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SUMMARY 

Natural earthquakes occur on faults. The relationship between fault zone 

structures and earthquake behaviors remains one of the most interesting problems in 

seismology. As an important tool to detect earthquakes and image the Earth’s interior, 

seismic arrays have been widely used since the 1960s. Recordings from closely spaced 

uniform seismometers improved imaging resolution of the Earth’s interior and enhanced 

detection of small-magnitude earthquakes. However, such an increase in data size also 

poses a challenge in the way that we used to handle and processing seismic data. Visual 

inspection and manual selection become less practical and sometimes impossible.  

My PhD research focuses on obtaining high-resolution seismic properties (e.g., 

seismic anisotropy and velocity contrast) along major fault zones in California and 

Turkey, and detecting seismic events/phases multi-scale dense seismic arrays. To process 

large-size seismic data, I developed several tools to automatically pick P, S and fault zone 

head waves. Using recently emerging ultra-dense arrays, I proposed a new metric, termed 

local similarity, to detect weak microseismic signals that are barely above noise level. 

These studies share the same feature, i.e., using automatic techniques to extract 

earthquake and structure information from big seismic data recorded by dense or ultra 

dense arrays. The results are expected to provide valuable information on fault zone 

structures and microseismic behaviors. The tools developed in these studies can be 

applied to a wide range of research topics.   
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CHAPTER 1. INTRODUCTION 

1.1 Overview 

Natural earthquakes occur on faults. Most of large fault systems reside on plate 

boundaries. In contrast with the continuous deformation processes in plate interiors, the 

deformation and evolution on plate-bounding faults are highly episodic and irregular. 

Earthquake nucleation, rupture process, seismic radiation are largely controlled by the 

structures and properties of fault, which makes earthquake physics dictated to a large 

extent by fault zone properties [Ben-Zion, 2008]. Aftershock distribution and rupture area 

usually correlate with fault geometries and asperities [e.g., McNamara et al., 2014; 

Michael and Eberhart-Phillips, 1991; Schorlemmer and Wiemer, 2005]. In addition, rock 

stiffness and fluid conditions around faults can strongly affect their frictional properties 

and slip behaviors, i.e. regular earthquakes, slow earthquakes, or stable sliding [Scholz, 

1998; Sibson, 1994]. Hence, earthquake physics is largely dictated by fault zone 

properties [Ben-Zion and Sammis, 2003]. 

As an important tool to study earthquakes and fault zone properties, seismic 

arrays have been widely used in modern seismology since 1950 [Filson, 1975]. 

Recordings from close spaced uniform seismometers are used to effectively enhance 

signal-to-noise ratio and can significantly improve imaging resolution of the Earth’s 

interior [Rost and Thomas, 2002]. Seismic arrays can also be used to image rupture 

properties of very large earthquakes [Ishii et al., 2005; Meng et al., 2012]. With the 

recent sensor advancement, seismic arrays become much denser than before, which 

provide unique opportunities for imaging fault zone properties and detect seismic events 
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with unprecedented resolution [Lin et al., 2013; Inbal et al., 2016].  

Although many exciting findings in modern seismology benefit from the 

increasing density of seismic arrays, the associated increase in data size also poses a 

significant challenge in the way of handling and processing seismic data. Especially, 

visual inspection and manual selection is becoming less practical. Many popular 

techniques used in major data centers and seismological research originated from the age 

when seismic data were in relatively small size and computational power was limited.  

The theme of my Ph.D. focuses on fault zone properties and seismic phase/event 

detections with large seismic data recorded by dense arrays. In the first two chapters, I 

investigated two important properties of fault zones, i.e. seismic anisotropy within and 

outside fault damage zones (CHAPTER 2), and velocity contrast along fault interface 

(CHAPTER 3), which are briefly introduced in Sections 1.1.1 and 1.1.2, respectively. 

When processing large volume of seismic data during my research, I also developed 

several tools to automatically pick P, S and fault zone head waves (FZHWs), in order to 

reduce human workload and improve phase picking accuracy (CHAPTER 3). 

The recent years have also seen the emergence of ultra-dense arrays with 

hundreds to thousands of sensors and tens- to hundred-meter interstation spacing [e.g., 

Lin et al., 2013; Ben-Zion et al., 2015]. Such arrays, sometimes called large-N arrays, 

provide unprecedented detection capability for small magnitude earthquakes and other 

unconventional sources. In order to improve detection completeness of small-magnitude 

events with Large-N arrays, I developed a new method for seismic event detection 

(CHAPTER 4). The overview of this subject is presented in Section 1.1.3. 

1.1.1 Seismic anisotropy and shear-wave splitting 
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Seismic anisotropy describes the variation of seismic wave speed with the 

propagation direction. In the upper crust, seismic anisotropy is commonly caused by the 

fractures or cracks that align at a preferred direction along the maximum horizontal 

compressive stress direction SHmax [Booth and Crampin, 1985; Leary et al., 1990; 

Crampin, 1991; Zhang and Schwartz, 1994]. This is termed as stress-controlled 

anisotropy. The other category, i.e. structure-controlled anisotropy, includes sedimentary 

bedding planes, mineral orientation, and fracture alignment along active fault zones 

[Boness and Zoback, 2006].  

Seismic anisotropy leads to an interesting phenomenon termed shear wave 

splitting (SWS)), which describes the observations that seismic shear waves split into two 

orthogonal components that arrive at slightly different times [Savage, 1998; Long and 

Silver, 2009]. SWS is usually quantified by two parameters: polarization direction of the 

fast component Φ and delay time δt between the fast and slow components. SWS is 

extensively used to study various structures in the Earth’s interior. Teleseismic phases 

SKS and SKKS are used to image the upper mantle flow direction [Barruol, 2004] and 

D’’ layer properties [Restivo and Helffrish, 2006]. In comparison, direct S waves are used 

to estimate density and alignment of fractures in the upper crust [Peng and Ben-Zion, 

2004; Yang et al., 2011] and volcanic arcs [Teanby et al., 2004; Savage et al., 2010].  

1.1.2 Velocity contrast and fault zone head waves 

Velocity contrast across fault interface, on the other hand, is likely caused by 

asymmetric damage zones in which fractures are localized on one side of the fault wall 

[Ben-Zion, 2001; Sibson, 2003], and/or lithological contrast across fault strike [e.g., 

Michael and Eberhart-Phillips, 1991; Thurber et al., 2006; Wdowinski et al., 2007]. The 
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existence of velocity contrast can produce significant differences in seismic radiation, 

compared to a homogeneous solid, as shown in earthquake rupture simulations [Shi and 

Ben-Zion, 2006]. It leads to a dynamic change on the normal stress in the rupture tips, 

predicting a statistically preferred rupture direction when an earthquake initiates in a 

bimaterial interface and propagates unilaterally [e.g. Dalguer and Day, 2007; Ampuero 

and Ben-Zion, 2008]. This makes the investigation of velocity contrast relevant to seismic 

hazard assessment, because rupture propagating towards and away from a site produces 

significantly different ground motions [Olsen et al., 2006]. 

Bimaterial interfaces are expected to generate FZHW, which refract along the 

fault interface with the seismic velocity of the faster side and radiate from the fault to the 

slow side [Ben-Zion and Malin, 1991]. For stations on the slow side, direct P waves 

sample the slow velocity block and FZHW mostly sample the fast side. Hence, the arrival 

time differences between them can be used to estimate the velocity contrast on both sides 

[Ben-Zion et al., 1992]. In addition, FZHW sample the portion of the fast velocity block 

immediately neighboring the fault interface, which is critical for dynamic rupture 

propagation. FZHW have been observed along several major plate boundary faults. These 

include the San Andreas Fault [Ben-Zion and Malin, 1991; McGuire and Ben-Zion, 2005; 

Lewis et al., 2007; Zhao et al., 2010; Allam et al., 2014] and the North Anatolian Fault in 

northwestern Turkey [Bulut et al., 2012; Najdahmadi et al., 2016]. A recent study also 

found evidence of FZHW on the Garzê-Yushu Fault, an intraplate fault that ruptured 

during the 2010 Mw6.9 Yushu earthquake [Yang et al., 2014]. These studies of FZHW 

provide clear evidence for the existence of bimaterial interface along major faults in both 

interplate and intraplate settings. 
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1.1.3 Seismic event detection 

Seismic event detection is a fundamental operation in observational seismology, 

which is to detect seismic events of particular interest from continuous recordings. The 

major goal is to detect events as small as possible while avoid too many false events 

(which are noise or events out of interest). Traditional earthquake detection workflow 

includes phase picking (identifying impulsive arrivals of seismic phases) and phase 

association (grouping these phases into an individual event) [Allen, 1982]. Phase picking 

is commonly done by an energy detector such as short-term average over long-term 

average (STA/LTA) ratio [Allen, 1978; Earle and Shearer, 1994]. As computer power 

increases, many sophisticated detection algorithms have been proposed. Most of these 

algorithms continuously search over possible source locations by shifting and stacking 

waveforms or their variants (e.g., envelope, STA/LTA, normalized waveform). 

Outstanding examples include the source scanning algorithm [Kao and Shan, 2004], 

coalescence microseismic mapping [Drew et al., 2013], and backprojection [Ishii et al., 

2005; Kiser and Ishii, 2013].  

Different from this category, template matching, or matched filtering, takes 

advantage of predetermined events and cross-correlates them with continuous recordings 

to detect events with high waveform similarities [Gibbons and Ringdal, 2006]. This is 

based on the fact that nearby seismic events may have similar source mechanisms and ray 

paths, and hence similar waveforms. Template matching usually detects new events at a 

factor of 5-10 times the original catalog [Shelly et al., 2007; Peng and Zhao, 2009; Yang 

et al., 2009], but requires predetermined templates as inputs, which are not always 

available. An auto-detection technique could be used to build template events from 
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scratch [Brown et al., 2008]. However, with O(N2) type scaling, this is computationally 

very intensive and hence cannot be applied to longer time series. Other approaches, such 

as fingerprinting [Yoon et al., 2015], combination of source-scanning and template 

matching [Frank et al., 2015], or earthquake search-engines [Zhang et al., 2014] have 

also been proposed for fast and robust detection of seismic events. 

1.2 Motivations 

High-resolution fault zone imaging and small-magnitude seismicity around active 

faults can be achieved with dense fault zone arrays. Hereby I utilize dense arrays for 

studying shear-wave anisotropy and velocity contrast in fault zones and use Large-N 

arrays to detect very small seismic events. Seismic anisotropy provide important 

constraints on crustal stress field and structural heterogeneities, and is indicative of 

fracturing and rock damage along source-receiver paths. However, how shear-wave 

anisotropy vary in very-fine scale and how it is mapped at depth remains unclear. In this 

subject I conducted three projects to address these problems [Li et al., 2014, 2015; Li and 

Peng, in prep.]. 

As mentioned before, many seismic processing tasks, e.g. seismic phase picking, rely 

on human’s visual inspection and hand-picking. For example, properly picking FZHWs is 

an essential but laborious task to study fault zone velocity contrast. As a large volume of 

data from dense arrays poses a challenge in seismic data processing, automation of these 

processing tasks become necessary, which not only reduces human workload, but also 

avoids subjective selection and increases research reproducibility. Therefore, I developed 

two packages for seismic phase picking of P, S and FZHW respectively, and tested them 

with data sets recorded in central and southern California [Li and Peng, 2016a, 2016b].  
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An extreme case of dense arrays is the recent emerging Large-N arrays that contain 

hundreds to thousands of sensors and tens- to hundred-meter interstation spacing. These 

arrays have been increasingly used in the recent years and are expected to significantly 

enhance seismic monitoring/imaging capability. However, traditional technique is no 

longer effective to handle such type of new data. Accordingly, my recent work [Li et al., 

in revision] aimed to develop a new detection method that fully takes advantage of the 

features of Large-N arrays. 

1.3 Thesis Organization 

This thesis consists of the content from four published papers [Li et al., 2014; Li et 

al., 2015; Li and Peng, 2016a; Li and Peng, 2016b], one manuscript in revision [Li et al., 

in revision] and one manuscript in preparation [Li and Peng, in prep.]. In Chapter 2, I 

present the studies of SWS measurement in the San Jacinto Fault Zone (SJFZ) using 

temporary and permanent arrays, the whole southern California using two-decade data 

from Southern California Seismic Network. I also present an SWS tomography method to 

map the spatial distribution of SWS into 3-D along the North Anatolian Fault in Turkey. 

Chapter 3 focuses on two automatic phase picking methods that I developed for general P 

and S waves and more specific FZHWs.  In Chapter 4, I present the development of a 

high-resolution seismic detection method for ultra-dense arrays. This method is applied to 

a 5200-sensor array to detect ultra-weak seismic signals in the City of Long Beach, 

California. Finally in Chapter 5, I conclude the thesis by summarizing the findings and 

developed techniques, and discuss potential directions of future work. 
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CHAPTER 2. SHEAR-WAVE ANISOTROPY IN FAULT ZONES 

The results presented in this chapter are from Li et al. [2015a], Li and Peng [in prep], 

and Li et al. [2014]. 

2.1 Spatial Variations of Shear-wave Anisotropy near the San Jacinto Fault Zone, 

southern California 

Summary 

We examine crustal anisotropy at several scales along and across the SJFZ by 

systematically measuring shear wave splitting (SWS) parameters. The analyzed data are 

recorded by 86 stations during 2012-2014, including five linear dense arrays crossing 

the SJFZ at different locations, and other autonomous stations within 15 km from the 

main fault trace. Shear phase arrivals and SWS parameters (fast directions and delay 

times) are obtained with automated methods. The measurements quality is then assessed 

using multiple criteria, resulting in 23,000 high quality measurements. Wwe find clear 

contrast of fast directions between the SW and NE sides of the SJFZ. Stations on the SW 

side have fast directions consistent overall with SHmax, while stations on the NE side 

show mixed patterns likely reflecting lithological/topographic variations combined with 

fault zone damage. The fast directions in the Anza gap section with relatively simple fault 

geometry agree with the inferred SHmax, and the delay times at an array within that 

section are smaller than those observed at other across-fault arrays. These indications of 

less pronounced damage zone in the Anza section compared to other segments of the 

SJFZ are correlated generally with geometrical properties of the surface traces. 

Significant variations of fast directions on several across-fault arrays, with station spacing 

on the orders of a few tens of meters, suggest that shallow fault structures and near-

surface layers play an important role in controlling the SWS parameters. 

2.1.1 Introduction 
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SWS refers to a phenomenon that seismic shear waves propagating through an 

anisotropic medium split into two orthogonally polarized waves with different velocities. 

The interior of the earth is anisotropic to different levels at different depth sections owing 

to many factors. Crustal anisotropy may be considered as a result of preferential 

alignment of fluid-filled cracks that are parallel to the direction of SHmax [Nur and 

Simmons, 1969; Crampin, 1978; Leary et al., 1990]. However, studies associated with 

large strike-slip faults usually observe fast directions that are parallel to the fault strike, 

especially for stations close to the fault trace [e.g., Peng and Ben-Zion, 2004; Boness and 

Zoback, 2006; Audet, 2014; Rasendra et al., 2014], consistent with elevated rock 

cracking along the fault zones [e.g., Finzi et al., 2009; Hamiel et al., 2009]. Other causes 

of crustal anisotropy include preferential mineral alignment, remnant features of 

paleostress, and sedimentary layering [Alford, 1986; Sayers, 1994; Aster and Shearer, 

1992]. In general, a mixture of mechanisms on a single station can be produced due to 

different ray paths of seismic events [e.g., Cochran et al., 2003; Peng and Ben-Zion, 

2004]. 

Analysis of SWS has been extensively conducted along a number of major fault 

zones. Examples include the San Andreas Fault [Silver and Savage, 1994; Boness and 

Zoback, 2006; Liu et al., 2008], the San Jacinto Fault [e.g., Peacock et al., 1988; Crampin 

et al., 1990; Aster et al., 1990; Yang et al., 2011], the North Anatolian fault [e.g., Peng 

and Ben-Zion, 2004; Eken et al., 2013], the Chelongpu fault [Liu et al., 2004], the Nojima 

fault [Tadokaro and Ando, 2002], and the Marlborough fault [Balfour et al., 2005]. These 

studies primarily focused on spatial distributions of shear wave anisotropy, providing 

important constraints on their physical mechanisms and spatial extent of the fault damage 

zone [Li et al., 1994; Shih and Meyer 1990; Zhang and Schwartz, 1994; Peng and Ben-

Zion, 2004; Li et al., 2014]. Temporal variations of SWS parameters associated with 

earthquake occurrence and volcano eruptions have been reported, sometimes with 

controversy [e.g., Crampin et al., 1990; Aster et al., 1990; Tadokoro and Ando, 2002; 

Gerst and Savage, 2004; Crampin and Gao, 2004; Liu et al., 2005; Peng and Ben-Zion, 

2005; Unglert et al., 2011; Godfrey et al., 2014].  

High-resolution spatial variations of anisotropy around active faults can be achieved 

with data of dense arrays close to the fault. For example, Cochran et al. [2003, 2006] 
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used dense cross-fault arrays to study spatio-temporal variations anisotropy following the 

1999 M7.1 Hector Mine and the 2004 M6.0 Parkfield earthquakes. Such closely spaced 

stations provide more reliable and detailed measurements of near-fault anisotropy 

parameters at resolutions on the order of tens of meters.  

The SJFZ is an important target for SWS analysis, due to its structural complexity, 

highly active seismicity and dense seismic instrumentation. The SJFZ contains multiple 

fault segments that have different slip rates and seismic behaviors [e.g., Fialko, 2006; 

Sanders and Kanamori, 1984]. Since 1890, a number of moderate earthquakes (M>6) 

have occurred along portions of the SJFZ [Sykes and Nishenko, 1984; Sanders and 

Kanamori, 1984]. The Anza seismic gap has not experienced any major earthquakes in 

the past 200 years [Salisbury, 2012], although paleoseismic investigations suggest over 

20 large earthquakes in the past 4000 years in the region [Rockwell et al., 2015].  

In the present paper I conduct a comparative study of within-, near- and off-fault 

crustal anisotropy, using local earthquake data from January 2012 to June 2014 recorded 

by five spatially-dense linear arrays that cross the SJFZ at several locations and other 

temporary and permanent near-fault stations (Figure 2.1). Although several SWS studies 

using local seismic data have been conducted in this region [e.g., Peacock et al., 1988; 

Aster and Shearer, 1992; Yang et al., 2011], our study utilizes new data sets with dense 

cross-fault arrays and provides detailed results on spatial variations of near-fault 

anisotropy. I obtain SWS measurements using an automatic MFAST code [Savage et al., 

2010], and compare fast directions with regional compressive stress to identify various 

features along and across the SJFZ. The results show clear contrast of fast directions 

between the SW and NE sides of the fault and among different fault zone sections. In the 

localized Anza seismic gap area, low delay times and fast directions that are quasi-

parallel to SHmax are observed. In the other more complex sections of the SJFZ diverse 

patterns are found. Notable variations of fast directions along several cross-fault arrays 

document significant changes of fault zone shear anisotropy at scales of tens of meters.  

2.1.2 Data 

To investigate fault mechanics and evolutionary behavior of the SJFZ, data was used 

from a dense seismic network (Figure 2.1) deployed around the SJFZ between 2010 and 
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2014 [e.g., Allam et al., 2014; Kurzon et al., 2014]. The deployment includes five small-

aperture linear arrays with instrument spacing 25-50 m across several segments of the 

SJFZ and additional near-fault stations. From NW to SE, the five linear arrays are Black 

Burn (BB), Ramona (RA), Sage Brush (SB), Dry Wash (DW), and Jackass Flat (JF). The 

linear arrays were deployed approximately perpendicular to the surface trace of the fault, 

with lengths ranging from ~180 m to ~450 m. To compare on- and off-fault anisotropy 

and augment the along-strike measurements, I also include 42 temporary and permanent 

stations within 15 km from the main SFJZ trace, which is approximated by a line passing 

through the center of the SGB array (33.5397° N, 116.5917° W) with an azimuth of 127° 

(Figure 2.1).  

The analyzed data consist of local earthquakes listed in the Southern California 

Seismic Network catalog from January 2012 to June 2014, during which the linear arrays 

were operational. I select events using the following criteria: 1) magnitude larger than 1 

but less than 4 to ensure signal-noise-ratio and avoid strong source effects; 2) close to the 

examined station, i.e., epicentral distance less than 25 km from the station or array center; 

3) incident angle < 45° assuming a straight ray path (i.e., depth larger than the epicentral 

distance) to avoid interference of converted phases [Booth and Crampin, 1985]. These 

criteria result in data associated with 2697 local earthquakes and 22548 waveforms 

recorded by the five linear arrays and 22033 waveforms recorded by other on- and off-

fault stations. On average each station recorded data associated with a few hundred up to 

one thousand events.  
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Figure 2.1 Map showing the study region along the San Jacinto Fault in Southern 
California. Active faults in this region are marked as black lines, and seismicity 
(1<M<4) between 01/01/2012 and 06/02/2014 is marked as black dots. Blue and gray 
triangles are individual stations within and outside 5 km from the main fault trace. 
Inverse triangles are across-fault arrays whose zoom-in plots are shown on top of 
Google map. The inset shows a map of California with the red rectangle marking 
the location of the study region. 

2.1.3 Method 

Because the analyzed data set is relatively large, it is more efficient (and objective) to 

pick S phases automatically. I use a "predict, search, invert and repeat" method for 

automatic picking of S phases [Li and Peng, 2016]. The method has the following steps: 

1) compute theoretical arrival using a reference velocity model; 2) search for arrival 

around the expected theoretical time using a signal-noise ratio function; 3) With these 

candidate picks, invert for improved velocity model starting with the initial reference 

model; 4) repeat steps 1-3 until picks and velocity models become stable. I start with a 

1D velocity model of 5 km spacing in depth and velocity value averaged from the 

Southern California Earthquake Center community 3D velocity model [Magistrale et al., 

1996]. The S phases are picked on horizontal components and only those with signal-to-

noise ratio (SNR) > 3 are used. To ensure the consistency of S picks among the stations 
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in each linear array, I align the S picks on the stations in each array with waveform cross-

correlations (Figure 2.2). For other fault zone stations, I simply use the picks from the 

predict-and-search method. I note that small pick inaccuracy is unlikely to affect the SWS 

measurement significantly. The SWS measuring algorithm, outlined below, analyzes 

multiple time windows around the pick and uses the best results. The algorithm’s 

flexibility in the precise choice of time window start and end makes it insensitive to small 

changes in pick arrivals of tenths of seconds. 

