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SUMMARY

Earth’s radiation budget is directly influenced by aerosols through the ab-

sorption of solar radiation and subsequent heating of the atmosphere. Aerosols mod-

ulate the hydrological cycle indirectly by modifying cloud properties, precipitation

and ocean heat storage. In addition, polluting aerosols impose health risks in local,

regional and global scales. In spite of recent advances in the study of aerosols vari-

ability, uncertainty in their spatio-temporal distributions still presents a challenge in

the understanding of climate variability. For example, aerosol loading varies not only

from year to year but also on higher frequency intraseasonal time scales producing

strong variability on local and regional scales. An assessment of the impact of aerosol

variability requires long period measurements of aerosols at both regional and global

scales.

The present dissertation compiles a large database of remotely sensed aerosol

loading in order to analyze its spatio-temporal variability, and how this load interacts

with different variables that characterize the dynamic and thermodynamic states of

the environment. Aerosol Index (AI) and Aerosol Optical Depth (AOD) were used

as measures of the atmospheric aerosol load. In addition, atmospheric and oceanic

satellite observations, and reanalysis datasets is used in the analysis to investigate

aerosol-environment interactions. A diagnostic study is conducted to produce global

and regional aerosol satellite climatologies, and to analyze and compare the validity

of aerosol retrievals. We find similarities and differences between the aerosol dis-

tributions over various regions of the globe when comparing the different satellite

retrievals. A nonparametric approach is also used to examine the spatial distribution

of the recent trends in aerosol concentration. A significant positive trend was found

xiv



over the Middle East, Arabian Sea and South Asian regions strongly influenced by

increases in dust events.

Spectral and composite analyses of surface temperature, atmospheric wind, geopo-

tential height, outgoing longwave radiation, water vapor and precipitation together

with the climatology of aerosols provide insight on how the variables interact. Dif-

ferent modes of variability, especially in intraseasonal time scales appear as strong

modulators of the aerosol distribution. In particular, we investigate how two modes

of variability related to the westward propagating synoptic African Easterly Waves

of the Tropical Atlantic Ocean affect the horizontal and vertical structure of the en-

vironment. The statistical significance of these two modes is tested with the use of

two different spectral techniques. The pattern of propagation of aerosol load shows

good correspondence with the progression of the atmospheric and oceanic conditions

suitable for dust mobilization over the Atlantic Ocean. We present extensions to

previous studies related with dust variability over the Atlantic region by evaluating

the performance of the long period satellite aerosol retrievals in determining modes

of aerosol variability. Results of the covariability between aerosols-environment moti-

vate the use of statistical regression models to test the significance of the forecasting

skill of daily AOD time series. The regression models are calibrated using atmo-

spheric variables as predictors from the reanalysis variables. The results show poor

forecasting skill with significant error growing after the 3rd day of the prediction. It

is hypothesized that the simplicity of linear models results in an inability to provide

a useful forecast.

xv



CHAPTER I

INTRODUCTION

A major challenge for climate science is the accurate representation of the water cycle

and the exchange of heat between the atmosphere, the ocean, the land surfaces and

space. Both the water cycle and global energy distribution are highly coupled to the

large-scale atmospheric circulation pattern, which in turn is strongly modulated by

the distribution of clouds and rainfall. Clouds and rainfall influence regional circu-

lations by redistributing energy. The feedbacks between clouds and the large-scale

circulation, complicated by the impacts of aerosols on radiation budget and cloud

properties, represent one of the largest sources of uncertainty for future climate pro-

jections (Stephens 2005). These uncertainties, relating to direct and indirect aerosol

effects, remain large owing to high spatial and temporal aerosol load variability and

heterogeneous distribution of aerosol species (Kaufman et al. 2002; IPCC 2007). A

major thrust of this research is to determine the impact of aerosols in climate.

Atmospheric aerosols refer to solid and liquid particles that are suspended in

air. Different types of processes produce aerosols with natural (e.g., wind-blown sea

spray, dusts and volcanic debris) and anthropogenic (such as smokes, fumes and pol-

lution) sources that, through mobilization, place aerosols on both the troposphere

and the stratosphere. Aerosols modulate the radiation budget and the hydrologi-

cal cycle both directly and indirectly and, thus, have the potential of playing an

important role in weather and climate variability (Ramanathan et al. 2001). Green-

house gases primarily influence the long-wave radiation budget through absorption

and re-radiation, while the primary radiation impact of aerosols is on the incoming

and reflected solar radiation stream (Haywood and Boucher 2000). But aerosols also
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influence cloud microphysics indirectly impacting both the longwave and solar radi-

ation streams through altering the size and growth rates of clouds. Thus, there are

two distinctly different roles that aerosols play in weather and climate.

The first aerosol effect, known as the direct effect, modifies the energy balance of

the Earth-Atmospheric system through scattering and absorption of solar radiation.

Scattering redistributes the incoming solar energy enhancing the amount of radiation

reflected back to space, therefore increasing the atmospheric albedo and cooling the

Earths surface (e.g., Charlson et al. 1992). Absorption of both solar and infrared

radiation transforms radiative energy into internal energy of the absorbing particles

which in turn heats the atmosphere (Haywood et al. 1999). The second aerosol

effect, called the indirect aerosol effect, modifies the abundance and properties of

clouds by acting as cloud condensation (CCN) and ice nuclei. The droplet number

concentration is increased with the amount of aerosols particles available for CCN.

This growth in droplet number leads to an increase of cloud reflection, possibly leading

to a climate cooling (Twomey 1977; Twomey et al. 1984). Additionally, if the amount

of moisture is not altered inside the cloud, the droplet radius will decrease as the

aerosol concentration increases resulting in a reduction of the precipitation efficiency.

This so-called second indirect radiative forcing (Albrecht 1989), leads in some cases

to increases in cloud lifetime and, in turn, the amount of clouds, further increasing

the reflection of solar radiation.

Both the direct and indirect aerosol effects induce changes in the energy radia-

tion budget and affect the global circulation and climate. However, there are aerosol

related effects that occur on shorter timescale and on regional scales. For example,

the reduction in surface solar radiation imposed by aerosols (e.g., from dust plumes)

produces a very strong convective suppressing inversion, usually in the lower levels of

the atmosphere. The growth of an inversion changes the vertical atmospheric tem-

perature gradient (i.e., cooling the surface and heating the boundary layer), limiting
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precipitation throughout stabilization of the air column and reducing surface short-

wave radiation (Coakley and Cess 1985; Miller and Tegen 1998; Evan et al. 2009),

further affecting the hydrological cycle. Evidence suggests that this aerosol variability

could even inhibit the formation and reduce the intensity of tropical cyclone activity

(e.g., Dunion and Velden 2004; Lau and Kim 2007).

Aerosol effects are also significant in non-climate related issues, such as those re-

lated to local, regional, and global air pollution. Large-scale biomass burning and

boreal forest fire events often cast huge smoke plumes thousands of kilometers away

from their sources, causing serious air quality and health related problems (Torres et

al. 2002). Volcanic ash plumes can interrupt aviation and impose health risks associ-

ated with the inhalation of volatile particles (e.g., Gislason et al. 2011). Furthermore,

dust aerosols have numerous impacts on the productivity of agriculture and marine

biology (e.g., Jickells et al. 2005), and even on visibility disrupting aviation (Westphal

et al. 2009).

All the aforementioned aerosol effects occur on different time and spatial scales.

An assessment of the impact of aerosol variability effects on the radiation and hy-

drological cycles requires long period measurements of aerosols at both regional and

global scales. With the use of the absorbing aerosol detection in the ultraviolet wave-

length by the Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring

Instrument (OMI), flying on several platforms since 1978, it had become possible

to compile a long-term aerosol record. Although the TOMS-OMI instruments were

designed originally for remote sensing of ozone, they have been used to monitor ab-

sorbing aerosol transport over land and ocean (Herman et al. 1997). The global

features of aerosol distribution using the TOMS-OMI satellite platforms have been

used extensively to document aerosol variability and its effects on climate (e.g., Torres

et al. 1995; Prospero et al. 2002; Jeong and Li 2005; Lau and Kim 2006; Torres et al.

2007; George et al. 2008; Tian et al. 2008; Li et al. 2009).
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More recently, the TOMS/OMI data has been complemented by the launch to

the space of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the

Multiangle Imaging Spectroradiometer (MISR) sensors that were designed specifi-

cally for aerosol retrievals. The information provided by these two platforms have

expanded the near-infrared aerosol detection to include non-absorbing aerosols and

several others aerosol properties with greater accuracy (Remer et al. 2005; Diner et

al. 1998). MODIS data has expanded the global aerosol depiction with the ability of

size detection (Remer et al. 2008), while MISR aerosol retrievals supplement MODIS

observations by incrementing the accuracy in aerosol properties, especially over land

(Kalashnikova and Kahn 2006). The global aerosol picture is complemented with the

launch in 2006 of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observa-

tions (CALIPSO) which is an aerosol lidar profiler able to retrieve columnar aerosol

type and load (Winker et al. 2003).

Global and regional climatologies have been produced mainly using TOMS (e.g.,

Hsu et al. 1996; Herman et al. 1997; Seftor et al. 1997; Chiapello et al. 1999; Cakmur

and Miller 2001; Prospero et al. 2002; Torres et al. 2002; Torres et al. 2005; Gao and

Washington 2009; Li et al. 2009) and MODIS (e.g., Hongbin et al. 2003; Remer et

al. 2008; Papadimas et al. 2008; Liu and Mishchenko 2008; Mishchenko et al. 2009;

Torres et al. 2010; Zhang and Reid 2010) satellite based aerosol information to pro-

vide an overall depiction of the global sources and the aerosol spatial and temporal

distribution. Two main products from these platforms have been used to character-

ize aerosol distribution: TOMS-Aerosol Index as a qualitative measure of the amount

of absorbing aerosols from mineral dust, biomass burning and volcanic ash present

on the atmosphere and MODIS-Aerosol Optical Depth as a quantitative measure of

the transparency of the column integrated aerosol content across the atmosphere.

A more descriptive definition with benefits and shortcomings in these two aerosol
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datasets is explained in more detail in Chapter 2. All this datasets produced a qual-

itatively similar view of the Earths aerosol system. However, quantitative analysis

reveals significant differences in mean aerosol optical depth and other aerosol param-

eters retrieved from satellite (Mishchenko et al. 2007; 2009). Resolving quantitative

differences between satellite-derived aerosol products is an ongoing challenge for the

research community (Remer et al. 2008).

Some studies have also used satellite aerosol retrievals and numerical model simu-

lations to explain the interannual and intraseasonal variability of aerosol distributions

and their relationship with the large-scale circulation and the global climatology. For

example, Karyampudi et al. (1999) used Meteosat satellite overpasses and reanaly-

sis data to describe a detailed synoptic situation for the conditions suitable for dust

mobilization in the Tropical Atlantic Ocean. This analysis validated many of the

characteristic features of the Saharan dust plume conceptual model (Carlson and

Prospero 1972) describing how an aerosol dust layer emerges from West Africa within

a series of large-anticyclonic eddies and how this layer is elevated to mid-levels of the

atmosphere. However, Karyampudi et al. study was based on a single week of data,

limiting the characterization of the time-scale variation of the phenomena. Huang et

al. (2010) using five years of MODIS and CALIPSO data, characterized the properties

of evolution of major aerosol outbreaks associated with Saharan dust mobilization.

This study identified pathways of dust and their relationship with winds and humidity,

characterizing a westward propagation speed of 1000 km/day of dust disturbances.

Some others (e.g., Knippertz and Todd 2010; Jury and Santiago 2010) have used

TOMS, MODIS and reanalysis data to characterize the role of synoptic African dis-

turbances (i.e., African Easterly Waves, Burpee 1972) in generating desert dust from

North Africa and transporting it across the Atlantic. Their work confirmed some key

features (e.g., westward propagation with alternating geopotential height anomalies)

of the conceptual model of the Saharan dust plume and how the plume propagates
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with a speed of about 800 km/day (i.e., similar speed than a climatological African

Easterly Wave).

In the present study, we have compiled a large database of remotely sensed aerosol

loading in order to analyze its spatio-temporal variability, and how this load interacts

with different variables that characterize the dynamic and thermodynamic states of

the environment. We used different satellite retrievals to characterize the longest

records of aerosol distribution in tropical regions. The diversity of this database re-

lies on the different satellite product retrieval technique and calibration procedure

that provide a synergistic approach to complement the analysis. In addition, we

have used the European Centre for Medium-Range Weather Forecasts (ECWMF)

reanalysis dataset and satellite observations of oceanic and atmospheric data to in-

vestigate aerosol-environment interaction. A description of the aerosol datasets and

oceanic/atmospheric information used throughout the document is presented in Chap-

ter 2. A diagnostic study, presented in Chapter 3, was conducted to produce an

aerosol satellite climatology using the TOMS, OMI, MODIS and MISR datasets to

analyze and compare the validity of aerosol satellite retrievals. The climatology in-

cludes a comparison of aerosol time series over different regions of the globe, reporting

their annual and seasonal cycles. Chapter 3 includes an analysis of the global spatial

distribution of aerosol trends based on longest available satellite datasets.

In Chapter 4, we investigate how atmospheric processes modify the aerosol load

over the Tropical Atlantic region and how the environment, in turn, is impacted

by the aerosol variability. We focus the analysis on the spectral representation of

the maximum aerosol load events as retrieved by the satellite datasets. With this

type of analysis we present some extensions to previous studies in this matter (e.g.,

Karyampudi et al. 1999; Huang et al. 2010; Knippertz and Todd 2010; Jury and

Santiago 2010). We aim to evaluate the performance of the long series of satellite

aerosol retrievals into the determination of the different modes of variability that
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aerosol load presents over the Tropical Atlantic region. We also use reanalysis and

satellite observations of atmospheric and oceanic variables to show how two modes of

variability (i.e., in relation with African Easterly Waves activity) of the aerosol events

affect the horizontal and vertical structure of the environment and how those impacts

are represented in the proposed models for aerosol variability over the Atlantic Ocean

(e.g., Carlson and Prospero 1972). The analysis is complemented with the study

of CALIPSO overpasses that help to characterize the vertical extent of the aerosol

maxima over the region.

The results presented in Chapter 4 suggest the existence of coherent evolution

pattern between the aerosol load and the dynamics of the atmosphere and ocean.

We use the connections found in Chapter 4 to construct different forecasting models

based on statistical relationships between aerosols and atmospheric variables. Chapter

5 presents different tests conducted to estimate the predictive skill of the forecasting

models of aerosol load. A brief summary and conclusions are included in Chapter 6. A

sensitivity analysis of the sampling patterns of MODIS aerosol retrievals is presented

in Appendix A. The validity of the aerosol modes of variability found in Chapter 4

was tested using an alternative technique to the spectral analysis and is presented in

the Appendix B.
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CHAPTER II

DATA

Datasets used in this study include a compilation of seven satellite derived aerosol

products and numerical climatic reanalysis information. Additional oceanic and at-

mospheric data were obtained from satellite observations. Aerosol datasets includes

information from the TOMS-Nimbus 7, TOMS-Earth Probe, OMI, MODIS-Terra,

MODIS-Aqua, MISR and CALIPSO satellite missions. Atmospheric variables from

the ECMWF reanalysis, sea surface temperature (SST), outgoing longwave radiation

(OLR), rainfall intensity and water vapor were also compiled in order to relate aerosol

distributions with the circulation and thermodynamic state of atmosphere and ocean.

