GEORGIA INSTITUTE OF TECHNOLOGY

RESEARCH PROJECT INITIATION

Date: 17 July 1973

osil

Project Title: "Effects of Crustal Features on the Gravity Field and Isostatic. Compensation"

Project No: G-35-608

Principal Investigator Dr. L. T. Long

Sponsor:

1.1.1

U. S. Army Research Office - Durham

Agreement Period: From July 1, 1973 Until June 30, 1974

Type Agreement: _____Grant No. DAHC04-74-G-0003 (continuation of EES ______DA-ARO-D-31-124-71-G117) → - (03 /

Amount: \$13,627 ARO-D 718 GIT, (G-35-315)

\$14,345 Total

Reports Required:

🔆 Progress Reports 👌 Y 👘 🕮

Technical Report Final Report - 30 days after termination or by July 31, 1974 Sponsor Contact Person (s).

Library.

Other

Project File

Rich Electronic Computer Center,

Photographic Laboratory

Technical

Administrative

Army Research Office Scientific Division, Environmental Sciences Box CM, Duke Station Durham, North Carolina 27706 Chief, Procurement Officer Army Research Office - Durham Box CM, Duke Station Durham, North Carolina 27706

Assigned to: ____ Ceophysical Sciences

COPIES TO: Principal Investigator School Director Dean of the College Director, Research Administration Director, Financial Affairs (2) Security-Reports-Property Office

Patent Coordinator

RA-3 (6-71)

GEORGIA INSTITUTE OF TECHNOLOGY

OFFICE OF RESEARCH ADMINISTRATION

RESEARCH PROJECT TERMINATION

March 7, 1975

ProjetTitle Effects of Crustel Features on the Gravity Field & Isostatic Compensation

Project No: Q-35-603

Principal Investigator: Dr. L. T. Long

Sponsor: U. S. Army Besearch Office - Durham

Effective Termination Date: 2-30-74 (Grant Expiration)

Clearance of Accounting Charges: 10-31-74 (Pinal Technical Report Due Date)

Grant/Contract Closeout Actions Remaining:

Submission of Closing Documents Submission of Final Fiscal Report Final Report of Inventions

Assigned to School of Geophysical Belances

COPIES TO:

Principal Investigator

School Director

Dean of the College

Director of Research Administration

Office of Financial Affairs (2)

Security - Reports - Property Office

Patent and Inventions Coordinator

Library, Technical Reports Section Computer Sciences Photographic Laboratory

Other

Terminated Project File No.

6-35-608

PROGRESS REPORT

.

.

ARO PROPOSAL NUMBER: P-9110-EN	
PERIOD COVERED BY REPORT: April 1, 19	973 to September 30, 1973
TITLE OF PROPOSAL: Effects of Crustal	Features on the Gravity Field
and Isostatic Comp	ensation
CONTRACT OR GRANT NUMBER: DA-ARO-D-31-	-124-71-G117
HAME OF INSTITUTION: Georgia Instit	tute of Technology
AUTHOR(S) OF REPORT: Leland Timoth	iy Long
LIST OF MANUSCRIPTS SUBMITTED OR PUBLISH DURING THIS PERIOD, INCLUDING JOURNAL RE L. T. Long and R. P. Lowell (1973 Continental Margin Sedimentary Ba <u>Geology</u> Vol. 1, No. 2, Pg. 87-88	HED UNDER ARO SPONSORSHIP IFERENCES: 3) Thermal Model for Some asins and Uplift Zones, 3.
SCIENTIFIC PERSONNEL SUPPORTED BY THIS F DURING THIS REPORTING PERIOD:	PROJECT AND DECREES AWARDED
Leland Timothy Long G. H. Rothe S. R. Bridges J. W. Champion H. E. Denman + J. H. McKee + (M.S. Geophysics) W. W. Patzewitsch +	<pre>J. W. Dees * C. V. Nutt* Madeline Waller * * non-technical support personn + supported as part-time field assistants</pre>
	ARO PROPOSAL NUMBER:April_1, 19 PERIOD COVERED BY REPORT:April_1, 19 TITLE OF PROPOSAL: Effects of Crustal and Isostatic Comp CONTRACT OR GRANT NUMBER: DA-ARO-D-31- NAME OF INSTITUTION:Georgia Instit AUTHOR(S) OF REPORT:Leland Timoth LIST OF MANUSCRIPTS SUBMITTED OR PUBLISH DURING THIS PERIOD, INCLUDING JOURNAL RE L. T. Long and R. P. Lowell (1973 Continental Margin Sedimentary Ba Geology Vol. 1, No. 2, Pg. 87-88 SCIENTIFIC PERSONNEL SUPPORTED BY THIS I DURING THIS REPORTING PERIOD: Leland Timothy Long G. H. Rothe S. R. Bridges J. W. Champion H. E. Denman + J. H. McKee + (M.S. Geophysics) W. W. Patzewitsch +

Dr. L. T. Long Georgia Institute of Technology Atlanta, Georgia 30332

The primary goal of the work has been to utilize the Dorman and Lewis technique to obtain an isostatic response function for the Southeastern United States. Secondary goals were directed toward improving data coverage and isolating the major geologic features. Modifications of the Dorman-Lewis technique were required to allow application in the Southeastern U.S. since local geological features extend across the entire area and constitute an important factor in the isostatic response function. The final data set based on significant recent data acquisitions is now complete. It was derived from 10463 data points of Elevation & Bougue anomalies. Surface densities interpreted from available geologic maps have been included in the data set. Profiles perpendicular and parallel to the regional structure have been generated using a weighted average and distance weighted average technique. These will be analyzed for two-dimensional response functions. The response function is not expected to be the same for crustal movements perpendicular or parallel to the regional structure and this analysis should give some indication of the asymetry of the isostatic response function.

The data for a detailed (0.5 to 1.0 km interval) line perpendicular to the structure is now ready for analysis. The data includes gravity, elevation, density, magnetic intensity and geologic formation. Total length of the line is over 200 kilometers.

Additional gravity data is currently being obtained in South Carolina in cooperation with the South Carolina Division of Geology and Pradeep Talwani at the University of South Carolina. The objective of this cooperative work is to allow publication (planned in July 1974) of a Bouguer Gravity Map of South Carolina similar to the Georgia Bouguer Gravity Map.

PROGRESS REPORT

.

l.	ARO PROPOSAL NUMBER:P-9110-EN
2.	PERIOD COVERED BY REPORT:October 1, 1973 to March 30, 1974
3.	TITLE OF PROPOSAL: Effects of Crustal Features on the Gravity Field and
	Isostatic Compensation
4.	CONTRACT OR GRANT NUMBER: DA-ARO-D-31-124-71-G117
5.	NAME OF INSTITUTION: <u>Georgia Institute of Technology</u>
6.	AUTHOR(S) OF REPORT: Dr. Leland Timothy Long
7.	LIST OF MANUSCRIPTS SUBMITTED OR PUBLISHED UNDER ARO SPONSORSHIP DURING THIS PERIOD, INCLUDING JOURNAL REFERENCES:
	George H. Rothe, III (1973) Geophysical Investigation of a Diabase
	Dike, Masters Thesis, Georgia Institute of Technology, Atlanta, Georgia
	Long, Leland Timothy (1974) Bouguer Gravity Anomalies of Georgia, in Proceeding of the Symposium on the Petroleum Geology of the Georgia Coastal Plain, (expected June 1974) Georgia Geological Survey.
8.	SCIENTIFIC PERSONNEL SUPPORTED BY THIS PROJECT AND DEGREES AWARDED DURING THIS REPORTING PERIOD:
	S. R. Bridges J. W. Champion H. E. Denman J. Butler

L. Evans

Dr. L. T. Long Georgia Institute of Technology Atlanta, Georgia 30332

9110-EN

BRIEF OUTLINE OF RESEARCH FINDINGS

The primary goal of the work has been to utilize the Dorman and Lewis technique to obtain an isostatic response function for the southeastern United States. Secondary goals were directed toward improving gravity data coverage and understanding the anomalies from major geologic features. The 64 x 64 grid of gravity, elevation and density data with a separation of 8 km has been examined. Preliminary descriptions of this data are similar to the explanation with the Simple Bouguer Map of Georgia and will be presented in more detail in the Symposium Volume. Preliminary results from trend and correlation distance analyses indicate that crustal structures NE of a line which extends NW-SE through central Georgia differ significantly from the structures to the SW. Profiles obtained NE and SW of this line also give significantly different isostatic response functions. On the SW side smoothed free air anomalies which approximate isostatic anomalies correlate, where negative, with uplift zones in recent releveling data. While a different response was expected for profiles parallel and perpendicular to the structure, the strong variation along strike was not expected.

A 200 km NW-SE detailed profile in North Georgia indicates significant topography in the intermediate crustal layer as well as a deepening of the Moho to 45 km near Atlanta.

The data accumulation phase of preparation for a Simple Bouguer Map of South Carolina is now essentially complete. The map is expected to be ready for publication by June, 1974. This work is being performed in cooperation with the South Carolina Division of Geology and the University of South Carolina.

RDRD Form IP-129

Page 2

BRIEF OUTLINE OF RESEARCH FINDINGS

A talk presented at the "Symposium on the Petroleum Geology of the Georgia Coastal Plain" - to be published in the Proceedings.

ABSTRACT

On a broad scale, the Bouguer gravity anomalies in Georgia show patterns which correlate with the major geologic subdivisions. The Paleozoic rocks of the Valley and Ridge Province of northwest Georgia are characterized by -20 to -40 milligal anomalies. Their smoothness is a consequence of the sedimentary rocks at the surface which generally show only slight lateral variations in density. The Piedmont and Blue Ridge crystalline rocks of central and northeast Georgia are characterized by the most negative Bouguer anomlaies in Georgia. The negative values are a consequence of the elevation and total crustal thickness of these predominantly granitic rocks. Detailed gravity data obtained over crystalline rocks strongly reflect the near surface density variations and structural features. South of the fall line the Bouguer anomalies average about zero. The anomalies are related to density variations in pre-Cretaceous and crystalline basement rocks underlying the younger coastal plain sediments. The positive Bouguer anomalies are most likely due to the occurrence of dense basic rock types (like diabase, gabbro or hornblende gneiss). The negative anomalies are most likely due either to granitic rock or to increased thicknesses of sedimentary rock of pre-Cretaceous age. Detailed gravity data in the Georgia Coastal Plain can be used to delineate the boundaries of the larger structures of the pre-Cretaceous or crystalline basement rocks. Also, correlation of Bouguer anomalies with elevation often give an anomalous (e.g. 3.0gm/cm³) reduction density indicating continued tectonic activity of the sediments and pre-Cretaceous crustal rocks.

GEOPHYSICAL INVESTIGATION

、「ある」で、「あいたいない」で、「あいないま」「「あいまいないないないないない」

C C C L C

OF A DIABASE DIKE

A THESIS

Presented to

The Faculty of the Division of Graduate

Studies and Research

Ъy

George Henry Rothe, III

In Partial Fulfillment

of the Requirements for the Degree Master of Science in Geophysical Sciences

Georgia Institute of Technology

November, 1973

GEOPHYSICAL INVESTIGATION OF A DIABASE DIKE

SLORGES TECH CURRENTS

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to Dr. L. Timothy Long for his guidance in this study and to Drs. G. Lafayette Maynard and J. Marion Wampler for their suggestions and for reviewing this manuscript. Thanks to Dr. Robert Bentley for his helpful discussions concerning the geology of the Georgia Piedmont. Thanks to Mr. Doyle Watts of the Ohio State University for supplying the paleomagnetic data for the Meriwether dike.

During my tenure as a graduate student I received support in part through a research assistantship made possible by grant #DA-ARO-D-31-124-71-G117 from the Army Research Office - Durham. Also, my thesis research was supported in part by this grant. This support is appreciated.

The School of Geophysical Sciences provided the computer time for the analysis of the data.

Special thanks to Mr. Roland Schenck who assisted in collecting the data. And special thanks to my wife, Donna, for her assistance in the collecting of data, and for editing and typing this manuscript. TCCH LICKAR

LORGIA

TABLE OF CONTENTS

ACKNOWLEDG	EMENTS	Page ii
LIST OF TAX	BLES	v
LIST OF FI	GURES	vi
SUMMARY .		viii
Chapter		
Ι.	INTRODUCTION	1
II. (GEOLOGIC SETTING AND REGIONAL GEOPHYSICS	6
1	Geologic Settin g Regional Gravity Regional Magnetics	
III.	PHYSICAL PROPERTIES OF THE MERIWETHER DIKE	16
1	Density Magnetic Susceptibility	
IV.	DETERMINATION OF DIP ANGLE FROM GRAVITY AND MAGNETIC	18
	Theoretical Mode ls Detailed Gravity Profiles	
V. (GROUND-LEVEL MAGNETICS AND THE ROLE OF NATURAL REMANENT MAGNETIZATION IN THE OBSERVED ANOMALIES	30
1	Ground-Level Magnetics Natural Remanent Magnetization of the Meriwether Dike Theoretical Anomalies and the Determination of the Koenigsberger Ratio, Q	
VI.	DISCUSSION AND CONCLUSIONS	35
APPENDICES		37
I. (Gravity Surveys and Data Reduction	

II. Ground-Level Magnetic Surveys and Data Reduction

いいいというのの

TUTTER TRONG TRONGLE

- Sugarantes

- California -

Table of Contents (Concluded)

III.	Computer Programs for Gravity and Magnetic Modeling	rage
IV.	Paleomagnetic Data Collection and Reduction	
BIBLIOGRA	PHY	75

.

LIST OF TABLES

Tabl	e	Page
1.	Gravity Base Stations Used in this Study	39
2.	Instrumental Drift for Worden Gravimeter	39
3.	Gravity Data	42
4.	Ground-Level Magnetics Data	51
5.	Two-Dimensional Gravity Modeling Program	61
6.	Two-Dimensional Magnetics Modeling Program	63
7.	Natural Remanent Moments of Cores Taken from the Meriwether Dike	74

TETER INDUL MORDIN

v

LIST OF FIGURES

Figure		Page
1.	Map of Diabase Dikes in Eastern North America, West Africa, and Northeastern South America with the Continents Restored to Their Relative Position in the Triassic	2
2.	Geology of the Inner Piedmont of West Georgia	5
3.	Geology of the Inner Piedmont of West Georgia	7
4.	Simple Bouguer Gravity Map of Detail Study Area	8
5.	Index Map of Georgia Showing Location of Detail Study Area and Existing Aeromagnetic Maps	10
6.	Portion of North-Central Georgia Aeromagnetic Map Covering Area of Detail Study	11
7.	Index Map Showing Locations of Detailed Ground- Level Magnetic Surveys and Existing Aeromagnetic Flight Lines	13
8.	Ground-Level Magnetic Profiles	14
9.	Aeromagnetic Map of the Study Area Recontoured Assuming the Meriwether Dike to be a Continuous Magnetic Feature	15
10.	Calculated Curves Showing Effect of Dip Angle on Vertical Gravity Anomaly	19
11.	Calculated Curves Showing Effect of Dip Angle on Total Field Anomaly Due to Induction Magnetization Only	20
12.	Detailed Gravity Profile A-A'	22
13.	Detailed Gravity Profile B-B ¹	23
14	Detailed Gravity Profile C-C ¹	23
10	Detailed Gravity Hollie 0-0	24
17.	Detailed Gravity Profile D-D	25
10.	Decailed Gravity Profile E-E	26

vi

PEORON TROUT COMPANY

List of Figures (Concluded)

Figure	e	Page
17.	Stereographic Projection of Measured Natural Remanent Moments for the Meriwether Dike	32
18.	Calculated Curves Showing the Effect of Natural Remanent Magnetism on the Observed Total Field Anomaly	33
19.	Standard Department of Defense Gravity Coding Form	41
20.	Magnetogram for May 5, 1973	49
21.	Magnetogram for May 6, 1973	50

PEORONA TROM LIGRARY

1. N. K.

SUMMARY

Analysis of gravity, aeromagnetic, ground-level magnetic, paleomagnetic, and high altitude infrared data has revealed a complex injection zone of diabase in central Meriwether County, Georgia. This zone, which previously was considered to be a single large (30-40 meters wide) diabase dike, has been found in places to reach a width of one kilometer.

A simple Bouguer gravity map of the area shows the dikes, which compose the injection zone, to be responsible for an anomaly in the regional gravity trend of about one to two milligals. Combined results from five gravity and three total-field magnetic traverses has suggested the dikes to dip at about 70° toward N70°E. The mean of the observed ground-level magnetic anomalies for the dikes is a 1000¥ positive anomaly (total field).

On the basis of observed paleomagnetic data and computed bulk susceptibilities the ratio of the remanent to induced magnetizations (Koenigsberger's ratio, Q) has been calculated to be between 0.25 and 0.5. However, the shapes of the observed ground-level magnetic anomalies suggests a Q value of 1.0 or slightly higher for the Meriwether dike.

The total-field magnetic map based on already existing aeromagnetic data has been recontoured under the assumption that the Meriwether dike is continuous, as suggested by ground-level data taken during this investigation.

On the recontoured map the dike is the most prominent magnetic

viii

feature of the area which suggests that the spacing and direction of the aeromagnetic flight lines is inappropriate for correlating dike caused anomalies of limited extent, even though the dike anomalies are large in magnitude.

High altitude infrared photographs show a change in intensity of reflected infrared radiation from vegetation growing on diabase derived soils suggesting that such pictures can be used to map the outcrop pattern of the dike in heavily wooded, highly weathered, and other inaccessable areas. It is suggested that this technique be applied to other areas of eastern North America to determine outcrop patterns of the dikes in areas not yet geologically mapped.

ix

LOCOL:

CHAPTER I

INTRODUCTION

A system of diabase dike swarms outcrops throughout eastern North America from Alabama to Nova Scotia (Cohee, et al., 1962), (Stockwell, et al., 1969). Southward along the Appalachian belt from Nova Scotia through New England and into the southern Piedmont, a gradual systematic change in strike is evident (Figure 1). King (1961) commented that the pattern of diabase dikes in eastern North America is probably the result of deep-seated stresses, but that the cause of the stresses is not apparent. May (1971) noted that the systematic pattern of the dikes in eastern North America is actually part of a larger, radial, pattern of diabase dikes surrounding the North Atlantic (Figure 1) and suggested that this pattern is a result of the stress field associated with the onset of North Atlantic sea-floor spreading in Late Triassic or Early Jurassic time.

The age of the dikes in eastern North America is currently in dispute. On the basis of fossil pole positions, de Boer (1967) suggested a Jurassic age for the dikes. On the other hand, Armstrong and Besancon (1970) found whole rock K-Ar ages to fall into two clusters: one at about 200 million years (Middle Triassic) and another smaller one between 225 and 230 million years (Early Triassic). Armstrong and Besancon (1970) suggested that the older dates may represent the actual time of emplacement, while the younger group may be indicative of "burial"

1

Figure 1.

Map of Diabase Dikes in Eastern North America, West Africa, and Northeastern South America with the Continents Restored to Their Relative Position in the Triassic (after May, 1971). (North arrows indicate present geographic direction for each continent.)

metamorphism.

The chemistry of the diabase dikes, previously thought to be uniform (Lester and Allen, 1950) has been shown by Weigand and Ragland (1970) to vary in both major and trace element assemblages. Weigand and Ragland (1970) divided the dikes of eastern North America into several provinces based on the occurrence of three main chemical types: (1) olivine-normative, (2) high-TiO₂, quartz-normative and (3) low-TiO₂, quartz-normative.

The tracing of individual dikes along strike and the determination of thickness and dip by the usual geological field methods is inhibited in most areas of Southeastern North America by intense chemical weathering and dense vegetation. However, Johnson and Watkins (1963) noted a coincidence of dike outcrops and low-amplitude (less than 20¥ at an altitude of 800 feet above ground level), positive magnetic anomalies along aeromagnetic flight lines in north-central Virginia. On the basis of linear trends in the occurrence of some of these magnetic highs, Johnson and Watkins (1963) inferred the extension of dikes into areas where no outcrops are known. The success of Johnson and Watkins (1963) suggests that geophysical methods at closer range, i.e. aeromagnetics at 500 feet, ground-level magnetics and detailed gravity, could yield detailed structural information as well as outcrop patterns. The purpose of this study was to apply these geophysical methods to a study of the structure of a diabase dike.

A portion of the long dike in central Meriwether County in westcentral Georgia (hereinafter referred to as the Meriwether dike) was selected for study. The dike extends southward from an area north-east

of Newnan in Coweta County, to an area south of the Towaliga fault in southern Meriwether county (Figure 2). This area of study was selected because of minimal secondary geophysical distrubances, such as gravity and magnetic anomalies associated with fault zones and basic intrusives other than the diabase dike. In addition, the roads in this area traverse the Meriwether dike at almost right angles and are spaced at approximately two miles, affording good access for a geophysical study.

HOUL

NORO1S

Figure 2. Geology of the Inner Piedmont of West Georgia (after the 1939 Geologic Map of Georgia). (Hatched square grid shows area of detail study.)

5

TECH

NUNCH

CHAPTER II

6

NOCCL

GEOLOGICAL SETTING AND REGIONAL GEOPHYSICS

Geologic Setting

According to the Geologic Map of the State of Georgia (Georgia Department of Mines, Mining and Geology, 1939) the geologic formations of the study area consist of granites intermingled with both biotite and granite gneisses (Figure 2). Recent reconnaissance mapping by R. D. Bentley (personal communications) has revealed the geology of the Inner Piedmont (between the Brevard and Towaliga Fault Zones) to be more complicated than suggested by the 1939 Georgia Geology Map. Bentley and Neathery (1970) renamed the rocks of the southeastern portion of the Inner Piedmont the Opelika Complex and divided it into two stratigraphic units, the Loachapoka Schist and the Auburn Gneiss-schist (Figure 3). These units were interpreted by Bentley (Bentley and Neathery, 1970) as metamorphosed sediments which are extensively intermingled with granites. The Meriwether dike strikes about N20°W through the area and intersects the rocks of the Opelika Complex at about 60°.

Regional Gravity

Based on measurements taken at 195 stations, a simple Bouguer gravity map of the area under investigation was constructed (Figure 4). The procedures used for the reduction of the data and estimating errors in the final values are given in Appendix I. Estimated error in the regional data is +0.35 milligals. Isogals trend approximately north-

Figure 3. Geology of the Inner Piedmont of West Georgia (after Bentley Neathery, 1970). (Hatched square grid shows area of detail study.)

7

111111

HOT-

VICHCH

Figure 4. Simple Bouguer Gravity Map of Detail Study Area. (Dashed line gives location of Meriwether dike. Letters designate beginning and end of detailed gravity lines.)

8

victor Andrews

111111

VIONOIS

hand the second and

where Distance of a start of the start of

east-southwest, and the regional gradient is about -0.8 milligals/kilometer to the northwest. The prominent features on the simple Bouguer gravity map are the steep gradient in the west-central portion of the study area and an anomaly in the regional trend of one to two milligals beginning in the southeastern part of the study area and continuing northward through the area. The steep gradient is coincidental with the contact between the Loachapoka Schist and granite west of Greenville (Figure 3). The anomaly in the regional trend is largely caused by the existence of the Meriwether dike. Too few gravity stations were taken in the extreme northern portion of the study area to warrant contouring, except by extrapolation. The anomaly probably extends northward out of the study area coincident with the dike.

Regional Magnetics

The North-Central Georgia Aeromagnetics Map (U.S. Geological Survey, open file, 1973) partially fills the gap (Figure 5) between the two previous aeromagnetic surveys of North Georgia Nuclear Laboratory (Philbin, Petrafeso and Long, 1964) and Savannah River Plant (Petty, Petrafeso and Moore, 1965). The area of this investigation (Figure 6) is part of the area covered by this latest work.

Similar to the regional gravity, magnetic features trend NE-SW. Lack of steep gradient immediately east of Greenville suggests that the units responsible for the observed steep gravity gradient in this area have a low contrast in magnetic susceptibility. The most conspicuous feature is the string of localized magnetic highs trending from north to south and having centers located at intersections of the dike and the

Figure 5.

. Index Map of Georgia Showing Location of Detail Study Area and Existing Aeromagnetic Maps. (Maps GP-488, North Georgia Nuclear Laboratory, and GP-489, Savannah River Plant, have been published by the U. S. Geological Survey. The North-Central Georgia Map is available on open file at the Georgia Geological Survey. Stipled rectangle is area of detail study.)

10

HOTL MONOIS

The Charles of the

Figure 6. Portion of North-Central Georgia Aeromagnetic Map Covering Area of Detail Study. (U.S.G.S. Open File, 1973) (Dashed line gives location of Meriwether dike. Anomalies are with reference to 50,000¥ datum.)

11

()

1

flight lines. These magnetic highs are probably a result of the presence of the Meriwether dike.

The Meriwether dike, which outcrops on roads along its entire length, is probably more continuous than suggested by the series of magnetic highs in Figure 6. Detailed ground-level magnetic traverses of the Meriwether dike at points between aeromagnetic flight lines (Figure 7) support this supposition of continuity. Prominent (1000¥) magnetic highs coinciding with observed dike outcroppings (Figure 8) suggested a recontouring of the aeromagnetic data.

Since the continuous flight line data were not available, all points where flight lines intersect contour lines were assumed to represent true values (the data were extrapolated by computer methods between flight lines). Latitude, longitude, and the total magnetic intensity were determined for each intersection and these points were plotted for recontouring. Under the assumption that the Meriwether dike is continuous along strike, straight lines were drawn connecting points of equal total magnetic intensity on adjacent flight lines in the region where the dike outcrops. In other areas contour lines were assumed to be influenced by the regional geology (after Bentley and Neathery, 1970).

