In presenting the dissertation as a partial fulfillment of the requirements for an advanced degree from the Georgia Institute of Technology, I agree that the Library of the Institute shall make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to copy from, or to publish from, this dissertation may be granted by the professor under whose direction it was written, or, in his absence, by the Dean of the Graduate Division when such copying or publication is solely for scholarly purposes and does not involve potential financial gain. It is understood that any copying from, or publication of, this dissertation which involves potential financial gain will not be allowed without written permission.

An in m 1

7/25/68

_ ...

COMPARATIVE ANALYSIS OF THE EFFECTS OF SYSTEM STRUCTURE AND INFORMATION INPUT CHARACTERISTICS ON THE SYSTEM'S RESPONSE OF A MILITARY INTELLIGENCE HANDLING SYSTEM

A THESIS

Presented to

The Faculty of the Graduate Division

by

Edward Reeves Maddox, Jr.

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in the School of Industrial and Systems Engineering

Georgia Institute of Technology

June, 1971

COMPARATIVE ANALYSIS OF THE EFFECTS OF SYSTEM STRUCTURE AND INFORMATION INPUT CHARACTERISTICS ON THE SYSTEM'S RESPONSE OF A MILITARY INTELLIGENCE HANDLING SYSTEM

Approved: 00 Date approved by Chairman: 4 JUNE 1971

ACKNOWLEDGMENTS

I would like to thank Dr. J. Gordon Davis, Associate Professor in the School of Industrial and Systems Engineering, for his time, understanding, and guidance given to the author during the preparation of this thesis. I would also like to thank the other members of the reading committee, Drs. L. G. Callahan and D. C. Montgomery, for their well appreciated assistance.

I would further like to thank the U. S. Army which made this research possible by providing input data and travel funds.

TABLE OF CONTENTS

ACKNOW	Page LEDGMENTSii					
LIST O	F TABLES					
LIST OF ILLUSTRATIONS						
SUMMAR	Y					
Chapte I.	r INTRODUCTION					
	Background Purpose					
II.	LITERATURE					
	Combat Intelligence Simulation Combat Intelligence and Simulation					
III.	PROCEDURE					
	Introduction Construction of the Initial Model: Phase Ia Modification of the Model and Validation: Phase Ib The Observed System and Its Schematic Model Validation Experimentation Experiment 1 Experiment 2 Experiment 3					
IV.	RESULTS					
	Experiment 1 Experiment 2 Experiment 3					
۷.	CONCLUSIONS AND RECOMMENDATIONS					
	General Comments Conclusions Recommendations					

iii

TABLE OF CONTENTS (Concluded)

Appendi A.	Pa FUNCTIONS USED IN THE GPSS-II PROGRAM	ge 54
В.	GPSS-II COMPUTER PROGRAM AND EXAMPLE RUN RESULTS	77
LITERA	FURE CITED	94

LIST OF TABLES

Table		Page
1.	Initial Battlefield Information Control Center (BICC) Specified Manning Strengths	. 17
2.	Estimated Daily Message Volumes	. 18
3.	Observed Manning Levels	. 23
4.	Experiment 1 Manning Levels per Shift by Model	. 39
5.	Low Intensity Intelligence Analyst Utilization	
	Factors	. 39
6.	Communications Utilization Factors	. 40
7.	Low Intensity Information Transit and Process-	
	ing Times	. 41
8.	Mid Intensity Intelligence Analyst Utilization	
- •	Factors	52
9.	Experiment 2 Manning Levels per Shift by Model	. 52
10.	Experiment 3 Manning Levels per Shift by Model	56
11.	High Intensity Intelligence Analyst Utilization Factors	. 56

LIST OF ILLUSTRATIONS

Figure					Page
1.	Typical Brigade Organization Supported by BICC System and Interconnecting Communications Links	• •	-	•	4
2.	Initial (Hypothesized) BICC Internal Operations and Information Flow Channels	• •			5
3.	Initial (Hypothesized) System Critical Queue Histories		•		21
4.	The Observed Brigade BICC System Schematic	• •	•	•	29
5.	Results of Duncan's Multiple Range Test on Total System Transit Time by Priority	• •		•	45
6.	Total System Information Transit Times for Low Intensity Message Input	• •	•	•	48
7.	Mid Intensity Base Model Critical Queue Histories		•	•	51
8.	Total System Information Transit Times for Mid Intensity Message Inputs		•	•	53
9.	High Intensity Base Model Critical Queue Histories		•	•	57
10.	Total System Information Transit Times for High Intensity Message Inputs		•	•	58
11.	FUNCTION 3 Priority Assignment		•	•	65
12.	FUNCTION 8 Teletype Tape Preparation Times	• •	•	•	66
13.	FUNCTION 11 Cumulative Distribution of FM Radio Transmission Times		•	•	67
14.	FUNCTION 30 Cumulative Distribution of Bn BICC CC&D Service Times			•	68
15.	FUNCTION 31 Cumulative Distribution of Journal Entry Service Times		•	•	69

LIST OF ILLUSTRATIONS (Concluded)

Figure		Page
16.	FUNCTION 32 Cumulative Distribution of Bn BICCA&P Service TimesA&P Service Times	70
17.	FUNCTION 33 Cumulative Distribution of Bde BICC CC&D Service Times	71
18.	FUNCTION 34 Cumulative Distribution of Collection Management Service Times	72
19.	FUNCTION 35 Cumulative Distribution of Bde BICC A&P Service Times	73
20.	FUNCTION 36 Cumulative Distribution of Shift Leader's Initial Review Service Times	74
21.	FUNCTION 40 Bde BICC Collection Request Routing Control	75
22.	FUNCTION 41 Controls Bn BICC RTO Utilization	76

SUMMARY

The United States Army is currently engaged in extensive research in the field of information collection sensors and intelligence handling systems. One area of research effort is directed toward evaluating the performance of a specific intelligence system, the Battlefield Information Control Center (BICC) system, under different tactical environments. The BICC system is an information handling and intelligence production system which provides direct support to the intelligence staff officer at all of the major maneuver and fire support echelons in a division force.

This research is directed toward determining, through model simulation, the effects of various manning levels and information input volumes on the timeliness of information flow in a BICC system supporting a brigade size force.

The model was constructed based on observations of a brigade BICC system operating in a field test environment, and programmed for the Univac 1108 digital computer system using General Purpose System Simulator II (GPSS-II), a special purpose programming language.

The model was exercised with various intelligence analyst manning levels and army estimated message input volumes corresponding to low, mid, and high intensity combat situations.

It was found that, for low intensity environments, intelligence analyst authorization could be reduced from those now authorized with only

viii

minor degradations in the two lowest priorities of information transit timeliness; however, the addition or reallocation of analysts or communication facilities does not yield significantly improved timeliness of information flow. It was also found that the present BICC system is saturated by mid and high intensity message volumes. The mid intensity problem may be partially alleviated by the addition of intelligence analysts, but no practical solution was found for the high intensity case. The results are depicted in a number of figures and tables showing the results of comparing various inputs and model configurations.

CHAPTER I

INTRODUCTION

Background

One important aspect of military operations throughout history has been the performance of the intelligence function. Information about the enemy is, along with the friendly forces' assessment of their relative mobility and firepower capabilities, a critical input to the commander's options concerning mobility and firepower (1, p. 313). However, the intelligence gathering and processing organizations currently found in the U. S. Army remain substantially unchanged since the Korean War. While there have been information collection hardware improvements, the continued existence of an "intelligence gap" is recognized by the Army (1, p. 313). An effort to close this gap commenced in 1965 when the U. S. Army Combat Developments Command (USACDC) initiated a major study entitled Tactical Reconnaissance and Surveillance, 1975 (TARS-75). The purpose of this study was to determine the combination of sensor hardware and organization which would best fulfill the field forces' need for tactical intelligence in the 1970-1975 time frame. TARS-75 examined via computer simulations ten families or mixes of hardware and organizational concepts. None of the ten mixes satisfied the selection criteria. Therefore, additional analysis of the simulation data was performed with the intent to identify the weak areas of the simulated alternatives so that

an eleventh system could synthesized which would potentially overcome the known weaknesses. This synthesis, finished in 1967, produced what is now known as the Battlefield Information Control Center (BICC) concept. This new concept was not at that time simulated and has not since been.

The BICC concept provides a separate battalion sized force to each division to collect and process information and to disseminate intelligence. This battalion is structured to provide a team of specialized intelligence personnel to each of the division's combat echelons from company through division headquarters. At company level the provided support consists of either or both an Attendant Ground Sensor team or an Unattended Ground Sensor team. The Attended Ground Sensor team operates radar, night observation devices, and performs visual surveillance. The Unattended Ground Sensor team monitors seismic, acoustic, and magnetic sensors which are placed in the supported company's area of operations and interest. These teams are a basic entry point of information into the overall BICC system. At battalion and higher echelons the supporting team is termed either a Battlefield Information Control Center (BICC) or Battlefield Information Center (BIC). At maneuver battalion, brigade, and division headquarters the team is a BICC, while at field artillery units and armored cavalry squadron headquarters it is a BIC. The difference lies in the authority given to a BICC which enables it to actually direct the collection effort. A BIC has no directing authority and serves primarily as an information interface point. In the performance of its mission the BICC prepares, based on guidance from the S2/G2, " the informa-

[&]quot;The designation of the intelligence staff officer found on all staffs within the division. At division level it is G2 while at all lower echelons it is S2.

tion collection plans, disseminates the collection directives and Standing Requests for Information (SRI), controls and coordinates the collection effort, receives the information gathered and processes it into intelligence, and disseminates both information and intelligence as necessary (2, p. 1-3). With minor exceptions the communications required to accomplish these tasks are passed over nets belonging to the BICC system, a significant departure from past concepts. A schematic of the BICC system which supports a brigade, approximately a third of the entire division BICC system, is shown in Figure 1. The internal operations and the information flow paths found in the BICC are shown in Figure 2.

With only minor differences from the concept discussed in preceding paragraphs, a test battalion was organized in Vietnam (1968) to exercise this new concept and to provide a vehicle for testing new sensors. This author was the operations officer (S3) of that unit during its formation and testing. The concept functioned as envisioned and was considered a success. The concept's success was, however, in a rather restricted low intensity^{*} environment which left open the question of its performance in the more demanding mid and high intensity^{**} environments.

This open question and the increased availability of sensor hardware since the Vietnam test were important factors in the initiation of the U. S. Army's Project MASSTER (Mobile Army Sensor Systems Test Education and Review) at Fort Hood, Texas. Project MASSTER has the general

^{*} Low intensity environments are essentially counter-insurgency conflicts.

^{**} Mid and high intensity refer, respectively, to mobile conventional warfare and nuclear warfare.

Figure 1. Typical Brigade Organization Supported by BICC System and Interconnecting Communication Links

Mean time to accomplish action in minutes. Distribution assumed to be exponential.

Figure 2. Initial (Hypothesized) BICC Internal Operations and Information Flow Channels

Figure 2. Concluded

mission to plan and conduct tests and evaluations of surveillance, target acquisition and night observation systems and material in order to improve the Army's combat intelligence capability (1, p. 315). While MASSTER will eventually test in the mid intensity environments, all testing to date has been in low intensity type environments with the major effort directed toward evaluating sensor hardware and sensor employment methods. That aspect of the testing which has been directed toward organizational and operational concepts for the BICC system has relied upon subjective evaluations rather than "hard data" objective analysis of the system. Considering this and the fact that expense precludes live testing of all the possible alternative organizational structure of the BICC system, it would be cost and time advantageous to be able to narrow the spectrum of alternatives down to those which, a priori, appear to offer the better chances for successful system operation in the environment specified for the live test.