The following paragraphs describe in detail the definitions, sources and capabilities

of each of this datasets.

2.1 Aerosol Data

2.1.1 TOMS-OMI Aerosol Index

The TOMS-OMI Aerosol Index (AI), one of the longest aerosol records available, is

a measure of the amount of backscattered UV radiation from an atmosphere con-

taining aerosols (i.e., observations) differs from the backscatter of a pure molecular

atmosphere (i.e., model calculations) (Herman et al. 1997). The approach to retrieve

aerosol properties using TOMS-OMI measurements in the UV spectral region is based

on the measurement of the backscattered radiance at two wavelengths in the range of

330–380 nm. For a more detail in the computation of the AI the reader is referred to

read Torres el al. 1998; 2005. The AI is proportional to the aerosol optical thickness

and is mostly sensitive to the aerosol absorption, particle size, aerosol vertical distri-

bution and clouds. The AI is positive for absorbing aerosols such as mineral dust,
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elevated biomass burning smoke, and volcanic ash. However, the AI cannot detect

non-absorbing aerosols such as sea salt and sulfates. The AI has aerosol detection

capabilities over all types of land and ocean surfaces although it is affected by sub-

pixel cloud contamination and by the altitude of the aerosol layer, as it is incapable

of detecting absorbing aerosols below elevations of 2 km (Herman et al. 1997). Al-

though the AI is a qualitative characteristic, it is helpful in identifying dust sources

and transport routes (Sokolik et al. 2001).

The TOMS-OMI data used in this study is the most recently reclassified and recal-

culated version (Version 8). The dataset is composed of an ensemble of daily records

from three satellite mission retrievals namely: Nimbus 7 (N7T, 1978–1993), Earth

Probe (EP, 1996–2005) and OMI satellite (2004–2009). Periods of data from 2000–

2005 for EP and 2008–2009 for OMI were removed from the AI records. Data was re-

moved because EP present a calibration drift produced by sensor degradation affecting

the retrieval (Kiss et al. 2007) and because OMI present an obstruction in the sensors

field of view causing stripes of bad data (see http://macuv.gsfc.nasa.gov/, 2010 for

details). In addition, AI values less than 0.5 are treated as missing values because con-

tamination of the variable by sea-glint and water-leaving radiances (O. Torres 2009,

personal communication). The entire compilation of TOMS-OMI AI was obtained

from the NASA Atmospheric Composition web page (http://macuv.gsfc.nasa.gov/)

covering the tropical band between 45◦N and 45◦S in a 1◦ x 1.25◦ latitude-longitude

resolution.

2.1.2 MODIS Terra and Aqua Aerosol Optical Depth

Aerosol optical depth (AOD) data from MODIS sensor aboard the NASA Earth

Observing System (EOS) Aqua and Terra platforms were used. The AOD is a measure

of the transparency of an atmosphere containing aerosols and can be compared to the

amount of aerosols in the atmosphere. The retrieval of AOD from MODIS sensor
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is done with three independent algorithms using seven of the sensor spectral bands

between 0.47 and 2.130 µm that are sensitive to aerosol content in the atmospheric

column. The first two algorithms are based on the “dark target” approach and were

designed to retrieve AOD over ocean and non-bright land surfaces (Kaufman et al.

1997; Tanré et al. 1997). The latter, called “Deep Blue”, is able to retrieve AOD

over bright land surfaces (Hsu et al. 2004). Whereas TOMS-OMI AI is only capable

of retrieving absorbing aerosols, MODIS AOD measurements are sensitive to both

absorbing and non-absorbing aerosols. In addition, MODIS sensors are capable of

providing additional and much more accurate aerosol properties (i.e., scattering angle,

Angstrom exponent, etc) because it uses a multiple wavelength retrieval technique

and cloud masking procedures (Remer et al. 2005).

This work use two sets of MODIS data downloaded from the NASA Atmosphere

Archive and Distribution System (LAADS, http://ladsweb.nascom.nasa.gov/). We

retrieved daily and monthly AOD data at 0.55 µm for February 2000 to December

2009 from the Terra platform (MOD08 D3 version 5) and for July 2002 to December

2010 from the Aqua platform (MYD08 D3 version 5.1). The data covers the entire

globe at an equal-angle latitude-longitude grid with a horizontal resolution of 1◦ x 1◦.

In order to use the most recent, advanced and available MODIS AOD data we utilized

the “dark target” algorithms for ocean and land regions within the Terra dataset,

whereas the “dark target” for oceanic regions and the “Deep Blue” for land regions

within the Aqua datasets.

2.1.3 MISR Aerosol Optical Depth

Additional AOD data was retrieved from the MISR sensor mounted on the EOS-

Terra satellite to complement the analysis. The MISR sensor comprises a set of nine

cameras placed at different angles pointed to the earth surface enhancing the aerosol

properties recognition, in special for sun glint areas (Kahn et al. 2009). The MISR
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instrument acquires measurements at four spectral resolution bands between 0.44 to

0.87 µm. The aerosol retrieval is based on prescribed lookup tables of forward radia-

tive calculations that are then compared with the MISR observations to determine

AOD and other properties (Diner et al. 1998). While MODIS provides information

on aerosol concentrations with approximately 2-day global coverage, MISR repeats

coverage every 7 to 9 days. This lengthy cycle limits the use of MISR data for high

temporal analysis, but the high accuracy of the retrieved data over bright deserts

provides the necessary additional synergistic information to supplement the study.

The MISR AOD data was obtained in monthly resolution from NASA Atmospheric

Science Data Center (http://eosweb.larc.nasa.gov/) at a 0.5◦ x 0.5◦ spatial resolution

with global coverage from February 2000 to December 2009.

2.1.4 CALIPSO Aerosol Extinction Coefficient

The nadir-pointing lidar system of the Cloud-Aerosol Lidar and Infrared Pathfinder

Satellite Observations (CALIPSO) platform was used to provide a view of the vertical

structure of atmospheric aerosol loading. The two-wavelength polarization-sensitive

lidar is able to provide vertical profiles of aerosol extinction coefficient at 0.532 µm.

This extinction coefficient can be used as a measure of atmospheric vertical distri-

bution of aerosol loading. Details on the CALIPSO science products are given by

Winker et al. (2009).

The CALIPSO aerosol profiles are retrieved on a single 5-km along-track hori-

zontal and multiple 60-m vertical resolutions up to 200 hPa. Despite this very high

vertical resolution, CALIPSO provides transects of the vertical distribution of aerosols

over an approximately 2000–2500 km horizontal interval at mid-latitudes which makes

it difficult to capture the continuous spatial structure of the vertical distribution of

aerosols. Aerosol extinction coefficient profiles (Lidar level 2 version 3.1) at differ-

ent times of the day from June 2006 to July 2009 were acquired from the NASA
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Atmospheric Science Data Center (http://eosweb.larc.nasa.gov/).

2.2 Atmospheric and Oceanic Data

Three-dimensional hourly data for zonal, meridional and vertical wind components,

along with geopotential height, potential temperature, and specific humidity were ob-

tained from the European Center for Medium-Range Weather Forecasts (ECMWF).

Both reanalysis datasets ERA40 (Uppala et al. 2005) and ERA interim (Berrisford et

al. 2009) were used to characterize large-scale atmospheric circulation. Specifically,

12:00 local time data was archived to match the satellite overpass (i.e., TOMS-MODIS

platforms). Data at 1◦ x 1◦ horizontal resolution and at seven atmospheric levels from

1000 hPa to 200 hPa were used. These two reanalysis datasets were used separately

to cover the TOMS and MODIS periods from July 1978 to July 1993 for the first set

of aerosol products and from January 2002 to December 2009 for the second set.

This study also employed daily SST data from the National Oceanic and At-

mospheric Administration (NOAA) Optimum Interpolation (OI) dataset version 1.0.

These data were obtained from the NOAA NCDC website and correspond to daily

SST analysis on a 0.25◦ latitude-longitude grid (re-interpolated to 1◦ x 1◦ to match

the grid in aerosol datasets). SST data is computed based on the AVHRR satellite

and in situ observations from ships and buoys (Reynolds et al. 2007). In conjunction

with SST, interpolated daily OLR data at a 2.5◦ x 2.5◦ global grid resolution (Lieb-

mann and Smith 1996) were downloaded from the Climate Diagnostics Center (CDC)

from the NOAA ESRL web page (http://www.esrl.noaa.gov/). These SST and OLR

datasets were compiled for each of the periods of TOMS and MODIS datasets.

In addition, both the MODIS Near-Infrared Total Precipitable Water Vapor col-

umn over clear-sky (Gao and Kaufman 2003), and the daily rainfall intensity from the

Global Merged Precipitation analysis (GPCP; Huffman et al. 2001) of the Global En-

ergy and Water Cycle experiment (GEWEX, www.gewex.org/gpcp.html) were used
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in this study. Because of the limited period covered by the water vapor and rainfall

datasets (i.e., from 2002 to 2010), only data collocated over the MODIS Aqua period

with a horizontal resolution of 1◦ x 1◦ were used.
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CHAPTER III

CLIMATOLOGY OF AEROSOLS: A SATELLITE

PERSPECTIVE

3.1 Global Aerosol Distribution

Satellite observations are one of the most efficient ways of producing global aerosol

climatologies because they can deliver continuous, homogeneous and globally avail-

able datasets, in comparison with studies using surface-based networks of aerosol

measurements (e.g., Holben et al. 2001). Measures of aerosol loading retrieved using

passive sensors on board satellites have been available since the late 1970s. Early

studies using the Advanced Very High Resolution Radiometer (AVHRR, Husar et al.

1997) and the TOMS Nimbus 7 datasets gave the first global distribution of aerosol

optical depth. Modern satellite sensors including OMI, MODIS and MISR have also

been used to complement the global and regional view of aerosols, their sources and

seasonal distributions (Yu et al. 2003; Jeong and Li 2005; Remer et al. 2008; Li et al.

2009; Kahn et al. 2005).

Figure 1 shows model simulation results of dominant aerosol sources across the

globe for December–February (DJF) and June–August (JJA) (Chin et al. 2004;

Aerosol Center, NASA, http://aerocenter.gsfc.nasa.gov/). During most of the year,

the tropical Atlantic Ocean, North Africa and Middle East are affected by desert dust;

while Central and East China and the east coast of North America are affected by

aerosols derived from industries and pollution. Meanwhile, the Amazon and South

African regions experience seasonal aerosol production by biomass burning during

the JJA season. A region with a particularly strong seasonal aerosol distribution

is south Asia, affected by almost every type of aerosol during different times of the
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year. Contrasting Figure 1, Figure 2 presents a depiction of the seasonal distribution

of aerosols as seen by some of the available remote sensing platforms. The Figure 2 is

constructed averaging monthly data for DJF and JJA seasons of AI and AOD as seen

by TOMS-N7T from 1978 to 1993 and MODIS-Aqua from 2002 to 2010, respectively.

The distribution of maximum values of aerosols over the globe bears a close resem-

blance to the location of main aerosol sources shown in Figure 1, especially for those

regions affected by dust and biomass burning. Regions where urban and industrial

pollution appears in Figure 1 are scarcely represented in Figure 2. Those differences

are going to be explored in more detail in subsequent paragraphs.

Both TOMS AI and MODIS AOD show similar distributions of aerosol loading

over the Eastern Tropical Atlantic, South Africa, Middle East and South Asia (Figure

2). The most striking characteristic is the presence of a region, spanning from West

Africa towards the Tropical Atlantic Ocean with the highest AI and AOD values

during JJA. This region is highly affected by dust outbreaks from the Saharan desert

and is usually referred to as the “dust corridor” (Prospero and Carlson 1972). The

structural features of this dusty region have been illustrated in the Saharan Air Layer

(SAL) model proposed by Prospero and Carlson (1972). Aerosol distribution over the

Middle East, Arabian Sea and the South Asian region also peaks during the boreal

summer. During the pre-monsoon season, air masses carry dust particles towards the

Arabian Sea and the Indo-Gangetic Plains where they accumulate and interact with

the large flux of regional pollutants and biomass burning aerosols (Ramanathan et

al. 2001; Bollasina et al. 2008). The burning of tropical savannas also emits large

amounts of carbonaceous particles resulting in a peak in AI and AOD during DJF

season over central Africa and Gulf of Guinea (Eva and Lambin 1998; Yu et al. 2003).

The greatest difference in aerosol distribution between both the AI and AOD

datasets is seen over South Asia and Eastern China. The high diversity of aerosols
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Figure 1: Global distribution of dominant aerosol types during December–February
(top) and June–August (bottom) seasons. The distribution is derived from the God-
dard Ozone Chemistry Aerosol Radiation and Transport (GOCART) model simula-
tions of monthly AOD. The letters on the caption correspond to smoke (SM), polluted
continental (PC), polluted dust (PD), dust (DU), clean continental (CC), biogenic or
volcanic (BV), clean marine (CM) and other (OT) (Figure courtesy of M. Chin).
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c) MODIS Aqua AOD for DJF season
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d) MODIS Aqua AOD for JJA season

120oW 90oW 60oW 30oW 0 30oE 60oE 90oE 120oE 150oE

40oS

30oS

20oS
10oS
EQ
10oN
20oN

30oN

40oN

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

A
O

D

 
 
 
 
 
 
 
 
 
 

Figure 2: December–February and June–August seasonally averaged AI from TOMS
Nimbus 7 (a, b) and AOD from MODIS Aqua (c, d) datasets, respectively. Shading
is relative to the scale bar at the right of figures. The TOMS data was averaged
for 1978–1993 and the MODIS Aqua for 2002–2010 periods. The blue boxes in (a)
correspond to selected regions for regional comparisons.

affecting the region (i.e., atmospheric smoke from coal consumption, dust from sur-

rounding deserts and industrial pollution) is perhaps why the datasets do not agree.

While AI from TOMS is only sensitive to absorbing aerosols (e.g., dust and biomass
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burning), AOD from MODIS is sensitive to absorbing and non-absorbing (e.g., pol-

lution) aerosols (Torres et al. 2002; Remer et al. 2005). Furthermore, large regions

of the globe are left blank in these climatologies because of poor retrieval, includ-

ing missing values caused by cloud contamination, sun glint (over oceans), or other

unsuitable surfaces.

Another striking characteristic that can be seen in Figure 2 is a pronounced

asymmetry in latitudinal distribution of aerosols between the Northern and South-

ern Hemispheres. Figure 3 shows longitudinal zonally-averaged AI and AOD using

TOMS-N7T, OMI and MODIS Aqua and Terra datasets for the different time spans

of each platform. All datasets agree that the Northern hemisphere has a higher AI

than the Southern hemisphere, even considering the difference in retrieval technology

and data period used. There are generally three reasons for this asymmetry: 1) the

Northern hemisphere has a lower water-to-land ratio than the Southern hemisphere,

2) the worlds largest deserts are located in the Northern hemisphere, and 3) the

Northern hemisphere comprises most of the worlds major industrialized countries

(Kishcha et al. 2007). Of particular interest is the peak in AI around 20◦N and a

broad maximum region shown by AOD from MODIS platforms from 10◦N to 40◦N.

The peak in AI is produced by the location of absorbing aerosols from the desert

belt located near this latitude. The broad peak in AOD is also related with aerosols

produced by deserts but additionally those values are affected by mixture of aerosols

(i.e., absorbing and non-absorbing) over South Asia, East China and North America,

which are not retrieved by the AI.

