra. 

Since an abstract digital computer is a special case of the fini

tary action computer, the Boolean algebra must be functional. But by a 

corollary to Stone's representation theory for Boolean algebras, every 

Boolean algebra is isomorphic to a subalgebra of an O-value Boolean 

algebra where 6 = {0,1}, i.e., the simple Boolean algebra [1]. In view 

of the isomorphism between a Boolean algebra B and the set of all con

tinuous functions from the dual space of B into the simple Boolean space 

[14], an alternative definition of abstract digital computers is as 

follows: 

Definition M-. <B,A,C> is an abstract digital computer if and 

only if 

(1) B is a Boolean algebra 

(2) A £ B^ 

(3) CeA^ 

(4) For any aeA and feB, there exists a finite subset K of the 

dual space X of B such that (af-f)(i) = 0 for all ie(X~K). 

Clause (4) states that the symmetric difference of (af) and f is 

a function in B whose value is zero for the set-theoretic difference 

(X~K) of X and K, and whose value is one only for a finite subset K of 

the dual space of B. 
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A computer may be characterized as a triplet composed of a set 

of states, a set of actions, and a control function or as a pair com

posed of a set of states and a transition function or as a set of proc

esses. In all of its characterizations a computer is an algebra and the 

concepts of universal algebra are applicable. 

We may consider two senses of morphism for computers. First, two 

computers <S,A,C> and <S*,A'^,C*> are said to be strongly homomorphic if 

there is a mapping $ from S to S*̂  such that it preserves actions and 

control units, i.e., for every x,yeS, $(C(x)(y)) = C"(<I>(x))($(y)). If 

S and S* have a structure, say they are Boolean algebras, then we may 

also require that the mapping $ preserve this structure. A weaker sense 

of morphism is obtained by requiring that the mapping $ only preserve 

the state-transition function T, i.e., for any xeS, $(C(x)(x)) = 

C"(<I>(x))($(x)) or equivalently <I)(T̂ (x)) = T^.^.($(x)). This weaker sense of 

morphism is the one used throughout this presentation. We will refer to 

such mappings as computer morphisms. As before, we may also require 

that a computer* morphism preserve state-set structure. A formal defini

tion of computer morphism is as follows: 

Definition 5. If <S,A,C> and <S*,A'̂ ',C*> are abstract computers 

whose state-transition functions are T and T j^, then $ is a computer 

morphism if and only if 4>e(S*) such that $(T (x)) = T-A(*J*(X)) for every 

xeS. 

Given the concept of computer morphism, we can ascertain that 

every abstract computer is embeddable in an abstract digital computer. 

If <S,T> is an arbitrary abstract computer, let * be an injection from 
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S into 6 such that (<I>(x))(y) = 1 iff x=y for any x,yeS. Then (̂ (x) is 

S 
an atom of the Boolean algebra 6 . Define another state-transition 

c 
function T* so that T*(<I>(a)) = $(T(a)) if $(a) is an atom of 6 , and 

S S 
T"(b) = b if b is not an atom of 6 . Then <8 ,T"> is an abstract 

digital computer and $ is a computer monomorphism. Note that the 

S 
actions of <e ,T*> need not be more complex than one-place set and 

reset functions. Finite resets and sets are defined as follows: 

Y 

Def in i t ion 6. For any feS and f i n i t e subse t s J of X, ( R ( J ) ) ( f ) 
X 

and (S(J))(f) are functions in 6 such that for any aeX: 

(1) ((R(J))(f)) (a) = <̂  

(2) ((S(J))(f)) (a) = <̂  

0, if aeJ 

f(x), if â J 

1, if aeJ 

f(x), if a?lJ 

If we let RS be the closure under functional composition of RuS, 

relative to the set X, then <e ,RS,C> is an abstract digital computer 

X 
for some mapping C from 6 to RS. Abstract digital computers of this 

type will be called finite set-reset computers. With these perceptions, 

we may introduce the following representation theorem for abstract dig

ital computers. 

Theorem 1. Every abstract digital computer is computer isomor

phic to a finite set-reset computer. 

Proof: Let <B,A,C> be an arbitrary abstract digital computer. 

We now wish to obtain a set-reset computer for B that has the same 
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state-transition function. Let feB and C(f) = aeA. Then the control 

unit C* for our set-reset computer is given as: 

C'Hf) = S(((af)Af')"^(l))R(((af)'Af)"^(l)). 

The set ((af) f ) (1) tells what values are changed from 0 to 1, and 

the set ((af)'Af)" (l) tells what values are changed from 1 to 0. Both 

sets will be finite because actions (aeA) of an abstract digital com

puter are finitary. Thus, C»'(f)eRS and (C*(f))(f) = (C(f))(f) for every 

feB. Taking the actions of this set-reset computer as A* = 

{S(K)R(J)|K,J£X, the dual space of B.K and J are finite}, the control 

unit C* that calls these sets and resets for elements of B is isomorphic 

to <B,A,C> because (C*(f))(f) = (C(f))(f) for every feB. 

Now that we have established part of the mathematical identity of 

abstract digital computers through a representation theorem, we may 

proceed with the task of capturing the classical theory of recognizers 

within the theory of abstract computers. As the representation theorem 

shows, the only concepts that we need to use are those of set-reset 

computers and computer morphisms. 
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CHAPTER II 

THE CLASSICAL HIERARCHY OF RECOGNIZERS 

Introduction 

The formal grammars described by Chomsky provide a standard 

against which the recognition powers of automata are measured. For 

each class of languages generated by the Chomsky phrase-structure 

grammars (Type 0, 1, 2, and 3), there is a corresponding class of 

recognizers [17]. The induced hierarchy of recognizers ranges from 

Turing machines to finite automata [3]. For each class of recognizers 

there is both a deterministic and non-deterministic variety of machines, 

The languages generated by grammars of type 0 are called recursively 

enumerable sets and the Turing machines are the appropriate recognizers 

[6]. It has been shown that the deterministic and non-deterministic 

Turing machines have the same recognition power [15]. We deal with 

both varieties in order to provide a paradigm of the contrast between 

deterministic and non-deterministic machines and to facilitate a later 

proof of embedding via computer morphism. The languages generated by 

the grammars of Type 1 are context-sensitive. The appropriate recog

nizers are non-deterministic linear bounded automata [23]. It is still 

an open question whether non-deterministic linear bounded automata have 

greater recognition power than the deterministic ones [25]. The lan

guages generated by the grammars of Type 2 are context-free. The 

appropriate recognizers are non-deterministic pushdown automata [7]. 
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The non-deterministic variety of pushdown automata has greater recogni

tion power than the deterministic one [5]. The languages generated by 

the grammars of Type 3 are the regular sets. The appropriate recog

nizers are the finite automata [8]. For finite automata, it has been 

shown that the non-deterministic and deterministic varieties have the 

same recognition power [28]. 

Throughout our formulation of automata theory, both the set of 

states of an automaton and its alphabet will be finite subsets of the 

natural numbers, N = {0,1,2,3,...}. For convenience, the tapes of the 

automata are taken to be one-way infinite so that the natural members 

can be used to index the tape positions. Since all alphabets are finite 

N . 
subsets of the natural members, N includes every tape. The power set 

of a set A will be denoted as P(A). The cardinality of a set A will 

be denoted as A. Primitive recursive subtraction will be denoted as —. 

And, if X is an ordered n-tuple, the ith member of x will be denoted as 

ix, l<i<n. If A is a set of n-tuples then je:A is the set of jt/z mem

bers of all n-tuples in A, i.e., je:A = {x|(3w)(weA.x = jw for w an n-

tuple, l<j<n}. The letter T will be used where we are concerned with 

Turing machines, the letter L will be associated with linear bounded 

automata, P with pushdown automata, and F with finite automata. These 

letters with an overprinted shilling will be used for the non-

deterministic variety of recognizers. The actions admissible for a 

particular class of recognizers will be selected from sets of functions 

given by ACT or ACTS. 
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Definition 7. ACT = N u {LT,RT,ST} is a set of functions from 

N . . N 
N uN into Itself such that for every feN and i,neN: 

(1) LT(f) = RT(f) = ST(f) = f 

fi-l, if i>0 
(2) LT(i) = <̂  

[i, if i=0 

(3) RT(i) = i+1 

(4) ST(i) = i 

(5) n(i) = i 

In, if i = j for some head position j 
(6) (nf)(i) = <̂  

[f(i), otherwise. 

Definition 8. ACTS = N u {LT,RT,ST} is a set of functions from 

N N 
N u N into itself such that for every feN and i,neN: 

(2) LT(i) = < 

(1) LT(f) = RT(f) = ST(f) = f 

i-1, if i>0 

i, if i=0 

(3) RT(i) = i+1 

(4) ST(i) = i 

(5) n(i) = i 

fn, if n>0 and i=j+l for some head position j 
(6) (nf)(i) = <̂  

[f(i), otherwise 

{0, if i=j for some head position j 

f(i), otherwise. 
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Turing Machines 

Definition 9. QUAD = NxNxNxACT. 

Turing machines are nm-tuples of elements of QUAD that have 

exactly n states and exactly m alphabetic characters. The understand

ing is that if xeQUAD, then Ix represents the present state, 2x repre

sents the input symbol scanned, 3x represents the next state, while Hx 

represents an appropriate action, given that the present state is Ix 

and the scanned symbol is 2x. More precisely: 

Definition 10. M is a deterministic Turing machine (TM) if and 

only if there exists 0<n, meN such that: 

(1) M is an nm-tuple 

(2) l<i<nm, then iMeQUAD 

(3) l<i?ij<n and l<k<(m-l) , then liM=l(i+kn)M5̂ 1jM=l( j+kn)M 

(U) 0<k<(m-l) and lfkn<y<n+kn, then 2(l+kn)M=2yM 

(5) l<i?ij<m, then 2(in)M?̂ 2( jn)M 

(6) {3jM|l<j<nm} £ {liM|l<i<n} 

(7) ({4jM|l<j<nm}-{LT,RT,ST}) £ {2(in)M|l<i^n}. 

Clause (3) specifies the distribution of states. Clauses (4) 

and (5) specify the distribution of the alphabet. Clause (6) specifies 

that those states admissible as next states must be members of the 

original state set. Clause (7) specifies that the possible actions of 

the machine are left moves (LT), right moves (RT), identity moves (ST), 

and prints of any symbol that occurs in its alphabet. Here, it is 

assumed that each machine has a special character among its alphabet 

that has the role of the blank. If we wish to discriminate a state of 
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M as initial, we may say that this state is liM. Similarly, a set of 

final states FS may be selected such that FS s_ {liM|l<i<n}. Recognition 

for a Turing machine occurs when the machine M enters a final state 

after being placed initially on the left-most end of a tape with M in 

its initial state and thereafter no further moves occur. We have made 

no special provisions for halting states, actions, or quadruples. If 

we had made such provisions, deciding whether a machine halts for a 

given tape amounts to deciding whether the machine enters a halting 

quadruple. Since we have no such provisions, there will be certain 

distinguishable forms of quadruples for which the same question may be 

asked. For example, quadruples of the form <n,_,n,ST> or <n,x,n,x> 

where m,x£N and STeACT will be halting quadruples for tapes f and head 

position j if (ST(f))(j) = f(j) and (x(f))(j) = f(j). No further move 

occurs since state, head position, and tape remain unchanged. 

Definition 11. TM = {M|M is a Turing machine}. 

Since the cardinality of TM is aleph-zero, we may sequence all 

Turing machines by some function T which is a bijection from N to TM. 

Given T, we may obtain auxiliary functions Q and A that give the 

cardinality of the state set and alphabet set, respectively, for any 

Turing machine. 

Definition 12. Q is a mapping from TM into N such that 

Q (T(i)) = {IjT(i)|l<j^T(i)} for every Turing machine T(i). 

Definition 13. A is a mapping from TM into N such that 

A (T(i)) = {2jT(i)|l<j<T(i)} for every Turing machine T(i). 
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Given T, Q , and A , we may construct a sequence T of all the 

states of the members of TM using the natural numbers as an indexing set 

and a sequence T. of all the alphabetic elements of the members of TM 

using the positive integers as an indexing set as follows: T = 

{11T(0),12T(0),...,I(Q^(T(0)))T(0),...,llT(j),12T(j),..., 

I(Q^(T(J)))T(J),...}; T^ = {2(Q^(t(0)))T(0),2(2Q^(T(0)))T(0),..., 

2(;A^(T(0))Q^(T(0)))T(0),...,2(Q^(T(J)))T(J),2(2Q^(T(J)))T(J),..., 

2(;A^(T(J))Q^(T(J)))T(J),...}. 