Fast directions and delay times are computed using the automated program MFAST 

[Savage et al., 2010]. The code determines the splitting parameters using the covariance 

matrix method of Silver and Chan [1991]. It performs grid-search over the fast direction-

delay time (Φ-δt) space to minimize the energy on the component perpendicular to the 

initial polarization of shear waves. This process is applied over multiple measurement 

windows. The minimum and maximum window lengths are set using the dominant period 

of each waveform. Cluster analysis is then performed to determine the best solution 

among all the windows [Teanby et al., 2004]. The code also uses an automatic algorithm 

to determine the best band-pass filter for single measurement in terms of the tradeoff 

between frequency bandwidth and SNR. However, because the dominant frequency for 

shear waves of local earthquakes is 5-10 Hz, I fix the band-pass filter to be 1-15 Hz and 

apply this to all the data [Yang et al., 2011]. Figure 2.3 illustrates the analysis procedure 

with data of one example event.  

The MFAST program also provides multiple parameters for assessing the 

measurement quality. Here I select measurements that satisfy: 1) SNR>3; 2) delay time δt 

< 0.4 s and δt error < 0.1 s; 3) fast direction Φ error <15o; 4) cluster grade A and B 

(referring to Savage et al. [2010] for definition); 5) 20o < polarization angle of fast wave 

against incoming wave < 70o. These criteria are either empirical or inherent from 

previous studies [e.g., Peng and Ben-Zion, 2004; Savage et al., 2010]. Out of 44,300 

event-station pairs, 23,000 high quality measurements (~52%) are obtained and used in 

subsequent studies.  

The statistical analysis of Φ is performed generally using the von Mises method [e.g., 

Mardia and Jupp, 2000; Cochran et al., 2003; Peng and Ben-Zion, 2004; Yang et al., 



 14 

2011]. This method essentially treats fast directions as vectors with unit length and 

averages them as a mean. However, there is a drawback when the fast direction 

distribution is bimodal or scattered. For example, if a station has two groups of 

preferential directions at 0° and 90° controlled by different mechanisms, the mean value 

from von Mises method would be 45°, with no physical meaning. Therefore, I only use 

the resultant length R (ranging from 0 to 1) to quantify the variance of the directions. For 

the dominant directions, I use a 10°-long sliding window to calculate the number of 

measurements within that window, and shift the window every 1° between 0° and 180°. 

Given the 180° ambiguity of fast direction, special treatment is needed near the 

boundaries. For example, the number of measurements within the window centered at 

angle 0° is counted in the range of [0° − 5°] and [175°− 180°]. Finally, the center of the 

window with most measurements is taken as the dominant fast direction. 
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Figure 2.2 An example of automatically picked S arrivals on RA array. (a) 
Automatic S picks on E and N components using the predict-and-search method [Li 
and Peng, 2015]. (b) S picks that are refined by waveform cross-correlation on basis 
of (a). 
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Figure 2.3 An example of automatic SWS analysis on an M 1.13 event (event ID 
15235601) recorded at station KNW. (a) 1-15 Hz filtered waveform. Red line marks 
the S pick. The vertical dashed lines and the gray shading mark the time window 
used in the SWS analysis. (b) The top two components that are rotated to incoming 
polarization parallel (p) and perpendicular (q) direction. The bottom two are 
components corrected with the determined delay time and fast direction. Dash lines 
mark the possible range for the starting (1, 2) and ending (3, 4) of the window. (c) 
The fast directions and delay times that are determined from 80 different time 
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windows. (d) The distributions of fast directions and delay times determined from 
different time windows. The blue X marks the best cluster based on the criteria 
outlined in Teanby et al. [2004]. (e) Waveforms (top) and particle motions (bottom) 
for the original (left) and SWS corrected (right) waveforms. (f) Contours of the 
second eigenvalue of the covariance matrix for difference fast directions and delay 
times. The blue cross corresponds to the best-fitting parameters (delay time δt = 
0.15 s, fast direction Φ = −45o). 

 

Figure 2.4 Rose diagrams of the fast directions on the five cross-fault arrays. The 
number at the lower right denotes the number of measurement for unit length. The 
number at the lower left denotes the resultant length. For each array the station 
from left to right corresponds to SW to NE across the fault. 

2.1.4 Results 

Figure 2.4 shows the rose diagram of fast directions from data of the five linear arrays. 

The RA array, which is located in the Anza seismic gap, displays highly consistent fast 
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with changing dominant fast directions from NW-SE to NE-SW for stations across the 

faults (from SW to NE). In contrast to the clear dominant fast directions at the RA and 

DW arrays, the BB, SGB, and JF arrays show considerable scattering in fast directions. 

The scattering at the SGB array is partially attributed to the small number of high-quality 

results (many of the measurements are rejected by the selection criteria). The BB and JF 

arrays have many stations with resultant length less than 0.2, showing bimodal or 

disordered fast directions.   

The delay times for all five arrays are plotted against their event depths in Figure 2.5.   

Figure S 2.1 provides a similar plot for delay times versus hypocentral distances. The 

delay times at each station usually have one standard deviation as large as 50-80% of the 

mean. A general pattern is that the delay times have no significant dependence on event 

depth at most stations. One possible exception is that at some stations in the RA array the 

delay times weakly correlate with depths. However, it should be noted that the number of 

measurements with high delay times on the RA array is smaller than that for the other 

arrays, making the correlation less reliable. 

Figure 2.6 and Figure 2.7 display the rose diagrams of fast directions and delay times 

versus depth for stations that are within 5 km from the main fault branch. Figure 2.8 and 

Figure 2.9 show the same quantities for stations with distance from the main fault greater 

than 5 km. The corresponding plots for delay-time versus hypocentral distances are 

shown in Figure S 2.2 and Figure S 2.3. I note that this simple grouping criterion cannot 

be used to judge the distance from individual fault trace, since the SJFZ has complex 

geometry and multiple branches. Nevertheless, in comparison with the BB, SGB and JS 

fault zone arrays, most stations in both groups show clear preferential fast directions 

(Figure 2.6 and Figure 2.8). High scattering in delay times can be seen at individual 

stations, and there is no significant depth dependence for most stations, except a few such 

as stations JORD, FRD, RRSP, TMSP and TFRD. 

Some of the employed stations were included in previous studies, which can be used 

to check the consistency of results. For example, waveforms recorded at station KNW 

were analyzed by Peacock et al. [1988], Crampin et al. [1990], Aster et al. [1990] and 

Yang et al. [2011]. All these studies indicated a consistent fast direction about 30° to west, 
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which is also obtained in our analysis (Figure 2.8). Similar agreement is found for the 

results associated with stations CRY, DNR, FRD, SND, SRL and WMC. 

Bimodal distributions of fast orientations are observed at some stations, e.g. TR02, 

SROS (Figure 2.6) and FOST, RDM (Figure 2.8). These may result from multiple 

mechanisms present in the vicinity of the stations [e.g., Peng and Ben-Zion, 2004]. 

Analyzing the back azimuthal dependence of SWS measurements can clarify the origin of 

different mechanisms. To explore this, I project the measurements for each station in 

stereonet, but find no evidence of back azimuthal dependence at these stations (Figures S 

2.4-S 2.6). For example, station FOST has two preferential directions, N40°W and 

N80°E. The event clusters both from the SW and NW display a mixture of the two 

patterns. This indicates there are likely pervasive mixed anisotropy mechanisms (or 

conjugate joint fractures) surrounding the stations with bimodal distributions. 

Figure 2.10 provides a summary map of the mean fast directions scaled by the mean 

delay times. The preferential fast directions are plotted with SHmax derived from the 

focal mechanism inversions of Yang and Hauksson [2013]. A general observation is that 

stations on the SW side of the fault show fast directions largely consistent with the 

SHmax direction. In contrast, the fast directions on the NE side of the fault show mixed 

patterns. Some fast directions are sub-parallel to fault strike (e.g., IWR, PRAN, B086A 

and TRO), while others are parallel or subparallel to the SHmax direction (e.g., GVAR1, 

BALD) and a few are neither parallel to the fault nor the SHmax direction (e.g., PSPR 

and FOST).  

Stations that are close to the SJFZ (including the across-fault arrays) also indicate 

mixing patterns. Around the Anza seismic gap (approximately from the RA to SGB 

array), the fast directions agree well with the SHmax direction at stations TMSP, HSSP, 

WMC, DNR, and SETM. As mentioned, the RA array in this region shows clear 

preferential fast directions, with a gradual change across the fault from NE-SW to NW-

SE. At the SGB array, the fast directions are rather scattered (Figure 2.4), but the mean 

fast directions are generally to the NE-SW, roughly perpendicular to the SJFZ strike. The 

fast directions at array BB are also scattered, and the dominant directions are to the NE-

SW for stations on the SW side, and nearly N-S for stations on the NE side. Between 

arrays BB and RA, the fast directions at stations RHIL, RRSP and SFTR are aligned 
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between the SJFZ fault strike and the SHmax directions. Close to arrays DW and JF, 

station SROS has fast direction parallel to the SJFZ fault, while station ALCY has fast 

direction parallel to the SHmax direction, consistent with the fast directions at the 5 

stations NE of the fault in the DW array. In comparison, station DWRPT immediately to 

the SW of array DW has a fast direction that is between the SHmax direction and the 

SJFZ strike, consistent with the directions at the five stations in the DW array SW of the 

fault. Finally, stations near array JF have fast directions that are either parallel to the 

SHmax direction, or at a high angle to it, consistent with the scattered patterns observed 

within the JF array (Figure 2.4). 
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Figure 2.5 Delay times versus event depth on the cross-fault arrays. The station 
name, average and standard deviation of δt are marked on top of each panel. 
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Figure 2.6 Rose diagrams of the fast directions on the stations that are less than 5 
km from the main fault. Other symbols/notations are the same as in Figure 2.4. 
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Figure 2.7 Rose diagrams of the fast directions on the stations that are less than 5 
km from the main fault. Other symbols/notations are the same as in Figure 2.4. 
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Figure 2.8 Rose diagrams of the fast directions on the stations that are more than 5 
km from the main fault. Other symbols/notations are the same as in Figure 2.4. 
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Figure 2.9 Delay times versus event depth on the stations that are more than 5 km 
from the main fault. Other symbols/notations are the same as in Figure 2.5. 
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Figure 2.10 Summary of the dominant fast directions and average delay times 
observed at all stations along the San Jacinto Fault Zone. The gray lines mark the 
active faults. Black bars are oriented along the dominant fast directions and scaled 
by the average delay times. Blue bars denote the orientations of maximum 
horizontal compressive directions from the stress model of Yang and Hauksson 
[2013]. The five boxes show the zoom-in plots for the five arrays. Gray bars show 
fast directions with resultant length less than 0.2, indicating poor concentration of 
fast directions. 

 

2.1.5 Discussion and conclusion 

I systematically measured the SWS parameters within and around the SJFZ, using 

seismograms recorded by five across-fault linear arrays and various standalone stations 

(Figure 2.1). The recording stations sample properties of fault zone damage and the 

opposite sides of the fault at various sections of the SJFZ. The results are generally 

compatible with those from previous studies [e.g., Aster and Shearer, 1992; Yang et al., 
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2011], but I also find significant variations of shear-wave anisotropy in both along-strike 

and across-fault directions in the SJFZ.  

In general, stations on the SW side of the fault have fast directions that align well 

with nearly N-S SHmax direction. The stress field derived from focal mechanism 

inversions shows no distinct variations, and most of SHmax directions have very small 

angle with respect to the north [Yang and Hauksson, 2013]. This suggests that anisotropy 

on the SW side of the SJFZ is likely controlled by regional maximum compressive stress 

[e.g., Yang et al., 2011]. On the other hand, many stations on the NE sides have fast 

directions that are subparallel to the local fault strike. A few stations also have fast 

directions that are almost normal to the SJFZ strike (e.g., GVAR1 and BALD). 

The regions around active fault sections within the broad damage zones indicated 

by tomographic studies [Allam et al., 2012, 2014; Zigone et al., 2015] have mixed 

orientations. Stations in the Anza gap (NW of the trifurcation area) generally have fast 

directions that are parallel to the regional SHmax directions. However, stations in the 

trifurcation area (SE of array SGB) have scattered fast directions. While some stations 

have near-fault parallel directions (e.g., SROS), others have fast directions closer to the 

SHmax directions (e.g., ALCY and SETM), consistent with the complex fault geometries 

and damaged rocks in this region. Finally, the fast directions associated with the dense 

arrays RA and DW show systematic variations across the fault. The measurements at the 

other three dense arrays are more scattered. 

Previous studies suggested that the crustal anisotropy at some stations around the 

SJFZ were controlled by local alignment of anisotropic layers. For example, Aster and 

Shearer [1992] documented that the well-defined initial shear wave polarization of 

N40oW at station KNW is consistent with the local alignment of anisotropic bedrock 

minerals such as biotite. In the region of station KNW, the NE side of the SJFZ is rather 

complex with multiple fault branches (e.g., the Hot Spring fault, the Thomas Mountain 

fault, and the Buck Ridge fault) and several mountains with changing topographies (the 

San Jacinto and Santa Rosa Mountains) covered by sedimentary and metamorphic rocks. 

Since sedimentary bedding and mineral alignments in metamorphic rocks can lead to 

structural-induced anisotropy that is different from stress-induced anisotropy, it is 
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possible that mixed fast directions along and to the NE side of the SJFZ could be 

produced by anisotropic bedrock layers within a relatively small region. 

I do not have detailed local geological information for all stations to confirm 

whether local rock properties are the primary reason for fast directions not consistent 

with the regional stress field. Nevertheless, I argue that shear-wave anisotropy in various 

stations around the SJFZ are likely controlled by fault zone rock damage. For example, 

the fast orientations at array RA in the Anza gap changes systematically from nearly N-S 

(regional SHmax) directions to sub-parallel fault direction. This is consistent with the 

rock damage asymmetry (shifted to the NE) observed from field mapping [Dor et al., 

2006], fault zone trapped waves [Lewis et al., 2005] and local earthquake tomography 

[Allam and Ben-Zion, 2012; Allam, et al., 2014]. High angle of polarization to the strike 

of damage zones may reflect stiffness anisotropy (i.e., low stiffness normal to the damage 

zone) observed at other active faults [Pischiutta et al., 2012, 2013]. 

I note that the results have significant variations of fast directions over the short-

aperture across-fault arrays, as well as scattered delay times at single stations. Some 

values could be affected by measurement errors and/or other fault-zone related signals. 

For example, cycle skipping (i.e., matching between the fast wave and slow wave with a 

cycle shift) could result in erroneous measurements of both fast directions and delay 

times. Although the employed MFAST program utilizes a multiple-window approach to 

mitigate this issue, it may not remove it completely [Savage et al., 2010]. In addition, 

beyond shear wave splitting, damaged rocks and velocity contrasts in the fault zone 

structure produce additional seismic phases such as fault zone head waves [Ben-Zion, 

1990; Ben-Zion and Malin, 1991], trapped waves [Ben-Zion and Aki, 1990; Lewis et al., 

2005], and diffracted waves [Yang and Zhu, 2010] and various scattered phases [Hong 

and Menke, 2006; Hillers et al., 2013]. In particular, fault zone head waves and diffracted 

waves may arrive earlier than the first arrivals and smear the waveform of direct S waves, 

leading to the erroneous in SWS measurement. For example, Figure 2.2b shows 

precursory signals before the large-amplitude S wave at stations RA01-RA04. This is 

interpreted as the splitting signals, but I cannot rule out the possibility that they are 

generated by other causes (fault zone refraction/diffraction). These complications may 
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result in scattered measurements observed at some fault zone (and some off-fault) 

stations. 

As mentioned, the fast directions in the Anza gap (starting from the RA array and 

ending slightly south to the SGB array) agree with the SHmax estimates. The Anza gap is 

in the central portion of the SJFZ, and it is geometrically simple with an active surface 

trace connected with the Clark Fault further to the south. The agreement between the fast 

directions and SHmax is consistent with this simple geometry. Although scattered, most 

delay times at array RA are less than 0.1 s (Figure 2.5), and the mean value is less than 

those observed at other across-fault arrays (Figure 2.10). This suggests that the degree of 

anisotropy is less at array RA, as compared with other arrays. Yang et al. [2014] 

examined P-arrival travel time differences across the fine linear fault zone arrays and 

found relatively small time differences between the two-end stations at array RA, 

suggesting that low-velocity damage zone is less developed in the Anza gap. 

 The inclusion in the analysis data from five dense across-fault arrays allows us to 

study spatial variations of anisotropy in a fault zone region at scales of tens of meters. 

Arrays JF and BB have scattered fast directions, while array SGB has fast directions that 

are nearly perpendicular to the local fault strike. Arrays RA and DW have more 

consistent fast directions, and they also vary systematically across the fault (Figures 2.4 

and 2.10). In particular, the fast directions at the RA array in the relatively simple Anza 

section change from nearly stress-parallel (SW side) to fault-parallel (NE side). The 

largest change is observed right across the surface fault trace (RA07). At station RA01 

and RA12 in both ends of the array, the fast direction returns to be near stress-parallel. 

The pattern is somewhat reversed at array DW in the complex trifurcation area, where the 

fast directions on the SW side are closer to the fault strike, while those on the NE side of 

the fault are sub-parallel to SHmax.  

The existence of fractures with nearly fault-parallel direction leads to 

approximately fault-parallel fast direction, which has been extensively observed in many 

fault zones [e.g., Savage et al., 1990; Fletcher et al., 1990; Peng and Ben-Zion, 2004; Liu 

et al., 2005; Boness and Zoback, 2006; Liu et al., 2008]. If we assume that stations in the 

fault damage zones record predominately fault-parallel fast directions, our results would 

imply the existence of damage zones approximately beneath RA06 – RA11 for the RA 
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array and beneath DW01 – DW05 for the DW array. On the other hand, results from 

body wave travel times suggest low velocity zones below RA01 – RA07 and DW06 – 

DW12 [Yang et al., 2014], which is almost the opposite from our results.  

We speculate that these differences are related to the fact that travel time delays 

(and fault zone trapped waves) are sensitive to the entire crack populations in the low-

velocity damage zones, while SWS is mostly controlled by a subset of cracks that has a 

preferred direction. In this sense, these phenomena are complementary rather than 

reflecting the same structure. Further analysis is needed to better quantify the location, 

thickness and depth extent of the fault damage zone in relation to various seismic signals 

(e.g., shear-wave and stiffness anisotropy, guided waves). This will be the subject of 

future work.  

2.1.6 Supplementary figures  

 

Figure S 2.1 Delay times versus event depth on the cross-fault arrays. The station 
name, average and standard deviation of δt are marked on top of each panel. 
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Figure S 2.2 Delay times versus event depth on the stations that are 5 km within the 
main fault. Other symbols/notations are the same as in Figure S 2.1. 
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Figure S 2.3 Delay times versus event depth on the stations that are more than 5 km 
from the main fault. Other symbols/notations are the same as in Figure S 2.1. 
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Figure S 2.4  Stereonet projections of SWS measurements on the linear arrays. The 
black bars are oriented along the measured fast directions and scaled by delay times. 
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Figure S 2.5  Stereonet projections of SWS measurements on the stations that are 5 
km within the main fault. Other symbols are same as Figure S 2.1. 
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Figure S 2.6 Stereonet projections of SWS measurements on the stations that are 
more than 5 km from the main fault. Other symbols are same as Figure S 2.1. 
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2.2 Two Decades of Shear-wave Splitting Measurements in Southern California 

Summary 

Based on the workflow established in the previous results, I build an automatic 

system to measure SWS parameters (i.e. fast direction and delay time) using local 

earthquakes in Southern California from 1995 to 2014. The input data include 330,000 

local earthquakes and more than 300 stations, which result in 232,000 SWS 

measurements that satisfy the initial selection criterion. Measurement quality is then 

assessed using multiple criteria, resulting in 90,000 high-quality measurements. 

Compared to previous SWS studies in Southern California, our results provide the most 

uniform and complete database of local SWS measurements. This database can be used to 

constrain stress field and investigate structure heterogeneities in this region. 

2.2.1 Introduction 

 Southern California is an important region for SWS studies due to its structural 

complexity, highly active seismicity and dense seismic instrumentation. Numerous SWS 

studies have been conducted in southern California at various scales [Aster et al., 1990; 

Crampin et al., 1990; Li et al., 1994; Paulssen, 2004; Boness and Zoback, 2006; Yang et 

al., 2011]. These studies used different methods and focused on different stations and 

time periods, resulting in heterogeneous SWS measurements. This may cause confusions 

when comparing among different results and inconvenience for further use of these 

dataset, e.g. input for constraining stress field.  

      In this paper I present a uniform database of local SWS measurements for 

Southern California in two-decade period (1995-2014). The measurements are obtained 

via fully automatic procedure, which include download waveform data, pick phases 

automatically, and measure SWS parameters. The measurements are then assessed by 

various objective criteria. I then use the selected high-quality measurements to analyze 

the spatial and temporal variations of shear-wave anisotropy in southern California. The 
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results presented in this study can be easily reproduced due to the implementation of 

automatic procedure and objective selection criteria. 

 

2.2.2 Method and data 

The automatic workflow is largely based on the work in the previous section. 

Basically, I compile several tools into a single system (Figure 2.11), including the 

Seismogram Transfer Program (STP, developed by Caltech), the PSIR phase picker [Li 

and Peng, 2016a], and the MFAST code [Savage et al., 2010]. The PSIR phase picker 

uses a “Predict, Search, Invert, and Repeat” procedure. It searches for actual abrupt 

amplitude changes around predicted theoretical arrivals, in order to improve pick 

accuracy. Additional details can be found in Li and Peng [2016a] and Section 3.1. Fast 

directions and delay times are computed using the automated program MFAST [Savage 

et al., 2010]. This code performs grid-search over the fast direction-delay time (Φ-δt) 

space to minimize the energy on the component perpendicular to the initial polarization 

of shear waves. 