Despite the generally reasonable qualitative agreement between aerosol retrievals

from satellites (e.g., Jeong and Li 2005), there has been a slow progress to reconcile

the quantitative differences in global aerosol climatologies made using these satellite

products (Mishchenko et al. 2007). The factors involved not only include the retrieval
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Figure 3: Latitudinal distribution of AI (solid lines) and AOD (dash lines) averaged
over all longitudes for the aerosol datasets and time period presented in the inside
caption. Notice the different y−axis in the diagram for AI and AOD.

technique (i.e., differences between AI and AOD) but also differences in cloud mask-

ing, treatment of surface boundary conditions, assumptions of aerosol microphysical

properties and instrument calibration between the same type of sensor (Li et al. 2009).

This diversity in the retrieval technologies used to detect aerosols in the atmosphere

has produced gaps among datasets (Torres et al. 2002; Kiss et al. 2007; Mishchenko

et al. 2007). The climatology presented in this work does not try to reconcile these

issues; rather, it uses the strength of each dataset to provide a general picture of how

aerosols vary across different regions around the world. Analyses performed in this

study were done individually for each satellite dataset, taking into account the sen-

sor used (i.e., MODIS-TOMS-MISR), the type of aerosol retrieved (e.g., absorbing,

non-absorbing) and the length of the time series.

3.2 Regional time series comparisons

In this study, we have selected six regions (blue boxes in Fig. 2) to compare the spatio-

temporal variability of aerosol distributions provided by the aerosol datasets. The AI
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and AOD time series show high interannual and intraseasonal variability, with a strong

annual cycle over the North and South Africa and Middle East regions (Figure 4).

Dust outbreaks originating from the Saharan desert during the boreal spring provide

the necessary amount of aerosol to produce large values of AI. Of particular interest

is how the AI and AOD in Figure 4 for the common period between November 2004

and December 2008 are notably similar over the Tropical Atlantic Ocean, Middle East

and South Africa, but not so similar over South Asia and East China.

Table 1 shows correlation coefficients calculated between OMI AI and MODIS

Terra, Aqua and MISR AOD for the common data period. High correlations (∼ 90%)

are seen for the Tropical Atlantic Ocean, Middle East and South Africa and low values

(< 60%) for the East China and South Asia regions. Regions with high correlation

correspond to areas affected mostly by dust and biomass burning. Regions with low

correlation among datasets, such as East China, are often affected by a diverse set

of aerosols (see Fig. 1). This difference among retrievals confirms that in continuous

long-term retrieval of aerosol distributions, it is critical to select the proper aerosol

retrieval technique over the region of interest. Without such selection, discrepancies

may arise even with the use of more advanced aerosol retrieval techniques, such as

those used by the MODIS and the MISR sensors.

Table 1: Correlation coefficients calculated between the OMI AI and MODIS-Terra,
MODIS-Aqua, and MISR AOD time series for the common period between November
2004 and December 2008.

Region MODIS Terra MODIS Aqua MISR
Tropical Atlantic Ocean 0.93 0.87 0.82

North Africa — 0.82 0.94
South Africa 0.93 0.94 0.95
Middle East — 0.79 0.95
South Asia 0.54 0.64 0.10
East China 0.01 0.12 –0.05
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Figure 4: Monthly time series of AI and AOD averaged over the six regions marked
in blue boxes in Fig. 2a. Black line corresponds to TOMS-Nimbus 7, blue to TOMS-
Earth Probe, yellow to OMI, green to MODIS-Terra, red to MODIS-Aqua and black
dotted to MISR datasets. Notice the different y−axis for AI and AOD at each side
of the figures and the time-span of each platform marked with arrows at the bottom.
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3.3 Annual and seasonal aerosol cycles

Figure 5 shows the mean annual cycle of AI and AOD for each of the regions defined

in Figure 4. The longest datasets, TOMS-N7T and OMI for AI and MODIS Terra

and Aqua for AOD, were used to compute annual cycles. North Africa and Middle

East regions are not represented using the MODIS Terra dataset because data could

not be retrieved over bright desert surfaces. The Tropical Atlantic, North Africa

and Middle East regions show a unimodal aerosol annual cycle with maximum values

during boreal summer for most of the aerosols dataset used. South Africa has a strong

peak on late boreal summer associated with the biomass burning (Remer et al. 2008).

MODIS AOD and TOMS-OMI AI data do not agree in the peak of maximum aerosol

for the North Africa, South Asia and China regions. This discrepancy might be

attributed to the variety of aerosol type affecting South Asia and China. South Asian

aerosols have been reported to peak on a broad aerosol season spanning the period

March to July (Remer et al. 2008; Bollasina et al. 2008) concurrent with the pre-

monsoon season. The TOMS AI annual cycle shows a peak during April concurrent

with the springtime maxima attributed to a mixture of dust outbreaks and biomass

burning occurring across the South Asia (Yu et al. 2003) whereas MODIS Terra

and Aqua AOD both peak in July in the same region. These patterns of aerosol

distribution are attributed to a combination of the dust outbreaks with anthropogenic

aerosols (sulfates) from pollution (Bao et al. 2009).

A Fourier spectrum calculated using daily data shows that a strong annual cycle

dominates all six study regions (central panel in Fig. 5). The significance of the spec-

trum is compared to a red noise process with a 95% of confidence level. Results show

that both the annual and semi-annual periods as well as the shorter variability peri-

ods are significant in the time series. The spectrum calculated retaining band periods

shorter than 60 days in the right panel of Fig. 5 depicts high intraseasonal variability

across all six regions. The usual shorter residency time of aerosols in the atmosphere

22



2 4 6 8 10 12
0.5
1.0

1.5

2.0

2.5
3.0

A
I

0.0
0.2

0.4

0.6

0.8

A
O

D

TropicalAtlantic

2 4 6 8 10 12
0.5
1.0
1.5
2.0
2.5
3.0
3.5

A
I

0.0
0.1
0.2
0.3
0.4
0.5
0.6

A
O

D

NorthAfrica

2 4 6 8 10 12
0.5
1.0

1.5

2.0

2.5
3.0

A
I

0.0
0.2
0.4
0.6
0.8
1.0

A
O

D

SouthAfrica

2 4 6 8 10 12
0.5
1.0

1.5

2.0

2.5
3.0

A
I

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

A
O

D

MiddleEast

2 4 6 8 10 12

0.6

0.8

1.0

1.2

1.4

A
I

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

A
O

D

SouthAsia

2 4 6 8 10 12

0.6

0.8

1.0

1.2

A
I

0.0
0.2

0.4

0.6

0.8
1.0

A
O

D

EastChina

months

100 200 300 400 500
10-8
10-6

10-4

10-2

100
102

V
ar

ia
nc

e 
(%

)

100 200 300 400 500
10-6

10-4

10-2

100

102

V
ar

ia
nc

e 
(%

)

100 200 300 400 500
10-8
10-6

10-4

10-2

100
102

V
ar

ia
nc

e 
(%

)

100 200 300 400 500
10-6

10-4

10-2

100

102
V

ar
ia

nc
e 

(%
)

100 200 300 400 500
10-8
10-6

10-4

10-2

100
102

V
ar

ia
nc

e 
(%

)

100 200 300 400 500
10-6

10-4

10-2

100

102

V
ar

ia
nc

e 
(%

)

period (days)

10 20 30 40 50 60
0.0

0.5

1.0

1.5

2.0

V
ar

ia
nc

e 
(%

)

10 20 30 40 50 60
0.0

0.5

1.0

1.5

2.0

V
ar

ia
nc

e 
(%

)

10 20 30 40 50 60
0.0

0.5

1.0

1.5

2.0

V
ar

ia
nc

e 
(%

)

10 20 30 40 50 60
0.0

0.5

1.0

1.5

2.0

V
ar

ia
nc

e 
(%

)
10 20 30 40 50 60

0.0

0.5

1.0

1.5

2.0

V
ar

ia
nc

e 
(%

)

10 20 30 40 50 60
0.0

0.5

1.0

1.5

2.0

V
ar

ia
nc

e 
(%

)

period (days)

Figure 5: Mean annual cycle (left panel) and Fourier spectrums (center and right
panel) of AI and AOD for the same regions shown in Fig. 4. Black line corresponds to
TOMS-N7T, yellow to OMI, green to MODIS-Terra and red to MODIS-Aqua. The
right panel presents a Fourier spectrum retaining the 2–60 day band periods of the
series and the significance of each spectrum is compared to a red noise process with
a 95% of confidence level (continuous black line).

and the influence of synoptic disturbances on biomass burning and dust outbreaks

give the characteristic of shorter periodicity. For example, North Africa and Tropi-

cal Atlantic ocean regions are highly influenced by variability produced by Easterly

Waves (Prospero and Carlson 1972), whereas South Africa and Eastern China are in-

fluenced by intraseasonal variability related to the Madden-Julian Oscillation (Tian
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et al. 2008). This topic is explored in more detail in the next the chapter.

3.4 Tendencies in the aerosol datasets

Several studies have tried to use satellite datasets to investigate trend patterns in

aerosol distribution. For example, Herman et al. (1997) reported an increase in ab-

sorbing aerosols attributed to biomass burning over the Amazon since 1978 using

radiances from the TOMS instrument. In a more recent study using AOD from

the AVHRR satellite, Koren et al. (2007; 2009) reported a declining trend in biomass

burning since 2006 in the Amazon region. Further analysis using OMI AI and MODIS

extinction optical depth indicate a reduction in the number of fires during 2008–2009,

supporting the decline in the biomass-burning trend (Torres et al. 2010). Based on

TOMS data, Massie et al. (2004) reported a large increase in AOD between 1979

and 2000 over East China and the Ganges River basin in India during the winter

months of November to February. The same positive trends over eastern China have

been also reported in MODIS AOD from 2000 to 2006 (Bao et al. 2009; Zhang and

Reid 2010) and in TOMS AOD from 1997 to 2001 (Xie and Xia 2008). Meanwhile,

George et al. (2008) reported a decrease in AOD between 1986 and 1999 and then a

rise from 1999 to 2004 over the North Indian Ocean, consistent with the Massie et

al. (2004) findings. Over the Mediterranean basin and North America, two studies

found a decreasing linear tendency in MODIS AOD from 2000 to 2006 (Papadimas

et al. 2008; Zhang and Reid 2010). The trends in aerosol reductions over those two

regions agree with legislative reductions in the anthropogenic emissions of sulfur and

black carbon in many developed nations (Streets et al. 2009). This trend has been

also reported in AOD from AVHRR satellite data after 1990 (Mishchenko et al. 2007;

Zhao et al. 2008), which may have contributed to the concurrent upward trend in

surface solar fluxes and a global “brightening” (Wild 2009). At the same time, there

is a statistically negligible change in AOD over regions such as the global oceans,
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Australia and North Asia (Wang et al. 2009; Zhang and Reid 2010).

While these studies have focused on the analysis of regional or global average

trends, none of them look at the spatial distribution of aerosol trends. The use of an

average trend can be misleading in both understanding and documenting the trend

since the distribution of aerosols is spatially heterogeneous. In this section, we use

the longest in each of the satellite aerosol datasets to document the global spatial

distribution of aerosol trends. The distribution of the tendencies is presented for the

45◦N to 45◦S latitudinal band, which is the center of the satellite aerosol retrievals. To

compute trends, we generated monthly AI and AOD anomalies as deviations from the

monthly mean in each of the time periods of each platform (i.e., 1979–1992 for TOMS-

N7T, 2005–2008 for OMI, 2000–2009 for MODIS-Terra, 2003–2010 for MODIS-Aqua

and 2001–2010 for MISR). The Mann-Kendall technique (Hirsch et al. 1982) was used

to compute the trends. The technique goes beyond the traditional methods of linear

regression analysis because it is non-parametric and does not depend on a specific

distribution of the anomalies. The procedure is based on a ranking test suitable to

detect monotonic trends during a particular time interval that does not necessarily

have to be linear. The Mann-Kendal statistic Z and the seasonal Kendall slope

estimator B were computed. For detailed explanation see Hirsch et al. (1982). The

statistic Z tests the hypothesis of positive, zero or negative tendency comparing to

a standard normal distribution with an assumed probability (e.g., 95% confidence).

A positive value of Z indicates a significant upward tendency and a negative Z a

downward trend. A greater absolute value of Z indicates higher probability of rejecting

the null hypothesis of randomness. These sets of tests have been used for atmospheric

and hydrologic data analysis with good performance (e.g., Hirsch et al. 1982, Molnar

and Ramirez 2001, Agudelo and Curry 2004). For comparison purposes, tendencies

were also computed using traditional methods of trend analysis (i.e., Ordinary Least

Squares (OLS), Least Absolute Deviation (LAD) and Chi-Square error statistic (CHI),
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for a detailed explanation of the methods see Wilks 2006).

Figures 6 and 7 show the standard normal statistic Z obtained using the Mann-

Kendal technique for TOMS-N7T and OMI AI and MODIS-Aqua and MISR AOD,

respectively. The technique was applied separately to each of the satellite dataset

periods of registry. In the case of the TOMS-N7T dataset, tendencies were estimated

during the initial and final 7 years of registry. This was done for two reasons: 1) to

have a similar length of data to make inter-comparisons because all aerosol datasets

have a data lifetime of around 7 years, and 2) the period covered 1988–1990 cor-

responding to the reversal in global aerosol tendencies reported in previous studies

(Mishchenko et al. 2007; Zhao et al. 2008). Figure 6 shows a considerable positive AI

tendency from 1979 to 1984 over much of the tropics, particularly over the Tropical

Atlantic Ocean, Northern and Central Africa and Middle East and South Asia. From

1987 to 1992, AI shows positive tendencies for Central and South Africa, Middle East,

South Asia and Australia; whereas there are negative AI tendencies for the Tropical

Atlantic Ocean and Northern Africa. Over the Mediterranean Ocean there are some

small negative tendencies but they are not significant. These negative tendencies

continue to be seen over Northern Africa and the Mediterranean Ocean and Europe

when calculated using AOD from MODIS and MISR during the 2000s (Figure 7).

This increasing trend during early 1980s and then decreasing after 1990s has been

related to the “dimming” and “brightening” in solar radiation reaching the surface at-

tributed, along with others factors, to an anthropogenic contribution through changes

in aerosol emissions governed by economic developed nations and air pollution reg-

ulations (Wild 2009). A striking feature in Figure 6 and Figure 7 is the significant

positive tendency that AI and AOD are experiencing over the Middle East, Arabian

Sea and South Asia. This characteristic positive tendency is occurring over the whole

period of registry from 1980 up to 2010.