Although no magnetic interpretation is unique, this one (Figure 9) does strongly suggest that the magnetic anomalies associated with the dike can be represented by a continuous linear anomaly. This interpretation is necessary for two-dimensional analysis of the dike by comparison of its observed anomalies with those of easily computed models. LORCH

Figure 7. Index Map Showing Locations of Detailed Ground-Level Magnetic Surveys and Existing Aeromagnetic Flight Lines. (Dotted line gives location of Meriwether dike. Anomalies are with reference to 50,000¥ datum.)

13

Contrade and

State Building

1.4.4

Figure 8. Ground-Level Magnetic Profiles (Total Field). (Heavy bar on profile base indicates diabase outcrop. See Figure 7 for location of profiles.)

Are E

GEORGIA TECH LIDRARY

Sugar,

Figure 9. Aeromagnetic Map (Total Field) of the Study Area Recontoured Assuming the Meriwether Dike to be a Continuous Magnetic Feature. (Anomalies are with reference to 55,000¥ datum.)

15

CHAPTER III

PHYSICAL PROPERTIES OF THE MERIWETHER DIKE

Density

Diabase lends itself especially well to geophysical investigation. The density of the Meriwether diabase is $3.0 \pm 0.05 \text{ gm/cm}^3$ (as determined by gravimetric methods applied to three field samples). Watson (1902) determined the densities of the Loachapoka Schist and local granites to be $2.64 \pm 0.01 \text{ gm/cm}^3$ and $2.70 \pm 0.01 \text{ gm/cm}^3$ respectively. Thus, the density contrast between the diabase of the Meriwether dike and the surrounding rocks (average density $2.67 \pm 0.02 \text{ gm/cm}^3$) is $0.33 \pm 0.07 \text{ gm/cm}^3$. A vertical dike 30 meters wide (average observed outcrop width of the Meriwether dike) with this density contrast should yield a vertical gravity anomaly of approximately 1.5 milligals, an anomaly easily discerned with contemporary instrumentation (see Appendix I).

Magnetic Susceptibility

Several attempts have been made to statistically relate the bulk susceptibility of rocks to petrological parameters. One such attempt was that of Balsey and Buddington (1958) who related the susceptibility of some Adirondack rocks to the fractional volume of all the minerals visually identified as magnetite. This volume would generally include any Fe-Ti oxide minerals of spinel structure. Their empirical formula for the bulk susceptibility (k) in C.G.S. units is [very server and

$$k = 2.6 \times 10^{-3} V^{1.11}$$

17

(1)

LONOT

where V is the volume percentage of all minerals visually identified as magnetite.

Petrographic examination of the Meriwether dike (Lee, 1971) showed that opaque grains (assumed to be Fe-Ti oxides of spinel structure) comprise 2.3 to 4.3 percent of the rock with a higher percentage occurring in the finer-grained zones near its edges. Using the empirical formula of Balsey and Buddington (1958) (Equation 1) and the range of volume percentages of opaques given by Lee (1971), the bulk susceptibility of the diabase composing the Meriwether dike was estimated to be between 0.0066 and 0.0130 cgs.

CHAPTER IV

DETERMINATION OF DIP ANGLE FROM GRAVITY AND MAGNETIC ANOMALIES

Theoretical Models

Theoretical anomalies were calculated for sets of models to examine the effects of dip angle on expected gravity and magnetic anomalies. The method of Talwani, Worzel, and Landisman (1959) was used to compute the gravity anomalies that would be expected for dikes dipping at various angles. Because the observed outcrop width would be fixed for a particular dike, anomalies were computed for models with an outcrop width of 30 meters dipping at 90, 75, 60, and 45° (Figure 10). As would be expected, the gravity anomaly caused by a vertical dike is symmetric about the center of the dike. However, as the dip angle decreases the anomaly becomes asymmetric with the peak shifting toward the direction in which the dike is dipping. The anomaly tails off more slowly on the side toward which the dike dips than the other. Even though there are obvious differences in the anomalies for various values of dip angles, a superimposed regional trend may make determination of the dip more difficult than suggested by Figure 10; in fact, unless the regional trend is simple and well defined, the determination of the dip may be impossible.

Although the dip angle has an obvious effect on the shape and asymmetry of the total-field anomaly (Figure 11), the effects of natural

Figure 10. Calculated Curves Showing Effect of Dip Angle on Vertical Gravity Anomaly.

19

1 11111

remanent magnetization, when added to the induced magnetization, may complicate the determination of dip angle from the observed anomaly (Hood, 1963). For this reason, the angle of dip was determined using observed gravity anomalies only. The magnetic anomalies, because of their sharpness as compared to the gravity anomalies (Figures 8 and 10), were used only for lateral location of the dike where outcrops were nonexistent.

Detailed Gravity Profiles

Five detailed gravity lines with an average station spacing of 0.15 kilometers and a total length of 20 kilometers were obtained. Station spacing was decreased to about 0.075 kilometers in the immediate proximity of the dike. Four lines traverse the Meriwether dike in the prescribed study area (Figure 4) and the fifth traverses it along Georgia State Highway 16 southeast of Newnan and north of the study area. The observed anomalies (Figures 12 through 16), when smoothed, are about 1.0 kilometer wide at half their maximum value. This width is considerably greater than the computed anomaly width for a vertical dike 30 meters wide, approximately 0.1 kilometers at half its maximum value (Figure 10). Numerous individual peaks superimposed on the broad peaks suggest that a 0.75 kilometer wide swarm of dikes, rather than a single dike, is responsible for the observed anomaly. Such a hypothesis is further supported by the ground-level magnetic profiles, (Figure 8).

Profile A-A'.

Gravity line A-A' (Figure 4) was established along a dirt road about 3.0 kilometers north of Georgia State Highway 109. The observed

21

これにいい

LONOL:

Figure 12.

Detailed Gravity Profile A-A'. (Model dikes extend to infinite depth. Thickness of the modeled dike is given by the numeral above the dike. Heavy bar on profile indicates observed dike outcrop.)

22

いたいいい

Figure 13. Detailed Gravity Profile B-B'. (Model dikes extend to infinite depth. Thickness of the modeled dike is given by the numeral above the dike. Heavy bar on profile indicates observed dike outcrop.)

23

11111111

10201

territoria de la compañía de la comp

Figure 14. Detailed Gravity Profile C-C'. (Smoothed residual exhibits three definite peaks. Heavy bar on profile indicates observed dike outcrop.)

24

ALLEY COMMANY

Figure 15. Detailed Gravity Profile D-D'. (Smoothed residual exhibits multiple peaks. Heavy bar on profile incidates observed dike outcrop.)

See. 8

OLOROIA FEGH ERMAN

gravity anomaly (Figure 12) consists of three peaks of about one milligal amplitude with the side and less prominent peaks spaced about 0.2 kilometers to either side of the main peak. Because there exist no known density anomalies, with exception of the diabase, along this profile and because the regional isogals are slightly curved in the region of this profile (Figure 4), no regional trend was removed. The three peaks and the asymmetry of the anomaly suggest that three dikes dipping to the east are necessary to account for the observed anomaly. Examination of the ground-level magnetic data for the same profile (Figure 8) suggests that the side dike to the west is actually two thin dikes. Assuming the existence of the four dikes, anomalies were computed using the observed outcrop widths for the main dike (40 meters) and the east dike (30 meters). The west dikes were not found to outcrop and because of the lesser magnitude of the associated gravity anomaly as compared to those of the main dike, they were modeled to be 7.5 meters wide.

Examination of the computed anomalies for dips of 90, 75 and 60° (Figure 12) shows the observed anomaly to fall between the computed curves for 60 and 75 with a dip angle of 70° (by interpolation) probably best satisfying the observed data.

Profile B-B'.

Detailed gravity line B-B' (Figure 4) was established along Georgia State Highway 109 between Greenville and Gay, Georgia. The observed anomaly consists of a "noisy" assymmetric broad peak (Figure 13). Amphibolites were found outcropping to the west of the main dike and could be responsible for the observed scatter in the data west of the dike. Diabase float was also found 1.0 kilometers west of the main

27

L'ILLING AND

dike indicating that part of the observed scatter in the data may be a result of a side dike. A corresponding magnetic anomaly was encountered during the ground-level magnetic survey of the same profile (Figure 8).

Aside from the scatter in the data to the west of the main dike, there is a difference in the base level of the observed gravity. The east side of the dike is about 1.0 milligal more positive than the west side. This offset can be accounted for by the contact (no fault is visible and the orientation of the contact is unknown) between the Loachapoka Schist to the west and the granite to the east.

After the effect of the contact was removed, the resulting asymmetric residual anomaly could be modeled by a set of six dikes dipping to the east. Only the main dike was observed to outcrop, but the groundlevel magnetic data (Figure 8) indicate the existence of the others. Determination of the angle of dip was not attempted because of the uncertainty in the location and orientation of the schist-granite contact. Profile C-C'.

Profile C-C' (Figure 4) was established along the dirt road about 1.5 kilometers south of Georgia State Highway 109. The strong eastward positive trend of the observed data (Figure 14) is probably caused by granitic rocks which dip westward (Figure 3). Because the exact location and attitude of the granite-schist contact were unknown, a regional trend was estimated (Figure 14). The residual anomaly (Figure 14) consists of a central main peak and two secondary peaks on either side of the main peak. Although the dike was found to outcrop only coincident with the central peak of the gravity anomaly, the secondary peaks of the anomaly are probably due to side dikes. A similar phenomenon was

noted previously for profiles A-A' and B-B' further to the north. Because of the ambiguity created by the removal of the regional gravity trend by smoothing, and the noisy character of the ground-level magnetic data taken for the same profile (Figure 8), no attempt was made to determine the dip angle of the dikes.

Profile D-D'.

Line D-D' (Figure 4) was established along the paved county road about 8.0 kilometers southeast of Greenville and 4.5 kilometers south of detailed gravity line C-C'. As in profile C-C', there is a strong positive regional trend to the east (Figure 15), which was removed. The multiple peaks in the residual anomaly, (Figure 15) although not as well separated as in the previous profiles, again indicates that more than one dike is responsible for the observed anomaly. The only dike found to outcrop was again coincident with the main peak.

Profile E-E'.

Gravity line E-E' lies along Georgia Highway 16, southeast of Newman. This profile, which is outside the main area of investigation, was obtained for comparison to the four previous profiles which lie within the area of detailed study 20 kilometers to the south. The observed anomaly (Figure 16) consists of three peaks all coincident with observed outcrops of dikes with the central peak corresponding to the widest outcrop. Whereas the side dikes in profiles to the south are located no more than 1.0 kilometers to the side of the main dike, the east dike on profile E-E' is located 2.1 kilometers from the main dike. A . Bar & Jans 2 - 3

CHAPTER V

GROUND-LEVEL MAGNETICS AND THE ROLE OF NATURAL REMANENT MAGNETIZATION IN THE OBSERVED ANOMALIES

Ground-Level Magnetics

Four detailed ground-level magnetic (total field) profiles were obtained in order to examine the structure of the Meriwether dike and to provide additional data for the purpose of recontouring the aeromagnetic data previously described. Three of the profiles were obtained along the same roads as detailed gravity profiles A-A', B-B', and C-C'. The fourth was a closure profile connecting A-A' and B-B' (Figure 7). The data was obtained and reduced by standard techniques and are listed in Appendix II.

The reduced data (Figure 8) showed the main dike to be represented by an asymmetric anomaly for all three profiles. However, the calculated anomaly due to induction magnetization for a dike dipping 70° toward N70°E is a symmetric positive peak (Figure 11). This suggests that induction magnetization is not the only cause for the observed anomaly and that natural remanent magnetization (NRM) must also be considered in the analysis of magnetic anomalies (Hood, 1963).

Natural Remanent Magnetization of the Meriwether Dike

Samples from a single outcrop of the Meriwether dike were collected and analyzed for NRM by Doyle Watts (personal communications). Intensities and directions for the NRM's are given in Appendix IV. A L'UNITY - LEVE CONTRACT

Schmidt stereographic projection of the NRM directions (Figure 17) shows the NRM directions to be different from today's magnetic field. Samples from the center of the dike constitute one set of directions and those from the chilled margins another set. Because it is not known what proportion of the dike has which magnetization, an average of the directions (Figure 17) and magnitudes were used for computing the anomaly due to remanent magnetization. The average direction has a declination of 28° and an inclination of 30°. The average magnitude of the NRM is 0.00175 cgs.

Theoretical Anomalies and the Determination

of the Koenigsberger Ratio, Q

The ratio of remanent magnetization to induced magnetization, the Koenigsberger ratio, Q is commonly cited in paleomagnetic studies as an indication of whether or not samples have been subjected to lightning strikes. It has more recently been construed (Green, 1960) as a measure of the importance of remanent magnetization in the analysis of magnetic anomalies. Using the calculated bulk susceptibility for the diabase of the Meriwether dike and the average intensity of NRM, the probable range of Q is 0.25 to 0.50. The range of Q's is a result of the uncertainty in the bulk susceptibility.

To examine the effects of Q on the observed anomalies, several models were computed using the method of Talwani and Heirtzler (1965). For a Q of 0.25 and bulk susceptibility of 0.013 cgs, the remanent magnetization causes the anomaly to become slightly asymmetric (Figure 18) with a peak to trough ratio of about 15 to 1. For bulk suscepti-

31

LINKING

....

32

and search search and

1

Figure 18. Calculated Curves Showing the Effect of Natural Remanent Magnetism on the Total Field Anomaly. (Dike is 30 meters wide and dips at 75°.)

Standerson a Edited a conservation

ω ω

A Carl Constant

bility 0.0066 cgs and corresponding Q of 0.5 the anomaly is found to be more asymmetric with a peak to trough ratio of 10 to 1.

The observed anomalies (Figure 8) however, exhibit an average peak to trough ratio of only 6. Further, the amplitude of the observed anomalies is greater than that calculated for the given range of susceptibilities and corresponding magnetizations. An increase in Q to 1.0 at a susceptibility of 0.013 cgs produced an asymmetric anomaly with a peak to trough ratio of about 6 to 1, (Figure 18) indicating that the bulk remanent magnetization was probably greater than that suggested by the surface samples.

Strangway (1965), who sampled a diabase dike at both the surface and at depth in a mine, found the ratio of remanent to induced magnetization to be greater for the underground samples. As a possible cause of this phenomenon Strangway (1965) suggests that temperature fluctuation at the surface, which was probably exposed for a considerable length of time, has accelerated the decay of the remanent magnetization. The same type of process may have occurred in the Meriwether dike and hence, the effective Q, which includes the effect of sub-surface portions of the dike, is probably closer to 1.0.

It should be noted that even if the dike actually dips as much as 80°, the magnetic anomaly due to induction would still be a symmetric peak (Figure 11), and hence the calculated Q of 1.0 would not be seriously affected.

34

4+8-2×1+1+1-1-1

CHAPTER VI

DISCUSSION AND CONCLUSIONS

Examination of the Meriwether dike by means of detailed gravity and magnetic profiles shows the dike to consist of an injection zone of dikes. Because the gravity anomalies of the component dikes are only partially separated, determination of whether or not the side dikes were branches of the main dike was not possible. On the basis of theoretical curves for the dike system dipping at various angles, the Meriwether dike (system) was estimated to dip at 70° toward N70°E.

The 70° dip is not as steep as noted by Lester and Allen (1950), who found several of the larger dikes in Georgia to have a constant dip toward the east of 75 to 90° and Privett (1966) who found the diabase dikes in central South Carolina to dip 80 to 90° to the NE. It is possible, however, that the Meriwether dike may actually have a dip greater than 70°, but due to the ambiguity of the regional trend it is not possible to resolve how much greater.

A simple Bouguer gravity map compiled for central Meriwether County shows the Meriwether dike to be responsible for an anomaly of one to two milligals in the regional trend. After recontouring of the available aeromagnetic data, the Meriwether dike(s) proved to be the most prominent magnetic feature of the area, and this suggests that the sharpness of the anomaly and the flight line spacing supressed the dike(s) in previous contouring. It is possible that in other areas of A Start S

eastern North America covered by aeromagnetic maps, other occurrences of diabase dikes may be similarly supressed, thus reducing the probability of locating such dikes by their magnetic anomalies in areas not yet geologically mapped. Locating other dikes by this method may also be hampered by the effects of remanent magnetization.

Although not studied in detail, examination of high altitude infrared photographs (N.A.S.A., 1970) of central Meriwether County, revealed the existence of a linear anomaly coinciding with the Meriwether dike at known outcroppings in the northern third of the study area. The anomaly is probably due to a change of intensity of reflected infrared radiation from the vegetation growing in the soil derived from the diabase. It is suggested that this technique might be applied to other areas of eastern North America to determine outcrop patterns of the dikes in areas not yet geologically mapped.

Many problems currently exist concerning the diabase dikes which surround the North Atlantic Ocean such as dating, distribution and chemistry. It is hoped that more economic and efficient methods such as those suggested in this study will lead to the location of unmapped dikes, thus presenting a more complete picture of the distribution and role of these dikes in the history of the opening of the North Atlantic Ocean.

36

L CLUSSES AND L

.....

Standard Sufferences &

APPENDICES

121.1

APPENDIX I

GRAVITY SURVEYS AND DATA REDUCTION

Gravity data were collected and reduced by standard techniques (Dobrin, 1960). The data consist of 242 points in total including base stations - 201 gravity observations are along five detailed lines and 41 gravity observations are regional data.

The gravimeter used was the Worden Educator, Model 113. The reading precision of this meter, when read by a single operator, is approximately ± 0.1 milligals. Instrumental drift for the Worden gravimeter for an eight hour period is typically 0.2 milligals, but can be as high as 0.5 milligals for the same period. The gravimeter was stored in the field vehicle each night preceding a survey to minimize the instumental drift due to temperature change. The uncertainty in drift and reading precision combined give a gravity precision of ± 0.2 milligals. In all, three different base stations (Dorman and Ziegler, in preparation, Georgia Department of Mines, Mining and Geology) were used to correct for instrumental drift. Pertinent data concerning these base stations are given in Table 1.

The observed drifts are given in Table 2.

A A a base a serie for a

	Base		Gravity	Estimated
Name	Number	Location	Value	Precision
Atlanta D	4	Georgia Tech	979527.37	<u>+</u> 0.023
LaGrange	33	City Hall	979484.42	<u>+</u> 0.014
Greenville	63	Meriwether County Court House	979489.58	<u>+</u> 0.05

Table 1. Gravity Base Stations Used in this Study

Table 2. Instrumental Drift for Worden Gravimeter

Station Nos.	Georgia Tech Gravity Survey No.	Drift (Mgals/hr)	Time Between Base Stations
1 - 49	36	-0.074	6.1 hours
1 - 33	46	-0.018	9.8
1 - 48	51	0.000	7.4
48 - 72	51	-0.109	3.9
72 - 95	51	0.016	2.3
4 - 20	52	-0.053	2.8
20 - 41	52	-0.121	3.8

L Frank Mark L

۰.

The gravity data were corrected for latitude effect by using the international gravity formula of 1930 (as given in Dobrin, 1960, page 187) and drift corrections for the meter by assuming linear meter drift between subsequent occupations of the base station. The standard Bouguer reduction density of 2.67 gm/cm³ was used to compute the Bouguer anomalies.

Elevation and location control were obtained from the following U. S. Geological Survey, 7½ minute topographic maps: Greenville (1971), Gay (1971), Warm Springs (1971), and Woodbury (1971). Where possible bench marks (\pm 1 foot) or intersection elevations (assumed \pm 5 feet) were used. Elevations of stations for which bench marks or intersections were not available were obtained by interpolating between contour lines (20 foot contour interval) and confirming those interpolations with barometric altimetry data. Elevations obtained by this technique were estimated to be plus or minus five feet. The resulting uncertainty in the reduced gravity values is thus ± 0.35 milligals. Because of the relatively shorter distance between stations along detail lines, and hence shorter times between gravity and barometric readings errors in drift for these measurements were considered less. This results in an estimated precision of ± 0.2 milligals for the reduced gravity values for stations along detail lines.

The data, in the standard Department of Defense computer card format, are listed by individual surveys in Table 3 (Figure 19). 40

sc	ŲF	iC	E	HQ				Ŧ.	T	Ĺ	-				-																								**																							1	c	00	ЭE	0	8	¥				0	AT	E	c	00	E C		
ECURITY CLASS	ECURITY CONTROL	F OG UNITS	N 4 4 201			LATITUDE					3 = + = =	2 H H H			LONGITUDE					TYPE RLEVATION	INITS	20		and the second se	ELEVATION						CITES SURVEY	AL RUATION	NOI LAND						76 Q3AE3580	GRAVITY DO	0				0012 ALD	ANOMALY				IGN		BOUGUER	(DENSITY 2.67)			50. 04 T.C.			SOURCE				BASE	REFERENCE	STATION	AAST DE SITE				SEQUENCE			FILF WAINTENANCE		FAT STD. DEV.	FHEE AIR		EST STO. DEV.	20000a
0	0		2	0 (0	0:	0		i	10	0		ĩ) (1	0	0	0		0		1	0 (0 1	0 (-		e	0	0	0	0.	.0	9		1) () (1	0 0)) (0	0 1	0.0	0	0	0	0	0	0.1					0	0	0	0	0	0	0	0	0	0	10) ()	0	0	0	0	0	0	0	0
1	1	1	4	1		1	8	* 1	10		2 1:	1	6 2	3 P	6 1	1	1		1	1	1		4 3	8 1 1 1				1	1	31 1	12. 1	10 1	34 1	1	3	1	1		8 4 1 1	• •	14	24	3 4		15 (1 1	1 1		1	99 9 1	1	1 1	រ រ រ	H 9			1	1	1	81	10 1	1		-	1	1	1	1	1	1	1 72	1	1	1	1	n 1	74	70	10
																																•	•																	1		•						•			1	9		•									I,						
-	4					4		4	"									"	1									•		4	•	2	4	2																									4				-	-	-	-	ľ						ľ	-	Ľ	4	ľ		•
]]	3	3	3	3	3	3	3	3	3	1	13	13	13	13		3	3	3	3	3	3	3:	5]	3	3 :	3	3	3	3	3	3	3	3	3		13				3 3			3	3	3	3 :	3	3	3	3	3	3]	3	3		3	3	3	3	3	1	3	3	3	3			13	3	3	3	3	3	3	3	3	3
4	4	4	1	4	4	4	4'	4	4	"	14	1	14	1	14		4	1	4	4	4	4.	1	4	4	4	1	4	4	4	4	4	4	4	4	1	14	1	11	14	6 4	1	"	•	4	4	4	4	4	4	4	4	4	4	"	4	14	4	4	4	4	4	4	4	4	4	4		14		14	4	1	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5 5		5 5	5 1	5 1	5	5	5	5	5	5	5 !	5	5	5 1	5 9	5	5	5	5	5	5	5	5	5	1	5 9	5 9	5 9	5 5	5 :	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5		5 5	5 1	5 5	5	5	5	5	5	5	5	5
6	6	6	6	6	5	6	5	6	6	6	5 6		5 6	1	1	5	6	6	6	6	6	6 1	6	6	6	6 (6	6	6	6	6	6	6	6	6	1	5 (6 (6 (6 (6 (6	5	6	6	6	6 (6	6	6	6	6	6	6	6	6	5	6	6	6	6	6	5	6	6	6	6		5 (6 1		1	6	6	6	6	6	6	6
1	7	7	7	7	7	7	1	1.	7	7	11	1	11	11	11	1	1	7	7	7	1	1	1	1	1	1	1	1	7	7	1	7	1	1	7	1	17	1	1	11	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	7	1	1	1	1	7	7	1	1	7	1	1	1	1	11	11	11	1	7	1	7	1	7	7	1
		8	8			8	8		8									8												1	1	8								= 1						1						1										8			8													8	1
q	9	4	9	4	9	q	q	q.	9	4						9	9	9	Q	9	9	9			9	9 9	9	9	9	9	9	9	9	9	9					1	9 9		9	9	9	9	9 !		9		9	9		9	9	9		9	9	9	9	9	9	9	9		19			1 9	9 9	1	1	19	9	9	9	9	9
Ľ	1	1	4	1	6	1	1			1	2 1	11	4 8	\$ 1	1	1	16	1	2	n	2		N	8 1		1		n		31	n	n	ж	25			13				11 4	12	0	H	13	4	17 4	i j	-	-	ST :		<u>.</u>	H			13	9	-	-	12	6.3	u	-	-		1		8 7		1 7	2 7	17	17	7	n	m	n	
	E.	CLUNFOCSE	JI CON	CI LA FI RE	FF	FICEN		D	SS	I (COM	1.	1))																T-234	YI	PE A	E NI	0	F	E	RI	E	CERC	AT		7	(C	ol	. :	21)									L	E		THON		N F	EA	N	S IF	TA	A	T	10 0	N TO		NNN	I. DE	23	1.2 TH	1F	•		
	ŞE			E DE				DN		R	TIN	(Ce		2	-			C	E	E	u P	L	OY	E	ES				5678			EKKK	REEE	SL BO	80 19 01 01		AC ON	2M E 4 (4 (90		ES	SE/E/	A .			EL	1								U	PI	PL	EOE	M	EN S	T	A	L	END	L	E	V/	KE		DN		C.	əl.	3	1-	35)
	3:	NOLIFO	MI	R TE	EI D GI	D	AS IS IA	SE	MI	E NA	TO TH	ON	0	NC	IG	R	E	E	AS	A	BL	E	TO	0							- 1	NI	TH	E	SLA		E	BOAC	E	(A) TC	BOM	BLC	EL	SE O SI	W W	SEL	EV A EV	LIE		E	-						BC	UPL	GL	JE	R	GI	N	O.R	M	A	Y	AL	Ç	-		50	-5	4)	AH				
		REMO	E Q D A	UI	RE	D D	EFHA	OR		IST			NA	HO	RIA		TC EC), 1		IN N	RECL		DE	S	Y	e	TC	:.)			RODE			E	CCN	AF	202	80		TOTO		B	EL	OVN.	WE	SE	-		EV	EEE	5	E	78				1	SC).	0	R	T.	C	. (COS		DE	(C	ol	0	56	2	0	R	TE	RR	A P	IN	
	GE	DE	Groo	RA	P	H	IC D MI	EG	JN	11	SA	(CH NOF	DIS	I. MILEC	3)	ES	I T	0	.0	11	418	IU	TE	E					Eerz		ENEA	KET	NT HC		0	N	U	NITE	T	5	(C	0	I.	22	2)												RA NC TE ISI	R	SO AA TA	IN	ACCE	IS OF AF	GI	EN EN	CTAL	10 10	NONGO	DC R GIV	T.IVIEN	UM EN	IN IN	D			ME	NT	T	

100.212

PREVIOUS EDITION OF THIS FORM WILL BE USED UNTIL STOCK IS EXHAUSTED

General &

DoD GR

Figure 19. Standard Department of Defense Gravity Coding Form.