The input data include 330,000 local earthquakes from 1995 to 2014, which are 

recorded by the Southern California Seismic Network (SCSN) and relocated by 

Hauksson et al. [2012] (Figure 2.12a). The SCSN consists of more than 300 historical 

and current stations (Figure 2.12b). I choose the time period of 1995-2014, because 

before 1995 only a handful of stations had horizontal components. Here I select the 

events that are within the 45° cone beneath a station (also known as the shear-wave 

window), i.e. the epicentral distance is less than the event depth, in order to avoid P/S 

converted phases contaminating direct S phases [Booth and Crampin, 1985; Peng and 

Ben-Zion, 2004]. 

The initial measurements then undergo quality control for further analysis. High-

quality measurements are defined as: 1) SNR>3; 2) delay time δt < 0.4 s and δt error < 

0.1 s; 3) fast direction Φ error <15o; 4) cluster grade A and B (referring to Savage et al. 

[2010] for definition); 5) 20o < polarization angle of fast wave against incoming wave < 
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70o. These criteria are either empirical or inherent from previous studies [e.g., Peng and 

Ben-Zion, 2004; Savage et al., 2010].  

 

 

Figure 2.11 Complete flowchart of automatic measurement of SWS parameters. 

 

Figure 2.12 Maps of faults, seismicity in southern California and the Southern 
California Seismic Network (SCSN). (a) Faults are denoted by gray lines. The dots 
color-coded by depth represent relocated seismicity in 1995-2014 [Hauksson et al., 
2012]. The stars mark M>5.0 events closely examined in this study. The dashed red 
box in the inset marks the study region. (b) The triangles represent the stations of 
SCSN. The blue triangles with names mark the stations closely examined in this 
study. 
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2.2.3 Results and discussion 

The results consist of 232,000 SWS measurements. After quality control, 90,000 

high quality measurements are obtained. Figure 2.13 shows the very good consistency of 

measurements on the station KNW over two decades, suggesting the stability of SWS 

measurement. The patterns also agree very well with previous studies [Peacock et al., 

1988; Crampin et al., 1990; Aster et al., 1990; Yang et al., 2011]. However, when some 

moderate earthquakes occur near a station, the patterns could be interrupted (Figure 2.14). 

For example, station FRD only 20 km away from KNW has different patterns when M 5 

events occurring nearby. In 2001 and 2005, two M 5 events occurred and the SWS 

parameters at station FRD are different from other time periods. In contrast, the 2011 M 

3.1 event near FRD did not change the pattern significantly. This interesting observation 

could be interpreted in different ways. One possibility is that the 2001 and 2005 M 5 

events actually perturbed the stress field and the fracture alignment around FRD, 

resulting in different SWS parameters. Alternatively, it could be that the seismicity 

following the 2001 and 2005 events occurred in different regions as compared with the 

background seismicity, resulting different parts of the crust been sampled. Detailed 

analysis of spatial seismicity distribution might help to distinguish these two 

interpretations. 

After averaging the measurements on each station, I obtain a spatial map of fast 

directions (Figure 2.15). As fast directions can be controlled by both stress and structures, 

the complex patterns could be a result of heterogeneous stress fields and/or pronounced 
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local structures. However, it could be observed that the overall orientations on most 

stations are consistent with the quasi-north SHmax direction, which is measured from 

inverting focal mechanism solutions of earthquakes in this region [Yang and Hauksson, 

2012]. However, some large geological structures can affect the SWS measurements. For 

example, the stations near the San Andreas Fault generally have fault-parallel direction, 

consistent with previous findings [e.g., Boness and Zoback, 2006]. By zooming in further 

to local scale, we can identify finer patterns. The area around the Los Angeles basin, for 

example, has striking localized patterns in different geological blocks (Figure 2.15b). 

Along the San Andreas Fault in the NE, the fast directions are mostly along the fault 

strike. However, the patterns in the SW are divided by the Santa Monica and Raymond 

Hill faults. The Los Angeles basin in the SE side has general SHmax-parallel fast 

directions, while in the NW side fast directions are quasi parallel to the San Gabriel fault, 

which is the NE boundary of the block. Along the Santa Monica and Raymond Hill faults, 

however, the fast directions are generally along the NE-SW fault trend. These 

observations show clear evidence that fast directions tend to follow localized terrains and 

major faults. 

 Comparison of fast directions to focal-mechanism derived SHmax also shows 

some localized patterns (Figure 2.16). Generally the fast directions agree with SHmax, 

especially in the regions around the Los Angeles basin, the Eastern California Shear Zone 

and the Salton Sea. However, several regimes have notably inconsistent directions 

between them, from NW to SE including the San Andreas Fault, the Santa Ynez Fault, 

the block NW to the Los Angeles basin, both sides of the San Jacinto Fault, the southern 

end of Peninsular Ranges near San Diego. The significant inconsistency in these areas 
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implies that localized structures are likely primary causes of shear-wave anisotropy. 

However, the controlling structure types could be different. It is very likely that the fault 

structures around San Jacinto Fault and Santa Ynes Fault are dominant in controlling 

anisotropy along them. In comparison, in the other block-shape areas, sedimentary layers 

or plutonic materials may be possible (but speculative) factors. 

 

Figure 2.13   Temporal changes of fast directions and delay time in station KNW. (a) 
Yearly rose diagram of fast directions at KNW from 1997-2014. (b) Fast direction 
measurements at KNW. The black curve represents the running median for a 50-
measurement window. The shaded area marks one standard deviation range. The 
right panel is a histogram of all the measurements. (c) Delay time measurements at 
KNW. Symbols are same as those in (b). 
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Figure 2.14  Temporal changes of fast directions and delay time in station FRD. 
Symbols are the same as those in Figure 2.13. Note that the patterns are interrupted 
with some M~5 events near the stations. 
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Figure 2.15 Dominant fast directions and average delay times of shear wave splitting 
in southern California. (a) The bars are oriented along the dominant fast directions 
and scaled by average delay times on the stations. Red and pink bars denote the 
stations with highly and low preferential directions, respectively. (b) A zoomed-in 
map near the Los Angeles Basin as marked by the dashed box in (a). The green 
shaded areas represent the regimes with similar fast directions. Other symbols are 
same as those in (a). 

 

Figure 2.16  Comparison of fast directions (red bars) and maximal horizontal 
compression stress (SHmax, blue bars). The angle difference between them is 
shaded with pie shape. Light green areas mark the major areas where fast 
directions are significantly different from SHmax. SHmax are extracted from focal 
mechanism analysis by Yang and Hauksson [2013]. 
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2.3 Shear-wave Splitting Tomography in the North Anatolian Fault, Western 

Turkey 

Summary 

I use a three−dimensional (3D) SWS tomography method developed by Zhang et 

al. [2007] to map the spatial distribution of crustal anisotropy in the Karadere–Düzce 

branch of the North Anatolian Fault (NAF) in western Turkey. The input data consists of 

20751 measurements of the SWS delay times from 7856 aftershocks of the 1999 Mw 7.4 

İzmit and Mw 7.1 Düzce earthquakes. The results show a continuous belt−like highly 

anisotropic zone along the Karadere−Düzce branch of NAF, generally ~3 km wide and 

down to ~5 km deep. The observed asymmetric pattern of anisotropy along the Karadere 

segment is qualitatively consistent with asymmetric damages from the unilateral eastward 

propagation of the Izmit rupture. Another strong anisotropy region was found near the 

end of the Izmit rupture zone, close to the dipping direction of the fault segment that 

ruptured during the subsequent Düzce earthquake. These results are generally consistent 

with the shallow fault−zone anisotropy inferred from previous studies. While the 

anisotropy generally becomes weaker at depth and/or outside the fault zone, I also 

identify several highly anisotropic regions as deep as ~10 km, primarily within the 

Almacik Block. These isolated anisotropy regions could be explained by individual 

intrusive igneous rock bodies with different mineral alignment. Overall, seismic 

anisotropy in upper crust of the Karadere−Düzce Branch of the NAF is structurally 

controlled. 
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2.3.1 Introduction 

Seismic shear waves propagating through anisotropic media are expected to separate 

into fast and slow components, a phenomenon termed SWS. In the upper crust, shear 

wave anisotropy is widely observed and usually considered as a result of preferential 

alignment of fluid−filled cracks in rocks or sediments [Crampin and Booth, 1985; Leary 

et al., 1990; Crampin, 1991; Zhang and Schwartz, 1994]. In this case, the fast 

polarization direction is parallel to the maximum horizontal compressive stress direction 

due to alignment of preexisting cracks in that direction. Other mechanisms are mainly 

structurally controlled, including preferential mineral alignment, sedimentary bedding 

planes, and alignments along active fault zones [Boness and Zoback, 2006]. 

Generally two SWS parameters are measured: polarization direction of the fast 

component and delay time dt between the fast and slow components. While visual 

inspection was used to measure SWS parameters in many earlier studies [Crampin, 

1990], automated methods are needed to obtain a large data set of SWS measurements. 

These include the cross−correlation method [e.g., Fukao, 1984; Liu et al., 2003], the 

covariance matrix (CM) method [e.g., Silver and Chan 1991], and the aspect ratio (AR) 

method [Shih et al., 1989]. To understand spatial distribution of crustal anisotropy, many 

studies simply average the SWS parameters at each station and superimpose them on the 

station location [e.g., Boness and Zoback, 2006; Yang et al., 2011]. Other recent studies 

have proposed to plot the average measurements at the earthquake source region [e.g., 

Peng and Ben−Zion, 2004], or somewhere between the source and receivers [e.g., Liu et 

al., 2008]. When plotting the rose diagrams of fast polarizations on stations, Eken et al. 

[2013] showed that stricter quality criteria can lead to preferred fast polarization more 
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clearly, which might result from near−station anisotropic bodies. However, in all these 

cases, the exact location and magnitude of the anisotropy zone along the ray path remains 

unclear.  

  

 

Figure 2.17 Map of study region. Epicentral distribution of ∼26000 earthquakes 
recorded by the PASSCAL seismic experiment along the Karadere–Düzce branch of 
the NAF. Aftershock locations are marked with colors denoting different depth 
ranges. The surface ruptures of the Izmit and Düzce earthquakes are indicated with 
thick blue and purple lines, respectively. The box marks the SWS tomography 
region. The inset illustrates the tectonic environment in northwestern Turkey. 

Various efforts have been made to map the spatial distribution of anisotropy. For 

example, Audoine et al. [2004] developed a method to produce spatial average of 

splitting parameters by dividing the source−receiver paths into many grid points. More 

rigorous anisotropy tomography methods have also been proposed to image the spatial 

distribution of anisotropy [e.g., Abt and Fisher, 2008; Long et al., 2008]. However, 
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complicated waveforms pose difficulties in inversion due to the nonlinear effect of 

multiple layers of anisotropy [e.g., Silver and Savage, 1994]. Long et al. [2008] 

developed a 2.5D SWS intensity tomography method to study upper mantle anisotropy, 

which calculates sensitivity kernels for heterogeneously anisotropic media. In their 

method, splitting intensity measured from long period SKS waves, instead of standard 

splitting delay time and fast polarization, is used to image the anisotropy structure. In 

comparison, Abt and Fischer [2008] imaged 3D anisotropy structure in upper mantle 

using the SWS parameters by assuming the anisotropy is caused by the lattice−preferred 

orientation of olivine and orthopyroexene. Partial derivatives of fast polarization and 

delay time with respect to the orientation of olivine α−axis and anisotropy strength are 

numerically calculated by modeling splitting parameters for a synthetic wavelet using the 

Christoffel equation. 

 Recently, Zhang et al. [2007] developed a SWS tomography method to map the 

spatial distribution of anisotropy in upper crust by back projecting the splitting delay 

times along ray paths derived from known 1D or 3D velocity models. Comparing with 

other techniques [e.g., Long et al., 2008; Abt and Fisher, 2008], this method does not 

handle the anisotropic direction in the inversion and the partial derivative of delay time 

with respect to anisotropy percentage is calculated using ray theory. In this simplified 

method, all measurements of station−event pairs are utilized in the inversion and 

weighted by an objective parameter, such as the waveform cross−correlation coefficient 

between slow and fast shear waves. However, so far it has only been used in the Parkfield 

section of the San Andreas Fault to map the 3D anisotropy distribution, where 3D 

velocity models have been well developed [e.g., Thurber et al., 2006].  
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In this study, I apply the same method to the Karadere−Düzce branch of the North 

Anatolian Fault (NAF) in northern Turkey. The NAF is the active transform boundary 

between the Eurasian and the Anatolian Plates. Several earlier studies have found clear 

crustal anisotropy near the epicentral region of the 1999/08/17 Mw7.4 İzmit earthquake 

that ruptured the western segment of the NAF [Crampin and Booth, 1985; Evans et al., 

1985). Peng and Ben-Zion [2004] analyzed the SWS parameters in Karadere−Düzce 

Branch of the NAF ruptured during the İzmit earthquake and the 1999/12/12 Mw 7.1 

Düzce earthquake. They found predominant fault−parallel fast directions for stations 

within a 1 km broad zone around the rupture zones of the two recent earthquakes. Hurd 

and Bohnhoff [2012] used several stations in a larger region around the NAF and found 

similar results.  

In this study, I use the SWS tomography method [Zhang et al., 2007] to map the 

spatial distribution of anisotropy around the Karadere−Düzce of the NAF, based on the 

SWS parameters measured by Peng and Ben−Zion [2004]. Our results, which will be 

presented below, are generally consistent with the previous observations, but contain 

more quantitative information on the along−strike and depth extent of crustal anisotropy 

in this region. 
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Figure 2.18 Map of the distribution of events (color-coded dots) used in the 
inversion, stations (triangles), and the inversion grid (crosses). The solid bars over 
the stations represent the dominant fast axis direction and the average delay time. 
The surface ruptures of the Izmit and Düzce earthquakes are indicated with thick 
blue and purple lines, respectively. Background seismicity is the events used in 
inversion and marked with colors based on the depth. Arrow pair represents the 
regional maximum horizontal stress direction. Note that station HEN and BAL used 
by Hurd and Bohnoff [2012] are not included in the inversion. 

2.3.2 Data selection 

I use the SWS measurements from numerous aftershocks recorded by 31 stations 

(Figure 2.17). Specifically, a temporary 10−station PASSCAL seismic network covered a 

6−month period after the İzmit earthquake on Aug 17, 1999. 7 additional stations were 

deployed for the first 2 weeks after the İzmit mainshock, and another 14−station array 

was deployed across the Karadere branch of the NAF for the last 2−week period. A total 

of ~22000 SWS measurements were automatically calculated by a covariance matrix 

method.  
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In this study, I focus on the region along the fault strike and in the immediate vicinity 

of the Karadere segment, which is trending ~70o to the east. The west side of the study 

region starts from a 5−km−long surface−rupture gap near the town of Akyazi during the 

İzmit earthquake [Tibi, 2001] (Figure 2.17). The Almacik block in the south of the 

Karadere segment is primarily mafic embedded with andesitic to basaltic rocks and 

sedimentary sequences [Yilmaz et al., 1997]. To the east end of Karadere segment, the 

rupture bifurcated during the İzmit earthquake and stopped near the Düzce basin [Gulen 

et al., 2002] (Figure 2.17). However, the southern strand of the bifurcation partly 

re−ruptured during the subsequent Düzce earthquake.  

Figure 2.18 shows the inversion grid for the SWS tomography and the average SWS 

parameters at each station (refer to figure 7 of Peng and Ben−Zion [2004] for the rose 

diagram for each station). I choose this region because of its dense event−station 

coverage. The inversion coordinate system is rotated ~70 degrees clockwise from the 

north so that the Y−axis is subparallel to the strike of the Karadere segment. The line X = 

0 roughly follows the surface trace ruptured during the İzmit earthquake, and the center 

of the coordinate is at longitude 30.85oE and latitude 40.74oN. 20751 SWS measurements 

are selected from 7856 events with their ray paths within –21 to 19 km along the Y 

direction (along−strike) and –8 to 10 km along the X direction (perpendicular to the 

strike). The majority of the events were distributed at the depth range of 5−10 km (Figure 

2.18). The inversion grid nodes in the Z direction are at Z=0, 2.5, 3.5, 6.0, 9.0, and 13.0 

km (Table 2.1). In this study I do not apply further selection criteria as Peng and 

Ben−Zion [2004] did. However, I weigh each measurement by the corresponding 
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cross−correlation coefficient of fast and slow components in inversion in order to reduce 

the influence of low quality measurements. 

Figure 2.18 shows that most fast polarization directions for the stations on or close to 

the fault are parallel or subparallel to the nearby fault strike. It is interesting to find that 

the fast polarizations at stations TS and CL are almost perpendicular to the fault strike 

(Figure 2.18). If the anisotropy is stress−induced and the maximum compressive stress 

direction is perpendicular to the fault strike, the fast polarization direction is fault 

perpendicular. However, the direction of the regional maximum horizontal compressive 

stress is NW–SE [Bellier et al., 1997; Tadokoro et al., 2002; Görgün et al., 2010], which 

has a large angle against the local fault strike. Therefore, the fault−perpendicular fast 

polarization anomaly is not due to stress−induced anisotropy. It is likely the existence of 

anisotropic bodies with preferred mineral alignment could cause the fault−perpendicular 

polarization. It is noted that the cycle skipping arising from SWS analysis could also 

cause the fault−perpendicular fast polarization, where the fast and slow components are 

mismatched by one or more half cycles. 

 

3. Method 

The SWS tomography method developed by Zhang et al. [2007] is based on two 

major assumptions. First, it assumes a single−layer anisotropy model that contains 

vertically oriented microcracks or shear fabric and hence is azimuthal. This is common 

for crustal anisotropy [Crampin, et al., 1978; Crampin, 1987; Boness and Zoback, 2006] 

and also one of the assumptions for the Silver and Chan [1991] method, which was used 

to obtain the measurements in this study. The second assumption is that splitting delay 
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time is accumulated for each ray segment along the entire ray path [Fischer et al., 2000]. 

However, the physical meaning of the measured splitting time is still vague when the 

anisotropy is complicated. In particular, it is not clear whether the measured delay time 

represents the summation of anisotropy for layers with different fast directions. The 

previous debate on the ability of using delay times to predict the occurrence of an 

earthquake also shows the ambiguity of the physical meaning of delay times [e.g., Aster 

et al., 1990; Crampin et al., 1991; Aster et al., 1991]. However, based on a very 

simplified model given by the first assumption, the shear wave splits once when entering 

a single layer of azimuthally anisotropic material, and the delay times between fast and 

slow shear waves keeps increasing when travelling through the material. In addition, 

Silver and Savage [1994] showed that the Silver and Chan [1991] method would produce 

apparent splitting measurements of the fast polarization and delay time for a two−layer 

anisotropy model. As a result, the splitting times obtained from this method represent the 

apparent strength of the anisotropy over the entire ray path. Therefore, it is reasonable to 

assume that the splitting time is accumulated along the ray path for a relatively simplified 

model. 

 Based on the assumptions above, the total observed delay time dt can be 

expressed as 

 
δt = Kα

V
dl∫  (1) 

 

where a is the angle between the ray path and the vertical direction, dl is the incremental 

ray path, and K is the anisotropic strength.  The anisotropic strength K is defined as 
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K =

Vfast −Vslow
V

 (2) 

        

where Vfast and Vslow are the fast and slow S−wave velocities, respectively, and V is the 

average S−wave velocity. 

In the SWS tomography program, regularization methods including damping and 

smoothing are introduced to stabilize the inversion. Trade−off L−curve analysis is used to 

search for the appropriate damping and smoothing values that balance minimizing the 

model variance and data variance (Figure 2.19). I tested 165 pairs of damping and 

smoothing parameters and determined damping value of 20 and smoothing weight of 1 

are suitable for this inversion (Figure 2.19).  

 I use a simple 1D layered velocity model (Table 2.1; Seeber et al., 2000) to 

compute the ray paths for inverting the anisotropy model according to Equation 1, 

although a 3D velocity model around the study region has been recently published 

[Koulakov et al. 2010]. It is true that by using the simple 1D velocity model, the 

anisotropy model will be less accurate. However, the main features of the anisotropy 

model will be similar for both velocity models. This is because the ray paths do not differ 

significantly, and as a result the linear system according to Equation 1 is also similar. A 

small change in the velocity will result in a proportional change in the anisotropy 

percentage. Considering the velocity perturbation between the 1D and 3D models is 

generally ~5%, the resulting change in the anisotropy percentage is also ~5%. This will 

have a minimum effect on the overall anisotropy patterns observed later.  
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Table 2.1 1D velocity model in Karadere-Düzce branch of NAF 

Lay Top (km) 
0.0 2.5 3.5 6.0 9.0 13.0 

30.0 

Vp (km/s) 3.443 5.519 5.628 5.906 6.053 6.332 8.000 

Vs (km/s) 1.990 3.190 3.253 3.414 3.499 3.660 4.624 
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Figure 2.19  L-curves of smoothing and damping parameters. The optimal pair 
chosen for inversion is smoothing weight=1.0 and damping weight=20. 
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Figure 2.20 Along-fault sections of anisotropy percentage at X=-4, -2, 0, 2, 4 and 
6km, respectively. White contours are DWS plotted in a logarithmic-based-10 scale. 
Black dots are events within half of the grid size of each section. Colors are weighted 
by DWS values (areas with low DWS are faded and areas with high DWS are 
stressed). The areas without any ray path (DWS=0) are not sampled and thus 
whitened. 
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Figure 2.21 Horizontal sections of anisotropy percentage at Z=2.5, 3.5, 6 and 9km, 
respectively. Black lines are the projected fault surface traces of Karadere and 
Düzce segments. White contours are DWS plotted in a logarithmic-based-10 scale. 
Black dots are events within half of the grid size of each section. Colors are weighted 
by DWS values (areas with low DWS are faded and areas with high DWS are 
stressed). The areas without any ray path (DWS=0) are not sampled and thus 
plotted whitened. 
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Figure 2.22 Comparison of anisotropy percentage in northeast-trend Karadere 
segment and near east-trend Düzce segment. (a) The white dash line 1 indicates the 
rupture dip of Karadere segment. Black dots represent the events within half of grid 
size at the section. (b) Similar to (a). The white dash line 2 indicates the rupture dip 
of Düzce segment. Colors are weighted by DWS values (areas with low DWS are 
faded and areas with high DWS are stressed). The areas without any ray path 
(DWS=0) are not sampled and thus whitened. 

