
GEORGIA INSTITUTE OF TECHNOLOGY LIBRARY

Regulations for the Use of Theses

Unpublished theses submitted for the Master's and Doctor's
degrees and deposited in the Georgia Institute of Technology
Library are open for inspection and consultation, but must be
used with due regard for the rights of the authors. Passages
may be copied only with permission of the authors, and proper
credit must be given in subsequent written or published work.
Extensive copying or publication of the thesis in whole or in
part requires the consent of the Dean of the Graduate Division
of the Georgia Institute of Technology.

This thesis by ROB'-JRT CHARLES ROSHRKASSE
has been used by the following persons, whose signatures attest
their acceptance of the above restrictions.

A library which borrows this thesis for use by its patrons
is expected to secure the signature of each user.

NAME AND ADDRESS OF USER BORROWING LIBRARY DATE

In presenting the dissertation as a partial fulfillment of
the requirements for an advanced degree from the Georgia
Institute of Technology, I agree that the Library of the
Institute shall make it available for inspection and
circulation in accordance with its regulations governing
materials of this type. I agree that permission to copy
from, or to publish from, this dissertation may be granted
by the professor under whose direction it was written, or,
in his absence, by the Dean of the Graduate Division when
such copying or publication is solely for scholarly purposes
and does not involve potential financial gain. It is under
stood that any copying from, or publication of, this dis
sertation which involves potential financial gain will not
be allowed without written permission.

L^JOL h.OJ D

7/^s/ba

ABSTRACT DIGITAL COMPUTERS AND AUTOMATA

A THESIS

Presented to

The Faculty of the Division of Graduate

Studies and Research

by

Robert Charles Roehrkasse

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in the School of Information and Computer Science

Georgia Institute of Technology

September, 1971

ABSTRACT DIGITAL COMPUTERS AND AUTOMATA

Approved'^

Ck^irman: Lucio Chiarav! .^l i6"

V i s i t i i ^ ^ Member: Trevo^i,-£Vans ^
Chairinan7~t)tjpcii'lmgnt of Mathematics
Emory Univers i ty

h |̂i?nber: John M. f̂wynn,'/[Fi**.

r\

Member: :. Joseph Talavage 'X
•J s] 'J

Date approved by Chairman; ^^pC^Q /^7f

11

ACKNOWLEDGMENTS

I would like to thank Professor V. Slamecka for his continued

assistance throughout my association with the School of Information and

Computer Science. For their suggestive criticism and encouragement,

I wish to thank the members of my doctoral guidance committee: Pro

fessors Gough, Gwynn, and Talavage.

I would like to thank my fellow doctoral student Joseph R.

Morgan for his interest and assistance throughout the research. Both

proved most beneficial and are greatly appreciated.

I would like to thank Professor Trevor Evans of Emory University

for his willingness to review a draft of the dissertation and to serve

as visiting member of the Doctoral Examining Committee.

Above all, I am especially indebted to Professor Lucio Chiara-

viglio for his continual encouragement and guidance. His professional

dedication and competence have given me the intellectual motivation and

confidence to continue my academic endeavors.

I am very grateful for the educational opportunity provided by

the United States Air Force. Under Air Force sponsorship, I have been

able to earn a Master of Science and the Doctor of Philosophy from the

Georgia Institute of Technology.

I furthermore believe it is most appropriate that I acknowledge

the individual whose sincere interest and guidance led me to enter the

military profession, Colonel James F. Van Ausdal, my former Professor

of Aerospace Studies at Southern Illinois University.

Ill

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ii

Chapter

I. INTRODUCTION 1

Toward a Unifying Approach for Automata Theory
Theory of Abstract Computers

II. THE CLASSICAL HIERARCHY OF RECOGNIZERS 13

Introduction
Turing Machines
Non-Deterministic Turing Machines
Non-Deterministic Linear Bounded Automata
Non-Deterministic Pushdown Automata
Finite Automata

III. MORPHISM THEOREMS 42

Introduction
Recognition-Preserving Morphism for Finite Automata
Recognition-Preserving Morphism for Pushdown Automata
Recognition-Preserving Morphism for Linear Bounded Automata

IV. CONCLUDING REMARKS 67

Computer Morphisms and Turing Machine Varieties
Summary

REFERENCES 74

VITA 77

CHAPTER I

INTRODUCTION

Toward a Unifying Approach for Automata Theory

The theory of linguistic automata is a branch of automata theory

that is of particular interest to Information and Computer Science. The

theory of linguistic automata is concerned with the relationship between

formal languages and their recognizers or acceptors (essentially

abstract machines without output). This branch of automata theory

received its initial impetus from Chomsky [5]. A first application to

computer science was gained when the syntax of ALGOL was defined by a

context-free grammar [9]. And from this beginning, the ideas of syntax-

directed compilation and the concept of a compiler compiler were

developed. At present formal languages and automata are so intertwined

that to speak of one is to speak of the other. The results that fol

lowed emphasized the properties of language families as defined by gen

erative schemes (grammars) or as the acceptance sets of devices (recog

nizers). The aim has been to characterize each class of languages by a

kind of automaton through theorems of the form: If L is generated by a

grammar of type X then there is an automaton of kind Y which recognizes

precisely L. And, also to characterize kinds of automata by theorems of

the form: If L is recognized by an automaton of kind Y then there is a

grammar of type X which generates precisely L [15], A proliferation of

results has stimulated efforts directed at finding a unifying approach

to linguistic automata. The principal unifying results are those

obtained by the teams of Ginsburg and Greibach [11] and Hopcroft and

Ullman [18].

The work of Ginsburg and Greibach is oriented towards formal

languages. Rather than obtaining a language by means of a grammar or

recognizer, they defined a formal language as a family of sets of words

called an abstract family of languages that is closed under the

language-theoretic operations of union, product, Kleene closure, e-free

homomorphism, inverse homomorphism, and intersection of the language

with a regular set. Using this approach, they were able to specify an

abstract family of languages that corresponds to each of the classical

families of formal languages (i.e., regular sets, context-free, context-

sensitive, and recursively enumerable sets). As the automaton counter

part of an abstract family of languages, they devised a recognizer which

they call an abstract acceptor. An abstract acceptor can be viewed as

a non-deterministic finite automaton with auxiliary storage. The Gins

burg and Greibach version of the language-automaton characterization is

that corresponding to every abstract family of acceptors there is an

abstract family of languages and conversely, corresponding to every

abstract family of languages there is an abstract family of acceptors

[29].

In contrast, the work of Hopcroft and Ullman has a machine orien

tation. They introduced a recognizer which they call a balloon automaton.

A balloon automaton is basically a linear bounded automaton with

auxiliary storage. Their objective was to specify subsets of balloon

automata, called closed classes, that would correspond to particular

classes of recognizers. They proposed that whenever some new recognizer

is devised one would show that it is equivalent to a closed class of

balloon automata and thus have the language-theoretic properties of

balloon automata automatically proven for it. However, they were unable

to determine closed sets of balloon automata whose acceptance sets coin

cided with each of the classical families of languages.

This type of program has some inherent problems. For suppose

that the intuitive motivation used in formulating a new recognizer can

be captured by some prescription for translating the recognition proce

dure of this new recognizer into some standard abstract machine, as for

example the balloon automaton. This involves some construction which

shows how one machine "simulates" another. Fisher has perceived the

difficulty of this procedure quite clearly:

However the concept of simulation of one machine by another is
extremely difficult to define precisely. For too stringent a
definition excludes cases in which one intuitively feels a bona
fide simulation is being performed. Too liberal a definition
allows the use of encodings of input and output in which the real
computational work is done by the encoding and decoding algorithms
and not by the machine which is supposedly performing the simula
tion [10].

To obviate this difficulty, we need a precise mathematical

methodology for ascertaining the relationship between one machine and

another. An algebraic setting seems appropriate. We need to develop a

standard abstract machine which is itself an algebra and a uniform pre

scription or method for reformulating other machines as algebras of the

same type. The reformulation of a machine should capture its

computational procedure so that it is reflected in the computational

procedure of this standard machine. Once machines have been so captured,

we can proceed to relate machines via the concepts of universal algebra.

We note that the significant accomplishments resulting from

imposing an algebraic structure on machines have only dealt with abstract

machines which are in essence variants of finite automata. The lattice-

theoretic approach has been one such successful endeavor [15], The

point of departure for this approach has been the set of partitions on

the state set of a sequential machine that satisfy the substitution

property. A sequential machine (finite automaton with output) is a

quintuple M=<S,1,0,6,X> where S is the state set, I is the input alpha

bet, 0 is the output alphabet, 6 is the next state function from Sxl to

S, and X is the output function. The function X is either from S to 0

if M is taken as the Moore model or from Sxl to 0 if M is taken as the

Mealy model of a sequential machine. A partition TT on the state set S

has the substitution property if and only if xEyCrr) implies that

6(x,a) =6(y,a)(7T-) for all ael. Partitions satisfying the substitution

property are also called admissible partitions. The set of all such

admissible partitions on the state set of a sequential machine then

forms a finite lattice when two binary operations are defined on this

set. The lattice-theoretic approach has led to the development of a

theory of machine decomposition C2'4]. Machine decomposition considers

whether and, if so, how a sequential machine can be constructed from

other component machines (again the Mealy-Moore types) interconnected in

series and parallel.

The semigroup approach is the other extensively developed means

for imposing an algebraic structure on machines [22], This theory deals

not only with the question of machine decomposition but also with decom

position [2H], Machine composition concerns what behavior may be re

alized by interconnecting an arbitrary number of component machines of

specific kinds (minimal building blocks). Machine composition for the

semigroup approach involves the characterization of minimum essential

kinds of component machines needed to realize the behavior of an arbi

trary sequential machine.

The semigroup associated with a machine is the set of all trans

formations of its state set induced by its input strings. Let M =

<S,I,0,6,X> be a sequential machine. If ael and xeS then (x)a=6(x,a).

The semigroup operation is functional composition. Hence, if a, bel and

XES then (x)aob = [(x)a]b = (SCCx)a,b) = 6(6(x,a) ,b). The carrier of such

a semigroup will be finite if and only if the state set S of M is

finite [21]. A machine M is called a reset machine if and only if every

input regarded as a transformation on the state set is an identity or a

constant mapping [16], A semigroup S divides a semigroup R if there

exists a subsemigroup R' c R and there exists an epimorphism from R' to

S [21]. The principal decomposition result is that any machine (Mealy-

Moore type) can always be decomposed into simpler machines unless the

original machine is a two-state reset machine or its associated semi

group is a simple group, i.e., the group has no proper normal subgroups.

Conversely, the principal composition result is that any decomposable

machine can be realized by loop-free synthesis from two-state reset

machines and a subset of the machines derivable from the simple groups

that divide the associated semigroup of the original machine [21].

The concept of heterogeneous algebra has been shovm to provide a

formalism which is adaptable for the treatment of sequential machines

[4], An algebra is a pair <A,F> where A is any set known as the carrier

and F is a set of operations defined on the carrier A. In contrast, a

heterogeneous algebra is a pair <B,L> where B is a non-empty family of

sets, each of which is called a phylum, and L is a set of mappings from

the Cartesian product of a subset of all phyla (B) to some other phylum

of B. For example, the Mealy machine M=<S,1,0,6,X> formulated as a

heterogeneous algebra becomes <{S,1,0},{6 ,X}> where B = {S,I,0} contains

three phyla and /.= {6,X} contains two mappings: 6 from Sxl to S and X

from Sxl to 0. Such algebraic concepts as subalgebra (submachine) and

morphisms can be extended to machines via the heterogeneous algebras

that characterized them. Similar algebraic concepts and methods are

available in the lattice-theoretic and semigroup approaches mentioned.

Various results can be obtained in all three cases using these algebraic

concepts. Nevertheless, with the methodology developed from these

approaches, only variants of finite automata can be dealt with. We will

consider a wider set of machines and show how they can be meaningfully

related.

The central contribution of this research to Information and

Computer Science is the explication of the theory of automata by means

of the algebraic concepts of abstract digital computer and computer

morphism. These concepts are shown to be sufficient to yield a unified

algebraic treatment of a large portion of automata theory. We do so by-

showing how the classical theory of recognizers can be captured within

the theory of abstract computers.

Theory of Abstract Computers

Since the theory of abstract computers has been elaborated else

where [20,26,27], we will merely sketch the theory here in order to

provide the basic understanding needed for this application.

Definition 1. The entity <S,A,C> is an abstract computer if and

only if

(1) S ?i 0, the null set

(2) 0 ^ k ^S^

(3) CEA^

(4) S n k ^ 0.

An abstract computer consists of a set of states S, a set of

actions A, and a control unit C. The microbehavior of this device is

embodied in a reading-selecting-applying routine. If we have a state

xeS, this routine is executed by C "reading" x to obtain C(x). But as

C(x)eA, we are "selecting" an action, and subsequently "applying" this

action to x to obtain the next state (C(x))(x)eS. Macrobehaviors are

obtained by repetition of the reading-selecting-applying routine.

An abstract computer is a programmable, centrally-controlled,

iterative, synchronous, non-interactive machine. Programming is the

choice of an initial state and represents the extent of external control

imposed on the computer. Once an initial state has been selected, the

process that is generated is completely determined by the control unit,

the central control of the computer. The state-transition function T

for an abstract computer <S,A,C> is given by T(x) = (C(x))(x) for every

xeS. There are many distinct computers with the same state-transition

function. We say that a computer is iterative if T is defined for

every finite ordinal T. The powers of T are defined recursively by T

T + 1 T

being the identity on S and T = TT . The computer is said to be

synchronous if time (here discrete) coincides with the powers of the

state-transition function T. The descriptor "synchronous" incorporates

the idea that if at time t the computer is in state x, then at time
x

t the computer will be in the state T (x). Finally, "non-interactive"

means that no member of S can act on another member of S to produce some

state, the sets S and A being disjoint.

For each xeS, the state-transition function T generates a unique

infinite sequence T (x) = x,T(x),...T (x),... which we call a computa

tional process. The set CP of all computational processes is a subset

of S where o) is the first limit ordinal omega. The process p is in CP

if for every finite or<iinal xeo), P (T) = T (p(o)). Such a process is

terminal if there exists a leo) such that P(T) = pd+l). The computer

is said to stop in the state pd) when started in state p(o) if T is the

smallest finite ordinal for which pd) = P(T+1). Because T is a func

tion', processes are either non-repeating or periodic after a possible

initial finite delay. Terminal processes are those that eventually

have period one.

Definition 2. An abstract computer <S,A,C> is a finitary action

computer if and only if

(1) S s Y^

(2) For every xeS, [(C(x))(x)] and x are elements of S

that differ only on a finite subset of X.

Definition 3. A finitary action computer <S,A,C> is an abstract

digital computer if and only if S is a Boolean algebra.