Gravity Survey GT 36 (Includes Data for Profile B-B')

12345678901234567890	12345678901234	5678901234	567890123450	5789012345	678901234	567890
334640 - 842370	1 2984	3527367-	2305- 5633	GT36 GA4	2 1	1
332121 - 844745	1 3064	3510125-	295- 3714	6136 GA4	2 2	
33 240 - 85 180	1 2353	3484422-	2473+ 5n97	GT36 GAU	2 3	:
13 172 - BUH278	1 2651	3449586-	Duba 1001	CTIC CAN		1
33 472 - 044210	1 2001	3489380-	744- 3401	0130 GA4		1
33 1/0 - 044232	1 2426	3498070-	798- 3504	GT36 GA4	2 5	3
33 184 - 844217	1 2369	3498/50-	913- 3556	GT36 GA4	26	3
33 197 - 844195	1 2499	3496398-	763- 3551	GT36 GA4	27	3
$33\ 203 - 844178$	1 2606	3494070-	674- 3581	GT36 GA4	2 8	3
33 214 - 844164	1 2554	3495086-	749- 3598	GT36 GA4	2 9	3
33 228 - 844147	1 2579	3494789-	721- 3598	GT36 GA4	2 10	
13 244 - Au4133	1 2560	1405625-	689- 1555	CT36 CAN		
11 251 - 844000	1 2612	1405133-	610- 3-13	CTTS CAN		3
33 240 - BUDIOE	1 256	3495103-	677- 3533	0130 GA4.	2 12	3
22 500 - 644102	2 2306	3440102-	013- 3530	G130 GA4	2 13	3
33 267 - 844086	1 2600	3496102-	579- 3479	GT36 GA4	2 14	3
33 272 - 844066	1 2615	3495281-	621- 3538	GT36 GA4	2 15	3
33 273 - 844057	1 2606	3495492-	630- 3537	GT36 GA4	2 16	3
33 274 - 844046	1 2591	3495961-	631- 3521	GT36 GA4	2 17	3
33 277 - 844037	1 2569	3496383-	658- 3524	GT36 GA4	2 18	3
33 280 - 844028	1 2582	3495664-	696- 3576	GT36 GA4	2 19	
13 204 - A44020	1 2597	1405758-	646- 3643	GT36 GAU	2 20	
13 209 - 844013	1 2570	1405758-	711- 3000	GT16 CA4	2 21	3
13 205 - 844404	1 2576	3495130-	653- 3005	CT16 CA4	2 24	3
35 245 - 644004	2375	3490001-	055- 3525	6130 GA4	6 66	3
33 300 - 843995	1 25/3	3496609-	650- 3526	GT36 GA4	2 23	3
33 304 - 843987	1 2569	3497555-	579- 3445	GT36 GA4	2 24	3
33 309 - 843978	1 2544	3498188-	601- 3439	GT36 GA4	2 25	3
33 312 - 843975	1 2556	3498367-	550- 3401	GT36 GA4	2 26	3
33 314 - 843970	1 2567	3498375-	518- 3382	GT36 GA4	2 27	3
33 317 - 843965	1 2557	3498461-	544- 3396	GT36 GA4	2 28	3
13 319 - 843962	1 2545	3498766-	553- 3192	GT36 GAUS	2 29	8
33 323 - 843951	1 2532	1498891-	587+ 3411	GT36 GAU	30	
33 326 - 843942	1 2564	1498438-	530- 3193	GT36 GA4	3 31	3
	1 085-			0130 0A4		3
33 320 - 043932	4 2007	3498391-	200- 3419	G136 GA4	2 32	3
33 330 - 843923	1 2002	3498090-	533- 3380	G136 GA4	2 33	3
35 331 - 843915	1 2506	3498391-	542- 3405	GT36 GA4	2 34	3
33 332 - 843905	1 2571	3498383-	530- 3398	GT36 GA42	2 35	3
33 333 - 843895	1 2565	3498375-	550- 3412	GT36 GA4	2 36	3
33 335 - 843886	1 2536	3499016-	579- 3408	GT36 GA4	2 37	3
33 337 - 843877	1 2512	3499008-	656- 3458	GT36 GA4	2 38	3
33 339 - 843858	1 2530	3498867-	617- 3439	GT36 GA4	2 39	3
33 341 - 843833	1 2536	3498219-	666= 3495	GT36 GAU	2 40	
13 346 - 643618	1 2473	1409664-	726- 3484	GT16 CAN	0 41	
13 356 - 903001	1 2500	-400086-	700- 3404	GT36 CA4	- 44	2
33 343 - 803784	1 2510	3499000-	679- 3490	0130 GA4	2 42	3
33 363 - 043/64	2018	3490901-	0/0- 340/	G136 GA4	2 43	3
33 450 - 843619	2286	35054//-	862- 3412	GT36 GA4	2 44	3
33 563 - 843447	1 2536	3501578-	635- 3464	GT36 GA42	2 45	3
33 314 - 843970	1 2567	3498273-	527- 3391	GT36 GA4	2 46	3
33 178 - 844232	1 2426	3497859-	819- 3525	GT36 GA4	2 47	3
33 172 - 844278	1 2651	3489586-	944- 3901	GT36 GA4	48	1
33 240 - 85 180	1 2353	3484422-	2473- 5097	GT36 644	49	1
33 172 - 844278	1 2651	3489445-	957- 3014	GT36 GAL	50	1
13 240 - A5 180	1 2353	3484422-	2473- 5007	GT36 644	51	1
132121 - 844745	1 3064	1510680-	310- 3/50	CT36 CA4	5 53	
34640 - 049770	1 3084	-527347-	237- 3630	G130 GA4	5	1
121466780010-4667800	4 £904	532/30/-	2303- 3633	0130 GA4	33	1

Table 3. Gravity Data

567890

t territerile,

• - •

Table 3. (Continued)

Gravity Survey GT 46 (Includes Data for Profile E-E')

1234567890	12	3456789	01	2345678901234	678901234	567890	123456	78901	234	567	8901234	567890
334640	-	842370	1	2984	3527367-	2305-	5633	GT46	GA	4	1	
332248	•	844802	1	3051	3510453-	480-	3883	GT46	GA	4	2	÷.
331998		844812	1	2950	3511008-	389-	3680	GT46	GA	4	3	î
331976	-	844685	1	2962	3511320-	292-	3596	GT46	GA	4	4	Ê
331984	-	844627	1	2936	3511828-	333-	3608	GT46	GA	4	5	3
331989	-	844591	1	2819	3513875-	494-	3639	GT46	GA	4	6	5
331992	-	844566	1	2850	3513836-	407-	3587	GT46	GA	-	7	5
331998	-	844537	1	2841	3514570-	372-	3540	GT46	GA	4	Å	5
332008	-	844507	1	2743	3516547-	487-	3547	GT46	GA	4	ğ	1
332011	•	844498	1	2771	3516047-	458-	3549	GT46	GA	4	10	5
332016	-	844475	1	2751	3516781-	450-	3519	GT46	GA	4.	11	
332016	•	844467	1	2733	3517211-	464-	3512	GT46	GA	4	12	
332017	-	844458	1	2719	3517945-	436-	3468	GT46	GA	4	13	3
332017	•	844448	1	2682	3518734-	469-	3461	GT46	GA	4	14	3
332017	-	844440	1	2643	3519023-	561-	3509	GT46	GA	4	15	5
332017	-	844431	1	2682	3518773-	465-	3457	GT46	GA	4	16	2
332017	-	844427	1	2686	3518969-	436-	3431	GT46	GA	4	17	5
332016	-	844423	1	2640	3520055-	466-	3411	GT46	GA	4	18	3
332015	-	844413	1	2608	3520563-	513-	3422	GT46	GA	4	19	3
332013	-	844406	1	2585	3520406-	598-	3481	GT46	GA	4	20	5
332012	•	844395	1	2560	3520695-	643-	3499	GT46	GA	4	21	
332012	-	844383	1	2541	3521008-	671-	3506	GT46	GA	-	22	
332012	-	844374	1	2587	3519969-	634-	3520	GT46	GA	4	23	
332012	-	844354	1	2621	3520438-	480-	3404	GTAA	GA	-	24	3
332012	-	844343	1	2545	3521133-	646-	30.85	CT46	CA		25	3
332007	-	844310	1	2500	3521750-	690-	3400	GTHE	GA		25	2
332001		844277	1	2414	3523875-	762-	3455	GTUS	GA	4	20	2
331996		844252	1	2390	1523305-	858-	3435	CTUS	GA		27	2
331992	-	844152	ī	2640	3517711-	641-	3004	CT46	GA		20	2
332036		844107	1	2682	3519266-	443-	3435	GTAA	GA	4	10	2
332013	-	844406	1	2585	1520094-	620-	3612	CT/A	CA		30	3
332248	-	844802	ī	3051	1510063-	518-	3021	CT46	UR CA		31	5
334640	-	842370	ī	2984	3527367-	2305-	5/33	GT46	GA		36	1
2345678001	21	456789	n12	3456780012-45	678001234E	< 7000 ··	3-454	700410	UA.	2.	33	1

a subset of the survey s

......

Table 3. (Continued)

Gravity Survey GT 51 (Includes Data for Profiles A-A', C-C', and D-D')

11444	1012	34567	89(70	12	3456789012	345678901234	567890	123456	578901	23456	78901234	56789
33464		8440	10	:	2904	352/36/-	2303-	5633	6151	GA63	1	1
33 1	14	0442	10	*	2051	3489578-	944-	3901	GT51	GA63	2	1
35 1:		8441	20	+	2652	3493203-	558-	3516	GT51	GA63	3	3
35 1	19 -	8440	19	÷.,	2432	3497875-	715-	3428	GT51	GA63	4	3
33 9	90 ·	- 8440	33	1	2231	3501109-	974-	3463	GT51	GA63	5	3
33 (53 -	- 8439	59	1	2393	3498719-	677-	3346	GT51	GA63	6	3
3259	52 .	- 8437	58	1	2545	3497797-	147-	2986	GT51	GA63	7	1
32590	14 -	- 8436	77	1	2502	3499125-	79-	2071	GT51	GAGS	8	
3258	3 -	- A442	73	1	2697	1488992-	367-	3976	CTEL	CAGE	ő	
3258	4 .	8442	05	ī	2710	-4460031-	200-	3-12	CTE4	GAGS		1
1258	7 -	Aubo	75	1	275-	3409500-	277-	3,322	6121	GADJ	10	1
32.50		0440		•	2132	3490300-	51-	3121	G151	GA63	11	1
32304		0440	27	÷.,	2007	3489200-	38-	3169	GT51	GA63	12	5
3256	. 10	8440	10	1	2679	3492508-	123-	3111	GT51	GA63	13	5
32586	50 ·	8439	91	1	2606	3493625-	250-	3157	GT51	GA63	14	5
32586	- 9	8439	84	1	2600	3493820-	262-	3162	GT51	GA63	15	1
32586	30 -	8439	77	1	2627	3493398-	233-	3164	GT51	GA63	16	÷.
32589	4 -	8439	70	1	2627	3493203-	272-	3203	GTSI	GALS	17	
32590	4 -	8439	54	1	2701	1402273-	163-	1.65	CTEL	CACE	14	2
32590	2 -	8430	38	ī	2701	-402430-	134-	3103	CTEL	GAOJ	10	2
32590	1 -	8439	07	ī	2610	3492164-	214-	3147	CTEL	GAOS	19	5
1250	2 -	AUTO	17	1	2640	3401077-	100	3133	0131	COND	20	1
12500	1	8430	28	1	2674	37937/10	140-	2042	6151	GA63	21	5
36570	2	0439	10	1	20/0	3443153-	15/-	3130	6751	GA63	22	5
36370		0430	77	-	8002	3493430-	171-	3136	GT51	GA63	23	5
32370	2 .	6438			2/07	3492625-	107-	3126	GT51	GA63	24	5
35241		8438	/4	1	2637	3494516-	139-	3080	GT51	GAS3	25	5
32592	- 3	8438	11	1	2573	3497289-	72-	2942	GT51	GA63	26	1
32591	5 -	8438	64	1	2612	3495289-	139-	3053	GT51	GA63	27	5
32591	6 -	8438	54	1	2563	3496984-	121-	2980	GT51	GA63	28	š
32591	7 -	8438	93	1	2530	3497680-	156-	2078	GTSI	GA63	29	
12591		8438	83	1	2530	7407984-	00-	0011	CTEL	CACT		2
1259	ō _	A430	27	ĩ	255.	-400210-		2431	6151	GADJ	50	5
32502	2 -	8430	14	;	256	3470417-	40-	2885	6151	GA63	31	5
32572	-	0430	10	2	2006	3497030-	30-	2899	GT51	GA63	32	5
32372		84384	1		2524	3498297-	118-	2933	GT51	GA63	33	5
32595	2 -	84374	10	1	2545	3498063-	120-	2959	GT51	GA63	34	1
32594	3 -	84377	74	1	2633	3496250-	16-	2954	GT51	GA63	35	5
32593	4 -	84379	90	1	2554	3497523-	122-	2971	GT51	GA63	36	5
32592	9 -	84380	2(1	2551	3497484-	127-	2973	GT51	GA63	37	5
32595	7 -	84376	52	1	2524	\$498063-	193-	3008	GT51	CAAS	18	
32597	4 -	84376	52	1	2548	1497680-	178-	3020	GTEL	CAAT	19	2
32590	3 -	64376	2	1	2603	-406672-	116-	3040	CTEL	0403		5
13 0	6 -	84371	12	ĩ	2470	-400141-	400-	3040	0151	GAGS	40	3
	4 -	A# 370		÷ .	2472	3490240-	440-	2141	6151	GADJ	41	3
35 4	2]	043/0	1	:	2478	3498217-	43/-	3201	G151	GA63	42	3
33 9		04301	E	÷.	2505	3499100-	508-	3063	GT51	GA63	43	3
35 14	0 -	84351	U		2502	3501148-	209-	3000	GT51	GA63	44	3
35 16	5 -	8435	22	1	2496	3500766-	291-	3076	GT51	GA63	45	3
33 16	9 -	84360	12	1	2240	3505859-	579-	3078	GT51	GA63	46	3
33 18	8 -	84372	27	1	2149	3506555-	818-	3215	GT51	GA63	47	1
33 17	2 -	84427	8	1	2651	3489578-	944-	3901	GTSI	GA63	48	1
33 46	7 -	84435	9	1	2539	3493922-	1261-	4093	GTSI	GALT	49	-
33 46	5 -	84446	0	1	2685	3490383-	1160-	4156	GTEI	GALT	60	5
13 40	7 -	ALLAN	30	1	242-	1406790_	1471-	41.00	CTET	CAND	50	.3
13 50	Á -	Runn	0	1	2570	3493109	14/14	+1/4	GIDL	UA65	51	3
13 50	2 -	Autor		1	2627	34923334	1305-	4202	GISI	GA63	52	5
30 09	-	04440			2021	3492330-	1510-	4249	6151	GA63	53	3
33 39	1 -	84437	0	4	2545	3495359-	1267-	4106	GT51	GA63	54	1
32 29	8 -	84425	NA .		2609	3494609-	1155-	4066	GT51	GA63	55	3
33 60	9 -	84418	17	1	2615	3495156-	1095-	4012	GT51	GA63	56	3
33 52	0 -	84419	0	1	2307	3500883-	1351-	3925	GT51	GA63	57	3
33 47	8 -	84416	2	1	2362	3500516-	1161-	3796	GT51	GAAN	58	
33 56	8 -	84360	7	1	2234	3506375-	1093-	3585	GTSI	GAAR	50	3
33 50	1 -	84367	6	1	2321	1504A52-	1005-	3005	CTEN	CACE	57	3
13 41	A -	AUTED	4	ī	2170	-500147-	1003-	3593	CTCI	GADJ	00	1
11 30	3 -	84343	6	1	2360	35085674	4124	3334	6151	0A63	61	3
33 39	-	04000		•	2305	3504055-	681-	2350	6151	GA63	62	3
	~ ~	84361	1		2320	3504836-	577-	3165	GT51	GA63	63	3
35 21	-	****				E (- 0						
33 35	7 -	84372	7	1	2414	3201002-	725-	3418	GT51	GA63	64	3

A + - 2 - 1 - 1 - 1 - 1 - 1

.

.........

1. A. S.

Table 3. (Continued)

Gravity Survey GT 51 (Continued)

12345678901	234567890	12345678901	2345678901234	567890123456	789012345	67890123	4567890
33 390	- 843870	1 2509	3499047-	736- 3534	GT51 GAE	3 66	3
33 437 .	- 843877	1 2243	3504266-	1097- 3600	GT51 GA6	3 67	3
33 488 .	- 843875	1 2533	3499258-	773- 3599	GT51 GAE	3 68	3
33 488	- 843921	1 2505	3499273-	857- 3651	GT51 GAG	3 69	3
33 428	- 844073	1 2566	3497359-	778- 3641	GT51 GAG	3 70	
33 344	- 844192	1 2641	1492906-	873- 3021	GTS1 GAG	3 71	
13 172	- 84427A	1 2651	1489578-	944- 3001	GTS1 GAG	3 72	
33 272	- 844065	1 2616	1405016-	647- 3564	CTEL CAC	1 71	1
-3 243	- 044005	1 054	-405808-	670- 3-77	GTEL CAC	3 75	.5
33 243	044010	1 2006	3493090-	0/0- 3533	GISI GAC	13 74	3
33 194	- 844018	1 2502	3490/07-	711- 3503	GISI GAC	13 13	. 5
33 213	- 844000	1 2612	3495320-	545- 3459	GT51 GAE	13 76	5
33 216	- 843983	1 2573	3496477-	556- 3425	GT51 GAE	3 77	3
33 206	- 843961	1 2594	3496703-	453- 3347	GT51 GAE	3 78	5
33 194	- 843947	1 2539	3497164-	561- 3393	GT51 GAE	3 79	5
33 193	- 843936	1 2521	3498125-	520- 3331	GT51 GAE	3 80	5
33 193	- 843926	1 2493	3498859-	531- 3312	GT51 GAE	3 81	5
33 193	- 843917	1 2463	3499633-	547- 3294	GT51 GAE	3 82	5
33 103	- 843913	1 2454	3498625-	676- 3413	GT51 GAG	3 83	6
13 103	- 843000	1 245#	1409008-	638- 3175	GTS1 GAG	3 84	18
33 193	- 843882	1 2463	3499086-	602- 3349	GT51 GAR	3 85	5
13 102	- 843872	1 2441	14000A6-	667- 3190	GTS1 GAG	3 86	
13 109	- 841062	1 2444	*#0900A-	670- 3103	GTS1 GAG	3 87	3
13 102	- 843846	1 2402	\$400617-	715- 3414	GTEL CAR	3 07	5
33 102	- 8/13026	1 212-	-501313-	A11- 3414	GTEL CAR	3 00	3
33 198	- 043820	1 2023	3501515-	011- 3402	GIDI GAC	13 67	5
33 192	643803	1 2292	3502080-	82/- 3384	GISI GAE	5 90	5
35 192	- 643700	2 2005	3501010-	122- 3321	6151 GAC	12 91	5
33 192	- 643/62	1 2246	30042424	153- 3254	GIDI GAC	5 92	5
33 191	- 843743	1 2164	3506484-	780- 3194	GT51 GAE	3 93	5
33 186	- 844214	1 2341	3498609-	1016- 3627	GT51 GAE	3 94	5
33 172	- 844278	1 2651	3489578-	944- 3901	GT51 GAE	3 95	1
33 233	- 844301	1 2618	3489883-	1098- 4018	GT51 GAE	3 96	3
33 393	- 844134	1 2627	3496133-	665- 3595	GT51 GA6	3 97	5
33 428	- 844073	1 2566	3497055-	808- 3671	GT51 GAE	3 98	3
33 433 .	- 844054	1 2560	3497398-	800- 3656	GT51 GAE	3 99	5
33 438	- 844035	1 2551	3498328-	741- 3587	GT51 GAG	3 100	5
33 440	- 844023	1 2573	3497711-	740- 3610	GT51 GAG	3 101	5
33 440	- 844019	1 2597	3497750-	662- 3559	GT51 GAG	3 102	5
13 442	- 844010	1 2560	-497977-	754- 3610	GT51 GAG	3 103	i i
33 444	- 844005	1 2546	1408438-	759- 3598	GTSI CAG	3 104	8
33 449	- 843005	1 2545	-402750-	734- 1573	CTEL CAS	1 105	
33 482	- 843085	1 240-	3490750-	936- 1/19	GTE1 CAG	3 105	3
33 456	- 843963	1 2504	3499507-	707- 3400	GTS1 GAD	3 100	2
33 430	643907	1 2342	3490430-	101- 3622	GISI GAG	3 107	5
33 469	- 843931	4 2042	349/004-	0/9- 3714	GIDI GAG	5 108	5
33 981	- 843939	2548	3498064-	110- 3619	GT51 GAE	5 109	5
33 427	- 844106	1 2563	3496039-	918- 3777	GT51 GA6	3 110	5
33 497	- 844063	1 2390	3501133-	1041- 3706	GT51 GA6	3 111	5
33 540	- 844052	1 2280	3503750-	1177- 3720	GT51 GA6	3 112	5
33 579	- 844039	1 2481	3500125-	972- 3740	GT51 GA6	3 113	3
33 623	- 843998	1 2265	3504367-	1277- 3803	GT51 GAG	3 114	5
334640	- 842370	1 2984	3527367-	2305- 5633	GT51 GA6	3 115	1
12345678901	234567890	12345678901;	345678901234	567890123456	789012345	67890123	4567890

" to the state of the state of the

.....

Table 3. (Concluded)

Gravity Survey GT 52 (Regional Data)

234567890	12:	456789	0123	456789012	345678901234	567890	123456	78901	234567	8901234	567890
33 172	-	844278	1	2651	3489578-	944-	3901	GT52	GA63	1	1
33 240	-	85 180	11	2353	3484422-	2473-	5097	GT52	GA63	2	1
33 172	-	844278	1 1	2651	3489578-	944-	3901	GT52	GA63	3	
33 164	-	844307	1	2560	3490195-	1151-	4007	GT52	GA63	4	6
33 157	-	844387	1	2755	3485609-	997-	4071	GT52	GA63	5	
33 201	-	844474	1	2893	3482453-	951-	4178	GT52	GAAS	6	1
33 175	-	844427	1	2859	3483961-	868-	4057	GT52	GA63	ž	1
33 101	-	844373	1	2603	3489297-	1023-	3926	GT52	GA63	Å	-
33 76		844444	1	2603	3489609-	957-	3861	GT52	GAAS	ġ	
33 14	-	844383	1	2691	3488273-	732-	3734	6152	CA63	10	3
325947	-	844436	1	2786	3486852-	491-	3599	GT52	GAKS	11	3
325893	-	844443	1	2713	3487703-	558-	3584	GT52	GA63	12	3
325759	-	844498	1	2682	3489180-	320-	3112	CTE2	CACT	11	5
325754	-	844384	1	2792	34A7102-	183-	3008	GT52	CACE	15	9
325883	-	844260	1	2640	1490375-	504-	3048	CT52	CACS	15	3
325949	-	844246	1	2390	1495867-	A15-	3440	CTES	CACE	16	3
325913	-	844179	1	2380	3497766-	604-	3-50	CTES	CACI	10	0
33 16	-	844258	1	2560	3491563-	811-	3467	6152	CACZ	14	3
13 78		844258	1	2344	1406547-		3001	CTER	GADJ	10	D
33 172	-	844278	1	2651	140057A-	1000-	3601	0132	GADJ	19	6
33 175	-	844261	ī	2621	3491000-	898-	3022	GT52	GA63	21	1
33 174	-	844255	1	2560	3492883-	807-	3753	CTE2	CACE	22	
33 53	-	843907	ī	2377	1409430-	640-	3202	GTE2	CACI	24	0
33 33	-	843681	1	2438	3499438-	423-	3.43	CTE2	CACE	25	D
325999	-	843824	1	2545	3406891-	301-	3140	CTES	GADJ	24	0
325898	-	843582	ī	2420	3501367-	101-	3140	0152	GADJ	25	3
325978	-	843619	ī	2244	3504539-	429-	2035	CTES	GADJ	20	1
325821	-	843674	1	2270	3504007-	107-	2433	0132	GADJ	21	3
125827	-	843602	i	2187	3503007-	14/-	2734	6152	GA63	28	3
125820	-	843774	1	2890	35019454	444	2711	6152	GA63	29	3
325851	-	843852	1	2479	3499121-	80-	2702	6152	GA63	30	6
125841	-	Au 1004	1	2400	3497200-	12/-	2942	6152	GA65	31	3
125902	-	843005	1	2479	3490430-	300-	3088	GT52	GA63	32	6
11 115	-	043903 A#3730	1	2018	3494150-	216-	3137	GT52	GA63	33	1
33 113	Ξ.	043730	1	2313	3502211-	644-	3224	GT52	GA63	34	3
33 202	-	043/20	+	2374	3501695-	709-	3358	GT52	GA63	35	6
33 338	-	043542	+	\$240	3503578-	849-	3515	GT52	GA63	36	3
33 084	-	043509	+	2241	3500/81-	713-	3603	GT52	GA63	37	3
33 09/	-	043604	-	2597	3500563-	733-	3630	GT52	GA63	38	3
33 123	-	8436/0	-	2005	3499063-	740-	3702	GT52	GA63	39	3
33 /37	-	843791	1	2472	3503164-	913-	3671	GT52	GA63	40	3
33 172	-	644278	1	2651	3489578-	944-	3001	GT52	6443	11 1	

a substant to the second a

.....