2.3.3 Results 

To characterize the resolution capability of the SWS tomography method in this 

study, I use two ways: the ray path density quantified by the Derivative Weighted Sum 

(DWS) for each inversion grid node and the checkerboard resolution test. In real 

applications, ray−sampling density has been routinely used to qualitatively describe if the 

model is well resolved [e.g., Haslinger et al., 1999] although ray angular coverage 

information is not considered. DWS is a measure of model sampling, representing the 

relative density of ray paths weighted by the importance of each ray segment by its 
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distance to the grid node. In general, the model areas with higher DWS values are better 

resolved [Haslinger, 1999; Zhang and Thurber, 2007].  

 Similar to the checkerboard resolution test used for velocity inversion, I also 

constructed a checkerboard anisotropy model with anomalies from 0 to 5% (See Figure S 

2.7−2.12). The checkerboard resolution test shows the recovery of anomalies in the 

regions of interest is generally acceptable (e.g., X = 0 ~ X = 2 in the immediate vicinity 

of the fault). The resolution in the deeper part of the model is higher than in the shallower 

part because of the better ray coverage, which is also reflected by the distribution of 

DWS values. 

 Figures 2.20 and 2.21 show the cross−sections at different X values (along the 

faults trike) and horizontal slices at different depths of the 3D anisotropy percentage 

model, respectively. Figure 2.22 shows cross sections of the anisotropy percentage model 

at Y = -9 km and 11 km, around the center of the Karadere segment and the Düzce 

segment that ruptured during the İzmit and Düzce earthquakes, respectively. The 

anisotropy models in Figure 2.20 to 2.22 are shown in a faded color scheme in which the 

areas with lower DWS values are more faded and the areas with higher DWS values are 

more highlighted. The areas without ray coverage (DWS=0) are whitened. The areas of 

interest generally have moderate to high resolution (DWS=10~1000, Figs. 4−6). 

 In the shallow crust (depth < 5km) of the Karadere−Düzce branch of the NAF, the 

anisotropy is very strong (as high as 5%) and concentrates around the Karadere fault trace 

(e.g., X = 0 and X = 2 km). The belt−like anisotropic zone is generally shallower than 5 

km, and becomes deeper to the northeast (Y > 10 km), close to the fault segment that was 

ruptured twice during the İzmit and Düzce earthquakes (Figure 2.20). The anisotropy 
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zone is mainly shifted to the SE side of the fault trace (X = 0 ~ 5 km) for the SW fault 

segment (Y = -20 ~ -5 km) (Figure 2.21). Between -5 and 5 km along the Y direction, the 

anisotropic zone becomes more diffuse, with the highest anisotropy concentrated around 

the Karadere rupture zone (Figure 2.21). This coincides with anomalous fast polarization 

directions observed at stations TS and CL between Y = 3 and Y = 7 km [Peng and Ben-

Zion, 2004], and a minor step over [Hartleb et al., 2002] to the east of the Kadifekale 

town (at X = 0 and Y = 0 km). However, for the anomalous fault−perpendicular fast 

polarization, the possibility of cycle skipping cannot be ruled out. It is possible that the 

real fast polarization is along the fault strike while cycle skipping leads to a 90o 

ambiguity of fast polarization and one or more half periods increase in delay times. 

Further to the east (Y = 5 ~ 19 km), the anisotropy zone is mainly centered around the 

rupture zones of the İzmit and Düzce earthquakes at shallow depths (Slice Z = 2.5 km 

and Z = 3.5 km of Figure 2.21). Another high anisotropy zone is observed from the 

surface down to the depth of 6 km to the NW side of the surface rupture zone near station 

BV (X = 0 km), where the maximum delay times of up to 0.3 s were observed. 

At Y = −9 km around the center of the Karadere segment that ruptured during the 

İzmit earthquake, the anisotropy extends discontinuously from the near surface to the 

depth around 12 km, with a broken zone around the depth of 5 km (Figure 2.22). Overall, 

the dipping trend of the anisotropy zone follows closely to the fault dip angle of the 

Karadere segment, which is approximately 80o to the north [Ben−Zion et al., 2003; Bulut 

et al., 2007]. However, the strongest anisotropy is localized within the Almacik block to 

the SE side of the fault, which is also shown in Figure 2.20. At Y = 11 km around the 

western end of the segment that ruptured during the Düzce earthquake, the anisotropy 
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greater than 5% is mainly concentrated from 3 to 7 km in depth and between the 

extension of the Karadere segment and the Düzce segment that ruptured twice (Figure 

2.22). The anisotropy zone dips about 50o to the north, close to the dipping angle (50−70o 

to the north) of the Düzce mainshock rupture and its aftershocks [Burgmann et al., 2002]. 

The coincidence of anisotropic zones with fault geometries indicates that they are 

strongly structure−related. 

In addition to these strong anisotropy anomalies around active rupture zones at 

shallow depths, I also observe pockets of isolated anisotropy anomalies at greater depths 

away from the faults. They are generally at the dimension of kilometers in radius and 

have comparable anisotropy percentage with the belt−like anisotropic zone in the fault 

zone. 

 

2.3.4 Discussion 

Peng and Ben−Zion [2004] only selected events that are within the shear−wave 

window (i.e., the epicentral distance less than the depth) for measuring their SWS 

parameters. If the subsurface velocity structure is uniform, this corresponds to an 

incidence angle of 45o. However, because of the lower velocity near the surface, the rays 

tend to be more vertical as the ray approaches to the surface. For the anisotropy 

tomography in this study, as the velocity tomography, it also relies on the crossing rays to 

image the anisotropy structure. As a result, the model resolution in the shallower depths 

is relatively worse, as shown in the checkerboard resolution test in supplementary 

materials. 
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 Nevertheless, due to the dense distribution of earthquakes and thus good ray 

coverage in our study area, we were able to determine the 3D anisotropy distribution 

around the Karadere−Düzce branch of the North Anatolian Fault with a reasonable 

resolution. In summary, we found that the anisotropy is primarily distributed in a 

continuous belt−like zone down to 3−5 km in depth and of 1−3 km wide along the 

Karadere−Düzce segment of the NAF. In the deeper region and away from the faults, the 

anisotropy shows isolated blocks but with comparable anisotropy percentage. The distinct 

anisotropy features in and outside the fault zones provide a unique opportunity to 

understand the anisotropy mechanisms in the upper crust of the study region. 

 Because of the relative movement of blocks on both sides of the fault, it generally 

causes the shear fabric or microfractures that are preferentially aligned parallel to fault 

zones. Such a preferential alignment would result in fault−parallel fast polarization. In 

addition, the belt−like anisotropic zone generally follows the surface fault trace (Figure 

2.20), which strongly indicates a structure−controlled mechanism of crustal anisotropy in 

this region.  

We note that the rotation of maximum horizontal compression near the fault may 

introduce some potential bias when using fast polarization to infer anisotropy 

mechanisms. For example, Holt et al. [2013] used the aftershock data of the Darfield 

earthquake to invert regional stress field in New Zealand. They found that the maximum 

horizontal compression rotated to be parallel to the Darfield fault, where fault−parallel 

fast polarizations were observed for some on−fault stations [Syracuse et al., 2012]. 

However, this rotation has not been observed for the 1999 Izmit earthquake [Görgün et 

al., 2010]. 
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The width of anisotropy zone is confined within 3 km near the fault interface, which 

is much wider than the 100−300 m of low−velocity damage zone inferred from fault zone 

trapped waves [e.g., Ben−Zion et al., 2003; Peng et al., 2003; Li et al., 2006]. It is quite 

possible that fault zone trapped waves required a coherent low−velocity zone that only 

exists in the immediate vicinity of the fault interface, while fault−zone related fractures 

could exist at much further distances. We also note that previous studies of fault zone 

trapped waves were primarily based on seismic data collected by dense fault zone arrays 

with a typical length of a few hundred meters. Hence, it is possible that a much wider 

damage zone exists, but was not detected by a relatively short array. Indeed, using a 

5−km long dense array, Cochran et al. [2009] found a 1.5 km−wide damage zone along 

the Calico fault in the eastern California shear zone. 

It is interesting to note that the anisotropic zone on the Karadere segment is 

asymmetric rather than centered with respect to the fault trace (Figures 2.21 and 2.22). 

The damage zone is ~3 km wide and localized to the south of the fault surface trace, 

while the Karadere segment is dipping approximately 80 degrees to the north [Ben-Zion 

et al., 2003]. Such asymmetric localization of the damage zone may result from varying 

intensity of hydrothermal conditions and/or rock properties of both walls [Sibson, 2003]. 

Alternatively, an asymmetric damage zone is expected for dynamic ruptures propagating 

along a fault interface that separates different elastic media [Ben−Zion and Shi, 2005]. 

Such ruptures would propagate preferably in the direction of slip on the slower side of the 

fault, and produce tensile radiations and damages on the faster side of the fault 

[Ben−Zion, 2001; Shi and Ben−Zion, 2006; Bulut et al., 2012]. The Almacik block in the 

SE side of the fault has a higher velocity than the sedimentary basin on the other side, at 
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least in the top few kilometers [Koulakov et al., 2010]. Such assumption is qualitatively 

consistent with the eastward propagation (slip direction of the slow side) of the İzmit 

rupture along the Karadere segment, and additional fractures and anisotropy in the faster 

Almacik block.  

 However, the pattern becomes much more complicated to the east of the town of 

Kadifekale, where the rupture bifurcated and finally stopped near Golyaka during the 

İzmit earthquake (Figures 2.17 and 2.21). 87 days after the İzmit earthquake, the 

November Düzce earthquake re−ruptured part of northeastern section of the Karadere 

segment, and the remaining segment to the city of Bulu. Such an unusual rupture process 

indicates strong complexity of rock properties and heterogeneity of stress field. For 

example, Hurd and Bohnhoff [2012] showed a bimodal pattern of fast polarization 

directions at station HEN located toward the eastern part of the İzmit rupture and close to 

the Karadere fault (X = −6 km and Y = 7 km), which is close to the fault−zone anisotropy 

body imaged in this study. Further to the east near the Düzce basin, our results indicate 

that the anisotropic zone might be controlled by both the Karadere segment and the 

Düzce segment (Figure 2.22b). Görgün et al. [2010] showed that the Düzce fault that 

bounds the Düzce Basin may represent a major asperity which was activated by the east 

end of İzmit rupture but not ruptured until three months later. Although the stress 

imparted from the İzmit rupture to the Düzce fault was complicated, the asperity that was 

ruptured afterwards may induce additional damage and hence contribute to the high 

anisotropy between two segments. 

The continuous anisotropic zone is generally 3−5 km deep, which is compatible with 

the results implied from the distribution pattern of the delay times and event locations 
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[Peng and Ben−Zion, 2004; Hurd and Bohnhoff, 2012]. This is also the typical depth 

extent of anisotropy reported in other fault zones [e.g., Zhang and Schwartz, 1994; Liu et 

al., 2004]. Because the cracks are expected to close and/or reduce in density due to the 

increase of confining pressure with depth, we would expect to observe a reduction of 

anisotropy with depth. It is also reported that the fault zone might change at 3 km depth 

from a mechanically passive zone in the shallow part to an earthquake prone zone in the 

deeper part [Dieterich 1979; Marone and Scholz,1988; Blanpied et al., 1991]. However, 

we note that the anisotropy belt extends as deep as 8 km in the northeast (Figure 2.22b), 

where the fault correspondently ruptured both during the İzmit and Düzce earthquakes. 

Coincidently, this region also shows the highest anisotropy in our study area, consistent 

with the finding that station BV recorded one of the largest delay times. Maximum 

afterslip was also observed in this region from GPS data after the İzmit and before the 

Düzce earthquake [Burgmann et al., 2002]. Therefore, the fault that had been ruptured by 

both earthquakes may get additional damages at greater depths, resulting in stronger 

anisotropy.  

Away from the fault, the anisotropy is generally smaller and decreases to 0−1% in the 

shallow part. However, in the deeper part (> ~ 4 km), there are several strong but isolated 

anisotropic blocks embedded in the weak anisotropic background. For example, in the 

Almacik block there are several highly anisotropic blocks located at the depth of 6−10 

km in the immediate vicinity of the aftershock zone. This is consistent with the inference 

by Hurd and Bohnhoff (2012) that the anisotropy beneath the station BAL (Figure 2.18) 

located near the center of the Almacik block may lie close to the source region instead of 

right beneath the station. Note that the SWS observations on station BAL are not 
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included in our study, thus providing an independent support of our tomography results. 

As found previously, extrusive igneous and sedimentary rocks are embedded in the mafic 

Almacik block [Yalmiz et al., 1997]. Therefore we suggest that these isolated anisotropic 

blocks outside the fault zone are likely due to local lithology. The candidate mechanisms 

for the highly anisotropic bodies outside the fault zone include the preferential aligned 

minerals in igneous rocks, foliation and/or saturation of fluids in sedimentary rocks. If 

seismic anisotropy outside the fault zone is due to stress−controlled fractures, the fast 

polarization direction is expected to align with the direction of maximum compressive 

stress. However, previous studies show fast polarization directions outside the fault zone 

vary with stations and some of them are neither parallel to the maximum compressive 

stress direction or along the fault strike. Therefore, these isolated anisotropic anomalies 

are more likely caused by individual igneous rock bodies with different minerals 

alignment directions. 

2.3.5 Conclusion 

I applied the 3D SWS tomography method to image the upper crustal anisotropy 

in the Karadere–Düzce branch of the NAF. The tomography benefited from the large 

dataset that sampled the study area with high coverage. The results show strong spatial 

heterogeneity of anisotropy on and outside the fault zone. A continuous belt−like highly 

anisotropic zone is identified along the fault, generally ~3 km wide and down to ~5 km, 

which is generally consistent with previous studies on shallow crust anisotropy in either 

the NAF or San Andreas Fault [e.g., Ben−Zion et al., 2003; Zhang et al., 2007]. The 

observed asymmetric pattern of anisotropy along the Karadere segment is qualitatively 
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consistent with asymmetric damages from the unilateral eastward propagation of the 

Izmit rupture. The strongest anisotropy zone in the study region is coincident with the 

segment ruptured twice during the İzmit and Düzce earthquakes. These results, together 

with fault−parallel fast polarization directions around the fault, strongly support the 

mechanism of the structure−controlled anisotropy due to aligned fabric related to fault 

damage zone. In the deeper part of the fault zone, anisotropy generally becomes very 

weak because of the closure of fractures, as a result of fault healing and increased 

confining stress with depth. However, in the deeper part outside the fault zone we found 

several highly anisotropic bodies in form of isolated blocks that are embedded in the low 

anisotropy background. Our results explain the inconsistent fast shear−wave polarization 

directions varying with stations outside the fault zone that was found in previous studies. 

The isolated anisotropy blocks outside the fault zone could be explained by individual 

intrusive igneous rock bodies with different mineral alignments. In summary, seismic 

anisotropy in upper crust of the Karadere−Düzce Branch of the North Anatolian Fault is 

structurally controlled. 

2.3.6 Checkerboard tests 

Here I present the checkerboard resolution test results for the ansiotropic models. 

First I construct a checkerboard anisotropy model with anomalies from 0 to 5% (Figures 

S 2.7, S 2.9, and S 2.11). The sizes of anomalies are the same as the grid intervals used in 

the inversion. Second, the synthetic delay times between the fast and slow shear waves 

were computed based on Equation 2 in the main text using the same event-station 

distribution in the inversion. Third, the obtained synthetic delay times were used for the 
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SWS tomography and the recovered checkerboard patterns are shown in Figures S 2.8, S 

2.10, and S 2.12. 
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Figure S 2.7 Along-fault sections of synthetic anisotropy anomalies at X=-4, -2, 0, 2, 
4 and 6km, respectively. Black dots are events within half of the grid size of each 
section. 
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Figure S 2.8 Along-fault sections of inverted anisotropy percentage at X=-4, -2, 0, 2, 
4 and 6km, respectively. White contours are DWS plotted in a logarithmic-based-10 
scale. Black dots are events within half of the grid size of each section. Colors are 
weighted by DWS values (areas with low DWS are faded and areas with high DWS 
are stressed). The areas without any ray path (DWS=0) are not sampled and thus 
whitened. 
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Figure S 2.9 Horizontal sections of synthetic anisotropy anomalies at Z=2.5, 3.5, 6 
and 9km, respectively. Black think lines are the projected surface fault trace of 
Karadere and Düzce segments. 
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Figure S 2.10 Horizontal sections of inverted anisotropy percentage at Z=2.5, 3.5, 6 
and 9km, respectively. Black think lines are the projected surface fault trace of 
Karadere and Düzce segments. White contours are DWS plotted in a logarithmic-
based-10 scale. Black dots are events within half of the grid size of each section. 
Colors are weighted by DWS values (areas with low DWS are faded and areas with 
high DWS are stressed). The areas without any ray path (DWS=0) are not sampled 
and thus plotted whitened. 
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Figure S 2.11 Synthetic anisotropy anomalies at Y = -9 km and 11 km, 
corresponding to Figure 2.22 in the main text. 

 

 

Figure S 2.12    Inverted anisotropy percentage at Y = -9 km and 11 km, 
corresponding to Figure 2.22 in the main text. Colors are weighted by DWS values 
(areas with low DWS are faded and areas with high DWS are stressed). The areas 
without any ray path (DWS=0) are not sampled and thus whitened. 
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CHAPTER 3. AUTOMATIC PICKING OF PRIMARY, 

SECONDARY AND FAULT ZONE HEAD WAVES 

The results presented in this chapter are from Li and Peng [2016a, 2016b]. 

3.1 An Automatic Phase Picker for Local Earthquakes with Predetermined 

Locations: Combining An Energy Ratio Detector with 1D Velocity Model 

Inversion 

Summary 

I present a simple method to pick additional P and S phases for local earthquakes 

with predetermined locations. Different from conventional characteristic function 

techniques, our method incorporates 1D velocity inversion into phase picking. It first 

predicts phase arrivals using initial velocity models and available event locations, and 

then applies a detector function to search genuine phase arrivals around the initial 

predictions. Using the newest searched phase arrivals (picks), the velocity models are 

updated accordingly and then used to predict more accurate arrival times. Such a 

procedure can be iterated multiple times, during which both phase picking and velocity 

model are improved. I perform a test with synthetic data from a 1D velocity. The 

resulting phase picks are consistent with true arrivals and true velocity models can be 

well recovered. Another test with real data recorded by the Anza seismic network in 

southern California shows that the resulting velocity models agree with the average 

Southern California Earthquake Center (SCEC) community models in this region. Out of 
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23,932 event-station pairs, 23,770 P picks and 21,935 S picks are obtained from this 

method. After 4 iterations, 90% of our P picks and 80% of our S picks have differences 

within 0.15 s, from the phase picks of the Southern California Earthquake catalog. Given 

its simplicity and efficiency to produce robust P and S picks and 1D velocity models, the 

technique is particularly suitable for a wide range of seismological research where phase 

picks at additional stations and/or a refined 1D velocity models are needed. 

3.1.1 Introduction 

Automatic phase picking is a long-standing topic in observational seismology [e.g. 

Allen, 1982]. Accurate identification of seismic phase arrival times is of particular 

importance for determining event location and subsurface velocity structure. Although 

phase identification can be done manually, it is rather time consuming and subjective. As 

seismic data volume increases dramatically, many automatic phase picking algorithms 

and characteristic functions have been developed in the past few decades. Beginning with 

the short-term average/long term average (STA/LTA) method [Allen, 1978, 1982; Earle 

and Shearer, 1994], a few higher order statistical metrics have been proposed, including 

envelope functions [e.g., Baer and Kradolfer, 1987], skewness and kurtosis functions 

[e.g., Saragiotis et al., 2002; Kuperkoch et al., 2010; Baillard et al., 2014]. Algorithms 

from the data mining community are also introduced for phase picking purpose, such as 

neural networks [Dai and MacBeth, 1997; Zhao and Takano, 1999; Gentili and 

Michelini, 2006], autoregressive methods [Takanami and Kitagawa, 1993; Sleeman and 

Eck, 1999; Leonard and Kennett, 1999; Zhang et al., 2003], and nearest neighbors 

[Rawles and Thurber, 2015]. Some studies combine these approaches to improve the 

robustness of the picking procedure [Sleeman and van Eck, 1999; Pantane et al., 2003; 
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Diehl et al., 2009; Ross and Ben-Zion, 2014]. These methods are designed to identify 

sharp changes in waveform amplitudes without a priori information of seismic events. 

Therefore, they are essential at initial stages of seismic data processing, i.e., building 

earthquake catalogs. 

However, in some seismological studies we may encounter a different situation: 

start with event catalogs in hand (generally from network centers or government agencies 

responsible for reporting earthquakes) but without phase arrival information at certain 

stations. One example is seismic travel-time tomography [e.g., Aki and Lee, 1976], which 

is widely used to image the Earth’s three-dimensional seismic velocity structures. 

Another example is using waveform template matching technique to search missing 

events from standard catalogs, which requires phase arrivals to select proper windows for 

waveform correlation [e.g., Peng and Zhao, 2009]. These studies mainly use earthquakes 

as listed in published catalogs and require reliable measurements of seismic phase arrival 

times for certain stations or networks. Even for the stations in which phase picks are 

routinely provided, certain phases, such as S picks, are usually not complete. On the other 

hand, with event locations in hand, simply using 1D or 3D velocity models to predict 

theoretical phase arrivals may not be satisfactory [e.g., Peng and Zhao, 2009], because of 

inaccurate velocity models. Another common way is to use characteristic functions, such 

as the aforementioned STA/LTA function, to pick phase arrivals. However, using 

characteristic functions alone may not be the optimal choice. For example, the 

performance of characteristic functions tends to decrease in presence of high-amplitude 

local noise or seismic phases other than the targeted phases. For this reason, characteristic 
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functions usually lead to low production of S picks, which are generally contaminated by 

P wave coda and P/S converted phases. 