Purpose

Thus, the purpose of this research is to both construct a model of the information flow and intelligence processing function of a brigade force operating with the BICC system and to conduct experimentation on that model. Following model construction, specific objectives are to:

1. Validate the model using data generated in the Project MASSTER field experiments.

2. To determine, through experimentation of the model, the BICC system's performance profile in terms of queue lengths, delays, and information transit times as a function of system's parameters such as,

a. Message volume input

b. Number, type, and capacity of communications links between echelons

c. Personnel manning levels and internal information staffing procedures at each echelon.

3. To determine if the system's performance profile for low intensity environments can be significantly improved by a reallocation of personnel manning levels or not significantly degraded by a selected reduction in personnel manning levels.

4. To determine the BICC system's operating characteristics where subjected to information input volumes hypothesized for mid and high intensity environments (3, p. B-II-2).

With these objectives formulated, research into literature pertinent to this problem is required in order to determine the precise procedures to be followed. The results of that research are found in Chapter II.

CHAPTER II

LITERATURE

Combat Intelligence

Military intelligence is the knowledge of an actual or possible enemy and the natural characteristics of the areas where military operations are to be conducted. It is essential to the planning and execution of military operations and encompasses, along with other categories of intelligence, combat intelligence (4, p. 5). Combat intelligence is that knowledge of the enemy and the area required by a commander planning and conducting tactical operations. It is derived from the processing of information concerning the enemy, the weather, and the terrain (4, p. 5). Processing is the step whereby information becomes intelligence. This is accomplished in three operations: recording, evaluation, and interpretation (4, p. 6).

1. Recording. The reduction of information to writing or some other form of graphical representation and the arranging of this information into groups of related items.

2. Evaluation. The determination of the pertinence, reliability, and accuracy of the information.

3. Interpretation. The determination of the significance of the information in relationship to information and intelligence already known and the drawing of conclusions as to the probable meaning of the evaluated information.

The general procedures and sequences of information flow for combat intelligence processing are outlined in FM 30-5, <u>Combat Intelligence</u> (4). More detailed information of this type is available in Functional <u>Area Description -- Enemy Situation</u> (3). Examination of these two documents reveals that information flow involves the arrival of information at various points in the processing system and the subsequent performance of service on that information by both men and machines.

Such a description readily fits into the broad category of queuing problems (5, p. 4). Queuing problems have received wide interest and much effort has been devoted to developing general solutions to queuing models; however, many of the solutions which exist relate Laplace transforms of the distributions of waiting and queuing time to the Laplace transforms of the inter-arrival time and service-time distributions. Since, except for the simplest forms of inter-arrival and service-time distributions, the Laplace transform cannot be precisely inverted, many solutions in the academic sense are not solutions in the practical sense (5, p. 22; 6, p. 66). This is normally the case where inter-arrival and service-times are not exponentially distributed (5, p. 86).

This author's observation of the information handling and processing system under study reveals that service-time distributions are not exponential, thereby requiring that some other method of analysis be employed. In those queuing systems where mathematical complexities make practical applications difficult, the technique of Monte Carlo simulation is recommended (5, p. 82; 6, p. 86).

Simulation

The term "simulation" is widely used, meaning many different things in different contexts with the result that there is no mutually agreeable definition (7, p. 92; 10, p. 2). From the range of choices, there is one definition which best fits this research. This choice defines simulation to be the action of performing experiments on a model of a given system, where system is considered to be a collection of entities which act and interact together toward the accomplishment of some logical end (8, p. 4).

Systems may be represented by one of several common model forms: iconic, analog, or symbolic. Iconic is essentially a scale version of the real system while analog implies only that specified characteristics of the model under study adequately portray the same characteristics of the real system. Of primary interest in this research is the symbolic model which requires that the properties of the system being modeled are capable of being represented symbolically, i.e., equations, letters, signs, and marks (9, p. 1).

There is a wide variety of literature available discussing various aspects of conducting simulations of symbolic models on a digital computer. Unfortunately, much of this literature usually consists of introductory expositions or of descriptions of the solution of a particular problem (7, p. 92). Happily, there are exceptions (7,8,10,11,12,13) which provide insight into the problems of model formulation, validation, and experimental design.

Based on the known complexities of the information system to be examined and the desirable characteristics of digital computer simulation, it was decided to formulate a symbolic model of the real system and to experiment upon that model using digital computer simulations. The next decision, what computer language is best suited for the particular problem at hand, required examination into the characteristics of various languages.

This examination was narrowed to special simulation languages because they consume less time in programming and allow commensurate increases in the time available for planning the experimental design and analyzing the results (11, p. 49). Of the special simulation languages available, one, General Purpose Systems Simulator (GPSS)-II, was selected because its orientation, logic, and method of formulation closely parallel the physical system to be modeled. GPSS's orientation is one of transactions moving in time through a system composed essentially of facilities, storages, and queues (10, p. 219), which is precisely the orientation of the information system depicted previously (2,3).

GPSS is a two-part program. The first part is an assembly program that converts the user's description of the system to be simulated into suitable input for the second. The second portion of the program actually performs the desired simulation runs of the computer (10, p. 219). GPSS-II is simple to use and easy to learn. All of the information needed to develop a GPSS-II program is found in Univac's <u>GPSS-II Reference Manual</u> (14).

The details of how GPSS-II will be used in the model building will be discussed in the following chapters.

Combat Intelligence and Simulation

The extent of the use of simulations to study combat intelligence is difficult to determine since very little literature is available on the subject. The TARS-75 study (15), discussed in Chapter I, employed simulation; however, the thrust was directed toward sensor hardware and

employment analysis. There was no modeling of the information processing function as the results of sensor simulations were fed directly into a team of military officers which manually performed the processing function. In this regard, TARS-75 was a hybrid simulation and manual war game.

This author's review of a recent comprehensive bibliography of military related simulation studies (16) found none which deal with the modeling or simulation of combat intelligence flow or processing. Additionally, reviews of many abstracting and indexing services (17,18,19, 20,21,22) yielded negative results. While not dealing directly with the subject of this research, two documents were found which are of some assistance. The first, an equipment and terrain oriented communications simulation (23), provides some basic input data to the communications aspect of this research. The second (24) discusses the impact of modern information technology on the structure of intelligence organizations at the tactical level. Of primary interest in this latter work are estimates of the volume of intelligence messages which flow between selected echelons of a division force.

CHAPTER III

PROCEDURE

Introduction

The procedure used in conducting this research is separable into two phases. The initial phase is the translation of the information system into a representative model and the validation of that model. This phase is also broken into two subphases. This subdivision occurs since initial model formulation depends entirely upon written doctrine and operating procedures. A model representative of the concept as published in (2,3) is developed and exercised. Following this a model representative of the system as it actually operates is constructed. This actual system model is developed based on the author's observation of the system as it operates under live troop test conditions. Following validation of the actual system model, the second major phase of the research begins. This second phase involves experimentation with the model to determine its response to various inputs.

Construction of the Initial Model: Phase Ia

Prior to the actual fielding and troop test of the system under study, the only firm bases for model construction and operation were contained in two previously referenced documents (2,3). These documents specify the organization and communications links shown in Figure 1, the Battlefield Information Control Center (BICC) personnel manning strengths shown in Table 1, the BICC internal operations and information flow channels shown in Figure 2, and the volume of messages, by type, entering the battalion and brigade BICC daily, shown in Table 2. Detailed descriptions of the processing actions shown in Figure 2 are found in <u>Functional</u> <u>Area Description - Enemy Situation</u> (3, p. B-II-2). Personnel duties of the BICC operators are discussed in Training Text 30-7 (2). With these data available and making several assumptions, it is possible to translate the BICC system into a computer model using GPSS-II. The method and procedure to perform this translation is straightforward and will not be discussed as it is described in great detail in the GPSS-II user's manual (14). The assumptions made in this phase are necessary primarily due to the lack of data. These assumptions are that:

 Personnel performing the manual information processing functions operate at a constant efficiency which is independent of time and state of system.

2. All processing functions and their associated service times are not affected by personal trait and characteristic dissimilarities between different analysts which perform the same function, and BICC section capability is a constant slope linear function of the number of analysts.

3. All queues have the capacity of containing an infinite number of messages.

4. Service times of the processing functions shown in Figure 2 are exponentially distributed with the mean service time shown under the left hand corner of each appropriate block.

Table 1. Initial Battlefield Information Control Center (BICC)Specified Manning Strengths (2, pp. 4-7, pp. 4-20)

Brigade BICC	
Collection, Control, and Dissemination Section	(CC & D)
Officer in Charge	1
Section Sergeant	1
Intelligence Analyst	6
Radio/Telephone Operator, Vehicle Driver	2
Analysis and Production Section (A & P)	
Intelligence Analyst	_3
Total	13*
Battalion BICC	
Officer in Charge	1
Section Sergeant	1
Intelligence Analyst	5
Radio/Telephone Operator, Vehicle Driver	<u>1</u>
Total	8

i i

^{*} Does not include the supporting communication team of three personnel which operates the teletype equipment.

		ACTIVITY				
Echelon		1	2	3	4	5
Brigade	\mathbf{L}^{\star}	606	455	10	2	32
	M [*]	895	675	15	4	44
	н [*]	1021	765	15	4	55
Battalion	L	282	212	10		8
	М	444	333	15		30
	Н	504	378	15		30

Table 2. Estimated Daily Message Volumes (3, p. B-II-2)

Activity: 1. Initial review and dissemination of incoming information by the Collection, Control, and Dissemination (CC & D) Section.

- Evaluation and analysis of information and dissemination and filing of intelligence by the Analysis & Production (A & P) Section.
- 3. Review, extracting, and filing of intelligence by A & P Section.
- 4. Intelligence Summary (INTSUM) production by S2 and A & P Section.
- 5. Processing of requests for information and collection directives by CC & D Section.

* L - Low Intensity, M - Mid Intensity, H - High Intensity

5. Message interarrival times are exponentially distributed with a mean calculated to yield the message volume flow shown in Table 2.

With these assumptions and the system structure information provided (2,3), a GPSS-II computer model was constructed. The only option for validation of this initial model is a careful construction process and a thorough check of the logic used to insure that the information flow matched that shown in Figure 2 (25, p. 296).

This something-less-than-desirable validation process was necessary due to the absolute lack of objective system performance data at that time. The sole purpose of this phase is to test the author's subjective hypothesis about the system's ability to operate. This hypothesis, based on previous experience with a similar system, states that a combination of both the mean service times for each processing action shown in Figure 2 and the input message volumes shown in Table 2 will result in the system's failure to function with reasonable timeliness of information flow. To test this hypothesis, the model was subjected to the message inputs specified for low intensity environments (Table 2). Four runs, representing 12, 24, 36, 48 hours of system's operation, were performed. The results of these runs were examined to determine the existence and location of critical queues within the system. Two types of such queues were identified. These are:

1. Queues of messages waiting for detail analysis, evaluation, and interpretation at the battalion (Bn) BICC, i.e., waiting for the performance of the analysis and production (A & P) function. This queue is labeled Queue 16 in all models.

2. The queue of messages waiting for detail analysis, evaluation, and interpretation at the brigade (Bde) BICC, i.e., the queue waiting for processing by the Bde BICC A & P Section. This is labeled Queue 34 in all models.