S.C.W.W.

APPENDIX II

GROUND LEVEL MAGNETIC SURVEYS AND DATA REDUCTION

Measurements of the magnitude of the geomagnetic field were made using a Geometrics Model G-816 proton-precession magnetometer. The digital display has a resolution of \pm 1 gamma. The sensing element of the magnetometer is held at the end of an eight foot aluminum staff to suppress the magnetic effects of iron debris, e.g., beverage cans, small underground pipes, etc.

The data were reduced using standard techniques (Dobrin, 1960). The data consist of three detailed lines along graded dirt roads and a fourth along a two lane asphalt highway (Georgia State Highway 109). Approximately 0.016 kilometer was paced off between stations. Division of the actual length of the profile line by the number of station intervals yielded the actual station spacing. Times, needed for drift corrections, were recorded every ten minutes and the stations between time readings were assigned a time by assuming a linear sampling rate.

The variation in the main field over the area of investigation has been removed by approximating a gradient of 8.45%/mile at N3°W (Garland, 1971, Figure 17.2) by a simple latitude correction of 9.56%/ minute. Corrections for the diurnal variation were made using magnetograms of the Geomagnetic Observatory in Fredericksburg, Virginia (Figures 20 and 21) which were obtained from the World Data Center A of the National Oceanographic and Atmospheric Administration in

Boulder, Colorado.

These records were digitized and the vertical and horizontal components were added vectorily to give the magnitude of the total field. The difference between the computed total field and the value for the base line was taken to be the diurnal variation in the total field at Fredericksburg. Since the diurnal drift at any one place on the earth has been shown to be directly related to the hour angle of the sun (Matshusita and Campbell, 1965, Chapter 3) a shift of twenty-eight minutes was made in the drift curve so that it could be applied to the area of investigation. The variation of the diurnal drift with respect to latitude is negligible for the difference between Fredericksburg, Virginia and Greenville, Georgia (see Matshusita and Campbell, 1965, Figure 8, pages 321-323).

The computed latitude and longitude, time (Eastern Daylight Savings), raw magnetic value and corrected total magnetic field for each station occupied are given in Table 4.

A. S. S. S. S. S. S. S. S.

Figure 20. Magnetogram for May 5, 1973. (Courtesy National Oceanographic and Atmospheric Administration.

· · · · ·

Figure 21. Magnetogram for May 6, 1973. (Courtesy National Oceanographic and Atmospheric Administration.

kalender and and and a start of a

0.000

50

Table 4. Ground-Level Magnetics

Profile A-A', May 5, 1973

LAT	ITUDE	LONGITUDE	TIME RA	REDUCED	LAT	ITUDE	LONGITUDE	TIME	RAW	REDUCED
123	4567890	1234567890	12345678901	234567890	123	4567890	12345678901	2345678	901234	567890
33	3.030	84 42.670	15.483 535	94 53631	33	3.477	84 41.493	16.345	53605	53644
33	3.078	84 42.673	15.495 535	86 53622	33	3.488	84 41.481	16.357	53605	53645
33	3.126	84 42.676	15,507 535	84 53620	33	3.500	84 41.468	16.368	53617	53657
33	3.174	84 42.680	15.518 535	90 53625	33	3.511	84 41.456	16.380	53593	53633
33	3.222	84 42.683	15.530 535	9A 53633	33	3.523	84 41.444	16.392	53533	53573
33	3.270	84 42.686	15.542 535	BA 53623	33	3.534	84 41.432	16.403	53617	53657
33	3.318	84 42.689	15.553 536	09 53643	33	3.546	84 41.420	16.415	53622	53662
33	3.366	84 42.693	15.565 536	03 53637	33	3.558	84 41.408	16.427	53625	53665
33	3.414	84 42.696	15.577 536	18 53651	33	3.569	84 41.395	16.438	53627	53667
33	3.461	84 42.699	15.588 536	25 53658	33	3.581	84 41.383	16.450	53609	53649
33	3.500	84 42.702	15.600 536	32 53665	33	3.592	84 41.371	16.462	53622	53662
33	3.557	84 42.706	15.613 536	30 53662	33	3.604	84 41.359	16.473	53702	53743
33	3.605	84 42.709	15.627 536	36 53668	33	3.610	84 41.353	16.479	53721	53762
33	3.653	84 42.712	15.640 536	40 53671	33	3.615	84 41.347	16.485	53709	53750
33	3.701	84 42.715	15.653 535	86 53617	33	3.621	84 41.340	16.491	53705	53746
33	3.749	84 42.719	15.667 536	16 53647	33	3.627	84 41.334	16.497	53699	53740
33	3.797	84 42.722	15.680 536	17 53647	33	3.638	84 41.322	16.508	53667	53708
33	3.845	84 42.725	15.693 535	71 53601	33	3.650	84 41.310	16.520	53581	53622
33	3.801	84 42.706	15.707 535	94 53624	33	3.657	84 41.310	16.526	53647	53687
33	3.757	84 42.686	15,720 535	69 53599	33	3.665	84 41.310	16.532	53629	53669
33	3.713	84 42.667	15.733 535	95 53626	33	3.680	84 41.309	16.543	53616	53656
33	3.669	84 42.647	15.747 536	04 53635	33	3.694	84 41.309	16.555	53601	53641
33	3.625	84 42.628	15.761 536	06 53637	33	3.709	84 41.308	16.567	53589	53629
33	3.603	84 42.618	15.768 536	07 53639	33	3.724	84 41.308	16.576	53583	53623
33	3.581	84 42.608	15.775 538	02 53834	33	3.739	84 41.307	16.586	53587	53627
33	1.550	84 42.598	15.782 536	04 53636	33	3.753	84 41.307	16.595	53579	53619
33	3.537	Au 42.589	15.789 536	12 53644	33	3.768	84 41.306	16.605	53584	53623
33	1.491	84 42.569	15.803 536	11 53645	33	3.783	84 41.306	16.614	53602	53641
33	3.440	84 42 550	15.017 = 36	15 53460	33	3.798	84 41.305	16.624	53593	53632
33	3.405	84 42 530	15.933 536	10 53645	33	8.812	84 41.305	16.633	53620	53659
33	3.403	84 42 500	15.950 536	10 53651	13	3.827	84 41 305	16.647	53654	53695
33	3.407	84 42.500	15 667 536	17 53/50	13	3.0L/	84 41.304	16.653	53741	53779
33	3.409	04 42.410	15.007 530	17 53650	11	3.035	84 41 304	16.660	53824	53059
33	3.410	84 42.440	15,803 530	17 53650	33	3.042	84 41 304	16.667	53021	53063
33	34412	04 42.409	13.900 530	15 33040	33	3.049	84 41 304	16.673	53023	53078
33	3.414	84 42.379	13.917 530	24 53658	33	3.037	A. 41 303	16.680	53784	53024
33	3.416	84 42.349	13.926 530	05 53639	33	3.004	84 41 303	16.687	53760	53798
33	3.417	84 42.319	15.935 530	UA 33643	33	3.0/2	84 41.303	16.691	53710	53748
33	3.419	84 42.289	13,944 530	00 23632	33	3.019	84 41.303	16.700	53631	53671
33	3.421	84 42.259	15.953 530	05 53640	33	3.000	04 41.303	16 707	53033	51-17
33	3.423	84 42.229	13.962 535	90 53620	33	3.074	84 41.303	16 710	53014	53632
33	3.424	84 42.198	15.9/1 536	0A 53644	33	3.901	84 41.302	16 733	53394	53652
33	3+426	84 42.168	15.979 536	00 53636	33	3.909	04 41.302	10.122	33044	53661
. 33	3.428	84 42.138	15.988 535	93 53629	33	3.916	84 41.302	10.729	53040	53611
33	3.430	84 42.108	15.997 536	15 53652	55	3-923	84 41.502	10.730	53374	53611
33	3.431	84 42.078	16.006 536	07 53644	33	3.931	84 41.301	10.743	53495	53532
33	3.433	84 42.048	16.015 536	07 53644	33	3.938	84 41.301	16.750	5358A	53625
33	3.435	84 42,018	16.024 536	07 53644	33	3.945	84 41.301	16,758	53035	536/2
33	3.437	84 41.987	16.033 536	26 53663	33	3.953	84 41.301	10.705	53082	53719
33	3.439	84 41.957	16.053 536	36 53674	33	3.960	84 41.300	16.772	53604	53641
33	3.440	84 41.927	16.072 536	6n 53698	33	3.968	84 41.300	16.779	53603	53640
33	3.441	84 41.912	16.082 536	55 53693	33	3.975	84 41.300	16.786	53620	53656
33	3.443	84 41.882	16.101 536	55 53694	33	3.982	84 41.294	16.794	53581	53617
33	3.445	84 41.852	16.121 536	44 53682	33	3.988	84 41.289	16.801	53587	53623
33	3.446	84 41.837	16,131 536	35 53673	33	4.002	84 41.277	16.815	53593	53629
33	3.447	84 41.806	16.150 536	29 53667	33	4.015	84 41.266	16.830	53574	53610
33	3.449	84 41.776	16.161 536	39 53677	33	4.029	84 41.255	16.844	53633	53668
33	3.451	84 41.746	16.172 536	19 53658	33	4.042	84 41.243	16.858	53625	53660
33	3.453	84 41.716	16.183 536	94 53733	33	4.055	84 41.232	16.873	53666	53701
33	3.454	84 41.686	16,194 536	17 53656	33	4.069	84 41.220	16.887	53637	53672
33	3.456	84 41.656	16.206 536	07 53646	33	4.082	84 41.209	16.902	53601	53636
33	3.454	84 41.626	16.217 =36	03 53642	33	4.094	84 41.198	16.916	53564	53599
33	3.460	84 41.595	16.246 = 36	16 53655	33	4.100	84 41.186	16.930	53565	53601
33	3.461	84 41.545	16.275 E36	01 53640	33	4.120	84 41.175	16.945	53567	53603
31	3.462	AL U1 535	16.304 535	87 53424	33	4.136	84 41.164	16.959	53574	53612
11	3.465	Ru 41 505	16.311 636	04 53443	33	4.140	84 41.152	16.973	53341	53379
12	3456780	1234567890	12345678001	234567890	12	3456789	01234567890	1234567	890123	4567890
				m.1 * * * * * * * * * *						and the second se

1. 125

142 2 m 2 m

* * * * * * * * *

Table 4. (Continued)

Profile A-A' (Continued)

LAT	ITUDE	LON	GITUDE	TIME	RAW	REDUCED
123	4567890	1234	5678901	2345678	901234	567890
33	4.103	84	41.130	17.002	53397	53628
33	4.190	84	41.118	17.017	53595	53631
33	4.203	84	41,107	17.029	53591	53627
33	4.216	84	41.095	17.042	53593	53628
33	4.230	84	41.084	17.054	53610	53645
33	4.243	84	41.073	17.067	53589	53624
33	4.257	84	41.061	17.367	53605	53639
33	4.203	84	41.050	17.378	53604	53636
33	A.26A	84	41.030	17.389	53593	53627
33	4.266	84	41.010	17.401	53585	53619
33	4.264	84	40.990	17.412	53506	53540
33	4.262	84	40.970	17.424	53595	53629
33	4.260	84	40.950	17.435	5359A	53632
33	4.208	84	40,930	17.450	53005	53629
33	4.254	84	40.910	17.460	5350F	53639
33	4.252	84	40.870	17.481	53605	53639
33	4.250	84	40.850	17.492	53557	53591
33	4.255	84	40.832	17.504	53589	53623
33	4.260	84	40.814	17.515	53612	53646
33	4.205	84	40.796	17.526	5301A	53652
33	4.275	84	40,779	17.549	53021	53655
33	4.280	84	40.743	17.561	53613	53647
33	4.285	84	40.725	17.572	53614	53647
33	4.290	84	40.706	17.583	53609	53642
33	4.295	84	40.687	17.596	5360A	53641
33	4.301	84	40.668	17.608	53615	53648
33	4.311	84	40.631	17.633	53622	53659
33	4.316	84	40.612	17.646	5362A	53661
33	4.321	84	40.593	17.658	53624	53657
33	4.326	84	40.574	17.671	53629	53662
33	4.332	84	40.555	17.683	53624	53657
33	4.337	84	40.536	17.696	53654	53688
33	4.342	84	40.517	17.708	53051	53605
33	4.352	84	40.479	17.733	53667	53701
33	4.355	84	40.470	17.741	53695	53729
33	4.357	84	40.460	17.749	5376A	53A02
33	4.35A	84	40.449	17.757	53631	53665
33	4.360	84	40.439	17.764	53644	53678
33	4.363	84	40.418	17.780	53657	53691
33	8.36A	84	40.387	17.803	53734	53768
33	4.370	84	40.377	17.811	53732	53766
33	4.372	84	40.366	17.819	5365n	53684
33	4.373	84	40,356	17.827	53673	53707
33	4.375	84	40.346	17.834	53655	53689
33	4.3/7	84	40.335	17.050	53059	53700
33	4.382	84	40.304	17.864	53676	53710
33	4,385	84	40.283	17.877	53707	53741
33	4.388	84	40.263	17.891	53719	53753
33	4.392	84	40.242	17.905	53749	53783
33	4.393	84	40.231	17,912	53784	53A18
33	4.395	84	40.221	17.919	53852	51081
33	4.397	84	40.200	17,925	53049	53056
33	4.400	84	40,190	17.939	53965	53999
33	4.403	84	40.181	17.946	54111	54145
33	4.407	84	40.171	17.953	54592	54626
33	4.410	84	40.162	17,960	54246	54280
123	4567890	0123	4567890	1234567	890123	4567890

24

LAT	TUDE	LON	GITUDE	TIME	RAW	REDUCED
123	4567890	1234	5678901	2345678	001234	567890
33	4.413	84	40.153	17.967	54096	54130
33	4.416	84	40.144	17.976	53488	53522
33	4.420	84	40.134	17.985	54541	54575
33	4.423	84	40.125	17.994	53550	53584
33	4.426	84	40.116	18.003	53564	53598
33	4.429	84	40.107	18.012	53587	53621
33	4.433	84	40.097	18.021	53599	53633
33	4.436	84	40.088	18.030	53623	53657
33	4.439	84	40.079	18.039	53602	53636
33	4.443	84	40.069	18.048	53037	53760
33	4.446	84	40.000	10.000	53126	53760
33	8.449	84	40.0031	18.072	53719	53487
33	4.452	84	40.032	18.077	53491	53617
33	4.450	84	40.023	18.083	53505	53539
33	4.462	84	40.014	18.088	53511	53545
33	4.465	84	40.005	18.093	53511	53547
33	4.469	84	39.995	18.099	53517	53551
33	4.472	84	39.986	18.104	53515	53549
33	4.479	64	39,967	18.115	53524	53558
33	4.485	84	39.949	18.126	53536	53570
33	4.492	84	39.930	18.136	53540	53574
33	4.498	84	39.912	18.147	53554	53588
33	4.505	84	39.893	18.158	53561	53595
33	4.511	84	39.813	18.170	53334	53500
33	4.524	84	10.838	18.190	5355a	53592
33	4.51.	84	30.810	18.201	53600	53634
33	4-534	84	39.810	18-206	53564	53595
33	4.541	84	39.791	18.217	53596	53629
33	4.547	84	39.773	18.227	53587	53620
33	4.554	84	39,754	18,238	53581	53614
33	4.560	84	39.736	18.249	53593	53626
33	4.567	84	39.717	18.260	53583	53615
33	4.573	84	39.699	18.270	53584	53616
33	4.580	84	39.680	18.281	53543	53575
33	4.592	84	39.665	18.292	53560	53592
33	4.605	84	39.649	18.302	53574	53605
33	4.617	84	39.634	18.313	53582	53613
33	4.029	84	39.019	10.324	53395	53618
33	4.042	84	19 588	18.345	53592	53623
33	4.667	A.	30 573	18.356	535A4	53417
33	4.670	84	39.558	18.367	53584	53615
33	4.691	84	39.543	18.377	53590	53621
33	4.704	84	39.527	18.388	53584	53615
33	4.716	84	39,512	18.399	53581	53612
33	4.728	84	39.497	18.410	5358A	53619
33	4.741	84	39.482	18.420	53591	53622
33	4.753	84	39.466	18.431	53587	53618
33	4.766	84	39.451	18.442	53583	53614
33	4.778	84	39.436	18:452	53589	53620
33	4.190	84	39.421	10.403	53395	53619
33	4.003	04	30 100	18,485	6350-	53411
11	4.013	Q.4	39.370	18.495	53610	53443
33	4. A27	Au	39.354	18.506	53589	53620
33	4.833	84	39.336	18.517	53571	53604
33	4.839	84	39.318	18.537	53581	53612
33	4.845	84	39.300	18.557	53577	53608
33	4.851	84	39.282	18.578	53575	53607
33	4.857	84	39.264	18.598	53581	53613
33	4.863	84	39,246	18.619	53582	53614
33	4.869	84	39.228	18.639	53584	53616
33	4.875	84	39.210	18.659	5354A	53580
12.	14EB 780	1123		11.34507	ngu 1 2 3	9 7 n 7 n 90

12 24

and the second second second second second

ì

Table 4. (Continued)

Profile A-A' (Concluded)

		Lob	CTTUDE	TTHE	DAW	PEOLICED
1230	1567800	1234	5678901	2345675	001234	567890
33	4.875	Au	39,190	18.680	53540	53581
33	4.875	84	39.170	18.700	53564	53596
33	4.875	84	39.150	18.713	53611	53644
33	4.875	84	39.130	18.725	53614	53647
33	4.875	84	39.110	18.738	53583	53616
33	4.875	84	39.090	18.750	5358A	53621
33	4.875	84	39.070	18.763	53584	53617
33	4.875	84	39.050	18.776	53594	53627
33	4.875	84	39.030	18.788	53571	53603
33	4.875	84	39.010	18.801	53565	53597
33	4.875	84	38.990	18.813	53557	53589
33	4.875	84	38.980	18.820	53612	53644
33	4.875	84	38.970	18.826	53701	53732
33	4.875	84	38.960	18.832	53587	53618
33	4.875	84	38.940	18.845	53637	53668
33	4.875	84	38.930	18.851	53602	53633
33	4.875	84	38.920	18+857	53822	53853
33	4.875	84	38.910	18.864	53697	53728
33	4.875	84	38.890	18.876	53610	53640
33	4.875	84	38.870	18.889	53716	53746
33	4.875	84	38.850	18.901	53559	53589
33	4.875	84	38,830	18.914	53647	538/7
33	4.8/5	84	38.820	18.920	53/70	53800
33	4.875	84	38.810	18.927	53852	53882
33	4.875	84	38.800	18.933	53/60	53790
33	4.8/5	84	38.780	18.946	53098	53728
33	4.8/5	84	38.700	18.958	53920	53950
33	4.0/3	04	38.740	10.9/1	53080	53710
33	4.0/3	04	38.720	19.000	535/6	53677
33	4.075	04	30.100	10.974	5354A	53/01
33	4+013	8/1	38.000	19.017	53610	53430
11	- 475	9	38.600	19.020	53640	53460
33	4.875	84	38 620	19.020	53624	53453
33	4.875	84	38 600	19.050	53617	53446
33	4.875	84	38.580	19.061	53614	53445
33	4.875	84	38.560	19.072	53635	53664
33	4.875	84	38.540	19.083	53668	53697
33	4.875	84	38.520	19.094	53654	53683
33	4.875	84	38.500	19.106	53594	53623
33	4.875	84	38.480	19.117	53670	53699
33		84	38.460	19.131	53640	53669
33	4.875	84	38.440	19.144	5362A	53657
33	4.875	84	38,420	19.158	5362A	53657
33	4.875	84	38.400	19.172	53623	53652
33	4.875	84	38.380	19.186	53645	53674
33	4.875	84	38,360	19.200	53677	53706
33	4.875	84	38.340	19.212	53643	53672
33	4.875	84	38,320	19.224	5360A	53637
33	4.875	84	38.300	19.236	53599	53628
33	4.875	84	38.280	19.248	5359A	53627
33	4.875	84	38.260	19.260	53605	53634
33	4.875	84	38,240	19.271	53605	53634
33	4.875	84	38.220	19.283	53592	53621
123	4567890	123	567890	1234567	90123	4567890

and the state of the second

and the second

Table 4. (Continued)

Profile B-B', May 5, 1973

LATI	TUDE	LON	GITUDE	TIME	RAW	RENUCED		
1234	567890	1234	5678901	2345678	001234	567890		
33	2+180	04 4	41.567	9.085	53311	53339		
33	2.200	84	41.554	9.194	53723	53771		
33	2.223	84	41.541	9.250	53614	53661		
33	2.238	84	41.528	9.267	53614	53661		
33	2.252	84 4	41.515	9.283	53565	53612		
33	2.267	84 1	41.502	9.300	53562	53609		
33	2.281	84 4	41.489	9.317	53573	53620		
33	2.296	84	41.4/0	9.333	53580	53620		
33	2.325	84	41.450	9.422	53574	53624		
33	2.339	84	41.437	9.467	53586	53631		
33	2.354	84	41.424	9.478	53584	53629		
33	2.368	84	41.411	9.489	53601	53646		
33	2.383	84	41.398	9.500	53579	53624		
33	2.397	04	41.305	4.212	5337A	53623		
33	2+412	84	41.359	9.540	53576	53620		
33	2.441	84	41.346	9.553	53639	53683		
33	2.448	64	41.340	9.560	53581	53625		
33	2.455	84	41.333	9.567	53561	53605		
33	2.470	84	41.320	9.584	53599	53642		
33	2.491	84	41.302	9.620	53301	53617		
33	2.502	84	41.266	9.637	5358n	53623		
33	2.513	84	41.248	9.655	5354A	53590		
33	2.523	84	41.230	9.673	53626	53668		
33	2.529	84	41.221	9.681	53616	53658		
33	2.534	84	41.212	9.690	53642	53684		
33	2.539	84	41.203	9.699	53/44	53786		
33	2.345	84	41.194	9.717	53036	53698		
33	2.544	84	41.165	9.727	53622	53664		
33	2.538	84	41.146	9.737	53611	53653		
33	2.532	84	41.126	9.747	53614	53656		
33	2.519	84	41.087	9.767	53617	53659		
33	2.507	84	41.048	9.783	53619	53661		
33	2.495	84	41.009	9.800	53845	53670		
33	2.483	84	40.970	9.817	53609	53651		
33	2.470	84	40.931	9.833	53591	53633		
33	2.458	84	40.892	9.850	53673	53715		
33	2.446	84	40.853	9.867	53593	53635		
33	2.433	84	40.814	9.883	53581	53623		
33	2.415	80	40.755	9.900	53502	53430		
33	2.400	84	40.736	9.917	53586	53628		
33	2.403	84	40.716	9.925	53560	53601		
33	2.397	84	40.697	9.933	53551	53592		
33	2.391	84	40.677	9.940	53550	53592		
33	2.378	84	40.638	9.952	53557	53599		
33	2.300	04	40+377	9.905	53330	53602		
33	2.342	84	40.521	9.990	53553	53595		
33	2.329	84	40.482	10.003	53552	53594		
33	2.317	84	40.443	10.016	53553	53575		
33	2.305	84	40.404	10.029	53565	53607		
33	2.292	84	40.365	10.041	53576	53618		
33	2.280	84	40,326	10.054	53564	53605		
33	2.256	84	40.244	10.079	53561	53603		
33	2.243	84	40.209	10.091	53561	53604		
33	2.231	84	40.170	10.103	53557	53600		
33	2.225	84	40.150	10.109	53556	53599		
33	2.276	84	40,177	10.121	5354A	53590		
1234567890123456789012345678901234567890								