Here we show that additional information from event catalogs may be exploited to 

enhance picking accuracy. A simple algorithm is introduced to combine characteristic 

function search for phase arrivals and velocity model prediction, in an iterative sense. 

This method ensures that a detector function is applied within a time window allowed by 

initial velocity models, thereby avoiding erroneous picks clearly outside typical P and S 

windows. It also updates the velocity models and makes more accurate prediction of 

phase arrivals in the next iteration. The resulting velocity models derived in this way can 

be used for other research purposes, such as earthquake location and tomography. I test 

this method with both synthetic and real data sets and demonstrate its capability to 

produce reliable phase picks and improved 1D velocity models. 

 

Figure 3.1 Schematic diagram and flowchart for the ‘Predict-Search-Invert-Repeat’ 
(PSIR) procedure. (a) 1D velocity models, source (star) and receiver (triangle) 
locations, and ray paths for P and S waves. (b) An example three-component 
seismogram recorded at station CRY in the Anza seismic network. Vertical dashed 
lines mark the P and S arrivals. Vertical arrows mark the predicted arrivals. 
Dashed arrows denote window ranges for searching the real P and S arrivals. 
Dashed arrows linking two parts suggest that the velocity model can predict arrivals 
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and in return can be updated by the searched picks. (c) The detailed flowchart of 
the PSIR procedure. 

 

Figure 3.2 The synthetic test setup. Red triangles represent 10 surface receivers 
from 10 km to 100 km with 10 km spacing. Red circles represent 100 events with 
depths following a pseudo-Gaussian distribution and truncated at the edges of 0 and 
25 km. The histogram shows the counts of events in 1 km bins in depth. (b) Map of 
the San Jacinto Fault zone in southern California. Red triangles represent stations 
in the Anza seismic network used in the test. Background seismicity is between 
01/01/2014 and 06/01/2014 from the Southern California Seismic Network (SCSN) 
catalog. The red rectangle in the inset marks the study region in a larger map of 
southern California. 

3.1.2 Method 

Figure 3.1 shows the schematic diagram and flowchart of the method. As 

mentioned before, I first take event locations from a given event catalog and a 

preliminary velocity model as inputs. Next, given the location of an event and the 

preliminary velocity model, the phase arrivals are predicted at several stations. I then 

apply a standard forward-backward energy ratio (FBER) detector to search the actual 

arrival within a window around the predicted arrival. The searched picks are used as 

input to the velocity model inversion. The updated velocity model is used to predict 
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theoretical arrivals again, and thus the entire procedure can be iterated. The use of 

velocity models ensures that the detector function is applied within a reasonable time 

window, and in return the newly identified picks improve the velocity model. The above 

process is repeated until the picks and the velocity model become stable, which usually 

takes no more than three iterations. The method is essentially a joint search for the picks 

and the velocity model based on predetermined event locations. I term this procedure as 

“Predict-Search-Invert-Repeat” (PSIR) and the details of each step are described below. 

The travel time calculation follows the code in the frequency-wavenumber synthetic 

seismogram package developed by Zhu and Rivera [2002], which computes the ray 

parameter by a shooting method. To determine the window for searching the real phase 

arrival, we assume that actual velocity deviates within a percentage of the velocity model  

 𝜖 = ∆𝑉!"# 𝑉 (3) 

 

where 𝑉 is a given velocity model, and ∆𝑉!"# is the maximal allowed difference between 

the true velocity structure and the given velocity model. We note that 𝜖 is an average 

perturbation of the whole velocity model, but in reality, the velocity perturbation may 

vary within each layer. The parameter 𝜖 can be preset by users, based on a rough estimate 

of the accuracy of the given velocity model. By propagating the velocity perturbation to 

arrival time perturbation, the search time window becomes  

 [𝑡! +
𝑡!

1+ 𝜖 , 𝑡! +
𝑡!

1− 𝜖] (4) 
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where 𝑡! is the event origin time, and 𝑡! is the theoretical travel time. It is worth noting 

that this search window may not include all true arrivals, due to underestimation of the 

inaccuracy of the velocity model and/or lateral heterogeneity, which is usually the case 

for some initial velocity models. However, as long as actual arrivals falling within the 

search window are sufficient for stable inversion of the velocity model, the inverted 

velocity model should shift toward the true one. More importantly, based on the updated 

velocity model, the predicted arrival and the search window are revised to be more 

accurate and the number of successful picks should increase in the next iteration. 

To search the true picks within the window, we use the following FBER function: 

 
FBER t =

𝐴!(τ)dτ!!!
!

𝐴!(τ)dτ!
!!!

, 𝑡! +
𝑡!

1+ 𝜖 ≤ 𝑡 ≤  𝑡! +
𝑡!

1− 𝜖  (5) 

 

where A is the seismic waveform amplitude and T is the predefined window length for 

SNR calculation. The true phase arrival is simply picked at the maximum of the FBER 

function in the window, which is different from conventional characteristic function 

pickers that widely use preset trigger thresholds. Note that because the maximum within a 

window always exists, a pick is always identified. Hence, it is important to use FBER 

value to control the pick quality. A pick would be discarded when the maximum is found 

at the window edge. This is to avoid flat/monotonously increasing/decreasing amplitude, 

or other erroneous data artifacts within the window. Other exceptions, such as incomplete 

waveform header information or missing data points, could also result in picking failure.  
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After obtaining arrivals from the FBER picker, we update the velocity model via 

1D velocity inversion, which is a common technique in seismology. Here I follow 

Shearer [2009] to formulate the problem: 

 𝛿𝑡! = 𝑡!"𝜖!
!

 (6) 

where 𝑖 denotes the 𝑖!! travel time measurement, and 𝑗 denotes the 𝑗!! layer. Therefore, 

𝛿𝑡! is the residual between the 𝑖!! searched arrival and the 𝑖!! predicted arrival, 𝑡!" is the 

travel time in the 𝑗!!  layer of the 𝑖!!measurement, and 𝜖!  is the fraction of velocity 

perturbation in the 𝑗!! layer. This is a linear equation and is typically ill posed, so I use 

zero-order Tikhonov regularization to solve it [Aster et al., 2013]. The regularization 

parameter is chosen to be 10 for our test cases, but is available for change at users’ 

choice.  

In our procedure, P phase is picked on the vertical component, and the FBER measured at 

the pick is used as a quality metric. S phase can be picked on east and north horizontal 

components separately, and the final S pick is their FBER-weighted average. As the 

event location is available, alternatively, the S pick could be made simply on the 

transverse component. The later approach is not elaborated here, but included as a 

separate version in the downloadable package. Only the picks with high enough FBER 

are used in the velocity inversion (in the following tests I define the threshold to be 

FBER>5). The algorithm allows users to set the velocity perturbation 𝜖, based on their 

evaluation of the initial velocity model accuracy. However, if 𝜖 is set too large, for 

example, 𝜖 > 0.27 for 𝑉! 𝑉! = 3, the search window for P wave overlaps with the one 

for S wave. If overlap does occur, the algorithm automatically sets the start of the S 
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window to be after the searched P arrival. Users can also set the window length T for 

FBER calculation, according to the sampling rate and noise level of a specific data set. 

Typically a large T is more noise-robust, but it is less sensitive to localized amplitude 

change. By default, the algorithm uses 0.1 s and 0.2 s for P and S waves, respectively. 

3.1.3 Test with synthetic data 

In the test, I use the frequency-wavenumber synthetic seismogram package [Zhu 

and Rivera, 2002] to compute synthetic waveforms. The setting includes 10 receivers at 

the surface and 100 events at depth (Figure 3.2a). The epicenters of the 100 events are 

placed at X=0 km, while their depths follow a pseudo Gaussian distribution with mean at 

12.5 km and truncated at the edges of 0 and 25 km. The 10 receivers are located at X=10, 

20, … 90, 100 km. The focal mechanism parameters (i.e., strike, dip and rake) of these 

events are randomly set with even chance in the parameter’s allowable ranges. P and S 

phases are searched on vertical and horizontal components, respectively. 
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Figure 3.3 1D P and S velocity models in the synthetic test. Dashed and solid red 
lines represent initial and true models, respectively. The light gray, moderate gray, 
and dark gray dotted lines represent the inverted velocity models in the 1st, 2nd, and 
3rd iteration, respectively. The solid black line is the resulting velocity model in the 
4th iteration. 

 

Using the Southern California Earthquake Center (SCEC) community velocity 

model [Magistrale et al., 1996], I extract the velocity profiles at the locations of ten 

stations in the Anza seismic network (Figure 3.2b). These ten velocity profiles are then 

averaged into a 1D model with each layer of 4-km thickness (red lines in Figure 3.3), 

which is used for synthetic seismogram generation. Next, I apply 5%-20% random 

velocity perturbation in each layer of the true model, in order to obtain a perturbed 

velocity model serving as the starting model for the test (dashed lines in Figure 3.3). 
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While the actual maximum velocity perturbation could reach up to 20%, I set the 

maximum allowed perturbation 𝜖 = 15% for all iterations. In the synthetic test, I perform 

four iterations. The resulting P and S velocity models converge well to true velocity 

models, with the relative inaccuracy about 1% or less in each layer (Figure 3.3). Figure 

3.4a and 3.4b show the difference of the searched picks relative to the predicted arrivals 

based on the initial velocity models (iteration 1) and updated models (iterations 2-4). It is 

clear that the discrepancy between the searched picks and predicted arrivals narrows 

down during four iterations. Because the initial models are significantly slower than the 

true models, the travel time residuals are clustered at the negative sides. Although some 

of the picks cannot be searched because the preset maximum perturbation is less than the 

actual maximum perturbation, many picks within the 15% range can be still obtained. 

These picks are then used to update the velocity models, which help in reducing 

differences between the predicted arrivals and the true arrivals in the later iterations.  

After four iterations, the searched picks are very consistent with the prediction from 

the updated velocity models (iteration 4 in Figure 3.4a and 3.4b). Figure 3.4c and 3.4d 

show the residuals between the searched picks and the true arrivals. In the first iteration, 

because the velocity inaccuracy is underestimated, a number of arrivals are excluded in 

the search range and thus cannot be obtained. However, as shown in Figure 3.4c and 

3.4d, after the first iteration of velocity update, the number of successful picks increases 

significantly (P picks increase from 821 to 1,000, and S picks increase from 749 to 

1,000). From iterations 2 to 4, the residual histograms do not change much. This is 

because after the first iteration, the velocity models converge within 15% perturbation of 

the true velocity models, thus most picks can be searched using the preset 15% threshold. 
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Figure 3.5 shows a few automatic pick examples in comparison to true arrivals. To check 

for the performance for noisy data, I also add zero-mean Gaussian noise with standard 

deviation at 20% and 50% of first arrival peak amplitude. Although there is a decrease in 

successful picks and greater error in the inverted velocity model, as the noise increases, 

the results generally agree with the true arrivals and velocity models. 

3.1.4 Test with real data 

I test the method using six months of seismic data recorded by the Anza seismic 

network in southern California (Figure 3.2a). The data set consists of 2,815 events 

recorded by 10 stations, resulting in 23,932 event-receiver pairs. I download the event 

catalog, waveforms, and phase picks from the Southern California Earthquake Data 

Center (SCEDC). I use the same starting velocity s as the ones in the synthetic test 

(Figure 3.3). Similarly, the maximum allowed velocity perturbation 𝜖 is set as 15%. 

Although the exact velocity structure in the region is not known, I use the average SCEC 

community velocity model as a reference for the test output.  

Table 3.1 Number of Picks in the real data test 

 
iter 1 iter 2 iter 3 iter 4  Pick rate 

P (FBER>1 ) 21002 23385 23784 23770  99.3% 

P (FBER>5) 18207 22091 22516 22516  94.1% 

P (FBER>10) 14843 19193 19643 19638  82.1% 

S (FBER>1 ) 16785 21936 21938 21935  91.7% 

S (FBER>5) 15218 21490 21498 21494  89.8% 
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S (FBER>10) 13274 19499 19519 19522  81.6% 

 

I perform four iterations and check the pick and velocity model changes (Figure 

3.6). Although with some minor differences, the resulting velocity models in the 

iterations are generally consistent with the average SCEC models, indicating the SCEC 

models agree well with those derived from our test data. Table 3.1 gives the number of 

picks in each iteration. At the beginning of the first iteration, because the initial velocity 

models are not accurate, many of the predicted arrivals are far from the true ones so that 

the true arrivals are outside the search window. Therefore, I obtain a relatively low 

number of high-FBER picks in this iteration. By the end of the fourth iteration, I have 

22,516 FBER>5 and 19,638 FBER>10 P picks, 21,494 FBER>5 and 19,522 FBER>10 S 

picks. In comparison, the SCEDC provides 22,101 P picks and 18,093 S picks.  

Figure 3.7a and 3.7b show the residuals between our automatic P and S picks and 

predicted picks. Similarly to the synthetic test, the residuals between the searched arrivals 

and the predicted ones are concentrated at the negative side in the first iteration, which 

suggests that the initial models are systematically too slow. The residuals decrease 

quickly and concentrate at zero in the later iterations, which is largely due to the 

improvement of the velocity models. Figure 3.7c and d compare the obtained picks with 

the SCEDC phase picks. By the 4th iteration, 90% of P picks and 80% of S picks have 

residuals within ±0.15 s. Figure 3.8 shows a few waveform pick examples of events at 

different hypocentral distances with varying FBER. Even for low FBER signals, the 

picker still performs well. Figure 3.8b also shows that the picks are generally within 0.2 s 

from the phase picks obtained from SCEDC. In general, the consistency between the 
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automatic picks and the cataloged ones tends to decrease with decreasing FBER (Figure 

3.9a and 3.9b). The picks that are made by our method but not in the catalog are also with 

relatively low FBER (Figure 3.9c and 3.9d). This partly demonstrates the method’s 

picking ability in noisy data, although further selection criteria could be applied for 

quality control purpose. 
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Figure 3.4 Histograms of P and S pick residuals in four iterations of the synthetic 
test. (a) P and (b) S arrival time residuals between searched and predicted arrivals 
from the initial (iter 1) and updated (iter 2, 3, 4) velocity models . (c) P and (d) S 
travel time residuals between the searched and true arrivals from the true velocity 
models. The bin size is 0.1 s. 
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Figure 3.5  Examples of P and S picks on synthetic seismograms. (a) The vertical 
waveforms are aligned at true P arrivals (gray vertical line) and the automatic P 
picks are marked by red bars. The (b) transverse and (c) radial waveforms are 
aligned at true S arrivals (gray vertical lines), and red bars mark the automatic S 
picks. 
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Figure 3.6 1D P and S velocity models in the real data test. Dashed lines and solid 
red lines represent initial and average SCEC models, respectively. The light gray, 
moderate gray, and dark gray dot lines represent the inverted velocity models in the 
1st, 2nd, and 3rd iteration, respectively. The solid black line is the resulting velocity 
model in the 4th iteration. 
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Figure 3.7 Histograms of P and S pick residuals at the end of each iteration in the 
real data test. (a) P and (b) S arrival time residuals between the searched and 
predicted arrivals from the initial (iter 1) and updated (iter 2, 3, 4) velocity models. 
(c) P and (d) S arrival time residuals between the searched and the referenced 
SCEDC phase arrivals. The bin size is 0.1 s. 
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Figure 3.8  Examples of P and S picks on the Anza network data. (a) Left: the 
vertical waveforms are aligned at SCEDC P picks (gray vertical line), and red bars 
mark the automatic P picks. Middle and right: The east-component and north-
component waveforms are aligned at SCEDC S picks (gray vertical lines) and the 
automatic S picks are marked by red bars. (b) The zoom-in plot of the same 
waveforms within	± 0.5 s of the SCEDC picks. 
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Figure 3.9 Distribution of FBERs for all the picks. (a) and (b): FBER versus time 
differences of automatic and cataloged picks for P and S waves, respectively. (c) and 
(d): Histograms of FBER distribution of all the automatic picks (gray bars) and 
those not in the SCEDC catalog (black bars), for P and S waves, respectively. 
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function search with simple 1D velocity model inversions. By allowing a certain degree 

of velocity inaccuracy, the characteristic function is confined to search within a range, 

thereby avoiding false picks that are far from the theoretical expectation. Our synthetic 

tests (Figures 3.3-3.5) demonstrate its ability to obtain accurate picks and converge from 

an inaccurate velocity model toward the true one. The test with Anza network data 

(Figures 3.6-3.8) shows a significant increase of S phase picks in comparison with 

existing catalog picks. The method could be useful for travel time tomography, where 

picks made outside reasonable P and S windows may introduce unreal velocity 

anomalies. In addition, the updated velocity model obtained using searched arrivals can 

also serve as a starting point for 3D seismic tomography.  

Specially designed for the case where an event catalog is available, our method 

does not compete with many automatic arrival pickers for phase identification from 

scratch [e.g., Ross and Ben-Zion, 2015]. Instead, with a priori knowledge of event 

locations, the method increases the phase-pick success rate (especially S phases) and 

reduces false picks (picks that are significantly outside the typical arrival window or 

erroneous phases). Both are advantageous over characteristic functions alone. In addition 

to the tests above, this method has been applied to sizeable data sets, e.g. in the San 

Jacinto Fault Zone [Li et al., 2015] and in the Costa Rica subduction zone [Yao et al., 

2016]. We find that the method generally achieves good accuracy in these data sets and 

can significantly reduce the workload of manual phase picking.  

Our method considers the maximal FBER within the search range as the direct P 

and S arrivals. This may not be always true since other phases, such as P/S conversion, 

refracted (e.g., Pn or fault zone head waves) and/or reflected phases, may be more 
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impulsive than direct phases and could also occur within the search range. Therefore, if a 

better velocity model is available, decreasing the search range parameter 𝜖 could help to 

reduce the possibility of erroneous phase picking. In particular, a good choice of starting 

velocity model could be the one used for locating the events. An alternative would be to 

replace the STA/LTA with other characteristic functions that are capable of identifying 

additional phases [e.g., Ross and Ben-Zion, 2015; Li and Peng, 2016]. On the other hand, 

a threshold can be applied to select the picks with relatively higher FBERs, which tend to 

have sharper phase onset. Another assumption of the method is that event locations 

should be accurate enough, and that the differences between the actual arrivals and 

theoretical predictions are simply attributed to inaccuracy of the velocity model. For a 

data set with significant location errors, the proposed method inherently treats the 

location error as part of the velocity model error, which means the search-range 

parameter 𝜖 should be increased to reflect both event location error and velocity model 

error. Once the arrival search window is set large enough, the total error can be handled 

and picks can be still made. However, due to the coupled problem of event location and 

medium velocity, the inverted velocity model will be negatively impacted. 

In the synthetic test, we obtained most of the picks after the first iteration (Figure 

3.4c and 3.4d), while the velocity models became close to the true models at the later 

iterations (Figure 3.3). This is because once the velocity model differences decrease to 

15%, most arrivals can be obtained, and remain unchanged, while the velocity inaccuracy 

is further reduced. Therefore, although the iterative process in principle can be 

implemented many times as necessary, based on our experience, two or three iterations 

are sufficient to obtain the phase picks but more iterations may be needed to update the 
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velocity models. Too many iterations are not recommended because of relatively low 

gain relative to computational expense. Another possibility is to generalize the method to 

3D velocity model inversion. However, compared to 1D velocity model inversion, this 

does not provide further benefit for the phase picking, because the search window defined 

by velocity perturbation already handles a certain amount of lateral heterogeneities. 

With the amount of available seismic data increasing exponentially at IRIS Data 

Management Centers and other data centers, we expect that our procedure could be useful 

for other types of seismological research in which event catalogs are already available. 

3.2 Automatic Identification of Fault Zone Head Waves and Direct P Waves and 

Its Application in the Parkfield Section of the San Andreas Fault, California 

Summary 

Fault zone head waves (FZHWs) are observed along major strike-slip faults, and 

can provide high-resolution imaging of fault interface properties at seismogenic depth. In 

this paper I present a new method to automatically detect FZHWs and pick direct P 

waves secondary arrivals (DWSAs). The algorithm identifies FZHWs by computing the 

amplitude ratios between the potential FZHWs and DSWAs. The polarity, polarization 

and characteristic period of FZHWs and DSWAs are then used to refine the picks or 

evaluate the pick quality. I apply the method to the Parkfield section of the San Andreas 

Fault where FZHWs have been identified before by manual picks. I compare results from 

automatically and manually picked arrivals and find general agreement between them. 

The obtained velocity contrast at Parkfield is generally 5%-10% near Middle Mountain 

while it decreases below 5% near Gold Hill. I also find many FZHWs recorded by the 

stations within 1 km of the background seismicity (i.e., the Southwest Fracture Zone) that 
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have not been reported before. These FZHWs could be generated within a relatively wide 

low velocity zone sandwiched between the fast Salinian block on the southwest side and 

the slow Franciscan Mélange on the northeast side. Station FROB on the southwest (fast) 

side also recorded a small portion of weak precursory signals before sharp P waves. 

However, the polarities of weak signals are consistent with the right-lateral strike-slip 

mechanisms, suggesting that they are unlikely genuine FZHW signals. 

 

3.2.1 Introduction 

Large mature strike-slip faults tend to juxtapose blocks with clear lithological 

contrast [e.g., Thurber et al., 2006; Wdowinski et al., 2007; Dor et al., 2008]. The 

resulting velocity contrast leads to significant differences in rupture behavior and seismic 

radiation from a homogeneous solid [Ben-Zion, 2001]. For a mode-II type rupture, the 

dynamic change of normal stress σn at the rupture tip along a bimaterial interface is 

opposite in two slip directions: the change of σn is tensile along the slip direction of the 

compliant solid, and compressive along the other direction [Weertman, 1980; Andrews 

and Ben-Zion, 1997; Shi and Ben-Zion, 2006].  This dynamic effect may result in a 

statistically preferred rupture direction when an earthquake initiates within a bimaterial 

interface [Brietzke and Ben-Zion, 2006; Ampuero and Ben-Zion, 2008; Dalguer and Day, 

2009]. Because of drastic difference in the resulting ground motion due to directivity 

effect, a better understanding of bimaterial fault interface properties is important for 

seismic hazard assessment [e.g. Ben-Zion, 2006; Brietzke et al., 2009; Xu et al., 2012].  