Since an abstract digital computer is a special case of the fini

tary action computer, the Boolean algebra must be functional. But by a

corollary to Stone's representation theory for Boolean algebras, every

Boolean algebra is isomorphic to a subalgebra of an O-value Boolean

algebra where 6 = {0,1}, i.e., the simple Boolean algebra [1]. In view

of the isomorphism between a Boolean algebra B and the set of all con

tinuous functions from the dual space of B into the simple Boolean space

[14], an alternative definition of abstract digital computers is as

follows:

Definition M-. <B,A,C> is an abstract digital computer if and

only if

(1) B is a Boolean algebra

(2) A £ B^

(3) CeA^

(4) For any aeA and feB, there exists a finite subset K of the

dual space X of B such that (af-f)(i) = 0 for all ie(X~K).

Clause (4) states that the symmetric difference of (af) and f is

a function in B whose value is zero for the set-theoretic difference

(X~K) of X and K, and whose value is one only for a finite subset K of

the dual space of B.

10

A computer may be characterized as a triplet composed of a set

of states, a set of actions, and a control function or as a pair com

posed of a set of states and a transition function or as a set of proc

esses. In all of its characterizations a computer is an algebra and the

concepts of universal algebra are applicable.

We may consider two senses of morphism for computers. First, two

computers <S,A,C> and <S*,A'^,C*> are said to be strongly homomorphic if

there is a mapping $ from S to S*̂ such that it preserves actions and

control units, i.e., for every x,yeS, $(C(x)(y)) = C"(<I>(x))($(y)). If

S and S* have a structure, say they are Boolean algebras, then we may

also require that the mapping $ preserve this structure. A weaker sense

of morphism is obtained by requiring that the mapping $ only preserve

the state-transition function T, i.e., for any xeS, $(C(x)(x)) =

C"(<I>(x))($(x)) or equivalently <I)(T̂ (x)) = T^.^.($(x)). This weaker sense of

morphism is the one used throughout this presentation. We will refer to

such mappings as computer morphisms. As before, we may also require

that a computer* morphism preserve state-set structure. A formal defini

tion of computer morphism is as follows:

Definition 5. If <S,A,C> and <S*,A'̂ ',C*> are abstract computers

whose state-transition functions are T and T j^, then $ is a computer

morphism if and only if 4>e(S*) such that $(T (x)) = T-A(*J*(X)) for every

xeS.

Given the concept of computer morphism, we can ascertain that

every abstract computer is embeddable in an abstract digital computer.

If <S,T> is an arbitrary abstract computer, let * be an injection from

11

S into 6 such that (<I>(x))(y) = 1 iff x=y for any x,yeS. Then (̂ (x) is

S
an atom of the Boolean algebra 6 . Define another state-transition

c
function T* so that T*(<I>(a)) = $(T(a)) if $(a) is an atom of 6 , and

S S
T"(b) = b if b is not an atom of 6 . Then <8 ,T"> is an abstract

digital computer and $ is a computer monomorphism. Note that the

S
actions of <e ,T*> need not be more complex than one-place set and

reset functions. Finite resets and sets are defined as follows:

Y

Def in i t ion 6. For any feS and f i n i t e subse t s J of X, (R (J)) (f)
X

and (S(J))(f) are functions in 6 such that for any aeX:

(1) ((R(J))(f)) (a) = <̂

(2) ((S(J))(f)) (a) = <̂

0, if aeJ

f(x), if â J

1, if aeJ

f(x), if a?lJ

If we let RS be the closure under functional composition of RuS,

relative to the set X, then <e ,RS,C> is an abstract digital computer

X
for some mapping C from 6 to RS. Abstract digital computers of this

type will be called finite set-reset computers. With these perceptions,

we may introduce the following representation theorem for abstract dig

ital computers.

Theorem 1. Every abstract digital computer is computer isomor

phic to a finite set-reset computer.

Proof: Let <B,A,C> be an arbitrary abstract digital computer.

We now wish to obtain a set-reset computer for B that has the same

12

state-transition function. Let feB and C(f) = aeA. Then the control

unit C* for our set-reset computer is given as:

C'Hf) = S(((af)Af')"^(l))R(((af)'Af)"^(l)).

The set ((af) f) (1) tells what values are changed from 0 to 1, and

the set ((af)'Af)" (l) tells what values are changed from 1 to 0. Both

sets will be finite because actions (aeA) of an abstract digital com

puter are finitary. Thus, C»'(f)eRS and (C*(f))(f) = (C(f))(f) for every

feB. Taking the actions of this set-reset computer as A* =

{S(K)R(J)|K,J£X, the dual space of B.K and J are finite}, the control

unit C* that calls these sets and resets for elements of B is isomorphic

to <B,A,C> because (C*(f))(f) = (C(f))(f) for every feB.

Now that we have established part of the mathematical identity of

abstract digital computers through a representation theorem, we may

proceed with the task of capturing the classical theory of recognizers

within the theory of abstract computers. As the representation theorem

shows, the only concepts that we need to use are those of set-reset

computers and computer morphisms.

13

CHAPTER II

THE CLASSICAL HIERARCHY OF RECOGNIZERS

Introduction

The formal grammars described by Chomsky provide a standard

against which the recognition powers of automata are measured. For

each class of languages generated by the Chomsky phrase-structure

grammars (Type 0, 1, 2, and 3), there is a corresponding class of

recognizers [17]. The induced hierarchy of recognizers ranges from

Turing machines to finite automata [3]. For each class of recognizers

there is both a deterministic and non-deterministic variety of machines,

The languages generated by grammars of type 0 are called recursively

enumerable sets and the Turing machines are the appropriate recognizers

[6]. It has been shown that the deterministic and non-deterministic

Turing machines have the same recognition power [15]. We deal with

both varieties in order to provide a paradigm of the contrast between

deterministic and non-deterministic machines and to facilitate a later

proof of embedding via computer morphism. The languages generated by

the grammars of Type 1 are context-sensitive. The appropriate recog

nizers are non-deterministic linear bounded automata [23]. It is still

an open question whether non-deterministic linear bounded automata have

greater recognition power than the deterministic ones [25]. The lan

guages generated by the grammars of Type 2 are context-free. The

appropriate recognizers are non-deterministic pushdown automata [7].

14

The non-deterministic variety of pushdown automata has greater recogni

tion power than the deterministic one [5]. The languages generated by

the grammars of Type 3 are the regular sets. The appropriate recog

nizers are the finite automata [8]. For finite automata, it has been

shown that the non-deterministic and deterministic varieties have the

same recognition power [28].

Throughout our formulation of automata theory, both the set of

states of an automaton and its alphabet will be finite subsets of the

natural numbers, N = {0,1,2,3,...}. For convenience, the tapes of the

automata are taken to be one-way infinite so that the natural members

can be used to index the tape positions. Since all alphabets are finite

N .
subsets of the natural members, N includes every tape. The power set

of a set A will be denoted as P(A). The cardinality of a set A will

be denoted as A. Primitive recursive subtraction will be denoted as —.

And, if X is an ordered n-tuple, the ith member of x will be denoted as

ix, l<i<n. If A is a set of n-tuples then je:A is the set of jt/z mem

bers of all n-tuples in A, i.e., je:A = {x|(3w)(weA.x = jw for w an n-

tuple, l<j<n}. The letter T will be used where we are concerned with

Turing machines, the letter L will be associated with linear bounded

automata, P with pushdown automata, and F with finite automata. These

letters with an overprinted shilling will be used for the non-

deterministic variety of recognizers. The actions admissible for a

particular class of recognizers will be selected from sets of functions

given by ACT or ACTS.

15

Definition 7. ACT = N u {LT,RT,ST} is a set of functions from

N . . N
N uN into Itself such that for every feN and i,neN:

(1) LT(f) = RT(f) = ST(f) = f

fi-l, if i>0
(2) LT(i) = <̂

[i, if i=0

(3) RT(i) = i+1

(4) ST(i) = i

(5) n(i) = i

In, if i = j for some head position j
(6) (nf)(i) = <̂

[f(i), otherwise.

Definition 8. ACTS = N u {LT,RT,ST} is a set of functions from

N N
N u N into itself such that for every feN and i,neN:

(2) LT(i) = <

(1) LT(f) = RT(f) = ST(f) = f

i-1, if i>0

i, if i=0

(3) RT(i) = i+1

(4) ST(i) = i

(5) n(i) = i

fn, if n>0 and i=j+l for some head position j
(6) (nf)(i) = <̂

[f(i), otherwise

{0, if i=j for some head position j

f(i), otherwise.

16

Turing Machines

Definition 9. QUAD = NxNxNxACT.

Turing machines are nm-tuples of elements of QUAD that have

exactly n states and exactly m alphabetic characters. The understand

ing is that if xeQUAD, then Ix represents the present state, 2x repre

sents the input symbol scanned, 3x represents the next state, while Hx

represents an appropriate action, given that the present state is Ix

and the scanned symbol is 2x. More precisely:

Definition 10. M is a deterministic Turing machine (TM) if and

only if there exists 0<n, meN such that:

(1) M is an nm-tuple

(2) l<i<nm, then iMeQUAD

(3) l<i?ij<n and l<k<(m-l) , then liM=l(i+kn)M5̂ 1jM=l(j+kn)M

(U) 0<k<(m-l) and lfkn<y<n+kn, then 2(l+kn)M=2yM

(5) l<i?ij<m, then 2(in)M?̂ 2(jn)M

(6) {3jM|l<j<nm} £ {liM|l<i<n}

(7) ({4jM|l<j<nm}-{LT,RT,ST}) £ {2(in)M|l<i^n}.

Clause (3) specifies the distribution of states. Clauses (4)

and (5) specify the distribution of the alphabet. Clause (6) specifies

that those states admissible as next states must be members of the

original state set. Clause (7) specifies that the possible actions of

the machine are left moves (LT), right moves (RT), identity moves (ST),

and prints of any symbol that occurs in its alphabet. Here, it is

assumed that each machine has a special character among its alphabet

that has the role of the blank. If we wish to discriminate a state of

17

M as initial, we may say that this state is liM. Similarly, a set of

final states FS may be selected such that FS s_ {liM|l<i<n}. Recognition

for a Turing machine occurs when the machine M enters a final state

after being placed initially on the left-most end of a tape with M in

its initial state and thereafter no further moves occur. We have made

no special provisions for halting states, actions, or quadruples. If

we had made such provisions, deciding whether a machine halts for a

given tape amounts to deciding whether the machine enters a halting

quadruple. Since we have no such provisions, there will be certain

distinguishable forms of quadruples for which the same question may be

asked. For example, quadruples of the form <n,_,n,ST> or <n,x,n,x>

where m,x£N and STeACT will be halting quadruples for tapes f and head

position j if (ST(f))(j) = f(j) and (x(f))(j) = f(j). No further move

occurs since state, head position, and tape remain unchanged.

Definition 11. TM = {M|M is a Turing machine}.

Since the cardinality of TM is aleph-zero, we may sequence all

Turing machines by some function T which is a bijection from N to TM.

Given T, we may obtain auxiliary functions Q and A that give the

cardinality of the state set and alphabet set, respectively, for any

Turing machine.

Definition 12. Q is a mapping from TM into N such that

Q (T(i)) = {IjT(i)|l<j^T(i)} for every Turing machine T(i).

Definition 13. A is a mapping from TM into N such that

A (T(i)) = {2jT(i)|l<j<T(i)} for every Turing machine T(i).

18

Given T, Q , and A , we may construct a sequence T of all the

states of the members of TM using the natural numbers as an indexing set

and a sequence T. of all the alphabetic elements of the members of TM

using the positive integers as an indexing set as follows: T =

{11T(0),12T(0),...,I(Q^(T(0)))T(0),...,llT(j),12T(j),...,

I(Q^(T(J)))T(J),...}; T^ = {2(Q^(t(0)))T(0),2(2Q^(T(0)))T(0),...,

2(;A^(T(0))Q^(T(0)))T(0),...,2(Q^(T(J)))T(J),2(2Q^(T(J)))T(J),...,

2(;A^(T(J))Q^(T(J)))T(J),...}.

We may relabel the states of the members of TM so that the states

will be consecutive numbers. If AeTM and A = T(i), then the machine

BGTM obtained from A by substituting for each state IjT(i) wherever it

occurs in A, the state T~ (IjT(i)), l<j<Q (T(i)), is a machine that is

equivalent to A. Hence, we may assume without loss of generality that

all machines are so rewritten. If T(i) is the ith+1 machine, then the

rewritten machine T»̂ (i) has states ljT»'*(i) = T~ (IjW(i)) for

l<j<[Q (T(i)) = Q„(T*(i))]. No two rewritten Turing Machines will share

states. The states of the ith+1 machine T*'*(i) will be the consecutive
i-1 i

integers from ^ Q (T(j)) to (J| Q,T,(T(J)) - 1. Furthermore, we may
j=0 j=0

relabel the alphabet of the members of TM so that the elements of the

alphabet will consist of consecutive integers. If AeTM and A = T''̂ (i),

then the machine BeTM obtained from A by substituting for each alphabet

character 2(jQ (T*(i)))T*(i) wherever it occurs in A, the character

Â ''"(2(jQ̂ (T*(i)))T*(i)) , l<j^A^(T*(i)) , is equivalent to A. Hence, we

may assume without loss of generality that all machines are so rewrit

ten. If T*(i) is the ith-¥l machine, then the rewritten machine T**(i)

19

has alphabet characters 2 (jQ^(T'Hi)))TAA(i) = T̂ "̂ (2 (jQ^(T'Mi)))T'Mi)) ,

for l<j<[A (T"(i)) = A (T»'«'«(i))]. Now, in addition to not sharing

states, no two rewritten Turing Machines will share alphabetic charac

ters. Moreover, the alphabet of the ith+1 machine T"*(i) will be the

i-1 i
consecutive integers from (I A (T(j))) + 1 to I A (T(j)).

j=0 j=0

We may define a function T? which maps N onto the set of rewrit

ten Turing Machines {T'*"(0) ,T'**(1) ,T""(2),. . . } such that for any neN,

T?(n) is the machine in which the state n occurs. Such a mapping exists

since we have rewritten all machines so they will not share any states

and each neN is the state of some machine.

Definition 14. For all n, keN, then T?(n) = T"*(k) if and only

if n = ljr**(k) for some j, l<j^Q^(T'**(k)).

Since a Turing Machine is an ordered nm-tuple of quadruples, we

may define a function INDEX which maps NxN-{0} into N-{0} = {1,2,3,...}

by means of which we may select the applicable quadruple, given that the

machine is in state n and is scanning tape f at head position i. Such a

function exists since we have rewritten all machines so state and alpha

bet sets are unique. More precisely:

Definition 15. For all n,i£N and feN^, INDEX(n,f(i)) = [(n+1) -

llT?(n)] + [((f(i)+l) - 21T?(n)) - l]Q^(T?(n)) such that INDEX(n,f(i)) =

j, l<j<T?(n), if and only if ljT?(n) = n and 2jT?(n) = f(i).