Pertinent statistics gathered during these runs included hourly queue histories in terms of the mean waiting time of all messages which had been processed from each queue at the time of each sampling. These statistics reveal that mean waiting time is a non decreasing function which in essence indicates that the information arrival rate is greater than the system service rate resulting in a system which will not stabilize. This is best illustrated by Figure 3 which shows the 48 hour run results. As can be observed, the mean wait for Bn A & P processing increases from 21 minutes after the first hour's operation to 14.1 hours wait after 48 hours of operation, while the Bde A & P mean queuing time increased from 12 minutes to 12.6 hours. These results satisfied the author's hypothesis and gave added impetus to the second task in Phase I, i.e., more precise definitions of both the system and its associated service time distributions and the determination of realistic low intensity information input volumes.

Modification of the Model and Validation: Phase Ib

To accomplish this second subphase of model construction and validation, it was necessary to observe the brigade BICC system in operation. This was done during a Project MASSTER test period (5-9 April 1971) when experiments in a low intensity environment were being conducted. This author personally observed all phases of the system's operation and with

Figure 3. Initial(Hypothesized) System Critical Queue Histories

* Queue 16-Bn BICC A&P Queue 34-Bde BICC A&P

some assistance from Project MASSTER data collectors, determined the system's essential operating characteristics in terms of information input volumes, information routing, operating procedures, and time distributions associated with the handling and processing of information.

Personnel manning levels, shown in Table 3, were found to vary from those shown in Table 1; however, general operating procedures were substantially those described in doctrinal literature (2,3). In addition to the differences in manning strength other major variations between the system as described in Figures 1 and 2 and the system as it actually operates concern volume of information to be handled, information routing patterns, and service time distributions for various processing functions.

Table 2 indicates that the estimated daily load of messages for low intensity is 282 and 606 for Bn and Bde BICCs, respectively. This is obtained by examining Activity Column 1, which gives the total volume entering the BICC. All other columns reflect the internal routing and do not indicate a separate input to the BICC. The message volumes observed flowing during the Fort Hood experimentation were 96 and 171 for the Bn and Bde BICCs, respectively. The other two major variations, routing and service times, are better understood after a more detailed description of the observed system and its model.

The Observed System and Its Schematic Model

The operations which occur in the BICC system, and consequently those which are modeled, are the entry of an information bearing message of a specific type and priority into the system at various points in the flow channel from company to brigade echelon. The message is then transTable 3. Observed Manning Levels

Brigade

Collection, Control, and Dissemination	(CC & D) Section
Officer in charge	l (1st Shift Ldr)
Section Sergeant	l (2nd Shift Ldr)
Intelligence Analyst	6 (3 per Shift)
Radio/Telephone Operator, Vehicle Driver	2 (1 per Shift)
Analysis and Production (A & P) Section	1
Intelligence Analyst	_4
Total	14*

Battalion BICC

Collection, Control, and Dissemination	Section
Officer in charge	l (lst Shift Ldr)
Section Sergeant	l (2nd Shift Ldr)
Intelligence Analyst	4 (2 per Shift)
Radio/Intelligence Operator	2 (1 per Shift)
Analysis and Production (A & P) Sectio	'n
Intelligence Analyst	_2 (1 per Shift)
Total	10

^{*} Does not include the supporting communication team of three personnel which operate the teletype equipment.

mitted through communication facilities until it reaches the first processing facility, i.e., a BICC. Prior to more discussion, it should be mentioned that, for clarity of relating this narrative to a later system, schematic percentages of messages which receive specified routing are given at appropriate points in the discussion. The percentages are based on the author's observation of the system during five days of operation. At the BICC the message is received by the radio/telephone operator (RTO) and, depending upon its priority, routed in one of two ways. If the priority is category 4 (20 percent), the highest category, the message is routed to the BICC shift leader who interrupts whatever else he is doing to review the message contents. If the contents are, in the judgment of the shift leader, of immediate operational significance to either adjacent units or the next higher echelon, the message is immediately retransmitted to the appropriate BICC and a copy of the message is routed through the other elements of the BICC for normal processing. At Bn BICC 87 percent are considered urgent, while at Bde BICC only 12 percent are judged urgent. If the contents are not of immediate operational significance to other BICCs, the message is released for normal processing. Messages of less than priority 4 (80 percent) are routed to normal processing. Normal processing commences in the Collection, Control, and Dissemination (CC & D) Section of the BICC. In this section one of a number, two per shift at Bn and three per shift at Bde, of intelligence analysts receives the message, records its arrival in the BICC journal, reviews its contents, and gives the contained information a preliminary evaluation. This initial evaluation is made without reference to intelligence files

and consists of determining the pertinence of the information, considering the reliability of the source and collecting agency, and judging the probable truth or accuracy of the information in comparison with the tactical and enemy situation as known to the analyst. Next, based on knowledge of the enemy situation, the analyst determines if the report contains obviously significant information. This decision is made after the analyst reviews the enemy situation as depicted on the BICC situation map (SITMAP). If the newly arrived information is considered significant (33 percent at Bn and 24 percent at Bde), the analyst informs the shift leader, determines other necessary recipients of the information, prepares a spot report (SR) message of the information, logs the message out in the BICC journal, and passes it to the RTO for transmission to the addressees. The analyst is then free to receive and process another message. In the event that the information is not of obvious significance (67 percent at Bn and 76 percent at Bde), the analyst passes the information to the analysis and production (A & P) section of the BICC and is again available for the processing of another message.

In the A & P section, manned by one and two intelligence analysts per shift at Bn and Bde, respectively, the incoming information is subjected to detailed analysis in order to determine its contribution to the intelligence picture. In this process the analyst searches the A & P information and intelligence files for data related to the just arrived information. These data are then collated with the new information and the analyst re-evaluates the new information based on his knowledge of the source and collection agency, other related data on file, credibility of
the information, and either confirms or changes the preliminary evaluation given by the CC & D analyst. It is at this point that the A & P analyst may recognize the existence of an intelligence gap, that is, the new information is of some significance to previous data on file but does not contain either enough information to complete the picture or its reliability evaluation is so low as to require confirmation before it can be seriously considered. The existence of an intelligence gap requires that an additional collection effort be made to gather the required information. This is the case with 11 percent of the reports handled by the Bn A & P section and 12 percent handled by the Bde A & P section. When this occurs the A & P analyst passes a request for information to the collection planning and control element of the BICC. At Bn this collection control function is performed by the BICC shift leader, while at Bde it is accomplished by an analyst in the CC & D section. At either echelon, the new information request is integrated into the current collection plan and, if modifications in sensor coverage are required, the necessary changes in collection directives and requests are disseminated over the BICC communications system to the appropriate collection agency.

If no intelligence gap exists, the A & P analyst interprets the information by analyzing and integrating it with the collated data. In this process, the analyst formulates his conclusions as to the worth and meaning of the information and determines the urgency of the conclusions. If the conclusions are not urgent, the analyst annotates them for possible later inclusion in periodic intelligence reports, primarily the Intelligence Summary (INTSUM) which is produced at Bde level every 12 hours.

If the conclusions are urgent (7 percent at Bn, 13 percent at Bde), the analyst informs the BICC shift leader and prepares a spot report which is passed to the BICC RTO for dispatch to the designated addressees. After making the necessary updating changes in the intelligence files, the analyst is free to receive another information message or action from the CC & D section and start the process again.

In order to simulate this system, it is necessary to know the time distributions associated with the processing actions previously described. This was accomplished by observation of the functions as they were performed and a review of operating records as kept by the BICC. The author was assisted in this effort by Project MASSTER data collectors who were assigned to full time observation of the major aspects of the BICC operation. The only activity which occurred at insufficient frequency to get a reasonable sample size was the Intelligence Summary production function at the Bde BICC. Thus the mean time (one hour) and a time spread (plus or minus 15 minutes) to accomplish this activity were determined based on the interview of eight analysts at two Bde BICCs who prepare the Intelligence Summary.

The raw data from the observations are in the form of service times to accomplish a specific part of the processing. Initially it was planned to use a Weibull process generator (8, p. 270) to produce simulation service times; therefore, the observed data were fitted to the Weibull distribution function using graphical procedures (26). Later investigation indicated that computer run time could be saved by constructing a cumulative distribution function from the empirical data and using the empirical

distribution as a direct input to the GPSS-II program. This is a straightforward procedure and is discussed in detail in the GPSS-II user's manual (14, p. 2-4). In the system schematic, Figure 4, the GPSS-II function number and mean service time (T_g) in minutes are shown by appropriate blocks. Appendix A contains figures graphically showing the empirical distribution functions corresponding to each GPSS-II function number and gives the corresponding Weibull density function.

The system schematic shown in Figure 4 serves to illustrate the system's operation and was used as the starting flow diagram for model conversion into GPSS-II. The GPSS-II coded model and an example run of the computer program are provided in Appendix B. The system and computer model as shown in the schematic diagram and Appendix B are representative of the observed system and are henceforth referred to as the Base Model. Validation

While there is no consensus on the best method to validate a model (25, p. 23), there are some techniques which offer reasonable confidence that the model portrays the real system. Naturally the most desirable validation procedure would be to prove that statistics and operating history of the model exactly duplicate those of the real system; however, the myriad of possible areas of comparison makes this strategy unattractive from the data collection standpoint. A validation strategy which offers something less than maximum confidence but which is more realistic in scope is discussed by Meirer, et al. (25, p. 274). This is a two step procedure which initially requires that the model be examined to determine if it is internally correct in a logical sense. The second step requires

Figure 4. The Observed Brigade BICC System Schematic

^{*} Transmission or service time per message computed by GPSS-II FUNCTION (FN) number.

Figure 4. Continued

*All activities within enclosed area included.

Figure 4. Continued

"Other Bn BICC's function as the one Bn BICC shown in detail.

** At Bde level other sources available consist of the Field Artillary BIC and a counterintelligence team. These elements do not analyze information and for low intensity environments their volume input is negligible.

Figure 4. Continued

* All activities within enclosed area included.

* Nineteen percent transmitted by FM radio, 81 percent by sole user teletype. Bde BICC responsibility ends after message transmission.

.

that certain key statistics be selected to determine whether the model represents the phenomena it is supposed to represent. The results of these two determinations are then relied upon to form some kind of judgment as to the overall validity of the model. This procedure was used in validating the BICC system model. GPSS-II has two characteristics which make the first part of the procedure simple. These are the straightforward block arrangement used in GPSS to exercise logical control of the program and the automatically gathered transaction data from a run of the model. With the transaction data, it is possible to verify that the proper flow is being achieved and that the percentage routing is correct. For the second portion of the validating procedure, the key statistics selected for comparison were mean queue lengths of the critical queues and a subjective assessment of "slack" in the system. This author's observation of the Fort Hood test indicated that the system capacity was not being taxed by the low intensity inputs, which is in fact reflected by the BICC utilization factors in the validating runs. Queues observed during the test had insignificant mean lengths (less than 1) which is again matched by the Base Model validating runs. These aspects of the system's operation and a subjective analysis of the model performance based on the author's experience (three years) with the concept yield the conclusion that the model is sufficiently valid for the type of experimentation to be conducted.

Experimentation

Since after validation (Objective 1) the second objective, as

stated in Chapter II, is fulfilled by the GPSS-II program automatically providing the necessary output statistics for any combination of input and parameter arrangement the primary thrust of the experimentation is directed toward Objectives Three and Four, that is, firstly, can the system performance be improved significantly by reallocation of intelligence analyst personnel and what degradation of system performance results from selected reductions in manning strengths. Second, what are the BICC systems' performance characteristics when subjected to the mid and high intensity inputs as hypothesized in Army literature (3, p. B-II-2).

Since timeliness is a critical aspect of intelligence operations, the measure of effectiveness selected to assist in answering the questions posed is the timeliness of information flow. Specifically, the timeliness of each separate priority of traffic and a combination of all priorities is examined from the time of initial message entry at the company/sensor team echelon until the information has completed processing at the Bde BICC and is ready for transmission to the division BICC.