Bimaterial fault interface is expected to generate fault zone head waves (FZHWs), 

which refract along the interface with the seismic velocity of the fast side and radiate 
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from the fault to the slow side [Ben-Zion, 1989, 1990]. Beyond a critical distance, 

FZHWs arrive earlier than direct P waves at stations on the slow side. In such cases, 

direct P waves can be termed as direct wave secondary arrival (DWSA) [Ben-Zion and 

Malin, 1991; Bennington et al., 2013]. The arrival time differences between the FZHWs 

and DWSAs can be used to estimate velocity contrast along a fault interface [Ben-Zion et 

al., 1992; Zhao et al., 2010; Allam et al., 2014]. In addition, incorporating FZHWs into 

travel time tomography produces a sharper velocity contrast across the Parkfield section 

of the San Andreas Fault (SAF) than using the direct arrivals alone [Bennington et al., 

2013]. Furthermore, distinguishing preceding FZHWs from direct P arrivals can enhance 

the accuracy of focal mechanism and event location [Ben-Zion and Malin, 1991]. 

To obtain a robust estimate of velocity contrast along a fault, typically we need a 

large number of FZHWs and DWSAs. In most previous studies, FZHWs and DWSAs are 

picked manually, which is an onerous task. More importantly, visual identifications of 

these phases depend on personal experience and therefore are subjective. In addition, for 

quality control purpose, Zhao et al. [2010] classified the picks of FZHWs into three 

quality levels in terms of the sharpness of amplitude changes, which is again based on 

visual inspection. Recently, Ross and Ben-Zion [2014] developed a new algorithm for 

automatic picking of direct P, S phases and FZHWs. They first picked the initial phases 

by short-term-average/long-term-average ratio (STA/LTA) function. Next, they 

distinguished between FZHWs and DWSAs by calculating kurtosis and skewness 

functions, which are sensitive to polarity changes and other abrupt changes in waveform 

characteristics. In their algorithm, the arrival differences between FZHWs and DWSAs 

are upper bounded by the prediction of the maximum velocity contrast in the given 
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region. 

In this paper, I present an alternative method to automatically distinguish between 

FZHWs and DWSAs based primarily on their amplitude differences and other 

characteristics. Different from the algorithm in Ross and Ben-Zion [2004], our method is 

based on preexisting first phase arrivals, and evaluates if the first arrival is a potential 

FZHW or simply a direct P wave. If it is a FZHW, our algorithm will pick the P wave or 

DSWA. To do this, I define new metrics of long-term and short-term amplitude ratios to 

track amplitude change. In addition, I propose a set of criteria for quality control purpose. 

The method is designed to fully exploit the characteristics of FZHWs and DWSAs, 

including amplitude, polarity, frequency, and polarization difference. 

In the following sections, I first describe the method and various quality control 

parameters. Next, I apply our method to the Parkfield section of the SAF, where Zhao et 

al. [2010] have previously analyzed FZHWs and found clear variation of velocity 

contrast along the SAF strike. I systematically compare our results with manual picks by 

Zhao et al. [2010] and re-calculate the velocity contrast using the automatic picks. 



 100 

  

Figure 3.10 A flow chart of the algorithm for automatic detection of fault zone head 
waves (FZHW) and picking direct wave secondary arrival (DWSA) (i.e., the direct P 
wave). LAAR: long-term average amplitude ratio; SAAR: short-term average 
amplitude ratio. 

3.2.2 Method 

FZHWs are identified as emergent first arrivals and low-amplitude seismic signals 

with lower frequency and opposite polarities with respect to the direct P waves [e.g., Ben-
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Zion and Malin, 1991; McGuire and Ben-Zion, 2005]. In addition, P waves are expected 

to polarize along the source-receiver direction while FZHWs are polarized in a direction 

controlled by the percentage of velocity contrast and local fault geometry [Bulut et al., 

2012]. Our automatic phase picking algorithm is based primarily on amplitude and 

polarity differences between these two phases. Other characteristics are used as additional 

quality control factors. The processing process is shown in Figure 3.10, with each step 

illustrated below.  

 

Basic quantities: The velocity contrast across the bimaterial interface can be described 

by the degree K: 

 𝐾 =
𝑉! − 𝑉!
𝑉 ≈

𝑡! − 𝑡!!
𝑡! − 𝑡!

≈
𝑡! − 𝑡!!
𝑡!! − 𝑡!

 (7) 

 

where Vf, Vs and V denote the velocities of fast side, slow side and the average, 

respectively. tp, thw and t0 are the travel times of the DWSA and FZHW, and event origin 

time, respectively. 

The approximation made in Equation 7 allows us to determine the search range 

for DWSA without assuming absolute velocities of both sides of the fault. If the event 

origin time t0 and first arrival t1 (either direct P waves of FZHWs) are known, the 

maximum search range t2 for potential DWSA can be set by 

 𝑡! = 𝑡! + 𝐾!"# 𝑡! − 𝑡!  (8) 
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where Kmax is the maximum degree of velocity contrast allowed in a region. In this study 

we set Kmax = 15% for the Parkfield case, above the maximum value of 10% observed by 

Zhao et al. [2010], and the maximum value of 10% used in Ross and Ben-Zion [2014]. 

Another important parameter used in the algorithm is the dominant period of the 

examined waveform. When the examined window is generally very short (typically less 

than 0.5 s), especially less than a full cycle of the dominant waveform, Fourier transform 

usually produces artifacts in the spectra domain due to window edge effect [Peng et al., 

2011]. Therefore, instead of Fourier spectrum, we use median instantaneous dominant 

frequency following the definition by Barnes [1993], which is found to be more stable for 

very short time window. Instantaneous dominant frequency can be calculated from 

instantaneous frequency fd(t), and the instantaneous amplitude or envelope R(t) as  

 
f!!(t) = f!!(t)+ (

R′(t)
2πR(t))

! (9) 

 

The median value of the instantaneous dominant frequency trace is taken to be a 

counterpart of spectral dominant frequency. The dominant period Td is reciprocal of fd, 

and bounded within [0.05, 0.2] s. We use this quantity to approximate one full cycle of 

the early arriving waveforms. 

 

Search parameters: To check if an initial arrival is a potential FZHW or direct P waves, 

the first characteristic is the sharpness of the first arrival. A FZHW generally has low 

amplitude and is followed by an abrupt increase of DWSA. Typically we pick its onset at 

a place with a sharp increase of amplitude in the displacement seismogram [Ben-Zion, 
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1989; Zhao et al., 2010]. In practice, we can evaluate the amplitude change within a short 

segment of waveforms and compare the amplitude over a relative long window. To 

mimic this process, we use quantities that are named as long-term and short-term average 

amplitude ratios. 

We define long-term average amplitude ratio (LAAR) and short-term average 

amplitude ratio (SAAR) by 

 
𝐿𝐴𝐴𝑅 𝑡 =

𝐴! 𝜏 𝑑𝜏!!
!
𝑡2− 𝑡

𝐴! 𝜏 𝑑𝜏!
!!
𝑡𝑝 − 𝑡1  ∙  𝑅!(𝑡),     𝑡 ∈ [𝑡! + 𝑇! , 𝑡! − 𝑇!] (10) 

 
𝑆𝐴𝐴𝑅 𝑡 =  𝐴! 𝜏 𝑑𝜏

!!!"

!
𝐴! 𝜏 𝑑𝜏

!!!"

!
∙ 𝑅! 𝑡 ,

𝑡  ∈ [𝑡! + 𝑇! , 𝑡! − 𝑇!] 

(11) 

 
𝑅(𝑡) =  𝐴! 𝜏 𝑑𝜏

!!!"

!
𝐴! 𝜏 𝑑𝜏

!!!!"

!!
 

(12) 

where A(t) is the amplitude at t, and R(t) is the amplitude ratio between the window right 

after t and the initial window. α is a small constant to modulate the effect of R(t). LAAR 

consists of the global-sense amplitude change weighted by R(t), while SAAR consists of 

the local-sense amplitude change weighted by R(t) as well. We add the term R(t) because 

we find that without this term, LAAR and SAAR are sensitive to low amplitude signal 

prior to real FZHW arrivals. Because we rely on the first arrival picks by other methods, 

and the first arrival may be sometimes picked slightly early than the real arrival. 

Therefore, the examined window contains a section of noise at the very beginning, and 
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without the term R(t) LAAR and SAAR will erroneously pick at the first arrival. 

Including the term R(t) can inhibit such error and helps to pick at position with more 

significant large amplitude. α is to fine-tune the effect of R(t) and cannot be too large to 

override other terms. In this study we set α to be a small constant 0.1. Although the α = 

0.1 is somewhat subjective, we find that a small change around 0.1 does not change the 

results significantly. 

Next we use the parameters LAAR and SAAR to judge whether the initial pick is 

a potential FZHW or simply a sharp direct wave. If LAAR or SAAR at t1+ Td is less than 

one, the amplitude within the first Td is larger than the remaining waveform portion. This 

indicates that the initial phase has large amplitude and is sharp, and thus considered as a 

direct wave. Otherwise, the first arrival is treated as a potential FZHW. In this case, the 

second task is to pick DWSA. To do this, we take the times corresponding to the 

maximum of LAAR and SAAR within the search window as two tentative picks of 

DWSA. If the difference of these two picks is small enough, these picks are considered to 

be consistent in both “global” and “local” senses, which intuitively mimics manual 

picking consideration. The upper limit of the time difference is taken as Td. 

Next, the tentative pick of the DWSA is set to be the average times corresponding 

to the maximum LAAR and SAAR values. Since the polarities of FZHWs and DWSAs 

are opposite for a strike-slip focal mechanism and vertical faulting, we also check the 

polarity at the average time. If the corresponding polarity is opposite to that of the 

FZHW, this is set to be the final pick time. Otherwise, we search for a peak, trough or 

zero-crossing with opposite polarity within a window of Td length centered at the average 

pick. If such position exists, the pick will be revised to the nearest one.  Otherwise, the 
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pick will remain at the average pick, but tagged with one that does not satisfy the polarity 

requirement. Note that due to the existence of noise, it is generally unstable to check 

polarity of FZHWs using the peaks or troughs around early portion of initial phase (Ross 

and Ben-Zion 2014). Therefore, we check the polarity of the first phase by averaging the 

amplitude over a Td /4 window after t1 and comparing it with the value at t1. 

 

Quality control: Zhao et al. [2010] evaluated the picking quality by visually inspecting 

the sharpness of amplitude change. To mimic this in a more objective way, we use the 

following five criteria to judge the resulting quality of DWSA picks. These include 

polarity, period and polarization, and values of LAAR and SAAR at the final picks. As 

mentioned before, the polarity of DWSA is expected to be opposite to that of FZHW and 

thus can be used as the first quality factor. Secondly, FZHWs usually have longer periods 

than direct P waves [Ben-Zion and Malin, 1991]. The periods of FZHW and DWSA are 

estimated within their respective windows using the same algorithm of Td calculation (t1-

tp for FZHW and tp-t2 for DWSA). We expect that the average period Td for FZHW to be 

larger than that of DWSA. Thirdly, FZHWs are polarized in a direction deviated from the 

source-receiver direction, and thus horizontal polarization can be used to help identify 

FZHWs [Bulut et al., 2012; Yang et al., 2015].  

The polarization angles of FZHWs and P waves are computed using a covariance 

matrix method [Jurkevics, 1988]. Here we focus on horizontal polarization and thereby 

use a two-dimensional covariance matrix 

 𝜎 = 𝐶𝑜𝑣(𝑁,𝑁) 𝐶𝑜𝑣(𝑁,𝐸)
𝐶𝑜𝑣(𝐸,𝑁) 𝐶𝑜𝑣(𝐸,𝐸)  (13) 
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where N and E are North and East components, respectively. Assuming the covariance 

matrix has two eigenvalues λ1 ≥ λ2, the corresponding eigenvectors are u1 and u2, where 

the primary polarization angle is along the direction of u1. The FZHW and DWSA 

window are taken as 0.8*(tp-thw) following the FZHW and DWSA arrivals to calculate 

their respective covariance matrixes. For ideal FZHW and DWSA, the polarization angle 

is expected to meet  

 |𝜙!! − 𝜙!| > 𝜙! − 𝜙!  (14) 

where 𝜙! and 𝜙! are the polarization angles of FZHW and DWSA, and 𝜙! is the back 

azimuth. 

 We evaluate the quality of FZHWs by the number of parameters satisfying pre-

defined criteria, along with significant level of amplitude changes (Table 3.2). For 

measurements with three components, quality “A” means that the measurements satisfy 

all three requirements: polarity, period and polarization. Besides, peak LAAR and SAAR 

values at the final picks should be 5 times standard deviation above the average value. 

Although somewhat subjective, we find this threshold readily indicative of an abrupt 

amplitude change from FZHW to DWSA. Measurements that meet two requirements and 

have regular amplitude change are classified as “B”. Measurements only satisfying one 

requirement have quality “C”. The measurements satisfy none of the above criteria are 

discarded.  For the measurements with only vertical components, we follow a similar 

grading scheme, with a difference that horizontal polarization is excluded (Table 3.2). 
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Figure 3.11 A map of the Parkfield section of the San Andreas Fault. Blue and 
yellow triangles are surface station in the PASO and NCSN, respectively. Green 
inverse triangles are borehole stations in the HRSN. Selected station names are 
labeled. Two beach balls represent the focal mechanisms of the 1966 and 2004 M6-
type Parkfield earthquakes. The background seismicity from 1984-2005 (Thurber et 
al., 2006) are marked with dots. The light gray boxes mark the region (along-strike 
distance: -15 to 45 km, fault-perpedicular distance: -1 to 1 km) where events are 
used in this study and stations are considered as the FZ group. The inset shows the 
active faults in California and the red box marks our study area. 

3.2.3 Parkfield data 

We apply the method to seismic data around the Parkfield section of the SAF, 

where Zhao et al. [2010] have manual picked FZHWs and DWSAs and found clear 

along-strike variations of velocity contrast (Figure 3.11). We use the same seismic data 

from the borehole High Resolution Seismic Network (HRSN) in 2001-2005, the 
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temporary Parkfield Area Seismic Observatory (PASO) in 2001-2002, and the surface 

permanent North California Seismic Network (NCSN) in 1984-2005.  

The preprocessing steps basically follow Zhao et al. [2010], and are briefly 

described here. We first select events that are confined within 1 km from the fault 

interface (approximated by a line with 139.2o clockwise from north passing through 

120.366W 35.815N, the epicenter of the 2004 M6 Parkfield earthquake). Next we remove 

the mean value of each velocity seismogram and apply a 1 Hz high pass filter to the data, 

and select high-quality waveforms with signal-to-noise ratio (SNR) > 5 for the HRSN 

data and SNR > 10 for the PASO and NCSN data. The PASO data is recorded by three 

components while the most NCSN data is recorded on vertical component only. Although 

HRSN data is recorded by three components, the horizontal orientations are not well 

constrained (T. Taira, personal communication, 01/2011). Hence, we use the vertical 

component only for stations in the NCSN and HRSN. 

Next, we select station-event pairs which manual phase picks (either P wave only, 

or with both FZHWs and DWSAs) by Zhao et al. [2010]. The resulting data consists of 

31648 waveforms from HRSN, 6386 from PASO, and 3393 from NCSN. Among these 

waveforms, there are 6271, 805 and 277 manual FZHW picks in the HRSN, PASO and 

NCSN data, respectively. We use the first arrival picks by Zhao et al. [2010] as an input, 

which also enable us to make a direct comparison with their results. 

 We divide the stations into three groups according to their relative locations to the 

fault.  The fault-zone (FZ) group consists of stations that are located less than 1 km 

within the fault surface trace (approximated by a straight line same as the one for event 

selection). The remaining stations are classified as NE or SW groups relative to the fault. 
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As a result, there are 16, 36, and 22 stations belonging to the FZ, NE and SW groups, 

respectively. 
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Figure 3.12 Percentage of FZHW observation on each station from the automatic 
detection. We rotate the station coordinate into fault-parallel (139.2o clockwise from 
north) and fault-perpendicular direction. Triangles and inverse triangles are surface 
and borehole stations, respectively. Selected stations are labeled. The percentage of 
FZHW observation at each station is color coded. Note that the stations on the SW 
(fast) side generally have a very small percentage of FZHW observation. The red 
and blue stars mark the epicenters of the 1966 and 2004 M6-type Parkfield 
earthquakes, respectively. The gray shaded area marks the ± 1 km around the 
majority of seismicity and approximate low-velocity zone. 
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Figure 3.13 Pick examples with different qualities for measurements on three 
components at the PASO stations. (a) An example of quality A picks on three 
components at station CLIF. The top panel is normalized three-component velocity 
seismogram. The left and right solid black vertical bars mark the first arrival and 
the end of search window. The left and right dashed black vertical bars mark one 
average period length that is used as minimal window of FZHW and DWSA when 
calculating LAAR and SAAR, respectively. The red bar marks the final pick. Note 
that red and blue bars may overlap. The left bottom three panels are the vertical 
waveform, LAAR, and SAAR curve within the search window. The blue bars mark 
the tentative pick at the LAAR or SAAR maximum, and the red bar marks the final 
pick. The information and quality factors are listed in the right panel. Panels (b) 
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and (c) are examples for B and C quality using three-component grade scheme, 
respectively. The symbols are the same as (a). Panels (d) and (e) are examples of A, 
B quality for vertical-component grade scheme, respectively. 

 

Figure 3.14 Comparison between automatically and manually picked time 
differences between the DWSAs and FZHWs. (a) Green, blue and yellow dots 
represent the time differences between DWSA and FZHW picks on HRSN, PASO 
and NCSN, respectively. The thick black line is the one to one line. (b) A zoom-in 
plot of (a) in the 0-0.3 s window. (c) Histogram of the automaticly and manually 
picked time differences with 0.05 s bin width. Green, blue and yellow bars mark the 
results for the HRSN, PASO and NCSN, respectively. (d) Histogram of pick 
differences relative to the time average differences between FZHW and DWSAs. 
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Figure 3.15 (a-c) Comparison of picks with different quality (A-C) and manual picks 
on the PASO network. (d-e) Same comparison on the HRSN network (Quality A 
and B). 

 

3.2.4 Results 

General Patterns: Overall we obtain 4612 automatic DWSA picks in HRSN, 973 in 

PASO and 262 in NCSN, which are comparable with manual picked arrivals (6271, 805 

and 277 in HRSN, PASO, and NCSN). Figure 3.12 shows the percentage of identified 

FZHWs among the first arrivals on each station. Overall, the NE and FZ stations have 

19.0% and 19.3% events that produce FZHWs, respectively. Some stations (e.g., the 

PASO station LAST and the HRSN station SCYB) have FZHW observations higher than 

40%. In comparison, the SW stations have only 4.7% and most SW stations have few or 

no FZHW recordings. The only exception is the FROB station, which has 18.5% of 

(a) (b) (c)

(d) (e)
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FZHW observation. Figure 3.13 shows pick examples on three-component data for 

quality grade A, B, and C (Figure 3.13a-3.13c), and A, B for vertical-component only 

(Figure 3.13c-3.13d). In general, quality A, B and C corresponds excellent, good and fair 

picks, respectively. And as shown below, higher quality picks show generally better 

consistency with manual picks. 

 

Figure 3.16 Comparison of automatically and manually picked DWSA at the PASO 
station CLIF and the HRSN station EADB. (a) Velocity seismograms recorded at 
the PASO station CLIF showing the moveout between FZHW and DWSA picked 
automatically (left) and manually (right). Black ones are waveforms with FZHW 
and gray ones are only with direct P waves. The red dots are the FZHW arrivals 
and the waveforms are aligned at the picked DWSA (red dash line). The blue lines 
are the linear regression without intercept term. The corresponding velocity 
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contrast estimated from the slope is labeled. (b) Comparison on the HRSN station 
EADB. Symbols are the same as (a). 

 

Figure 3.17 Examples of velocity seismograms showing the FZHW and automaically 
picked DWSA arrivlas (see station locations in Figure 3.11). (a-c) velocity 
seismograms recorded at the PASO station CVCR, the HRSN station EADB, the 
NCSN station PGH, respectively. Among them, CVCR is considered to be within the 
FZ group, and the other two are on the NE side. (d) velocity seismograms recorded 
at HRSN station SMNB on the SW side showing sparse FZHW and random 
moveout between FZHW and DWSA. Other symbols are the same as Figure 3.16. 
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Comparison with manual picks: In this section we compare the automatic and manual 

picks for all analyzed events. Figure 3.14a and 3.14b show the time differences between 

DWSAs and FZHWs between the automatically and manually picked phases. Although 

with some scatters, the majority of them cluster near the 1:1 line. The histogram (Figure 

3.14c) of residuals between automatic and manual picks is concentrated around zero, and 

60% of them are within 0.03 s, i.e. three data samples. The mean residual is -0.01 s, 

suggesting a minimal systematic picking difference between the manual and automatic 

picks. The relative pick difference, which is defined as the difference over their mean, 

shows a relative wide spread (Figure 3.14d). Although some of the automatic picks 

change by more than 100%, most of them are concentrated within 25% of change. In 

addition, Figure 3.15 shows comparisons between automatic and manual picks in 

different quality grades. Generally automatic picks with higher qualities are more 

consistent with manual picks, which reflects their quality grades to certain extents. 

If the bimaterial interface is coherent along the interface, the differences of 

DWSA and FZHW are expected to systematically increase with fault interface distance 

[Ben-Zion and Malin, 1991]. Hence the average velocity contrast can be estimated the 

following equation:  

 
𝑑𝑡 ~ 𝑟

1
𝑉!
−
1
𝑉!