To quantify the amount of AI and AOD increase or decrease, the seasonal Kendall
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Figure 6: Spatial distribution of the standard normal statistic Z obtained using the
Mann-Kendal technique for the time series of AI from TOMS-N7T during 1979–1994
(top) and 1987–1992 (center), and from OMI during 2005–2008 (bottom) periods.
The color shading is relative to the scale bar at the bottom of the figure and the
black contour encloses regions with trend significance level greater than 95%.

slope estimator for the respective tendencies was calculated for TOMS-N7T and OMI

datasets (Figure 8) and for MODIS and MISR datasets (Figure 9). In general, the sign

of the tendency slopes in Figs. 8–10 are similar to the sign described previously for all
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Figure 7: Same as Fig. 6, but for the time series of MODIS-Aqua (top) and MISR
(bottom) AOD during 2003–2010 and 2001–2010 periods, respectively.

the aerosol regions in Figs. 6 and 7. Significant values up to +0.1 year−1 in AI can be

seen over the Middle East, Arabian Sea and South Asia. Figure 6 shows a tendency in

AI values higher than +0.1 year−1 over the Tropical Atlantic Ocean and North Africa

from 1979 to 1984. Then, the tendency reverses down to AI values of around –0.1

year−1 from 1987 to 1992, significantly over the west of Northern Africa and Atlantic

Ocean. The tendencies found using the OMI dataset for the period 2005–2008 in Fig.

8 do not reach statistically significant values to provide a distinguishable tendency

over Northern Africa and the Atlantic Ocean. From the more recent aerosol datasets

(e.g., MODIS and MISR in Fig. 9), significant AOD negative tendencies around –0.15

year−1 are seen again over Northern Africa and Mediterranean Ocean. AOD values

up to +0.2 year−1 occur over the Middle East and some regions over South Asia.
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This increase in AOD values in the past ten years over South Asia and Middle East

is reported to have been strongly influenced by dust events (Zhang and Reid 2010).

 

120oW 90oW 60oW 30oW 0 30oE 60oE 90oE 120oE 150oE

40oS

30oS

20oS

10oS

EQ

10oN

20oN

30oN

40oN

TOMS Nimbus 7 during 1979-1984

 

120oW 90oW 60oW 30oW 0 30oE 60oE 90oE 120oE 150oE

40oS

30oS

20oS

10oS

EQ

10oN

20oN

30oN

40oN

TOMS Nimbus 7 during 1987-1992

 

120oW 90oW 60oW 30oW 0 30oE 60oE 90oE 120oE 150oE

40oS

30oS

20oS

10oS

EQ

10oN

20oN

30oN

40oN

OMI during 2005-2008

B value [10-1 1/year]

 -1.1  -0.9  -0.6  -0.4  -0.1   0.0   0.1   0.4   0.6   0.9   1.1

Figure 8: Spatial distribution of the seasonal Kendall slope estimator B calculated
for the time series of AI from TOMS-N7T during 1979–1994 (top) and 1987–1992
(center), and from OMI during 2005–2008 (bottom) periods. The black contour
encloses regions with trend significance level greater than 95%.

Other regions over the globe, such as East China, the east coast of North Amer-

ica, the Amazon region and central Africa do not appear to have significant trends.
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Figure 9: Same as Fig. 8, but for the time series of MODIS-Aqua (top) and MISR
(bottom) AOD during 2003–2010 and 2001–2010 periods, respectively.

Neither AI nor AOD datasets in Figures 8 and 9 suggest a noteworthy tendency in

aerosol loading among those regions. Considerable amount of missing values in all

datasets over these regions prevent the technique from providing a unique tendency

value.

Finally, we computed the tendency slopes using OLS and LAD estimators to

compare the robustness of the trends calculated using the Mann-Kendall methodology

(Figure 10). At first glance, Fig. 10 represents very similar tendencies to those shown

in Fig. 8. Significant values up to +0.1 year−1 in AI can be seen over the Middle

East, Arabian Sea and South Asia for trends estimated using both methodologies.

The reversal in tendencies over the west of Northern Africa and adjacent Atlantic

Ocean is also seen in Figure 10. There are no significant differences between the
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results from the Mann-Kendall methodology and traditional techniques.
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Figure 10: Spatial distribution of the AI trend computed with the ordinary least
square (OLS) and least absolute deviations (LAD) techniques for the same datasets
and periods as Fig. 6. The black contour encloses regions with trend significance level
greater than 95%
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CHAPTER IV

VARIABILITY OF AEROSOLS IN THE

TROPICAL ATLANTIC OCEAN

Dust is by far the most abundant and ubiquitous aerosol type. North Africa is

recognized as the largest dust source providing around the 50% of the global annual

mass (e.g., Prospero et al. 2002). Dust originating from the Bodélé Depression and

the Western Sahara is the most significant source thought to impact ecosystems off

the American coast (Washington and Todd 2005; Prospero et al. 2010) and even alter

biogeochemical cycles in the Amazon Basin (Swap et al. 1992). Westward intrusion

of dust-laden air from the African continent into the tropical North Atlantic Ocean

is a frequent phenomenon during the boreal summer (Carlson and Prospero 1972).

The entrainment of large quantities of dust into the atmosphere require two sets of

conditions; a supply of surface sediment and strong surface winds. These conditions

are well matched in the region where thick layers of sediment are exposed and provide

the unlimited source of material to be eroded. Surface wetness, vegetation cover and

rainfall are characteristically low in the region, which makes perfect environmental

factors to favor dust mobilization and transport over the region (Prospero et al. 2002).

The synoptic to local atmospheric processes involved have been characterized into

conceptual models (e.g., Carlson and Prospero 1972; Karyampudi and Carlson 1988)

describing the meteorological conditions suitable for dust mobilization. In synthesis,

the model describes how this dust-laden heated air emerges from West Africa within a

series of large-scale anticyclonic eddies. This dusty air moves above the cool and moist

trade-wind inversion layer elevating the dust air mass to 600–800 hPa layer (Carlson

and Prospero 1972; Karyampudi and Carlson 1988). The vertical and horizontal
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structure of this dust plume, usually referred as Saharan Air Layer (SAL), has been

extensively studied and verified using in situ and satellite observations and numerical

modeling (e.g., Karyampudi et al. 1999). The dust plume appearing in large-scale

outbreaks, spanning from North Africa towards and over the Atlantic Ocean (Fig. 2)

has been widely recognized as a climatological feature of the summer aerosol distri-

bution over the region (e.g., Karyampudi et al. 1999; Huang et al. 2010; Knippertz

and Todd 2010).

The rate of the westward incursion of dust into the Atlantic Ocean is modulated

by African Easterly Waves (AEW, Burpee 1972) that propagate from the interior

of North Africa across the west coast and towards the Atlantic Ocean (Jones et al.

2003). Two AEW regimes have been recognized (Carlson 1969; Burpee 1972; Reed

et al. 1977; Viltard et al. 1997; Diedhiou et al. 1998; 1999). The first regime has a

period of 3-5 days (phase velocity of 7-8 degree longitude per day, deg/day) and a

second, which strongly modulates the zonal wind component, has a 6-9 days period

or 5 deg/day. The extension of these synoptic-scale disturbances has a wavelength of

about 2500–3000 km for the first regime and about 6000 km for the second (Diedhiou

et al. 1998).

Whereas a number of different studies have recognized the role of AEWs in the

modulation of African desert dust transport (Barkan et al. 2004; Jones et al. 2004a;

Washington and Todd 2005; Knippertz and Todd 2010; Huang et al. 2010; Jury and

Santiago 2010) in this chapter we propose a number of significant extensions. The

objective of those extensions is to document how a “typical” AEW modifies the dust

aerosol burden in the SAL and how the environment is modified by these aerosol

intrusions. The uniqueness of this work is the use of the long-term satellite aerosol

retrievals to determine modes of aerosol variability in relation to the two forms of

AEW. Furthermore, we use reanalysis and satellite retrievals of atmospheric and

oceanic variables to document how the atmosphere and the ocean are impacted by
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dust aerosol variability and how these impacts compare with those in the Carlson and

Prospero (1972) model of dust transport over the Atlantic Ocean.

4.1 Spectral Analysis

In order to characterize the temporal and spatial evolution of aerosols relative to

AEW variability and their relationship with atmospheric variables, a region near

to the coast of Africa in the center of the climatological dust corridor was selected

(15◦N–17◦N, 22◦W–20◦W; box Fig. 2a). Daily time series of averaged TOMS-N7T AI

(simply ‘AI’, hereafter) and MODIS-Aqua AOD (simply ‘AOD’, hereafter) over the

selected region were computed. The time periods used for this analysis are 1979–1993

and 2002–2010, respectively. To obtain a representative sampling of aerosol data, a

3-day running mean over both gridded satellite datasets was applied to minimize

the impact of missing data due to sensor swath coverage. Filtered time series were

computed using a band-pass Fourier filter retaining time-band periods in 5 to 15

and 10 to 30 days range to match the two modes of variability of AEW over the

region. Positive values greater than +1 standard deviation were selected on the

filtered time series and the date of the maximum value in each period was chosen

as the day 0 to compute the composites. To construct the composites, anomalies of

gridded AI and AOD data were computed with respect to a 30-day running mean

of the daily climatology in each of the analyzed periods. In addition, wind velocity

and direction, geopotential height, potential temperature, specific humidity, SST and

OLR anomalies were computed for periods matching the aerosol data sets. For the

TOMS daily data, 161 days of maximum AI were found in the 5-15 day period and

80 days in the 10-30 day band. In similar way, MODIS indicated 76 and 44 days of

maximum AOD in the 5-15 and 10-30 day period, respectively.

Sensitivity analyses were performed in order to test that the aggregation of AOD

data would not introduce spurious modes of variability on the aerosol time series.
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The results of these analyses are presented in the Appendix A of this document.

In addition, to validate the significance of the variability modes calculated by the

Fourier analysis, the Empirical Mode Decomposition technique was applied to the AI

and AOD data. An analysis determining the statistical significance of the modes is

presented in Appendix B.

4.2 Horizontal composite analysis

Figure 11 shows a longitude-time plot of TOMS AI and MODIS AOD anomalies for

the 5-15 day and 10-30 day period bands. Day 0 in each plot represents a maximum

in aerosol loading over the selected study region and composites were created by

averaging the AI and AOD anomalies from –8 to 8 days around day 0. Additionally,

positive geopotential height anomalies at 700 hPa are also plotted as solid contours

in the same figure. Two modes of westward aerosol propagation are evident in both

datasets, one with a period near 5-7 days (for the 5-15 day band filter) and another

with a period near 9-11 days (for the 10-30 day band filter). There is good relationship

between positive 700 hPa geopotential height anomalies with the positive aerosol

anomalies and negative heights with negative aerosol anomalies. These two regimes

represent the wave speeds of the two AEW forms crossing the region. The aerosol

anomalies in Figure 2 using AI show a wave speed of approximately 8 deg/day (5-15

day band top left panel) and 6 deg/day (10-30 day band, right top panel) very similar

to the AOD anomalies (right hand panels).

Figure 12 and 13 show the extension of the analyses to the longitude-latitude

plane. Composites are constructed in the same way as in Figure 11 and show the

horizontal distribution of aerosol anomalies using AI (Fig. 12) and AOD (Fig. 13)

analyses for dates with the minimum and maximum values. Wind vectors and geopo-

tential height anomalies at 700 hPa using ERA-40 and ERA-interim are also shown

for the same composite time for the TOMS and MODIS periods, respectively. The
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Figure 11: Longitude-time plots of aerosol (shading, relative to the color palette)
and geopotential height (contours in [m], continuous line positive values) anomalies
averaged between 15◦N and 20◦N. Upper panel corresponds to TOMS-AI variability
composites in the 5-15 day (left) and 10-30 day (right) band. Lower panel corresponds
to MODIS-AOD in the in the 5-15 day (left) and 10-30 day (right) band. For each
plot a black solid line represent the mean average propagation of the positive aerosol
anomalies and the speed of this propagation is indicated in the top of each diagram.

700 hPa level was selected because the average transportation of the dust takes place

above the humid trade wind air in the 600–800 hPa layer and because AI is mostly

sensitive to aerosols over 2 km. From the top to the bottom in Fig. 12, negative
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AI anomalies are seen over the study region at 4 days before the aerosol loading

maximum (for the 5-15 day band) and 6 days before (for the 10-30 day band) with

collocated cyclonic winds and negative geopotential height anomalies. As time pro-

gresses towards the maximum in AI at day 0, the aerosol, wind and geopotential

height anomalies move westward with a notable increase in magnitude. This com-

posite progression displays westward propagation of aerosols with anticyclone wind

and positive geopotential height anomalies, consistent with the results of the Carlson

and Prospero (1972) model of dust transport over the Atlantic Ocean. At day 0,

a discernible anticyclone circulation is apparent in both composites over the coast

of West Africa. As the anticyclonic circulation moves eastward, the aerosol loading

diminishes moving toward AI negative anomalies over the reference region. This oc-

curs after 4 days in the 5-15 day band and 6 days in the 10-30 day band with a

considerable reduction in geopotential height anomalies as well as a reversal in wind

anomaly direction. The progression in MODIS AOD anomalies in Fig. 13 is remark-

ably similar to the progression of AI anomalies shown in Figure 12. The timing of

the change between negative to positive AOD and geopotential height anomalies over

the region match the timing of changes evident in the AI anomalies for both bands

of the analysis. These similarities reaffirm the progression of the aerosol phenomena

in accord with the synoptic variability and the speed of the two AEW regimes.

As the dust is transported over the desert surface towards the ocean, the air layer

in which the aerosols are embedded is warmer and drier than the normal tropical

atmosphere (Carlson and Prospero 1972). The aerosol layer helps to produce a very

strong suppressive inversion above the moist trade wind air limiting precipitation,

humidity and reducing surface shortwave radiation (Miller and Tegen 1998; Foltz and

McPhaden 2008; Evan et al. 2009). To calculate the environmental impact produced

by the variation of aerosol loading on the surrounding atmosphere and ocean, SST

and OLR anomalies were calculated for the common periods of TOMS and MODIS
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Figure 12: Composites of TOMS-N7T AI (shading, relative to the color palette),
horizontal wind (vectors) and geopotential height (contours in [m], continuous line
positive values) anomalies. ERA-40 data at 700 hPa is used to calculate wind and
geopotential height anomalies. The composites are constructed based on the maxi-
mum in aerosol loading at day 0 over the reference region. The left panels correspond
to composites based on the 5-15 day band and right panel to 10-30 day band.

datasets. Atmospheric water vapor and GPCP precipitation anomalies were used

only for the MODIS period. Figure 14 shows composites of SST and OLR for –6

and 0 days of the maximum in MODIS AOD over the study region. The composites

were calculated using the aerosol time series with a Fourier filter in the 10-30 day
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Figure 13: Same as Fig. 12, but for MODIS-Aqua AOD, ERA-interim horizontal
wind and geopotential height anomalies.

band. The same composites were also calculated using TOMS for 5-15 day and 10-

30 day bands (not shown). For each composite a contour representing positive and

negative anomalies of AOD is also plotted. Six days prior to the maximum in AOD

over the west coast of Africa, positive anomalies of SST and negative of OLR appear

concurrently with negative aerosol anomalies in the reference region. At the time

of maximum aerosol anomalies near to the coast of Africa, the SST has declined up
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possessing negative anomalies and the OLR anomalies increases to positive values.

The high solar absorption in the dust layer reduces shortwave radiation, which would

otherwise be absorbed by the land and the upper ocean. After the aerosol anomalies

start to decline, there is a recovery and SST anomalies become positive at day 6.

It is important to note that the negative SST anomalies travel westward in phase

with positive aerosol anomalies as the dust is carried westward by the anticyclone.

Figure 15 shows composites of GPCP rainfall and precipitable water vapor as the

aerosol anomalies change between minimum and maximum during –6 and 0 days of

the maximum in MODIS AOD. There is a general correspondence between reduced

precipitation, reduced precipitable water vapor and an increase in aerosol anomalies

during the day 0 of the composites.