In order to make reasonable comparisons between the system's performance with various manning configurations, it is necessary to insure that the start-up or transient effect on the pertinent statistics is discounted. To accomplish this requires that runs of different time lengths be made in order to determine, by examination of queue histories, when a system steady state has been achieved. Computer runs simulating 24, 36, and 48 hours were employed in this effort. For those configurations which did stabilize, 24 hours of system operation was sufficient to allow the system to reach steady state. Those configurations which did not achieve steady state within 48 hours are specifically discussed in Chapter IV (Results of Experimentation). Following the 24 hours stabilization period, 48 hours of simulated system operations were used for statistical purposes.

Experiment 1

The first experiment conducted was to test the effects on information transit timeliness of varying the intelligence analyst manning strengths at the Bn and Bde BICC operating with low intensity inputs. In this endeavor, six models were employed. These models are designated Base (the system as observed at Fort Hood) and numbers two through six. The configurations of models two through six were determined incrementally by examining the results of the previous runs in terms of personnel utilization factors. Generally, personnel utilization factors of the intelligence analysts at Bn and Bde BICC were examined for each configuration to determine those factors which might serve as an identifier of functions where strength alterations could influence the system's timeliness performance. Additionally, communications facility and communications personnel (radio/telephone operators) utilization factors were examined for each model configuration; however, as discussed in Chapter IV, these aspects were found not to be critical to the system's operation. For each configuration ten replications, each with a different random number seed, are run in order to use the central limit theorem's power and thereby perform the necessary tests assuming normal distribution of the mean time of each priority classification for each model configuration.

Experiment 2

This experiment concerns the system operation when the volume inputs are those specified for mid-intensity environments (Table 2). Initially the Base model is analyzed and depending upon its performance and utilization factors modifications in personnel manning strengths are made using the same rationale as discussed for Experiment 1. All model configurations examined with mid-intensity inputs are run only once after insuring that the system reaches a steady state. Each run employed the same random number seed in order to allow a comparison of results without the extensive computer time required for replications. This strategy was selected because the computer time and effort required to generate the necessary data for rigorous statistical comparisons did not seem appropriate in light of the author's belief that the mid-intensity input volumes are over estimated.

Experiment 3

This experiment is identical to Experiment 2 except that highintensity inputs (Table 2) are used.

CHAPTER IV

RESULTS

Experiment 1

Following ten replications of the Base Model, personnel utilization, communications facility utilization, and the information transit time for each priority were averaged and examined. These data are shown in Table 5 (Personnel Utilization Factors), Table 6 (Communications Utilization Factors), and Table 7 (Low Intensity Information Transit and Processing Timeliness). For ready reference all model manning levels are shown in Table 4. As can be seen in Table 5 for the Base Model, the Bn BICC personnel utilization factors were less than the Bde factors. This prompted the removal of one intelligence analyst from each Bn BICC. This configuration was entitled Model 2 and ten replications run. As displayed (Model 2 column, Table 5), the expected increase in personnel utilization factors was achieved at the Bn level without apparently significant changes at the Bde level. The effects on the measures of effectiveness show (Table 7), for all except the highest priority category, a statistically significant difference at the five percent level. The hypotheses tested in Table 7 were equality of means assuming unknown and not necessarily equal variances. The recommended procedures for these conditions call for using the "modified t" test (27, p. 173). Statistically significant differences are indicated by asterisk. At this point it is appropri-

Bn BICC			B	de BICC	
Model	CC&D	A&:P	CC&.	D A&P	
Base	2	1	3	2	
2	l	l	3	2	
3*	1	l	3	2	
14	2	1	2	2	
5	1	1	2	2	
6	3	1	4	2	
	1				

Table 4. Experiment 1 Manning Levels per Shift by Model

Table 5. Low Intensity Intelligence Analyst Utilization Factors (Percent)

	Base	2	3	24	5	6
Bn BICC			<u> </u>		· · -	
CC&D	19.85	41.45	34.02	20.05	38.33	12.68
A&P	16.34	19 .1 3	17.60	18.54	17.58	16.97
Bđe BICC						
CC&D	29.57	29 .3 4	29 .7 8	42.46	42.87	20 .7 8
A&P	32.42	32.71	32.30	31.47	33.76	31.77

* Model 3 employs a decision rule such that the A&P analyst performs CC&D functions when the queue waiting for CC&D service is greater than two messages.

Table 6. Communications Utilization Factors(Percent)

Intensity

	Low	Mid	High
Net			
Bn BICC Net (FM Radio Link from Company/Sensor Team to Bn BICC)	6.83	29.08	47.49
Bde BICC Net (FM Radio Link from Bn BICCs to Bde BICC)	8.35	32.54	52.05
Division BICC Net (FM Radio Link from Bde BICC to Division BICC)	8.31	24.48	39.15
Division BICC Teletype Net(Sole User Teletype from Bde BICC to Division BICC)	3.21	8.27	12.59

Model	4	3	2	1	ALL
Base	12.60	26.80	35.5 7	<u>40.60</u>	30.60
2	14.60	32.23*	41.92*	56.27*	35.35*
3	12.35	29.70	41.28*	50.23*	34.33*
4	13.22	34.20*	42.34*	67.54*	39.42*
5	15.38*	36.0 0*	44.51*	71.21*	41.90*
6	12.21	25.61	33.80	39.32	30.52

**

Table 7. Low Intensity Information Transit and Processing Times (Minutes)

Transit Times by Priority

	Pr	ocessing T	imes by Se	ction
Model	Bn CC&D	Bn A&P	Bde CC&D	Bde A&P
Base	13.1	13.9	15.1	23 .2
2	23.8*	26.3 *	14.5	22.3
3	14.3	14.8	15.2	214.1
4	13.1	14.8	24.4*	30.1 *
5	24.4*	23 .8*	20.9*	29.1 *
6	13.4	13.6	14.7	23.8

- * Test statistic significant at $\propto =.05$. Hypotheses tested Base Model mean and indicated mean for equality.
- ** Mean time for processing information by section including time spent in queues.

ate to stress that any differences indicated as a result of hypothesis testing are based on statistical significance and not on operational significance. While it is desirable to make clear cut statements about differences in the operational significance of different mean times, this is impossible for security reasons. Even though the Army has established timeliness criteria for information flow, these data, known as CSTAIN (Commander's Surveillance and Target Acquisition Information Needs), are classified and cannot be cited in this research. Any statements made concerning the operational implication of a particular configuration are based solely on the author's opinion.

Next, it was decided to examine a slight variation of Model 2. This variation, Model 3, specifies the same number of intelligence analysts at Bn BICC as Model 2 (one each in CC & D and A & P), but employs an arbitrary decision rule which specifies that, when the CC & D queue (Queue 14) is greater than two messages, the A & P analyst, upon completion of his current task, assumes CC & D type duty until the queue is reduced to less than two. The physical arrangement of the Bn BICC and the skill levels of the analysts make this a viable strategy at Bn level, but the operating arrangement of the Bde BICC precludes such an option. The effect of this strategy is that the timeliness of both the two highest priorities of traffic are not significantly different from the Base model (Table 6) while the other categories are significantly decreased.

The next configuration tested (Model 4) restores the Bn BICC to normal strength (Table 3) but removes one analyst from the Bde CC & D section. The effect on CC & D utilization is to increase it 12 percent

(Table 5), while the effect on information timeliness is to significantly decrease all priority categories except Priority 4, the highest priority (Table 7).

The next configuration (Model 5) was selected to study the effects of raising both Bn and Bde personnel utilization factors simultaneously by deleting one analyst at each Bn BICC and Bde BICC. As can be seen in Table 7, the effects were to significantly decrease the timeliness of all priority categories.

The sixth configuration (Model 6) was exercised to provide possible answers to two questions. The first question concerns the implications of reallocating intelligence personnel, that is, can significant improvements in overall timeliness be achieved by deleting strength at one echelon and increasing the manning level at another echelon by the same total amount. In order for this reallocation to be profitable, the increased processing time at the reduced strength echelon must be compensated by an equal or greater reduction in processing time at the increased strength echelon. The second question, a natural complement to the question concerning the reduced strength models already discussed, is whether increasing the number of analysts at Bn and Bde simultaneously will yield significant improvements in timeliness over the Base model.

To answer these questions one additional analyst is added to the Base model Bn and Bde BICC strengths and ten replications of this model (Model 6) are run. The answer to the first question is provided by examining the Intermediate Processing Times portion of Table 7. As can be seen there is no significant difference in intermediate processing times

at either Bn or Bde when Model 6 is compared with the Base model. There is, however, a significant increase in processing times when a one analyst reduction is made at either Bn (Model 2) or Bde (Model 4). These results indicate that there is nothing to be gained in the way of timeliness by reallocation of personnel.

The second question is answered by examining the transit time portion of Table 7. As indicated the transit times achieved by Model 6 are not significant improvements over the times achieved by the Base model; therefore, the addition of personnel is not warranted.

With the mean transit times for six models available and no apparent significance between several of the means, it was decided to determine if the variances associated with transit timeliness would assist in distinguishing between models which have the same mean times. To determine the relationship among the variances for each model and priority category, five hypotheses are tested. These hypotheses are that within a priority category the variance of transit times for each model are equal. The procedure used is Cochran's Test for the Homogeneity of Variances (27, p. 198). The tests, performed at the five percent level, result in failure to reject the hypotheses; therefore, there exists no significant difference in variances which could be used to discriminate among alternatives with equal means.

The homogeneity of variances makes it possible to perform Duncan's Multiple Range Test (28, p. 31) and subsequently to graphically portray the relation between all means for a specific priority category (Figure 5). In addition, a plot of mean transit time versus priority category for all

Figure 5. Results of Duncan's Hultiple Range Test on Total System Transit Time by Priority

* Number in parenthesis is the model yielding the mean time in minutes shown below. Model 1 is the Base Model.
** Means underscored by the same line are not significantly different at the five percent level.

Priority- All Combined

Figure 5. Results of Duncan's Multiple Range Test on Total System Transit Time by Priority(Continued)

six low intensity models is shown in Figure 6.

Figure 5 indicates that only Model 5 yields a statistically significant reduction in Priority 4 transit timeliness when compared to Model 6. This is an apparent contradiction of the data presented in Table 7 until one remembers that Table 7 used the "modified t" test which is not as precise as Duncan's Multiple Range test used in Figure 5. When evaluating the various model effects on Priority 3 transit timeliness, it is evident from Figure 5 that neither Model 2 nor Model 3 has significant degrading effects when compared to the Base model, shown as Model 1. For lower priorities, however, the issue is more clear cut. Any reduction in manning levels produces significant reductions in Priorities 2 and 1, and the "all combined" category of transit timeliness.

In the event that the BICC system manning levels were under review for possible strength reduction, it would be worthwhile to consider two cases. Case 1: If approximately eleven and six minute reductions in Priorities 1 and 2 timeliness were operationally acceptable, then Models 2 and 3 are equally attractive and would result in the saving of one analyst at each Bn BICC for a total of three in each brigade.^{*} Case 2: If the Case 1 reductions are acceptable and an approximately three minute reduction in Priority 3 timeliness and an additional eleven minute reduction in Priority 1 timeliness are operationally acceptable, then it is possible to implement the Model 5 strength levels and save four analysts per brigade, one in each Bn BICC and one in the Bde BICC.

Brigades normally control three battalions.

Of equal importance is the result that transit timeliness cannot be significantly improved by the addition of analyst personnel. In this case the author's opinion indicates that any small improvement shown by the means in Figure 5 is also not operationally significant.