~ 𝑟
𝑉! − 𝑉!
𝑉!  (15) 

where dt is arrival difference between DWSA and FZHW, r is along-interface distance, 

and V is the average velocity which is assumed to be 5.5 km s-1 in this region [Zhao et al., 

2010]. Here we obtain the slope and its uncertainty using linear regression without the 

intercept term, which is slightly different from Zhao et al. [2010]. We exclude the 
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intercept term because it has no clear physical meaning according to Equation 15. In 

other words, we force arrival time difference dt to be zero with zero along-strike distance. 

Next we calculate velocity contrast on the stations that have at least 50 input 

waveforms and the FZHW percentage higher than 10%. For comparison, we also 

recalculate the velocity contrast from the manual picks of Zhao et al. [2010] using the 

fitting function without intercept term (Equation 15). Figure 3.16 shows examples of 

FZHWs at the PASO station CLIF and the HRSN station EADB using automatic and 

manual DWSA picks, respectively. At station CLIF, velocity contrasts at the NW side 

measured from automatic and manual picks are ~9%, although the difference at the SE 

side is slightly greater than 1%. The velocity contrasts at station EADB for events at both 

the NW and SE side are consistent. 

Figure 3.17a-3.17c shows additional examples of FZHWs at stations CVCR, 

MMNB and PGH that are located on the NE (slow) side from NW to SE along the SAF 

(Figure 3.11). They record substantial FZHWs and show systematic moveout between 

FZHWs and DWSAs. In comparison, the stations on the SW (fast) side have very few 

FZHWs, and do not have clear systematic moveout with along-strike distances (e.g., 

SMNB, Figure 3.17d).  

We summarize the obtained velocity contrasts for sections to the NW and SE 

centered at the stations in the Parkfield area (Figure 3.18a). A general pattern is that the 

velocity contrast is high near the Middle Mountain and diminishes toward Gold Hill. The 

velocity contrast is below 5% near the epicenter of the 2004 Parkfield earthquake. This is 

consistent with Zhao et al. [2010], although we have 11 more stations in the FZ group. A 

direct comparison of the velocity contrasts between the automatic and manual picks 
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shows that they generally follow the 1-1 line, despite a few outliers (9b). Nevertheless, 

the velocity contrasts to the NW tend to have high values (5%-10%), while the velocity 

contrasts to the SE are significantly clustered at the low values (<5%). 
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Figure 3.18 A summary of the obtained velocity contrasts across the Parkfield 
section of the SAF. Arrow length represents the velocity contrast value, and arrow 
direction represents the obtained velocit contrast using events from either NW or 
SE direction. Blue dots are stations. Other symbols are the same as in Figure 3.10. 
(b) Comparison of velocity contrasts measured from automatically and manually 
picked DWSAs. Blue, green and yellow symbols represent results for the PASO, 
HRSN and NCSN network, respectively. Triangles and inverse triangles are 
measurements using events from NW and SE directions, respectively. The dashed 
line marks the one to one relationship. Horizontal and vertical error bars are for 
manual and automatic results, respectively. 
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Figure 3.19 Examples of FZHWs and/or FZHW-like signals recorded by the FZ 
station LAST and station FROB in the SW side (see station locations in Figure 3.11). 
(a) Moveout of FZHWs with along-strike distances at FZ station LAST. The bottom 
panel shows the cross-section of events with and without FZHW generation. The 
events with FZHWs are colored by the time differences between the DWSA and 
FZHW arrivals. Gray earthquakes, respectively. Dashed boxes mark the 
approximated location of reverse velocity contrast patches observed by Thurber et 
al. (2006). (b) Moveout of FZHWs (top) and cross-section of events recorded at 
station FROB in the SW side. Other symbols are the same as in (a). 

False and missed identification of FZHWs: It is possible that some early arrivals other 

than FZHWs may share some common features with FZHWs, which may be caused by 

site effect, surface reflection, horizontal interfaces, and/or source effects. Our method and 

quality control scheme is designed to look for phases that have consistent FZHW 

characteristics, which is expected to reduce the picks of phases induced by other effects. 

However, false picks are still inevitable due to waveform complexity. Therefore, it is 

important to check the rate of false picks, in order to properly evaluate the effectiveness 

of our automatic method. FROB station is of particular interest because it is on the SW 

side but has 18.7% FZHW detection rate. One possible explanation is that these FZHWs 

are produced by a local reversal of velocity contrast (Figure 3.19b) between Middle 

Mountain and Gold Hill that was imaged by P-wave and joint P-FZHW tomography 

[Thurber et al., 2006; Bennington et al., 2013]. However, most picks on FROB show no 

clear systematic moveout with increasing along-fault interface distance (Figure 3.19b). 

Given that FZHWs should have reverse polarity predicted by the focal mechanism, we 

inspect some of the detections and indeed find a significant portion of dubious picks, as 

shown in Figure 20. The waveforms of these early arrivals all have weak amplitudes, 

which is one of the important characteristics of FZHW. However, a systematic inspection 

of waveforms on FROB reveals that 94% of the identified “FZHW” phases have first 
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motion consistent with the predictions for the direct P waves with right-lateral strike-slip 

radiation patterns, which is inconsistent with opposite polarity of FZHW and direct P 

wave associated with a shear slip on the bi-material interface. A similar result is observed 

on SMNB. One possible explanation could be that FZHW and direct P wave take off in 

the same quadrant, resulting in similar polarity. In other words, their focal mechanisms 

are not purely strike-slip on the SAF. However, this phenomenon is only observed at a 

few stations on the SW side. For example, for MMNB and EADB, we find only a 5~10% 

of identifications are suspicious (i.e., same polarities between the P and FZHWs). These 

observations are also consistent with the systematic moveout observed at stations EADB 

and MMNB, and lack of moveout at stations FROB and SMNB. For now we tentatively 

classify those observed at stations FROB and SMNB as ‘false picks’. A detailed study is 

needed to further identify the cause of these weak amplitude phases at stations on the SW 

side of the SAF. 

In addition to ‘false picks’, the method also missed some picks present in manual 

results. This could be due to the requirement of mutual agreement between LAAR and 

SAAR picks, which is meant to minimize the number of false picks rather maximize 

detection rate. Besides, manual inspection has flexibility to adjust and reconsider the 

picks based on the general profiles and moveout [Allam et al., 2014], while the automatic 

method follows more objective criteria without human interference. Another piece of 

uncertainty results from possible multiple phases present in the search window. In this 

case, the LAAR and SAAR curves may have different maxima, and hence is either 

dropped out or flagged with low qualities. But this issue is also not avoidable for manual 
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picking. It inherently lies in the difficulty in recognizing the real ray path for multiple 

phases using a single waveform. 
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Figure 3.20 Examples of false detections of FZHW. Symbols are the same as in 
Figure 3.13. 
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Figure 3.21 Velocity contrast values across the fault around the 1966 M6 epicenter. 
Blue triangles and red inverse triangles are measurements using events from NW 
and SE sides of the stations, respectively. (b) A schematic fault model. The gray area 
represents the approximate location of the low velocity damage zone and the 
primary fault interface. The red triangles mark the surface expression of the 
Southwest Fracture Zone (SWFZ) and the main trace of the San Andreas Fault 
(SAF). The red star represents the hypocenter of the 1966 M6 earthquake. The 
background seismicity are events in 1984~2006 within 5 km from the 1966 M6 
epicenter along the fault strike [Thurber et al., 2006]. 

3.2.5 Discussion 

In this study we presented an automatic method to detect FZHWs and DWSAs, 

which allowed us to systematically re-analyze bimaterial fault properties in the Parkfield 

of the SAF. The obtained velocity contrast shows clear along fault-strike variations, 
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patterns of velocity contrast are also compatible with both geological and geophysical 

observations that the NE block has slower velocity than the SW block [e.g., Eberhart-

Phillips and Michel, 1993; Thurber et al., 2006]. 

One notable difference is that our automatic search method identifies a large 

number of FZHWs at FZ stations, which has not been reported by Zhao et al. [2010] For 

example, we found 45.5% FZHW rate on the LAST station, while Zhao et al. [2010] did 

not report any FZHW on this station at all (Figure 3.12). The FZ stations have 

comparable percentage of FZHW observations with the stations on the NW side and also 

show systematic moveout (e.g., station LAST, Figure 3.19a). The velocity contrasts at FZ 

stations are comparable those at stations on the NW side (Figure 3.21). Note that our 

approximated fault line mainly follow the aftershocks of the 2004 Parkfield event, which 

is close to the surface expression of the South West Fracture Zone (SWFZ), rather than 

the main trace of the SAF [Thurber et al., 2006]. In this case, our observations contradict 

a fault model that is simply composed of a fast and slow block on both sides of the fault 

interface [e.g., Ben-Zion and Malin, 1991; Peng et al., 2010]. 

Instead, our observation could be qualitatively explained by a wide low-velocity 

zone (LVZ) sandwiched between two quarter-spaces (Figure 2.21). In this case, the LVZ 

would produce two velocity contrast interfaces against two blocks, resulting in FZHWs 

observed at most stations within the LVZ. At Parkfield, features of LVZ have been 

observed, based on fault zone trapped waves (FZTW) that propagate within narrow LVZ 

[Li et al., 2004; Lewis and Ben-Zion, 2010], as well as wider zones from travel time 

inversions at regional scale [e.g., Zhang et al., 2009], attenuation [Bennington et al., 

2008], and magnetotelluric observations [Unsworth and Bedrosian, 2004]. The width of 
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LVZ inferred from FZTWs are generally 200-300 m, while the width from other studies 

are generally on the order of 1-2 km, bounded by the SWFZ and the main trace of the 

SAF. This suggests that large major fault zones like the SAF likely have hierarchical 

structures [e.g. Ben-Zion and Sammis, 2003] so that large-scale LVZs can be detected 

only by the regional-scale geophysical inversions, while FZTW observations have higher 

resolution but are based on short cross-fault arrays (a few hundred meters) and hence are 

able to see at finer-scale local FZ structures. It is also possible is that regional-scale 

geophysical inversions do not have the resolution to image the few-hundred-meter wide 

trapping structures, while the dense cross-fault arrays are not long enough to reveal the 1-

2 km wide less-damaged FZ structures [e.g., Cochran et al., 2009]. 

Nevertheless, our observation of FZHWs for stations on both sides of FZs is 

generally consistent with the existence of a wider LVZ at Parkfield. Interestingly, Yang et 

al. [2015] also found clear FZHWs on both sides of the faults that ruptured during the 

2010 Mw6.9 Yushu earthquake sequence, and they suggested an existence of a 5-km 

wide LVZ beneath a pull-apart basin. Simulations of in-plane rupture show that, in such 

type of sandwich structure, rupture tends to migrate spontaneously to both bimaterial 

interfaces, with each interface having opposite preferred propagation direction [Brietzke 

and Ben-Zion, 2006]. 

Horizontal polarization has been used to distinguish FZHW and DWSA [Bulut et 

al., 2012; Allam et al., 2014; Yang et al., 2015], because DWSA is expected to be radial 

while FZHW is radiated from the fault with a certain angle to the radial direction. We 

include this in our algorithm as a quality factor (Equation 14). However, it is somewhat 

surprising that only 56.4% automatic measurements meet this requirement, which is 
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barely above the 50-50% chance. This is not only observed in the automatic results, but 

also in the manual picks from Zhao et al. [2010], whose value is 53.1%. Figure 2.22 

show the polarization angles of FZHWs and DWSAs against the event back azimuths, 

and the difference between them. We do not observe clear deviation of FZHW 

polarizations from back azimuths. Instead, they have large scatters similar to these of 

DWSAs.  

 

Figure 3.22 Statistical analysis of FZHW and DWSA polarization using automatic 
picks. (a) Polarization angle difference between FZHW and back azimuths for all 
measurements. (b) Polarization angle difference between DWSA and back azimuths 
for all measurements. (c) Comparison of deviation from back azimuth between 
FZHW and DWSA (see also Equation 14). (d) Histogram of (c). 

 

Several possible factors may account for these observations. First, the amplitudes 

of FZHW and direct P waves on horizontal components are relatively low. Hence they 
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are likely contaminated by the pre-event noises. Secondly, assuming 10% average 

velocity contrast, the difference of polarization angles of FZHW and direct P waves is 

~30 degrees theoretically. When projected to horizontal plane, this angle could become 

even smaller. Such a difference may not be resolvable with the presence of noise and 

other complex phases. Thirdly, fault zones are strongly heterogeneous and the structures 

are usually complicated than a two half spaces or sandwiched fault zone model [e.g., 

Ben-Zion, 1998]. In addition, depending on the frequency content, polarizations of 

FZHW and direct P waves may be sensitive to local structural complexities rather than 

the average velocity contrasts.  

While individual picks, seismic profiles and velocity contrast pattern between 

automatic and manual results show general agreements, there are several notable issues 

that are worth discussing further. First, in the algorithm we used one average period Td 

following the initial pick to check whether the first phase is sharp or not. This in fact sets 

a minimal value of velocity contrast below which we cannot resolve. Therefore, the use 

of Td may reduce the resolution of the method. The obtained average value of Td in our 

data set is ~0.06 s (6 samples), which corresponds to a minimal step of velocity contrast 

of 1-3%, depending on the P wave travel time. However, in practice it is always difficult 

to distinguish two phases if they are a few centiseconds apart. Ross and Ben-Zion [2014] 

also set a minimum allowed time difference between the initial and second pick to be 

0.065 s in order to approximate the length of two wiggles of a direct P wave. Decreasing 

this value will increase the resolution of smaller velocity contrast but may introduce more 

false picks.  

In addition to Parkfield, we also applied it in the Yushu region in northern Tibet 
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following the 2010 Mw6.9 Yushu earthquake, and we found general agreement between 

manual and automatic picks (figure S6 in Yang et al., 2015). Therefore, we expect our 

method can be applied to identify FZHWs in large local earthquake data set with one or 

three component recordings. While in present FZHWs have been identified only in 

vertical strike-slip environment, it can be also applied to thrust or other tectonic 

environments [e.g., Fukao et al., 1983].  

Finally we list a few parameters that need be treated with precaution in the 

application of other regions. Firstly, Td is calculated using the waveform within the 

search window. However, to avoid unfeasibly large value of Td, it is useful to set an 

upper limit (e.g., 0.08 s to 0.1 s), depending somewhat on the sampling rate and dominant 

frequency content of the actual data. Secondly, the maximum allowed velocity contrast 

Kmax also needs to be modified. In Parkfield, we use 15% based on previous observations. 

But this value could be different in other regions. One should note that a higher threshold 

might lead to detection of other phases that arrives at later times. If the priori estimate is 

unavailable, we recommend setting a relatively high value (e.g., 20%) in the initial stage. 

After obtaining the preliminary DWSA picks, one can estimate the velocity contrast for 

each single measurement using Equation 7. By checking the overall velocity contrast 

values, a proper value of Kmax can be set to exclude outliers or other phases in the second 

run. The inaccuracy of first arrival picks will affect the DWSA picks and also lead to 

erroneous estimate of velocity contrast. This requires the input first arrivals to have 

relatively high quality. Hence, it is recommended to check the accuracy of first arrival 

picks whether they are from manual or automatic methods.  
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Table 3.2 Criteria for quality grade 

Quality 
Criteria for three-component 

measurement 

Criteria for vertical component 

measurement 

A Satisfy polarity, period and 

polarization requirements.  

Peak LAAR and SAAR have the 

significant level greater five times 

standard deviation. 

Satisfy polarity and period 

requirements.  

Peak LAAR and SAAR have the 

significant level greater five times 

standard deviation. 

B Not in A quality, but satisfy two of 

polarity, period and polarization 

requirements.  

 

Not in A quality, but satisfy one of 

polarity and period requirements. 

 

C Not in A or B quality, but satisfy one 

of polarity, period and polarization 

requirements.  
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CHAPTER 4. HIGH-RESOLUTION SEISMIC EVENT 

DETECTION WITH LARGE-N ARRAYS 

 The results presented in this chapter are from Li et al. [in prep]. 

Summary  

 We develop a novel method for seismic event detection that can be applied to 

large-N arrays. The method is based on a new detection function named local similarity, 

which quantifies the signal consistency between the examined station and its nearest 

neighbors. Using the 5200-station Long Beach nodal array, I demonstrate that stacked 

local similarity functions can be used to detect seismic events with amplitudes near or 

below noise levels, which is uncommon for regular detection methods and seismic arrays. 

I apply the method to one-week continuous data around the 03/11/2011 Mw 9.1 Tohoku-

Oki earthquake, to detect local and distant events. In the 5-10 Hz range, I detect various 

events of natural and anthropogenic origins, but without a clear increase in local 

seismicity during and following the surface waves of the Tohoku-Oki mainshock. In the 

1-Hz low-pass-filtered range, I detect hundreds of events, likely representing aftershocks 

from the Tohoku-Oki mainshock region. This new technique can be applied to both ultra-

dense and regular array recordings for monitoring ultra-weak micro-seismicity and 

detecting unusual seismic events in noisy environments. 

4.1 Introduction 

Seismic arrays have provided important data for studying the Earth’s structures 

and earthquake processes since the 1960s [Rost and Thomas, 2002]. Based on recordings 

from closely spaced uniform seismometers, various array methods can effectively 

enhance signal-to-noise ratios and significantly lower the detection threshold. Dense 
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regional networks such as the Japanese Hi-net array and the Southern California Seismic 

Network, as well as the recent US-Array, have been increasingly used to monitor regional 

seismicity in real time and provide high-quality earthquake catalogs. Dense arrays are 

also useful for detecting new types of seismic events such as deep tectonic tremor 

[Obara, 2002]. With advances in instrumentation technology, the density of 

seismometers in a given array has increased dramatically in the past decades. In the 

recent years, ultra-dense arrays with hundreds to thousands of sensors and tens- to 

hundred-meter interstation spacing have been deployed in several regions. One of the 

notable examples is the Long Beach 3D array, which contains 5200 sensors with 100 m 

spacing covering the urban area of the City of Long Beach [Lin et al., 2013]. Such arrays, 

sometimes called large-N arrays, provide unprecedented detection capability for small 

magnitude earthquakes and other unconventional sources [Inbal et al., 2015, 2016; Riahi 

and Gerstoft, 2015]. 

Apart from instrumentation technology, data processing methods also influence 

the resolution of seismic event detection. Traditional earthquake detection workflow 

includes phase picking (identifying impulsive arrivals of seismic phases) and phase 

association (grouping these phases into an individual event) [Allen, 1982]. Phase picking 

is commonly done by an energy detector such as short-term average over long-term 

average (STA/LTA) ratio [Allen, 1978; Earle and Shearer, 1994]. As computer power 

increases, many sophisticated detection algorithms have been proposed. Most of these 

algorithms continuously search over possible source locations by shifting and stacking 

waveforms or their variants (e.g., envelope, STA/LTA, normalized waveform). Notable 

examples include the source scanning algorithm [Kao and Shan, 2004], coalescence 
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microseismic mapping [Drew et al., 2013], and backprojection [Ishii et al., 2005; Kiser 

and Ishii, 2013]. 

Different from this category, template matching, or matched filter, takes 

advantage of predetermined events and cross-correlates them with continuous recordings 

to detect events with high waveform similarities [Gibbons and Ringdal, 2006]. This is 

based on the fact that nearby seismic events may have similar source mechanisms and ray 

paths, and hence similar waveforms. Template matching techniques have been widely 

applied to detect emergent tremors and small earthquakes, and usually detect new events 

at a factor of 5-10 times the original catalog [e.g., Shelly et al., 2007; Peng and Zhao, 

2009; Yang et al., 2009]. However, template matching requires predetermined templates 

as inputs, which are not always available. In addition, it tends to detect events that are 

similar to templates, which may bias the detection results. An auto-detection technique 

could be used to build template events from scratch [Brown et al., 2008]. However, with 

N2 type scaling, this is computationally very intensive and hence cannot be applied to 

longer time series. Other approaches, such as finger-printing [Yoon et al., 2015] or 

earthquake search-engines [Zhang et al., 2014] have also been proposed for fast and 

robust detection of seismic events. 
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Figure 4.1 Map of study region, the Long Beach nodal array and local seismicity.  
(a) Blue dots are the 5200-sensor nodal array. A red triangle mark the broadband 
station STS belonging to Southern California Seismic Network (SCSN). Black 
curves denote the surface trace of mapped faults. Gray solid circles are seismicity 
listed in the SCSN catalog between January and June 2011, whose sizes are 
proportional to magnitude. Red stars mark three selected cataloged events used for 
tests. The inset map shows locations of the M 9.1 Tohoku-Oki earthquake and its 
ray path to Long Beach. (b) A zoom-in plot of the Long Beach array and the STS 
station.  

 

The emergence of Large-N arrays provides unprecedented opportunities for 

resolving small events, but meanwhile poses new challenges for processing methods. 

Recent studies attempted to use advanced signal processing techniques, such as subarray 

analysis and graph clustering, to detect and locate sources within dense arrays [de Groot-

Hedlin, 2015; Riahi and Gerstoft, 2017]. Here I introduce a new method that takes 

advantage of the primary features of emerging large-N arrays, i.e. a large number of 

sensors and short station spacing. The method involves a new metric termed local 

similarity. It evaluates the similarity on a given station with respect to its nearest 

neighbors. This is different from conventional metrics considering each station 

individually, or standard array processing methods that consider all stations together with 

STS

(b)(a)
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some general assumptions (e.g., plane waves; or wavefront with predicted arrivals) [Rost 

and Thomas, 2002].  

I apply this method to one-week continuous data between 03/06/2011 and 

03/12/2011 recorded by the 5200-station Long Beach array [Lin et al., 2013]. The Long 

Beach array was deployed from January to June 2011 as part of a petroleum exploration 

survey, which contained 5200 geophones with 10-Hz corner frequency (Figure 4.1). This 

array covers 7×10 km in the city of Long Beach, with a nominal interstation distance of 

100 m. Several segments of the Newport-Inglewood fault pass through this area. The 

1933 Mw 6.4 Long Beach earthquake occurred about 10 km to the southeast of the array. 

Because the area is densely populated and the sensors were simply buried very close to 

the surface, the recordings are heavily contaminated by large-amplitude anthropogenic 

noise, which poses a challenge for seismic detection [Inbal et al., 2015]. 