We may relabel the states of the members of TM so that the states 

will be consecutive numbers. If AeTM and A = T(i), then the machine 

BGTM obtained from A by substituting for each state IjT(i) wherever it 

occurs in A, the state T~ (IjT(i)), l<j<Q (T(i)), is a machine that is 

equivalent to A. Hence, we may assume without loss of generality that 

all machines are so rewritten. If T(i) is the ith+1 machine, then the 

rewritten machine T»̂ (i) has states ljT»'*(i) = T~ (IjW(i)) for 

l<j<[Q (T(i)) = Q„(T*(i))]. No two rewritten Turing Machines will share 

states. The states of the ith+1 machine T*'*(i) will be the consecutive 
i-1 i 

integers from ^ Q (T(j)) to ( J| Q,T,(T(J)) - 1. Furthermore, we may 
j=0 j=0 

relabel the alphabet of the members of TM so that the elements of the 

alphabet will consist of consecutive integers. If AeTM and A = T''̂ (i), 

then the machine BeTM obtained from A by substituting for each alphabet 

character 2(jQ (T*(i)))T*(i) wherever it occurs in A, the character 

Â ''"(2(jQ̂ (T*(i)))T*(i)) , l<j^A^(T*( i)) , is equivalent to A. Hence, we 

may assume without loss of generality that all machines are so rewrit

ten. If T*(i) is the ith-¥l machine, then the rewritten machine T**(i) 
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has alphabet characters 2 (jQ^(T'Hi) ))TAA(i) = T̂ "̂  (2 (jQ^(T'Mi) ))T'Mi)) , 

for l<j<[A (T"(i)) = A (T»'«'«(i))]. Now, in addition to not sharing 

states, no two rewritten Turing Machines will share alphabetic charac

ters. Moreover, the alphabet of the ith+1 machine T"*(i) will be the 

i-1 i 
consecutive integers from ( I A (T(j))) + 1 to I A (T(j)). 

j=0 j=0 

We may define a function T? which maps N onto the set of rewrit

ten Turing Machines {T'*"(0) ,T'**(1) ,T""( 2),. . . } such that for any neN, 

T?(n) is the machine in which the state n occurs. Such a mapping exists 

since we have rewritten all machines so they will not share any states 

and each neN is the state of some machine. 

Definition 14. For all n, keN, then T?(n) = T"*(k) if and only 

if n = ljr**(k) for some j, l<j^Q^(T'**(k)). 

Since a Turing Machine is an ordered nm-tuple of quadruples, we 

may define a function INDEX which maps NxN-{0} into N-{0} = {1,2,3,...} 

by means of which we may select the applicable quadruple, given that the 

machine is in state n and is scanning tape f at head position i. Such a 

function exists since we have rewritten all machines so state and alpha

bet sets are unique. More precisely: 

Definition 15. For all n,i£N and feN^, INDEX(n,f(i)) = [(n+1) -

llT?(n)] + [((f(i)+l) - 21T?(n)) - l]Q^(T?(n)) such that INDEX(n,f(i)) = 

j, l<j<T?(n), if and only if ljT?(n) = n and 2jT?(n) = f(i). 

The approach is to abstract completely from the process of recog

nition in order to isolate those parameters essential to any step in a 

computation of a recognizer. For it is the interaction of these param

eters that in essence characterizes the recognition procedure for a 
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class of automata. For Turing machines the essential parameters are 

state, head position, and tape. The interaction is restricted to the 

extent that given a state-symbol combination the machine may print a 

symbol or move one space left or right as well as change state and then 

repeat the cycle. An element of the Cartesian product of such param

eters will hereinafter be called a configuration for the class of auto

mata under consideration. Given this perception, we may obtain a func-

.̂  N 
tion C" from NxNxN into itself that captures all steps in a recognition 

computation as it monitors changes of state, head position, and tape. 

C" will depend on the way TM was ordered by T as well as how the states 

were ordered by Q and the alphabets by A to obtain the rewritten 

machines (T'̂ ĈO) jT̂ '̂ Cl),. . . } . None of these reshuf flings of machines, 

states, and alphabets have altered the machines in any essential way 

because the resulting machines differ only in a relabeling of states and 

alphabets. 

. . . ;•{ . . N . . 

Definition 16. C is a mapping from NxNxN into itself so that 
N A 

for any <x ,i ,f>eNxNxN , C"(<x,i,f>) will equal: 

(1) <n,j,g>, if f'N £ {2jT?(x)|l<j<T?(x)} 

where (i) n = 3 (lNDEX(x,f (i) ))T?(X) 

(ii) j = (u(lNDEX(x.f(i)))T?(x))(i) 

(iii) g = (i+(lNDEX(x,f(i)))T?(x))(f) 

(2) <x,i,f>, otherwise. 

In order to capture the computations of the class of Turing 

machines within an appropriate abstract digital computer, we need a 

N 
Boolean algebra m which to encode the elements of NxNxN . The elements 
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N 
of NxNxN correspond in a natural way to the atoms of the Boolean alge-

N 
NxNxN 

bra 6 . Given this encoding and algebra, we may define a total 

state-transition function T for an abstract digital computer which will 

capture the computations of the class of Turing machines in the same 

sense that C2, does. 
N 

N NxNxN 
Definition 17. E is a bi]ection from NxNxN to 6 re

stricted to atoms such that (E (i))(j) = 1 if and only if i=j for all 

. . N 
ijjeNxNxN . 

N 
NxNxN 

Definition 18. T is a mapping from 6 into itself so that 
N 

^ , -NxNxN rp /, ̂  . n , 
for every beS , T Cb; will equal: 

(1) f where f(j) = 1 iff j = C*(b~-̂ (1)) for all jeNxNxN^, if b 

is an atom 

(2) b, if b is not an atom. 

What then is the relationship between the notion of recognition 

for Turing machines and the notion of computation for the abstract 

digital computer previously defined? The recognition procedure is begun 

by placing the machine in its initial state, say n, left-justified on a 

tape t. This procedure is equivalent to selecting an initial configura

tion X = <n,0,t>. Correspondingly, we may "programme" the abstract 
N NxNxN digital computer by selecting the initial state E (x)ee . Halting 

means that the Turing machine makes no further moves. That is to say 

that no change of configuration occurs, meaning that there exists a 

T T + 1 
finite ordinal x such that C (x) = C (x). The digital computer also 

T T+1 

Stops, i.e., T (E (x)) = T (E^(x)). In either case, halting is a 

necessary condition for recognition. For recognition by final state, 
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we then ask if IC (x)eH is a final state as relabeled via Q and A . 

For the corresponding abstract digital computer, recognition by final 

state is given by the condition l((T (E (x))) (l))eH . We will now 

consolidate these perceptions into a formal definition and then show 

that there exists an abstract set-reset digital computer whose state 
N 

NxNxN 
set is 6 and whose state-transition function is T . 

Definition 19. If x = <n,0,t> is an initial configuration of a 

Turing machine and E (x) is an initial state of an abstract digital 

computer, then the input tape 3x is recognized if and only if there 

exists a finite ordinal T such that T!^(E„(X)) = T^ (E„(x)), and 

l((T^(E (x)))" (l))eH^ is a final state as relabeled via Q^ and A^. 

Theorem 2. There exists a control function Cu such that 
N 

NxNxN 
<e ,RS ,Cu > is a set-reset computer and T (b) = (Cu (b))(b) for 

^ ^NxNxN^ 
any beS 

Proof. 
N 

NxNxN 
Case (1): beG and b is an atom. Let Cu (b) = S(J)R(K) 

where J = {C*(b''-'-( l))} and K = {b'l(l)}i 

N 
NxNxN 

Case (2): beS and b is not an atom. Let Cu^(b) = R(0) 

where 0 is the null set. Therefore (Cu„(b))(b) = 

^ b ) , for a n bt6N'*"^^ 

Theorem 2 shows there is at least one set-reset computer that 

captures all the computations of all Turing machines up to and includ

ing changes of states, head positions, and tapes. The construction 

consisted of defining a function on the Cartesian product of the essen

tial parameters (states, head positions, and tapes) that would capture 
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the computations pertinent to recognition for all Turing machines. Then 

we obtain a state-transition function T on the Boolean algebra 
N NxNxN e that would capture the recognition process of all Turing 

NxNxN 

machines. Finally, we showed that (6 ,T^) was an abstract set-

reset digital computer by constructing a control function Cu . All 

these moves involved only a relabeling of states and alphabets. Thus 

at any stage of the construction, the resulting Turing machines were 

equivalent to the ones countenanced initially. 

Non-Deterministic Turing Machines 

Definition 20. TRIP = NxNxP(NxACT). 

Non-deterministic Turing machines are nm-tuples of elements of 

TRIP that have exactly n states and exactly m alphabetic characters. 

The understanding again is that if xeTRIP, then Ix represents the pres

ent state, 2x represents the input symbol scanned, and 3x represents the 

finite number of combinations of next state and action possible, given 

that the present state and symbol scanned are Ix and 2x, respectively. 

Non-determinism here means that the machine may select any of the pos

sible combinations of next state and action from among those in 3x on 

a particular occurrence of present state (Ix) and symbol scanned (2x). 

The deterministic variety of machines is the special case of the non-

deterministic variety of machines where the cardinality of 3x is one. 

Definition 21. D is a non-deterministic Turing machine (NTM) if 

and only if there exists 0<n,meN such that: 

(1) D is an nm-tuple 

(2) l<i^nm, then iDeTRIP 
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(3) l<i?'j<n and l<k<(m-l), then liD=l(i+kn)D?«ljD=l( j+kn)D 

(4) 0<k<(in-l) and l+kn<y<n+kn, then 2(l+kn)D=2yD 

(5) l<i*j<in, then 2(jn)D?«2(in)D 

(5) l<j<nm, then l^(3jD)<aleph-zero 

(7) le:{3jD|l<j<nm} s {liD|l<i<n} 

(8) ((2e:{3jD|l<j<nm})-{LT,RT,ST}) £ {2(in)D|l<i<n}. 

Clauses (1) and (2) are obvious. Clause (3) again specifies the 

distribution of states. Clauses (i+) and (5) specify the distribution of 

the alphabet. Clause (6) specifies that the number of possible choices 

for next state and action pairs is finite. Note that for the determin

istic case there is only one possible next state and action. Clause (7) 

states that the possible next states are members of the original state 

set. Clause (8) states that the possible actions are left moves, right 

moves, identity moves, and prints of any symbol that occurs in its 

alphabet. Again, it is assumed there is a character in the alphabet 

that plays the role of the blank. Comments concerning halting are the 

same as for the deterministic variety of machines. Recognition is by 

final state with the same conditions as for the deterministic case, but 

with the added provision that recognition occurs if there is at least 

one sequence of moves that satisfies the recognition criteria. We shall 

introduce the following definitions without explanation since they fol

low mutatis mutandis the deterministic case. 

Definition 22. NTM = {D|D is a non-deterministic Turing machine}. 

Definition 23. T is a bijection from N to NTM. 
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Definition 2^. Q is a mapping from NTM into N such that 

Q^(7(i) = {lj7(i)|l^j^7(i)} for every non-deterministic Turing machine 

7(i). 

Definition 25. A^ is a mapping from NTM into N such that 

A^(T(i)) = {2j7(i)1l^j^T(i)} for every non-deterministic Turing machine 

7(i). 

Definition 26. The set of rewritten machines is {7'""(0), 

7*""(1),. . .} , i.e., 7""(k) is the machine obtained from 7(k) by relabel

ing its states and alphabetic characters. 

Definition 27. For all n,k£N, then 7?(n) = 7""(k) if and only 

if n = lj7'"*(l<) for some j, l<j<Qy(7'"''(k)). 

Definition 28. For n,ieN and feN^, INDEX(n,f(i)) = [(ntl)-

117?(n)] + [((f(i)+l)-217?(m))-l]Q^(7?(n)) such that INDEX(n,f(i)) = 

j, l<j<7?(n), if and only if lj7?(n) = n and 2j7?(n) = f(i). 

The essential parameters for the non-deterministic variety of 

machines are the same as for the deterministic ones. The interaction 

between these par'ameter's is also the same. On the other hand, non-

determinism means that a configuration need not give rise merely to 

another single configuration, but rather it may give rise to any finite 

number of them. In order to accommodate this case we monitor all con

figurations that arise at any stage in the recognition procedure. Per

haps an analogy with the structure of trees may clarify the approach. 

The recognition procedure is begun by selecting an initial configura

tion. This initial configuration is then the root of the tree. This 

configuration can lead to a finite number of other configurations 
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(nodes) that arise from the possible choices for next state and action. 

The resulting configurations are then seen as nodes of the next level 

of the tree. A configuration will give rise to as many configurations 

as there are possible next state-action combinations for a given present 

state-symbol scanned combination. Each cycle of the recognition proce

dure corresponds to a level of the tree. Recognition occurs if at some 

level we find a configuration that remains unchanged at the next cycle 

and the state therein is a member of the final state set. Note that 

halting again appears as a necessary condition for recognition. Also 

recall that recognition occurs if at least one path leads to acceptance. 