While a great deal of attention has been given to personnel utilization, the communications aspects have not been ignored. In all models the communications utilization factors were examined; however, in no model were they of such magnitude as to indicate that delays in timeliness were resulting from waits to "get on the net." This observation was borne out by examining the queuing statistics for each communications facility. In all cases the mean number of messages in the queue approached zero. The first column in Table 6 shows the communications utilization factors meaned over all low intensity models. Reductions in communications nets were not contemplated since either the net has no alternative or an alternative net was specified for redundancy purposes based on tactical operational considerations. In summary, Table 6 indicates that the communications nets are not taxed by the low intensity message flows and that a considerable excess capability exists.

Experiment 2

The initial portion of this experiment concerns determining the Base model system performance when loaded with the estimated mid-intensity message flows (Table 2). The appropriate message volumes are generated and the model run for a simulated 48 hour period to determine if and when the system reaches steady state. The results of this effort are shown in

Figure 7. As can be seen by the slightly positive slope of mean time histories for Queues 31 and 34 (Bde CC & D and A & P queues), this system has not stabilized. It is difficult to tell from Figure 7, but in fact both Bn BICC queues have stabilized. While it cannot be absolutely stated that the system will not stabilize at some future time, there is no reason to believe that the slopes will ever become negative for a prolonged period. Accepting this implies that, even if the system did stabilize at some future time, the mean wait for service at the Bde CC & D and A & P sections would be equal to or greater than 1.4 and 1.2 hours, respectively. This fact makes such a system operationally unacceptable. The high personnel utilization factors for the Bde BICC shown in Table 8 correlate readily with the system's saturation. For ready reference, Table 9 shows Experiment 2 manning levels by model.

In an attempt to reduce the utilization factors and the mean queue time in order to achieve a stable system, the addition of one analyst was made to both the Bde CC & D and A & P sections. This model (Model 7) was exercised with the result that the previously unstable queues reached stability within 24 hours. A 48 hour data run was then made after a 24 hour stabilization period. This yielded the utilization factors and timeliness shown in Table 8 and Figure 8. Even though Model 7 stabilized, the long transit times for Priority 1 traffic prompted the addition of an analyst to the Bn CC & D to determine if Priority 1 transit timeliness could be significantly improved. This addition resulted in Model 8 which stabilized within 24 hours. A 48 hour run after stabilization was made which yielded the utilization factors and transit times shown in Table 8

Figure 7. Mid Intensity Base Model Critical Queue Histories

* Queue	31Bde	BICC	CC&D	Queue	l <u>4</u> Bn	BICC	CCಪಿ:D
Queue	34Bde	BICC	A&P	Queue	16Bn	BICC	A&P

lable	8.	Mid Intonsity Intelligence Analyst
		Utilization Factors (Percent)

Model

Bn BICC	Base	7	8	9
CC%D	85.69	81.38	58.26	61.67
A&P	79.77	79.61	81.50	42.25
Bde BICC				
CC&D	1.000	82.78	84.83	92.13
A&:P	1.000	77.60	74.87	83.75

Table 9. Experiment 2 Manning Levels per Shift by Model

	Bn	BICC	Bde BICC		
Model	CC&D	А&Р	CC2:D	4&P	
Base	2	1	3	2	
7	2	1	ĻĻ.	3	
8	3	l	4	3	
9	3	2	4	3	

* Model did not stabilize within 48 hours.

and Figure 8. As can be seen in Figure 8, the timeliness improvements over Model 7 are not apparently significant.

One other model (Model 9) was exercised with mid-intensity inputs. This model, formed from Model 8 by the addition of an analyst to the Bn A & P Section, represents the maximum manning level that can be used per shift in the Bn BICC and Bde CC & D Section due to the physical limitation of the work area. The Model 9 transit time results in Figure 8 show that there was a slight improvement in timeliness of Priorities 4, 3, and 2 and an apparent significant improvement in timeliness for Priority 1 and the "all combined" category.

The absence of replications of the models precludes any meaningful rigorous statistical comparisons of the mid-intensity results. However, what is evident from this experiment is the fact that the estimated midintensity inputs overload the system as described by the Base model. Additionally, it is apparent from a comparison of timeliness between Figures 6 and 8 that all of the mid-intensity models which stabilize yield substantially the same transit timeliness as the low-intensity models for the three highest priorities of traffic; however, even the most timely mid-intensity model (Model 9) is significantly slower than all of the lowintensity models in Priority 1 and the "all combined" category.

From Table 6 it is noticed that communications utilization factors increased substantially from the low-intensity environment; however, examination of the waiting times to get on the net reveal that losses in transit timeliness due to net crowding are not significant and would not warrant additional communications facilities. For example, the greatest

time lost waiting for net usage occurs at the Bn BICC where only 39.2 percent of the traffic routed to the Bde BICC finds the net busy. In the event that a message arrives and finds the net busy, the mean wait for service is only 32 seconds. All other nets either have a zero wait or a wait time less than 32 seconds.

Experiment 3

This experiment is conducted substantially as Experiment 2. Table 10 gives the strength configurations studied in this experiment. Initially, the Base model is exercised with the high-intensity inputs (Table 2) for a simulated 48 hour period. Examination of the results reveals extremely high personnel utilization factors (Table 11), and a plot of the critical queue histories (Figure 9) indicates the system's failure to stabilize within the 48 hour period.

As a possible remedy, Model 10 was formed by adding, simultaneously, one analyst to each of the Bn CC & D Sections and to the Bde CC & D and A & P Sections. This model also failed to stabilize; therefore, Models 11, 12, and 13 were sequentially formed with the manning levels shown in Table 10 with the hope that one configuration would achieve stability. Unfortunately, this was not the case and, even though Model 13 manning levels are in excess of practical strength limits, it was decided to continue strength additions until at least a stabilizing model was found. Fortunately, this occurred with Model 14, which has exactly twice the analyst strength as the Base model. The transit timeliness results for all models are shown in Figure 10. Comparing Figures 8 and 10 for these

	Bn I	BICC	Båe BICC		
Model	CC&D	A&P	CC&D	A&P	
Base	2	1	3	2	
10	3	l	l _t	3	
11	3	2	4	3	
12	3	2	5	3	
13	3	2	6	L£-	
1 <i>1</i> 4	4	2	6	4	

Table 10. Experiment 3 Manning Levels par Shift by Model

Table 11. High Intensity Intelligence Analyst Utilization Factors (Percent)

			Model			
Bn BICC	Base	10	11	12	13	14
CC&:D	99.88	95.79	96.04	94.49	98.98	73.06
A&P	89.73	98.84	64.83	65.03	71.92	62.80
Bde BICC						
CC&D	99.58	99.48	99.58	98.62	96.73	97.95
A&P	97.02	94.70	86.49	99.32	97.00	75.70

.

i

1.1.1

Figure 9. High Intensity Base Model Critical Queue Histories

-:	Queue	.14	Bn	BICC	CC&D	Queue	31	Bde	BICC	CC3:D
	Queue	16	Bn	BICC	A&P	Queue	34	Bd.e	BICC	A&P

** The only model that stabilized within 46 hours.

models which did stabilize shows that there is very little difference in transit timeliness for the three highest priorities of traffic but that the Priority 1 and "all combined" category transit times do respond significantly differently to the mid and high intensity inputs.

Communication utilization factors (Table 6) increased as expected; however, examination of queue data relative to communications usage shows no significant degradation of overall timeliness is attributable to overloaded nets. As in the mid-intensity environment, the minor waiting which occurs in the system takes place in the Bn BICC. Here 66 percent of the traffic bound for the Bde BICC finds the FM net busy; however, the mean wait is less than 90 seconds.

The high-intensity results indicate that the Base model system is incapable of effective and timely operation in that environment. Additionally, the number of analysts which must be added in order to even stabilize the system is in excess of practical limits based on physical facility limitations.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

General Comments

While the system described by the Base model is believed to be an accurate representation of the real world system for low intensity environments, it should be remembered that results and conclusions reached from exercising this model with mid and high intensity inputs are less reliable than the low intensity results. This comment is prompted by the author's experience concerning the propensity of analysts to disseminate information in low volume flow situations (low-intensity environments) which might not be disseminated if a greater volume of higher quality data was available. This phenomenon is incorporated in the observed model in the form of the percentage flow routing shown in Figure 4. It is highly probable that analysts would be more discriminating in mid and high intensity environments, that is, the percentage of information determined significant enough for immediate dissemination could be lower which would affect the communications utilization factors and the traffic load on echelons above battalion.

Additionally, the volume flows used in the mid and high intensity experiments are Army estimates and significant alterations of these volumes could substantially affect the conclusions concerning the mid and high intensity environments.

Conclusions

1. The simulation model constructed for this research is flexible and with care in determining the input data and essential system parameters could be used to study a wide variety of intelligence system configurations.

2. GPSS-II is an appropriate language for a simulation study of this type in that it minimizes programming time and permits the majority of the effort to be devoted to data collection and to the study of the system through experimentation.

3. A system model incorporating the hypothesized internal operations of the BICC and their associated processing times, as shown in Figure 2, will not successfully accommodate the estimated information flow (Table 2) for any of the listed environments.

4. The observed system, as represented by the Base model, can be reconfigurated for low intensity operations with an analyst strength savings of three personnel per brigade, if minor degradations in the two lowest priorities of information timeliness are operationally acceptable.

5. No significant improvements in timeliness of information can be achieved by either increasing analyst strengths or communications facilities in low intensity environments.

6. Mid-intensity volume flow overloads the base system processing capability but does not tax communications facilities. Increasing analyst strength partially alleviates the problem; however, even with the maximum practical manning level at Bn BICC, the system fails to produce Priority 1 transit timeliness comparable to the Base model operating with
low-intensity inputs.

7. High-intensity inputs to the Base model system saturate the system's processing capability but do not overload available communications. Increasing analyst strengths, within practical limits, does not produce acceptable system operation.

8. For those system's configurations which stabilize, the transit timeliness for the highest two priorities is not significantly different regardless of intensity of the environment. Priority 1 (lowest priority) shows the greatest sensitivity to input and configuration changes and could be used as a rough estimator of a system's performance in intelligence systems design projects.

Recommendations

1. As stated in an earlier assumption, personnel changes were made assuming equal incremental changes in the altered sections' processing capability. Research into the overall capability of the BICC section as a function of manning strength should be conducted to determine the relationship between manning level and incremental capability changes so that relationship could be incorporated into the model.

2. In this research, personnel utilization factors were examined from the aspect of identifiers for activities where either slack capability or inadequate capability existed. It is expected that utilization factors are more important than this sole use indicates. It is known that human performance and efficiency in information handling tasks are fairly stable within a given work range, but there is evidence that there is a sharp performance decline at a saturation point rather than a gradual decline when quantity of information is increased by a higher rate of presentation (29, p. 1117). The implication of this phenomenon for the BICC system requires that research be conducted to determine the correlation between the expected saturation point for the general population of analysts and utilization factors so that some realistic upper bound on utilization factors can be established for use in intelligence systems design.

3. More research effort should be directed toward identifying adequate computer systems to assist in low echelon (Bn and Bde) processing functions. This is particularly important since computer or machine aggregation is most beneficial in circumstances which produce large volumes of low quality data (30), the exact situation resulting from the recent trend in sensor systems, particularly the unattended ground sensors.

4. An attempt should be made to verify mid and high intensity information inputs so that more confidence could be placed in results of experimentation with the BICC model.

5. This study should be extended to cover the entire division BICC system.

63

APPENDIX A

FUNCTIONS USED IN THE GPSS-II $\operatorname{program}^{\star}$

^{*} FUNCTION 1 is not shown as it is a common exponential distribution which can be used with any mean time to produce time lengths that are exponentially distributed about the specified mean.