The approach is to abstract completely from the process of recog

nition in order to isolate those parameters essential to any step in a

computation of a recognizer. For it is the interaction of these param

eters that in essence characterizes the recognition procedure for a

20

class of automata. For Turing machines the essential parameters are

state, head position, and tape. The interaction is restricted to the

extent that given a state-symbol combination the machine may print a

symbol or move one space left or right as well as change state and then

repeat the cycle. An element of the Cartesian product of such param

eters will hereinafter be called a configuration for the class of auto

mata under consideration. Given this perception, we may obtain a func-

.̂ N
tion C" from NxNxN into itself that captures all steps in a recognition

computation as it monitors changes of state, head position, and tape.

C" will depend on the way TM was ordered by T as well as how the states

were ordered by Q and the alphabets by A to obtain the rewritten

machines (T'̂ ĈO) jT̂ '̂ Cl),. . . } . None of these reshuf flings of machines,

states, and alphabets have altered the machines in any essential way

because the resulting machines differ only in a relabeling of states and

alphabets.

. . . ;•{ . . N . .

Definition 16. C is a mapping from NxNxN into itself so that
N A

for any <x ,i ,f>eNxNxN , C"(<x,i,f>) will equal:

(1) <n,j,g>, if f'N £ {2jT?(x)|l<j<T?(x)}

where (i) n = 3 (lNDEX(x,f (i)))T?(X)

(ii) j = (u(lNDEX(x.f(i)))T?(x))(i)

(iii) g = (i+(lNDEX(x,f(i)))T?(x))(f)

(2) <x,i,f>, otherwise.

In order to capture the computations of the class of Turing

machines within an appropriate abstract digital computer, we need a

N
Boolean algebra m which to encode the elements of NxNxN . The elements

21

N
of NxNxN correspond in a natural way to the atoms of the Boolean alge-

N
NxNxN

bra 6 . Given this encoding and algebra, we may define a total

state-transition function T for an abstract digital computer which will

capture the computations of the class of Turing machines in the same

sense that C2, does.
N

N NxNxN
Definition 17. E is a bi]ection from NxNxN to 6 re

stricted to atoms such that (E (i))(j) = 1 if and only if i=j for all

. . N
ijjeNxNxN .

N
NxNxN

Definition 18. T is a mapping from 6 into itself so that
N

^ , -NxNxN rp /, ̂ . n ,
for every beS , T Cb; will equal:

(1) f where f(j) = 1 iff j = C*(b~-̂ (1)) for all jeNxNxN^, if b

is an atom

(2) b, if b is not an atom.

What then is the relationship between the notion of recognition

for Turing machines and the notion of computation for the abstract

digital computer previously defined? The recognition procedure is begun

by placing the machine in its initial state, say n, left-justified on a

tape t. This procedure is equivalent to selecting an initial configura

tion X = <n,0,t>. Correspondingly, we may "programme" the abstract
N NxNxN digital computer by selecting the initial state E (x)ee . Halting

means that the Turing machine makes no further moves. That is to say

that no change of configuration occurs, meaning that there exists a

T T + 1
finite ordinal x such that C (x) = C (x). The digital computer also

T T+1

Stops, i.e., T (E (x)) = T (E^(x)). In either case, halting is a

necessary condition for recognition. For recognition by final state,

22

we then ask if IC (x)eH is a final state as relabeled via Q and A .

For the corresponding abstract digital computer, recognition by final

state is given by the condition l((T (E (x))) (l))eH . We will now

consolidate these perceptions into a formal definition and then show

that there exists an abstract set-reset digital computer whose state
N

NxNxN
set is 6 and whose state-transition function is T .

Definition 19. If x = <n,0,t> is an initial configuration of a

Turing machine and E (x) is an initial state of an abstract digital

computer, then the input tape 3x is recognized if and only if there

exists a finite ordinal T such that T!^(E„(X)) = T^ (E„(x)), and

l((T^(E (x)))" (l))eH^ is a final state as relabeled via Q^ and A^.

Theorem 2. There exists a control function Cu such that
N

NxNxN
<e ,RS ,Cu > is a set-reset computer and T (b) = (Cu (b))(b) for

^ ^NxNxN^
any beS

Proof.
N

NxNxN
Case (1): beG and b is an atom. Let Cu (b) = S(J)R(K)

where J = {C*(b''-'-(l))} and K = {b'l(l)}i

N
NxNxN

Case (2): beS and b is not an atom. Let Cu^(b) = R(0)

where 0 is the null set. Therefore (Cu„(b))(b) =

^ b) , for a n bt6N'*"^^

Theorem 2 shows there is at least one set-reset computer that

captures all the computations of all Turing machines up to and includ

ing changes of states, head positions, and tapes. The construction

consisted of defining a function on the Cartesian product of the essen

tial parameters (states, head positions, and tapes) that would capture

23

the computations pertinent to recognition for all Turing machines. Then

we obtain a state-transition function T on the Boolean algebra
N NxNxN e that would capture the recognition process of all Turing

NxNxN

machines. Finally, we showed that (6 ,T^) was an abstract set-

reset digital computer by constructing a control function Cu . All

these moves involved only a relabeling of states and alphabets. Thus

at any stage of the construction, the resulting Turing machines were

equivalent to the ones countenanced initially.

Non-Deterministic Turing Machines

Definition 20. TRIP = NxNxP(NxACT).

Non-deterministic Turing machines are nm-tuples of elements of

TRIP that have exactly n states and exactly m alphabetic characters.

The understanding again is that if xeTRIP, then Ix represents the pres

ent state, 2x represents the input symbol scanned, and 3x represents the

finite number of combinations of next state and action possible, given

that the present state and symbol scanned are Ix and 2x, respectively.

Non-determinism here means that the machine may select any of the pos

sible combinations of next state and action from among those in 3x on

a particular occurrence of present state (Ix) and symbol scanned (2x).

The deterministic variety of machines is the special case of the non-

deterministic variety of machines where the cardinality of 3x is one.

Definition 21. D is a non-deterministic Turing machine (NTM) if

and only if there exists 0<n,meN such that:

(1) D is an nm-tuple

(2) l<i^nm, then iDeTRIP

24

(3) l<i?'j<n and l<k<(m-l), then liD=l(i+kn)D?«ljD=l(j+kn)D

(4) 0<k<(in-l) and l+kn<y<n+kn, then 2(l+kn)D=2yD

(5) l<i*j<in, then 2(jn)D?«2(in)D

(5) l<j<nm, then l^(3jD)<aleph-zero

(7) le:{3jD|l<j<nm} s {liD|l<i<n}

(8) ((2e:{3jD|l<j<nm})-{LT,RT,ST}) £ {2(in)D|l<i<n}.

Clauses (1) and (2) are obvious. Clause (3) again specifies the

distribution of states. Clauses (i+) and (5) specify the distribution of

the alphabet. Clause (6) specifies that the number of possible choices

for next state and action pairs is finite. Note that for the determin

istic case there is only one possible next state and action. Clause (7)

states that the possible next states are members of the original state

set. Clause (8) states that the possible actions are left moves, right

moves, identity moves, and prints of any symbol that occurs in its

alphabet. Again, it is assumed there is a character in the alphabet

that plays the role of the blank. Comments concerning halting are the

same as for the deterministic variety of machines. Recognition is by

final state with the same conditions as for the deterministic case, but

with the added provision that recognition occurs if there is at least

one sequence of moves that satisfies the recognition criteria. We shall

introduce the following definitions without explanation since they fol

low mutatis mutandis the deterministic case.

Definition 22. NTM = {D|D is a non-deterministic Turing machine}.

Definition 23. T is a bijection from N to NTM.

25

Definition 2^. Q is a mapping from NTM into N such that

Q^(7(i) = {lj7(i)|l^j^7(i)} for every non-deterministic Turing machine

7(i).

Definition 25. A^ is a mapping from NTM into N such that

A^(T(i)) = {2j7(i)1l^j^T(i)} for every non-deterministic Turing machine

7(i).

Definition 26. The set of rewritten machines is {7'""(0),

7*""(1),. . .} , i.e., 7""(k) is the machine obtained from 7(k) by relabel

ing its states and alphabetic characters.

Definition 27. For all n,k£N, then 7?(n) = 7""(k) if and only

if n = lj7'"*(l<) for some j, l<j<Qy(7'"''(k)).

Definition 28. For n,ieN and feN^, INDEX(n,f(i)) = [(ntl)-

117?(n)] + [((f(i)+l)-217?(m))-l]Q^(7?(n)) such that INDEX(n,f(i)) =

j, l<j<7?(n), if and only if lj7?(n) = n and 2j7?(n) = f(i).

The essential parameters for the non-deterministic variety of

machines are the same as for the deterministic ones. The interaction

between these par'ameter's is also the same. On the other hand, non-

determinism means that a configuration need not give rise merely to

another single configuration, but rather it may give rise to any finite

number of them. In order to accommodate this case we monitor all con

figurations that arise at any stage in the recognition procedure. Per

haps an analogy with the structure of trees may clarify the approach.

The recognition procedure is begun by selecting an initial configura

tion. This initial configuration is then the root of the tree. This

configuration can lead to a finite number of other configurations

26

(nodes) that arise from the possible choices for next state and action.

The resulting configurations are then seen as nodes of the next level

of the tree. A configuration will give rise to as many configurations

as there are possible next state-action combinations for a given present

state-symbol scanned combination. Each cycle of the recognition proce

dure corresponds to a level of the tree. Recognition occurs if at some

level we find a configuration that remains unchanged at the next cycle

and the state therein is a member of the final state set. Note that

halting again appears as a necessary condition for recognition. Also

recall that recognition occurs if at least one path leads to acceptance.

Thus, the recognition procedure terminates once a successful successioQ

of configurations has been obtained. As we did for the deterministic

variety, we will proceed to obtain an appropriate Boolean algebra and

total state-transition function for the non-deterministic case.

J. N N

Def in i t ion 29. C* i s a mapping from NxNxN t o P(NxNxN) so t h a t
N »'c

for any <m,j,h>eNxNxN , C^(<m,j,h>) will equal:

(1) A", if h**N c_ {2jT?(m) I l<j<7?(m')} where

A* = {x*|(3z)(zE3(INDEX(m,h(j)))7?(in) and

X* = <l2,22(j),22(h)>)}

(2) <in,j,h>, otherwise.

N NxNxN
Definition 30. E- is a bijection from NxNxN to 0

N

restricted to atoms such that (E (i))(j)=l if and only if i=j for all

ijjeNxNxN .
N J. NxNxN

Definition 31. T" is a mapping from the atoms of 6 into

NxMyM 'k, . / ^ ,- . «NxNxN ,
e such that T"(a) = V E_,(x) for every atom a m 8 and

xeC^(E'\a)).

27

N
NxNxN

Definition 32. T is a mapping from 6 into itself so that
N

, ^NxNxN
for every beS :

(1) T (b) = T*(b), if b is an atom

(2) T (b) = V T̂ *(a) for atoms a<b, if:
' a<b '

(i) (3C)(3T)(C is an atom.T>O.Tj(c) = b.c'-'-d) is an

initial configuration)

* -1
(ii) ~ (3a)(a is an atom.a<b.aeT^(a).l(a (1)) is a

final state)

(3) T (b) = b, otherwise.

j'j

The strategy here was to define a function C^ from the set of

configurations into the power set of the set of configurations. The

configurations were encoded via E^ into the atoms of the Boolean algebra
N NxNxN *

e . The function T^ was defined for the Boolean algebra as the
N A NxNxN

alter ego of C". A total state-transition function T^ on 6 was

obtained by an appropriate atomwise extension of T". Note that the

atoms of the Boolean algebra are the algebraic counterpart of the con

figurations. Thus, to monitor configurations is to monitor atoms of the

appropriate Boolean algebra. The state-transition function T^ is

defined so that it becomes the identity, once recognition has been

attained. We may now summarize these facts of recognition in a formal

definition and prove a theorem that asserts the existence of an abstract

digital computer for all non-deterministic Turing machines.

Definition 33. If x = <n,0,t> is an initial configuration of a

non-deterministic Turing machine and E-(x) is an initial state of an

abstract digital computer then the input tape 3x is recognized if and

28

only i f there exis ts a f in i te ordinal T such that T (E^(x)) =

T+ 1 T

T^ (E^(x)) and there exists an atom a such that a<T^(E (x)) and

aeT"(a), and l(a (1))£H where H is the final state set for

7?(l(a"^(l))).
Theorem 3. There exists a control function Cu such that
N

NxNxN
<0 ,Rs ,Cu > is a set-reset computer and T (b) = (Cu (b))(b) for

^ ^NxNxN^
any be0

Proof. Let Cu (b) = S(J)R(K) where J = {(T (b))~-̂ (l)} and K =
N

-1 NvNvM
{b (1)}. Therefore (Cu (b))(b) = T (b) for all bee^'^^ .

We are now able to provide a characterization of the determinis

tic and non-deterministic varieties of a class of recognizers with the

aid of an appropriate Boolean algebra and total state-transition func-

tion. The Boolean algebra for both varieties will be 0 where X is the

Cartesian product of the parameters essential (same for both) for the

recognition procedure of that class. However, the difference between

the two varieties is reflected by the total state-transition function.

For the deterministic case, this function will be the identity on all

elements of 8 other than atoms, since for the deterministic case there

is only one choice of next state and action for any given present state-

symbol scanned combination. If the current configuration can be changed,

it can be changed in only one way. Consequently, at every cycle of the

recognition procedure, we are concerned with only one configuration.

X

These configurations are encoded into the atoms of 9 so on any itera

tion of the total state-transition function the computer merely passes

from atom to atom.

29

For the non-deterministic variety, the total state-transition

function will be other than the identity for, at most, elements of 6

such that the set b (1) is finite. This is so because for any par

ticular present state-symbol scanned combination, the number of possible

next state-action combinations is finite. At any cycle of the recogni

tion procedure only a finite number of new configurations will be intro

duced, meaning that on any iteration of the total state-transition

function only a finite number of atoms need be monitored. The deter

ministic and non-deterministic varieties of a class of recognizers will

be captured by abstract computers that have the same Boolean algebra for

their state set, but for the deterministic case the transitions will

occur only between atoms while for the non-deterministic case the tran

sitions will occur only between those elements of the algebra which are

finite.

Non-Deterministic Linear Bounded Automata

A non-deterministic linear bounded automaton can be viewed as a

non-deterministic Turing machine that uses only that portion of the tape

on which the initial input appears. Or more generally, a linear bounded

automaton is a recognizer that uses only an amount of tape that is a

linear function of the length of its input string [13]. Moreover, there

is a theorem to the effect that boundary markers usually inherent in the

specification of these recognizers are inessential [12]. Thus, they are

genuine special cases of non-deterministic Turing machines. However,

they do differ from Turing machines and this difference will be made

explicit when we treat the recognition procedure of this class.