LA	ITUDE	Lol	NGITUD	E TIME	RAW	REDUCED
12	54567890	123	456789	0123456	7890123	4567890
33	2.327	84	40.20	4 10.13	3 5357n	53612
33	2.378	84	40.23	1 10.30	0 53546	53587
33	2.429	84	40.25	9 10.31	7 53565	53605
33	2-480	54	40.28	6 10-33	7 53553	53593
33	2.531	84	40.31	3 10.35	7 5354A	53587
33	2.082	84	40.34	0 10.3/	7 53551	53590
33	2.607	84	40.33	7 10 10	7 -127-	53504
33	2.650	84	40.30	1 10.40	7 53500	53313
33	2.684	Au	40.39	4 10.41	7 53540	53580
33	2.709	84	40.40	8 10.42	8 53542	53579
33	2.735	84	40.42	1 10.44	0 53534	53571
33	2.760	84	40.43	5 10.45	2 53529	53566
33	2.762	84	40.42	5 10.46	4 53532	53569
33	2.765	84	40.40	5 10.48	7 53530	53567
33	2.768	84	40.38	5 10.51	1 53541	53578
33	2.772	84	40.36	5 10.53	4 53573	53610
33	2.773	84	40.35	5 10.54	6 53572	53608
33	2.780	84	40.33	5 10.59	U 50093	53711
33	2.785	84	40.30	5 10.60	5 5378-	51023
33	2.791	84	40.29	6 10.61	7 53891	53029
33	2.796	84	40.28	6 10.62	5 53879	53915
33	2.802	84	40.27	7 10.63	3 53694	53730
33	2.807	84	40.26	7 10.64	2 53695	53731
33	2.813	84	40.25	8 10.65	0 53713	53749
33	2.818	84	40.24	8 10.65	8 5353A	53573
33	2.824	84	40.23	9 10.66	7 5360A	53643
33	2.829	84	40.22	9 10.67	5 53662	53697
33	2.835	84	40.22	0 10.68	3 53763	53798
33	2+840	84	40.21	0 10.69	2 5388A	53923
33	2.046	84	40.24	5 10.70	0 54061	54096
33	2.851	84	40.28	0 10.70	9 53971	54006
33	2.057	84	40.51	9 10 71	9 53741	53976
33	2.868	84	40.34	4 10.73	0 53096	53731
33	2.874	84	40.41	9 10.74	6 53710	53752
33	2.880	84	40.45	3 10.75	6 53666	53700
33	2.885	84	40.48	8 10.76	5 53770	53804
33	2.891	84	40.52	3 10.77	4 5370A	53742
33	2.897	84	40.55	8 10.78	3 53711	53745
33	2.902	84	40.59	3 10.79	1 53621	53655
22	2.908	84	40.62	7 10.79	8 5358A	53622
33	2.713	84	40.00	2 10.80	5 53370	53603
33	2.925	84	40.73	2 10.82	53/42	53/92
33	2.930	84	40.76	7 10.82	9 53616	53649
33	2.936	84	40.80	1 10.83	6 5360n	53633
33	2.942	84	40.83	6 10.84	4 53746	53779
33	2.947	84	40.87	1 10.85	2 53667	53700
33	2.953	84	40.90	6 10.85	9 5362n	53653
33	2.959	84	40.94	0 10.86	7 53635	53667
33	2.964	84	40.97	5 10.87	4 53544	53576
33	2.970	84	41.01	0 10.88	2 53457	53489
33	2.975	84	40.97	9 10.86	9 53499	53531
33	5.980	84	40.94	7 10.89	7 53539	53571
33	2.900	84	40.91	4 10.01	53055	53587
33	2.00+	8.	40 83	1 10.03	7 6356-	53-01
33	3.011	84	40.75	B 10-04	53301	53:00
33	3.021	84	40.69	6 10.95	3 53554	53585
33	3.031	84	40.63	3 10.97	5355A	53589
33	3.036	84	40.60	1 10.980	53552	53583
33	3.042	84	40.57	0 10.98	3 53664	53695
33	3.047	84	40.53	8 10.99	5 53607	53638
123	4567890.	1234	56789	0123456	78901234	\$567890

54

Are Change

"reference

an " and the second the second second

Page 55 is missing.
Profile B-B' (Concluded)

LAT	ITUDE	Lo	NGITUDE	TIME	RAW	REDUCED
33	450/090	84	40.507	11.003	53500	53421
33	3.057	84	40.475	11.011	53574	53604
33	3.062	84	40.444	11.018	53567	53597
33	3.067	84	40.413	11.026	53574	53604
33	3.072	84	40.381	11.033	53574	53664
33	3.077	84	40.350	11.067	5357A	53608
33	3.082	84	40.318	11.100	53585	53614
33	3.008	84	40.207	11.100	53593	53662
33	3.075	84	40.235	11.200	53600	53638
33	3.103	84	40.192	11.209	63613	53641
33	3.108	84	40.161	11.219	53617	53645
33	3.113	84	40.130	11.228	53650	53678
33	3.118	84	40.098	11.237	5367A	53706
33	3-123	84	40.067	11.246	53724	53752
33	3-128	84	40.035	11.256	53/51	53779
33	3.134	84	30 972	11.274	53812	53640
33	3.144	84	39.941	11.283	54440	54467
33	3.149	84	39.909	11.294	54392	54419
33	3.154	84	39.878	11.305	54096	54123
33	3.159	84	39.847	11.315	53502	53529
33	3.164	84	39.815	11.326	53526	53553
33	3.169	84	39,784	11.337	53596	53623
33	3.180	84	39 721	11.359	53083	54044
33	3.185	84	39.689	11.369	53415	53441
33	3-190	84	39,658	11,380	53466	53492
33	3.195	84	39,626	11.390	5352n	53546
33	3.200	84	39.595	11.401	53630	53656
33	3.203	84	39.587	11.412	5346n	53486
33	3.207	84	39.378	11,423	53495	53521
33	3.214	84	39.561	11.445	53526	53552
33	3.217	84	39,553	11.456	53529	53555
33	3.221	84	39.544	11.467	53530	53556
33	3.227	84	39.528	11.490	53534	53560
33	3.231	84	39.519	11.502	53533	53558
33	3.234	84	39.502	11.524	53072	53564
33	3.241	84	39.494	11.536	53550	53575
33	3.248	84	39.477	11.559	53550	53575
33	3.255	84	39.460	11.581	53553	53578
33	3.259	84	39.440	11.604	53544	53569
33	3.264	84	39.420	11.627	53544	53569
33	3.209	84	39,400	11.672	53524	53549
33	3.270	Au	39.360	11.695	53550	53683
33	3.280	84	39,350	11.707	53559	53583
33	3.282	84	39.340	11.718	53436	53460
33	3.284	84	39.330	11.729	53543	53567
33	3.287	84	39.320	11.741	5355A	53582
33	3.209	04	39.310	11 767	5005A	53562
33	3.296	84	39.280	11.786	53561	53687
33	3.298	84	39.270	11.798	53560	53584
33	3.300	84	39.260	11.809	53426	53450
33	3.301	84	39,249	11.820	53557	53580
33	3.303	84	39.228	11.843	53593	53616
33	3.304	84	39.217	11.854	53500	53623
33	3.306	84	39,195	11.877	53550	53582
33	3.308	84	39.174	11.900	53585	53608
33	3.311	84	39.152	11.918	53569	53592
33	3.312	84	39,141	11.927	53576	53599
123	4567890	1234	\$5678901	2345678	3901234	\$567890

			122.1.20	1.00		Section 2
LAT	ITUDE	LO	NGITUDE	TIME	RAW	REDUCED
120	450/090	1143	10/070	11 036	6350	567890
33	3.315	84	30 100	11.950	53594	53617
33	3.316	84	39.098	11.963	53574	53697
33	8.317	80	39.087	11.071	53597	53610
33	3.318	84	39.077	11.980	53630	53453
33	3.310	84	39.066	11.989	53560	53591
33	3.320	84	39.055	11.998	53563	53586
33	3.322	84	39.044	12.007	53613	53636
33	3.324	84	39.034	12.016	53634	53656
33	3.326	84	39.023	12.024	53667	53689
33	3.327	84	39.012	12.033	53655	53677
33	3.329	84	39.002	12.048	53632	53654
33	3.331	84	38.991	12,062	53629	53651
33	3.333	84	38.980	12.076	53633	53655
33	3.335	84	38,970	12.090	53612	53634
33	3.337	84	38.959	12.105	53605	53627
33	3.338	84	38.948	12.119	53602	53624
22	3.340	84	38.938	12.143	53601	53623
33	1.344	84	38.916	12.150	53610	53434
33	3.346	84	38.906	12.158	53597	53619
33	3.348	84	38.895	12.167	5358A	53610
33	3.349	84	38.884	12.175	53571	53593
33	3.351	84	38.874	12.183	53573	53595
33	3.353	84	38.863	12.192	53573	53594
33	3.355	84	38.853	12.200	53574	53595
33	3.359	84	38.831	12.217	53573	53594
33	3.362	84	38.810	12.231	53583	53604
33	3.366	84	38.789	12.245	53610	53630
33	3.370	84	38.767	12.260	53584	53604
33	3.373	84	38.746	12.274	53607	53627
33	3.3/7	84	38.725	12.288	53612	53632
33	3.384	84	38.682	12.317	53039	53639
33	3.380	8.	19 661	12.350	C3564	51:74
33	3.390	84	38.650	12.367	53557	53577
33	3.392	84	38.629	12.389	53043	53063
33	3.393	84	38.608	12.411	53577	53597
33	3.395	84	38,586	12.433	53583	53603
33	3.396	84	38.565	12.456	5359A	53618
33	3.398	84	38.544	12.478	53619	53639
33	3.399	84	38.523	12.500	53596	53616
33	3.401	84	38.501	12.513	53594	53614
33	3.402	84	38.480	12.527	5360A	53628
33	3.404	84	38.459	12.540	53557	53577
33	3.406	04	38.437	12,555	53371	53591
33	3.407	04	38.410	12.50/	53584	53604
33	3.410	80	38.374	12.593	53594	53614
33	3.411	84	38.361	12.600	53587	53607
33	3.412	84	38.352	12.607	53594	53616
33	3.413	84	38.342	12.613	53594	53614
33	3.413	84	38.331	12.620	53584	53608
33	3.414	84	38,321	12.627	53589	53609
33	3.415	84	38.310	12.633	53581	53601
123	4567890	1234	567890	12345678	901234	567890

56

あることであるというないのである

Profile C-C', May 6, 1973

												-	-	
LAT	ITUDE	LOP	IGITUDE	TIME	RAW	REDUCED		ALI	TUDE	FOL	GITUDE	TIME	RAW	REDUCED
123	4567890	1234	+567890	12345678	3001234	567890	1	234	5678901	1234	5678901	2345678	901234	+567890
33	1.945	84	40.277	12.050	53593	53624	3	13	1.988	84	39.533	13.139	53699	53733
13		84	40.250	12.060	5359s	53626		3	1.979	84	39.520	13.150	53800	53443
35	1.744		40.207	12 070	= 3544	53692			974	8.	39 514	13,156	53680	53723
33	1.942	04	40.242	12.070	53361	53572			1.714	04	39.314	13 167	53069	53765
33	1.941	84	40.224	12.080	5354A	535/8		3	1.704	04	37.301	12-101	53080	22112
33	1.940	84	40.206	12.090	53561	53591	3	53	1.954	84	39.489	13.180	53605	53640
33	1.939	84	40.188	12.100	53709	53739	3	13	1.950	84	39.483	13.187	53577	53612
33	1.938	Au	40.179	12.109	53535	53565	3	13	1.940	84	39.470	13.200	53627	53662
	1.032		00 171	12 110	5350.	53/24	1	13	1.940	Au	39.452	13.213	53650	53685
33	1.937	04	40.171	10 110	53394	63-31					10 /111	13 007	-150-	53400
33	1.436	04	40.133	12.130	53/01	55/51			1.739	04	37.433	13,221	53305	53620
33	1.935	84	40.135	12.154	5362n	53650		53	1.939	84	39.424	13.233	53054	23689
33	1.949	84	40.125	12.172	53609	53638	1	33	1.939	84	39.415	13.242	53677	53712
33	1.963	84	40.116	12.190	53705	53734	3	53	1.939	84	39.406	13.250	53743	53778
33	1.977	84	40.106	12.208	53595	53624	3	13	4-939	84	39.397	13.258	5364A	53683
			10 006	12.224	53650	53688		3	1.930	Au.	39.388	13.267	53671	53706
35	1.971	04	40.090	AC ONN	-165-	53/83			010		10 170	11 075	- 360-	53-20
33	2.005	64	40.007	12.244	53035	55605		55	1.939	04	37.310	13.213	22043	22154
33	2.019	84	40.077	12+202	53069	22641		53	1.938	84	39.369	13.283	53/10	53746
33	2.032	84	40.068	12.281	53655	53683	1	33	1.938	84	39.360	13.292	5366A	53704
33	2.046	84	40.058	12.299	53661	53689	2	53	1.938	84	39.351	13.300	53694	53730
33	2.060	84	40.048	12.317	53661	53689	3	53	1.938	84	39.342	13.308	53785	53A21
33	2.074	Au	40.039	12.327	53657	53685		13	1.934	Au	39.332	13.317	53871	53007
11	0.00.	A.	40.029	12.337	53629	53450		11	910	0	10 323	13.325	£ 1001	54027
11	2.008	04	40.029	12.347	53610	53460	- I.C.	18	1.738	84	30 114	13 313	53771	53740
33	2.102	04	40.019	12:341	53032	33600		53	1.938	04	39.314	13.333	53/04	33740
33	2.116	84	40.010	12.357	53572	53600		53	1.938	84	39.305	13.342	53744	53780
33	2.130	84	40.000	12.367	53535	53563		53	1.937	84	39.296	13.350	53641	53677
33	2.132	84	39.990	12.377	53537	53565	1	53	1.937	84	39.287	13.358	53770	53806
33	2.134	Au	39.980	12.387	53541	53569	1	53	1.937	Au	39.278	13.367	53650	53686
33	2.136	8.	30.970	12.397	63540	53570		18		84	19.268	13.375	53777	53009
	21100	04	37.770	12 007	# 35E.	53590			1.037		30 250	11 202	5370.	53017
33	2.138	84	39.900	12.407	33354	53502		22	1.93/	04	39.239	13.303	53/01	53-21
33	2.142	84	39.940	12.427	53573	53601		53	1.437	04	39.230	13.372	53765	SSHEL
33	2.146	84	39.920	12.447	53554	53582		53	1.937	84	39.241	13.400	53795	53831
33	2.151	84	39.900	12.467	53615	53644		53	1.936	84	39.232	13,408	53844	53880
33	2.155	84	39.880	12.667	53624	53653		53	1.936	84	39.223	13.417	53863	53900
33	2.150	84	39.860	12.687	5355A	53587	2	53	1.936	84	39.213	13.427	53833	53A70
11	0.163	84	30.840	12.708	53614	53643		13	1.936	An	39.204	13.438	53931	53068
	21103		10 810	12 710	-161.	53460		13	1.934	8.	39,195	13.448	53947	53084
33	2.105	04	39.030	12:117	55031	53600			1.700	-	376475	13	55747	50.004
33	2+101	84	39.822	12.129	50009	53638		55	1.936	84	39.186	13.459	54494	54531
33	2.157	84	39.813	12.740	5358A	53617		53	1.936	84	39.177	13.470	54314	54351
33	2.153	84	39.805	12.750	53599	53629		33	1.935	84	39.168	13.480	54259	54296
33	2.144	84	39.789	12,768	53582	53612		53	1.935	84	39.158	13.491	53926	53963
33	2.136	84	39.772	12.787	535A5	53615		33	1.935	84	39,149	13.502	53849	53886
11	. 120		30 754	12 005	E1500	53410			. 016	84	30 140	13.512	-350F	53662
35	2.128	04	37.738	12:000	50000	53640			1.733	04	37.170	13 503	-160-	53502
33	5+150	84	34.134	12.824	5330.5	33573		22	1.432	04	24.121	13.323	53009	23640
33	2.111	84	39.723	12.842	5359n	53620		53	1.935	84	39.122	13.533	53626	53663
33	2.103	84	39.706	12,860	53540	53570		53	1.935	84	39,113	13.544	53545	53583
33	2.095	84	39.690	12.879	53552	53582		53	1.934	84	39.103	13,555	53585	53623
33	2.091	Bu	39.681	12.888	53545	53576		53	1.934	84	39.094	13.565	53635	53673
33	2.087	84	39.673	12.497	53520	53560		53	1.934	84	39.085	13.576	53590	53637
33	2.007		10 445	12.006	53520	53651		13		0.	30 076	13.596	E3600	53/30
33	2.002	04	37.003	12 014	-157-	53-64		13	1 034	8.	10 067	13 607	5360-	51721
33	2.0/8	84	39.001	15.910	50003	53504		22	1.934	04	39.007	13.377	53005	53763
33	2.074	84	39.648	12.925	53605	53636		55	1.934	84	39.048	12+019	53129	22101
33	2.070	84	39.640	12.934	53741	53772		33	1.933	84	39.030	13.639	53783	53e21
33	2.065	84	39.634	12.943	53826	53857		53	1.933	84	39.021	13.650	53831	53870
33	2.060	Ru	39.627	12.952	53765	53796		53	1.933	84	39.012	13.659	53761	53600
11	0.056	84	10 621	12.061	53667	53498		1	. 931	84	39.003	13.668	53770	53000
22	2.050	04	30 410	12 074	530007	53075		13	1.931	8.	38.000	13.484	53950	53097
33	2.051	04	37.013	10 00-	33744	50415		13	1.01.	8.	10 075	13.00	E377-	53010
33	2.046	84	39.609	12,980	5418A	54219		53	1.933	04	30.915	13.042	53113	55812
33	2.041	84	39,602	12.989	5366A	53700		55	1.932	84	38.966	13.705	53806	53845
33	2.036	84	39.596	12.998	53621	53653		32	1.932	84	38.957	13.714	5374A	53787
33	2.031	84	39.590	13.007	53727	53759	1	53	1.932	84	38.938	13,732	53855	53895
33	2.027	81	39.583	13.017	53600	53641		53	1.932	84	38.920	13.750	53730	53771
11	0.020	A.	10 577	13.100	5364*	53676		53	1.931	84	38.902	13.761	53716	53755
	2.062	04	37.311	13.100	-14-	53610		13		8	18 007	13.77*	E370=	51745
33	2.017	84	39.5/1	13.106	53013	33640			1. 751	04	30.003	13 700	53/0/	53/45
33	2.012	84	39.564	13.111	53024	22621		55	1+421	84	38.865	13.784	53086	53724
22	2.007	84	39.558	13.117	5361A	53652		53	1.931	84	38.847	13.796	53647	53684
33	1.998	84	39.546	13.128	53626	53660		53	1.930	84	38.828	13.807	53760	53797
12	34567890	123	4567890	1234567	890123	4567890	1	1230	4567890	123	\$567890	12345678	90123	4567890

57

1175 11 AL

1

Profile C-C' (Concluded)

LATITUDE	Lor	GITUDE	TIME	RAW	RENUCED
12345678901	234	5678901	2345676	3901234	+567890
33 1.930	84	38.810	13.819	53735	53772
33 1.925	04	38.790	13.830	53/23	53760
33 1.914	84	38.750	13.042	53023	53750
33 1.913	84	38.740	13.859	53670	53708
33 1.909	84	38.720	13.871	53724	53762
33 1.904	84	38,700	13.882	53729	53767
33 1.899	84	38.680	13.894	53722	53760
33 1.894	84	38.660	13.905	53773	53811
33 1.892	84	38.650	13.911	53823	53A61
33 1.890	84	38.640	13.917	53/91	53829
33 1.880	8.	38.602	13.057	53000	53064
33 1.890	84	38.593	13.967	53803	53842
33 1.892	84	38.584	13.977	53754	53793
33 1.894	84	38.575	13.987	53809	53849
33 1.896	84	38.566	13.997	53793	53833
33 1.899	84	38.548	14.017	53735	53776
33 1.903	84	38.530	14.027	5380A	53A49
33 1.910	84	30.512	14.040	53857	53409
33 1.913	84	38.476	14.060	53773	53015
33 1.917	84	38.458	14.071	53781	53625
33 1.920	84	38.440	14.081	53661	53703
33 1.920	84	38.421	14.092	5370A	53751
33 1.920	84	38,403	14.103	53609	53652
33 1.919	84	38.384	14.114	53649	53692
33 1.919	84	38.303	14.125	53062	53705
33 1.919	84	38.328	14.146	53720	53764
33 1.91A	84	38.309	14.157	53801	53845
33 1.918	84	38.291	14.168	53735	53779
33 1.918	84	38.272	14.178	53702	53746
33 1.91A	84	38.253	14.189	53623	53667
33 1.918	84	38.235	14.200	53590	53634
33 1.917	84	38.197	14.221	53596	53442
33 1.917	84	38.179	14.231	53636	53682
33 1.917	84	38.160	14.241	53653	53700
33 1.916	84	38.141	14.251	53669	53716
33 1.716	84	38,123	14.262	53646	53693
33 1.916	84	38.113	14.267	53593	53640
33 1.916	.8.4	38.076	14.287	53570	53635
33 1.915	84	38.057	14.297	5357A	53625
33 1.915	84	38.039	14.308	53563	53610
33 1.915	84	38.020	14.318	53603	53650
33 1.915	84	38.010	14.323	53593	53640
33 1.915	84	37.991	14.333	53669	53717
33 1.914	84	37.953	14.355	53683	53731
33 1.914	84	37.934	14.365	53679	53727
33 1.914	84	37,915	14.376	53653	53701
33 1.914	84	37.886	14,392	53616	53664
33 1.914	84	37.867	14.403	53641	53689
33 1.914	84	37.847	14.413	53663	53712
33 1.012	84	37.020	14.476	5367-	53710
33 1.913	84	37,790	14,445	53631	53682
33 1.913	84	37.771	14.456	53633	53682
33 1.913	64	37.751	14.467	53620	53669
33 1.913	84	37.732	14.477	53599	53648
33 1.912	84	37.713	14.488	53632	53681
33 1.912	84	37.675	14.500	53679	53474
12345678901	234	5678901	2345678	901234	567890

LAT	ITUDE	Lo	NGITUDE	TIME	RAW	REDUCED
123	4567890	123	4567890	1234567	800123	4567890
33	1.912	84	37.656	14.520	53634	53688
33	1.912	84	37.636	14.531	53710	53760
33	1.912	84	37.617	14.541	53676	53726
33	1.911	84	37.598	14.552	53779	53829
33	1.911	84	37.579	14.563	5366A	53718
33	1.911	84	37.560	14.573	53651	53701
33	1.911	84	37.540	14.584	53619	53669
33	1.911	84	37.521	14.595	53614	53663
33	1.911	84	37.512	14.600	53614	53663
33	1.910	84	37.493	14.608	53609	5365B
33	1.910	84	37.473	14.617	5361A	53667
33	1.910	84	37,454	14.625	53614	53663
33	1.910	84	37.435	14.633	53567	53616
123	4567890	1234	567890	1234567	8901234	567890

Table 4. (Concluded)

Profile A'-B', May 6, 1973

LAT	TUDE	LONGITUD	E TIME	RAW	RENUCED
1234	+567890	123456789	01234567	8901234	567890
33	4.875	84 38.74	0 10.033	53999	54014
33	4.859	84 38.73	5 10.045	54025	54040
33	4.843	84 38,73	1 10.056	54055	54070
33	4.627	84 38.72	6 10.068	54026	54041
33	4.611	84 38.72	1 10.079	5395A	53973
33	4.796	84 38.71	6 10.090	53807	53822
33	4.780	84 38.71	2 10.102	53841	53856
33	4.764	84 38.70	7 10.113	53865	53880
33	4.748	84 38.70	2 10.125	53694	53709
33	4.740	84 38.70	0 10.130	53722	53737
33	4.724	64 38.70	0 10.142	53609	53625
33	4.707	84 38.70	0 10.153	53622	53638
33	4.091	84 38.70	0 10.164	53510	53526
33	4.675	84 38.70	0 10.176	53679	53695
22	4.638	84 38.70	0 10.187	53014	53630
33	4.042	64 38.70	0 10.199	53025	53641
33	4.026	84 38.70	0 10.210	5305A	536/4
33	4.009	04 38.70	0 10.221	53081	53776
33	4.575	84 38 70	0 10.233	53644	53(50
33	4.570	84 38.70	5 10.250	53504	53408
33	4.555	84 38.71	0 10.261	63526	53641
11	4.530	Au 38.71	4 10.272	53630	53645
11	4.520	84 30 71	9 10.293	53580	63404
33	4.500	Au 38.72	4 10.294	53580	53404
33	4.494	84 38 72	9 10.306	53580	53404
33	4.470	84 38.73	4 10.317	63599	53408
33	4.464	84 38.73	9 10.328	53595	53611
33	4.444	84 38.74	3 10.339	53593	53610
33	8.433	84 38.74	8 10.350	5359n	53607
33	4.418	84 38.75	3 10.364	53597	53614
33	4.403	84 38.75	8 10.378	53582	53599
33	4.388	84 38.76	3 10.392	53579	53596
33	4.373	84 38.76	8 10.406	53559	53576
33	4.365	84 38.77	0 10.412	53806	53a23
33	4.357	84 38.76	9 10.419	53599	53616
33	4.342	84 38.76	8 10.433	53602	53619
33	4.327	84 38.76	6 10.467	53613	53630
33	4.312	84 38.76	5 10.500	53585	53602
33	4.296	84 38.76	3 10.533	53592	53609
33	4.281	84 38.76	2 10.567	53582	53600
33	4.266	84 38.76	0 10.600	53585	53603
33	4.251	84 38.75	9 10.633	53588	53606
33	4.235	84 38.75	7 10.667	5358n	53596
33	4.220	84 38.75	6 10.700	53577	53593
33	4.205	84 38.75	4 10.712	53391	53607
33	4.190	84 38.75	2 10.724	53580	53596
33	4+214	04 38.13	0 10 740	53382	535970
11	402.99	04 30.74	9 10 761	2757.	53-00
13	4.120	Au 38.74	6 10,773	53570	53595
33	4.113	84 38.74	5 10.785	53580	53597
33	4.094	84 38.74	3 10.797	53581	5359A
33	4.083	84 38.74	2 10.409	53577	53594
33	4.068	84 38.74	0 10.821	53584	53601
33	4.052	84 38.73	9 10.833	53577	53594
33	4.037	84 38,73	7 10,852	53572	53589
33	4.022	84 38.73	6 10.870	53573	53590
33	4.007	84 38.73	4 10.889	5357n	53588
33	3.991	84 38.73	3 10.907	53569	53587
33	3.976	84 38.73	1 10.926	5357n	53587
33	3.961	84 38.73	0 10.944	5356A	53585
33	3.946	84 38.72	8 10.963	53562	53579
33	3.930	84 38.72	7 10.981	53564	53582
33	3.915	84 38.72	5 11.000	53566	53584
123	4567800	1121456780	01234567	80012=	567890

AT	TTUDE	Lob	GITUDE	TIME	RAW	REDUCED
23	4567800	1234	567890	12345678	001234	567890
13	1.914	84	38.713	11.019	5357n	53587
13	3.913	84	38.701	11.037	53560	53586
13	- 010	8.0	38 688	11.056	53570	53689
12	3.742	84	30 676	11.075	= 357E	53692
33	3.911	80	38 664	11.094	=3575	53692
22	3.910	04	30,004	11 113	-157-	53594
33	3.909	64	38.032	11 111	53500	53/01
33	3.908	04	38.040	11 150	53304	53601
53	3.907	04	30.021	11.130	53399	53615
33	3.906	84	38.615	11.142	53002	53619
33	3.905	64	38.603	11.135	22246	53613
33	3.904	84	38.541	11.125	53399	53610
33	3.903	84	38.579	11+11/	53395	53612
33	3.902	84	38.566	11.108	53586	53604
33	3.901	84	38.554	11.100	53584	53602
33	3.900	84	38.542	11.092	5357A	53596
33	3.900	84	38,536	11.087	5363n	53648
33	3.899	84	38.530	11.083	53586	53605
33	3.898	84	38.518	11.075	53584	53603
33	3.897	84	38.505	11.067	53587	53606
33	3.896	84	38.493	11.088	53589	53607
33	3.895	84	38,481	11.110	53590	53608
33	3.894	84	38.469	11.132	5360n	53617
33	3.893	84	38.457	11.153	5358A	53604
33	3.892	84	38.444	11.175	5358A	53604
33	3.891	84	38.432	11.197	53586	53601
33	3.890	84	38.420	11.218	53590	53605
33	3.863	84	38.419	11.240	53589	53604
33	3.837	84	38.419	11.262	53590	53605
33	3.810	84	38.418	11.283	53584	53599
33	3.783	84	38.418	11.293	53581	53597
33	3.757	84	38.417	11.302	53580	53596
33	3.730	84	38.417	11.311	53579	53595
33	3.703	84	38.416	11.320	53576	53592
33	3.677	84	38.416	11.330	53577	53593
33	3.650	84	38.415	11.339	53575	53591
33	3.623	84	38.414	11.348	53574	53590
33	3.597	84	38,414	11.357	5356A	53585
33	3.570	84	38.413	11.367	53576	53593
33	3.543	84	38.413	11.378	53581	53599
33	3.517	84	38.412	11.389	5357A	53596
33	3.490	84	38.412	11.400	53582	53601
33	3.463	84	38.411	11.411	53581	53600
33	3.450	Ba	38.411	11.417	5358n	53599
33	1.437	Au	38.411	11.433	53586	53604
33	1.421	84	38.410	11.450	53597	53617
33	3.410	84	38.410	11.467	53595	53615
123	456780	121	4567890	1234567	800123	4567890
	1.30.93					

ALL PLAN

......