Thus, the recognition procedure terminates once a successful successioQ 

of configurations has been obtained. As we did for the deterministic 

variety, we will proceed to obtain an appropriate Boolean algebra and 

total state-transition function for the non-deterministic case. 

J. N N 

Def in i t ion 29. C* i s a mapping from NxNxN t o P(NxNxN ) so t h a t 
N »'c 

for any <m,j,h>eNxNxN , C^(<m,j,h>) will equal: 

(1) A", if h**N c_ {2jT?(m) I l<j<7?(m')} where 

A* = {x*|(3z)(zE3(INDEX(m,h(j)))7?(in) and 

X* = <l2,22(j),22(h)>)} 

(2) <in,j,h>, otherwise. 

N NxNxN 
Definition 30. E- is a bijection from NxNxN to 0 

N 

restricted to atoms such that (E (i))(j)=l if and only if i=j for all 

ijjeNxNxN . 
N J. NxNxN 

Definition 31. T" is a mapping from the atoms of 6 into 

NxMyM 'k, . / ^ ,- . «NxNxN , 
e such that T"(a) = V E_,(x) for every atom a m 8 and 

xeC^(E'\a)). 
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N 
NxNxN 

Definition 32. T is a mapping from 6 into itself so that 
N 

, ^NxNxN 
for every beS : 

(1) T (b) = T*(b), if b is an atom 

(2) T (b) = V T̂ *(a) for atoms a<b, if: 
' a<b ' 

(i) (3C)(3T)(C is an atom.T>O.Tj(c) = b.c'-'-d) is an 

initial configuration) 

* -1 
(ii) ~ (3a)(a is an atom.a<b.aeT^(a).l(a (1)) is a 

final state) 

(3) T (b) = b, otherwise. 

j'j 

The strategy here was to define a function C^ from the set of 

configurations into the power set of the set of configurations. The 

configurations were encoded via E^ into the atoms of the Boolean algebra 
N NxNxN * 

e . The function T^ was defined for the Boolean algebra as the 
N A NxNxN 

alter ego of C". A total state-transition function T^ on 6 was 

obtained by an appropriate atomwise extension of T". Note that the 

atoms of the Boolean algebra are the algebraic counterpart of the con

figurations. Thus, to monitor configurations is to monitor atoms of the 

appropriate Boolean algebra. The state-transition function T^ is 

defined so that it becomes the identity, once recognition has been 

attained. We may now summarize these facts of recognition in a formal 

definition and prove a theorem that asserts the existence of an abstract 

digital computer for all non-deterministic Turing machines. 

Definition 33. If x = <n,0,t> is an initial configuration of a 

non-deterministic Turing machine and E-(x) is an initial state of an 

abstract digital computer then the input tape 3x is recognized if and 
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only i f there exis ts a f in i te ordinal T such that T (E^(x)) = 

T+ 1 T 

T^ (E^(x)) and there exists an atom a such that a<T^(E (x)) and 

aeT"(a), and l(a (1))£H where H is the final state set for 

7?(l(a"^(l))). 
Theorem 3. There exists a control function Cu such that 
N 

NxNxN 
<0 ,Rs ,Cu > is a set-reset computer and T (b) = (Cu (b))(b) for 

^ ^NxNxN^ 
any be0 

Proof. Let Cu (b) = S(J)R(K) where J = {(T (b))~-̂ (l)} and K = 
N 

-1 NvNvM 
{b (1)}. Therefore (Cu (b))(b) = T (b) for all bee^'^^ . 

We are now able to provide a characterization of the determinis

tic and non-deterministic varieties of a class of recognizers with the 

aid of an appropriate Boolean algebra and total state-transition func-

tion. The Boolean algebra for both varieties will be 0 where X is the 

Cartesian product of the parameters essential (same for both) for the 

recognition procedure of that class. However, the difference between 

the two varieties is reflected by the total state-transition function. 

For the deterministic case, this function will be the identity on all 

elements of 8 other than atoms, since for the deterministic case there 

is only one choice of next state and action for any given present state-

symbol scanned combination. If the current configuration can be changed, 

it can be changed in only one way. Consequently, at every cycle of the 

recognition procedure, we are concerned with only one configuration. 

X 

These configurations are encoded into the atoms of 9 so on any itera

tion of the total state-transition function the computer merely passes 

from atom to atom. 
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For the non-deterministic variety, the total state-transition 

function will be other than the identity for, at most, elements of 6 

such that the set b (1) is finite. This is so because for any par

ticular present state-symbol scanned combination, the number of possible 

next state-action combinations is finite. At any cycle of the recogni

tion procedure only a finite number of new configurations will be intro

duced, meaning that on any iteration of the total state-transition 

function only a finite number of atoms need be monitored. The deter

ministic and non-deterministic varieties of a class of recognizers will 

be captured by abstract computers that have the same Boolean algebra for 

their state set, but for the deterministic case the transitions will 

occur only between atoms while for the non-deterministic case the tran

sitions will occur only between those elements of the algebra which are 

finite. 

Non-Deterministic Linear Bounded Automata 

A non-deterministic linear bounded automaton can be viewed as a 

non-deterministic Turing machine that uses only that portion of the tape 

on which the initial input appears. Or more generally, a linear bounded 

automaton is a recognizer that uses only an amount of tape that is a 

linear function of the length of its input string [13]. Moreover, there 

is a theorem to the effect that boundary markers usually inherent in the 

specification of these recognizers are inessential [12]. Thus, they are 

genuine special cases of non-deterministic Turing machines. However, 

they do differ from Turing machines and this difference will be made 

explicit when we treat the recognition procedure of this class. 
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We will introduce the following definitions without comment as 

they follow mutatis mutandis the pattern of the corresponding defini

tions for the case of Turing machines. 

Definition 3^. TRIP = NxNxP(NxACT). 

Definition 35. Q is a non-deterministic linear bounded automaton 

(NLBA) if and only if there exist 0<n,meN such that; 

(1) Q is an nm-tuple 

(2) l<i<nm, then iQeTRIP 

(3) l<i?'j<n, and l^k<(m-l), then liQ=l(itkn)Q?'ljQ=l( jtkn)Q 

(4) 0<k<(m-l) and l+kn<y<ntkn, then 2(l+kn)Q=2yQ 

(5) l<i;*j<m, then 2(in)Q5'2( jn)Q 

(6) l<j<nm, then 1<(3jQ)<aleph-zero 

(7) le;{3jQ|l<j<nm} <=_ {liQ|l^i<n} 

(8) ((2e:{3jQ|l<j<nm})-{LT,RT,ST}) £ {2(in)Q|l<i<n}. 

Definition 36. NLBA = {Q|Q is a non-deterministic linear bounded 

automaton}. 

Definition 37. Ji is a bijection from N to NLBA. 

Definition 38. Q , is a mapping from NLBA into N such that 
— ^ 

Q^(E(i)) = {Ijli(i) I l̂ ĵ Ji(i)} for every non-deterministic linear bounded 

automaton K(i). 

Definition 39. ky is a mapping from NLBA into N such that 

A^(E(i)) = {2jli(i) j l<j<j!,(i)} for every non-deterministic linear bounded 

automaton E(i). 

Definition 40. The set of rewritten machines is {L"*(0), 

•'• 4f •Uwfm 

U'^ (1),...}, i.e., y,"'(k) is the machine obtained from t(k) by relabel

ing its states and alphabetic characters. 
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Definition ^1. For all n,keN, then K?(n) = {̂ ""(k) if and only 

if n = ljK"""(k) for some j, l<j<Q (ii""(k)). 

Definition 42. For all n,ieN and feN^, INDEX(n,f(i)) = C(n+1)-

lllfi?(n)] + [((f(i)+l)-21E?(m))-l]Q^(K?(n)) such that INDEX(n,f(i)) = j, 

l<j<Ji?(n), if and only if ljE?(n) = n and 2jl!;?(n) = f(i). 

We will use recognition by final state for the linear bounded 

automata as we did for Turing machines, but with the added stipulation 

that the read head for a terminal situation must be located one position 

to the right of the last character of the input string. In order to 

formalize the notion of a bound on the amount of tape available during 

a particular execution of the recognition procedure, we use a special 

representation of the input string so that the boundary condition is 

made exact. We have relabeled the alphabets of the machines using the 

positive integers rather than the natural numbers. Consequently, the 

natural number 0 does not appear as an alphabetic character of any 

machine. Thus, a tape is represented as having a finite initial segment 

containing only positive integers (left-justified) followed by zeros. 

The index of the tape position containing the last positive integer that 

precedes a zero will be the bound of the recognizer relative to this 

tape. Recognition then occurs when a recognizer halts in a final state 

with the value of the head position one greater than the bound of the 

tape being processed. 

The resemblance between non-deterministic linear bounded auto

mata and Turing machines suggests that the essential parameters of 

linear bounded automata should include state, head position, and tape. 
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The further stipulation of a bound requires that there be an additional 

parameter. Hence, the essential parameters are state, head position, 

tape, and bound. These parameters form configurations that are elements 

N 
of NxNxN xN. We may now enter formal definitions. 

Definition 43. SEQ = {f|feN^.(3a)(b)(a,beN.(b<a3f(b)>0). 

(b>a3f(b)=0))}. 

JV N N 

D e f i n i t i o n 4 4 . C^ i s a mapping from NxNxN xN t o P(NxNxN xN) so 
N vV 

that for any <n,i,f,z> eNxNxN xN, C"(<n,i,f,z>) will equal: 
Vi 

(1) A, if (i) f£SEQ 

(ii) f(i)£f"N-{0} s. {2jK?(n)|l<j<K?(n)} 

(iii) y(f) = ((MIN{x|x>0.f(x)=0})-l] = z 

(iv) 0<i<z 

where A={x*| (3z) (ze3(INDEX)n ,f (i)) )ii?(n). X''' = 

<lz,2z(i),2z(f),z>)} 

(2) <n,i,f,z>, otherwise. 

N 
N NxNxN xN 

Definition 45. E^ is a bijection from NxNxN xN to 6 

restricted to atoms such that (E^(i))(j)=l if and only if i=j for all 

. . N 
i,3£NxNxN xN. 

A NxNxN xN 
Definition 46. T" is a mapping from the atoms of 9 into 

gNxNKN^xN ^^^^ ^^^^ ..(̂ j __ V (̂ ) ^^^ ^^^^ ^,„^ ̂  .„ gNxNx/xN ^^^ 
Jj J"̂  

xeC*(E'-^(a)). 
N 

NxNxN xN 
Definition 47. T^ is a mapping from 6 into itself so 

-HK -K ^ K QNXNXN XN that for every b£6 : 

(1) T (b) = T^*(b), if b is an atom 
A, 

(2) T^(b) = V T"(a) for atoms a<b, if: 
a<b 
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(i) (3C)(3T)(C is an atom.T>0.T^(c)=b.c" (1) is an 

initial configuration) 

(ii) ~ (3a)(a is an atoin.a<b.a (1) = <in,i,f,z> where m 

is a final state, f(i)=0, u(f)=z, i=z+l) 

(3) T^(b) = b, otherwise. 

Definition 48. If x=<n,0,t,u(t)> is an initial configuration of 

a non-deterministic linear bounded automaton and E^(x) is an initial 

state of an abstract digital computer then the input tape 3x is recog

nized if and only if there exists a finite ordinal T such that 

T T^l T 

T,/E (x)) = T (E/x)) and there exists an atom a such that a<T (E ,(x)) 

and a" (1) = <m,i,f,z> where meH^ with H^ as the final state set for 

Ji?((l(a"-̂ (1))), f(i)=0, u(f) = z and i=ztl. 
Theorem 4. There exists a control function Cu^ such that 
N '^ 

NxNxN xN 
<e ,RŜ ,Cû > is a set-reset computer and T (b) = (Cû .(b))(b) 

^ ^NxNxN xN 
any bed 

Proof. The proof of this theorem parallels exactly the proof of 

the corresponding theorem for non-deterministic Turing machines. 

Non-Deterministic Pushdown Automata 

Definition 49. COMP = NxNxNxP(NxACTxACTS). 

Non-deterministic pushdown automata are nmp-tuples of elements of 

COMP that have exactly n states, input alphabets of exactly m characters, 

and pushdown alphabets of exactly p characters. The understanding here 

is that if xeCOMP, then Ix represents the present state, 2x represents 

the input symbol scanned, 3x represents the pushdown symbol scanned, and 

4x is a set of triplets composed of the next state, the appropriate 
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action relative to the input tape, and the appropriate action relative 

to the pushdown tape. 