30

We will introduce the following definitions without comment as

they follow mutatis mutandis the pattern of the corresponding defini

tions for the case of Turing machines.

Definition 3^. TRIP = NxNxP(NxACT).

Definition 35. Q is a non-deterministic linear bounded automaton

(NLBA) if and only if there exist 0<n,meN such that;

(1) Q is an nm-tuple

(2) l<i<nm, then iQeTRIP

(3) l<i?'j<n, and l^k<(m-l), then liQ=l(itkn)Q?'ljQ=l(jtkn)Q

(4) 0<k<(m-l) and l+kn<y<ntkn, then 2(l+kn)Q=2yQ

(5) l<i;*j<m, then 2(in)Q5'2(jn)Q

(6) l<j<nm, then 1<(3jQ)<aleph-zero

(7) le;{3jQ|l<j<nm} <=_ {liQ|l^i<n}

(8) ((2e:{3jQ|l<j<nm})-{LT,RT,ST}) £ {2(in)Q|l<i<n}.

Definition 36. NLBA = {Q|Q is a non-deterministic linear bounded

automaton}.

Definition 37. Ji is a bijection from N to NLBA.

Definition 38. Q , is a mapping from NLBA into N such that
— ^

Q^(E(i)) = {Ijli(i) I l̂ ĵ Ji(i)} for every non-deterministic linear bounded

automaton K(i).

Definition 39. ky is a mapping from NLBA into N such that

A^(E(i)) = {2jli(i) j l<j<j!,(i)} for every non-deterministic linear bounded

automaton E(i).

Definition 40. The set of rewritten machines is {L"*(0),

•'• 4f •Uwfm

U'^ (1),...}, i.e., y,"'(k) is the machine obtained from t(k) by relabel

ing its states and alphabetic characters.

31

Definition ^1. For all n,keN, then K?(n) = {̂ ""(k) if and only

if n = ljK"""(k) for some j, l<j<Q (ii""(k)).

Definition 42. For all n,ieN and feN^, INDEX(n,f(i)) = C(n+1)-

lllfi?(n)] + [((f(i)+l)-21E?(m))-l]Q^(K?(n)) such that INDEX(n,f(i)) = j,

l<j<Ji?(n), if and only if ljE?(n) = n and 2jl!;?(n) = f(i).

We will use recognition by final state for the linear bounded

automata as we did for Turing machines, but with the added stipulation

that the read head for a terminal situation must be located one position

to the right of the last character of the input string. In order to

formalize the notion of a bound on the amount of tape available during

a particular execution of the recognition procedure, we use a special

representation of the input string so that the boundary condition is

made exact. We have relabeled the alphabets of the machines using the

positive integers rather than the natural numbers. Consequently, the

natural number 0 does not appear as an alphabetic character of any

machine. Thus, a tape is represented as having a finite initial segment

containing only positive integers (left-justified) followed by zeros.

The index of the tape position containing the last positive integer that

precedes a zero will be the bound of the recognizer relative to this

tape. Recognition then occurs when a recognizer halts in a final state

with the value of the head position one greater than the bound of the

tape being processed.

The resemblance between non-deterministic linear bounded auto

mata and Turing machines suggests that the essential parameters of

linear bounded automata should include state, head position, and tape.

32

The further stipulation of a bound requires that there be an additional

parameter. Hence, the essential parameters are state, head position,

tape, and bound. These parameters form configurations that are elements

N
of NxNxN xN. We may now enter formal definitions.

Definition 43. SEQ = {f|feN^.(3a)(b)(a,beN.(b<a3f(b)>0).

(b>a3f(b)=0))}.

JV N N

D e f i n i t i o n 4 4 . C^ i s a mapping from NxNxN xN t o P(NxNxN xN) so
N vV

that for any <n,i,f,z> eNxNxN xN, C"(<n,i,f,z>) will equal:
Vi

(1) A, if (i) f£SEQ

(ii) f(i)£f"N-{0} s. {2jK?(n)|l<j<K?(n)}

(iii) y(f) = ((MIN{x|x>0.f(x)=0})-l] = z

(iv) 0<i<z

where A={x*| (3z) (ze3(INDEX)n ,f (i)))ii?(n). X''' =

<lz,2z(i),2z(f),z>)}

(2) <n,i,f,z>, otherwise.

N
N NxNxN xN

Definition 45. E^ is a bijection from NxNxN xN to 6

restricted to atoms such that (E^(i))(j)=l if and only if i=j for all

. . N
i,3£NxNxN xN.

A NxNxN xN
Definition 46. T" is a mapping from the atoms of 9 into

gNxNKN^xN ^^^^ ^^^^ ..(̂ j __ V (̂) ^^^ ^^^^ ^,„^ ̂ .„ gNxNx/xN ^^^
Jj J"̂

xeC*(E'-^(a)).
N

NxNxN xN
Definition 47. T^ is a mapping from 6 into itself so

-HK -K ^ K QNXNXN XN that for every b£6 :

(1) T (b) = T^*(b), if b is an atom
A,

(2) T^(b) = V T"(a) for atoms a<b, if:
a<b

33

(i) (3C)(3T)(C is an atom.T>0.T^(c)=b.c" (1) is an

initial configuration)

(ii) ~ (3a)(a is an atoin.a<b.a (1) = <in,i,f,z> where m

is a final state, f(i)=0, u(f)=z, i=z+l)

(3) T^(b) = b, otherwise.

Definition 48. If x=<n,0,t,u(t)> is an initial configuration of

a non-deterministic linear bounded automaton and E^(x) is an initial

state of an abstract digital computer then the input tape 3x is recog

nized if and only if there exists a finite ordinal T such that

T T^l T

T,/E (x)) = T (E/x)) and there exists an atom a such that a<T (E ,(x))

and a" (1) = <m,i,f,z> where meH^ with H^ as the final state set for

Ji?((l(a"-̂ (1))), f(i)=0, u(f) = z and i=ztl.
Theorem 4. There exists a control function Cu^ such that
N '^

NxNxN xN
<e ,RŜ ,Cû > is a set-reset computer and T (b) = (Cû .(b))(b)

^ ^NxNxN xN
any bed

Proof. The proof of this theorem parallels exactly the proof of

the corresponding theorem for non-deterministic Turing machines.

Non-Deterministic Pushdown Automata

Definition 49. COMP = NxNxNxP(NxACTxACTS).

Non-deterministic pushdown automata are nmp-tuples of elements of

COMP that have exactly n states, input alphabets of exactly m characters,

and pushdown alphabets of exactly p characters. The understanding here

is that if xeCOMP, then Ix represents the present state, 2x represents

the input symbol scanned, 3x represents the pushdown symbol scanned, and

4x is a set of triplets composed of the next state, the appropriate

34

action relative to the input tape, and the appropriate action relative

to the pushdown tape.

Definition 50. G is a non-deterministic pushdown automaton

(NPDA) if and only if there exists 0<n,m,peN such that:

(1) G is an nmp-tuple

(2) l<i<nmp, then iGeCOMP

(3) l<i?ij<n and l<k<((mp)-l), then liG=l(i+kn)G?iljG=l(j+kn)G

(4) 0<k<(m-l) and 0<q<(p-l) and (l+kn+qnm)<y<(n+kn+qnm), then

2(l+kn)G=2(l+kn+qnm)G and 2(l+kn)G=2yG

(5) 0<i?ij<(m-l) and 0<q<(p-l) , then 2(l+in)G=2(l+in+qnm)G?i

2(l+jn)G=2(l+jn+qnm)G

(6) 0<k<(p-l) and (l+knm)<y<(nm+knm), then 3(l+knm)G=3yG

(7) l<i?ijep, then 3(inm)G?i3(jnm)G

(8) l<i<nmp, then l<(4iG)<aleph-zero

(9) le:{4jG|l<j<nmp} £ {liG|l<i^n}

(10) 2e:{4jG|l<j<nmp} £ {RT,ST}

(11) ((3e:{4jG|l<j<nmp})-{0,ST}) £ {3iB|l<i<nmp}.

Clauses (1) and (2) are obvious. Clause (3) specifies the dis

tribution of states. Clauses (M-) and (5) specify the distribution of

the input alphabet. Clauses (6) and (7) specify the distribution of the

pushdown alphabet. Clause (8) specifies that the number of possible

choices for next state and actions is finite. For the deterministic

varieties there would be only one possibility. Clause (9) states that

the possible next states are members of the original state set. Clause

(10) states that the admissible actions relative to input tapes are stay

35

(the epsilon-type move) and move right. These are the standard moves

for this class of recognizer. An epsilon-type move is simply one where

the resulting course of action is independent of the input symbol. The

definition of NPDA prescribes a mapping from NxNxN to P(NxACTxACTS).

Consequently, to say the argument of the function so prescribed is inde

pendent of the input symbol is to say that the function has the same

value for all inputs symbols and the particular state and pushdown sym

bol associated with an epsilon-type move. Thus, we need not alter our

formalism to accommodate the epsilon-type moves. Clause (11) specifies

that the possible actions on the stack are erase (print 0), stay, and

print any symbol of the pushdown alphabet.

Again our modus operandi will be as before. We will relabel the

states relative to natural numbers and the input and pushdown alphabets

relative to the positive integers.

Definition 51. NPDA = {G|G is a non-deterministic pushdown auto

maton} .

Definition 52. ? is a bijection from N to NPDA.

Definition 53. Qp is a mapping from NPDA into N such that

Qp(?(i)) = {lj?(i)|l<j<5'(i)} for every non-deterministic pushdown auto

maton ?(i) .

Definition 54. Ap is a mapping from NPDA into N such that

Ap(P(i)) = {2j?(i)|l<j<?(i)} for every non-deterministic pushdown auto

maton ?(i).

We define an additional auxiliary Z_ that gives us the cardinal

ity of the pushdown alphabet of any non-deterministic pushdown automaton

as follows:

36

Definition 55. Z is a mapping from NPDA into N such that

Z (?(i)) = {3jF(i)Il<j<F(i)} for every non-deterministic pushdown auto

maton ?(i) .

Definition 56. The set of rewritten machines is {J'"""(0),

?*"'"*''(1) ,. . . } , i.e., {'"'""(k) is the machine obtained from V(k) by re

labeling its states and the characters of its input and pushdown alpha

bets .

Definition 57. For all n,keN, then F?(n) = P*""(k) if and only

if n = ljP"*"\k) for some j, l<j<Q (?***(k)).

Definition 58. For all n,i,jeN and f,geN^, INDEX(n,f(i)g(j)) =

[(ntl)-ll??(n)] t [((f(i)tl)-21F?(m))-l]Qj,(J'?(n)) t [((g(j)tl)-

31??(n))-l](Q (??(n))-Aj,(??(n))) such that INDEX(n,f(i) ,g(j)) = q.

l<q<J»?(n), if and only if lqF?(n) = n, 2qF?(n) = f(i) and 3qJ'?(n) =

g(j).

Recognition for pushdown automata can be formulated as being

either by final state or by empty store. We have chosen to use final

state. In either formulation the entire finite input string must be

read. Accordingly, the terminal head position must be that value at

which the first blank appears on the input tape. At this time the

scanned input symbol will be a blank, represented here by the symbol 0.

Yet, when this situation occurs we may still need to erase symbols from

the pushdown tape in order to achieve empty store. Thus, configurations

where the scanned input symbol is the blank must be countenanced. As a

result we would be required to introduce a pseudo blank for each machine

as was done in the case of Turing machines. Further complications ensue,

37

since the tape representation would require modification. The entire

formulation of this class of recognizers would be more complex. All

this seems to be needless since it is known that recognition by final

state and by empty store are equivalent [19]. The requirement that the

entire input string be read as a necessary condition for recognition is

preserved by the method since zero is not in the input alphabet of any

machine. Also, zero does not appear in any pushdown alphabet. Hence,

the top of the pushdown is always (Min{x|xeN .f(x)=0})—1. Note that the

function 0 gives us the ability to erase characters from the pushdown

tape. Likewise, the standard procedure for printing on the pushdown

tape is to define print actions so that they overprint the top character

of the pushdown and then print additional characters as part of the same

action, thereby increasing the length of the pushdown tape. However,

this method appears cumbersome. We have merely defined the set of func

tions in ACTS so that the printing is done one space ahead of the cur

rent stack top.

The essential parameters of pushdown automata are seen to be

State, input head position, input tape, pushdown head position, and

N N
pushdown tape. The configurations are elements of NxNxN xNxN . Each

such quintuplet is composed of a state, an input head position, an

input tape, a pushdown head position, and a pushdown tape. We may now

proceed to enter formal definitions of these perceptions.

ft . N N
Definition 59. Cp is a mapping from NxNxN xNxN to

P(NxNxN^xNxN^) so that for any <n ,i,f,j ,g>eNxNxN^xNxN^, Cp(<n,i,f,j,g>)

will equal:

38

(1) A", if (i) f,geSEQ

(ii) f(i)ef"N-{0} £ {2j??(n)|l<j<??(n)}

(iii) g(j)eg"N-{0} £. {3j??(n)|l j ??(n)}

(iv) j = y(g)

where A" = {x"|(3z)(ze4(INDEX(n,f(i),g(j)))??(n) and x* =

<lz,2z(i),f,3z(j),3z(g)>)}

(2) <n,i,f,j,g>, otherwise.

N N
Definition 60. E^ is a bi ject ion from NxNxN xNxN to

Tj y
N x N x N x N x N 6 res t r ic ted to atoms such that (Ep(i))(j) = 1 if and only

N N
if 1=3 for a l l ijjeNxNxN xNxN .

N N
I. NxNxN xNxN

Definition 61. T' i s a mapping from the atoms of 0
N N

NxNxN xNxN •'- - 1
such that T^Ca) = V E^(x) for every atom ae0 and xeC^CE^-'Ca)).

NxNxN xNxN
Definition 62. T is a mapping from 6 into i t s e l f so

N N
u N̂xNxN xNxN

that for every beS :

(1) To(b) = T*(b), i f b i s an atom
¥ t

(2) Tp(b) = V T^*(a) for atoms a<b, if:

^'^ -1
(i) (ac)(aT)(c is an atom.T^O .Tp(c) = b.c (1) i s an

i n i t i a l configuration)

(i i) ~ (3a)(a i s an atom.a<b.a (1) = <n , i , f , j , t> where

n is a f inal s t a t e , f (i)=0, i=y(f)+l)

(3) Trt(b) = b , otherwise.