A super state of the state of t

APPENDIX III

COMPUTER PROGRAMS FOR GRAVITY AND MAGNETICS MODELING

A computer program was developed for computing the vertical gravity anomaly caused by a hypothetical two-dimensioned structure using the method of Talwani, Worzel, and Landisman (1959). A listing of the main program and subroutines necessary for line printer plotting is given in Table 5.

A computer program was developed for computing horizontal, vertical, and total magnetic anomalies due to induction, NRM or mixed magnetization using the method of Talwani and Heirtzler (1965). A listing of the main program and all referenced subroutines is given in Table 6.

Table 5. Two-Dimensional Gravity Modeling Program

```
12345678901234567890123456789012345678901234567890123456789012345678901234567890
 GRAVITY PROFILING FOR 2-DIMENSIONAL STRUCTURES
GRAVITY FOR 2-DIMENSIONAL STRUCTURES (AFTER-TALWANI, WORTZEL+LANDISMAN)
C
C
    INPUT(2110.3F10.3) CAND NU. OHE
       LLEND. OF PULYGONS, Nº XEND. OF HAVITY VALUES, DX-SEPARATION OF
C
       GRAVITY VALUES, XO=POSITION OF FIRST GRAVITY VALUE, SCALE=PLOT
C
C SCALE-FOR LRAA
C IF SCALE-0, PROGRAM CALCULATES SCALE
C IF SCALE=13. NO GRAPH IS DOANN
    INPUT (FREE FIELD) LL CAUDS
C
       NALEND .. + 10F CORNERS OF POLYGON TAKEN CLOCKWISE, URHOEDENSITY
C
       CONTRAST, X(I,J),Z(I,J)=CORDINATES OF CORNERS-JTH CORNER OF ITH
c
       POLYGON
C
    REPEAT SEQUENCE FOR ADDITION & PROFILES
    HLANK CARD AT LND TO TER INATE CALCULATION
Ĉ
      DI-LENSION PHO(50) . X(50.20) . 2(50.20) . NN(50) . XX(20) . ZZ(20) . GAL (500)
      DINENSION A(80)
  25 REAU (5,900)A
900 FORMAT(80A1)
      READ (5+500) LL+NDX+UX+X0 + SCALE
WRITE(6+901)A
  901 FORMAT(1H1, BUA1+//)
      WRITE (6, 503) LL .NDX .DX , XO
  503 FORMATIIN , 25HVERTICAL GRAVITY A IMALY FOR. 15, 9H POLYGONS/2X.
     13HTHE. IS. 16H-GRAVITY VALUES. F10.4.19H-KM. APART. BEGIN AT. F10. 1)
   IF(LL) 26.20.27
27 00 100 1=1.LL
  500 FORMAT (2110.3F10.5)
      READ(5,501) NXZ.DRHO(1).(~(1.J).Z(1.J).J=1.XX7)
       501 FORMAT( )
  502 FORMAT(16H NO OF POINTS = .110,22H DENSITY DIFFERENCE = /(1X+1-F10
     (.3/1)
  100 NN(1) = NXZ
      DO 101 1=1.LL
  NNI = NN(I)
DO 101 J = 1.NHI
101 X(I,J) = X(I,J) -X0
      DO 1021=1+NUX
       6=0.0
      00 103 J=1+LL
       NNJ = MA(J)
       DO 104 K = 1 . NHJ
       XX(K) =X(J.K)
  104 ZZ(K)=Z(J+K)
  CALL THL2(NN(J)+XX+ZZ+DRHO(J)+GA)
103 G= G+GA
GAL(I) = G
       DO 110 M=1.LL
       NNA = NN(M)
  DO 110 N = 1. NNM
110 X(M+H) = X(H+N)-DX
  102 CONTINUE
       WRITE(6+505) (GAL(I)+I=1+N:X)
      FORMAT(1X//24H GRAVITY ANOMALY I: MGAL./(5F15.9))
 505
       ISC=SCALE
       IF(ISC.E0.13) GO TO 25
       IF(SCALE) 150,131,130
  131 CALL MASCL(GDX+GAL+SCALE)
  130 CALL DRAN(NDX+1+GAL+SC*LE)
       GO TO 25
   26 STOP
       ENG
```

12345678901234567090123456789012345678901234567890123456789012345678901234567890

Sec. 2 and

Table 5. (Concluded)

```
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
             SUBROUTINE TWLZ(K1+XX+72+Dr.HO+GA)
      USES METHOD OF TALWANI + WORLEL + AT D LANDISMAN (JGR 1959 PP 49-59)
C
      TO GIVE GRAVITY ANOMALY AT X=A+Z=A+ IN MGAL FOR THO DIMENSIONED
с
C BODY I. VENTICAL PLANE DESCRIBED BY A POLYGON (IN KILOMETERS
             DI AENSIUN YX(K1)+ZZ(K1)
             PI = 3.141592654
             KK = K1-1
             GA = 0.0
             00 100 K=1.KK
             K2 = K+1
              IF(XX(+)+Z7(K2)-XX(K2)+Z2(-)) 30+100+30
      30 IF (XX(K)-XY(K2)) 85+20,85
      20 XZ =
                                      ((XX(K2)=+2 + Z7(K2)++2)/(XX(K)++2 + ZZ(K)++2))
             DG = 0.5+LOG(XZ)+XX(K)
              GO TO 99
       85 IF(22(K)-22(K2)) 235+72+235
72 DG = ZZ(K)+(ATAN2(ZZ(K2))+XX(K2))-ATAN2(ZZ(K)+XX(K)))
              GO TO 99
     235 A =(XX(K2)-XX(K))/(22(2)-72(K))
              B = (XX(K)+22(K2) - XX(K2)+22(K))/(22(K2)-22(K))
              IF(XX(K)) 200+201+200
     201 DG = (6/(1.+4+A))+(.5+LOG((XX(K2)+XX(K2)+ZZ(K2)+ZZ(K2))/(ZZ(K)+
      1 22(K_1)) - A + (ATAN_2(Z_2(N_2) + XX(K_2)) - P1/2 + ) 
 200 IF(XX(N_2)) 31 + 210 + 31 
 210 DG = (A/(1 + A + A)) + (+5+LUG(72(K_2) + Z2(K_2)/(XX(K) + XX(K) + XX(
                   22(K)+ZZ(K))) + A+(ATAH2(ZZ(K),XX(K)) - PI/2.))
            1
        31 DG=LOG( (AX(K2) +XX(K2) +72(K2) +Z7(K2))/(XX(K)+XX(K)+ZZ(K)+ZZ(K)))
              DG=(8/(1.0+A+A))+(0.5+)G-A+(ATAN2(ZZ(K2)+XX(A2))-ATAN2(ZZ(K)+
            1XX(K))))
        99 GA=(13,34)
                                            +DRHO+DG + GA
     100 COLTINUE
              RETURN
              END
              SUBROUTINE HASCL (N.A.A.A.A.A.
              DIMENSION A(N)
              AMAX = U
        DO 26 I = 1+H
IF (AB5(A(I))-AMAX) 26,26,25
25 AMAX = Ab5(A(I))
        26 CONTINUE
               AN = LOGIO(AMAX)
               IF (AN) 17:18:19
        17 NN = A:1 - 1
        GO TO 20
19 NN = AN
        20 IA = AMAX/(10.**NN)
       IF (IA.LE.2) GO TO 14
IF (IA.LE.2) GO TO 14
IF (IA.LE.5) GO TO 15
16 AMAX = 10.*(10.**NN)
18 RETURN
        14 AMAX = 2.+(10.**NN)
               RETURN
        15 AMAX = 5.=(10. ++NN)
               RETURN
               ENU
          SUBROUTINE DRAW (NTOT: INC. F. SCALE)
NTOTETOTAL NUMBER OF POLITS IN F. F IS THE DATA (ONE DIMENSIONAL)
TO BE PLOTTED. INC. IS THE SAMPLE INTERVAL FOR PLOTTING F.
 C
 C
          SCALE IS THE AMPLITUDE OF ONE FULL SCALE DEFLECTION
               DINENSIO.
                                         F (HTOT)
               DATA AA1/1H /+AA2/1H+/+AA3/1H+
                                                                                             . (AA2+M=1,21)
                WRITE(: 1011) SCALE (I, I=-...10)
    1011 FORMAT(1H1, C14.8.17H-M.ALS FULL SCALE/3X.2015/2X.22A5)
    10
               DO 1501 K = 1+ HTOT+ I .C
               FK = SU. +F(K)/SCALE
               K1 = FK/50
               KK = FK - K1+50.+50.5
      WRITE (0.511) AA2, (AA1, I=1.KK) + AA2
511 FORMAT (1X, 11041)
    1501 CO TINUE
               RETURN
               ENU
```

12345678901234567890123456789012345678901234567890123456789012345678901234567890

Party in

Carlana and

110

AND STATES

Table 6. Two-Dimensional Magnetics Modeling Program

123456789012345676901234567890127456789012345678901234567890123456789012345678901234567890 COMPUTATION OF MAGNETIC A-ONALIES CAUSED BY THE MAGNETIZATION OF TWO DIMENSIONAL. (INFINITE E-TENT IN THIRD DIRECTION). C Ċ Ĉ THIS PROGRAM IS A MODIFICATION OF THE PROGRAM BY MANIK TALMANI AND JAMES R. HEIRTZLER WHICH WAS PUBLISHED IN CORPUTERS IN THE MINEREL INDUSTRIES . PART 1. STANFORD UNIVERSITY c C cc PUBLICATION GLOL. SCI., VOL 9. 1.0. 1. PAGES 464-480. THIS PROGRAM BY GEOPGE RUTHE SCHOOL OF GEUPHYSICAL SCIENCES C ĉ GEORGIA INSTITUTE OF TECHNOLOGY cc ATLANTA, GA 30332 SEPTEMBER 200 197 DIMERSION FLOPT(200) . P. UM(200) . G. UM(200) . VANMLY (200, 10.2) . * HANMLY (200, 10, 2), TANM: Y (2.0, 10, 2), SUS(10), REMDEC(10), REMDIP(10), *REMMAG(10), VIND(200), V: LN(:00), HIND(200), HREM(200). *TI: D(200) . THEM (200) . VTAT (200) . HT T (200) . TTOT (200) DIMENSION, V(10+20)+2(10+20)+VWCRA (200)+HWORK (200)+TWORK (200) DIMENSION, WORK1(200)+WARK2(200) REAL MOTION INTEGER PRIND +PLINDV+PLIND+PLIN T+VCOMPI+VCOMPR+HCOMPI+ + HLGMPR+TCOMPI+TCOMPR+FRHTL+PLVAL+PLHAL+PLTAL C***READ RUN DESCRITION CARD 1 READ (5, 300U) NPOLY, PRIND, PLINEV, PLINDH, PLINDT, VCOMPI, VCOMPR. * HLOHPI+HCOMPR+TCOMPI+TCUMPR+PRNTAL+PLVAL+PLHAL+PLTAL 3000 FOHMAT (1512) IF (NPOLY.FG.C) GO TO 320 ********************************** C***NPOLY = NUMBER OF POLYGONS C+++THE FOLLOWING ARE OUTPUT OPTTON VARIAULES IF VARIABLE = 0 . OPTION OT FXERCISED IF VANIAULE = 1 . OPTION IS EXERCISED C+++PRIND = LIST ANOMALIES FOR FACH POLYGON C***PLINUV = PLOT VERTICAL ANO ALY FUR EACH POLYGON C***PLINUH = PLOT HORIZONTAL AND. ALY FOR EACH POLYGON ANO ALY FUR EACH POLYGON C+++PLINLT = PLOT TOTAL C+++VCOMPI = COMPUSITE PLOT OF VERTICAL ANOMALY DUE TO INDUCTION ONLY C+++VCOMPR = COMPUSITE PLOT OF VERTICAL ANOMALY DUE TO REMANENCE ONLY C+++HCOMPI = COMPUSITE PLOT OF HERIZONTAL ANOMALY DUE TO INDUCTION ONLY COMPLETE COMPOSITE PLOT OF HERIZONTAL ANOMALY DUE TO THOUGHTON ONLY COMPLETE COMPLETE PLOT OF HERIZONTAL ANOMALY DUE TO REMANENCE ONLY COMPLETE COMPLETE PLOT OF TOTAL ANOMALY DUE TO REMANENCE ONLY COMPLETE COMPLETE PLOT OF TOTAL ANOMALY DUE TO REMANENCE ONLY COMPLETE PLOT OF TOTAL ANOMALY DUE TO ALL POLYGONS - REMANENT + INDUCED COMPLETE PLOT OF TOTAL ANOMALY DUE TO ALL POLYGONS - REMANENT + INDUCED COMPLETE PLOT OF TOTAL ANOMALY DUE TO ALL POLYGONS - REMANENT + INDUCED COMPLTAL = PLOT TOTAL A OMAI Y DUE TO ALL POLYGOUS - REMAILENT + INDUCED C***READ PROFILE DESCRIPTION CARD C+**,*********** *************** ********************* & REAU (5+1000) NEPTS+ERGTX+FELX, DECPLA+ DISVHT+HATCHM 1000 FORMAT (13,568.3) C+********* ******* C+**FRSTX = X COONDINATE OF THE FIELD POINT FARTHEREST IN THE NEGATIVE C+++ DIRFUTIONILEFT). C+**DELX = INTERVIL BETWEEN FIELD POINTS. C+**NFPTS = NUMPER OF FIELD POINTS C+++UECPLX = UECLINATION OF THE POSITIVE X AXIS OF THE PROFILE LINE, MEASURID POSITIVE CLUCK, I'VE FROM GEOGRAPHIC NORTH IN DEGREES. C***OBSVHT = HEIGHT ABOVE PROFILE LIDE AT AHICH ANOMALY WILL DE C+++ CALCULITED, MEASUREN POSITIVE UPISEE FOLLOWING FIGURE). C+++HATCHM = INTERVAL BETWEEN HATCHMARKS FOR PLOTS -- MUST DE AN INTEGRAL MULTIPLE OF DELX C . . . 12345678901234567890123456789012345678901234567890123456789012345678901234567890 A DESCRIPTION OF A DESC

and the second second

and the second of the second of the second second

12345678901234567890123456784012345678901234567890123456789012345678901234567890 C+++ FOR THIS POLYGON. CALL POLYPO (NEPTS, NSI; ES.FLDPT, UBSVHT, PSUM, GSUM, I.X.Z.DELX) C***CALCULATE ANOMALY DUE TO INDUCTION FOR THIS POLYGON AT EACH FIELD POINT .**** MGTION = SUS(I) * FLDI T DO 40 J = 1+.4FPTS VAUMLY(J,1,1) =-2.*MGT10H+((CDIPH+CDIFFR+QSUM(J))-(SDIPR+PSUM(.))) HANHLY(J, I, 1) =-2. + GTICH+((CDIP++CDIFFR+PSUM(J))+(SDIPR+GSUM(1))) CONTRACTOR ANOMALIES SMALL IN COMPARISON TO THE FARTH'S FIELD, THE INTERISTY OF THE CONTRACTOR ANOMALY DUE TO ILCUCTION IS THE SUM OF THE PROJECTIONS OF THE CONTRACTOR AND HORIZONTAL ANOMALIES DUE TO INDUCTION ALONG THE DIRECTION OF CONTRACTOR AND HORIZONTAL ANOMALIES DUE TO INDUCTION ALONG THE DIRECTION OF CONTRACTOR AND ANOMALY STREAM AND ANOMALIES DUE TO ANOMALY AND ANOMALY ANOMALY ANOMALY AND ANOMALY ANOMAL TA: MLY(J.1.1) = HANMLY(J.1.1)*CDIPR*CDIFFR + VANMLY(J.1.1)*SDIDR 40 CONTINUE C+++CALCULATE ANOMALY DUE TO REMOMENT AGAITIZATION FOR THIS POLYGON 40 6ARH 818-D POINDH CDIP = COS (.0174533*R:HDIF(I)) SDIF = SIN (.0174533*R:HDIF(I)) CDIFF = COS (.0174533*R:HDIF(I)) 444 MGTION = REMMAG(I) + 100000+0 DO 50 J = 1+NFPTS VA: MLY(J+I+2) = 2+0+MGT100+((C)IP+CDIFF+GSUM(J))-(SDIP+PSUM(J))) HANMLY(J+I+2) = 2+0+MGT10N+((C)IP+CDIFF+PSUM(J))+(SDIP+GSUM(J))) C***FOR ANOMALIES SMALL IN COMPARISON TO THE EARTH'S FIELD. THE INTERSITY OF C*** FOR ANOMALIES SMALL IN COMPARISON TO THE EARTH'S FIELD. THE INTERSITY OF C*** THE TOTAL ANOMALY DUE TO REMAILENT MAGNETIZATION IS THE SUM OF THE C*** PROJECTIONS OF THE VERTICAL AND HORIZONTAL ANOMALIES DUE TO REMANENT C*** MAGNETIZATION ALONG THE DIRECTION OF THE EARTH'S FIELD. TANHLY(J:1:2) = HANMLY(J:1:2)*CDIPR*CDIFFR + VANMLY(J:1:2)*SDIPR SO CONTINUE 5n CONTINUE C++++++++END OF ANO-ALY CALC. LATIONS********* C+**PRINT ANOMALIES FOR THIS FOLYGON A D PLOT. DO 130 I = 1.NPOLY C ADD REMANENT + INDUCED FOR INDIVIDUAL POLYGONS DO OU J = 1 HAFPTS WWORK(J) = VANMLY(J. I.) + VAN.LY(J. I.2) $\begin{array}{l} \text{Heurk(J) = } \text{HanMLY(J+I+1) + } \text{HanMLY(J+I+2)} \\ \text{for Twork(J) = } \text{fanMLY(J+I+1) + } \text{TankLt(J+I+2)} \end{array}$ IF (PRIND) 70,120,70 70 WRITE (6,6000) 1,505(1) 6000 FORMAT(1H1. POLYGON :UNBER ". 12 . /. SUSCEPTIBILITY IS". 1F10.6. EMU" / . CORNERS ARE (X . Z) .) DO 80 J = 1+NSIDES 80 WRITE (0,7000) X(I,J), 2(I,J) 7000 FORMAT(1H ,*(*+F8.3+*++F8.3+*)*) M = IFIX (1000.0 * REMAAG(T)) IF (M) 100,90,100 90 WRITE (6+8000) 8000 FORMAT (1HO . MAGHETIZATION IS IN: UCED CHLY. ") GO TO 110 100 WRITE (6.9000)REMDEC(I);RE: DIP(I);REMMAG(I) 9000 FORMATIINU, MAGNETIZATION IS MIXED REMANENT ". 1'MAGNETIZATION VECTOR IS DEFINED BY DEC = .. F8.3. .. INC = . 2F8.3+ MAGNITUDE =*+F10.6+ EMU") 110 WRITE (6,9001) 9001 FORMAT(1H0, "ANOMALIES TH GAMMAS", /11X+24("*****") // " FIELD POTNT" 1 .12X. INCHCEU' , 29X, 'R: FANENT', 29X, 'TOTAL' ./. 17X. 2 3('V',9X, 'H',9X, 'T',15X)./.24('*****'), ***) 00 118 J=1.NFPTS 11A WRITE (6,9002) FLOPT(J), VA: MLY(J, I+1)+HANMLY(J, I+1)+TANMLY(J+I,1) 1. VANMLY(J, I. 2) . HANMLY(_, 1., 2), TAN: LY(J, I, 2), VWORK(J), HWORK(J). 2TWORK(J) 9002 FORMAT (1H + F9.3+ 1,3(3F1: .3+,X)) C***PLOT VERTICAL ANOMALY FO: THIS POLYGON -- REMANENT + INDUCED 120 IF (PLINUV) 121/123/121 121 FSCALE = 0.0 CALL CONARY (VANMLY . I. 1, NUR- 1. NEPTS) CALL CONARY (VANIALY . 1.2. NOR . 2.117415) CALL GRSCAL (NEPTS . WORK I . FSCALE . 1. XPC . MAX) CALL GRSCAL (: FPTS. WORK: FSCALE, IL XPO.MAX) CALL GESCAL (HEPTS . VWUR, . FSCALE, IF XPO . MAX) WRITE (U.9004) I 9004 FORMAT (1)11+40X+ VERTICAL ANOMALY FOR PLOYGON NUMBER *12) 12345678901234567890123456780012345678901234567890123456789012345678901234567901234567890 Se Proprieto