Figure 11. FUNCTION 3-- Priority Assignment

Figure 12. FUNCTION 8 -- Teletype Tape Preparation Times (23)

•

*Weibull distribution is F(t) = 1 - exp3.67 67

*Weibull distribution is F(t)= 1-exp

"Weibull distribution is $F(t) = 1 - \exp \frac{1}{54.59}$

"Weibull distribution is F(t)=1-exp $\frac{(t-16.5)^{1.62}}{2.46}$

*Weibull distribution is
$$F(t) = 1 - \exp \left[\frac{(t-3)^{2.4}}{99.48} \right]$$

*Weibull distribution is F(t) = 1 - exp 2.22

Figure 21. FUNCTION 40-- Bde BICC Collection Request Routing Control *

* Twenty one percent of Bde BICC generated collection requests are directed to the Bn BICCs and the remaining 79 percent are forwarded to the Division BICC. 75

÷

- Utilization *
- * This function insures that the Bn BICC RTO utilization factor reflects the proper proportion of Bde BICC to Bn BICC message traffic.

APPENDIX B

GPSS-II COMPUTER PROGRAM AND EXAMPLE RUN RESULTS

•

LOC	NAME	X	Y	Z	SEL	NBA	NB3	MEAN	MOD	REMARKS	F

30L 265101624025 FUNCTION RN1 C24 EXPONENTIAL DISTRIBUTION 1 0 a. .104 •2 .222 .3 •1 .355 .4 +509 .69 +5 •6 .915 .7 1.2 .75 1.38 .8 1.6 1.83 .84 •88 2.12 • 9 2.3 •92 2.52 .94 2.81 .95 2.99 3.2 •96 •97 3.5 .999 7 • 9B 3.9 .99 4.6 .995 5.3 .998 6.2 9997 8 3 FUNCTION RN1 04 PRIORITY ASSGN •25 1 .70 г .80 3 1.00 4 8 FUNCTION RN1 С3 TAPE CUT DIST +00 18 .50 60 1.0 18 11 FUNCTION RN1 C16 •00 2 +086 3 .241 +442 5 4 .563 6 7 • 666 +844 .890 +781 9 7 10 .913 11 942 12 +959 14 .976 .971 15 17 .994 .999 24 23 50 FUNCTION RN1 C24 EXPONENTIAL DISTRIBUTION D .104 Ω .1 •2 .222 •3 . •355 •4 .509 •5 •69 •75 •6 ,915 •7 1.2 1.38 •8 1.6 .84 1.83 •88 [′] 2.12 .9 2.3 .92 2,52 .94 2.81 .95 2.99 .96 3.2 •97 3.5 +98 3.9 .99 4.6 .995 5.3 .998 6.2 .999 7 ·9997 8 21 FUNCTION C1 D4 PERS LEVEL 4680 17280 1 1 8640 1 10440 1 30 FUNCTION RN1 C14 BN CCAD SVC TM +010 .017 в .053 13 .178 18 .303 23 •464 6 28 •589 33 .767 43 .857 48 .696 38 .928 53 •982 58 +999 61 1.00 65 31 FUNCTION RN1 C17 JOUR ENTY TH +00 1 +039 2 .093 3 .156 4 .249 5 •367 6 +546 7 .679 8 .773 9 +812 10 .682 11 .914 12 +953 • 968 15 .992 16 ·99918 14 1.00 19 32 FUNCTION RN1 C16 BN A&P SVC TM .00 •597 30 0 .031 .284 18 .431 24 6 .158 12 .800 +683 36 42 B63 48 .916 54 .937 60 +946 66 .957 .973 72 80 .988 86 1.00 92 33 FUNCTION C3D RN1 BDE CCAD SV TM .043 21 + D D 16 .011 17 .022 18 .033 19 +054 22 +087 23 .109 24 .142 25 +164 .230 27 •252 26 28 •265 29 .317 30 .339 31 .372 32 .416 33 •438 34 •515 37 .559 40 .646 43 .690 45 .734 47 •767 50 .811 52 .854 55 .887 57 .931 71 61 .964 67 1.00 34 FUNCTION ECTION MEMT SVC TH DISTR RN1 C18 COLL BUTION .225 36 +00 .032 .161 30 6 12 .128 24 • 322 42 .741 78 386 48 .483 54 .548 60 ·580 66 +676 72 +774 .870 84 .806 90 .934 10B 96 +992 120 1.00 126 35 FUNCTION RN1 C16 BDE AAP SVC TM • 00 a .025 12 .063 18 .178 24 .332 30 •498 36 •639 42 • 690 48 .805 54 .869 60 .920 66 .934 72 958 78 .971 84 •984 90 1.00 96 63 PRIORITY MSG SVC TM DISTRIBUTION 36 FUNCTION RN1 4 .363 6 .773 7 .864 8 +00 0 +091 .909 11 +954 .998 14 1.00 15 12 FUNCTION D2 INFO NEED SORT 40 RN1 .71 2 1.00 3 BN RTO UTILIZ 02 41 FUNCTION RN1

....

- 333	1 1.00	2									
3	VARIABLE	FN11*	к1							•	
183	GENERATE				BOTH	185	780	1			
185	COMPARE	N186	1	K 1		186	100	•			
186	ADVANCE	11200	-	N.4		107		4680		11550 WTTH 105	
100	ADVANCE					10/		4000		USED WITH 103	
167	ADVANCE					180		3400		USED WITE 85	
15	ORIGINATE		_		BOTH	16	105	374	FN1	NORMAL TRAFFIC	
16	COMPARE	W186	ε	K1		32					
20	ORIGINATE				вотн	21 .	105	374	FN1	NIGHT TRAFFIC	
21	COMPARE	W187	GË	K1 -		32					
32	ASSIGN	4	FN3			34				PRIORITY ASSGN	
34	ASSIGN	3	٧3			36				TRANS TIME FM	
36	PRIORITY	+4	BUFFE	R		38					
38	ASSIGN	6	кі –			40				DATA ENTRY PT	
40	ASSIGN	2	K2			42				MSG TYPE CLASS	
42	ASSIGN	5	K12			44				MSG FVAL ASSGN	
66	RUFUE	5				ц <u>к</u>				CODEING ONENE	
46	4010	2				1.0		1		VEG INTE DOED	
40		E,				+D E0	56	•		MODINE HULT	
50						50	50				
50	SELLI	c				22	24				
52	QUEUE	0				100		-		FM RADIU GUEUE	
54	QUEUE	8				100		Ţ	1	FM RADIO QUEUE	
56	QUEUE	10				100		1	1	FM RADIO QUEUE	
64	PRIORITY	4	BUFFE	R		68				PRIORITY /SSGN	
80	ORIGINATE					82		180	FN1	BN-SEN TRAF	
82	PRIORITY	1	BUFFE	R		90					
90	ASSIGN	3	٧3			92				TRANS TIME FM	
92	ASSIGN	1	K1			94				TYPE TRAFFIC	
 94	ASSIGN	2	K1			96				BN-CO MSG TYPE	
. 96	QUEUE	12				100				BN-CO TRAF QUE	
100	SEIZE	6			вотн	110	111				
110	COMPARE	P2	F	K 1		101				TRAFFIC SORT	
101	RELEASE	6	-		вотн	102	103	•••		NETERFEANDSORT	
102	COMPARE	Ē1	F	K 1	20	105				TRAFFIC SORT	
103	TARIH ATE	1	•			105				TRANS TIME TAR	
111	CETZE	-				112		- 2			
112		6				112		÷.,		EDECE EN NET	
113	MADY	5				113				FREED FM NEI FTART RN RRAC	
110	TADULATE	2				114				START DN PRUL	
114	DELEACE	5				115				TAB TRAN TIME	
115	ADUANCE	1			007.4	116				FREES NID	
110	COUDADE				BOTH	120	124			SORIS PRI TRAF	
120	COMPARE	PRI	L	K4		128					
124	INTERRUPT	13				126			FN36	SHIFT LOR SCAN	
125	SPLIT					128	134			SIMUL ACTION	
134	ADVANCE	· _			•870	105	136			87% MSG FWD	
136	ASSIGN	1	K4			188				ID FOR SORT	
128	ADVANCE				вотн	130	132			SHIFT CONTROL	
130	COMPARE	Q14	L	K2		138				NORMAL OPS	
132	ASSIGN	1	K1 -			140				BUSY OPS SHIFT	
138	ASSIGN	1	K1			140				NORM OPS SHIGT	
140	QUEUE	14				145				CC&D QUEUE	
145	ENTER	14	P1			148				ENTER CC&D	
14	CAPACITY	2									
148	ADVANCE					150			EN31	ENTER JOURNAL	
150	ADVANCE				.660	152	160		EN30	CC8D ANAL FACTN	
152	ADVANCE					154	104			WRITE OUT MSG	
154	ADVANCE					156			EN31	ETI FR.IGUP ENTY	
104	RUTANUL					100			LUIDT		

											•		
	156	LEAVE	14	P1			188				FREE ANALYST		
	160	LEAVE	14	P1			162				FREE ANALYST		
	162	QUEUE	16	C.E.			174				ASP NORMAL QUE		
	166	QUEUE	17	92	K.J		168				BUSY TIME QUE		
	168	COMPARE	Q14	L	κ2		174				QUEUE CONTROL		
	174	ENTER	16	-			176						
	16	CAPACITY	1										
	176	ADVANCE					178			FN32	A&P ANALYSIS		
	178	LEAVE	16			+110	180	184			11% NEED INFO		
	180	ADVANCE		~ 3		+070	105	182			7% NEW SR		
	184	HOLD	1.4	13		.75	700	188		FN34	SHIFT LOR SCAN		
	188	ADVANCE	••			вотн	200	201		1 1104	MSG SORT		
	200	COMPARE	P2	E	K4		105				DSTRY AIR MSGS		
	201	ADVANCE				ALL	202	204			TRAFFIC SORT		
	202	COMPARE	P1	Ē	К3		206				FULL ANAL SR		
	203	COMPARE	P1	Е	K4		205				PRI 6 SPOT RPT		
	204	TABULATE	40				210				TAR DOT 6		
	206	TABULATE	41				207				TABS DETATI SP		
	207	TABULATE	43			BOTH	208	212			FULL ANAL TH		
	209	TABULATE	44			BOTH	208	212			CC&D INTEM TM		
	210	TABULATE	45			BOTH	208	212			CO-BN TRAN TH		
	208	COMPARE	PR1	GE	К3		220				TRAF SORT		
	220	SPLIT					224	232			VOL EXPANSION		
	212	ADVANCE CDI IT					220	236			NOL EXOANCTON		
	234	QUEUE	19				234	230			AOF EXEMUSION		
	236	QUEUE	21				240				``		
	224	ASSIGN	7	К1			225						
	225	QUEUE	20				228				OUTBOUND QUE		
	240	SEIZE	20			вотн	241	243					
	228	GATE	NU7	-			240				RTD CAN TRANMT		
	241	COMPARE	P7	E	K1		242				074 UCC		
	242	ADVANCE	'				244		*3		NO PTO HEE		
	243	RELEASE	20			вотн	244	250	-3		NO KIU USE		
	245	COMPARE	P2	Ε	K4	•333	246	106					
	246	ADVANCE	• -	-			116						
	250	TABULATE	50				254				COMB TRAN TIME		
,	254	MARK	8			вотн	256	268			TABS START TH		
	256	COMPARE	PRI	GE	X4		258			E	HIGH PRI TRAF		
	208	SOLIT	14				260	369		FN36	SMIFT LUR SCAN		
	260	ADVANCE				.12	202	200 264			12% FORWARDED		
	264	ASSIGN	1	K6			375	604			ID FOR STAT		
	268	QUEUE	29	-			270				JOUR CLERK QUE		
	270	HOLD	29	_		ALL	273	275	1	FN31	JOUR CLERK		
	273	COMPARE	P1	E	K11		328				SRI&INFO REOST		
	274	COMPARE	P1	L	K6	0.071	288				INCOMING TRAF		
	275	COMPANEL	р.	F	813	BOTH	270	280			OUTGOING TRAF		
	270	SPITT	-1	-	115		2/0	303			TNICHA ATCCEM		
	280	ADVANCE				ALL	281	283			OUTBOUND SORT		~
	281	COMPARE	P7	Е	К3		285				BDE-BN SPT RPT		õ
		0040405		F	¥ P		0.04				DUAL DECCEN CD		