Definition 63. If x = <n,0,f,0,g> is an initial configuration of

a non-deterministic pushdown automaton and Ep(x) is an initial state of

an abstract digital computer then the input tape 3x is recognized if and

T T + 1

only if there exists a finite ordinal x such that T^CE^CX)) = T^ (E (x))

39

and there exist an atom a such that a<T^(E (x)) and aeT"(a), and

l(a~ (l))eHo where H is the final state set for FTCKa" (1)) and
f f

2(a"-̂ (l)) = p(3(a~-̂ (l)))+l and (3(a"-̂ (l)))(2(a"-̂ (l))) = 0.

Theorem 5. There exists a control function Cu^ such that
N N

NxNxN vMvN
<e ,RS^,Cu„> is a set-reset computer and T„(b) = (Cu^(b))(b)

5 *̂N ? F
^ ^NxNxN^xNxN

for any be6

Proof. The proof of the theorem parallels exactly the proof of

the corresponding theorem for non-deterministic machines.

Finite Automata

A finite automaton can be viewed as a machine which reads a

finite input string over some alphabet. Again such strings may be taken

as tapes from the set SEQ. Finite automata are merely a special subset

of Turing machines (deterministic here) that only read and move right.

These machines stop when the first zero of the tape is encountered, and

they recognize upon stopping if they are in a final state. Thus, the

construction of an abstract computer that captures all the computations

of all finite automata does not differ essentially from the construction

for the deterministic Turing machines. The following definitions and

theorems accomplish the construction.

Definition 6̂ . W is a deterministic finite automaton if and

only if there exists 0<n,meN such that:

(1) W is an nm-tuple

(2) l<i<nm, then iWeQUAD

(3) l<i*j<n and l<k<(m-l), then liW=l(itkn)W*ljW=l(jtkn)W

(4) 0<k<(m-l) and l+kn<y<n+kn, then 2(l+kn)W=2yW

40

(5) l<i*j<in, then 2(in)W5̂ 2(jn)W

(6) {2jW|l<j<nm} c_ {liw|l^i<n}

(7) {UjW|l<j<nm} = {RT}.

Definition 65. FA={W|W is a finite automaton}.

Definition 66. F is a bijection from N to FA.

Definition 67. Qp is a mapping from FA into N such that

Q (F(i)) = {ijF(i)|i<j<F(i)) for every finite automaton F(i).

Definition 68. Ap is a mapping from FA into N such that

Ap(F(i)) = {2jF(i)|l<j<F(iT} for every finite automaton F(i).

Definition 69. The set of rewritten machines is {F'"(1),F""(2),

...}, i.e., F'*"(k) is the machine obtained from F(k) by relabeling its

states and alphabetic characters.

Definition 70. For all n,keN, then F?(n) = F*'"(k) if and only

if n = ljT"*"(k) for somej , l<j<Q (F""(k)).

Definition 71. For all n,ieN and feN^, INDEX(n,f(i)) =

[(n+l)-llF?(n)] + [((f(i)+l)-21F?(n))-l]Q^(F?(n)) such that

INDEX(n,f(i)) = j, l<j<F?(n), if and only if ljF?(n) = n and 2jF?(n) =

f(i).

. . . i- . N
Definition 72. C* is a mapping from NxNxN into itself so that

N A
for every x,n,i,jeN and f,geN , C (<x,i,f>) will equal:

(1) <n,j,g>, if (i) feSEQ

(ii) f(i)ef"N-{0} s {2jF?(x) | l<j^F?(x)}

where (a) n=3(INDEX(x,f(i)))T?(n)

(b) j=itl

(c) g=f

41

(2) <x,i,f>, otherwise.
N

r. ,-. . . ^^ T-, . 1 . . . ,- »T w .rN ^NxNxN
Definition 73. E is a bijection from NxNxN to G

restricted to atoms such that (E (i))(j) = 1 if and only if i=j for all

ijjeNxNxN .
N

NxNxN
Definition 74. T is a mapping from G into itself so that

N
for every beG , T (b) will equal:

(1) f where f(j) = 1 iff j = C*(b"-'"(1)) for all jeNxNxN^, if b

is an atom

(2) b, if b is not an atom.

Definition 75. If x = <n,0,t> is an initial configuration of a

finite automaton and E„(x) is an initial state of an abstract digital

computer, then the input tape 3x is recognized if and only if there

T T + 1
exists a finite ordinal T such that T (E (x)) = T (E (x)) and
T NxNxN^ -1

T (E (x)) = a, a being an atom of 0 , such that l(a (l))eH where

H is the set of final states of F?(l(a~ (1))) and

(3(a"^(l)))(2(a"^(l))) = 0.

Theorem 6. There exists a control function Cu such that
N

NxNxN
<6 ,RS ,Cu > is a set-reset computer computer and T (b) = (Cu (b))

^ , ^ N X N X N N
for any be0

Proof. The proof of the theorem parallels exactly the proof of

the corresponding theorem for deterministic Turing machines.

42

CHAPTER III

MORPHISM THEOREMS

Introduction

Earlier we discussed the induced hierarchy of recognizers that

is obtained by considering the languages recognized. Turing machines

are at the top of the hierarchy and finite automata are at the bottom.

The hierarchical notion of recognition power ensues from the relation

ship between the classes of languages generated by each grammar type:

the class of regular sets is a proper subclass of the context-free class

of languages; the context-free class is a proper subclass of the context-

sensitive class of languages; the context-sensitive class is a proper

subclass of the class of recursively enumerable sets [2]. Recognition

power is a reflection of the capability to recognize the classes in this

chain as ordered by the inclusion relation.

In Chapter II we constructed an abstract digital computer for

each class of recognizers countenanced. These computers are algebras

and the natural question arises as to whether the relationship between

the classes of recognizers countenanced can be captured algebraically

within the theory of abstract digital computers. The principal result

of this research may now be stated as follows:

The algebraic counterpart of the classical hierarchy of recog

nizers is obtained in the theory of abstract computers by computer mor-

phisms which hold between the computers of finite automata, pushdown

1+3

automata, linear bounded automata, and Turing machines. These morphisms

relate the abstract digital computers in the expected manner.

In each of the following sections we will establish a theorem

which states that the computer for a class of recognizers is appropri

ately morphic to the computer for the next higher class. These computer

morphisms will identify for each given machine a machine of the next

higher class that recognizes all and only the tapes of the given machine.

Such computer morphisms will be called recognition-preserving morphisms.

Their definition is as follows:

Definition 76. Let x be a recognizer, C its configuration func

tion, and a and a* initial configurations of x in which the input tapes

t and t" occur respectively. Then we say that t and t" are x-equivalent

if and only if t(i) = t"(i) for all i for which there exists a T^O such

T T *••
that i is any of the head positions that occur in C (a) or C (a").

-> ^ X X

We may note that for bounded recognizers, that is for recognizers

that inspect only a finite segment of tape, the notion of tape equiva

lence just defined is effective. The notion of recognition-preserving

morphisms up to tape equivalence is important to us only for bounded

recognizers.

Definition 77. a is a recognition-preserving morphism from

X Y
<e ,T.> into <e ,T„> if and only if a is a computer morphism such that

A B
X -1

if be6 and b (1) is a configuration or set of configurations of some

machine x of kind A then (otb) (1) is a configuration or set of config

urations of some machine y of kind B. Machine y recognizes all and only

JU — "I

tapes recognized by x in the sense that y recognizes t*e3((ad) (1)) and

44

all tapes equivalent to t" if and only if x recognizes te3(d (1)) where

d (1) is an initial configuration of x.

Recognition-Preserving Morphism for Finite Automata

Since regular sets are a proper subclass of the class of context-

free languages, finite automata are less powerful than non-deterministic

pushdown automata. The algebraic counterpart of this fact is given by a
N

NxNxN
theorem which states that the computer of finite automata, <G »'̂ r̂ »

N N
NxNxN xNxN

may be embedded in the computer of pushdown automata, <G '"^p^ »

via a recognition-preserving computer morphism.

Theorem 7. There exists a recognition-preserving computer mono-
N N N

u- ^ ^NxNxN ^ ^ ^ ^NxNxN xNxN ^ ^
morphism a from <6 ,T > to <e »̂ i» *

N
Proof. Let <n,i,f>eNxNxN . Then n is a state of some finite

automaton F?(n). Given that F?(n)eFA, we may construct a deterministic

pushdown automaton A where jA = <ljF?(n),2jF?(n),l,{<3jF?(n),RT,ST>}>

for l<j<F?(n).

We have merely reformulated the quadruples of the finite auto

maton F?(n) as quadruples suitable for a pushdown automaton by adding a

symbol 1 to function as an initial pushdown symbol and by adding the

action ST which is of no consequence. In doing so we have not changed

the original behavior of the machine F?(n). The response of this con

structed pushdown automaton A to a state-input symbol-pushdown symbol

combination is the same as the response to this same state-input symbol

combination for F?(n) because the pushdown stack is completely ignored

throughout any computation. Hence, we conclude that the original

45

behavior of F?(n) has not been altered through reformulation as a push

down automaton.

Since the set of deterministic pushdown automaton is merely a

proper subset of the non-deterministic variety, we have AeNPDA and

y (A)eN, so A is the ? (A)+l machine whose states for l<j<Q^(A) are

the numbers given by:

(1) [ljF?(n)-llF?(n)], if F""^(A) = 0

(J'~-̂ (A))-1
(2) I Q^CPCk)) + [ljF?(n)-llF?(n)], if ?"-̂ (A)>0.

k=0 *̂

The cha rac te r s of the input alphabet for l<j<Qp(A) are the numbers given

by

(1) [2 (j Q j , (A)) F ? (n) - 2 1 F ? (n)] , i f ?"-^(A) = 0

(5 ' " ^ (A)) - 1
(2) I A (F (k)) + [2 (jQ (A)) F ? (n) - 2 1 F ? (n)] , i f ? - ' (A)>0.

k=0 ^

The single character of the pushdown alphabet is given by:

(?"^(A))-1

I Z^(?(k))+1.
k=0 ^

Note that this constructed pushdown automaton is one that ignores

the pushdown store entirely, so a pushdown alphabet of cardinality one

is adequate. We only need one initial symbol to initiate computation.

N N N
We define a mapping W" from NxNxN to NxNxN xNxN in terms of

two functions K and H . These two functions are defined relative to a

particular finite automaton and pushdown automaton. If the finite autom-

N I
aton is F?(n) then for all xeNxNxN such that the state lxe{ljF?(n)|

l<i<F?(n)}, we have W"(x) = K^(x) if x is an appropriate configuration

for F?(n) that is to be correlated with an appropriate configuration

45

for the corresponding pushdown automaton. In contrast, W"(x) = H (x)

if X is to be correlated with a configuration of the corresponding push

down for which a subsequent configuration changed by the pushdown auto

maton is not desired. Consequently, W" is a total function on the set

N
NxNxN when the union is taken over all such sets of configurations with

respect to every finite automaton. For the finite automaton F?(n) and

th e corresponding constructed machine AeNPDA, we let W^(<n,i,f>) =

K„(<n,i,f>) where K (<n,i,f> is:

(1) <n='Si,f̂ So,z>, if f"N-{0} c {2jF?(n) | l<j<F?(n) } and

0<i<y(f) with:

(i) n'̂ =

-1, f[n-llF?(n)], if F'-'CA) = 0

(?"-̂ (A))-l
-1, I Qp(F(k)) + [n-llF?(n)], if ? ^(A)>0

k=0

(ii) fHx) = <̂

[(f(x)+l)-21F?(n)] for 0<x<y(f),

if P -̂ (A) = 0

[o for x>y(f),

(iii) f*(x) = <̂

(? -̂ (A))-!

k=0
Aj,(F(k)) t [(f(x)+l)-21F?(n)]

for 0<x<y(f),

if F"-̂ (A)>0

0 for x>y(f),

47

(iv) z(x) = <

1 for x=0,

0 for x>0,

if P"-̂ (A)=0

(v) z(x) = <

(?"^(A))-1
I Z (?(k))+l for x=0,

k=0

0 for x>0,

if F~-̂ (A)>0

And W"(<n,i,f>) = H (<n,i,f>) where H (<n,i,f>) is:

(2) <n*,i,f*,0,z>, if f"N-{0} c_ {2jf?(n) | l<j<F?(n)} or

i>y(f) with:

(i) n" as given by (1) above.

(ii) f:̂*(x) = <̂

?"-̂ (A)
I A^(?(k)) + [(f(x)+l)-21F?(n)]

for 0<x<y(f), k=0

if ̂ "•̂ (A)eN

0 for x>y(f),

(iii) z(x) = <

P"-̂ (A)
I Z (P(k)) + 1 for x=0,
k=0

0 for x>0,

if F "̂ (A)eN

•>{ N N N

Lemma 1. The mapping W' from NxNxN to NxNxN xNxN is an injection.
N

Proof. Let <n,i,f>, <m,j ,h>eNxNxN and assume <n,i ,f>?i<m, j ,h>.

Case (1.1): Assume n^m and F?(n) = F?(m).

Since F?(n) = F?(m) , the pushdown automata constructed using

either state n or m are the same. Denote this constructed automaton as

48

B. From F?(n) = F?(m), we have llF?(n) = llF?(m). Assume n" = m»'«. If

?""̂ (B) = 0 then n* = [n-llF?(n)] and m* = [m-llF?(m)]. But then

[n-llF?(n)] = n" = m'* = [m-llF?(m)] from which we determine that n=m

which is contrary to original assumption that n?tm. If ? (B)>0 then

(?"-̂ (B))-l (?"^(B))-1
n* = I Q (?(k)) + [n-liF?(n)] and m'-^ = I Q^(F(k)) +

k=0 ^ k=0 ^

(?"-̂ (B))-l
[m-llF?(m)]. But by our assumption, I Qp(?(k)) + [n-llF?(n)] =

k=0 '̂

(?"^(B))-1
n" = m* = I Qp(F(k)) + [m-llF?(m)] from which again follows the

k=0 '̂
contradiction n=m. Note that 0<[n-llF?(n)] and 0<[m-llF?(m)] ;

Case (1.2): Assume n;*m and F?(n)*F?(m).

Since F?(n)*F?(m), we find that the machines constructed starting

with states n and m are different. Denote these machines as B and D,

respectively. Can these machines share any states? The most plausible

possibility of intersection would be where they are consecutive machines,

say P (B) = yeN and P (D) = y+leN. If there is any state in common,

it would be bounded by the maximum value for a state of machine B and

y-^ I
state of machine B is [QpCJ'Ck)) + Qp(?(y))-1 = I Qp(?(k))-1 while

the minimum value for a state of machine D. The maximum value for a

L(?(k)) + Q (F(y))-1 = I QJ
k=0 ^ ^ k=0 ^

the minimum value for machine D is J Qp(?(k)). Thus, the intersection
k=0 ^

of the admissible state sets for these constructed machines is empty.