Definition 50. G is a non-deterministic pushdown automaton 

(NPDA) if and only if there exists 0<n,m,peN such that: 

(1) G is an nmp-tuple 

(2) l<i<nmp, then iGeCOMP 

(3) l<i?ij<n and l<k<( (mp)-l), then liG=l(i+kn)G?iljG=l( j+kn)G 

(4) 0<k<(m-l) and 0<q<(p-l) and (l+kn+qnm)<y<(n+kn+qnm), then 

2(l+kn)G=2(l+kn+qnm)G and 2(l+kn)G=2yG 

(5) 0<i?ij<(m-l) and 0<q<(p-l) , then 2(l+in)G=2(l+in+qnm)G?i 

2(l+jn)G=2(l+jn+qnm)G 

(6) 0<k<(p-l) and (l+knm)<y<(nm+knm), then 3(l+knm)G=3yG 

(7) l<i?ijep, then 3(inm)G?i3( jnm)G 

(8) l<i<nmp, then l<(4iG)<aleph-zero 

(9) le:{4jG|l<j<nmp} £ {liG|l<i^n} 

(10) 2e:{4jG|l<j<nmp} £ {RT,ST} 

(11) ((3e:{4jG|l<j<nmp})-{0,ST}) £ {3iB|l<i<nmp}. 

Clauses (1) and (2) are obvious. Clause (3) specifies the dis

tribution of states. Clauses (M-) and (5) specify the distribution of 

the input alphabet. Clauses (6) and (7) specify the distribution of the 

pushdown alphabet. Clause (8) specifies that the number of possible 

choices for next state and actions is finite. For the deterministic 

varieties there would be only one possibility. Clause (9) states that 

the possible next states are members of the original state set. Clause 

(10) states that the admissible actions relative to input tapes are stay 
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(the epsilon-type move) and move right. These are the standard moves 

for this class of recognizer. An epsilon-type move is simply one where 

the resulting course of action is independent of the input symbol. The 

definition of NPDA prescribes a mapping from NxNxN to P(NxACTxACTS). 

Consequently, to say the argument of the function so prescribed is inde

pendent of the input symbol is to say that the function has the same 

value for all inputs symbols and the particular state and pushdown sym

bol associated with an epsilon-type move. Thus, we need not alter our 

formalism to accommodate the epsilon-type moves. Clause (11) specifies 

that the possible actions on the stack are erase (print 0), stay, and 

print any symbol of the pushdown alphabet. 

Again our modus operandi will be as before. We will relabel the 

states relative to natural numbers and the input and pushdown alphabets 

relative to the positive integers. 

Definition 51. NPDA = {G|G is a non-deterministic pushdown auto

maton} . 

Definition 52. ? is a bijection from N to NPDA. 

Definition 53. Qp is a mapping from NPDA into N such that 

Qp(?(i)) = {lj?(i)|l<j<5'(i)} for every non-deterministic pushdown auto

maton ?(i) . 

Definition 54. Ap is a mapping from NPDA into N such that 

Ap(P(i)) = {2j?(i)|l<j<?(i)} for every non-deterministic pushdown auto

maton ?(i). 

We define an additional auxiliary Z_ that gives us the cardinal

ity of the pushdown alphabet of any non-deterministic pushdown automaton 

as follows: 
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Definition 55. Z is a mapping from NPDA into N such that 

Z (?(i)) = {3jF(i)Il<j<F(i)} for every non-deterministic pushdown auto

maton ?(i) . 

Definition 56. The set of rewritten machines is {J'"""(0), 

?*"'"*''(1) ,. . . } , i.e., {'"'""(k) is the machine obtained from V(k) by re

labeling its states and the characters of its input and pushdown alpha

bets . 

Definition 57. For all n,keN, then F?(n) = P*""(k) if and only 

if n = ljP"*"\k) for some j, l<j<Q (?***(k)). 

Definition 58. For all n,i,jeN and f,geN^, INDEX(n,f(i)g(j)) = 

[(ntl)-ll??(n)] t [((f(i)tl)-21F?(m))-l]Qj,(J'?(n)) t [((g(j)tl)-

31??(n))-l](Q (??(n))-Aj,(??(n))) such that INDEX(n,f(i) ,g( j)) = q. 

l<q<J»?(n), if and only if lqF?(n) = n, 2qF?(n) = f(i) and 3qJ'?(n) = 

g(j). 

Recognition for pushdown automata can be formulated as being 

either by final state or by empty store. We have chosen to use final 

state. In either formulation the entire finite input string must be 

read. Accordingly, the terminal head position must be that value at 

which the first blank appears on the input tape. At this time the 

scanned input symbol will be a blank, represented here by the symbol 0. 

Yet, when this situation occurs we may still need to erase symbols from 

the pushdown tape in order to achieve empty store. Thus, configurations 

where the scanned input symbol is the blank must be countenanced. As a 

result we would be required to introduce a pseudo blank for each machine 

as was done in the case of Turing machines. Further complications ensue, 
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since the tape representation would require modification. The entire 

formulation of this class of recognizers would be more complex. All 

this seems to be needless since it is known that recognition by final 

state and by empty store are equivalent [19]. The requirement that the 

entire input string be read as a necessary condition for recognition is 

preserved by the method since zero is not in the input alphabet of any 

machine. Also, zero does not appear in any pushdown alphabet. Hence, 

the top of the pushdown is always (Min{x|xeN .f(x)=0})—1. Note that the 

function 0 gives us the ability to erase characters from the pushdown 

tape. Likewise, the standard procedure for printing on the pushdown 

tape is to define print actions so that they overprint the top character 

of the pushdown and then print additional characters as part of the same 

action, thereby increasing the length of the pushdown tape. However, 

this method appears cumbersome. We have merely defined the set of func

tions in ACTS so that the printing is done one space ahead of the cur

rent stack top. 

The essential parameters of pushdown automata are seen to be 

State, input head position, input tape, pushdown head position, and 

N N 
pushdown tape. The configurations are elements of NxNxN xNxN . Each 

such quintuplet is composed of a state, an input head position, an 

input tape, a pushdown head position, and a pushdown tape. We may now 

proceed to enter formal definitions of these perceptions. 

ft . N N 
Definition 59. Cp is a mapping from NxNxN xNxN to 

P(NxNxN^xNxN^) so that for any <n ,i,f,j ,g>eNxNxN^xNxN^, Cp(<n,i,f,j,g>) 

will equal: 
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(1) A", if (i) f,geSEQ 

(ii) f(i)ef"N-{0} £ {2j??(n)|l<j<??(n)} 

(iii) g(j)eg"N-{0} £. {3j??(n)|l j ??(n)} 

(iv) j = y(g) 

where A" = {x"|(3z)(ze4(INDEX(n,f(i),g(j)))??(n) and x* = 

<lz,2z(i),f,3z(j),3z(g)>)} 

(2) <n,i,f,j,g>, otherwise. 

N N 
Definition 60. E^ is a bi ject ion from NxNxN xNxN to 

Tj y 
N x N x N x N x N 6 res t r ic ted to atoms such that (Ep(i))( j ) = 1 if and only 

N N 
if 1=3 for a l l ijjeNxNxN xNxN . 

N N 
I. NxNxN xNxN 

Definition 61. T' i s a mapping from the atoms of 0 
N N 

NxNxN xNxN •'- - 1 
such that T^Ca) = V E^(x) for every atom ae0 and xeC^CE^-'Ca)). 

NxNxN xNxN 
Definition 62. T is a mapping from 6 into i t s e l f so 

N N 
u N̂xNxN xNxN 

that for every beS : 

(1) To(b) = T*(b), i f b i s an atom 
¥ t 

(2) Tp(b) = V T^*(a) for atoms a<b, if: 

^'^ -1 
( i ) (ac)(aT)(c is an atom.T^O .Tp(c) = b.c (1) i s an 

i n i t i a l configuration) 

( i i ) ~ (3a)(a i s an atom.a<b.a (1) = <n , i , f , j , t> where 

n is a f inal s t a t e , f ( i )=0, i=y(f)+l) 

(3) Trt(b) = b , otherwise. 

Definition 63. If x = <n,0,f,0,g> is an initial configuration of 

a non-deterministic pushdown automaton and Ep(x) is an initial state of 

an abstract digital computer then the input tape 3x is recognized if and 

T T + 1 

only if there exists a finite ordinal x such that T^CE^CX)) = T^ (E (x)) 
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and there exist an atom a such that a<T^(E (x)) and aeT"(a), and 

l(a~ (l))eHo where H is the final state set for FTCKa" (1)) and 
f f 

2(a"-̂ (l)) = p(3(a~-̂ (l)))+l and ( 3(a"-̂ (l) ))(2(a"-̂ (l))) = 0. 

Theorem 5. There exists a control function Cu^ such that 
N N 

NxNxN vMvN 
<e ,RS^,Cu„> is a set-reset computer and T„(b) = (Cu^(b))(b) 

5 *̂N ? F 
^ ^NxNxN^xNxN 

for any be6 

Proof. The proof of the theorem parallels exactly the proof of 

the corresponding theorem for non-deterministic machines. 

Finite Automata 

A finite automaton can be viewed as a machine which reads a 

finite input string over some alphabet. Again such strings may be taken 

as tapes from the set SEQ. Finite automata are merely a special subset 

of Turing machines (deterministic here) that only read and move right. 

These machines stop when the first zero of the tape is encountered, and 

they recognize upon stopping if they are in a final state. Thus, the 

construction of an abstract computer that captures all the computations 

of all finite automata does not differ essentially from the construction 

for the deterministic Turing machines. The following definitions and 

theorems accomplish the construction. 

Definition 6̂ . W is a deterministic finite automaton if and 

only if there exists 0<n,meN such that: 

(1) W is an nm-tuple 

(2) l<i<nm, then iWeQUAD 

(3) l<i*j<n and l<k<(m-l), then liW=l(itkn)W*ljW=l(jtkn)W 

(4) 0<k<(m-l) and l+kn<y<n+kn, then 2(l+kn)W=2yW 
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(5) l<i*j<in, then 2(in)W5̂ 2(jn)W 

(6) {2jW|l<j<nm} c_ {liw|l^i<n} 

(7) {UjW|l<j<nm} = {RT}. 

Definition 65. FA={W|W is a finite automaton}. 

Definition 66. F is a bijection from N to FA. 

Definition 67. Qp is a mapping from FA into N such that 

Q (F(i)) = {ijF(i)|i<j<F(i)) for every finite automaton F(i). 

Definition 68. Ap is a mapping from FA into N such that 

Ap(F(i)) = {2jF(i)|l<j<F(iT} for every finite automaton F(i). 

Definition 69. The set of rewritten machines is {F'"(1),F""(2), 

...}, i.e., F'*"(k) is the machine obtained from F(k) by relabeling its 

states and alphabetic characters. 

Definition 70. For all n,keN, then F?(n) = F*'"(k) if and only 

if n = ljT"*"(k) for somej , l<j<Q (F""(k)). 

Definition 71. For all n,ieN and feN^, INDEX(n,f(i)) = 

[(n+l)-llF?(n)] + [((f(i)+l)-21F?(n))-l]Q^(F?(n)) such that 

INDEX(n,f(i)) = j, l<j<F?(n), if and only if ljF?(n) = n and 2jF?(n) = 

f(i). 

. . . i- . N 
Definition 72. C* is a mapping from NxNxN into itself so that 

N A 
for every x,n,i,jeN and f,geN , C (<x,i,f>) will equal: 

(1) <n,j,g>, if (i) feSEQ 

(ii) f(i)ef"N-{0} s {2jF?(x) | l<j^F?(x)} 

where (a) n=3(INDEX(x,f(i)))T?(n) 

(b) j=itl 

(c) g=f 
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(2) <x,i,f>, otherwise. 
N 

r. ,-. . . ^^ T-, . 1 . . . ,- »T w .rN ^NxNxN 
Definition 73. E is a bijection from NxNxN to G 

restricted to atoms such that (E (i))(j) = 1 if and only if i=j for all 

ijjeNxNxN . 
N 

NxNxN 
Definition 74. T is a mapping from G into itself so that 

N 
for every beG , T (b) will equal: 

(1) f where f(j) = 1 iff j = C*(b"-'"(1)) for all jeNxNxN^, if b 

is an atom 

(2) b, if b is not an atom. 

Definition 75. If x = <n,0,t> is an initial configuration of a 

finite automaton and E„(x) is an initial state of an abstract digital 

computer, then the input tape 3x is recognized if and only if there 

T T + 1 
exists a finite ordinal T such that T (E (x)) = T (E (x)) and 
T NxNxN^ -1 

T (E (x)) = a, a being an atom of 0 , such that l(a (l))eH where 

H is the set of final states of F?(l(a~ (1))) and 

(3(a"^(l)))(2(a"^(l))) = 0. 