284	SPLIT					285	375			CP CDITT	
007						200	375				
285	AUVANCE					375				DIV INFO RORMT	
285	ASSIGN	7	FN41			286				BN RTO LOAD ID	
296	AFETCH		of the			0.0					
200	A3310N	2	N 4			240				ID FOR BN PROC	
288	QUEUE	31				290				CC&D QUEVE	
290	ENTER	31			вотн	291	292			START CCAD	
21	CADACITY						272			START COLD	
21	LAPACITE	3									
291	COMPARE	P1	E	К9		294				ID FOR COLL FN	
294	ADVANCE					320			ENDA	COLL DE ANNITAG	
2.60	ACTANCE	-				320				COLC FLAMMIND	
320	ASSIGN	1	FN40			322				COLL DIR SORT	
322	ASSIGN	1	K10			324				OUTBOUND MSG	
324	LEAVE	31				26.0				COFEC ANAL VET	
524		<u> </u>				200				FREES RINALIST	
326	ASSIGN	1	KУ			288				COLLECTION ID	
292	ADVANCE				.76	293	295		EN33	CC&D REVIEW	
203	ADVANCE					204					
2.20	RUINNEL	.				230				SK MSG FREF	
530	LEAVE	51				298				FREES ANALYST	
298	ASSIGN	1	K7			268				OUTBOUND MSG	
205	LEAVE	31				102				COFEC ANALNET	
273	LEAVE	31				202				FREES ANALISI	
302	ASŞIGN	5	К1			304				ID FOR CONTROL	
304	OUFUE	34				306				ASP OUFUE	
304	CHIED	20			DATH						
200	ENTER	32			BOTH	. 304	310			STAKI AMP	
32	CAPACITY	2									
309	COMPARE	P5	F	K 1		311				DEC TRAE SORT	
* * *	ADVANCE		-				~				
211	ADVANCE				.88	313	314		FN35	FULL ANALYSIS	
313	LEAVE	32				326				FREE ANALYST	
314	LEAVE	32			.13	105	315			138NEW COT DOT	
		UL .				105	313			TOURCH SET NET	
212	ASSIGN	1	K B			268				OUTBOUND MSG	
310	ADVANCE					316		360	90	INTSUM PRODUCT	
316	LEAVE	30				319			_	EDEEC ANALVET	
510		52				313				FRELS ANALISI	
319	ASSIGN	1	K12			268				INTSUM ID	
300	ORIGINATE			2		254		860	FN1	COLL DIRECTIVE	
330	ACCTON	•	K11	-		26.0					
550	ASSIGN		N14	_		200					
208	DRIGINATE	1440		2		304		4320		INTSUM REQMNT	-
328	HOLD	14				302			EN36	SHIFT LOR SCAN	
375	TABLHATE	57			A1 1	376	370			CONN CODT	
	TROCERTE	37	_		46L	370	313			CUMM SUKI	
376	COMPARE	P1 :	E	КБ		380				PASSES TOP PRI	
377	COMPARE	P1	E	K7		381				PASS CCRD ANAL	
370	CONDADE	DI	Ē	¥ O		700					
510	LUMPARE	- 1	Ę.	NO		206				PASS AGP ANAL	
379	ADVANCE				ALL	383	386			PRI SORT	
360	TABULATE	51				379				TAB PRT 6 TOTM	
301	TADULATE	50				770					
201	TABULATE	52				3/7				TAB CCAU PRUC	
382	TABULATE	53				379				TAB A&P PROC	
383	COMPARE	PR1	6F	K LL		390				FLASH TO RADIO	
300	COMPADE	0.01	-			2070					
384	COMPARE	PRI	E.	К.5		387				PRI 3 PASSES	
387	TABULATE	54			+81	390	393			TABS TOT PRI 3	
385	COMPARE	DD1	£	K 2		308				DACCEC DDT 3	
200		E RA	L .	A E	~ •	200				FR33C3 FR1 2	
258	INSULATE	25			• 81	390	343			TABS FOF PRI 2	
386	TABULATE	56			•50	393	394			TABS TOT PRI 1	
390	AUFUF	35				395				EN RADIO QUE	
305	CTADE										
373	STUKE	23				TOB			LUIT	PM KAULU	
33	CAPACITY	1									
FOF	OUFUE	36				306				DOE TADE CUT	
	CTODE					390			F 1.0	TARE OUT	
240	STORE	34				397		ı	PN8	TAPE CUTTING	
34	CAPACITY	2									
307	AUFUE	37				304				005 CEND	
591		31				370				FRE JENU	
398	STORE	55				107				LL IELIYPE	
35	CAPACITY	1									
		-									

		394	ADVANCE					107				MSG		
		105	TERMINATE											
		107	TERMINATE											
		108	TERMINATE											
		700	GENERATE	_	1			701				PRINT ROUTINE		
		701	ASSIGN	1	K10		5.0 T. (702				HISTORY OF		
		702	COMPANE	#1 D1	9116	VEO	BOIH	703	704			QUEUE16 EVERY		
		705	ASSIGN	1+	E K 1	ND0		703		740		HOUR FUR THE		
		705	PRINT	10	58			701		360		STHOCKLION		
		706	GENERATE		1			707		000				
		707	ASSIGN	1	K60			70B						
		708	SAVEX	+1	QT17		BOTH	709	710					
		709	COMPARE	P1	E	K108		711						
		710	ASSION	1+	K1 109			708		360		ANT WINTER		
		720	GENERATE	90	100			707		360		WIT HISTORY		
·		721	ASSIGN	1	x 110			722						
		722	SAVEX	÷1	QT14		вотн	723	724					
		723	COMPARE	P1	E	K158		725				•		
		724	ASSIGN	1+	K1			722		360				
		725	PRINT	110	158			721		360		Q14 HISTORY		
		730	GENERALE		1			731						
		732	CAVEY	± ±1	AIDU AT34		ROTH	732	734					
		733	COMPARE	P1	F	K208	buth	735	134					
		734	ASSIGN	1+	ĸ1	NEUU		732		360				
		735	PRINT	160	208			731		360		034 HISTORY		
		740	GENERATE		1			741				PRINT ROUTINE		
		741	ASSIGN	1	K210			742				HISTORY OF		
		742	SAVER	#1	ai 31 F	K 9 5 9	BOTH	743	744			QUEUE31 EVERY		
		744	ASSIGN	1+	Е К 1	N200		743		340		STALL ATTON		
		745	PRINT	210	258			741		360		31MOLNIION		
		498	ORIGINATE					499		298	FN1	DIV&BDE INPUT		
		499	ASSIGN	4	К2			500					-	
		500	PRIORITY	+4	BUFFE	R		501	_					
		501	ADVANCE	••			•81	502	503	_	-	TT-TEL USE		
		502	STORE	33				254		9	EN1	USE FM RADIO		
		780	TERMINATE	U U				204		-	EN1	025 11		
	,	2	TABLE	M1	0	6	60	TABS	CO-BN	INTEL	TRAFFI	c		
		40	TABLE	MPB	18	6	30	BN BI	CC CC&	O PROC	ESSING	TIMES		
		41	TABLE	M1	72	6	20	TOTAL	TRAN	TN CO	- BN A	&P PROCESSING		
		42	TABLE	41	0	6	20	PRIDR	ITY 4	TOT TR	AN TH	CO THRU BN BICC		
		43	TABLE	MPB	72	6	40	BN BI	CC A&P	PROCE	SSING	TIMES		
		44	TABLE	MPB	20	3	4U 40	PRIDR	11T 4 040 TM	AN BIC	C PROLE	ESSING TIMES		
		+5 50	TABLE	M1	12	12	40 60	TRANS	TT TIM	E INTO	BOF F	OR ALL PRIORITY	,	
		51	TABLE	M1	28	6	20	PRIOR	ITY 4	TOTAL	SYSTEM	TRAN TIME		
		52	TABLE	MPB	٥	12	20	BDE B	100 00	AD PRO	CESSIN	G TIME		
		53	TABLE	MPB	36	18	20	BOE B	ICC A&	P PROC	ESSING	TIMES		
		54	TABLE	M1	72	36	40	PRIOR	ITY 2	TOTAL	SYS TRI	AN TIME		
· · · ·		55	TABLE	M1	72	36 14	40	PRIOR	117 3	TOTAL	STS TRA	AN TIMES		8
		50	TABLE	M1	36 150	12	40	PRIOR	117 <u>1</u> 17 774	STAL	SIS TRI	AN TIMES		2
		J I	INDEE	M 4	20	4 C	00	I KANAD	71 IT4	ա լդուն	906 Pt	OV MEE BUTORALE		

SAVEX	NR	VAL	UΕ	NR	·····VALUE	NR		.VALUE	NR	VALUE	NR .		VALUE	
	10		0	11	1	12		4	13	4	14		3	
	15		3	16	2	17		2	18	4	19		4	
	20		3	21	3	22		3	23	3	24		4	
	25		4	26	4	27		4	28	4	29		4	
	30		4	31	ú.	32		ų.	33	4	34		L.	
	35		ù.	36	L L	37		<u> </u>	38	3	39			1
	40		-	u 1	1			1	43	5			4	
	45		6	46	5	17		5	45	5			5	
	F0		-	40	2			5	40	3	47		5	
	20		2	51	5	52		5	53	5	54		5	
	55		5	56	5	57		5	58	6	59		Q	
SAVEX ALL	NR SAVEX	VALUES R	UE EFE	NR RENCED B	Y PRINT BLOCK	NR. K 711	ARE ZE	.VALUE	NR+•	•••••VALUE	NR .	****	VALUE	
									_		_			
SAVEX	NR++	•••••VAL	UE	NR .	******VALUE	NR		+VALUE	NR • •	VALUE	NR.		VALUE	
	110		0	111	10	112		8	113	8	114		7	
	115		6	116	6	117		6	118	7	119		6	
	120		6	121	6	122	•	6	123	. 6	124		11	
	125		11	126	11	127		10	128	10	129		9	
	130		9	131	9	132		9	133	9	134	•	9	
	135		ġ	136	ģ	137		ġ.	138	ģ	139		ģ	
	140		á	141	ó	142		á	143	10	100		10	
	145		ó	146	ó	147		ó	148	1 0	100		Ĩ	
	150		7	151	7	150		7	140	,	150		7	
	120		ž	121	9	152		9	153	9	154		3	
	122		9	155	9	157		9	158	.9	159		0	
SAVEX	NR	VAL	UE	NR	····VALUE	NR		.VALUE	NR	VALUE	NR -		VALUE	
	160		0	161	0	162		20	163	17	164		16	
	165		15	166	13	167		13	168	12	169		11	
	170		11	171	10	172		10	173	9	174		- 9	
	175		- Q	176	-0	177		16	178	15	179		1 4	
	190		13	191	12	102		12	103	12	100		11	
	100			101	1.5	102		11	100	10	104			
	100		77	100	11	187		11	100	10	184		11	
	190		11	191	11	192		11	195	10	194		10	
	195		10	195	10	197		10	198	9	199		9	
	200	•	11	201	11	202		11	203	11	204		11	
	205		14	206	14	207		14	208	13	209		0	
SAVEX	NR.	VAL	UE	NR + +	VALUE	NR		VALUE	NR		NR		VALUE	
	210		0	211	2	212		3	213	3	214		3	
	215		3	216	2	217		2	218	2	219		2	
	220		3	221	3	222		3	223	3	224		2	
	225		5	226	2	227		õ	228	2	229		2	
	230		5	231	5	212		5	211	2	230		5	
	226		5	236	3	237		2	233	1	234		2	
	200		5	200	3	231		5	230	3	237			
	240		3	241	3	242		3	243	3	244		. 3	
	245		2	246	2	247		2	248	2	249		2	
	250		4	251	4	252		4	253	4	254		5	
	255		6	226	6	257		6	258	7	259		0	
CLOCK	TIME	REL	1	7280	A	BS	1728	0						
TRANS	COUNT	S BLO	СК 11	TRANS+TD 0+	TAL BLOCK	TRANS,	TOTAL 0	BLOCK 13	TRANS+TO	TAL BLOCK	TRANS+1	LATO 0	BLOCK 15	TRANS.TOTAL 0. 38