Note that if y=0 , the maximum value becomes Qp(J'(0))-l and the minimum

Q-(?(0)). We find that no two distinct constructed pushdown automata
y
can share states because the intersection of consecutive machines

U9

under the mapping W" is empty. Therefore, we conclude that n"^m" under

Case (2): Assume î ĵ .

The mapping does not change the coordinate representing head

position, so î ĵ remains under W";

Case (3.1); Assume f̂ ĥ, F?(n) = F?(m), and both tapes appropri

ate to F?(n) and F?(m).

F?(n) = F?(m) means that the constructed pushdown automata are

(?"^(B))-1
identical. So f"(x) = I A (F(k)) + [(f(x)+l)-21F?(n)] for

k=0 '̂

(?"^(B))-1
non-zero characters while h"(x) = I A (̂ (k)) + [(h(x)+l)-21F?(in)]

k=0 ^

for non-zero characters. Assume f* = h-*. Hence,

(F"^(B))-1
I A (?(k)) + [(f(x)+l)-21F?(n)] = f'"(x) = h"(x) =

k=0 '^

(F"^(B))-1
I A^(?(k)) + [(h(x)+l)-21F?(m)] for non-zero characters and

k=0 ^ ̂,̂
f"(x) = 0 = h"(x) otherwise. But now we see that f(x) = h(x) for all

xeN, which contradicts the original assumption that f ?̂ h;

Case (3.2): Assume f ?ih, F?(n) = F?(m), and one tape inappropriate

to F?(n) or F?(m).

Assume the tape to be inappropriate to F?(n). Then f"(x) =

?~-^(B)
I Ap(?(k)) + [(f (x) + l) - 2 1 F ? (n)] for non-zero c h a r a c t e r s while

k=0 ^

50

(?'^(B))-1
h"(x) = I A (?(k)) + [(h(x)+l)-21F?(m)] for non-zero characters

k=0 *̂
and f"(x) = 0 = h"(x) otherwise. Assume f"=h . A necessary condition

.'. .'.
for f"=h" is that the underlying alphabets have a character in common.

We will show that this condition cannot occur. Again, such a common

alphabetic character would be bounded by a maximum value for a character

from F?(m) and a minimum from F?(n). The maximum value from F?(m) is

?"^(B) ?"-^(B)
I A (F(k)) while the minimum value from F?(n) is I A (?(k))+l.

k=0 *̂ k=0 ^

Since this necessary condition cannot be fulfilled, we cannot have

f'"(x) = h"(x) for any non-zero character;

Case (3.3): Assume f?̂ h, F?(n) = F?(m) , and both tapes inappro

priate to F?(n) and F?(m).

f'Vh" follows mutatis mutandis from Case (3.1);

Case (3.4): Assume f=h, F?(n) ^ F?(m), and both tapes appropri

ate to F?(n) and F?(m).

f'"=h" follows mutatis mutandis from Case (3.2);

Case (3.5): Assume f=h, F?(n)?iF?(m) , and one tape inappropriate

to F?(n) or F?(m).

f"=h" follows mutatis mutandis from Case (3.2);

Case (3.5): Assume f=h , F?(n)?^F?(m) , and both tapes inappropriate

to F?(n) and F?(m).

f"Vh" follows mutatis mutandis from Case (3.2).

Therefore, if <n,i,f> -^ <m,j,h> then <n* ,i ,f *• ,o ,z> ^ <in" , j ,h" ,o,g> ,

thereby establishing the lemma.

51

N
We now d e f i n e C as a mapping from P(NxNxN) i n t o i t s e l f such

N
t h a t f o r eve ry AEPCNXNXN) :

(1) C^(A) = {C '^ (x)} , i f :

(i) A = {x}

(ii) X is an appropriate initial configuration

(2) C (A) = u {C"(x)}, if there exists an appropriate initial
^ XEA

configuration y such that {(C") (y)} = A where T is a finite ordinal

(3) C (A) = A, otherwise.

N N
We a l s o d e f i n e d Cp as a mapping from P(NxNxN xNxN) i n t o i t s e l f such

N N
t h a t f o r eve ry AeP(NxNxN xN) :

(1) C (A) = u { C * (x) } , i f :
^ xeA ^
(i) A = {x}

(ii) X is an appropriate initial configuration

(2) C (A) = u (C^'Cx)}, if:
^ xeA ^

(i) there exists an appropriate initial configuration y

such that Cp({y}) = A where T is a finite ordinal

it

(ii) there does not exist XGA such that XGC^CX) and Ix

is a final state

(3) Cp(A) = A, o t h e r w i s e .

N N N
We d e f i n e W as a mapping from P(NxNxN) i n t o P(NxNxN xNxN) such t h a t

N
f o r e v e r y AeP(NxNxN) :

(1) W^(A) = u { K ^ (x) } , i f :
xeA

(i) hi

(ii) xeA is an appropriate initial configuration

52

(2) W^(A) = u {K^(x)}, if:
xeA

(i) A=l

(ii) there exists an appropriate initial configuration

such that Cl,({y}) = A where T is a finite ordinal

(3) W (A) = u {H(x)}, otherwise.
xeA

N
Lemma 2. If C is the mapping just defined from P(NxNxN) into

N N

itself and Cp is the mapping just defined from P(NxNxN xNxN) into it

self, W is a mapping such that W (C (A)) = Cp(W (A)) for all

AeP(NxNxN^).

Proof. We note that W will be an injection since it is the

pointwise extension of the injection W". Also, if xeA then W"(x)eW (A)

for all AeP(NxNxN^).

N =
Case (1): (i) AeP(NxNxN), (ii) A=l, and (iii) there exists an

appropriate initial configuration y such that A = C ({y}) where T is a

finite ordinal. Then:

W (C (A)) = W (u {C*(x)}) = u {C^(K(x))} = Ĉ (W fA))i
xeA ' K (x)eW (A) ^ ^ ^ .

N
Case (2): (i) AeP(NxNxN), and (ii) there does not exist an

appropriate initial configuration y such that A = Cp({y}) where T is a

finite ordinal or A^l. Then:

W (C„(A)) = W (u {C*(x)}) = u {C*(H„(x))} = C^(W„(A)).
XEA ^ Hp(x)eW^(A) ^ ^ ^ ^

We also conclude that the configurations of finite automata and

pushdown automata are correlative, so we may effect a recognition-

preserving morphism once we have devised appropriate Boolean counter

parts for the mappings defined between machine configurations. We have

53

N
NxNxN

as the alter ego of C the mapping T from 6 into itself defined

as:
N -1 NxNxN

T (b) = f Where f(j) = 1 iff J£C (b (1)) for all bee .
N N

NxNxN xNxN
For C^, we have T^ as a mapping from 6 into itself defined

as:
N N

T„(b) = f where f(j) = 1 iff jeC^(b"^(l)) for all bee^^^"^ "^"^ .
*̂ *̂ M

A ... NxNxN
The alter ego of W" is a" which maps the atoms of 6 into the atoms

N N
r: ̂ NxNxN xNxN , ̂ . -,

of 6 defined as:

a'"(b) = y where y(j) = 1 iff je{W*(E"-̂ (b))} for all atoms
N

^ ^ ̂ NxNxN
b of 9

An atomwise extension of a" provides the counterpart of W where the

prescription is:
N

* NvNxM
a(X) = V a (a) for all XeS .

a<X

Since we merely used identification functions in formulating these

Boolean counterparts, we conclude that a is indeed a computer monomor-
N

NxNxN
phism such that a(T^(X)) = Tj,(a(X)) for all Xee . Furthermore,

that a is a recognition-preserving computer morphism is evident from

the construction procedure used to obtain the corresponding pushdown

automaton.

Recognition-Preserving Morphism for Pushdown Automata

Since the class of context-free languages is a proper subclass of

context-sensitive languages, pushdown automata are less powerful than

linear bounded automata. The algebraic counterpart of this fact is a

theorem which states that the computer of pushdown automata

5U

N N
NxNxN xNxN

<e iT> is homomorphic to the computer of linear bounded auto-
N

NxNxN xN
mata <0 »T^>. This computer homomorphism is also a recognition-

preserving morphism.

Theorem 8. There exists a recognition-preserving computer homo-
N N N

^NxNxN xNxN ^ ^ ^NxNxN xN ^
morphism 3 from <0 ,T > to <e »T >.

Proof. Let <n,ijf,j,t>eNxNxN xNxN be an appropriate configura

tion for the pushdown automaton ??(n). Given that J'?(n)eNPDAj we may-

construct a non-deterministic linear bounded automaton. Recall that

Q-(J'?(n)) is the cardinality of the state set and Z_(??(n)) is the
f *

cardinality of the pushdown alphabet for machine F?(n). It has been

shown that ??(n) cannot stack more than S = lQA??(n))'Z (??(n))2 push-

down alphabetic characters on the pushdown store for a given input

alphabetic character and return to the same state for which this stack

ing operation began without the stack becoming cyclic [30]. Using this

fact, we take as "states" the combination of the state of J'?(n) and the

top S symbols from the stack that results on each cycle of a computa

tion. Note that the pushdown stack is merely a means of augmenting the

"memory capability" as incorporated via states of a pushdown automaton.

In order to get a natural number to correspond to these "states," we

define a mapping G relative to the state, the pushdown head position,

and the pushdown tape coordinates of a pushdown automaton configuration

<n,i,f,i,t> such that G(n,j,t) = 2"«3'^^^ ̂ 'S"^^^""-^^ •. . .'P^^?"^^ where P. ,
-' •']+l]+l

is the jt/i+1 prime number. We take the input alphabet of ??(n) as the

input alphabet for this linear bounded automaton we are devising. The

triplets for this linear bounded automaton are obtained by considering

55

atoms a<b where b = Tp(d) where d (1) is an initial configuration for

F?(n). The resulting triplets have the form:

<G[la"^(l),4a"^(l),5a"^(l)], [(3a"^(l))(2a"^(l))] ,

{<G[lc"^(l),4c"^(l),5c"^(l)], M(c)>|c£Tj,(a)}>

[ST, if 2c"-^(l) - 2a~-^(l) = 0
where M(c) = s ,

[RT, if 2c~ (1) - 2a" (1) = 1

Every state-alphabetic character pair must occur in the first two posi

tions of a triplet. We define every such pair by adding any missing

pairs using as the third place member, the pair whose state is that of

such a missing combination and whose action is ST.

The total number of states created by this construction procedure
' S

I [Z (P?(n))]^

otherwise, K=S. The value K represents the total number of distinct

is at most (Q (??(n)))«K where K
7

, i f Z ^ (J ' ? (n)) > l ;

s t r i n g s of pushdown symbols of l e n g t h L f o r 1^L<S. The summation
S .̂

= ([(x^'*'^-l)/(x-l)]-l) for x>2.

Let B denote this machine. We now want to relabel the states of

B as consecutive natural numbers so that we get a standard form of this

machine. We can then locate the machine in the previously constructed

sequence of linear bounded automata. The alphabet of B already consists

of consecutive natural numbers because it was the input alphabet of the

machine pTCn), which was in standard form. Let V be a mapping from the

set of natural numbers {x|0<x<(B-l)} to the set of states {ljB|l<j<B}

of the machine B such that V(0) = MIN{ljB|l<j<i} and V(xtl) =

(MIN({LjB|l<j<i}-{V(i)|0<i<x})) for 0<x<(i-l). We now replace each

56

member liB of {ljB|l<j<B} wherever it occurs in the machine B by the

natural number V (liB). Hence, we now have a machine whose states

are the consecutive natural numbers that range from 0 to (B-1). We now

place this machine in standard form. Let A denote the machine obtained

from the machine B by relabeling its states and reordering its triplets.

Since A is now in standard form, AeNLBA and t (A)eN. We now

N N N
define a mapping from P(NxNxN xNxN) to P(NxNxN xN) in terms of two

N N N
functions K and H from NxNxN xNxN to NxNxN xN. Consider the original

appropriate configuration <n,i,f,j,t> for the pushdown automaton P?(n).

Then K (<n,i ,f, j ,t>) = <n" ,i ,f'«,y(f)> where

(i) n" = <̂
v"'-^(G(n,j,t)), if L •^(A)=0

(Ii"-̂ (A))-1
I Q^(K(k)) + [V-l(G(n,j,t))], if Ii-1(A)>0

k=0 ^

(i i) f'Hx) = <̂
[(f(x)tl)-21J'?(n)] for 0<x<y(f),

0 for x>y(f),
if Z "̂ (A)=0

(iii) f"(x) = <̂

(K ^(A))-l
I A^(^(k))+[(f)x)+l)-21??(n)] for 0<x<y(f),

if % (A)>0.

0 for x>y(f),

The effect of K is to map an appropriate configuration of the pushdown

automaton P?(n) to an appropriate configuration of the linear bound

automaton A that corresponds to P?(n). However, the effect of H- is to

map configurations of ??(n) whether appropriate or not to inappropriate

configurations for A by relabeling the alphabetic characters of the tape

57

so that they do not occur in the alphabet of A. Machine A is precluded

from making any change on such a configuration. Hence, H^C<n,i,f,j,t>)
•If

<n",i ,f'Sy(f)> where

(i) n''* = <̂
V ^(G(n,j,t)), if % •̂ (A)=0

Cli"^(A))-l
I Q^(l!:(k))+[V-l(G(n,j,t))], if %-\k)\Ci

k=0 ^

(ii) f»Hx) = <̂

Ji"-̂ (A)
\ A^(K(k))+[(f(x)+l)-21F?(n)] for 0<x<y(f),

if j!;"-̂ (A)eN.

,N .N.

k=0

[O for x>y(f),

We again introduce the mapping C- from P(NXNXN"XNXN") into it

self. (See corresponding theorem on finite automata for definition.)

We also introduce the mapping C^ from P(NxNxN xN) into itself. C^ is

defined recursively using the same three conditions used to define C .

Us ing this auxiliary mapping we can define W- as a mapping from

P(NxNxN^xNxN^) to P(NxNxN^xN) such that for every AeP(NxNxN^xNxN^):

(1) Wp(A) = u {K-(x)}, if there exists an appropriate initial
^ xeA ^

configuration y such that C_({y})=A where T is a finite

ordinal

(2) W (A) = u {H (x)}, otherwise.
^ xeA ^

N N
Lemma 3. If C^ is the mapping just defined from P(NxNxN xNxN)

N
into itself and C^ is the mapping just defined from P(NxNxN xN) into

itself, W is a mapping such that Wp(Cp(A)) = C^(Wp(A)) for every

AeP(NxNxN^xNxN^).

58

Proof.