The latter observations in the composites presented in Figure 14 and Figure 15

are consistent with a negative radiative forcing at the surface imposed by absorbing

aerosols. This forcing is being balanced by a reduction in upward thermal radiation

associated with a decreased surface temperature. A reduction of turbulent fluxes

of sensible and latent heating into the atmosphere produces a stabilization of the air

column within which vertical motion is inhibited thus reducing precipitation (Coakley

and Cess 1985; Miller and Tegen 1998). Time series of composite anomalies of aerosol

loading, zonal wind, geopotential height, SST, OLR, water vapor and GPCP rainfall

anomalies are plotted in Figure 16 for the two aerosol datasets. The left panel shows

the evolution of anomalies in the 5-15 and 10-30 day bands based on TOMS AI data.

The right panel is based on MODIS AOD dataset. Similar patterns emerge for all of

the anomaly evolution time series. As positive anomalies of aerosol loading increase

towards day 0 (maximum aerosol loading), there is a reversal from easterly to westerly

in zonal wind direction, a change of sign from negative geopotential height values (low

pressure) to positive values (high pressure) and an increase towards a maximum in

wind speed. There is also a decrease towards minimum values of SST, water vapor
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Figure 14: Composites of SST and OLR anomalies (shading, relative to the color
palette) during the minimum and maximum in aerosol loading over the reference
region for the MODIS AOD dataset within the 10-30 day variability band. The red
contour in each plot corresponds to positive AOD anomalies and the blue contour to
negative AOD anomalies in each time period.

and rainfall rate and towards a maximum in OLR as aerosol loading increases.

4.3 Vertical composite analysis

In order to analyze the vertical state of the atmosphere during the evolution of aerosol

loading, composite analysis of the latitude-height structure of zonal, meridional, and
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Figure 15: Same as Fig. 14, but for GPCP rain and MODIS Near-Infrared total
precipitable water vapor anomalies.

vertical wind speed, geopotential height, potential temperature and humidity anoma-

lies are constructed. Figures 17 and 18 show composites from ERA-40 and ERA-

interim for the TOMS and MODIS periods averaged over the 40◦W to 10◦W longitude

band for day –4 and day 0 relative to the maximum in AI and AOD over the study

region (i.e., 15◦N–17◦N, 22◦W–20◦W), respectively. Composites in Figures 17 and 18

were calculated based on AI and AOD in the 5-15 day band and the vertical wind is

exaggerated 1000 times to allow a comparison with the horizontal wind. Four days
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Figure 16: Evolution in time of TOMS-N7T AI and MODIS-Aqua AOD, zonal wind
in [m/s], geopotential height in [m], wind speed in [m/s], SST in [◦C], OLR in [W/m2],
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the reference region from –8 to +8 days around the aerosol maxima. Left panel is
based on TOMS AI and right panel on MODIS AOD variability day band. Solid line
corresponds to anomalies for 5-15 day and dash-dot line to 10-30 day variability band.
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before the maxima in aerosol (aerosol minima, see black line in Fig. 17b), there is a

prominent middle troposphere cyclone centered around 20◦N with associated negative

geopotential anomalies. We hypothesize that the subsidence near 20◦N acts to pre-

vent aerosol to build up. There is a minimum in potential temperature in the lower

troposphere around 850 hPa and a maximum in the boundary layer specific humidity

(Fig. 17b) both displaced northward from the minimum in AI anomalies. At the

time of the aerosol maximum loading the zonal wind reverses towards an anticyclonic

circulation and a maximum in geopotential height. The presence of a strong middle

level easterly jet (centered around 14◦N) between the upstream trough and down-

stream ridge axis of an AEW is a common characteristic of the SAL (Karyampudi et

al. 1999). There is noticeable upward motion between 12◦N and 22◦N (i.e., the dust

corridor) with a collocation of anomalously warm and dry air mass forming a temper-

ature inversion around 875 hPa near the base of the SAL and over a moist boundary

layer. The inversion between the marine mixed layer and the base of the SAL (i.e.,

850 hPa) is identified by a rapid increase in potential temperature with height. The

negative anomaly in specific humidity near the base of the SAL indicates a dry and

stable atmosphere, inhibiting cloud formation (Karyampudi and Carlson 1988). Fig-

ure 18, constructed in the same way as Figure 17 but based on MODIS AOD, displays

the same characteristics of wind, geopotential height, potential temperature and spe-

cific humidity anomalies as discussed before. Those similarities reaffirm once again

the good agreement given by both aerosol satellite based datasets of the physical

phenomena.

A common feature of the SAL is that intense radiative heating accompany dust

transport over the desert surface as hot and dry air emerges from the west coast of

Africa. The emergence of dusty, anomalously warm and dry air is viewed better in

the latitudinal composites averaged between 10◦N and 20◦N shown in Figures 19 and

20. Four days prior to the maximum in aerosol loading anomalies in the study region
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Figure 17: Longitudinal-averaged composites of zonal wind (shading), geopotential
height (red contours in [m]) and meridional-vertical wind (vectors) anomalies for four
days (a) and zero days (c) of the maximum in TOMS-N7T AI over the reference
region and within the 5-15 day variability band. Longitudinal averaged potential
temperature (shading), specific humidity (red contours in [g/kg]) and AI horizontal
profile (black line) anomalies for four days (b) and zero days (d) of the maximum in
TOMS-N7T AI.

there is middle level zonal wind convergence favoring sinking motion in the lower

levels of the troposphere near 18◦W. There are humid and cool temperatures over a

diminished aerosol layer (around 30◦W–15◦W, in Fig. 19b). At the same time, over

the Saharan desert (5◦W–10◦E) there is an upper level trough and upward motion

accompanying the hot and dry air emerging from the African desert. The center of

positive potential temperature anomalies decreasing with height over North Africa

(around 0◦) favors instability from the surface to the mid-troposphere creating a fa-

vorable environment for the African dust to be eroded from the Saharan desert. At

day 0, the time of maximum aerosol loading, the meridional wind reverses and the

zonal wind becomes easterly with hot and dry air that has moved over the region
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Figure 18: Same as Fig. 17, but based on MODIS-Aqua AOD and within the 5-15
day variability band.

of maximum aerosol loading (Figs. 19c and 19d). This warm and dry air is located

over humid and cooler air favoring the maintenance of the African dust plume lo-

cated in the lower to middle troposphere above the moist trade-wind (Carlson and

Prospero 1972; Karyampudi and Carlson 1988; Knippertz and Todd 2010). Similar

characteristic motion and atmospheric state, as presented in Figures 17–20, were also

found for the 10-30 day band variability modes within the AEW analysis using the

both satellite and reanalysis datasets (not shown). The only noticeable difference was

that the temperature and humidity anomalies in the analysis of the longest variability

mode possessed a greater longitudinal extension. This is coincident with a greater

wave extension within the longer period of variability in similar way as the difference

in wave extension in Figure 2.

Figure 21 and Figure 22 show the evolution of the vertical profiles of zonal and

vertical wind, potential temperature and humidity anomalies through the composite

46



-40 -30 -20 -10 0 10
longitude

1000

800

600

400

200

pr
es

su
re

 [h
P

a]

-2.0

-2.0

-1
.0

-1.0

-1.0 -0
.5

-0
.5

-0.5

-0.5

0.
5

0.5

1.
0

1.0
2.0

c) 

-40 -30 -20 -10 0 10
longitude

1000

800

600

400

200

-0.15-0.05

0.
05

0.
05

0.05
0.05 0.05

0.15

d) 

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

A
I a

no
m

al
y

-40 -30 -20 -10 0 10
longitude

1000

800

600

400

200

pr
es

su
re

 [h
P

a]

-3.0

-2.0
-1.0 -1.0

-1
.0

-0
.5 -0.5

-0
.5

0.5

0.
5

0.
5

1.
0

1.0

1.
0

2.0

a) 

meridional wind anomaly [m/s]

 -0.9  -0.7  -0.6  -0.4  -0.3  -0.1   0.0   0.1   0.3   0.4   0.6   0.7   0.9

-40 -30 -20 -10 0 10
longitude

1000

800

600

400

200

-0
.2

0

-0.20

-0.15

-0.15

-0.05

-0.05

-0.05
0.05

0.
15

b) 

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

A
I a

no
m

al
y

potential temperaure anomaly [deg k]

 -0.4  -0.3  -0.2  -0.1   0.0   0.1   0.2   0.3   0.4   0.6   0.7

Figure 19: Latitudinal-averaged composites of meridional wind (shading), geopo-
tential height (red contours in [m]) and zonal-vertical wind (vectors) anomalies for
four days (a) and zero days (c) of the maximum in TOMS-N7T AI over the reference
region and within the 5-15 day variability band. Longitudinal averaged potential
temperature (shading), specific humidity (red contours in [g/kg]) and AI horizontal
profile (black line) anomalies for four days (b) and zero days (d) of the maximum in
TOMS-N7T AI.

period within the 5-15 day band variability associated with the AI and AOD anoma-

lies. The composite profiles are constructed by averaging each variable horizontally

over the study region, locating the day zero as the day of maximum aerosol loading

and computing averages of –6 to +6 days from the dates about this maximum. Fig-

ures 21a and 22a show that about 4 days before day zero, low level easterly wind

anomalies start to increase in height reaching a maximum near day –1 and forming

the middle level easterly jet. The increase in vertical velocity (i.e., increasing negative

anomalies) near the day 0 is also favoring conditions resulting in dust mobilization.

In addition, there is an increment of positive anomalies of geopotential height from

the surface towards the middle troposphere (not shown). Figures 21b and 22b show a
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Figure 20: Same as Fig. 19, but based on MODIS-Aqua AOD and within the 5-15
day variability band.

warming and drying in the lower to middle troposphere towards day zero correspond-

ing to the dust-laden heated air emerging from West Africa and moving across the

region as the AI and AOD anomalies increases (i.e., black line in Figs. 21b and 22b).

Three days later, the situation reverses to positive vertical wind anomalies and a cool

and humid atmospheric state as aerosol loading decreases towards its minimum.

4.4 CALIPSO vertical profiles

The Carlson and Prospero (1972) model of the SAL states that after the passage of the

heated dust-laden air from the Saharan desert towards the tropical Atlantic Ocean,

the mass of air containing dust is elevated towards the 600–800 hPa layer. Using the

CALIPSO lidar, profiles of aerosol extinction coefficient at 532 nm (k532, hereafter)

were analyzed for the dates of maximum and minimum in aerosol loading within the 5-

15 day band variability band as found in the MODIS-Aqua AOD data. It is important

to mention that CALIPSO sensor retrieves aerosol profiles in a single trajectory during
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Figure 21: (a) Evolution in time of vertical profiles of zonal wind (shading, relative
to the color palette) and vertical wind (contours in [Pa/s], solid line positive value)
anomalies from –6 to 6 days around the TOMS-N7T AI maxima in the reference region
within the 5-15 day variability band. (b) Similar to (a) but for potential temperature
(shading) and specific humidity (contour in [g/kg], solid line positive value). The
black line in (b) represent the evolution of AI anomalies over the reference region.
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Figure 22: Same as Fig. 21, but based on MODIS-Aqua AOD and within the 5-15
day variability band.

orbit thus limiting horizontal coverage. For this reason, those satellite trajectories in

the day of maximum AOD crossing longitudes between 35◦W and 15◦W closer to the

main study region were selected. In general, just one CALIPSO overpass is found per

day to correspond to the location of the reference region. A total of 46 CALIPSO

sensor overpasses were found during the dates corresponding to the maximum aerosol

loading in the period 2006 to 2009. In 40 of those 46 overpasses, an aerosol plume

is recognizable up to 400 hPa in height. In the majority of this cases a maximum
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concentration is located around 700 hPa. In comparison, the overpasses for four days

before the dates of the maximum in aerosol show, in general, smaller values of k532

than in the maximum cases, representing the lower concentration of aerosol dust in

the atmosphere prior a high dust event.

Figure 23 shows MODIS AOD anomalies for an example of a case where there is

a maximum in aerosol loading occurring in June 23, 2009 together with a minimum

in aerosol anomalies on June 19, 2009, four days before. The respective ERA-interim

horizontal wind and geopotential height anomalies matching the daily AOD are also

shown. Figure 23 also shows the k532 values from CALIPSO overpasses near the

study region for the same dates as the MODIS AOD anomalies. Four days before the

maximum in AOD (Fig. 23a), there are negative anomalies of AOD and geopotential

height that produces cyclonic wind over the region consistent with a low concentration

of dust aerosol in the atmospheric column (Fig. 23b). During the day of maximum

aerosol loading (Fig. 23c), the anomalies shift to positive AOD and geopotential height

values associated now with an anticyclonic circulation. The CALIPSO profile (Fig.

23d) shows a large increase in aerosol loading up to the 600 hPa level with a maximum

centered near 700 hPa. This case illustrates where the aerosol plume concentration is

located in the vertical during the day of maximum dust over the reference region. The

shift between low to high aerosol concentration based on the timing of maximum AOD

within the 5-15 day band displays the characteristic progression of dust as discussed

before and characterize the elevation of the dust plume up to middle levels of the

troposphere.
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Figure 23: MODIS-AOD anomalies (shading, relative the color palette) and ERA-
interim horizontal wind (vectors) and geopotential height (contours in [m], continuous
line positive values) anomalies for (a) four days before and (c) during the maximum
in aerosol loading for the event of June 23, 2009. (b) and (d) Aerosol extinction
coefficient profiles from the CALIPSO lidar for the matching day in (a) and (c),
respectively. Notice the path of the sensor trajectory depicted with a red line in (a)
and (c) and the shifting of the plot-axis (i.e., height in the bottom axis) in (b) and
(d) to match the latitudinal extension in the graphics.
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CHAPTER V

EXPERIMENTAL STATISTICAL FORECAST MODEL OF

AEROSOL OPTICAL DEPTH

Modeling and prediction of aerosol load are important challenges for the climate

community because of its impact on climate and human health. Chemical transport

models, in conjunction with general circulation models, have been used to provide

different spatial and temporal representations of aerosols distributions on regional

and global scales (Jacobson 1997; Tegen and Miller 1998; Chin et al. 2002; Shao et

al. 2003; Al-Saadi et al. 2005; Hollingsworth et al. 2008; Heinold et al. 2009; Co-

larco et al. 2010; Mangold et al. 2011). Several experiments have been proposed to

explore diversity in global modeling on the path towards improved aerosol distribu-

tions and temporal variability. Among others is the AEROCOM (e.g., Kinne et al.

2006; Huneeus et al. 2010), which deals with the documentation and the assistance

of aerosol component modules of global models in order to assemble datasets for

model evaluation. While most of these studies have provided good representation of

aerosol distributions in seasonal to interannual time scales, the great majority have

provided limited representation of aerosol load on shorter time scales such as daily

distributions. This lack of temporal resolution limits the possibility of an operational

predictive model of aerosol load (Westphal et al. 2009).

The purpose of this chapter is to determine whether or not a statistical forecasting

scheme would be useful to represent aerosol loading over the Tropical Atlantic region

on daily time scales. In general, AOD (as a measure of aerosol loading) over the

Tropical Atlantic Ocean exhibits a coherent pattern of evolution, highly modulated

by the large-scale interaction with wind, pressure and temperature, as was described
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in Chapter 4. The use of statistical relationships between AOD and atmospheric vari-

ables poses a good and simple measure to test the significance of an aerosol forecast

skill simulation. The use of a forecast model rather than a traditional chemistry-

climate model approach provides a different measure of the AOD simulation skill,

allowing a direct comparison of the forecast with an observed event. Statistical pre-

diction models based on regression schemes that couple the joint probability density

function between atmospheric processes have been shown to provide useful results.