Theorem 6. There exists a control function Cu such that 
N 

NxNxN 
<6 ,RS ,Cu > is a set-reset computer computer and T (b) = (Cu (b)) 

^ , ^ N X N X N N 
for any be0 

Proof. The proof of the theorem parallels exactly the proof of 

the corresponding theorem for deterministic Turing machines. 
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CHAPTER III 

MORPHISM THEOREMS 

Introduction 

Earlier we discussed the induced hierarchy of recognizers that 

is obtained by considering the languages recognized. Turing machines 

are at the top of the hierarchy and finite automata are at the bottom. 

The hierarchical notion of recognition power ensues from the relation

ship between the classes of languages generated by each grammar type: 

the class of regular sets is a proper subclass of the context-free class 

of languages; the context-free class is a proper subclass of the context-

sensitive class of languages; the context-sensitive class is a proper 

subclass of the class of recursively enumerable sets [2]. Recognition 

power is a reflection of the capability to recognize the classes in this 

chain as ordered by the inclusion relation. 

In Chapter II we constructed an abstract digital computer for 

each class of recognizers countenanced. These computers are algebras 

and the natural question arises as to whether the relationship between 

the classes of recognizers countenanced can be captured algebraically 

within the theory of abstract digital computers. The principal result 

of this research may now be stated as follows: 

The algebraic counterpart of the classical hierarchy of recog

nizers is obtained in the theory of abstract computers by computer mor-

phisms which hold between the computers of finite automata, pushdown 
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automata, linear bounded automata, and Turing machines. These morphisms 

relate the abstract digital computers in the expected manner. 

In each of the following sections we will establish a theorem 

which states that the computer for a class of recognizers is appropri

ately morphic to the computer for the next higher class. These computer 

morphisms will identify for each given machine a machine of the next 

higher class that recognizes all and only the tapes of the given machine. 

Such computer morphisms will be called recognition-preserving morphisms. 

Their definition is as follows: 

Definition 76. Let x be a recognizer, C its configuration func

tion, and a and a* initial configurations of x in which the input tapes 

t and t" occur respectively. Then we say that t and t" are x-equivalent 

if and only if t(i) = t"(i) for all i for which there exists a T^O such 

T T *•• 
that i is any of the head positions that occur in C (a) or C (a"). 

-> ^ X X 

We may note that for bounded recognizers, that is for recognizers 

that inspect only a finite segment of tape, the notion of tape equiva

lence just defined is effective. The notion of recognition-preserving 

morphisms up to tape equivalence is important to us only for bounded 

recognizers. 

Definition 77. a is a recognition-preserving morphism from 

X Y 
<e ,T.> into <e ,T„> if and only if a is a computer morphism such that 

A B 
X -1 

if be6 and b (1) is a configuration or set of configurations of some 

machine x of kind A then (otb) (1) is a configuration or set of config

urations of some machine y of kind B. Machine y recognizes all and only 

JU — "I 

tapes recognized by x in the sense that y recognizes t*e3((ad) (1)) and 
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all tapes equivalent to t" if and only if x recognizes te3(d (1)) where 

d (1) is an initial configuration of x. 

Recognition-Preserving Morphism for Finite Automata 

Since regular sets are a proper subclass of the class of context-

free languages, finite automata are less powerful than non-deterministic 

pushdown automata. The algebraic counterpart of this fact is given by a 
N 

NxNxN 
theorem which states that the computer of finite automata, <G »'̂ r̂  » 

N N 
NxNxN xNxN 

may be embedded in the computer of pushdown automata, <G '"^p^ » 

via a recognition-preserving computer morphism. 

Theorem 7. There exists a recognition-preserving computer mono-
N N N 

u- ^ ^NxNxN ^ ^ ^ ^NxNxN xNxN ^ ^ 
morphism a from <6 ,T > to <e »̂ i» * 

N 
Proof. Let <n,i,f>eNxNxN . Then n is a state of some finite 

automaton F?(n). Given that F?(n)eFA, we may construct a deterministic 

pushdown automaton A where jA = <ljF?(n),2jF?(n),l,{<3jF?(n),RT,ST>}> 

for l<j<F?(n). 

We have merely reformulated the quadruples of the finite auto

maton F?(n) as quadruples suitable for a pushdown automaton by adding a 

symbol 1 to function as an initial pushdown symbol and by adding the 

action ST which is of no consequence. In doing so we have not changed 

the original behavior of the machine F?(n). The response of this con

structed pushdown automaton A to a state-input symbol-pushdown symbol 

combination is the same as the response to this same state-input symbol 

combination for F?(n) because the pushdown stack is completely ignored 

throughout any computation. Hence, we conclude that the original 
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behavior of F?(n) has not been altered through reformulation as a push

down automaton. 

Since the set of deterministic pushdown automaton is merely a 

proper subset of the non-deterministic variety, we have AeNPDA and 

y (A)eN, so A is the ? (A)+l machine whose states for l<j<Q^(A) are 

the numbers given by: 

(1) [ljF?(n)-llF?(n)], if F""^(A) = 0 

(J'~-̂ (A))-1 
(2) I Q^CPCk)) + [ljF?(n)-llF?(n)], if ?"-̂ (A)>0. 

k=0 *̂  

The cha rac te r s of the input alphabet for l<j<Qp(A) are the numbers given 

by 

( 1 ) [ 2 ( j Q j , ( A ) ) F ? ( n ) - 2 1 F ? ( n ) ] , i f ?"-^(A) = 0 

( 5 ' " ^ ( A ) ) - 1 
( 2 ) I A ( F ( k ) ) + [2 ( jQ ( A ) ) F ? ( n ) - 2 1 F ? ( n ) ] , i f ? - ' (A)>0. 

k=0 ^ 

The single character of the pushdown alphabet is given by: 

(?"^(A))-1 

I Z^(?(k))+1. 
k=0 ^ 

Note that this constructed pushdown automaton is one that ignores 

the pushdown store entirely, so a pushdown alphabet of cardinality one 

is adequate. We only need one initial symbol to initiate computation. 

N N N 
We define a mapping W" from NxNxN to NxNxN xNxN in terms of 

two functions K and H . These two functions are defined relative to a 

particular finite automaton and pushdown automaton. If the finite autom-

N I 
aton is F?(n) then for all xeNxNxN such that the state lxe{ljF?(n)| 

l<i<F?(n)}, we have W"(x) = K^(x) if x is an appropriate configuration 

for F?(n) that is to be correlated with an appropriate configuration 
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for the corresponding pushdown automaton. In contrast, W"(x) = H (x) 

if X is to be correlated with a configuration of the corresponding push

down for which a subsequent configuration changed by the pushdown auto

maton is not desired. Consequently, W" is a total function on the set 

N 
NxNxN when the union is taken over all such sets of configurations with 

respect to every finite automaton. For the finite automaton F?(n) and 

th e corresponding constructed machine AeNPDA, we let W^(<n,i,f>) = 

K„(<n,i,f>) where K (<n,i,f> is: 

(1) <n='Si,f̂ So,z>, if f"N-{0} c {2jF?(n) | l<j<F?(n) } and 

0<i<y(f) with: 

(i) n'̂  = 

-1, f[n-llF?(n)], if F'-'CA) = 0 

(?"-̂ (A))-l 
-1, I Qp(F(k)) + [n-llF?(n)], if ? ^(A)>0 

k=0 

(ii) fHx) = <̂  

[(f(x)+l)-21F?(n)] for 0<x<y(f), 

if P -̂ (A) = 0 

[o for x>y(f), 

(iii) f*(x) = <̂  

(? -̂ (A))-! 

k=0 
Aj,(F(k)) t [(f(x)+l)-21F?(n)] 

for 0<x<y(f), 

if F"-̂ (A)>0 

0 for x>y(f), 
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(iv) z(x) = < 

1 for x=0, 

0 for x>0, 

if P"-̂ (A)=0 

(v) z(x) = < 

(?"^(A))-1 
I Z (?(k))+l for x=0, 

k=0 

0 for x>0, 

if F~-̂ (A)>0 

And W"(<n,i,f>) = H (<n,i,f>) where H (<n,i,f>) is: 

(2) <n*,i,f*,0,z>, if f"N-{0} c_ {2jf?(n) | l<j<F?(n)} or 

i>y(f) with: 

(i) n" as given by (1) above. 

(ii) f:̂*(x) = <̂  

?"-̂ (A) 
I A^(?(k)) + [(f(x)+l)-21F?(n)] 

for 0<x<y(f), k=0 

if ̂ "•̂ (A)eN 

0 for x>y(f), 

(iii) z(x) = < 

P"-̂ (A) 
I Z (P(k)) + 1 for x=0, 
k=0 

0 for x>0, 

if F "̂ (A)eN 

•>{ N N N 

Lemma 1. The mapping W' from NxNxN to NxNxN xNxN is an injection. 
N 

Proof. Let <n,i,f>, <m,j ,h>eNxNxN and assume <n,i ,f>?i<m, j ,h>. 

Case (1.1): Assume n^m and F?(n) = F?(m). 

Since F?(n) = F?(m) , the pushdown automata constructed using 

either state n or m are the same. Denote this constructed automaton as 
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B. From F?(n) = F?(m), we have llF?(n) = llF?(m). Assume n" = m»'«. If 

?""̂ (B) = 0 then n* = [n-llF?(n)] and m* = [m-llF?(m)]. But then 

[n-llF?(n)] = n" = m'* = [m-llF?(m)] from which we determine that n=m 

which is contrary to original assumption that n?tm. If ? (B)>0 then 

(?"-̂ (B))-l (?"^(B))-1 
n* = I Q (?(k)) + [n-liF?(n)] and m'-^ = I Q^(F(k)) + 

k=0 ^ k=0 ^ 

(?"-̂ (B))-l 
[m-llF?(m)]. But by our assumption, I Qp(?(k)) + [n-llF?(n)] = 

k=0 '̂  

(?"^(B))-1 
n" = m* = I Qp(F(k)) + [m-llF?(m)] from which again follows the 

k=0 '̂  
contradiction n=m. Note that 0<[n-llF?(n)] and 0<[m-llF?(m)] ; 

Case (1.2): Assume n;*m and F?(n)*F?(m). 

Since F?(n)*F?(m), we find that the machines constructed starting 

with states n and m are different. Denote these machines as B and D, 

respectively. Can these machines share any states? The most plausible 

possibility of intersection would be where they are consecutive machines, 

say P (B) = yeN and P (D) = y+leN. If there is any state in common, 

it would be bounded by the maximum value for a state of machine B and 

y-^ I 
state of machine B is [ QpCJ'Ck)) + Qp(?(y))-1 = I Qp(?(k))-1 while 

the minimum value for a state of machine D. The maximum value for a 

L(?(k)) + Q (F(y))-1 = I QJ 
k=0 ^ ^ k=0 ^ 

the minimum value for machine D is J Qp(?(k)). Thus, the intersection 
k=0 ^ 

of the admissible state sets for these constructed machines is empty. 

Note that if y=0 , the maximum value becomes Qp(J'(0))-l and the minimum 

Q-(?(0)). We find that no two distinct constructed pushdown automata 
y 
can share states because the intersection of consecutive machines 
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under the mapping W" is empty. Therefore, we conclude that n"^m" under 

Case (2): Assume î ĵ . 

The mapping does not change the coordinate representing head 

position, so î ĵ remains under W"; 

Case (3.1); Assume f̂ ĥ, F?(n) = F?(m), and both tapes appropri

ate to F?(n) and F?(m). 

F?(n) = F?(m) means that the constructed pushdown automata are 

(?"^(B))-1 
identical. So f"(x) = I A (F(k)) + [(f(x)+l)-21F?(n)] for 

k=0 '̂  

(?"^(B))-1 
non-zero characters while h"(x) = I A (̂ (k)) + [(h(x)+l)-21F?(in)] 

k=0 ^ 

for non-zero characters. Assume f* = h-*. Hence, 

(F"^(B))-1 
I A (?(k)) + [(f(x)+l)-21F?(n)] = f'"(x) = h"(x) = 

k=0 '^ 

(F"^(B))-1 
I A^(?(k)) + [(h(x)+l)-21F?(m)] for non-zero characters and 

k=0 ^ ̂,̂  
f"(x) = 0 = h"(x) otherwise. But now we see that f(x) = h(x) for all 

xeN, which contradicts the original assumption that f ?̂ h; 

Case (3.2): Assume f ?ih, F?(n) = F?(m), and one tape inappropriate 

to F?(n) or F?(m). 