N N

Case (1): (i) AeP(NxNxN xNxN) and (ii) there exists an appro

priate initial configuration y such that A = C_({y}) where x is a
r

finite ordinal. Then:

W„(C„(A))=W^(u {C*(x)})= u {c;;(K^(x))}=C^(W^(A));
^ ^ ^ xeA ^ Kj,(x)e:Wj,(A) ^ ^ ^ ^

N N
Case (2): (i) AeP(NxNxN xNxN) and (ii) there does not exist

an appropriate initial configuration y such that A=Cp({y}) where T is a

finite ordinal. Then:

W^(C^(A)=W^(u {C^x)})= u {C^(H^(x))}=C^(W^(A)).
^ ^ ^ xeA ^ Hj,(x)eWj,(a) ^ ^ ^ ^

We may now establish that the Boolean counterpart of W is a

recognition-preserving computer homomorphism. Recall that the length

of the stack for a pushdown automaton can only be increased by adding a

symbol at the top and only be decreased by erasing a symbol at the top.

In either case, only one symbol may be added or deleted from the stack

on each iteration of the configuration function C . The function C^
f r

has been defined recursively to reflect configuration changes for com

putations that begin with an appropriate initial configuration; other

wise, C is defined as an identity function. The change of a pushdown

configuration is determined by what state-input symbol-pushdown symbol

combination is being scanned. This information has been preserved in

the construction procedure used to obtain the linear bounded automaton

A that corresponds to the pushdown automaton V7in). The input alphabet

of 7?(n) has been preserved since the input alphabet of A differs from

the original only in a relabeling. Hence, the information provided by

59

the input symbol scanned is available to A. The input head position

and input tape are used as parameters in the configurations of A.

The stack of a pushdown automaton can be viewed as a means of

augmenting the state set. The state set can provide a memory capa

bility. Given this perception, we devised the states of the constructed

machine A as combinations of the pushdown automaton state and the top

S = LQa(F?(n))»Z (??(n))] symbols of the stack. We may recall that S

is the maximum number of symbols that can be placed in the stack without

it becoming cyclic while we hold the input fixed letting the state vary,

but requiring that the machine return to the state in which it was when

the stacking operation began. Thus, any change in configuration subse

quent to S stack changes must occur as a change of state or change of

input tape. If such a non-cyclic change occurs, the construction pro

cedure for obtaining the triplets for A would insure that the state set

for A already contained a state which corresponds to the new state of

FTCn) after the change. If the subsequent change was to stack only, we

would have a cyclic condition. Under these circumstances, we would be

repeating a string of pushdown symbols of length S that had already

occurred in the computation on a previous iteration of the configuration

function Cp. This is so because all states of F?(n) would have occurred.

Hence, the machine A has all the states it needs.

As we are monitoring all and only those computations that begin

with an appropriate initial configuration for ??(n), we are assured that

all and only those configuration changes specified in the original be

havior of FTCn) are incorporated in the behavior of the corresponding

60

constructed linear bounded automaton A. Behavior here means as usual

that behavior specified for the machine ??(n) by a finite set of

quadruples taken from NxNxNxP(NxACTxACTS) and for machine A by a

finite set of triplets taken from NxNxP(NxACT).

That machine A can only perform the original computations per

formed by machine fTCn) is seen by considering the combined effects of

the mappings C^, K-, H^, and C . when they are used to define the mapping

Wrt- K^ is used to relabel the components of appropriate pushdown con-

figurations so they constitute appropriate configurations for the linear

bounded automaton A. H^ is used to relabel the components of pushdown

configurations so they constitute inappropriate configurations for the

linear bounded automaton A. Ŵ , is defined recursively in terms of C-,
•r t

Krt, and H_. As such, W maps sets of configurations that occur in a
4 f Y

computation under C- into sets that occur in computations under C^. Any

computation that was not defined for C^ is automatically not defined for

C^. The function K^ is selected when a computation is defined, and the

function H- is selected when a computation is not defined. We may con

clude that configurations of the pushdown automata and linear bounded

automata are appropriately mapped by W^ so that the Boolean counterpart

of Wrt will be a recognition-preserving computer homomorphism. We have

a homomorphism rather than a monomorphism because not all the details

of the stack were preserved.

Before we can define the Boolean counterpart of W^, we need the

counterparts of Cp and C^. The alter ego of C^ is defined exactly as it

was for the corresponding theorem for finite automata. For C^, we have
Xt

61

N
NxNxN xN

the mapping T^ from 6 into itself defined as:
^ N

-1 NxNvN vM
T^(b)=f where f(j)=l iff jeC./b "̂ (l)) for all bee ^ ^ .

^, . , ^ IT • ^u ' a ^ ^ N X N X N \ N X N ^ ^ ^NxNxN^xN

The altev ego of Wp is the mapping 3 from 6 to 6

N N
-l,,^^ . ,, , „NxNxN xNxN

defined as:

e(b)=y where y(j) = l iff jeW (b"-^(l)) for all bee^

Since we again used only identification functions, we conclude that 3

is a recognition-preserving computer homomorphism such that

g(Tj.(b))=Tjj(B(b)) for all ^^^^^^^^^^,

Recognition-Preserving Morphism for
Linear Bounded Automata

Since the class of context-sensitive languages is a proper sub

class of the class of recursively enumerable sets , linear bounded auto

mata are less powerful than non-deterministic Turing machines. The

algebraic counterpart of this fact is a theorem which states that the
N

NxNxN xN
computer of linear bounded automata, <e »Tw> , may be embedded in

N
NxNxN

the computer of non-deterministic Turing machines, <0 ,T-> , via a

recognition-preserving computer morphism.

Theorem 9. There exists a recognition-preserving computer mono-

^NxNxN^xN ^ ^ ^NxNxN^ ^
morphism y fr̂ om <e ,T^> to <e »^7^-

N
Proof. Let <n,i,f,y(f)>£NxNxN xN, the configuration set for

NLBA, which is an appropriate configuration for Ii?(n). Given that

Ji?(n)eNLBA, we may construct a non-deterministic Turing machine D whose

triplets are of the form jD = <ljj:?(n) ,2jji?(n) ,3jji?(n)> for l<j<Ii?(n)

and jD = <U,C,{<U,ST>}> for j:?(n)+l<j^Ji?(n)+Q^(j!;?(n)) where U ranges

over the set of states for machine Ji?(n) and C is a constant whose value

is (MAX{2jIi?(n)|l<j^I^?(n)})+l.

62

The triplets of the form <U,C{<U,ST>}> have been added so as to

include a new character C which acts as the blank character of the

alphabet for machine D. In order to comply with the definition of non-

deterministic Turing machines, we include every combination of state for

Ii?(n) with the alphabetic character C. Note, however, that these addi

tional triplets do not add any novelty to the behavior of machine D over

the behavior of machine %7(n). Recall that the tapes of the linear

bounded automata were taken from the set SEQ. Such tapes had an initial

finite segment of positive integers which represented the input string.

This finite initial segment was followed by an infinite number of zeroes

that served to mark the end of the input. The recognition criteria for

linear bounded automata specified that the machine must terminate with

the head position at (y(f)+l), which is the first tape position where a

zero occurred. Recognition was then determined by whether or not the

machine was in a final state. As the symbol then scanned was a zero and

zero does not occur in any machine's alphabet, no move was possible.

The tapes appropriate for the constructed machine D have the same ini

tial finite segment of positive integers but with all of the zeroes re

placed by the character C. Interpreting these same recognition criteria

for non-deterministic Turing machines, the machine D will again stop

with its head position at (y(f)+l), but the symbol scanned now will be

the character C rather than the character zero. Machine D at this time

will be in the same state in which Ji?(n) would have been. The next move

of machine D will be determined by one of the triplets added to the

original set of Ji?(n) because C is the symbol scanned. The specific

63

triplet will be the one that has the state that y,7in) would have had

under these conditions. The next state of these triplets is always

the present state and the action is always ST. Hence, the state remains

whatever state i:i?(n) would have had; and since the action is ST, no

change occurs in the configuration. Again, recognition would be deter

mined by whether or not machine D was in a final state. These final

states are the same as those of K?(n). We conclude that the original

behavior of J:i?(n) has not been altered through reformulation as a non-

deterministic Turing machine. The reformulation was necessary to

satisfy the definition of non-deterministic Turing machines. From this

point on the proof parallels exactly the proof used for the recognition-

preserving morphism for finite automata.

As DeNTM, we have T~ (D)eN so that D is the T~ (D)+l machine

whose states for l<j<Q-(D) are the numbers given by:

(1) [ljE?(n)-llj;?(n)], if T"-̂ (D)=0

(7"^(D))-1 _
(2) I (7(k)) + [lj^?(n)-llji?(n)], if T (D)>0.

k=0

The alphabetic characters of the machine D for l<j^((Q^(D))tl are the

numbers given by:

(1) [2(jQ^(D))D-21^?(n)], if T"-^(D)=0

(T'-̂ (D))-1 .
(2) I (T(k)) + [2(jQ (D))D-2lK?(n)], if T"-^(D)>0.

k=0 ^
* N N

We define a mapping W , from NxNxN xN to NxNxN in terms of the
Ju

two functions K^ and H^. Again K^ and H^ are used to achieve the same

effect as K and H for finite automata. For the linear bounded

64

automaton i!i?(n) and the corresponding constructed machine DeNTM, we let

W^*(<n,i,f ,y(f)>) = K^(<n,i,f ,y(f)>) where K^(<n ,i ,f ,y(f)>) is:

(1) <n''Si,f">, if f"N-{0} £ {2jK?(n)} and 0<i<(y(f) + l) with:

(i) n'> = <̂
[n-lU?(n)], if 7 "^(D)=0,

(T"-^(D))-1
if T"-^(D)>0

I Q (7(k))+[n-llK?(n)],
k=0

'[(f(x)+l)-2lK?(n)] for 0<x<y(f),

(ii) f*(x) = <̂ if T""^(D)=0

2(D)D for x>y(f),

(iii) f»Hx) = <̂

(7"-^(D))-l
I A (7(k))+[(f(x)+l)-2lE?(n)]

k=0

(7"-^(D))-l

for 0<x<y(f),

if 7""^(D)>0

I A (7(k))+[(2(D)D-21K?(n)]
k=0 for x>y(f),

and W"(<n,i,f,y(f)>) = H (<n,i,f,y(f)>) where H^(<n,i,f,M(f)>) is:

(2) <n-'Si,f»^>, if f*'N-{0} £, {2j]^?(n) |l<j<E?(n)} or i>(y(f) + l)

with:

(i) n* as given by (1) above

(ii) f*(x) = <̂

7"-^(D)
I A^(7(k)) + [(f(x) + l)-21Ji?(n)]

k=0

7"-^(D)

for 0<x<y(f),

if 7""^(A)eN.

I A (7(k))+[2(D)D-2lE?(n)] for x>y(f),
k=0

65

j'c N N .

Lemmas. The mapping W . from NxNxN xN t o NxNxN i s an i n j e c t i o n .
Jo

Proof. The proof of the lemma parallels exactly the proof of the

corresponding theorem for finite automata.

N
We now introduce a mapping C^ from P(NxNxN xN) into itself and a

N
mapping C- from P(NxNxN) into itself. Both the mappings 'Ĉ and C- are

defined recursively using the same three conditions that were used to

define the mapping Cp. (See corresponding theorem on finite automata

N
for definition.) We now define W^ as a mapping from P(NxNxN xN) to

P(NxNxN^) such that for every AeP(NxNxN^xN):

(1) W^(A) = u {K^(x)}, if there exists an appropriate initial
xeA

•r

configuration y such that C^({y})=A where T is a finite ordinal

(2) W^(A) = u {H^(x)}, otherwise.
xeA

N
Lemma 5. If C^ is the mapping just defined from P(NxNxN xN) into

itself and C^ is the mapping just defined from P(NxNxir)into itself, W

N
is a mapping such that W^(C (A)) = C^(Wy(A)) for every aeP(NxNxN xN).

Proof.

N Case (1): (i) AeP(NxNxN xN), and (ii) there exists an appropri-

•r

ate initial configuration y such that A = C^({y}) where T is a finite
<j

ordinal. Then:

W^(C^(A))=W^(u {C*(x)})= u {C_.(K̂ (x))}= C-(W^(A));
^ ^ ^ xeA ^ Kj^(x)eW^(A) ^ ^ ^ ^

N
Case (2): (i) AeP(NxNxN xN), and (ii) there does not exist an

appropriate initial configuration such that A = C^({y}) where T is a

finite ordinal. Then:

W^(C/A))=W^(u {C?;(x)})= u {C*(H^(x))} = C_.(W^(A)).
^ ^ ^ xeA ^ H^(x)eW^(A) ^ ^ ^ ^

66

We also conclude that configurations of linear bounded automata

and non-deterministic Turing m chines are correlative, so we may effect

a recognition-preserving morphism once we have devised appropriate

Boolean counterparts for the mappings defined between machine configura-
N NxNxN xN tions. We have as the alter ego of C^ the mapping T^ from 6

into itself defined as:

N
T (b) = f where f(j)=l iff jeĈ (b"-̂ (l)) for all beG^^^ ^^.

N
NxNxN

For C^, we have T^ as a mapping from 6 into itself defined as:

N
-1 NvMvM

T (b)=f where f(j)=l iff jeC (b -"(1)) for all bee .

Finally, we obtain the computer morphism y ̂ s the alter ego of W^ as a
N N ^

^NxNxN xN ^NxNxN ^ ^. ,
mapping from 6 to 0 defined as:

N
Y(b)=y where y(j) = l iff jeW (b'-'-(l)) for all bee^^^ ^^.

Since we merely used identification functions in formulating these

Boolean counterparts, we conclude that y is indeed a computer monomor-
N

NyNvN vN
phism such that Y(T (b)) = T (yCb)) for all bee . That y is also

a recognition-preserving morphism is evident from the construction pro

cedure used to obtain the corresponding non-deterministic Turing machine.

67

CHAPTER IV

CONCLUDING REMARKS

Computer Morphisms and Turing Machine Varieties

On the basis of the previous theorems we have an algebraic

counterpart of the classical hierarchy of recognizers in the theory of

abstract computers. We have established recognition-preserving computer

morphisms between the computers of finite automata and pushdown auto

mata, between the computers of pushdown automata and linear bounded

automata, and between the computers of linear bounded automata and non-

deterministic Turing machines. That the latter morphism involves the

non-deterministic variety of Turing machine prompts us to consider

whether or not computer morphisms may be used to characterize the rela

tion between the deterministic and non-deterministic varieties of Turing

machines. As previously noted, both varieties have the same recognition

power. We would like to be able to reflect this relationship with a

recognition-preserving morphism from the computer for the non-

deterministic variety to the computer for the deterministic variety.

Let us consider the method used to show the equivalence of the

recognition capabilities of deterministic and non-deterministic Turing

machines. The objective is to devise a deterministic machine that

recognizes all and only those tapes recognized by the non-deterministic

machine. Using a theorem that a K-tape deterministic Turing machine has

no more recognition power than a one-tape deterministic Turing machine,

58

the standard method to show that a three-tape deterministic machine x

recognizes all and only those tapes recognized by a non-deterministic

machine y [15]. Tape one is the original input tape of machine y.