Examples of successful process prediction are the Madden-Julian oscillation (Jones

et al. 2004b; Hoyos 2006), hurricanes (Kim and Webster 2010) and river discharges

(Webster et al. 2010).

5.1 Methodology

The following section describes in detail the steps involved in the construction of

a statistical forecast scheme designed to provide aerosol loading outlooks over the

Tropical Atlantic Ocean. The forecast objective variable is the daily MODIS-Aqua

AOD during the summer season and over a region close to the coast of North Africa

(i.e., 14◦N–18◦N, 23◦W–19◦W, box in Fig. 24a). This region is located in the center

of the climatological dust corridor, highly influenced by the timing of the westward

incursions of African Easterly Waves (see Chap. 4). We use MODIS-Aqua AOD,

not only because its ability to represent the aerosol loading over the region, but also

because it is a satellite product that is accessible in near real-time. This accessibility

provides a potential of an operational forecast scheme of aerosol loading.

The proposed forecast scheme is comprised of a series of regression analyses be-

tween atmospheric variables and the MODIS-Aqua AOD time series spatially aver-

aged over the reference region (‘AOD time series’, hereafter). The regression analysis

is motivated by the covariability of large-scale wind, pressure, humidity and tem-

perature anomalies and the aerosol loading over the region discussed on Chapter 4.
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The ERA-interim reanalysis is used as a source of predictor variables (i.e., zonal and

meridional wind, pressure, humidity and temperature). These predictor variables are

selected based on the significance of linear relationships with the observed AOD time

series.

5.1.1 Selection of the predictor variables

Correlation coefficient maps were calculated between the averaged daily AOD time

series and potential temperature, geopotential height, zonal and meridional wind

and humidity observations from the ERA-interim reanalysis at different atmospheric

levels (e.g., 925 hPa, 700 hPa, 500 hPa) and with different lag times (e.g., 1 day, 2

day, etc). Figure 24 shows four correlation maps between the AOD time series and

potential temperature, zonal wind and geopotential height observations. Summer

periods (June–September) over the time span of MODIS-Aqua data were used to

compute the correlations. To obtain a representative sampling of the aerosol data, a

3-day running mean of the MODIS and ERA-interim gridded variables was applied to

minimize the impact of missing data in AOD retrievals due to sensor swath coverage

(see appendix A). Significant positive correlations were found between the AOD time

series and potential temperature at 700 hPa over the reference region representing an

increase in the mid-level atmospheric temperature as the aerosol load increases, as

was discussed in Chap. 4. Figure 24b shows significant negative correlations between

700 hPa zonal wind and the AOD time series south of the center of the maxima in

AOD (i.e., between 5◦N and 15◦N). These negative correlations represent the direct

relationship between easterly wind and higher aerosol concentration over the region.

Figure 24c shows that the correlation is positive between geopotential height at 700

hPa and AOD over the reference region with a maximum off the coast of North

Africa. High pressure systems crossing the region help the dust mobilization as was

explained in the composite analysis in Chapter 4. The maximum correlation centered
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at [20◦N, 20◦W] for lag 1 indicates that the linear relationship is maximized in that

location when the geopotential height lags the AOD value by one day. In a similar

way, the correlations between temperature at 925 hPa and the AOD time series are

greatest over the Saharan Desert when the temperature lags the AOD by 3 days.

This indicates a warming of the desert surface 3 days prior the increase in aerosol

concentration over the reference region. Table 2 shows the center of the locations

where the highest correlation coefficient between AOD time series and ERA-interim

variables was found.
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Figure 24: Spatial distribution of the correlation between the AOD time series av-
eraged in the box in Fig. 24 and gridded ERA-interim reanalysis (a) potential tem-
perature, (b) zonal wind, (c) geopotential height and (d) potential temperature time
series. The atmospheric level and number of days used to lag each of the ERA-interim
variables is indicated in the top caption of each map. Only correlations > 99% sig-
nificance level are plotted.

The results of the analysis presented in Figure 24 and Table 2 helps to identify
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Table 2: Coordinates of location centers where the correlation between an AOD
time series averaged over the reference region and ERA-interim reanalysis variables is
maximized. The lag represents how many days the ERA-interim time series is lagged
to obtain a maximum correlation.

Location center Variable Level (hPa) Lag (days) Correlation
(20◦W, 17◦N) Potential Temperature 700 0 +0.57
(20◦W, 20◦N) Geopotential height 700 1 +0.46
(20◦W, 13◦N) Zonal wind 700 1 –0.48
(26◦W, 15◦N) Zonal wind 500 0 –0.44
(27◦W, 20◦N) Geopotential height 500 0 +0.44
(2◦W, 19◦N) Potential Temperature 700 3 +0.45
(22◦W, 18◦N) Potential Temperature 500 0 –0.42
(21◦W, 22◦N) Meridional wind 925 0 –0.46

(0◦, 21◦N) Potential Temperature 925 3 +0.43
(42◦W, 26◦N) Geopotential height 925 0 +0.41
(18◦W, 20◦N) Potential Temperature 925 0 +0.40
(20◦W, 18◦N) Meridional wind 700 0 –0.44
(5◦W, 25◦N) Geopotential height 500 3 +0.37

locations and time-lags where the linear correlations between each ERA-interim vari-

able and the AOD time series are maximized (or minimized). We use these locations

and lags to identify geographic positions to construct time series of ERA-interim

variables to be used as predictor variables in the regression analysis.

5.1.2 Regression analysis models

Five different statistical regression models were used to test the skill of daily fore-

casts of the MODIS AOD over the reference region. A combination of ERA-interim

variables over certain regions and with different time-lags, selected in the previous

section were used as dependent variables for the regression models. A brief description

of each regression model is provided below:
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5.1.2.1 Autorregressive Model

An autoregressive (AR) model of order n can be written as:

AOD(t+ 1) =
n∑
j=1

φnAOD(t− j + 1) + εt+1 (1)

where the left-hand side is the future value of AOD at time t+ 1, φn are the autore-

gressive parameters determined by the Yule-Walker equations, n is the order of the

AR model and ε is a random component (Wilks 2006). The first four orders of the

model were used to validate the AOD forecast.

5.1.2.2 Multiple Regression Model

A multiple regression model (MRM) can be written as:

AOD(t+ 1) =
n∑
p=1

BpXp(t+ 1) (2)

where the left side is the future value of AOD at time t + 1 and the right side is

composed of a combination of n variables selected using the ERA-interim predictors,

as explained before. Fitted Bp regression parameters using Eq. 2 are used to forecast

AOD at the time t+ 1.

A variation of the MRM is also used and can be written as:

AOD(t+ 1) =
m∑
j=0

AjAOD(t− j) +
n∑
p=1

BpXp(t+ 1) (3)

where the left side is the future value of AOD at time t + 1 and the right side

is composed of a combination of n variables based on ERA-interim predictors and

additional m parameters regressed from AOD values for previous times. The addition

of the regressed AOD into Eq. 2 helps to invoke the memory (i.e., autocorrelation)

contained in the AOD time series.

5.1.2.3 Empirical orthogonal function analysis

The use of the Empirical Orthogonal Function (EOF) analysis relies on the decom-

position of any large number of variables into a set of fewer new variables, called
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Principal Components (PC). These new variables are linear combinations of the orig-

inal variables, and these linear combinations are chosen to represent the maximum

possible fraction of the temporal variability contained in the original data (Wilks

2006). The advantage of this technique is that the original data can be reconstructed

by selecting a set of PCs that represent the maximum temporal variability of the

physical process. We constructed a set of PCs coming from a combined EOF analysis

(for a detailed explanation of the method see Wilks 2006) between the AOD time

series and ERA-interim predictors. These PCs describe the time variability of the

combined process. We use regression analysis to forecast new realization of PCs that

describe the maximum variability. Two types of regression analyses were used. The

first, based on an autoregressive model can be written as:

PCk(t+ 1) =
m∑
j=1

φjPCk(t− j + 1) + εt+1 (4)

where the left side is the future value of the kth PC, φj are the autoregressive param-

eters, m the order of the AR model and ε is a random component as in Equation 1.

The second is based on multiple linear regressions of the previous values of PCs, that

is:

PCk(t+ τ) =
m∑
p=1

λ∑
j=1

Bpj(τ)PCp(t− j + 1) (5)

where the left side is the future value of the kth PC for a lead-time τ , λ is the number

of lags and m is the number of PCs used in the regression analysis. Notice that there

is one forecast equation for each PC obtained from the EOF analysis. Sensitivity

analysis can be done by selecting a different numbers of PCs to test the validity of

the forecasted AOD.

Finally, after selecting the number of PCs that represent the highest variance of

the process and forecasting each PC, the forecasted AOD can be reconstructed as:

Y (t+ τ) =
m∑
k=1

PCk(t+ τ)EOFk(Y ) (6)
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where Y represent the AOD forecast for a time τ and EOFk is the kth EOF associated

with PCk. Notice that the statistical model based on Eq. 5 provides additional

forecast for the rest of the ERA-interim variables involved in the construction of the

combined EOF. In this work, we only focus on the forecast of the AOD time series.

5.1.3 Experimental setup

The experimental setup allows an assessment of forecast skill of AOD time series

using the regression models described in the previous section. Time series of MODIS-

Aqua AOD for the 2002 to 2009 summer periods (i.e., June–September) were used as

independent variables in each regression model. In addition, time series for different

ERA-interim variables selected for the locations shown in Table 2 were used as de-

pendant variables for the multiple regression models. These ERA-interim variables

were averaged in daily time series for the 2002 to 2009 period, and within a box of 4◦

x 4◦ centered at the location shown in Table 2, to match period and reference region

as the AOD time series. The regression model parameters were calibrated using the

dependent-independent variable setup (i.e., the model development period) previously

described. We reserved the summer period of 2010 for the validation period. The

parameters calibrated during the development period are used in the regression mod-

els to forecast AOD during the 2010 season. Series of 10-day forecast are initialized

each day consecutively during the validation period. The 10-day forecast is compared

with the original data during the 2010 validation period in order to assess the error of

the simulations. This set of experiments allowed a detailed study of the error growth

and the propagation as function of time (Hoyos 2006). The application of this type

of experiment has been used extensively and with great success to make precise as-

sessments of the forecasting skill of different models (Jones et al. 2004b; Hoyos 2006;

Agudelo et al. 2009; Kang and Kim 2010). Finally, different combinations of predic-

tors, day-lags and the use of the anomalies of the AOD and ERA-interim predictors
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were used to test the sensitivity of the forecast to a different combination of model

arrangements. The sensitivity test will be described later with the results of this

section.

Two different statistics are used to compute the forecast skill of the different re-

gression models. Correlation and root mean square error (RMSE) at different lead

times are estimated in order to evaluate the phasing of each model results relative to

the observations, and the deviation of the integrations from the observations (i.e., ab-

solute error), respectively. The RMSE estimation used here is scaled by the standard

deviation of the observations. In this way, when the scaled RMSE is equal to one for

certain lead-time, the magnitude of the forecast errors is equal to the amplitude of

the signal and after that lead-time there is no subsequent skill in the forecast (Hoyos

2006). Both statistical metrics are estimated for the raw and for the anomalies of

the observational data, and with the different combination of model arrangements in

order to evaluate the extended forecasting skill.

5.2 Analysis of the forecasting skill

Figure 25 shows the correlation and standardized RMSE for MODIS-Aqua AOD at

different forecasting lead times using the AR model described in Eq. 1. Two model

runs are presented for autoregressive order of 1, 2, 3 and 4 to compare the statistical

significance of the AR forecast model. In both cases, the correlation decreases rapidly

with the increase of the forecast lead-time. The correlation of the forecast for the

1st day is related linearly with the observations only in 60%, and after the 2nd day

the correlation decreases down to values below statistical significance. Similarly, the

standardized RMSE grows rapidly for larger lead-time and is minimum for only the

1st day of forecast (i.e., around 0.8). After the 2nd day, the RMSE grows beyond

the one unit value indicating poor skill in the forecast. Figure 25 also shows that

with an increase in the order of the AR model there is no improvement in the RMSE

60



skill of the predictions. The only improvement is that the correlation between the

observations and the forecast for different lead times increases as the order of the

model increases. The increment in the correlation is only produced by the increase

of the statistical memory that the higher AR model order provides.
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Figure 25: Correlation and standardized root mean square error for MODIS-Aqua
AOD at different forecasting lead times using an autoregressive model. Two model
runs are presented, one shown in the left panels and the other in the right panels.
The continuous black, blue, yellow and red lines correspond to AR model of order 1,
2, 3 and 4, respectively. The RMSE is standardized by the observational standard
deviation during the forecasting period. The horizontal dashed line in the correlation
diagram corresponds to the 99% significance level.

Figure 26 shows the correlation and standardized RMSE of the AOD forecast

using an autoregressive model of PCs forecast calculated from Equations 4 and 6.

Different combinations of ERA-interim predictors were used in the calculation of the

PCs using EOF analysis. Figure 26 shows two cases, one using the first three time

series shown in Table 2 (i.e., potential temperature, geopotential height and zonal

wind at 700 hPa) and the second case using the first ten time series in Table 2. In

addition, the forecast skill was tested using a different number of PCs in each EOF

analysis (i.e., varying the value of k in Eqs. 4 and 6). The correlation is not significant
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and RMSE is greater than the unity value for almost all the lead times in Fig. 27.

Poor forecasting skill is apparent even when increasing the number of predictors or

the number of PCs. In contrast, the correlation and the RMSE were improved when

multiple linear regressions of the previous values of PCs were used using Equations

5 and 6. Figure 27 shows the forecast skill using multiple linear regressions with

the same arrangement as Fig. 26 (i.e., using 3 and 10 predictors and 5 and 10 PCs).

The use of PC forecast based on linear regression of previous PCs provided better

forecast skill compared to those presented in Figures 25 and 26. It can be noticed

that the increase in number of predictors and PCs (e.g., 10 predictors and 10 PCs)

results in an increase in correlation and a decrease in RMSE for up to the 3rd lead-day

(right panel in Fig. 27). The inclusion of lagged PCs in the regression forecast (i.e.,

increasing λ in Eq. 5, colored lines in Fig. 27) gives a small positive increment in the

correlation and a small decrease in the RMSE.
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Figure 26: Same as in Fig. 25, but using an autoregressive model of PCs forecast.
The left panel corresponds to the result using the 3 first time series shown in Table 2
and using 5 PCs forecast. The right panel corresponds to the result using the 10 first
time series shown in Table 2 and using 10 PCs forecast. The colored lines correspond
to AR models of order 1, 2, 3 and 4 as shown by the caption in Fig. 26a.
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3 predictors and 5 PCs
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Figure 27: Same as in Fig. 26, but using a multiple linear regression model for PCs
forecast. The continuous black, blue, yellow and red lines correspond to the regression
using 1, 2, 3 and 4 lagged PCs (i.e., increasing λ in Eq. 5), respectively.