Assume the tape to be inappropriate to F?(n). Then f"(x) = 

?~-^(B) 
I Ap(?(k)) + [ ( f ( x ) + l ) - 2 1 F ? ( n ) ] for non-zero c h a r a c t e r s while 

k=0 ^ 
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(?'^(B))-1 
h"(x) = I A (?(k)) + [(h(x)+l)-21F?(m)] for non-zero characters 

k=0 *̂  
and f"(x) = 0 = h"(x) otherwise. Assume f"=h . A necessary condition 

.'. .'. 
for f"=h" is that the underlying alphabets have a character in common. 

We will show that this condition cannot occur. Again, such a common 

alphabetic character would be bounded by a maximum value for a character 

from F?(m) and a minimum from F?(n). The maximum value from F?(m) is 

?"^(B) ?"-^(B) 
I A (F(k)) while the minimum value from F?(n) is I A (?(k))+l. 

k=0 *̂  k=0 ^ 

Since this necessary condition cannot be fulfilled, we cannot have 

f'"(x) = h"(x) for any non-zero character; 

Case (3.3): Assume f?̂ h, F?(n) = F?(m) , and both tapes inappro

priate to F?(n) and F?(m). 

f'Vh" follows mutatis mutandis from Case (3.1); 

Case (3.4): Assume f=h, F?(n) ^ F?(m), and both tapes appropri

ate to F?(n) and F?(m). 

f'"=h" follows mutatis mutandis from Case (3.2); 

Case (3.5): Assume f=h, F?(n)?iF?(m) , and one tape inappropriate 

to F?(n) or F?(m). 

f"=h" follows mutatis mutandis from Case (3.2); 

Case (3.5): Assume f=h , F?(n)?^F?(m) , and both tapes inappropriate 

to F?(n) and F?(m). 

f"Vh" follows mutatis mutandis from Case (3.2). 

Therefore, if <n,i,f> -^ <m,j,h> then <n* ,i ,f *• ,o ,z> ^ <in" , j ,h" ,o,g> , 

thereby establishing the lemma. 
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N 
We now d e f i n e C as a mapping from P(NxNxN ) i n t o i t s e l f such 

N 
t h a t f o r eve ry AEPCNXNXN ) : 

(1 ) C^(A) = {C '^ (x )} , i f : 

(i) A = {x} 

(ii) X is an appropriate initial configuration 

(2) C (A) = u {C"(x)}, if there exists an appropriate initial 
^ XEA 

configuration y such that {(C") (y)} = A where T is a finite ordinal 

(3) C (A) = A, otherwise. 

N N 
We a l s o d e f i n e d Cp as a mapping from P(NxNxN xNxN ) i n t o i t s e l f such 

N N 
t h a t f o r eve ry AeP(NxNxN xN ) : 

( 1 ) C (A) = u { C * ( x ) } , i f : 
^ xeA ^ 
( i ) A = {x} 

(ii) X is an appropriate initial configuration 

(2) C (A) = u (C^'Cx)}, if: 
^ xeA ^ 

(i) there exists an appropriate initial configuration y 

such that Cp({y}) = A where T is a finite ordinal 

it 

(ii) there does not exist XGA such that XGC^CX) and Ix 

is a final state 

(3 ) Cp(A) = A, o t h e r w i s e . 

N N N 
We d e f i n e W as a mapping from P(NxNxN ) i n t o P(NxNxN xNxN ) such t h a t 

N 
f o r e v e r y AeP(NxNxN ) : 

( 1 ) W^(A) = u { K ^ ( x ) } , i f : 
xeA 

(i) hi 

(ii) xeA is an appropriate initial configuration 
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(2) W^(A) = u {K^(x)}, if: 
xeA 

(i) A=l 

(ii) there exists an appropriate initial configuration 

such that Cl,({y}) = A where T is a finite ordinal 

(3) W (A) = u {H(x)}, otherwise. 
xeA 

N 
Lemma 2. If C is the mapping just defined from P(NxNxN ) into 

N N 

itself and Cp is the mapping just defined from P(NxNxN xNxN ) into it

self, W is a mapping such that W (C (A)) = Cp(W (A)) for all 

AeP(NxNxN^). 

Proof. We note that W will be an injection since it is the 

pointwise extension of the injection W". Also, if xeA then W"(x)eW (A) 

for all AeP(NxNxN^). 

N = 
Case (1): (i) AeP(NxNxN ), (ii) A=l, and (iii) there exists an 

appropriate initial configuration y such that A = C ({y}) where T is a 

finite ordinal. Then: 

W (C (A)) = W ( u {C*(x)}) = u {C^(K(x))} = Ĉ (W fA))i 
xeA ' K (x)eW (A) ^ ^ ^ . 

N 
Case (2): (i) AeP(NxNxN ), and (ii) there does not exist an 

appropriate initial configuration y such that A = Cp({y}) where T is a 

finite ordinal or A^l. Then: 

W (C„(A)) = W ( u {C*(x)}) = u {C*(H„(x))} = C^(W„(A)). 
XEA ^ Hp(x)eW^(A) ^ ^ ^ ^ 

We also conclude that the configurations of finite automata and 

pushdown automata are correlative, so we may effect a recognition-

preserving morphism once we have devised appropriate Boolean counter

parts for the mappings defined between machine configurations. We have 
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N 
NxNxN 

as the alter ego of C the mapping T from 6 into itself defined 

as: 
N -1 NxNxN 

T (b) = f Where f(j) = 1 iff J£C (b (1)) for all bee . 
N N 

NxNxN xNxN 
For C^, we have T^ as a mapping from 6 into itself defined 

as: 
N N 

T„(b) = f where f(j) = 1 iff jeC^(b"^(l)) for all bee^^^"^ "^"^ . 
*̂  *̂  M 

A ... NxNxN 
The alter ego of W" is a" which maps the atoms of 6 into the atoms 

N N 
r: ̂ NxNxN xNxN , ̂ . -, 

of 6 defined as: 

a'"(b) = y where y(j) = 1 iff je{W*(E"-̂ (b))} for all atoms 
N 

^ ^ ̂ NxNxN 
b of 9 

An atomwise extension of a" provides the counterpart of W where the 

prescription is: 
N 

* NvNxM 
a(X) = V a (a) for all XeS . 

a<X 

Since we merely used identification functions in formulating these 

Boolean counterparts, we conclude that a is indeed a computer monomor-
N 

NxNxN 
phism such that a(T^(X)) = Tj,(a(X)) for all Xee . Furthermore, 

that a is a recognition-preserving computer morphism is evident from 

the construction procedure used to obtain the corresponding pushdown 

automaton. 

Recognition-Preserving Morphism for Pushdown Automata 

Since the class of context-free languages is a proper subclass of 

context-sensitive languages, pushdown automata are less powerful than 

linear bounded automata. The algebraic counterpart of this fact is a 

theorem which states that the computer of pushdown automata 
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N N 
NxNxN xNxN 

<e iT> is homomorphic to the computer of linear bounded auto-
N 

NxNxN xN 
mata <0 »T^>. This computer homomorphism is also a recognition-

preserving morphism. 

Theorem 8. There exists a recognition-preserving computer homo-
N N N 

^NxNxN xNxN ^ ^ ^NxNxN xN ^ 
morphism 3 from <0 ,T > to <e »T >. 

Proof. Let <n,ijf,j,t>eNxNxN xNxN be an appropriate configura

tion for the pushdown automaton ??(n). Given that J'?(n)eNPDAj we may-

construct a non-deterministic linear bounded automaton. Recall that 

Q-(J'?(n)) is the cardinality of the state set and Z_(??(n)) is the 
f * 

cardinality of the pushdown alphabet for machine F?(n). It has been 

shown that ??(n) cannot stack more than S = lQA??(n))'Z (??(n))2 push-

down alphabetic characters on the pushdown store for a given input 

alphabetic character and return to the same state for which this stack

ing operation began without the stack becoming cyclic [30]. Using this 

fact, we take as "states" the combination of the state of J'?(n) and the 

top S symbols from the stack that results on each cycle of a computa

tion. Note that the pushdown stack is merely a means of augmenting the 

"memory capability" as incorporated via states of a pushdown automaton. 

In order to get a natural number to correspond to these "states," we 

define a mapping G relative to the state, the pushdown head position, 

and the pushdown tape coordinates of a pushdown automaton configuration 

<n,i,f,i,t> such that G(n,j,t) = 2"«3'^^^ ̂ 'S"^^^""-^^ •. . .'P^^?"^^ where P. , 
-' •' ]+l ]+l 

is the jt/i+1 prime number. We take the input alphabet of ??(n) as the 

input alphabet for this linear bounded automaton we are devising. The 

triplets for this linear bounded automaton are obtained by considering 
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atoms a<b where b = Tp(d) where d (1) is an initial configuration for 

F?(n). The resulting triplets have the form: 

<G[la"^(l),4a"^(l),5a"^(l)], [(3a"^(l))(2a"^(l))] , 

{<G[lc"^(l),4c"^(l),5c"^(l)], M(c)>|c£Tj,(a)}> 

[ST, if 2c"-^(l) - 2a~-^(l) = 0 
where M(c) = s , 

[RT, if 2c~ (1) - 2a" (1) = 1 

Every state-alphabetic character pair must occur in the first two posi

tions of a triplet. We define every such pair by adding any missing 

pairs using as the third place member, the pair whose state is that of 

such a missing combination and whose action is ST. 

The total number of states created by this construction procedure 
' S 

I [Z (P?(n))]^ 

otherwise, K=S. The value K represents the total number of distinct 

is at most (Q (??(n)))«K where K 
7 

, i f Z ^ ( J ' ? ( n ) ) > l ; 

s t r i n g s of pushdown symbols of l e n g t h L f o r 1^L<S. The summation 
S .̂  

= ([(x^'*'^-l)/(x-l)]-l) for x>2. 

Let B denote this machine. We now want to relabel the states of 

B as consecutive natural numbers so that we get a standard form of this 

machine. We can then locate the machine in the previously constructed 

sequence of linear bounded automata. The alphabet of B already consists 

of consecutive natural numbers because it was the input alphabet of the 

machine pTCn), which was in standard form. Let V be a mapping from the 

set of natural numbers {x|0<x<(B-l)} to the set of states {ljB|l<j<B} 

of the machine B such that V(0) = MIN{ljB|l<j<i} and V(xtl) = 

(MIN({LjB|l<j<i}-{V(i)|0<i<x})) for 0<x<(i-l). We now replace each 
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member liB of {ljB|l<j<B} wherever it occurs in the machine B by the 

natural number V (liB). Hence, we now have a machine whose states 

are the consecutive natural numbers that range from 0 to (B-1). We now 

place this machine in standard form. Let A denote the machine obtained 

from the machine B by relabeling its states and reordering its triplets. 

Since A is now in standard form, AeNLBA and t (A)eN. We now 

N N N 
define a mapping from P(NxNxN xNxN ) to P(NxNxN xN) in terms of two 

N N N 
functions K and H from NxNxN xNxN to NxNxN xN. Consider the original 

appropriate configuration <n,i,f,j,t> for the pushdown automaton P?(n). 

Then K ( <n,i ,f, j ,t>) = <n" ,i ,f'«,y(f )> where 

(i) n" = <̂  
v"'-^(G(n,j,t)), if L •^(A)=0 

(Ii"-̂ (A))-1 
I Q^(K(k)) + [V-l(G(n,j,t))], if Ii-1(A)>0 

k=0 ^ 

( i i ) f'Hx) = <̂  
[(f(x)tl)-21J'?(n)] for 0<x<y(f), 

0 for x>y(f), 
if Z "̂ (A)=0 

(iii) f"(x) = <̂  

(K ^(A))-l 
I A^(^(k))+[(f)x)+l)-21??(n)] for 0<x<y(f), 

if % (A)>0. 

0 for x>y(f), 

The effect of K is to map an appropriate configuration of the pushdown 

automaton P?(n) to an appropriate configuration of the linear bound 

automaton A that corresponds to P?(n). However, the effect of H- is to 

map configurations of ??(n) whether appropriate or not to inappropriate 

configurations for A by relabeling the alphabetic characters of the tape 
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so that they do not occur in the alphabet of A. Machine A is precluded 

from making any change on such a configuration. Hence, H^C<n,i,f,j,t>) 
•If 

<n",i ,f'Sy(f )> where 

(i) n''* = <̂  
V ^(G(n,j,t)), if % •̂ (A)=0 

Cli"^(A))-l 
I Q^(l!:(k))+[V-l(G(n,j,t))], if %-\k)\Ci 

k=0 ^ 

(ii) f»Hx) = <̂  

Ji"-̂ (A) 
\ A^(K(k))+[(f(x)+l)-21F?(n)] for 0<x<y(f), 

if j!;"-̂ (A)eN. 

,N .N. 

k=0 

[O for x>y(f), 

We again introduce the mapping C- from P(NXNXN"XNXN") into it

self. (See corresponding theorem on finite automata for definition.) 