Sold Support

127

100 - PC

.....

```
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
      CALL SPLOT (NEPTS + FLUPT + WOR 1 + WOR 2 + VHORK + FSCALF + REMMAG(1) +
     + MAX+IEXPO+ITICKS)
C+++PLOT HORIZONTAL ANOMALY FOR THIS POLYGON -- REMANENT + INDUCED
 123 IF (PLINUH) 124,125,124
  124 F5CALE = 0.0
      CALL CONARY (HANHLY . I. 1, WOR: 1.NEPTS)
      CALL CONARY (HANMLY . 1 . 2, WOR . 2 . HEPTS)
      CALL GRSCAL (LEPTS+WORK + FSCALE, IT XPO+MAX)
      CALL GRSCAL (IFPTS++ORK2+FSCALE, I XPO+MAX)
      CALL GASCAL ( FPTS+HWOR +FSCALE, IEXPO+MAX)
      WRITE (0,9008) I
 900A FORMAT (1H1+ 39X+ HORIZONTAL ANOMALY FOR POLYGON NUMBER ++ 12)
      CALL SPLOT (NEPTS .FLUPT . WOR, 1 . WOR: 2 . HWOPK .FSCALF .REMMAG(1) .
     + MAX+IEXPO+111CKS)
C+++PLOT TUTAL ANOMALY FOR THIS POLYGO: -- REMANENT + INDUCED
125 IF (PLINUT) 126+130+126
  126 FSCALE = 0.0
      CALL CCHARY (TANMLY, 1, 1, WURF 1, MEPTS)
      CALL CONARY (TANMLY, I.2, WORL 2, NEPTS)
      CALL GRSCAL (HEPTS . WORK 1 . FSCALE . IEXPO . MAX)
      CALL GESCAL (SFPTS+WORK2+FSCALE, I XPO+MAX)
      CALL GASCAL (HEPTS . THORK . FSCALE . IEXPOMAX)
      WRITE (6,9009) I
 9009 FORMAT (1H1+44X . TOTAL AND ALY FOR POLYGON NUMPER ". 12)
      CALL SPLOT (NEPTS . FLDPT . WURK 1 . WORK 2 . TWORK . FSCALE . REMMAG(I) .
     . MAX. IEXPO. ITICKS)
  130 CONTINUE
C+++7ERO ALL FIELD POINT SUM ING ARRAYS.
      DO 135 I = 1.NEPTS
      VI.(U(I) = 0.0
      VREM(1) = 0.0
      HI:D(I) = 0.0
      HREM(1) = 0.0
      TINU(I) = 0.0
      THEM(I) = 0.0
  135 CONTINUE
      00 140 I = 1.NFPTS
D0 137 J = 1.NFOLY
      VIND(I) = VIND(I) + VA(I) + VA(I)
      HIND(I) = HIND(I) + HALMLY(I+J+I)
      TI(D(I) = TI(O(I) + TA(MLY(I)J,I))
      VREM(I) = VREM(I) + VANNLY(I.J.2)
      HREM(I) = HREM(I) + HALMLY(1+J+2)
  137 TREM(I) = THEM(I) + TAMMLY(1.J.2)
      VTOT(I) = VIND(I) + VRFM(I)
      HTOT(I) = HLID(1) + HRFM(I)
      TTUT(I) = TLAD( ) + TREM(I)
  140 CONTINUE
C***PLOT COMPOSITION FOR VERTICAL ANDMALY DUE TO INDUCTION ONLY
IF (VCOMPI)145+153+145
  145 FSLALE = 0.0
      DO 150 I = 1. NPO'.Y
      CALL CONARY (VANM .Y. I. I. WORL I. NEPTS)
  150 CALL GRECAL (HEPTS . WURK 1 . FSCALE . ILXPO . MAX)
      CALL GRSCAL GIFPTS .. VIID .FSCALE . ICXPO.MAXI
 WRITE (0,9010)
9010 FORMAT (1H1,40X, VERTICAL AGOMALY DUE TO INDUCTION ONLY.)
      CALL CPLOT (NPOLY . NFPTS, FLDPT . V/N 4LY . 1 . VIND . FSCALE . 1 . MAX . 1EXPO.
     * ITICKS)
C***PLOT COMPOSITION FOR VERTICAL ANOMALY DUE TO REMANENCE ONLY.
  153 IF (VCUMPR) 155,153,155
  155 FSCALE = 0.0
      00 160 I = 1+NPOL /
  CALL COMMRY (VANML (+1+2, WOR, 1+NEPTS)
160 CALL GROCAL GEPTS WORK1+FSCHLE, ICXPO+MAX)
      CALL GASCAL (AFPTS VALA FSCALE, ILXPU.MAX)
 WRITE (0.9011)
9011 FORMAT (1H1.40X, VERTICAL MOMALY DUE TO REMANFICE ONLY)
      CALL CPLOT (NPOLY . NEP 15, FLDD T. VAN-LY . 2. VIEM . FSCALE . 1. MAX . IEXPO.
12345678901234567890123456789012345678901234567890123456789012345678901234567890
```

1

1

2.44.25

S. C.L.S.

ali sa ana da tanan da da ana da dinaka kasin da kana ana ana ana sa na sa na sa

and a second second

```
ITICK<1</p>
  **PLOT COMPUSITION FOR HURIZONTAL ANUMALY DUE TO INDUCTION ONLY
  163 IF (HCOMPI) 165-173-165
   165 FSCALE = 0.0
       DO 170 I = 1. NPOLY
  CALL CONARY (HANMLY . I . 1, WOR. 1. NEPTS)
170 CALL GRSCAL (HEPTS . WORKI . FSCALE . IEXPO . MAX)
       CALL GHSCAL ( FPTS+HIND +FSCALE, ISXPO MAX)
 WRITE (6,9012)
9012 FORNAT (1H1+40X+HORIZONTAL ANGMALY DUE TO INDUCTION ONLY*)
CALL CPLOT(NPOLY+NEPTS,FLDDT+HAN_LY+1+HIND+FSCALE+2+MAX+IEXPO+
      + ITICKS)
C***PLOT COMPOSITION FOR HORIZONTAL ANUMALY DUE TO REMANENCE ONLY
173 IF (HCGMPR) 175+183+175
  175 FSCALE = 0.0
DO 180 I = 1.NPOLY
       CALL CONARY (HANMLY . 1.2. WOR. 1. N. PTS)
  181 CALL GRSCAL ( FPTS . WORK 1 . FSCALE . I . XPO . MAX)
       CALL GRSCAL (:FPTS+HKEM +FSLALE, I-XPO+MAX)
 WRITE (6.9013)
9013 FORMAT (141+40X, HORIZONTAL ANOMALY DUE TO REMANENCE ONLY )
       CALL CPLOT (NPOLY+NFPTS+FLD: T+HAN LY+2+HREM+FSCALE+2+MAX+IEXPO+
      + ITICKS)
C+*+PLOT COMPOSITION FOR TOTAL AMOMALY DUE TO INDUCTION ONLY
  183 IF (TC:MPI) 185-193-185
  185 FSCALE = 0.0
       00 190 I = 1.NPOLY
       CALL CONARY (TANMLY, I.1. WOR / 1. HEPTS)
  190 CALL GRSCAL (: FPTS . WORK 1 . FSCALE . IL XPO . MAX)
       CALL GRSCAL ( FPTS+TIHD +FSCALE, ICXPO+MAX)
 WRITE (6+9014)
9014 FORMAT (1M1+40X+"TOTAL ANOWALY DUE TO INDUCTION ONLY")
CALL CPLOT(NPOLY+NEPTS,FLDPT+TANMLY+1+TIND+FSCALE+3+MAX+IEXPO+
+ ITICKS)
C+++PLOT COMPOSITION FOR TOTAL ANDMALY DUE TO REMANENCE ONLY
193 IF (TCOMPR) 195-205-195
  195 FSCALE = 0.0
      DO 200 I = 1, NPOLY
      CALL CONARY (TANMLY . I . 2 . WORE LINEPTS)
  200 CALL GASCAL (NEPTS . WORK 1 . FSCALE . I . XPO . MAX)
      CALL GRSCAL (: FPTS . TREM . FSCALE . ILXPO . MAX)
      WRITE (6,9015)
 9015 FORMAT (1H1+40X+TOTAL AND ALY DUE TO PEMANENCE ONLY*)
CALL CPLOT (NPOLY+NEPTS, FLUPT+TANALY+2+TREM+FSCALE+3+MAX+IEXPO+
     . ITICKS)
  205 CONTINUE
IF (PRIITAL) 200+260+206
  206 RE: FLG = 0.0
DO 210 I = 1.MPCLY
  210 REMFLG = REMELG + REMMAG(1)
 WRITE (6.9016) NOLY
9016 FORMAT (1111. AND TALLES DUE TO ALL ".12. POLYGON(5) )
      IF (RE#FLG) 230+.220+230
  220 WRITE (6,8000)
      GO TO 240
  230 WRITE (6,9017)
 9017 FORMAT (IHO, MAGNETIZATION IS MI (ED. ")
  240 WRITE (0,9001)
      DO 250 I = 1.NFPTS
  250 WRITE (6,9002) FL )PT(1) + VI: U(1) + IND(1) , TIND(1) , VREM(1) + HREM(1) +
          TRES(1), VIOT(1), HIOT(1), TTOT(1)
     1
260 IF (PLVAL) 270,281,270
  270 FSCALE = 0.0
      CALL GUSCAL ( FPTS . VIND .FSCALE . 1. XPO .MAX)
      CALL GRECAL ("FPTS. VREM .FSCALE, I: XPO.MAX)
      CALL GRSCAL (INFPTS. VTOT + SCALE, I XPO.MAX)
      WRITE (6,9010)
 901A FORMAT (1H1+41X+ "VERTICAL MUMILY DUE TO ALL POLYGONS")
      CALL SHLUT GAFPTSAFLUPTAVI DAVE AVTUTAFSCALEADEMFLGAMAXAIEXPO.
12345678901234567090123456789012345678901234567890123456789012345678901234567890
```

1234567890123456789012345678901234567890123456789012345678901234567890

1

and the state of the second second second

. Sz Ma

123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 * ITICKS) 280 IF (PLHAL) 290+300+290 290 FSCALE = 0.0 CALL GRSCAL (HEPTS+HIND +FSCALE, IEXPO+MAX) CALL GASCAL (NEPTS HHEM + FSCALE, ILXPO MAX) CALL GRSCAL (NEPTS.HTOT .FSCALE, IEXPO.MAX) WRITE (6.9019) 9019 FORMAT (1H1+41X+ "HORIZALTAL ANOMALY UUF TO ALL POLYGONS") CALL SPLUT UFPTS+FLDPT+HI U+HOE +HTOT+FSCALE+RENFLG+MAX+IEXPO. + ITICKS) 300 IF (PLTAL) 310+315+310 310 FSCALE = 0.0 CALL GRSCAL INFPISATINO AFSTALE, INXPORMANT CALL GRSCAL (IFPTS, TKEM , FS; ALE, ILXPO, MAX) CALL GRSCAL (IFPTS, TTOT , FS; ALE, IEXPO, MAX) WRITE (6.9020) 9020 FORMAT (1H1+45X++*TUTAL ANGMALY DUE TO ALL POLYGONS*) CALL SPLOT (GFPTS+FLDPT+TI:0+TREM+TTOT+FSCALE+REMFLG+MAX+IEXPO+ + ITICKS) 315 GO TO 1 320 CALL EXIT ENJ 12345678901234567890123456789012345678901234567890123456789012345678901234567890 1234567890123456789012345678q012345678901234567890123456789012345678901234567890 SUBROUTINE GRSCAL (I:FPTG+A+FSCALE+IEXPO+NAX) DIMENSION A(200) C+++, THIS SUBROUTINE FINDS THE VARIABLE WITH THE GREATEST ABSOLUTE VALUE IN THE ARRAY A WHICH HAS MEPTS ELEMENTS. FSCALE IS THEN SET EQUAL TO THE SMALLEST VALUE FOR FULL SCALE WHICH WILL С cc BEST PRESENT THE ELEABITS OF A. C IEXPO MAN MAX ARE SUCH THAT FSCALE = MAY * 10 ** IEXPO . C *************** ********* DO 15 I = 1/HFPTS 5 IF (ABS(A(I))-FSCALE) 15/15/10 10 FSCALE = ARS(A(I)) 15 CONTINUE C+++ IF ALL VALUES OF THE ARDAY LRE ZEHON SET FSCALE = 1+0 ARBITRARINY. IF (FSCALE) 20+20+25 20 FSCALE = 1.0 25 EXPO = LUGIU (FSCALE) IF (EXPO) 30,35,40 30 IExPO = EXPO + 1 GO TO 45 35 MAX = 1 RETURN 40 IEXPO = EXPU 45 J = FSCALE/(10.0**IEXPn) IF (J.LT.2) 30 TO 50 IF (J.LT.5) 30 TO 55 FSCALE = 10.0 * (10.0*+1EXPO) MAX = 10 RETURN 50 FSCALE = 2.0 + (10.0++TEXPO) MAX = 2 RETURN 55 FSCALE = 5.0 + (10.0++TEXPO) MAX = 5 RETURN ENU 12345678901234567b90123456789012345678901234567890123456789012345678901234567890

```
12345678901234567890123456789012345678901234567890123456789012345678901234567890
         SUGROUTINE POLYPU INFPTSINGIDESIFLUPTIONSVHTIPSUMIGSUMI
        + INDEX.X.Z.UELX)
         DIMENSION FXX(21) +ZEE(>1) +FLOPT(200) +PSUM(200) +QSUM(200)
         DIMENSION X(10+20)+2(10+20)
C+++.+++
                                                         C+**READ COORDINATE CARDS FO: FOI YGOR CORNERS
C***GINE COORDINATE CARD FOR FACH CORLEX OF THE POLYGON--CLOCKWISE ORDER.
C***FXX(I) = X COURDINATE OF THE ITH CORNER OF POLYGON
C***ZEE(I) = Z COURDINATE OF THE ITH CURNER OF POLYGON. POSITIVE DOWN.
....
                                            ***********************
         DU 10 I = 1+.SIDES
READ (5+1000) EXX(I).ZFE(I)
 1000 FOLMAT( )
C+*+SAVE COR, ER COORDINATES FOR PRINTOUT.
    X(INDEX+I) = EXX(I)

I_0 Z(INDEX+I) = ZEE(I)
         NSIUP1 = NSIUES + 1
EXA(NSIUP1) = EXX(1)
         ZEE (NSIDP1) = ZEE(1)
         00 150 1 = 1.HFPTS
         PSUM(1) = 0.0
         QSUM(I) = C+U
         X1 = EXX(1) - FLDPT(1)
Z1 = ZEE(1) + OBSVHT
14 RS.1 = (X1+X1+Z1+Z1)
C+++IF X AND Z APE BOTH ZERO, AT.N2 GIVES ERROR, SO CHANGE Z SLIGHTLY
IF (RSn1.NE+0.0) GO TO 17
         Z1 = +0001 + DELX
         THETD = 0.0
         GL = ALOG (.0001 + DELX + DELX)
    60 TO 15
17 THETA = ATAN2(21,X1)
         J = 2
    20 X2 = EXX(J) - FLOPT(I)
    Z2 = ZEE(J) + OBSVHT
25 RSc2 = (X2+X2+Z2+Z2)
         IF (RSG2.NE.U.0) GO TO 27
         Z2 = .0001 + DELX
         THETD = U.O
         GL = ALOG (.0001 + DELV + DELX)
    60 TO 25
27 THETB = ATAN2(22+X2)
         IF (Z1-Z2) 40,30,40
     30 P = 0.0
         Q = 0.0
    GO TO 120
40 OMEGA = THETA - THETE
         IF (UMFGA) 60,50,50
     50 IF (UNEGA-3.1415927) 70,70.00
     60 IF (OMEGA+3.1415927) 30,70.70
     TO THETU = ONEGA
         GO TO 110
    80 IF (UMEGA) 90.100.100
  80 IF (CMEGA) 90.100.100

90 THETU = OMEGA = 6.2331.53

GO TO 110

100 THETO = GMEGA + 6.2831.53

110 GL = 0.5 + Alog(RSG2/RSG1)

115 X12 = x1 - A2

Z21 = 72 - 21

VEC = 112
         x_{S0} = x_{12} + x_{12}

z_{S9} = z_{21} + z_{21}

x_Z = z_{21} + x_{12}
          \begin{aligned} \Phi &= - \{ \{ 2567 \{ x567 259 \} \} + T_{1} \in T_{D} \} + \{ \{ 277 \{ x597 259 \} \} + (1) \\ \Phi &= - \{ T_{1} \in T_{D} \in \{ x27 \{ x567 259 \} \} \} = \{ CL + \{ 2597 \{ x597 259 \} \} \} \end{aligned} 
   120 PSUM(1) = PSUM(1) + P
         OSUM(1) = CSUM(1) +0
C***RELAGEL VARIABLES INVOLVING MALY THE SECOND POLYSON CORNER AS THE
C*** VARIABLES INVOLVING ONLY THE FIEST POLYGON CORNER SO THEY DON'T
C*** HAVE TO BE CALCULATED AGAIN.
  140 XI = X2

21 = Z2

RSU1 = RSG2

THETA = THETD
12345678901234567890123456789012345678901234567890123456789012345678901234567890
```

C. Manual and a state

State And

ALLER BOTH TO ALL

Landar Con

and the state of the second second

and the second state and the second state of the second state and

.

```
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

C+++CHECK TO SEE IF ALL SIDES HAVE REEN DONE.

J = J + 1

JR = J = 1

IF(JR=:)SIDP1) 20+150+150

150 CONTINUE

REIURN

EN.,
```

12345678901234567690123456789012345678901234567890123456789012345678901234567890

```
12345678901234567890123456789012345678901234567890123456789012345678901234567890
      SUNROUTILE CONARY (ARRITI, J. LRRAY2 . NEPTS)
      DIMENSION ARMAY1 (200+10+2) . AMRAY2 (200)
    THIS SUBROUTINE SELECTS THE LESIGNATED ELEMENTS OF THE THREE DIMENTIONAL
C*
C C
                                                                            ******
       ARRAY, ARRAYI AND PUTS THEM INTO A ONE DIMENSIONAL ARRAY, ARRAY2
THAT IS ARRAY2(1) = ARRAY1(1,1,1) THRU TO
C
                ARRAY2 (NEPTS) = (RRAY1 (NEPTS, 1.J)
                                                     NRE PERFORMED.
C
C+++
    ***********
   DO 10 K = 1+#FPT5
10 ARRAY2(K) = ARRAY1(K+I,J)
      RETURN
      ENU
12345678901234567890123456789012345678901234567890123456789012345678901234567890
```

÷\$

```
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
       SUGROUTINE SPLOT INFPTS+FLOPT+A+3+C+FSCALE+REMELG+MAX+IEXPO+
      ITICKS)
      DIWENSION A(200) . B(200) . C(200) . FLOPT (200) . ALI.E(101)
       REAL II
       DATA BLNK/1H /+AST/1H*/+UOT/1H./+RR/1HR/+II/1HT/+DASH/1H-/+PLS/1H*
      ............
C###.
                       **************
   THIS SUBROUTINE GENERATES A LINE PRINTER PLOT OF THE ELEMENTS OF THE ARRAYS
C
     A + & + AND C VS. THE FIELD P(I)TS FEDPT .
FLOPT FLEMENTS ARE LISTED LOUG THE ABSCISSA AND THE ARRAY ELEMENTS
PLOTTED ALONG THE OPDIMATE. HATCH MARKS ARE PLACED ALONG THE ABSCISSA
C
c
     EVERY ITICKS TH POINT.
FSCALE IS THE FULL SCALE LIMIT OF THE PLOT.
FSCALE = MAX + 10 ++ 10.PO
CCC
     REMELAG PERMITS CHOICE OF ILOTTING STHROLS DEPENDING ON WHETHER THE MAG
C
C
       NETIZATION 15 MIXED OR NOT.
                 P . USE STABULS FOR INDUCTION ONLY
C
      REMFLAG
                 = 1 . USE SYMBOLS FOR MIXED MAGHETIZATION
C
            C+**.****
       N = ITICKS
       WRITE (6,500) IEXPORIE:PORMAX .......
  500 FORMAT (1H +17X+11+99X,11+/+12/+*-*+12+*X10*+47X+*0*+46X+*+**
      1 12+ "X10" ./. FIELU POINT", 3x . 21(". ") ./. 15x . 21(5H"
                                                                           >>
  WRITE (6+600)
600 FORMAT (1H++14X+20(1++....)+*++)
    DO 10 I = 1+101
10 ALINE(I) = 6LNK
ALINE( 1) = DOT
       ALINE( 1) = DOT
ALINE( 51) = DOT
       ALINE(101) = DOT
       00 30 1 = 1+1.FPTS
       IF (ITICKS-N) 13-12+13
    12 N = 1
       ALINE( 1) = PLS
ALINE( 2) = DASH
       ALINE( 50) = DASH
       ALINE( 51) = PLS
       ALINE( 52) = DASH
        ALINE(100) = DASH
        ALINE(101) = PLS
    GO TO 14
13 N = N + 1
    14 J = 51.500001 + (A(I)/FSCALE)+50
       M = IFIX (1000-0 + REMFLG)
        IF (M) 10+15+16
    15 ALINE(J) = AST
       L=J
       KIJ
       GO TO 18
    16 ALINE(J) = II
       K = 51,500001 + (B(1)/FSCALE) + 50.0
       ALINE(K) = RR
       L = 51.500001 + (C(I)/FSCALE) * 50.0
ALINE(L) = AST
 18 WRITE (6,1000) FLCPT(1), ALINE
1000 FORMAT(1H .F10.2.4X,101A1)
 WRITE (6+2000)
2000 FORMAT (1H++14X+1H++99X+1H+)
       IF (N-1) 25+20+25
    20 ALINE ( 2) = ULNK
ALINE ( 50) = ULNK
       ALINE ( 52) = BLNK
ALINE (100) = BLNK
    25 ALINE(L) = BLNK
ALINE(K) = BLNK
        ALINE(J) = BLNK
        ALTHE( 1) = DOT
        ALINE( 51) = DOT
        ALINE(101) = DOT
    30 CONTINUE
        WHITE (0:3000)
  3000 FORMAT (1H +14X+20(*+....*)+*++)
        RETURN
        ENL
12345678901234567890123456789012345678901234567890123456789012345678901234567890
```

.....

and the second s

an all and

「「「「「「「「」」」」」

Table 6. (Concluded)

12345678y012345670y012345678y012345678901234567890123456789012345678901234567890 SUBROUTINE CPLOTINPOLY, NEPTS. FLDPT . A.K. B. FSCALF, INDEX. MAX. IEXPO. · ITICKS) DIMENSION FLUPT(200), A(200, 10, 2), B(200), ALINE(101), SUM(3), LINE(11) REAL NUM(10) DATA BLNK/1H /+DOT/1H+/+(NIN(I)+I=1+10)/1H1+1H2+1H3+1H4+1H5+1H6+ 1H7+1H8+1H9+1H0/+(SU (1),1=1,3)/1HV+1HH+1HT/+DA5H/1H-/+PLS/1H+/ C THIS SUBROUTINE GENERATES A COMPOSITE LINE PRINTER PLOT OF THE ELEMENTS OF THE ARRAY A AS FOLLOWS . MOTE A IS DIMENSIONED AS A(200,10,2) . THIS SURROUTINE WILL PLOT THE FOLDITS A(ALPHA,BETA,1) OR A(ALPHA,BETA,2) AS DESCRIBED BY THE FOLLOWING. NPOLY PLOTTING SYMBOLS č Ċ 00000000 ARE PLOTTED FUR LACH VALUE OF THE ABSCISSA. FOR NEPTS FIELD POINTS. ALSO FOR EACH VALUE OF THE ANSCISSA A PLOTTING SYMLOL REPRENTING THE CORRESPOND-ING ELEMENT OF THE ANSAY & WHICH IN THIS CASE REPRESENTS THE ALGEBRAIC SUM OF THE WPOLY VALUES FOR ANRAY A IS ALSO PLOTTED. FLIPT ELEMENTS ARE LISTED ALONG THE ARGCISSA AND THE ARRAY ELEMENTS OF A AND & ARE PLOTTED ALONG THE ORDINATE. HATCH MARKS ARE PLACED ALONG THE ABSCISSA EVERY ITICKS TH POLIT. FSCA THE PLOT. FSCALE = MAX . 10 *. IEXPO. č FSCALE IS THE FULL SCALE LIMIT OF N = ITICKS WRITE (0.500) IEXPORIE POR AXIMAX 500 FORMAT (1H +17%+11+99%+11+/+12++*-*+12++X10*+47X+*0*+46X+*+*+ ·) // 15x,21(5H* 1 12+ X10 +/+ FIELD POINT +, 3x+21(*+ 11 WRITE (0,600) 600 FORMAT (1H++14X+20(*++...*),*++) DO 10 1 = 1.101 10 ALINE(1) = 0LNK ALINE(1) = DOT ALINE(51) = DOT ALINE(101) = DOT DO 40 I = 1:4FPTS IF (ITICKS-N) 13:12:13 12 N = 1 ALINE 1) = PLS 2) = DASH ALINE (ALINE(50) = DASH ALINE(51) = PLS ALINE(52) = DASH ALINE(100) = DASH ALINE(101) = PLS 60 TO 14 13 N = N + 1 14 DO 20 J = 1+HPOLY L = 51.500001 + (A(I+J+K)/FSCALE) * 50.0 C+*+SAVE NUMBER OF THE ELEMENT WHICH WAS CHANGED FROM BLANK LINE(J) = LC+**REPLACE BLANK LINE ELEMENT BY CHARACTER FOR DATA POINT. 20 ALINE(L) = NUM(J) L = 51,500001 + (B(I)/rSCALE) + 50.0 ALINE(L) = SUM(INDEX) C+++J IS NOW = NPULY + 1 LINE(J) = L WRITE(6.1000) FLOPT(1).ALIVE 1000 FORMAT(1H +F10-2+4X+101A1) WRITE (0+2000) 2000 FORMAT (1H++14X+1H++99++1H+) C+**RESTURE BLINKS TO THOSE LINE FLEMENTS WHICH WERE CHANGED DO 30 L = 1.J M = LINE(L) 39 ALINE (4) = BLNK C+**RESTORE DUTS TO THOSE LINE ELEMENTS WHICH MAKE UP THE AXIS AND MAY HAVE C+++ HEEN CHANGED. IF (N-1) 38:35:38 35 ALINE (2) = HLNK ALINE (SO1 = BLNK ALINE (52) = BLIK ALINE (100) = BLNK 34 ALINE(1) = DOT ALINE(S1) = DOT ALINE(101) = DOT 40 CONTINUE WRITE (0.300)) 3000 FORMAT (1H +14X+20(*++...*)+*++) RETURN END 12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

and the second state of the second

and the let

Statute States

and the second second

and the second states and second second

APPENDIX IV

PALEOMAGNETIC DATA COLLECTION AND REDUCTION

Samples from the Meriwether dike were collected and analyzed for NRM (Natural Remanent Magnetization) by Doyle Watts of the Ohio State University. Thirteen cores were obtained from a single outcrop of the Meriwether dike 5.5 miles northeast of Greenville on Georgia State Highway 362. In all, 26 one inch cylinders were cut from the cores. The samples were analyzed for Natural Remanent Moment (no magnetic cleaning) using a Schonstedt SSMI Spinner Magnetometer. Direction and magnitude of the NRM are given for each sample in Table 7. Sample numbers are those used by Watts (personal communication) and the letter A, B, or C following the number indicates the first, second, or third cylinder cut from a core. Cores NW73174 through NW73182 were taken from the center portion of the dike and the remaining cores from the chilled edges of the dike. Table 7. Natural Remanent Moments of Cores Taken From

The Meriwether Dike (Watts, Personal Communication)

Ohio State University		Remanent Moment	
Sample Number	Magnitude	Declination	Inclination
NW73174B	0.00144	7.82	26.26
NW73175A	0.00144	2.98	28.54
NW73175B	0.00156	8.86	35.49
NW73176B	0.00150	1.03	35.39
NW73177B	0.00150	21.69	27.86
NW73177C	0.00151	18.31	35.96
NW73178B	0.00174	12.42	25.20
NW73178C	0.00168	13.94	26.29
NW73179B	0.00152	18.10	22.61
NW73179C	0.00149	22.29	21.84
NW73180B	0.00173	10.08	26.39
NW73180C	0.00175	14.89	25.46
NW73180D	0.00170	12.01	27.20
NW73181B	0.00166	14.77	29.96
NW73182B	0.00162	16.20	23.21
NW73182C	0.00153	19.51	25.58
NW73183B	0.00215	36.16	27.72
NW73183C	0.00220	36.84	31.15
NW73184B	0.00211	33.78	23.38
NW73184C	0.00173	30.42	16.23
NW73185B	0.00201	42.87	27.96
W73185C	0.00193	46.15	27.09
NW73186B	0.00220	42.11	32.70
NW73186C	0.00210	46.66	31.44
NW73187B	0.00212	49.75	30.89
NW73187C	0.00216	42.37	30.95

BIBLIOGRAPHY

75

BIBLIOGRAPHY

Armstrong, R.L., and J. Besancon. A triassic time scale dilemma: K-Ar dating of Upper Triassic mafic igneous rocks of eastern U.S.A. and Canada and Post-Upper Triassic plutons, western Idaho, U.S.A. Eclogae geol. Helv., 63(1), 15-38, 1970.