We choose this time period mainly because of the occurrence of the Mw 9.1 

Tohoku-Oki earthquake on 03/11/2011. This event has triggered numerous 

microearthquakes and deep tectonic tremor around the world [Gonzalez-Huizar et al., 

2012], including the San Jacinto Fault in southern California [Chao et al., 2013]. 

Systematical examination of remote triggering potential in California found that in 

addition to geothermal/volcanic regions, the Los Angeles basin has an unusually high 

triggering susceptibility compared to surrounding regions [Van der Elst and Brodsky, 

2010]. Hence, it is reasonable to assume that the Tohoku-Oki mainshock may have 

triggered some microseismicity in this region, although these events may not be detected 

with conventional methods/arrays. 
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In the following sections, I first show that detecting events below noise level is 

feasible via direct stacking of local similarity. Then I perform a systematic comparison 

with template matching and STA/LTA. Finally I apply it to one week of continuous data 

of the Long Beach array to detect local and distant events, and examine whether the 

Tohoku-Oki mainshock may have triggered any significant increase of microseismicity in 

this region. 

4.2 Methods 

For a pair of two spatially close stations, the waveforms from any seismic source 

are nearly identical as the ray paths are very similar, while random noise at these sites 

remains sufficiently different. Hence in principle we can distinguish a signal from noise 

by measuring the waveform similarity on neighboring stations, which is termed local 

similarity (Figure 4.2a and 4.2b). Note that here we do not require waveform similarity 

across the whole network [e.g., Rost and Thomas, 2002; Frank and Shapiro, 2014]. 

Mathematically, local similarity at a master station is defined as the average of sliding-

window normalized cross-correlations with its nearest neighbors. Each sliding time 

window is allowed to shift within a time lag relative to its neighbor recordings, in order 

to account for arrival time differences between neighboring stations. The peak cross-

correlation function between a master station and a neighboring station is defined as  

 
𝑠!" 𝑡 = max

!!!!!!

𝑢! 𝑡 +𝑚𝛿 𝑢!" 𝑡 +𝑚𝛿 + 𝑙𝛿!
!!!!

𝑢!! 𝑡 +𝑚𝛿!
!!!! 𝑢!"! 𝑡 +𝑚𝛿 + 𝑙𝛿!

!!!!

 (16) 
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where 𝑢! is the recording of the 𝑖!! master station, and 𝑢!" is the recording of the 𝑗!! 

neighbor of the 𝑖!! master station, 𝛿 is the sampling interval, (2𝑀 + 1)𝛿 is the sliding 

window length, and 𝐿𝛿 is the maximal time lag, which is determined by the upper limit of 

wave slowness and distance from the 𝑗!! neighboring station to the maser station 𝑖. In this 

study I set the sliding window length as 1 s and 3 s for the high-frequency (5-10 Hz) and 

long-period (< 1 Hz) signal, respectively. The peak correlation value within the time 

range is taken as the value for that sliding window. The resulting correlations between the 

master and its neighboring stations are averaged into a single one, termed the local 

similarity Si  (Equation 17):  

 
𝑆! 𝑡 =

1
𝐾 𝑠!" 𝑡

!

!!!

,     𝑖 = 1, 2,… ,𝑁; 𝑗 = 1, 2,… ,𝐾 (17) 

where 𝐾 is the number of nearest neighbors, which is set by the user. Typically, I use four 

neighbors for a 2D array and two neighbors for a 1D array (Figure 4.2a).  

The resulting average trace represents the signal resemblance of between the 

master station with respect to its neighbors in continuous time. After obtaining local 

similarity traces for all the stations, I directly stack them without any shifts to obtain a 

representative network trace, and perform event detection (Figure 4.2c). Direct stacking 

enables us to perform a general-purpose detection without knowing any wave types and 

velocity models in the study region. 

Event detection in template matching is done by applying a common threshold to 

the network-stacked cross-correlation trace, which is generally defined as the median plus 

several times the median absolute deviation (MAD). Such thresholding is not suitable for 



 138 

local similarity, because local similarity tends to have a fluctuating trend due to temporal 

drift in the similarity of background noise. To remove the long period trend, I first fit the 

trace with a tenth-order polynomial and subtract the fitting curve from the trace. After 

that, I apply a 1-minute sliding time window to select the outstanding peaks. For every 

window, the threshold is defined by the MAD and median calculated for that window. 

Statistically, a higher significance level suggests more stable detection and potentially 

fewer false alarms. I use the median plus 10 times MAD as the threshold for event 

detection in this study (Figure 4.2d). 

 

Figure 4.2 Flowchart and schematic diagrams of local similarity detection. (a) For 
each master station, find its nearest neighbors for local similarity computation. (b) 
Convert the seismic waveforms on the master station into local similarity by cross-
correlation and averaging of those of its neighbors. (c) Stack local similarity of all 
stations. (d) Apply sliding-window threshold to select positive detections. 

4.3 Results 

4.3.1 Comparisons with STA/LTA, envelope function and template matching 
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I use three local events listed in the SCSN catalog (SCEC ID: 14995244, 10936949 and 

14981076) to evaluate the performance of local similarity. I select these events because 

they are 20-50 km from the network (Figure 4.1) and have magnitude less than 2, so the 

waveforms recorded by the Long Beach array have very weak amplitudes. Figure 4.3a-c 

shows that the recordings are heavily contaminated by noise. I then examine how these 

events are manifested by local similarity, STA/LTA and envelope functions, respectively. 

For each method, I first convert the waveforms of individual stations into a metric 

function, and stack them into a network representative trace. For STA/LTA, I use 10 s for 

LTA and 1 s for STA. On the stacked trace, I measure the peak significance of the target 

event relative to the background level, which is defined as how many times the MAD 

above the median. 
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Figure 4.3 Performance tests of local similarity, short-term-average/long-term-
average (STA/LTA), and envelope for three catalogued weak events. Traces along 
Y-axis are sorted by their epicentral distances. (a)-(c): raw waveforms of the events 
plotted in color for the Long Beach array. The upper curves in the box are raw 
recordings at station STS. Magnitude and distance from the array center are listed 
beside the event IDs. The waveforms are plotted according to their normalized 
amplitudes relative to the median. (d)-(g): local similarity corresponding the 
waveforms in (a)-(c). The black curves at the top are the stacked local similarity of 
the whole network. The significance levels of the peaks are marked. (g)-(i) and (j)-
(l): for STA/LTA and envelope, respectively. 
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Figure 4.4 Synthetic test of detection performance of local similarity, template 
matching, and STA/LTA as a function of signal-to-noise ratio (SNR). (a) Flowchart 
of the synthetic test. Note event waveform is scaled by different factors to create 
recordings with different SNRs. (b) Histogram of SNR for 4000 stations when the 
scaling factor is 1. (c) Significance level versus SNR from local similarity, template 
matching, and STA/LTA. The vertical and horizontal gray lines mark SNR=1, and 
detection threshold=10 MAD, respectively. 
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Figure 4.3 shows that for the three target events, the results from STA/LTA are 

comparable to those from the envelope function. They both have reasonable peaks for 

events 14995244, 10936949, but do not show any patterns for event 14981076. In 

comparison, local similarity shows significant peaks for all three events, and has peak 

significance twice or more than that of STA/LTA and envelope. Thus local similarity 

produces more reliable detection than the other two metrics.  

To further quantify their performances, I carry out synthetic tests with different 

signal-to-noise ratios (SNRs) for local similarity, STA/LTA, and template matching. 

Here I remove the envelope due to its comparable performance with STA/LTA and 

include template matching in the comparison. We note that because template matching 

uses prior information, i.e. known target waveforms, it should be treated as an optimal 

benchmark for the other two methods.  

I generate synthetic data by following the below steps [Li et al., 2015]: 1) select a local 

event with good SNR (ID 14930284, M 2.24), and multiply the waveforms by a scaling 

factor; 2) add the waveform on top of a randomly selected continuous noise at each 

station; 3) apply local similarity, STA/LTA and template matching method to the data 

obtained in step 2), resulting in a stacked trace; 4) measure the peak significance on the 

stacked trace at the time when the event is added. This process is outlined in Figure 4.4a. 

Note that the scaling factor is changed for every test to generate data with different SNRs. 

Here SNR is defined as the energy ratio between the added event waveforms and the 

continuous noise waveform. When the scaling factor is 1, the SNR distribution of 4053 

stations has a mean SNR at 11, with a dominant range from 1 to 100 (Figure 4.4b). 

Different scaling factors can shift the SNR histogram systematically with different 
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amounts. Hence, the peak significance for each method is controlled mainly by the mean 

SNR  (Figure 4.4c). As expected, template matching outperforms the other two methods. 

In this particular case, template matching has a detection capability down to SNR~10-5 if 

the threshold of positive detection is set at 10 MAD above the median. Local similarity, 

without requirement of any prior knowledge, can detect events down to SNR~0.01. It 

ranks the second and generally has the detection significance level twice above that of 

STA/LTA (except at very low SNRs), which is consistent with the tests using three 

catalog events (Figure 4.3). These results show that, our Large-N based method can well 

detect events far below noise level without prior information, which is significantly 

different from traditional methods and traditional arrays. Therefore I call such type of 

detection as high-resolution detection. 
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Figure 4.5 Detected examples of local events in 5-10 Hz filtered data. (a) Stacked 
local similarity trace and colormap of waveforms for two vibroseismic truck 
experiments. Denoted time on the title corresponds zero in time axis.  (b) Detected 
nearby earthquake. (c) Unknown event, possibly associated with well injection. (d) 
Unknown event. The animations of these events can be found in the online 
supplementary material. 

4.3.2 Detection of local and distant seismicity 

I apply the method to the Long Beach data between 6 March 2011 and 12 March 2011, 

covering the 11 March 2011 Mw 9.1 Tohoku-Oki sequence. I examine two frequency 

ranges, 5-10 Hz and <1 Hz, in order to detect local and distant events, respectively. The 

detection threshold is set as 10 MAD above the median. In the 5-10 Hz range, I detect 

Vibroseis Truck, 06 Mar 2011,08:00:41   M1.7 Earthquake, 07 Mar 2011,08:33:55

Unknow Source, 12 Mar 2011,08:56:36 Unknown Source, 08 Mar 2011,11:16:33
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(d)(c)
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451 events, whereas 401 are vibroseis truck signals from the petroleum survey. The 

vibroseis truck signals appear as sharp peaks in stacked local similarity with nearly every 

one-minute interval between 6 March and 9 March (Figure 4.5a, S 4.1). In the remaining 

50 events, three are nearby earthquakes listed in the SCEC catalog, one of which is an M 

1.7 event from ~200 km away (Figure 4.5b). 

I also detect some weak but long-duration events up to a few minutes. One such 

event is very close to a possible injection well identified from Google map (Figure S 4.2; 

Personal communication with Philip Maechling). Although their waveform amplitudes 

were weak, we are able to observe the wavefield propagation in the animation and 

pinpoint the epicenter (Figure 4.5c). Apart from these events, many others are un-

interpretable due to lack of additional information at this stage. Figure 4.5d shows an 

event with a sharp onset and a secondary phase, and then followed by an emergent 

wavetrain.  

On the other hand, I detect 183 distant events in the < 1-Hz frequency range. 125 

events occurred after the M 9.1 Tohoku earthquake and 101 matched with the 

earthquakes listed in the Japan Meteorological Agency (JMA) catalog. The events not 

matching the JMA catalog could be possibly missing aftershocks [Kiser and Ishii, 2013] 

or triggered seismicity elsewhere around the world [Gonzalez-Huizar et al., 2012]. Figure 

4.6 shows the detection of the aftershocks within two hours after the occurrence of the 

mainshock. From the recordings I observe three main events, corresponding to the M 9.1, 

M 7.6 and M 7.5 events in the JMA catalog and a few other weak events (Figure 4.6a). 

The stacked local similarity shows clear evidence of them and also many other smaller 
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events (Figure 4.6b). Our sliding-window threshold method detects 56 events from the 

stacked local similarity, including those buried in the coda of large events.  

Finally, I also examine the number of local detection (in the frequency range of 5-

10 Hz) 6 hours before and after the Tohoku-Oki mainshock, and find two and three 

events, respectively. However, none of them occurred during the passing surface waves 

of the mainshock. Hence, with our local similarity method, we are unable to observe any 

statistically significant change in local seismicity (Figure 4.6c-d) associated with the 

Tohoku-Oki mainshock. 
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Figure 4.6 Waveforms and detection of two-hour Long Beach data after the Mw 9.1 
Tohoku-Oki mainshock. (a) Lowpass 1 Hz waveforms recorded by the Long Beach 
array. (b) Stacked local similarity for lowpass 1 Hz data. The dashed gray lines 
mark the detected events. (c) Bandpass 5-10 Hz waveforms recorded by the Long 
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Beach array. (d) Stacked local similarity for bandpass 5-10 Hz data. Note that no 
significant peaks are observed on the trace. 

4.4 Discussion 

In this study I introduced a new metric named local similarity based on waveform 

similarity on spatially close stations for large-N arrays. By comparing a trace with those 

of neighboring stations, local similarity can effectively eliminate localized spikes that 

likely contaminate conventional amplitude-based metrics (e.g., envelope or STA/LTA). 

This feature enables us to detect very weak events (up to 0.01 SNR in this case) with data 

recorded in noisy environments. I applied this method to one week of continuous data 

during the 2011 Mw9.1 Tohoku-Oki mainshock. While I detected many distant events in 

the frequency range of < 1 Hz (most likely aftershocks), I did not observe any statistically 

significant change in events in the 5-10 Hz frequency range following the mainshock. 

As shown in Figure 4.5, local similarity can identify both impulsive and emergent 

events, which renders broad applicability, e.g. short-duration regular earthquakes and 

long-duration tectonic/volcanic tremor. In addition, direct stacking removes any wave 

type assumption or velocity model dependence, making it useful for detecting both local 

and distant events. Hence, our method could be used for detecting new types of events, as 

demonstrated by those interesting local events detected in the 5-10 Hz range (Figure 4.5). 

However, direct stacking does not provide any locations or focal mechanisms. So 

additional methods are needed to further locate and classify event types. I note that when 

a certain type of events is targeted, a shift-stacking scheme can be applied to local 

similarity, such as used in the source-scanning algorithm [Kao and Shan, 2004]. With 

proper time shifts predicted by an assumed location and 1D velocity model [e.g., Frank 
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and Shapiro, 2014], stacking of local similarity is expected to be more constructive. For 

example, to detect local earthquake, I can apply theoretical travel time shifts of P (or S) 

waves to stack local similarity. This could result in a source-scanning-like or 

backprojection-like algorithm, but with local similarity rather than envelope or 

normalized waveforms.  

Figure 4.4 shows an interesting relationship between SNR and detection 

significance. Traditional seismology mainly focuses on the events above the noise level, 

which falls in quadrant I (Figure 4.4c). Some studies using template matching have 

achieved the capability to detect events below noise level [Schaff, 2008]. However, it is 

unclear if events below noise level are detectable without known templates. Using local 

similarity applied to ultra-dense arrays, we are able to detect events in a wide range 

below noise levels with high confidence (quadrant II in Figure 4.4c). 

 Inbal et al. [2015, 2016] applied a backprojection method to 6-month recordings 

of the Long Beach array, and detected many seismic events in the midlower crust and 

upper mantle. To suppress local noise, they used downward continuation to back 

propagate the wavefield from surface to 5 km depth. In comparison, in this study I tested 

on one-week data only and used the original data without downward continuation. Our 

method at this point does not include a location module, and hence I do not have the 

accurate information on the depths of those detected events. However, by visually 

inspecting the animations (e.g., animations S1-S4), I find most of them likely have 

shallow origins instead of from low crust or upper mantle. I have checked and found that 

none of our detections matched with Inbal et al.’s [2016] in the examined one-week 

window. The difference may be mostly due to the aforementioned downward 
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continuation, which enhances detections of events at larger depths, but suppress 

detections of events less than 5 km.  

Recent years have seen the exciting emergence of other dense nodal arrays like 

the Long Beach 3D array. Examples include the San Jacinto Fault in California [Ben-Zion 

et al., 2015], Sweetwater in Texas, Mount St Helens in Washington [Hansen and 

Schmandt, 2015] and Piton de la Fournaise volcano in La Reunion [Brenguier et al., 

2016]. Our local similarity method could be potentially applied to these large-N datasets 

to detect weak and unknown seismic events. I note that the only requirement of this 

method is that the targeting signals on neighboring stations are more correlated than the 

background noise. Thus it does not require ultra-dense arrays with hundreds or thousands 

of stations. As long as the station spacing is comparable to or less than its wavelength, it 

can be applied to either 1D linear array or 2D array with only a few tens of stations. In 

fact, I have applied this method to the 1D Hi-CLIMB array across Himalaya and 

Southern Tibet, and the 2D PASO array (~60 stations) near Parkfield, and have detected 

many interesting local signals. Hence, this method could be applied for event detections 

with traditional arrays as well. 

4.5 Supplementary figures 
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Figure S 4.1 Stacked local coherence for the hours with vibroseis truck experiments. 
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Figure S 4.2 Injection wells like facility possibly related with the detected event in 
Figure 4.4c. (a) A snapshot of the local coherence movie of the detected event. Red 
star mark the well location (33.80456, -118.17605) read in Google map. The gray 
line shows the Newport-Inglewood fault. Note the signal initiated near the well but 
then propagated southward. (b) Injection wells like facility observed from Google 
map. 

(a) (b)

Imagery ©2017 Google,  Map data ©2017 Google
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CHAPTER 5. CONCLUSIONS 

  This thesis investigates three subjects in observational seismology, i.e., fault zone 

imaging, seismic event detection, and seismic phase picking. They all share the same 

feature, i.e., using automatic techniques to extract earthquake and structure information 

from big seismic data recorded by dense arrays. The work results in six publications, 

addressing specific topics in each paper. 

In seismic anisotropy, I studied SWS phenomena using seismic arrays at multiple 

scales. In the SJFZ [Li et al., 2015], I used five dense linear arrays crossing the SJFZ at 

different locations. Significant variations of fast directions observed on these arrays 

suggest that shallow fault structures and near-surface layers play important roles in 

controlling the SWS parameters. The other stations near the fault show clear contrast of 

fast directions between the SW and NE sides of the SJFZ. Stations on the SW side have 

fast directions consistent overall with SHmax, while stations on the NE side show mixed 

patterns likely reflecting lithological/topographic variations combined with fault zone 

damage. 

The SWS work in the SJFZ successfully established a fully automatic flowchart to 

measure SWS parameters. Given that previous SWS results in southern California were 

rather the heterogeneous, I expanded SWS measurement to the entire SCSN in a two-

decade period, in order to provide a uniform and complete database of SWS [Li and Peng, 

in prep]. The results show generally consistency of fast direction with SHmax in the 

region. However, I identified clear localized patterns of fast directions at tens-of-km scale. 

Specifically, fast directions within the same geological bodies tend to have a similar trend, 

indicating that localized structure and/or stress control shear anisotropy. Besides, I 

identified several regimes that have fast direction inconsistent with SHmax, including the 

SAF and other geological blocks. This work possibly provides the first map of structure- 

and stress- controlled anisotropy in southern California. 

The SWS parameters are measured for station-event pairs and conventionally 

presented as average over individual stations. However, actual subsurface region of 
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shear-anisotropy remains unknown. In the NAF, I utilized a tomography method to map 

delay times into different depths [Li et al., 2014]. Using the aftershock data from the 

1999 Mw 7.4 İzmit and Mw 7.1 Düzce earthquakes, I observed a continuous belt−like 

highly anisotropic zone along the Karadere−Düzce branch of NAF, ~3 km wide and 

down to ~5 km deep. This observation provides strong evidence of shallow fault-zone 

shear-wave anisotropy caused by intense damage of rock materials from large 

earthquakes. However, this work is limited by simplified assumptions of anisotropy 

model and lack of consideration in fast directions. Better mapping of SWS parameters 

should take fast direction and complex anisotropy models into account, which remains a 

challenging topic in this area. 

In addition to shear-wave anisotropy, I studied velocity contrast across fault wall 

using FZHWs. As mentioned before, velocity contrast plays a critical role in dynamic 

rupture, which may result in preferred rupture direction.  In addition to traditional P/S-

wave tomography methods that are sensitive to regional-scale structures, FZHWs provide 

high-resolution imaging of the immediate vicinity at a fault interface. However, in 

practice FZHWs are manually picked, which is not only laborious but also subjective. 

Therefore, I developed a method to automatically detect FZHWs [Li and Peng, 2016b]. I 

applied it to the Parkfield section of the San Andreas Fault and found many new FZHWs 

recorded by the stations near the Southwest Fracture Zone. These FZHWs could be 

generated within a relatively wide low-velocity zone sandwiched between the fast 

Salinian block on the southwest side and the slow Franciscan Mélange on the NE side.  

I developed another automatic method to pick P and S phases of local earthquakes 

[Li and Peng, 2016a], which is a common task in seismological research. This new 

method incorporates 1D velocity inversion into phase picking. It first predicts phase 

arrivals using initial velocity models and available event locations, and then applies a 

detector function to search genuine phase arrivals around the initial predictions. This 
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strategy was proved successfully on both synthetic and real data sets. A Matlab package 

of this method has been released to the public and applied in several projects.  

One of the emerging fields in seismology is the study of Large-N arrays, which 

can be considered as an extreme case of dense arrays. This new type of arrays provides 

an exceptional chance to study natural phenomena with resolution comparable to that in 

oil and gas exploration. However, we note that traditional techniques are no longer the 

most effective ways for processing these new data. Hence I developed a novel method for 

seismic event detection that fully takes advantage of large-N arrays. I proposed a new 

detection function named local similarity and demonstrated that stacked local similarity 

functions can detect seismic events with amplitudes near or below noise levels [Li et al., 

in revision]. This new technique has great potential for monitoring ultra-weak micro-

seismicity and detecting unusual seismic events in noisy environments. 
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