We also introduce the mapping C^ from P(NxNxN xN) into itself. C^ is 

defined recursively using the same three conditions used to define C . 

Us ing this auxiliary mapping we can define W- as a mapping from 

P(NxNxN^xNxN^) to P(NxNxN^xN) such that for every AeP(NxNxN^xNxN^): 

(1) Wp(A) = u {K-(x)}, if there exists an appropriate initial 
^ xeA ^ 

configuration y such that C_({y})=A where T is a finite 

ordinal 

(2) W (A) = u {H (x)}, otherwise. 
^ xeA ^ 

N N 
Lemma 3. If C^ is the mapping just defined from P(NxNxN xNxN ) 

N 
into itself and C^ is the mapping just defined from P(NxNxN xN) into 

itself, W is a mapping such that Wp(Cp(A)) = C^(Wp(A)) for every 

AeP(NxNxN^xNxN^). 
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Proof. 

N N 

Case (1): (i) AeP(NxNxN xNxN ) and (ii) there exists an appro

priate initial configuration y such that A = C_({y}) where x is a 
r 

finite ordinal. Then: 

W„(C„(A))=W^( u {C*(x)})= u {c;;(K^(x))}=C^(W^(A)); 
^ ^ ^ xeA ^ Kj,(x)e:Wj,(A) ^ ^ ^ ^ 

N N 
Case (2): (i) AeP(NxNxN xNxN ) and (ii) there does not exist 

an appropriate initial configuration y such that A=Cp({y}) where T is a 

finite ordinal. Then: 

W^(C^(A)=W^( u {C^x)})= u {C^(H^(x))}=C^(W^(A)). 
^ ^ ^ xeA ^ Hj,(x)eWj,(a) ^ ^ ^ ^ 

We may now establish that the Boolean counterpart of W is a 

recognition-preserving computer homomorphism. Recall that the length 

of the stack for a pushdown automaton can only be increased by adding a 

symbol at the top and only be decreased by erasing a symbol at the top. 

In either case, only one symbol may be added or deleted from the stack 

on each iteration of the configuration function C . The function C^ 
f r 

has been defined recursively to reflect configuration changes for com

putations that begin with an appropriate initial configuration; other

wise, C is defined as an identity function. The change of a pushdown 

configuration is determined by what state-input symbol-pushdown symbol 

combination is being scanned. This information has been preserved in 

the construction procedure used to obtain the linear bounded automaton 

A that corresponds to the pushdown automaton V7in). The input alphabet 

of 7?(n) has been preserved since the input alphabet of A differs from 

the original only in a relabeling. Hence, the information provided by 
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the input symbol scanned is available to A. The input head position 

and input tape are used as parameters in the configurations of A. 

The stack of a pushdown automaton can be viewed as a means of 

augmenting the state set. The state set can provide a memory capa

bility. Given this perception, we devised the states of the constructed 

machine A as combinations of the pushdown automaton state and the top 

S = LQa(F?(n))»Z (??(n))] symbols of the stack. We may recall that S 

is the maximum number of symbols that can be placed in the stack without 

it becoming cyclic while we hold the input fixed letting the state vary, 

but requiring that the machine return to the state in which it was when 

the stacking operation began. Thus, any change in configuration subse

quent to S stack changes must occur as a change of state or change of 

input tape. If such a non-cyclic change occurs, the construction pro

cedure for obtaining the triplets for A would insure that the state set 

for A already contained a state which corresponds to the new state of 

FTCn) after the change. If the subsequent change was to stack only, we 

would have a cyclic condition. Under these circumstances, we would be 

repeating a string of pushdown symbols of length S that had already 

occurred in the computation on a previous iteration of the configuration 

function Cp. This is so because all states of F?(n) would have occurred. 

Hence, the machine A has all the states it needs. 

As we are monitoring all and only those computations that begin 

with an appropriate initial configuration for ??(n), we are assured that 

all and only those configuration changes specified in the original be

havior of FTCn) are incorporated in the behavior of the corresponding 
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constructed linear bounded automaton A. Behavior here means as usual 

that behavior specified for the machine ??(n) by a finite set of 

quadruples taken from NxNxNxP(NxACTxACTS) and for machine A by a 

finite set of triplets taken from NxNxP(NxACT). 

That machine A can only perform the original computations per

formed by machine fTCn) is seen by considering the combined effects of 

the mappings C^, K-, H^, and C . when they are used to define the mapping 

Wrt- K^ is used to relabel the components of appropriate pushdown con-

figurations so they constitute appropriate configurations for the linear 

bounded automaton A. H^ is used to relabel the components of pushdown 

configurations so they constitute inappropriate configurations for the 

linear bounded automaton A. Ŵ , is defined recursively in terms of C-, 
•r t 

Krt, and H_. As such, W maps sets of configurations that occur in a 
4 f Y 

computation under C- into sets that occur in computations under C^. Any 

computation that was not defined for C^ is automatically not defined for 

C^. The function K^ is selected when a computation is defined, and the 

function H- is selected when a computation is not defined. We may con

clude that configurations of the pushdown automata and linear bounded 

automata are appropriately mapped by W^ so that the Boolean counterpart 

of Wrt will be a recognition-preserving computer homomorphism. We have 

a homomorphism rather than a monomorphism because not all the details 

of the stack were preserved. 

Before we can define the Boolean counterpart of W^, we need the 

counterparts of Cp and C^. The alter ego of C^ is defined exactly as it 

was for the corresponding theorem for finite automata. For C^, we have 
Xt 
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N 
NxNxN xN 

the mapping T^ from 6 into itself defined as: 
^ N 

-1 NxNvN vM 
T^(b)=f where f(j)=l iff jeC./b "̂ (l)) for all bee ^ ^ . 

^, . , ^ IT • ^u ' a ^ ^ N X N X N \ N X N ^ ^ ^NxNxN^xN 

The altev ego of Wp is the mapping 3 from 6 to 6 

N N 
-l,,^^ . ,, , „NxNxN xNxN 

defined as: 

e(b)=y where y(j) = l iff jeW (b"-^(l)) for all bee^ 

Since we again used only identification functions, we conclude that 3 

is a recognition-preserving computer homomorphism such that 

g(Tj.(b))=Tjj(B(b)) for all ^^^^^^^^^^, 

Recognition-Preserving Morphism for 
Linear Bounded Automata 

Since the class of context-sensitive languages is a proper sub

class of the class of recursively enumerable sets , linear bounded auto

mata are less powerful than non-deterministic Turing machines. The 

algebraic counterpart of this fact is a theorem which states that the 
N 

NxNxN xN 
computer of linear bounded automata, <e »Tw> , may be embedded in 

N 
NxNxN 

the computer of non-deterministic Turing machines, <0 ,T-> , via a 

recognition-preserving computer morphism. 

Theorem 9. There exists a recognition-preserving computer mono-

^NxNxN^xN ^ ^ ^NxNxN^ ^ 
morphism y fr̂ om <e ,T^> to <e »^7^-

N 
Proof. Let <n,i,f,y(f)>£NxNxN xN, the configuration set for 

NLBA, which is an appropriate configuration for Ii?(n). Given that 

Ji?(n)eNLBA, we may construct a non-deterministic Turing machine D whose 

triplets are of the form jD = <ljj:?(n) ,2jji?(n) ,3jji?(n)> for l<j<Ii?(n) 

and jD = <U,C,{<U,ST>}> for j:?(n)+l<j^Ji?(n)+Q^(j!;?(n)) where U ranges 

over the set of states for machine Ji?(n) and C is a constant whose value 

is (MAX{2jIi?(n)|l<j^I^?(n)})+l. 
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The triplets of the form <U,C{<U,ST>}> have been added so as to 

include a new character C which acts as the blank character of the 

alphabet for machine D. In order to comply with the definition of non-

deterministic Turing machines, we include every combination of state for 

Ii?(n) with the alphabetic character C. Note, however, that these addi

tional triplets do not add any novelty to the behavior of machine D over 

the behavior of machine %7(n). Recall that the tapes of the linear 

bounded automata were taken from the set SEQ. Such tapes had an initial 

finite segment of positive integers which represented the input string. 

This finite initial segment was followed by an infinite number of zeroes 

that served to mark the end of the input. The recognition criteria for 

linear bounded automata specified that the machine must terminate with 

the head position at (y(f)+l), which is the first tape position where a 

zero occurred. Recognition was then determined by whether or not the 

machine was in a final state. As the symbol then scanned was a zero and 

zero does not occur in any machine's alphabet, no move was possible. 

The tapes appropriate for the constructed machine D have the same ini

tial finite segment of positive integers but with all of the zeroes re

placed by the character C. Interpreting these same recognition criteria 

for non-deterministic Turing machines, the machine D will again stop 

with its head position at (y(f)+l), but the symbol scanned now will be 

the character C rather than the character zero. Machine D at this time 

will be in the same state in which Ji?(n) would have been. The next move 

of machine D will be determined by one of the triplets added to the 

original set of Ji?(n) because C is the symbol scanned. The specific 
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triplet will be the one that has the state that y,7in) would have had 

under these conditions. The next state of these triplets is always 

the present state and the action is always ST. Hence, the state remains 

whatever state i:i?(n) would have had; and since the action is ST, no 

change occurs in the configuration. Again, recognition would be deter

mined by whether or not machine D was in a final state. These final 

states are the same as those of K?(n). We conclude that the original 

behavior of J:i?(n) has not been altered through reformulation as a non-

deterministic Turing machine. The reformulation was necessary to 

satisfy the definition of non-deterministic Turing machines. From this 

point on the proof parallels exactly the proof used for the recognition-

preserving morphism for finite automata. 

As DeNTM, we have T~ (D)eN so that D is the T~ (D)+l machine 

whose states for l<j<Q-(D) are the numbers given by: 

(1) [ljE?(n)-llj;?(n)], if T"-̂ (D)=0 

(7"^(D))-1 _ 
(2) I (7(k)) + [lj^?(n)-llji?(n)], if T (D)>0. 

k=0 

The alphabetic characters of the machine D for l<j^((Q^(D))tl are the 

numbers given by: 

(1) [2(jQ^(D))D-21^?(n)], if T"-^(D)=0 

(T'-̂ (D))-1 . 
(2) I (T(k)) + [2(jQ (D))D-2lK?(n)], if T"-^(D)>0. 

k=0 ^ 
* N N 

We define a mapping W , from NxNxN xN to NxNxN in terms of the 
Ju 

two functions K^ and H^. Again K^ and H^ are used to achieve the same 

effect as K and H for finite automata. For the linear bounded 
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automaton i!i?(n) and the corresponding constructed machine DeNTM, we let 

W^*(<n,i,f ,y(f)>) = K^(<n,i,f ,y(f)>) where K^( <n ,i ,f ,y(f )>) is: 

(1) <n''Si,f">, if f"N-{0} £ {2jK?(n)} and 0<i<(y(f) + l) with: 

(i) n'> = <̂  
[n-lU?(n)], if 7 "^(D)=0, 

(T"-^(D))-1 
if T"-^(D)>0 

I Q (7(k))+[n-llK?(n)], 
k=0 

'[(f(x)+l)-2lK?(n)] for 0<x<y(f), 

(ii) f*(x) = <̂  if T""^(D)=0 

2(D)D for x>y(f), 

(iii) f»Hx) = <̂  

(7"-^(D))-l 
I A (7(k))+[(f(x)+l)-2lE?(n)] 

k=0 

(7"-^(D))-l 

for 0<x<y(f), 

if 7""^(D)>0 

I A (7(k))+[(2(D)D-21K?(n)] 
k=0 for x>y(f), 

and W"(<n,i,f,y(f)>) = H (<n,i,f,y(f)>) where H^(<n,i,f,M(f)>) is: 

(2) <n-'Si,f»^>, if f*'N-{0} £, {2j]^?(n) |l<j<E?(n)} or i>(y(f) + l) 

with: 

(i) n* as given by (1) above 

(ii) f*(x) = <̂  

7"-^(D) 
I A^(7(k)) + [(f(x) + l)-21Ji?(n)] 

k=0 

7"-^(D) 

for 0<x<y(f), 

if 7""^(A)eN. 

I A (7(k))+[2(D)D-2lE?(n)] for x>y(f), 
k=0 
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j'c N N . 

Lemmas. The mapping W . from NxNxN xN t o NxNxN i s an i n j e c t i o n . 
Jo 

Proof. The proof of the lemma parallels exactly the proof of the 

corresponding theorem for finite automata. 