Tape two is always a finite sequence of integers modulo

(MAX{(3jy)Il<j<y}) which represent the choice to be selected for a par

ticular present state-symbol scanned combination. The choices for each

such present state-symbol scanned combination are assumed to be indexed

by the natural numbers between zero and (MAX{(3jy)|l<j<y})-l. Tape

three is a working tape on which a particular computation is carried

out. The simulation procedure has machine x copy tape one (which must

be assumed to be finite otherwise the copying would never terminate)

onto tape three. Then machine x generates a sequence of integers

modulo (MAX{(3jy)|l<j<y}) on tape two. These sequences of integers are

systematically generated by length and by natural order within sequences

of the same length. Not every such sequence need correspond to a pos

sible sequence of moves for machine y because there are not necessarily

(MAX{(3jy)I1<j^y}) choices for each state-symbol combination. Once this

sequence is generated, machine x attempts to recognize the input string

on tape three by using, on the Tth cycle, the ith integer on tape two to

decide which choice to select from those possible for the present state-

symbol scanned combination that occurs on the Tth cycle. If machine y

had accepted the input string on tape one using this sequence of moves,

so would machine x. If acceptance does not occur the entire procedure

is repeated, but the sequence of moves is changed by regarding tape two

as a counter which is incremented on each subsequent attempt at

69

recognition. The number of integers on tape two corresponds to the

number of moves to be made in an attempt at recognition. First, all

paths of length one are tried, then all paths of length two, etc.

Recognition, if it occurs, occurs after a finite number of moves.

Hence, if such a finite sequence of moves leads to recognition, it will

eventually occur as a sequence of moves determined by tape two. In this

sense machine x recognizes all and only those tapes recognized by

machine y.

It is apparent that machine x makes many intermediate moves while

generating the sequence of integers on tape two and copying strings on

tape three that are not directly related to the actual recognition com

putation of y. Consequently, it is impossible to use this approach in

order to obtain a computer morphism between the computer for y and the

computer of x because the two computers would not be synchronous. A

computer morphism requires that the morphic computers be appropriately

synchronous. If we retain synchronicity, we may have a weak

recognition-preserving morphism in the sense that: recognition occurs for

the image machine whenever recognition occurs for the pre-image machine,

but not conversely. That is, the image machine recognizes at least

those tapes recognized by the pre-image machine yet it may also recog

nize others.

For example, let x be a non-deterministic Turing machine whose

state set is S and whose alphabet is the set A. An abstract digital
N

SxNxA
computer which models machine x is <9 ,7> whose state transition

function 7 is defined as usual for a non-deterministic machine. Let

70

N
I SxNxA -1

INIT = {b|bee and b (1) is an initial configuration} and APR =

{c|c=7 (b) for some belNIT and T>0}. Let A* be a new alphabet defined

as A" = Au{a"" |a" = a+A for aeA}. We may now define a mapping K from the

A M

set APR to a new set of tapes (A") . If belNIT then:

(1) (K(b))(0) = <̂
([3(b ^(1))](0))'\ if 7(b)5̂ b

[3(b"-^(l))](0), otherwise.

and

(2) (K(b))(i) = [3(b"^(l))](i), if 0<ieN.

If beAPR and be7'̂ '̂ -̂ (x) for celNIT then:

(1) (K(b))(i) = (K(7'^(c)))(i), if 0<i<T

(2) (K(b))(i) = [3(c"^(l))](i), if i>T+l

f([3(c"^(l))](?+l))", if 7̂ (c)ĵ T̂ ^̂ (c)
(3) (K(b))(T+l) = <̂ _,

[[3(c (1))](T+1), otherwise.

•'• N
We now define a mapping Q from K''APR to (A") such that

[Q(K(7'^(b)))](T) = [K(7\b))](T) for all finite ordinals x and belNIT.

We may now construct a deterministic Turing machine y whose state set

is {0,1} and whose alphabet is A* with initial state 0 and final state

set {0,1}. The quadruples are given by the set {<0 ,a*'* ,1 ,RT> ,<0 ,a,0 ,a> ,

<l,a",l,RT>,<l,a,l,a>} where a, a*eA'*.

Note that if machine x stops after x steps after having been

started on the tape t, then machine y stops after x steps after having

been started on the tape t = Q(K(7 (b))) for any finite ordinal x where

b (1) is an initial configuration and t = 3(b (1)). However, the

machine y also stops on tapes that are not in the set Q**(K**APR) and

whose standard representation for machine y is also not in Q''(K"APR).

71

Suppose t is not recognized by machine x. Then the tape t" given by

t"*(0) = (t(0))'" and t''(i) = t(i) for i>0 is recognized by y but it is

not in Q"(K"APR) nor are any of its equivalent tapes in Q"(K"APR).

Yet, it is possible to exhibit a computer monomorphism from the computer

,SxNxA^ r̂ û ^ ^exNxQ"(K"APR) ^ ^
<e ,T> to the computer <e ^ ,T> whose state-transition

function T is defined as other than the identity only on the atoms of

^exNxQ"(K"APR)
o

We have not succeeded in showing that there do not exist

recognition-preserving morphisms that relate the computers for non-

deterministic Turing machines to appropriate computers for deterministic

machines. It can be easily shown that computers for non-deterministic

machines are monomorphically related to computers which are reasonable

candidates. That is to say, we can construct abstract digital computers

whose transition functions are defined as other than the identity only

on the atoms and stop or fail to stop appropriately. But we have not

been able to devise ways of constructing deterministic Turing machines

for these reasonable candidates. We also have not been able to show

that such constructions are impossible. We have not attempted to solve

the problem of how to proceed generally from appropriate abstract digi

tal computers to the recognizers which they may be said to be modelling.

As an example, let x be a non-deterministic Turing machine whose

state set is S and whose alphabet is the set A. An abstract digital

SxNxA

computer which models machine x is <9 ,7> where the state-

transition function T is defined as usual for a non-deterministic
N

SxNxA B
machine. Let B = 9 . Define a mapping H from B to 6 such that

72

(H(x))(y)=l iff x=y for any x,ye:B. H is an injection as it is merely an

identification function. Consider the abstract digital computer <6 ,T>

whose state transition function T is defined as T(H(x)) =H(7(x))if H(x)

B B
is an atom of 6 and T(b) = b if b is not an atom of G . Note that the

D

computer <e ,T> stops when and only when the computer <B,7> stops, and

H is a computer monomorphism. The abstract digital computer <6 ,T> is

a reasonable candidate for a deterministic machine because its state-

transition function T is defined as other than the identity only for

atoms of 6 .

Summary

The objective has been to recover the classical theory of recog

nizers within the theory of abstract digital computers. We have done so

using only the algebraic concepts of abstract digital computer and com

puter morphism. In doing so, we have also addressed the question of how

machines of different kinds can be algebraically related to reflect

their capability relative to a particular process. We have considered

the question relative to the process of recognition used by the machines

of the hierarchy of recognizers induced by the hierarchy of languages.

Abstract digital computers provide a standard machine in which

the abstract machines of the hierarchy can be modelled. The modelling

mirrors the details of the computation procedure of the original

machines. The essential parameters a machine uses are identified and

subsequently encoded into an appropriate Boolean algebra with an addi

tional operator. The additional operator on the algebra is defined so

that it will reflect the interaction of a machine's essential parameters

73

during the course of a computation. The Boolean algebra is the carrier

of the abstract digital computer and the operator is its state-
*

transition function.

An abstract digital computer has been constructed for each class

of recognizers countenanced. The algebraic counterpart of the classical

hierarchy of recognizers has been obtained in the theory of abstract

computers by means of computer morphisms which hold between the com

puters of finite automata, pushdown automata, linear bounded automata,

and Turing machines. The construction of an abstract digital computer

that models a single recognizer is effective. But the construction of

an abstract computer that models a whole class of recognizers is not

effective since the class of recognizers must be ordered. Nevertheless,

the morphisms that relate abstract digital computers in the manner

expected are effective. Indeed, the relevant morphisms are obtained via

constructions that depend on single machines. Effective coding tech

niques are used on single machines to obtain the machine in the next

higher class of recognizers which recognizes all and only the tapes

recognized by the original.

From this investigation we conclude that the algebraic concepts

of abstract digital computer and computer morphisms are sufficient to

yield a unified algebraic theory of a large portion of automata theory.

74

REFERENCES

1. Abbott, J. C. 1969. Set^ Lattices^ and Boolean Algebras. Boston:
Allyn and Bacon, Inc. pp. 197-207.

2. Aho, A. V. and Ullman, J. D. 1968. "The Theory of Languages."
Mathematical Systems Theory 2:97-125.

3. Arbib, M. A. 1969. Theories of Abstract Automata. New Jersey:
Prentice-Hall, Inc. pp. 3-21.

4. Birkhoff, G. and Lipson, J. D. 1970. "Heterogeneous Algebras."
Journal of Combinatorial Theory 8:115-133.

5. Booth, T. L. 1967. Sequential Machines and Automata Theory. New
York: John Wiley & Sons pp. 413-416.

6. Chomsky, N. 1959. "On Certain Formal Properties of Grammars."
Information and Control 2:137-167.

7. Chomsky, N. 1962. "Context-Free Grammars and Pushdown Storage."
Quarterly Progress Eept. No. 65^ M.I.T. Research Lab, Electronics.
pp. 187-194.

8. Chomsky, N. and Miller, G. A. 19 58. "Finite State Languages."
Information and Control 1:91-112.

9. Chomsky, N. and Schutzenberger, M. P. 1963. "The Algebraic Theory
of Context-Free Languages." Computer Programming and Formal
Systemsy edited by P. Braffort and D. Hirschberg. Amsterdam:
North Holland, pp. 122-214.

10. Fisher, P. C. 1965. "On Formalisms for Turing Machines," J.ACM
12:570.

11. Ginsburg, S. and Greibach, S. 1967. "Abstract Families of
Languages." IEEE Conf. Record of Eighth Annual Symp. on Switch
ing and Automata Theory. Austin, Tex., October, 1967. pp. 128-
139.

12. Ginsburg, S. and Rose, G. F. 1966. "Preservation of Languages by
Transducers." Information and Control 9:153-176.

13. Gross, M. and Lentin, A. 1970. Introduction to Formal Grarmars.
New York: Springer-Verlag. p. 153.

75

m. Halmos, P. R. 1966. Algebraic Logic. New York: Chelsea, p. 52.

15. Harrison, M. A. 196 8. "Characterizations of Languages by•Grammars
and Automata" in Foundations of Information Systems Engineering.
Univ. of Michigan Engineering Summer Conference June 17-28, 1968.
29 pp.

16. Hartmanis, J. and Stearns, R. E. 1966. Algebraic Theory of Sequen
tial Machines. New York: Prentice-Hall, Inc.

17. Hopcroft, J. E. and Ullman, J. D. 1967. "A Survey of Formal
Language Theory." Froaeedings of First Annual Princeton Conf.
on Information Sciences and Systems. Princeton, N.J. March,
1967. pp. 68-75.

18. Hopcroft, J. E. and Ullman, J. D. 1967. "An Approach to a Unified
Theory of Automata." Bell System Technical Journal H6:176 3-1829.

19. Hopcroft, J. E. and Ullman, J. D. 1959. Formal Languages and
Their Relation to Automata. Menlo Park: Addison-Wesley. pp.
74-75.

20. Horgan, J., Roehrkasse, R. and Chiaraviglio, L. 1971. "Abstract
Digital Computers and Turing Machines." (Forthcoming.)

21. Kalman, R. E., Falb, P. L., and Arbib, M. A. 1969. Topics in
Mathematical Systems Theory. New York: McGraw-Hill. pp. 17-
20; 163-233.

22. Krohn, K. B. and Rhodes, J. L. 1962. "Algebraic Theory of
Machines." Proceedings of the Symp. on Mathematical Theory
of Automata. Polytechnic Institute of Brooklyn, N.Y. April,
1962. pp. 341-384.

23. Kuroda, S. Y. 1964. "Classes of Languages and Linear Bounded
Automata." Information and Control 7:207-223.

24. Nievergelt, J. 1965. "Partially Ordered Classes of Finite Auto
mata." IEEE Conf. Record of Sixth Annual Symp. on Switching and
Automata Theory. Ann Arbor, Mich., October, 1965. pp. 229-234.

25. Peters, S. 1968. "Mathematical Linguistics" in Mathematics of the
Decision Sciences^ part 2. Lectures in Applied Mathematics 12:
368.

26. Poore, J. H. Jr. 1970. "Toward an Algebra of Computation."
Doctoral Thesis. School of Information and Computer Science,
Georgia Institute of Technology.

76

27. Poore, J. H. Jr. and Chiaraviglio, L. 1971. "Abstract Digital
Computers and Their Algebras." (Forthcoming.)

28. Rabin, M. 0. and Scott, D. 1959. "Finite Automata and Their
Decision Problems." IBM Journal of Research and Development
3:114-125.

29. Rose, G. F. 19 70. "Abstract Families of Processors." Journal
of Computer and System Sciences 4:193-204.

30. Stearns, R. E., Hartmanis, J. and Lewis, P. M. 1965. "Hierarchies
of Memory Limited Computations." IEEE Conf. Record of Sixth
Annual Symp. on Switching and Automata Theory. Ann Arbor, Mich. ,
October, 1965. pp. 179-190.

77

VITA

Robert Charles Roehrkasse is a regular officer in the United

States Air Force presently serving in the grade of captain. He was born

in Waterloo, Illinois, on June 1, 1941. He was graduated from Red Bud

High School, Red Bud, Illinois, in 1959. In 1965 he was graduated from

Southern Illinois University with a Bachelor of Arts in Mathematics and

was commissioned a second lieutenant in the Air Force. He was immedi

ately assigned to the Georgia Institute of Technology to obtain a Master

of Science in Information Science. Upon completion of the degree in

1966, he was assigned to the Armament Development and Test Center, Eglin

Air Force Base, Florida. He served initially as Chief of the Computer

Systems and Programs Branch and later as Chief of the Data Automation

Division. He was subsequently selected under a special Air Force educa

tion program to pursue the Doctor of Philosophy in Information and Com

puter Science at the Georgia Institute of Technology beginning in June

of 1969. Upon completion of this degree, he will report for duty as an

instructor at the Air Force Academy in the Department of Astronautics

and Computer Science.

Captain Roehrkasse is a Distinguished Military Graduate of the

Air Force Reserve Officers Training Corps at Southern Illinois Univer

sity. He has been a member of the national honorary mathematics fra

ternity Pi Mu Epeilon, During his assignment to the Armament Develop

ment and Test Center, he was awarded the Air Force Commendation Medal

78

for his managerial effectiveness and had his program for cost reduction

featured in an Air Force periodical. He currently has a publication

pending in his area of specialization.