Figure 28 shows the forecasting skill of AOD using the multiple regression model

described by Equations 2 and 3. The correlation and the RMSE were calculated using

the regression model with the three first time series shown in Table 2 (left panel in

Fig. 28) and with the first ten time series (right panel in Fig. 28). The skill of the

AOD forecast using a multiple regression model based only on ERA-interim predictors

(i.e., Eq. 2) produces poor results compared to the same regression model with the

inclusion of regressed AOD variables as predictors (i.e., Eq. 3). The inclusion of

regressed AOD variables as predictors increases the correlation for the first day of

the forecast up to 0.8 and decreases the error down to about 0.6 (blue lines in Figs.

28a, b). However, the skill is very poor after day 3 of forecast lead-time. There is a

very small increment in forecasting skill with the inclusion of more predictors in the

regression model (e.g., from 3 to 10 predictors) and with the inclusion of previous

AOD values (e.g., increasing m in Eq. 3).

The results presented in Figure 25–28 were calculated using the raw observations
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Figure 28: Same as in Fig. 25, but using multiple regression models. The black line
corresponds to the regression model defined by Eq. 2, and using raw observations.
Colored lines correspond to the regression model defined by Eq. 3, and using 1 (blue),
2 (yellow) and 3 (red) day-lag AOD. Solid lines correspond to the forecast skill using
raw observations and broken lines using anomalies of the observations.

to test forecast performance of different regression models. In a similar way, instead

of using the raw observations we use anomalies of AOD time series and ERA-interim

predictors in order to test model sensitivity. Only the results for the multiple regres-

sion model (i.e., Eq. 3) are presented because they represented the only improvement

of forecast skill compared to previous models. The broken lines in Fig. 28 show the

forecast skill improvement. Correlation up to 0.9 for the first day of forecast and

RMSE about 0.45 is given by the forecasting of AOD anomalies using the regression

model of ERA-interim predictors and regressed AOD as in Eq. 3. Finally, the in-

clusion of more predictors and previous AOD values does not provide a significant

increment of the forecast skill as shown by the solid lines in Fig. 28.
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5.3 Discussion

The use of a multiple regression model in the forecasting of anomalies of AOD time

series with the use of ERA-interim variables as predictors, gives a useful forecasting

skill up to three days of lead-time as was shown in Fig. 28. This model was the only

one of the five models analyzed that would provide a useful forecast. The three-day

value was smaller that the one would expect considering that the AOD exhibits a

coherent pattern of evolution, highly modulated the timing of the African Easterly

Waves (e.g., 3–9 days) that modulate the AOD distribution over the region. We

speculate some reasons why the forecast had poor skill using the regression models

presented in Figs. 25–28.

The use of a smaller region for the averaging of AOD time series would lead into

the presence of higher variability the series that will make hard for the statistical

forecast to be able to give significant results. However, sensitivity analysis was made

increasing the area of the reference region by a factor of two (i.e., 12◦N–22◦N, 28◦W–

18◦W). Figure 29 shows the forecasting skill of AOD anomalies based on this bigger

region and using the multiple regression model described by Eq. 3 (similar as Fig.

28). The correlation and RMSE values are slightly improved; the correlation for the

first day of the forecast is about 0.9 and the RMSE is about 0.4. However, the skill is

still poor after the 3rd day of forecast in similar way as the skill presented in Fig. 28

and using a smaller region. In conclusion, the forecasting skill is not improved with

the use of a bigger region to construct the time-series average.

The non-linearity of the process that is hard to capture with the use of multiple

linear regression models. Figure 30 shows scatter plots between the AOD time series

and the three first ERA-interim variables in Table 2 used as predictors in Figs. 27–

29. The use of a regression model always assumes linearity between the variables

involved in the regression. In fact, Fig. 30 shows that a linear regression is not the

best way to describe the relationship between the AOD time series and potential
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Figure 29: Same as Fig. 28, but using a multiple regression model to forecast AOD
anomalies. Time series used to construct the regression model are averaged in a bigger
region than the region used for Fig. 29 (i.e., 12◦N–22◦N, 28◦W–18◦W).

temperature, geopotential height, and zonal wind at 700 hPa. One possible solution

to improve the forecast using regression models would be that instead of using the

full time series as predictors to construct the linear regression, split the time series

in parts to improve the linearity of the regression coefficients. This would help to

capture the non-linearity of the relationship using different regression coefficients for

different values of the AOD in the regression models.
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Figure 30: Scatter plots of AOD and (a) potential temperature, (b) geopotential
height, and (c) zonal wind time series used as predictors for the 3 first locations in
Table 2. The level and time-lag of each ERA-interim time series are indicated on the
top of each diagram. The red line corresponds to the linear fit and the correlation
coefficient is indicated at the bottom of each plot.
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CHAPTER VI

CONCLUSIONS

In order to determine the impact of aerosols on weather, climate and air quality, a

basic analysis of aerosol loading relative to the atmospheric and ocean environments

is undertaken. A large database of remotely sensed aerosol loading is used to ana-

lyze the spatio-temporal variability of aerosol load in the tropics and to explore how

this load interacts with the dynamic and thermodynamic states of the environment.

We base the analysis on the use of seven satellite derived aerosol products to com-

pile a long and diverse aerosol database. The diversity of this database results from

the different retrieval techniques and calibration procedures inherent to each satellite

product. Aerosol Index and Aerosol Optical Depth (defined in Chapter 2) are used

as measures of the atmospheric aerosol load. The analysis uses the strength of each

dataset separately to provide a general picture on how the aerosols vary across dif-

ferent regions around the world and how this variability relates with the atmospheric

and oceanic environments.

Comparisons of the distribution of the aerosol load between TOMS AI and MODIS

AOD, find similar characteristics on the representation of the main sources of aerosol

across the Tropical Atlantic, South Africa, Middle East, and parts of South Asia

regions. Both products are able to represent the maximum values of aerosols, espe-

cially for those regions affected by dust and biomass burning aerosols. In addition,

there is similitude in the representation of the asymmetry in latitudinal distribution

of aerosols between the Northern and Southern Hemispheres. The greatest difference

in the aerosol distribution between datasets is found over the South Asia and eastern

China regions. We hypothesize that the high diversity of aerosol types that affect
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these regions and the different retrieval technique between AI and AOD are perhaps

the reasons why the datasets do not agree.

We selected six regions across the globe to compare the spatio-temporal variability

of aerosol distributions. High interannual and intraseasonal variability is seen over

the Tropical Atlantic Ocean, North Africa, South Africa, Middle East, South Asia,

and East China regions. As with the spatial distributions of AI and AOD, time series

share notable similarity over the Tropical Atlantic Ocean, Middle East and South

Africa, but less similarity over South Asia and East China. This difference among

retrievals confirms that in continuous long-term retrieval of aerosol distributions, it

is critical to select the proper aerosol retrieval technique for a particular region of

interest. Without such selection, discrepancies may arise even with the use of more

advanced aerosol retrieval techniques, such as those used by the MODIS and the

MISR sensors.

Several studies have used aerosol satellite datasets to analyze regional or global av-

erage aerosol trends. Instead of computing an average trend, we use a non-parametric

technique (i.e., Mann-Kendall) to study the spatial distribution of aerosol trends over

the 45◦N to 45◦S latitudinal band. Positive AI tendencies are found over much of the

tropics from 1979 and 1984. From 1987 to 1992, the positive tendencies remained

over South Africa, Middle East, South Asia and Australia; whereas over the Trop-

ical Atlantic Ocean and Northern Africa negative AI tendencies are seen. Negative

aerosol tendencies continue to be seen over North Africa, the Mediterranean Ocean

and Europe when calculated using AOD from MODIS and MISR during the 2000s.

The positive tendency over the Middle East, Arabian Sea and South Asia is reported

to have been strongly influenced by an increase in dust events, while the changes in

aerosol tendencies over the Mediterranean Ocean and Europe has been attributed to

changes in aerosol emissions governed by economic developed nations and air pollu-

tion regulations. Even if the analysis reports considerable tendencies over the South
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Pacific Ocean, South Atlantic and Australia regions, more study is needed in order to

evaluate the significance of the trends. Is hypothesized that satellite aerosol retrieval

deficiencies such as cloud contamination and sun glint may affect the results on these

areas.

The results reported in the Chapter 4 provide analyses describing how the cli-

matological African Easterly Wave variability modify the dust aerosol burden in the

Tropical Atlantic region and how the environment is modified by dust intrusions.

The use of the ECMWF-ERA reanalysis, and satellite observations of atmospheric

and oceanic variables help to characterize the co-variability of aerosol dust. Two

modes of westward aerosol propagation are apparent in both TOMS AI and MODIS

AOD datasets, one with a period near 5–7 days and another with a period near

9–11 days. These two regimes represent the wave speeds of the two AEW forms

crossing the region. The modes of aerosol variability were tested with the use of

two different spectral techniques to investigate the statistical significance. Good cor-

respondence is found between positive 700 hPa geopotential height anomalies and

positive aerosol anomalies, each sharing the same periodicity. In a similar fashion,

wind vector anomalies show that the direction of circulation changed depends on the

timing of the maximum/minimum aerosol anomalies over the region. As positive

anomalies of aerosol increase towards the day of maximum loading, there is a rever-

sal from easterly to westerly in zonal wind direction, a change of sign from negative

values (low pressure) to positive values (high pressure) in geopotential height and an

increase towards a maximum in wind speed. While the pattern progression of the

propagation of aerosol load has been validated before using reanalysis models and

satellite observations (e.g., Karyampudi et al. 1999), we present extensions to these

studies; Evaluating the performance of the long series of satellite aerosol retrievals

into the determination of the modes of aerosol variability in relation to the two forms

of AEW, using reanalysis and satellite retrievals of atmospheric and oceanic variables
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to show how the atmosphere and the ocean are impacted by dust aerosol variability,

and documenting how those impacts are represented in the Carlson and Prospero

(1972) model for dust transport over the Atlantic Ocean.

The environmental impact produced by the variation of aerosol loading on the

surrounding atmosphere and ocean shows a decrease towards minimum values of

SST, precipitable water vapor and rainfall rate and to a maximum in OLR as aerosol

loading increase over the study region. These changes are in concert with a reduction

in precipitation, humidity and surface shortwave radiation as a warmer and drier

dust plume is transported over the desert surface towards the Atlantic Ocean. These

characteristics are apparent independent of the use of a particular aerosol dataset (i.e.,

TOMS-N7T or MODIS-Aqua) or the period of analysis (i.e., 1979–1993 or 2002–2010).

The vertical state of the atmosphere during the evolution of aerosol loading is also

investigated. Four days before the maxima in aerosol is reached in the study area, a

middle troposphere cyclone characterizes the atmosphere near the latitude of mini-

mum aerosol loading. We hypothesize that the subsidence, located in the same place

as the minimum in aerosol, acts to prevent aerosol build up. At the same time, the

atmosphere is also found to be cool and humid. However, during the day of aerosol

maximum, the middle level circulation reverses towards an anticyclonic flow with the

development of a middle level easterly jet, characteristics of the favorable conditions

for dust transport over the Atlantic Ocean. The previous cool and dry lower- to

middle-level atmosphere is then replaced by an anomalously warm and dry air mass

forming a temperature inversion around 875 hPa near the base of the SAL. This

change in structure occurs with a continuous transition from cyclonic to anticyclonic

circulation, a shift between negative to a positive geopotential height anomalies, a

shift from positive to negative vertical velocity and with a considerable warming and

drying of the lower-to-middle layers of the atmosphere. Moreover, the evolution of

these variables occurs with the same temporal scale as the AEW passing thought
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the region. The vertical extension of aerosol extinction coefficient provided by the

CALIPSO profiles show that during most of the cases where there was a maximum

in AOD values over the study region, the aerosol plume reached a maximum concen-

tration around 700 hPa. In contrast, smaller values of aerosol extinction coefficient

are found for events during the fourth day prior to the maximum in AOD over the

study region.

The analysis described above suggests the existence of a coherent evolution pattern

between the aerosol load and the dynamics of the atmosphere, and ocean over the

Tropical Atlantic region. This covariability motivated an experimental exercise to

use five statistical regression models to test the significance of the forecasting skill

of daily AOD time series. The regression models are calibrated using atmospheric

variables as predictors from the ERA-interim reanalysis. The predictors are selected

based on the significance of linear relationships with the observed AOD time series.

We find that time series of potential temperature, geopotential height and zonal, and

meridional wind located in certain regions and with different time-lags correlate well

with the AOD time series. A serial integration experiment is designed to evaluate the

forecasting skill of the regression models, and correlation and root mean square error

are used to compute the skill.

Poor forecasting skill was found when we use autoregressive models and the model

based on principal component forecast, with errors growing after the 2nd day without

subsequent skill. The only improvement in the forecast skill, up to three days of

lead-time, was appreciable with the use of a multiple regression model to forecast

anomalies of AOD time series. The three-day value is smaller than the one that

would be expected considering that the AOD exhibits a coherent pattern of evolution,

highly modulated the timing of the AEW (e.g., 3–9 days) that modulate the AOD

distribution over the region. We test the sensitivity of the forecasting skill with the

increase in the area of the region for the averaging of AOD variables and find that the
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skill is not improved. We speculate that the non-linearity of the aerosol variability

process is hard to capture with the use of linear regression models. The scatter plots

constructed between the selected AOD and the ERA-interim predictors time series

showed the poor linearity between these variables. One possible solution to improve

the linear-based forecast is that instead of using the complete time series as predictors

to construct the linear regression coefficients, use parts of the series that represent

linearity to calculate the regression coefficients.

Future research work should explore physical reasons of why the distribution of

aerosol tendencies changes thought the years and include sensitivity of aerosol re-

trievals that affect the results. The use of reanalysis data will be helpful to construct

interannual relationships of aerosol-environment. In addition, the methodology used

to investigate the covariability between aerosols and dynamic and thermodynamics

variables can be extended to other regions of the globe (e.g., South Africa or the Mid-

dle East). However, it would be necessary to differentiate aerosol type in the analysis

for regions affected by multiple sources of aerosols. The use of the capabilities of the

MODISs fine fraction in conjunction with the aerosol scene classification product of

CALIPSO sensor can be useful in order to differentiate the distribution of aerosol

type over diverse regions of the globe. A better refinement on the statistical forecast

is suggested including not only changes in the linear methodology but also the inclu-

sion of surface process variables such as wetness, vegetation cover, wind speed and

rainfall as source predictors variables in order to increase the representativeness of

dust mobilization and dust transport over any region that is affected by dust events.
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APPENDIX A

SENSITIVITY OF MODIS-AQUA SAMPLING

PATTERNS TO SPECTRAL VARIABILITY MODES IN

AEROSOL TIME SERIES

Quantitative analyses of aerosol satellite data products require a good understanding

of the uncertainties of the aerosol optical depth (AOD) retrieval algorithm, as well as

a detailed knowledge of the temporal and spatial sampling of the aerosol products.

Uncertainties in the retrieval algorithm (i.e., the quality of the MODIS AOD value)

are generally assessed by comparing satellite data to in situ ground observations. Such

comparison had been previously conducted (Remer et al. 2005) and it was found that

the satellite AOD retrievals agree with the ground observations.