N 
We now introduce a mapping C^ from P(NxNxN xN) into itself and a 

N 
mapping C- from P(NxNxN ) into itself. Both the mappings 'Ĉ  and C- are 

defined recursively using the same three conditions that were used to 

define the mapping Cp. (See corresponding theorem on finite automata 

N 
for definition.) We now define W^ as a mapping from P(NxNxN xN) to 

P(NxNxN^) such that for every AeP(NxNxN^xN): 

(1) W^(A) = u {K^(x)}, if there exists an appropriate initial 
xeA 

•r 

configuration y such that C^({y})=A where T is a finite ordinal 

(2) W^(A) = u {H^(x)}, otherwise. 
xeA 

N 
Lemma 5. If C^ is the mapping just defined from P(NxNxN xN) into 

itself and C^ is the mapping just defined from P(NxNxir)into itself, W 

N 
is a mapping such that W^(C (A)) = C^(Wy(A)) for every aeP(NxNxN xN). 

Proof. 

N Case (1): (i) AeP(NxNxN xN), and (ii) there exists an appropri-

•r 

ate initial configuration y such that A = C^({y}) where T is a finite 
<j 

ordinal. Then: 

W^(C^(A))=W^( u {C*(x)})= u {C_.(K̂ (x))}= C-(W^(A)); 
^ ^ ^ xeA ^ Kj^(x)eW^(A) ^ ^ ^ ^ 

N 
Case (2): (i) AeP(NxNxN xN), and (ii) there does not exist an 

appropriate initial configuration such that A = C^({y}) where T is a 

finite ordinal. Then: 

W^(C/A))=W^( u {C?;(x)})= u {C*(H^(x))} = C_.(W^(A)). 
^ ^ ^ xeA ^ H^(x)eW^(A) ^ ^ ^ ^ 
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We also conclude that configurations of linear bounded automata 

and non-deterministic Turing m chines are correlative, so we may effect 

a recognition-preserving morphism once we have devised appropriate 

Boolean counterparts for the mappings defined between machine configura-
N NxNxN xN tions. We have as the alter ego of C^ the mapping T^ from 6 

into itself defined as: 

N 
T (b) = f where f(j)=l iff jeĈ (b"-̂ (l)) for all beG^^^ ^^. 

N 
NxNxN 

For C^, we have T^ as a mapping from 6 into itself defined as: 

N 
-1 NvMvM 

T (b)=f where f(j)=l iff jeC (b -"(1)) for all bee . 

Finally, we obtain the computer morphism y ̂ s the alter ego of W^ as a 
N N ^ 

^NxNxN xN ^NxNxN ^ ^. , 
mapping from 6 to 0 defined as: 

N 
Y(b)=y where y(j) = l iff jeW (b'-'-(l)) for all bee^^^ ^^. 

Since we merely used identification functions in formulating these 

Boolean counterparts, we conclude that y is indeed a computer monomor-
N 

NyNvN vN 
phism such that Y(T (b)) = T (yCb)) for all bee . That y is also 

a recognition-preserving morphism is evident from the construction pro

cedure used to obtain the corresponding non-deterministic Turing machine. 
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CHAPTER IV 

CONCLUDING REMARKS 

Computer Morphisms and Turing Machine Varieties 

On the basis of the previous theorems we have an algebraic 

counterpart of the classical hierarchy of recognizers in the theory of 

abstract computers. We have established recognition-preserving computer 

morphisms between the computers of finite automata and pushdown auto

mata, between the computers of pushdown automata and linear bounded 

automata, and between the computers of linear bounded automata and non-

deterministic Turing machines. That the latter morphism involves the 

non-deterministic variety of Turing machine prompts us to consider 

whether or not computer morphisms may be used to characterize the rela

tion between the deterministic and non-deterministic varieties of Turing 

machines. As previously noted, both varieties have the same recognition 

power. We would like to be able to reflect this relationship with a 

recognition-preserving morphism from the computer for the non-

deterministic variety to the computer for the deterministic variety. 

Let us consider the method used to show the equivalence of the 

recognition capabilities of deterministic and non-deterministic Turing 

machines. The objective is to devise a deterministic machine that 

recognizes all and only those tapes recognized by the non-deterministic 

machine. Using a theorem that a K-tape deterministic Turing machine has 

no more recognition power than a one-tape deterministic Turing machine, 
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the standard method to show that a three-tape deterministic machine x 

recognizes all and only those tapes recognized by a non-deterministic 

machine y [15]. Tape one is the original input tape of machine y. 

Tape two is always a finite sequence of integers modulo 

(MAX{(3jy)Il<j<y}) which represent the choice to be selected for a par

ticular present state-symbol scanned combination. The choices for each 

such present state-symbol scanned combination are assumed to be indexed 

by the natural numbers between zero and (MAX{(3jy)|l<j<y})-l. Tape 

three is a working tape on which a particular computation is carried 

out. The simulation procedure has machine x copy tape one (which must 

be assumed to be finite otherwise the copying would never terminate) 

onto tape three. Then machine x generates a sequence of integers 

modulo (MAX{(3jy)|l<j<y}) on tape two. These sequences of integers are 

systematically generated by length and by natural order within sequences 

of the same length. Not every such sequence need correspond to a pos

sible sequence of moves for machine y because there are not necessarily 

(MAX{(3jy)I1<j^y}) choices for each state-symbol combination. Once this 

sequence is generated, machine x attempts to recognize the input string 

on tape three by using, on the Tth cycle, the ith integer on tape two to 

decide which choice to select from those possible for the present state-

symbol scanned combination that occurs on the Tth cycle. If machine y 

had accepted the input string on tape one using this sequence of moves, 

so would machine x. If acceptance does not occur the entire procedure 

is repeated, but the sequence of moves is changed by regarding tape two 

as a counter which is incremented on each subsequent attempt at 
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recognition. The number of integers on tape two corresponds to the 

number of moves to be made in an attempt at recognition. First, all 

paths of length one are tried, then all paths of length two, etc. 

Recognition, if it occurs, occurs after a finite number of moves. 

Hence, if such a finite sequence of moves leads to recognition, it will 

eventually occur as a sequence of moves determined by tape two. In this 

sense machine x recognizes all and only those tapes recognized by 

machine y. 

It is apparent that machine x makes many intermediate moves while 

generating the sequence of integers on tape two and copying strings on 

tape three that are not directly related to the actual recognition com

putation of y. Consequently, it is impossible to use this approach in 

order to obtain a computer morphism between the computer for y and the 

computer of x because the two computers would not be synchronous. A 

computer morphism requires that the morphic computers be appropriately 

synchronous. If we retain synchronicity, we may have a weak 

recognition-preserving morphism in the sense that: recognition occurs for 

the image machine whenever recognition occurs for the pre-image machine, 

but not conversely. That is, the image machine recognizes at least 

those tapes recognized by the pre-image machine yet it may also recog

nize others. 

For example, let x be a non-deterministic Turing machine whose 

state set is S and whose alphabet is the set A. An abstract digital 
N 

SxNxA 
computer which models machine x is <9 ,7> whose state transition 

function 7 is defined as usual for a non-deterministic machine. Let 
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N 
I SxNxA -1 

INIT = {b|bee and b (1) is an initial configuration} and APR = 

{c|c=7 (b) for some belNIT and T>0}. Let A* be a new alphabet defined 

as A" = Au{a"" |a" = a+A for aeA}. We may now define a mapping K from the 

A M 

set APR to a new set of tapes (A") . If belNIT then: 

(1) (K(b))(0) = <̂  
([3(b ^(1))](0))'\ if 7(b)5̂ b 

[3(b"-^(l))](0), otherwise. 

and 

(2) (K(b))(i) = [3(b"^(l))](i), if 0<ieN. 

If beAPR and be7'̂ '̂ -̂ (x) for celNIT then: 

(1) (K(b))(i) = (K(7'^(c)))(i), if 0<i<T 

(2) (K(b))(i) = [3(c"^(l))](i), if i>T+l 

f([3(c"^(l))](?+l))", if 7̂ (c)ĵ T̂ ^̂ (c) 
(3) (K(b))(T+l) = <̂  _, 

[[3(c (1))](T+1), otherwise. 

•'• N 
We now define a mapping Q from K''APR to (A") such that 

[Q(K(7'^(b)))](T) = [K(7\b))](T) for all finite ordinals x and belNIT. 

We may now construct a deterministic Turing machine y whose state set 

is {0,1} and whose alphabet is A* with initial state 0 and final state 

set {0,1}. The quadruples are given by the set {<0 ,a*'* ,1 ,RT> ,<0 ,a,0 ,a> , 

<l,a",l,RT>,<l,a,l,a>} where a, a*eA'*. 

Note that if machine x stops after x steps after having been 

started on the tape t, then machine y stops after x steps after having 

been started on the tape t = Q(K(7 (b))) for any finite ordinal x where 

b (1) is an initial configuration and t = 3(b (1)). However, the 

machine y also stops on tapes that are not in the set Q**(K**APR) and 

whose standard representation for machine y is also not in Q''(K"APR). 
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Suppose t is not recognized by machine x. Then the tape t" given by 

t"*(0) = (t(0))'" and t''(i) = t(i) for i>0 is recognized by y but it is 

not in Q"(K"APR) nor are any of its equivalent tapes in Q"(K"APR). 

Yet, it is possible to exhibit a computer monomorphism from the computer 

,SxNxA^ r̂  û ^ ^exNxQ"(K"APR) ^ ^ 
<e ,T> to the computer <e ^ ,T> whose state-transition 

function T is defined as other than the identity only on the atoms of 

^exNxQ"(K"APR) 
o 

We have not succeeded in showing that there do not exist 

recognition-preserving morphisms that relate the computers for non-

deterministic Turing machines to appropriate computers for deterministic 

machines. It can be easily shown that computers for non-deterministic 

machines are monomorphically related to computers which are reasonable 

candidates. That is to say, we can construct abstract digital computers 

whose transition functions are defined as other than the identity only 

on the atoms and stop or fail to stop appropriately. But we have not 

been able to devise ways of constructing deterministic Turing machines 

for these reasonable candidates. We also have not been able to show 

that such constructions are impossible. We have not attempted to solve 

the problem of how to proceed generally from appropriate abstract digi

tal computers to the recognizers which they may be said to be modelling. 

As an example, let x be a non-deterministic Turing machine whose 

state set is S and whose alphabet is the set A. An abstract digital 

SxNxA 

computer which models machine x is <9 ,7> where the state-

transition function T is defined as usual for a non-deterministic 
N 

SxNxA B 
machine. Let B = 9 . Define a mapping H from B to 6 such that 
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(H(x))(y)=l iff x=y for any x,ye:B. H is an injection as it is merely an 

identification function. Consider the abstract digital computer <6 ,T> 

whose state transition function T is defined as T(H(x)) =H(7(x))if H(x) 

B B 
is an atom of 6 and T(b) = b if b is not an atom of G . Note that the 

D 

computer <e ,T> stops when and only when the computer <B,7> stops, and 

H is a computer monomorphism. The abstract digital computer <6 ,T> is 

a reasonable candidate for a deterministic machine because its state-

transition function T is defined as other than the identity only for 

atoms of 6 . 

Summary 

The objective has been to recover the classical theory of recog

nizers within the theory of abstract digital computers. We have done so 

using only the algebraic concepts of abstract digital computer and com

puter morphism. In doing so, we have also addressed the question of how 

machines of different kinds can be algebraically related to reflect 

their capability relative to a particular process. We have considered 

the question relative to the process of recognition used by the machines 

of the hierarchy of recognizers induced by the hierarchy of languages. 

Abstract digital computers provide a standard machine in which 

the abstract machines of the hierarchy can be modelled. The modelling 

mirrors the details of the computation procedure of the original 

machines. The essential parameters a machine uses are identified and 

subsequently encoded into an appropriate Boolean algebra with an addi

tional operator. The additional operator on the algebra is defined so 

that it will reflect the interaction of a machine's essential parameters 
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during the course of a computation. The Boolean algebra is the carrier 

of the abstract digital computer and the operator is its state-
* 

transition function. 

An abstract digital computer has been constructed for each class 

of recognizers countenanced. The algebraic counterpart of the classical 

hierarchy of recognizers has been obtained in the theory of abstract 

computers by means of computer morphisms which hold between the com

puters of finite automata, pushdown automata, linear bounded automata, 

and Turing machines. The construction of an abstract digital computer 

that models a single recognizer is effective. But the construction of 

an abstract computer that models a whole class of recognizers is not 

effective since the class of recognizers must be ordered. Nevertheless, 

the morphisms that relate abstract digital computers in the manner 

expected are effective. Indeed, the relevant morphisms are obtained via 

constructions that depend on single machines. Effective coding tech

niques are used on single machines to obtain the machine in the next 

higher class of recognizers which recognizes all and only the tapes 

recognized by the original. 

From this investigation we conclude that the algebraic concepts 

of abstract digital computer and computer morphisms are sufficient to 

yield a unified algebraic theory of a large portion of automata theory. 
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