Balsley, J.R., and A.F. Buddington. Iron-Titanium Oxide minerals, rocks, and aeromagnetic anomalies of the Adirondack Area, New York. Economic Geology, 53, 777-805, 1958.

Bentley, R.D., and T.L. Neathery. Geology of the Brevard zone and related rocks of the inner Piedmont of Alabama. Alabama Geol. Survey, 8th Annual Field Trip Guidebook, Dec. 4-5, 1970.

Cohee, C.V., Chairman. Tectonic Map of the United States excluding Alaska and Hawaii. U.S. Geological Survey and American Association of Petroleum Geologists, scale 1:2,500,000, 1962.

de Boer, Jelle. Paleomagnetic-tectonic study of Mesozoic dike swarms in the Appalachians. J. Geophys. Res., 72(8), 2237-2250, 1967.

Dobrin, M.B. <u>Introduction to Geophysical Prospecting</u>. Second edition, McGraw-Hill, 446 pages, 1960.

Dorman, Leroy M., and Robert E. Ziegler. Gravimetric reference base net, State of Georgia. Georgia Geological Survey, in preparation.

Garland, George D. Introduction to Geophysics - <u>Mantle, Core, and</u> <u>Crust</u>. Saunders, 420 pages, 1971.

Georgia Department of Mines, Mining, and Geology. Geologic Map of Georgia, scale 1:500,000, 1939.

Green, R. Remanent magnetization and the interpretation of magnetic anomalies. Geophysical Prospecting, 8, 98-110, 1960.

Hood, Peter. Remanent magnetism - a neglected factor in aeromagnetic interpretation. Canadian Mining Journal, 84(4), 76-79, 1963.

Johnson, Robert W., and Joel S. Watkins, Aeromagnetic map of Staunton and vicinity, Virginia. U.S. Geological Survey, Geophysical Investigations Map GP-414, scale 1:62,500, 1963.

King, P.B. Systematic pattern of Triassic dikes in the Appalachian region. Geological Survey Research 1961, U.S. Geol. Survey Prof. Paper 424-B, B93-B95, 1961. Lee, Doyce L. A diabase dike in Meriwether County, Georgia (abstr.) Bull. of the Ga. Acad. of Sci., 29(2), 127, 1971.

Lester, J.G., and A.T. Allen. Diabase of the Georgia Piedmont. Bull. of the Geol. Soc. of Amer., 61, 1217-1224, 1950.

Matshusita, S., and Wallace H. Campbell, editors. <u>Physics of Geomag-</u> <u>netic Phenomena, Vol 1</u>. Academic Press, 1967.

May, P.R. Pattern of Triassic-Jurassic diabase dikes around the North Atlantic in the context of predrift position of the continents. Geol. Soc. of Amer. Bull., 82, 1285-1292, 1971.

National Aeronautics and Space Administration. Earth Resources Aircraft Program, Screening and Indexing Report, Mission 131. Manned Spacecraft Center; Houston, Texas; September 1970. Film: Mission 131, site 217, roll 3, Color infrared Zeiss camera, frames 43, 44, and 45, 1970.

Petty, A.J., F.A. Petrafeso, and F.C. Moore, Jr. Aeromagnetic Map of the Savannah River Plant Area South Carolina and Georgia. U.S. Geological Survey, Geophysical Investigations Map GP-489, scale 1:250,000, 1965.

Philbin, P.W., F.A. Petrafeso, and C.L. Long. Aeromagnetic Map of the Georgia Nuclear Laboratory Area, Georgia. U.S. Geological Survey Geophysical Investigations Map GP-488, scale 1:250,000, 1964.

Privett, Donald R. Structure and petrography of some diabase dikes in central South Carolina (abstr.). Geol. Soc. Amer. Spec. Paper 87, p. 260, 1966.

Stockwell, C.H., Chairman. Tectonic Map of Canada. Canada Geological Survey, Map 1251A, scale 1:5,000,000, 1969.

Strangway, D.W. Interpretation of the magnetic anomalies over some Precambrian dikes. Geophysics, XXX(5), 783-796, 1965.

Talwani, Manik, J.L. Worzel, and Mark Landisman. Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone. J. Geophys. Res., 64(1), 49-59, 1959.

Talwani, Manik, and James R. Heirtzler. Computation of magnetic anomalies caused by two-dimensional structures of arbitrary shape. Computers in the Mineral Industries, Part I, Stanford University Publications, Geol. Sci., 9(1), 464-480, 1965.

U.S. Geological Survey. North-Central Georgia Aeromagnetic Map. Georgia Geological Survey, in preparation.

Watson, Thomas L. Granites and gneisses of Georgia. Geological Survey of Georgia Bull. 9A, 1902. and the second states

Weigand, Peter W., and Paul C. Ragland, Geochemistry of Mesozoic dolerite dikes from eastern North America. Contr. Mineral and Petrol., 29, 195-214, 1970.

and the state of the state of the state of the state of the second

a Radia Bar Carlow

6-35-608

EFFECTS OF CRUSTAL FEATURES ON THE GRAVITY FIELD AND ISOSTATIC COMPENSATION

. .

FINAL REPORT

Leland Timothy Long

December, 1974

U.S. ARMY RESEARCH OFFICE - DURHAM

GRANT NO. DA-ARO-D-31-124-71-G117

GEORGIA INSTITUTE OF TECHNOLOGY ATLANTA, GEORGIA 30332

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The findings in this report are not to be construed as an official department of the army position, unless so designated by other authorized documents.

ана албана албана. 1997 — Прила Стария, стар

		Street and St	
DOCUMENT CO	NTROL DATA - R 8	L D	
(Security classification of title; body of abstract and index	ng annotation must be er	ntered when the	overall report is cleastfied
I. SRIGINATING ACTIVITY (Corporate authors		ZE. HEPONT S	CURITY CLASSIFICATIO
School of Geophysical Sciences		U	nclassified
Georgia Institute of Technology		25. GROUP	
Atlanta, Georgia 30332			NA
. REPORT TITLE			
EFFECTS OF CRUSTAL FEATURES ON THE	GRAVITY FIELD	AND ISOSTA	ATIC COMPENSATION
	the second s	and an appropriate state of the	
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report 4/1/72 - 6/30/74 (. AUTHORIS) (First mane, middle initial, last nome) Leland T. Long			
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report 4/1/72 - 6/30/74 C. AUTHORISI (First mane, middle initial, last name) Leland T. Long			
A DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report 4/1/72 - 6/30/74 C. AUTHORISI (First name, middle initial, fast name) Leland T. Long 5. REPORT DATE	TA TOTAL NO. OF	PAGES	75. NO. OF REFS
 DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report 4/1/72 - 6/30/74 LUTHORIS (First mane, middle initial, last name) Leland T. Long REPORT DATE December, 1974 	TA TOTAL NO. OF	PAGES	75. NO. OF REFS
 A. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report 4/1/72 - 6/30/74 AUTHOR(S) (First mane, middle initial, last mane) Leland T. Long REPORT DATE December, 1974 CONTRACT OR GRAFT NC. 	TA TOTAL NO. OF 7 Se. ORIGINATOR'S	PAGES	75. NO. OF REFS 11 (BER(8)
 A. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report 4/1/72 - 6/30/74 AUTHORIS) (First name, middle initial, last name) Leland T. Long ABPORT DATE December, 1974 Se. CONTRACT OR GRAPT NG. DAHCO4-74-G-0003 	TR. TOTAL NO. OF 7 38. ORIGINATOR'S	PAGES	75. NO. OF REFS 11 (BER(\$)
A. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report 4/1/72 - 6/30/74 C. AUTHORIS) (First mane, middle initial, last memo) Leland T. Long AREPORT DATE December, 1974 A. CONTRACT OR GRAPT NC. DAHCO4-74-G-0003 A. PROJECT NO.	TA TOTAL NO. OF 7 Se. ORIGINATOR'S NORE	PAGES	75. NO. OF REFS 11 (BER(\$)
 A. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report 4/1/72 - 6/30/74 A. AUTHORISI (First name, middle initial, fast name) Leland T. Long AEPORT DATE December, 1974 CONTRACT OR GRANT NC. DAHCO4-74-G-0003 PROJECT NO. ARO-D Project Number RDRD-EVS-9110 	TA. TOTAL NO. OF 7 58. ORIGINATOR'S NORE	PAGES	75. NO. OF REFS 11 (BER(\$)
 A. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report 4/1/72 - 6/30/74 C. AUTHORISI (First manne, middle initial, last name) Leland T. Long AEPORT DATE December, 1974 CONTRACT ON GRAFT NC. DAHCO4-74-G-0003 PROJECT NO. ARO-D Project Number RDRD-EVS-9110 4. 	TA TOTAL NO. OF 7 Da. ORIGINATOR'S NORE 50. OTHER HEPOT this repoil)	PAGES	75. NO. OF REFS 11 (BER(\$)
 A. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report 4/1/72 - 6/30/74 C. AUTHOR(S) (First mane, middle initial, last nones) Leland T. Long B. REPORT DATE December, 1974 Se. CONTRACT OR GRANT NC. DAHCO4-74-G-0003 B. PROJECT NO. ARO-D Project Number RDRD-EVS-9110 a. 	TA TOTAL NO. OF 7 Se. ORIGINATOR'S None Se. OTHEN REPORT Shin report) None	T NO(5) (Any a	75. NO. OF REFS 11 (BER(S) sther numbers that may be a

11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY
	U. S. Army Research Office-Durham
None	Box CM, Duke Station
	Durham, North Carolina 27706

13. ABSTRACT

The main purpose of the gravity analysis was to investigate the effects of crus features and major geologic units on gravity anomalies and on isostatic compensation The study of isostatic compensation utilized the theory of Dorman and Lewis in which topographic features were assumed to be related linearly to compensation and its corresponding Bouguer anomaly. An isostatic response function was derived directly from the relation between topography and Bouguer anomalies in the southeastern Unit States. The results of the analysis indicate over compensation with either undercor pensation at 150 km depths or lateral compensation. Another possibility is lateral crustal inhomogeneity. Interpretations with lateral inhomogeneities are preferred because detailed gravity data have revealed numerous anomalously shallow high-densit crustal structures in the southeastern United States.

In general in the southeastern United States lateral inhomogeneities in the cru are significant and must be considered in any analysis of the crustal response to applied stresses. This fact was particularly evident in attempting to compute an isostatic response function. The analysis also strongly supports vertical movement crustal blocks as a major tectonic mechanism in the southeastern United States. Unclassified

Security Claration int

化氯苯 使奇鲁拉带	5. 1991				7.114	ĸ
	ROLE	WT	noLE	WŤ	ROLE	
						I
isostasy						ł
gravity analysis						
isostatic response function						
crustal structure						
southeastern United States					ļ	
						l
Georgia					1	
South Carolina						
						1
						ľ
						I
						1
						ł
	•					l
						I
						I
		ļ				ł
		l I				
						-
	-					
	1					ļ
		f				
	ł				1	
	l]	
					1	
					i .	
		1				
		1				
		1				
		1			1	
				1.1		
						1
					Į.	
		1			1	ļ
		1				Ĩ
					1	
	ļ				1	ļ
	1	J	I 1		t	I

Security Classification

EFFECTS OF CRUSTAL FEATURES ON THE GRAVITY FIELD AND ISOSTATIC COMPENSATION

Statement of Problem Studied

The main purpose of the gravity analysis was to investigate the effects of crustal features and major geologic units on the gravity field and isostatic compensation.

Crustal features and major geologic units have been examined by obtaining detailed field data near known structures or by obtaining detailed gravity data in lines across structures. Conventional analysis methods have been used to relate the observed gravity anomalies to the interpreted shape of these structures. Conventional analysis methods have also been applied to gridded regional gravity data in the southeastern United States. The analysis in these investigations was directed toward accumulating evidence implicating recent crustal movement in response to isostatic stresses as a major tectonic mechanism of the southeastern United States.

The study of isostatic compensation utilized the theory presented by Dorman and Lewis (1970) and Lewis and Dorman (1970). In application of the theory, topographic features were assumed to be related linearly to compensating masses. The object was then to derive the functional relation between the topography and the Bouguer anomalies derived from the compensating masses. Similarly density anomalies in the crust should be functionally related to Bouguer anomalies. Attempts were made to include surface densities and short wavelength anomalies in the derivation of the response function. Attempts were also made to interpret the response function in terms of isostatic mechanisms or crustal structure.

Results and Conclusions Reached

The research covered by this grant proceeded in two stages. The first stage was a preliminary analysis based on incomplete data. As a result of the preliminary analysis tentative conclusions were derived and utilized to establish more specific goals for the second stage of research. The second stage in the analysis in most cases supported the conclusions of the first stage of analysis.

Preliminary results

An isostatic response function can be derived for an area as small as the southeastern United States. However, the truncation of structures at the edge of the 512 x 512 km square area requires that the derivation of Dorman and Lewis (1970) be modified to utilize the first derivatives in the computation of the isostatic response function. Also, the numerical precision of the data must be carefully evaluated to

-1-

prevent these errors from dominating the results. At wavelengths less than 30 km the Bouguer anomalies and elevation were virtually random functions and uncorrelated in the southeastern United States.

The response function derived for the southeastern United States showed a significant oscillatory character. The response function for a linear impulse in topography according to the derived function would be positive from 50 to 125 km and slightly negative from 125 to 250 km. The positives in the response function effectively balance an anomalously high ratio of Bouguer anomalies to elevation of -0.14 mgals/ meter. This anomalously high value at long wavelengths implies that mountains in the southeastern United States are over compensated and should be experiencing isostatic forces compatible with uplift. Contemporary uplift is supported by releveling data (heade, 1971). The response function for the southeastern United States also showed significant asymmetry which is probably related to the asymmetry of the continental margin.

The existence of oscillations in the response function as opposed to the nearly uniform decay such as observed by Dorman and Lewis (1970) has significant tectonic implications. Primarily, the response function observed contains wavelengths much shorter than typically observed in crustal loading or unloading such as caused by glacial rebound. The significance of this difference is perhaps that two independent mechahisms are involved. The mechanism for glacial rebound is a short-term elastic deformation of the crust, in which the rate of deformation is controlled primarily by the viscority of the upper mantle. The mechahisms for the observed isostatic response function is perhaps a nonlinear deformation of the crust. The causitive stresses would be long-term stresses related to the inherent isostatic inequilibrium of crustal structures (Artyushkor, 1974). For the longer durations involved the mantle is virtually a perfect fluid.

Inversion of the isostatic response function requires that constraints be applied to obtain a solution because potential data are inherently non-unique. The most common restraint for isostasy is to assume local compensation (Dorman and Lewis, 1972). For the southeastern United States a solution constrained by local compensation would require significant negative compensation below 150 km. A physical mechanism which can explain the existence of negative compensation at depths of 150-200 kilometers can be derived from recent movement of the North American plate. This mechanism requires that the roots of the Hountainous regions displace the upper mantle downward. because the downward displaced material is cooler, the equilibrium depths of phase changes in the crystalline structure shifts upward causing increased dessity of the material and consequently negative compensation. This mechanism introduces a momentary density instability in the mantle which has been utilized as a driving mechanism for a model of mantle convection (Lowell and Bodvarsson, 1973). however, significant phase transformations are currently unknown in

the depth range of 150 to 250 km. This physical model could have also explained the existence of asymmetry in the response function.

While the physical model for negative compensation at depth is plausable, the model is not supported by gravity data which indicate that many of the geologic structures which undoubtedly contribute to the oscillation of the response function are within the crust. The oscillation wavelengtn of the isostatic response function indicates that a block width of 50 to 100 km would be appropriate for lateral compensation. At least three physical models can explain the existence of the lateral inhomogeneity of the crust. The first is an isostatic reaction of crustal blocks to erosion or depositional loading such as has occurred in the coastal plain regions of the southeastern United States. The second is an attachment of island arcs or crustal fragments onto the southeast edge of the North American Plate during the closing of a proto-Atlantic ocean. Evidence for island arc configurations exist in the Piedmont Province of Georgia and South Carolina (Denman, 1974). The third is the intrusion of basic rocks during the early development stage of the Atlantic ocean. (See Long and Lowell, 1973).

kevised objectives

The main objective for the second stage of the gravity analysis was, as in the first stage, to investigate the effects of crustal features and major geologic units on the gravity field and isostatic compensation. As a consequence of the preliminary results from the first stage the following six more specific objectives were developed.

1. Compute and invert the response function with a revised and expanded data set.

2. Evaluate the significance in the difference between the isostatic response function and observed deformation of glacial rebound.

3. Evaluate the significance and influence of an intermediate crustal layer.

4. Compare classical models for computing isostatic anomalies to the observed response functions.

5. Model the isostatic response of the crust by use of numerical methods and include in the model the effects of temperature changes, viscosity, erosion, deposition and other parameters which might influence the isostatic response function.

6. Support detailed gravity field work.

Conclusions

The complete data set did not change the preliminary isostatic response function significantly. Consequently most of the preliminary results remain unchanged. Evaluation of the revised objectives indicate the following conclusions.

1. The isostatic response function obtained with the more complete data set was virtually the same as was obtained previously. Inversion techniques have been investigated by Dorman and Lewis (1972). However, for the southeastern United States data inversions with local compensation do not give realistic solutions for density distributions with depth. The conclusions with respect to lateral compensation are the same as given above.

2. The best explanation for the difference between the crustal response to glacial unloading and the observed isostatic response function perhaps relates to the manner in which the isostatic stresses are distributed and the character of material flow in the upper mantle. Glacial unloading at the earth's surface creates a regional or smooth stress at the crust-mantle contact which remains within the elastic limit of the crust and which excites viscus flow in the mantle. In contrast the stresses for the long-term non-elastic, non-linear deformation of the crust are localized stresses related to hoho topography or anomalous density structures in the crust. The mantle is a virtual fluid for the longer time periods involved.

3. A detailed gravity uata line across north Georgia (Long, 1974) indicates that intermediate layer undulates with the topography. In the Coastal Plain an intermediate layer may not exist as a discrete layer since in places crustal material with perhaps composition similar to that expected for the intermediate layer approaches the surface. Explanations for the correlation of density anomalies at depth with topography could include the influence of vertical uplift of discrete crustal blocks and lateral variations in crustal structure generated by some currently inactive tectonic mechanism.

4. None of the classical models for computing isostatic anomalies are compatible with the strong negative compensation at greater depths or the effects of lateral variations in crustal structure like those observed in the isostatic response function for the southeastern United States. Smoothed free air anomalies were utilized almost entirely for the evaluation of isostatic equilibrium.

5. The utilization of numerical methods to generalize the crustal response was not attempted beyond the evaluation of elevation versus heat flow (Long and Lowell, 1973). Such an analysis would require computations which are significantly more involved than allowed by the available time or resources on this grant. Preliminary analysis indicates that there exists a significant potential for results through application of numerical techniques to problems of the crustal response to stress.

6. The support for detailed gravity studies in the field has made possible a number of gravity anomaly maps of significant

-4-

structures in the southeastern United States (see Long, 1974). Additional data were obtained with the objective of obtaining evidence of vertical crustal movement. In general the data support the existence of recent vertical movements.

Some of the detailed gravity studies were in conjunction with seismic monitoring in the epicentral regions of recent earthquakes. Partially as a result of the detailed gravity data a relation has been shown to exist between interpreted structures and the locations of aftershocks. In the case of Bowman and Summerville, South Carolina, high-density and high-velocity geologic units in the crust are spacially associated with earthquakes. These units have higher rigidity than the surrounding crustal material and the rigidity contrast allows amplification of low-level regional stresses. Earthquakes occur where the geometry would predict the greatest amplification of regional stress.

Recommendations

This research has shown that the lateral inhomogeneity of the crust in the southeastern United States prohibits the application of techniques which are based on uniform layers. Therefore, it is recommended that the study of tectonics or crustal deformation be investigated by numerical methods as suggested in objective 5 above.

Continued support for detailed studies are recommended so that more areas may be mapped with the one kilometer spacing required for resolution of structures in the upper crust.

Although direct computation of the isostatic response function does not always yield results directly related to isostasy, similar analyses are recommended for other areas so that the variation in the influence of lateral variations may be evaluated.

Bibliography

- Artyushkov, E. V. (1974). Can the earth's crust be in a state of isostasy, J. Geophys. Res., 79, pp. 741-752.
- Denman, H. E. (1974). Implications of seismic activity at the Clark Hill Reservoir. Hasters Thesis, Georgia Institute of Technology. 103 pp.
- Dorman, L. M., and B. T. R. Lewis (1970). Experimental isostasy, 1, Theory of the determination of the earth's isostatic response to a concentrated load, J. Geophys. Res., 75, pp. 3357-3365.
- Dorman, L. M., and B. T. R. Lewis (1972). Experimental isostasy, 3, Inversion of the isostatic Green function and lateral density changes, J. Geophys. Res., 77, pp. 3063-3077.

- Lewis, B. T. R., and L. H. Dorman (1970). Experimental isostasy, 2, An isostatic model for the U.S.A. derived from gravity and topographic data, <u>J. Geophys. Res., 75</u>, pp. 3367-3386.
- Lowell, R. P., and G. Bodvarsson (1973). A one-dimensional convection model: Application to an internally heated two-phase mantle. Jokull, 23, pp. 19-36.
- Heade, B. K. (1971). Report of the sub-commission on recent crustal movement in North America, Paper presented at XV Gen. Assembly of IUGG - International Association of Geodesy, Hoscow, USSR. Aug. 2-14, NOS, NOAA.

Publications Supported by Grant

- Long, L. T., S. R. Bridges and LeRoy Dorman (1972). Simple Bouguer gravity map of Georgia, Georgia Geological Survey, 0.5 x 11 inches 2 pp explanation.
- Long, L. T., and R. P. Lowell (1973). Thermal model for some continental margin sedimentary basins and uplift zones, <u>Geology</u>, Vol. 1, No. 2, pp 87-88.
- Long, Leland Timothy (1974). Bouguer gravity anomalies of Georgia, Bulletin 37, Georgia Geological Survey, Symposium on the Petroleum Geology of the Georgia Coastal Plain, pp 141-166.
- Long, Leland Timothy, Pradeep Talwani, and S. R. Bridges (1975). Simple Bouguer Gravity of South Carolina, South Carolina Division of Geology, Map with explanation (in preparation).

Thesis

Presentations at Scientific Heetings

- Bridges, S. K., Study of a positive Bouguer gravity anomaly in Tift County, Georgia. Presented at Georgia Academy of Science, April, 1973.
- Long, L. T., S. R. Bridges, and LeRoy Dorman, Bouguer anomaly map of Georgia, Presented at Southeastern Section meeting of the Geological Society of America, March, 1972.
- Talwani, Pradeep, Leland T. Long and Samuel R. Bridges, Regional gravity anomalies and crustal structure in South Carolina. Presented at Annual meeting of the Geological Society of America, November, 1974.

Farticipating Personnel

The research has provided an opportunity to exchange ideas with researchers in sourceastern universities and government agencies. At Georgia Tech the research has contributed to the education of many graduate and undergraduate students. The following students worked full time for at least one term on the research.

5. R. Bridges (undergraduate and graduate assistant) B.S. in Paysics with Geophysics Linor.

<u>G. d. nothe</u> (undergraduate and graduate assistant) B.S. in Physics with Geophysics Minor, M.S. in Geophysics. Mr. Rothe is continuing work toward a Ph.D. in Geophysics at University of Masnington.

J. A. Champion (gracuate assistant)

L. Evans (graduate assistant)

The following assisted the research in field measurements or computer programming.

J. H. hekee (graduate assistant) 11.8. in Geophysics
h. Z. Jensan (graduate assistant) 11.8. in Geophysics
J. Sutter (graduate assistant)
m. M. Patzewitsen (graduate assistant)
h. B. Clark (undergraduate assistant)
J. C. Weisenhorn (undergraduate assistant)
J. C. Weisenhorn (undergraduate assistant)
A. P. Darke (undergraduate assistant)
H. B. Funce (computer programmer)
G. Sparrow (computer programmer)
S. A. Theeler (computer programmer)

--7--