Since the aerosol statistics (e.g., generation of daily time series of AOD for a par-

ticular region) are created based on incomplete samples with spatially and temporally

inhomogeneous field (Levy et al. 2009), one needs to investigate the uncertainties in

the sampling aggregation of the AOD. For example, MODIS AOD values are de-

rived only during clear-sky conditions, with missing values for non-visible locations

(e.g., overcast) and at night time. Figure 31a shows an example of the typical AOD

data coverage for one day over North Africa and tropical Atlantic Ocean from the

NASA Earth Observing System platform dataset (http://ladsweb.nascom.nasa.gov/,

see Chapter 2). In addition, the polar orbit of MODIS satellite exacerbates the gap in

some regions of the tropics and the poles because the interaction between the orbital

geometry and the swath coverage of the sensor, leaving such regions without retrieval

(Levy et al. 2009). Therefore, the data coverage of MODIS sensor during certain

times of the day leads to spatially and temporally non-uniform and incomplete AOD
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sampling. These sampling biases have been evident in climatologies of monthly ag-

gregation of MODIS-Aqua and MISR AOD (Leptoukh 2010). Sampling biases lead

to “pulsating data” when temporal and spatial average maps are compiled. This is

apparent especially over the ocean, affecting the time variability of the MODIS AOD

aggregations (G. Leptoukh 2010, personal communication). Such pulsating areas may

affect the temporal representativeness of the sample and induce spurious frequencies

into the AOD analyses.
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Figure 31: Coverage of MODIS AOD data during July 10, 2004 for (a) original data
and (b) for the 3-day running mean aggregation. Grey regions in maps represent
areas with daily AOD retrieval, while white regions indicate missing values. The red
box in (b) represents the region basis of the spectral analysis.

In order to test how much the modes of variability calculated in Chapter 4 are

affected by data availability, a set of data simulations was performed. The simula-

tion procedure is now described: We first construct synthetic time series of known

periodicity (i.e., a sinusoidal function) and with similar spatial and temporal charac-

teristics of the MODIS AOD dataset (i.e., 1◦ x 1◦ grid resolution and covering the

MODIS-Aqua period). Thus, these synthetic AOD-like series have known theoretical

periodicity. This set was next aggregated using a 3-day running mean in a similar

manner to that described for the spectral analysis section in Chapter 4. Next, the

real coverage of the MODIS AOD data used in Chapter 4 (i.e., the original daily

AOD with a 3-day running mean aggregation) was superimposed on the synthetic
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data set. Figure 31b shows an example of the increase in AOD data coverage after

using the 3-day running mean for the same day as in Fig. 31a. With this combination

we guarantee an increase in data coverage although, at the same time, variability on

time scales of less than 3 days cannot be resolved. The effect of the MODIS AOD

coverage aggregation on the time variability of the modes was investigated using dif-

ferent combinations of synthetic deterministic periodicities. The modes of variability

for each time series were calculated using the same Fourier spectral technique as in

Chapter 4.

Figure 32a shows a simulated daily time series with two known periods, 5 and 10

days (black dashed line). A 3-day running mean was applied to the time series (black

solid line). The MODIS-AOD coverage over spectral analysis test region (i.e., 15◦N–

17◦N, 22◦W–20◦W, box in Fig. 31b) was then applied keeping the simulated value

when there is AOD retrieval in the daily MODIS time series. Instances with no AOD

retrieval were set to a missing value indicator. The red line in Fig 32b represents

the simulated time series after the application of the AOD coverage. The missing

values were then estimated using nearest neighbor interpolation (Fig. 32c). A spectral

analysis was performed to obtain the modes of variability. Figure 32d represents the

power spectrum of the 3-day running mean and known periodicity time series. As

expected, spectral peaks at 5 and 10 days are very apparent in the power spectrum.

Figure 32e shows the power spectrum for the time series in which the AOD coverage

and interpolation was applied. The power spectrum analysis shows similar peaks at

5 and 10 days. This indicates that the aggregation of 3-day running mean data and

interpolation of the missing values are not affecting the main modes of variability of

the original data. The same procedure was used for other periodicities and similar

results were obtained, with no significant change of the modes of variability after

the application of the MODIS-AOD coverage. The only noticeable change in these

simulations is that the variance of the power spectrum is reduced by the application of
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data aggregation. In our case, this does not affect the results since the focus is on the

periodicity of the events (in relationship to the African Easterly Waves periodicity)

and not on the amplitude of the variance obtained with the spectrum analysis of the

aerosol data.

To evaluate further the influence of AOD data aggregation in the spectral analyses,

the spatial distribution of the simulated main modes of variability were investigated.

The same procedure mentioned above was used to test the data aggregation for syn-

thetic time series in each of the 1◦ x 1◦ pixels of the region shown in Figure 33a.

Figure 33 represent the results of the simulation using known periods of 5 and 10

days and only the spatial distribution of the highest three explained variances are

presented in the left panel of Fig. 33. In addition, the corresponding resolved period

for each maximum explained variance is presented on the right of Fig. 33. Periods

higher than those presented in Fig. 33 were not considered since they represent a

small percentage of the variance and hence, are not significant. Figure 33b shows

a characteristic period of 10 days over mostly all the Tropical Atlantic and North

Africa regions corresponding to the highest resolved period that the Fourier analysis

provides. In similar way, for the second maximum variance, a period of 5 days is

appreciable over the Tropical Atlantic and North Africa regions (Fig. 33d). The third

highest variance is also representing the 10-day periodicity originally assumed (Fig.

33f). These results show that the modes of variability obtained after the aggregation

analysis are equal to those originally assumed (i.e., 5 and 10 days). In addition, the

maps do not show significant spatial variability in the order of the resolved modes. In

conclusion, the data aggregation did not affect the time representation of the sample,

and thus did not affect the resolved modes of variability obtained with the spectral

analysis.

77



150 160 170 180 190 200
-3
-2

-1

0

1

2
3

a) Simulated and 3-day running mean series

150 160 170 180 190 200
-3
-2

-1

0

1

2
3

b) Serie within the AOD coverage

150 160 170 180 190 200
days

-3
-2

-1

0

1

2
3

c) Interpolated serie within the AOD coverage 

1 10 100
period

0.0

0.2

0.4

0.6

0.8

1.0

po
w

er

d) 3-day running mean serie

1 10 100
period

0.0

0.1

0.2

0.3

0.4

0.5
e) Interpolated serie

Figure 32: (a) Simulated daily time series (black dashed line) with two known periods
(i.e., 5 and 10 days) and after applying a 3-day running mean (black solid line). (b)
Same 3-day running mean series as in (a) but after applying the MODIS AOD coverage
(notice the gaps in the time series corresponding to AOD missing values). (c) Same
as in (b) but after filling the gaps with interpolation. Notice that only days from 150
to 200 are shown in the (a), (b) and (c) time series. (d) Spectral analysis for the time
series in (a). (b) Spectral analysis for the time series in (c).
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Figure 33: Spatial distribution of the three highest explained variances (left panel)
and corresponding periodicity (right panel) for simulated time series in each of the 1◦

x 1◦ pixels over the Tropical Atlantic and North Africa regions. The same procedure
to test the data aggregation in Fig. 32 was used for each time series and 5- and 10-
day periodicity was assumed. The white regions in maps represent areas with missing
values in the MODIS-AOD coverage.
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APPENDIX B

SIGNIFICANCE OF AEROSOL VARIABILITY MODES

USING THE EMPIRICAL MODE DECOMPOSITION

TECHNIQUE

Empirical Mode Decomposition (EMD) (Huang et al. 1998) is an adaptive method

used to decompose any time series into a set of Intrinsic Mode Function (IMF) compo-

nents. The set of IMF becomes the basis for representing the data. The decomposition

method is adaptive because the definition of the basis function representing the data

is based and derived from the data itself and not, as for example Fourier analysis

which requires a trigonometric basis (Huang et al. 1998). Because the EMD basis

is adaptive, it usually offers a meaningful physical representation of the underlying

process based on the local characteristics of the data (Duffy 2004). Also, because the

adaptive nature of the basis, there is no need for harmonics; therefore EMD is ide-

ally suited for analyzing data from non-stationary and non-linear processes. We used

the EMD method to compare the modes of variability in the aerosol series extracted

using the Fourier filter analysis (Chapter 4). In addition, the variability modes were

evaluated using a statistical significance test.

The EMD technique consists in a decomposition of the original series through a

“sifting” process. The sifting starts with identifying all the local maxima and minima

in the original series. The extreme values are then connected using cubic spline lines to

form an upper and a lower envelope. The mean of the derived envelope is subtracted

from the original series and then, the envelope of the residual is again found using a

spline interpolation. The envelope mean is then subtracted from the residual and the

process is repeated with a series of iterations. Once the mean of the envelope is close
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enough to zero, the first IMF is obtained. Details of the technique and the criterion

for the determining the number of iterations are described in Huang et al. (1998;

2008). The first IMF should contain the shortest period of oscillation in the signal,

which is then extracted from the original series. The residual of this extraction still

contains variability with longer periods and is treated as new data using the same

iterative process as described above to obtain an IMF of a higher period. The process

is repeated sequentially until all the modes are extracted from the original series.

B.1 Aerosol variability modes using the EMD technique

Figure 34a shows the TOMS-N7T AI daily time series averaged over the test region

near the coast of Africa (i.e., 15◦N–17◦N, 22◦W–20◦W; box Fig. 2a) used for the

composite analysis in Chap. 4. To obtain a representative sample of data, a 3-day

running mean was applied to the AI time series similar to the analysis in Chap. 4 and

discussed in Appendix A. The Fourier spectrum of this daily time series highlights the

annual cycle peak and significant shorter time cycles (Fig. 34b). The EMD technique

was applied to the time series in Fig. 34a and only the 1st, 2nd and 7th modes are

shown in the lower panels of the same figure. The 1st and 2nd modes correspond

to the shortest variability modes having periods around 5 to 6 and 10 to 12 days,

respectively (Figs. 34d and 34f). These periods have similar magnitude to the two

modes of variability of AEW over the region (see Chap. 4). For illustrative purposes,

the 7th mode is shown in Fig. 34g and corresponds to the annual cycle predominant

in the original time series (see Chap. 3). The remaining modes (i.e., 3rd, 4th, etc), are

not considered in this analysis because they do not represent periodicities related with

AEW activity and are outside the scope of the present work. A similar analysis was

used on the remaining aerosol dataset (i.e., OMI AI, MODIS-Aqua and -Terra AOD)

and Table 3 shows the average periodicity of the 1st, 2nd and 7th modes. Variability

periods around 5–6, 10–12 and 360 days, for the corresponding 1st, 2nd and 7th modes,
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are repeated for each of the analyzed aerosol satellite datasets. The similitude of the

variability modes among datasets confirms that the periods found are representative

of the aerosol variability over the region, having similar periodicity as the two modes

of AEW and annual cycle that modify the aerosol burden over the Tropical Atlantic

region.
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Figure 34: (a) Daily time series of TOMS-N7T AI averaged over a region near the
coast of Africa (box Fig. 2a). (b) Fourier power spectrum of time series in (a). IMF
time series for the 1st (c), 2nd (e) and 7th (g) modes calculated for the time series
in (a). Fourier spectrums for the IMF time series of the 1st (d), 2nd (f) and 7th (h)
modes. The continuous red line in each spectrum corresponds to the significance
compared with a red noise process with a 95% of confidence level.

To test the statistical significance of the modes of variability of the aerosol time

series calculated with the EMD technique, a method described in Coughlin and Tung

(2005) was applied. The test is based on a comparison of the energy computed in
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Table 3: Average period of variability (in days) in aerosol time series calculated from
the different datasets used in this study. The modes of variability were extracted from
the calculation of IMF to each time series using the EMD technique. The average
period was estimated from the application of a Fourier spectrum to the IMF time
series.

Mode TOMS N7T OMI MODIS Terra MODIS Aqua
1st 5–6 4–5 5–6 5–6
2nd 10–12 10–12 10–12 10–12
7th 360 360 360 360

each IMF to the energy distribution of a red noise process. To perform the test,

Monte-Carlo simulations of time series having the same variance as the original series

were constructed using an autoregressive model of 1st order. This “red” time series

was used to compute IMF series using the EMD technique and the energy of the

averaged modes was next compared to the one calculated for the original time series.

We compared how different the original IMF modes were from the modes calculated

for a red noise process and evaluated the statistical significance. Figure 35 shows the

average period and power for the 1st, 2nd and 7th modes of the IMF series calculated

using 500 time series generated using Monte-Carlo simulations. The average period

and power of the IMF time series modes using TOMS-N7T AI and MODIS-Aqua

AOD were compared to those 500 modes (Fig. 35). The statistical significance is

given by how different the aerosol modes are from the ones simulated with the red

noise process. For this, Coughlin and Tung (2005) suggested a comparison of the

calculated aerosol mode with a line displaced +1 standard deviation of the linear

square best fit of the simulations. As the modes calculated for the AI and AOD using

the EMD technique were different from this line we conclude that they are statistical

significant.
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Figure 35: Average power and periods (blue dots) of time series based on Monte-
Carlo simulations with equal variance as the IMF time series for the 1st, 2nd and 7th

modes presented in Fig. 34, for TOMS-N7T AI (left) and MODIS-Aqua AOD (right)
time series. The red diamonds are the averaged modes of variability for the original
AI and AOD time series calculated using the EMD technique. The dashed blue line
represents a linear least square fit of the Monte-Carlo simulation periods and the red
line is one standard deviation from the best fit line to test the significance of the IMF
modes.

B.2 Composite analysis

Using the IMF time series calculated with the EMD technique, one can characterize

the temporal evolution of aerosols relative to AEW variability in a similar way to the

analysis presented in Chapter 4. Positive values greater than +1 standard deviation

in the 1st and 2nd IMF time series were selected and the date of the maximum value

in each period was chosen as the day 0 to compute the composites. To construct

the composites, daily anomalies of gridded TOMS and MODIS data were computed

with respect to a 30-day running mean of the daily climatology fields in each of the

analyzed periods. For the TOMS daily data, 137 days of maximum AI were found

using the IMF time series for the 1st mode and 76 days for the 2nd mode. In similar

way, MODIS indicated 67 and 40 days of maximum AOD for the 1st and the 2nd
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modes, respectively.

Figure 36 shows a longitude-time plot of TOMS AI and MODIS AOD anomalies

for the 1st and 2nd modes calculated from the EMD analysis. Day 0 in each plot

represents a maximum in aerosol loading over the reference region. In addition,

positive geopotential height anomalies at 700 hPa were plotted in the same figure.

Similar to Fig. 11, two westward propagating modes of aerosol loading are evident

in both datasets, one with a period of near 5-6 days (for the 1st mode) and another

with a period near 10-12 days (for the 2nd mode). Those modes have similar values

of the characteristic wave speed and period to those calculated using the 5-15 and

10-30 day bands using the Fourier filter analysis (see Chap. 4). There is also good

relationship between positive 700 hPa geopotential height anomalies with positive

aerosol anomalies and negative heights with negative aerosol anomalies, as concluded

in Chap. 4. In summary, periods calculated using the EMD technique also show the

two distinctive modes of variability in the aerosol datasets matching the wave speed

of AEW regimes affecting the dust variability in the Tropical Atlantic region.
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Figure 36: Longitude-time plots of aerosol (shading, relative to the color palette)
and geopotential height (contours in [m], continuous line positive values) anomalies
averaged between 15◦N and 20◦N. Upper panel corresponds to TOMS-AI variability
composites using the 1st (left) and 2nd (right) modes from the EMD analysis. Lower
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top of each diagram.
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