START

- ---

17280

21 0, 19 22 0, 0 23 0, 0 24 0, 0 25 31 0, 0 32 0, 37 33 0, 0 34 0, 37 35 36 0, 37 37 0, 0 38 0, 37 39 0, 0 40	0. 0	
31 0, 0 32 0, 37 33 0, 0 34 0, 37 35 36 0, 37 37 0, 0 38 0, 37 39 0, 0 40		
36 0+ 37 37 0+ D 38 0+ 37 39 0+ 0 40	n. n	
	0. 17	
	01 31	
	0, 0	
	0+ 37	
51 0, 0 52 0, 37 53 0, 0 54 0, 37 55	0+ 0	
56 0, 37 57 0, 0 58 0, 0 59 0, 0 60	0, 0	
76 0, 0 77 0, 0 78 0, 0 79 0, 0 80	0+ 108	
81 07 0 82 07 108 83 07 0 84 07 0 85	0, 0	
86 07 0 87 07 0 88 07 0 89 07 0 90	0 111	
91 0, 0 92 0, 111 93 0, 0 94 0, 111 95	0. 0	
	0. 222	
	0. 271	
	0 333	
	0, 111	
	0+ 111	
	0, 115	
	0+ 0	
	07 132	
131 0, 0 132 0, 6 133 0, 0 134 0, 23 135	0, 0	
	1, 138	
	0, 137	
146 0+ 0 147 0+ 0 148 1+ 137 149 0+ 0 150	1, 136	
	0. 0	
	0. 07	
	0, 0,	
	0, 0	
	0, 0	
	0+ 81	
	0+ 1	
	0+ 0	
196 0, 0 197 0, 0 198 0, 0 199 0, 0 200	0, 16	
201 0, 59 202 0, 4 203 0, 15 204 0, 40 205	0+ 15	
	0, 40	
	0. 0	
	0. 59	
	0. 59	
	0, 19	
231 07 0 232 07 233 07 0 234 07 39 235	U/ U	
	0 212	
	0+ 35	
245 0, 27 247 0, 0 248 0, 0 249 0, 0 250	0+ 177	
251 0+ 0 252 0+ 0 253 0+ 0 254 0+ 258 255	0, 0	
256 0, 69 257 0, 0 258 0, 69 259 0, 0 260	0+ 69	
261 0, 0 262 0, 69 263 0, 0 264 0, 7 265	0, 0	
265 0, 0 267 0, 0 268 0, 356 269 0, 0 270	0/ 356	
271 0, 0 272 0, 0 273 0, 0 274 0, 258 275	0+ 98	
276 0, 4 277 0, 0 278 0, 4 279 0, 0 280	0, 94	
	0. 35	
	0. 279	
	0, 204	
	0. 14	
	01 10	
291 0, 23 292 3, 256 293 0, 49 294 0, 23 295 296 0, 49 297 0, 0 298 0, 49 299 0, 0 300	<u> </u>	
291 0; 23 292 3; 256 293 0; 49 294 0; 23 295 296 0; 49 297 0; 0 298 0; 49 299 0; 0 300 301 0; 0 302 0; 204 303 0; 0 304 0; 208 305	0, 0	
291 0, 23 292 3, 256 293 0, 49 294 0, 23 295 296 0, 49 297 0, 0 298 0, 49 299 0, 0 300 301 0, 0 302 0, 204 303 0, 0 304 0, 208 305 306 0, 208 307 0, 0 308 0, 4 309 0, 204 310	0+ 0 0+ 4	
291 0; 23 292 3; 256 293 0; 49 294 0; 23 295 296 0; 49 297 0; 0 298 0; 49 299 0; 0 300 301 0; 0 302 0; 204 303 0; 0 304 0; 208 305 306 0; 208 307 0; 0 308 0; 4 309 0; 204 310 311 2; 204 312 0; 0 313 0; 23 314 0; 179 315	0+ 0 0+ 4 0+ 22	
291 0; 23 292 3; 256 293 0; 49 294 0; 23 295 296 0; 49 297 0; 0 298 0; 49 299 0; 0 300 301 0; 0 302 0; 204 303 0; 0 304 0; 208 305 306 0; 208 307 0; 0 308 0; 4 309 0; 204 310 311 2; 204 312 0; 0 313 0; 23 314 0; 179 315 316 0; 4 317 0; 0 318 0; 0 319 0; 4 320	0; 0 0; 4 0; 22 0; 23	ŝ
291 0; 23 292 3; 256 293 0; 49 294 0; 23 295 296 0; 49 297 0; 0 298 0; 49 299 0; 0 300 301 0; 0 302 0; 204 303 0; 0 304 0; 208 305 306 0; 208 307 0; 0 308 0; 4 309 0; 204 310 311 2; 204 312 0; 0 313 0; 23 314 0; 179 315 316 0; 4 317 0; 0 318 0; 0 319 0; 4 320 321 0; 0 322 0; 23 323 0; 0 324 0; 23 325	0; 0 0; 4 0; 22 0; 23 0; 0	84

	371 376 381 396 496 501 696 701 706 711 716 721 726 731	0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;	0 7 49 4 0 51 0 55 0 1 1 0 1 0	372 377 382 387 392 397 497 502 697 707 712 717 712 727 732	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0 49 22 6 0 51 0 9 0 49 1 0 49 49	373 378 383 393 393 498 503 698 703 708 713 718 723 728 733	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0 22 28 54 51 51 55 65 56 1 49 0 1 0	374 379 384 399 499 504 504 709 714 719 729 729 734	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0 92 6 0 2 0 5 5 0 8 5 0 8 4 8 4 8 4 8	375 380 385 390 395 400 500 505 710 715 710 715 720 725 730 735	0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 1+	92 7 54 43 0 65 0 1 1 48 0 1 1 1 1
	735	0,	1	742	0,	49	743	0,	1	739 744	0,	48	740	1+	1
	776	0,	0	777	0,	0	778	0,	0	779	0+	0	780	0+1	727 9
SAVEX NR	VALUE	NR +		VALUE	NR.		VALUE	NR .		VALUE	NR.		VALUE		
11	1	12		4	13		4	14		3	15		3		•
21	3	22		23	23		3	24		4	25	•	4		
26	4	27		ų.	28		4	29		ų	30		4		
31	4	32		4	33		4	34		4	35		4		
41	3	42		4	20 43		5	29		5	40		5		
46	6	47		5	48		5	49		5	50		5		
51	5	52		5	53		5	54		5	55		5		
55	5	112		5	58		Б В	59 11u		07	60 115		0		
116	6	117		6	118		7	119		6	120		6		
121	6	122		6	123		6	124		11	125		11		
126	11	127		10	128		10	129		9	130		9		
131	9	132		9	133		9	134			135		9		
141	9	142		9	143		10	144		10	145		9		
146	9	147		9	148		9	149		-9	150		9		
151	9	152		9	153		9	154		9	155		9		
150	. 9	157		20	158		17	159		14	160		15		
166	13	167		13	168		12	169		11	170		11		
171	10	172		10	173		9	174		9	175		9		
176	8	177		16	178		15	179		14	180		13		
181	13	182		12	183		12	184		11	185		11		
191	11	192		11	193		10	194		10	190		10		
196	10	197		10	198		- 9	199		9	200		11		
201	11	202		11	203		11	204		11	205	•	14		
206	14	207		14	208		13	209		õ	210		o		
211 216	2	212		3	215		3	214		5	215		3		
221	3	222		<u>د</u> 3	223		3	224		2	225		2		
226	ž	227		2	228		ž	229		2	230		· 2		
231	2	232		2	233		2	234		2	235		2		
236	3	237		3	238		3	239		3	240		3		

- - 11

241 240 251 251	L 5 L 5	3 2 4 6	242 247 252 257	3 2 4 6	243 248 253 258		3 2 4 7	244 249 254 259		3 2 5 0	245 250 255 260		2 4 6 0	
FACILITY	AVER UTILIZ	AGE	1	NUMBER	AVERAGI TIME/TRA	E	TR	ANS	\$TRANS					
2	.0	021		37	1.0	D		0	a					
6	•0	787		222	6.1	3		- 0	ă					
7	.0	629		181	6.0	1		1	ō					
13	.0	337		28	20.8	2		0	ō					
14	•0	240		69	6.0	D		D	0					
20	•0	659		212	5.3	7		0	a					
29	•1	354		356	6.5	7		D	0					
STORAGE NR	MAXIMUM Contents	CAP	ACITY	AVERAGE Contents	A UTILI:	VERAGE ZATION	TI ENTI	RIES	TOTAL TRANS	A EN	VERAGE TZTRAN	AVERA TIME/EN	GE Try	CURRENT CONTENTS
14	2		2	.31	+1	560	13	7	137	1	•00	39.35		2
16	1		1	+15	.1	531	8	7	87	1	•00	30,40		1
31	3		3	+65	.2	158	27	9	279	1	•00	40.10		3
32	2		2	•55	- 2	736	20/	3	208	1	•00	45.45		2
33	1		1	•05	.0:	166	- 53	2	52	1	•00	5.52		Ð
34	2		2	•12	•0	594	5.	L	51	1	•00 •	40.25		0
35	1		1	•01	•01	094	10	7	107	1	•00	1.51		0
BUEUE	MAXIMUM	AVER	AGE	TOTAL	ZERO	ZERO	S	A	ERAGE TI	ME/EN	TRIES	TABLE	CUR	RENT
NR	CONTENTS	CONTER	NIS	ENTRIES	ENTRIES	PERCEN	T	ALL	ENT NO	N ZER	O ENT	NUMBER	CONT	ENTS
č	1	•	00	37	37	100+00		•	10	-	•00	0		0
	1	•	00	37	54	91.89		•••	22		2.67	a		0
	2	•	02	37	U	•00		11+1	16	1	1.16	Ű		0
10	1	•	02	57	1	2.70		8.:	57 57		8.81	U		0
14	۲.	•	01	111	104	93.09			J /	1	7.00	0		u •
14	4	•	03	138	90	63.22		9.5	34	2	7.42	U		1
10	2	•	03	0/ 50	60	68.7/		D +1	*0	2	0.81	U		U N
7.9	<	•	0.5	59	-	0+/0	•	(+)	55		8.07	U		U
20	~	•	00	59	51	80.44		1 2 4	51		5.00	u		0
20	ć	•	05	39	075	+00		T.3 • ·	36 .	1	3.36	U		0
27	7	•	11	330	233	20.11		3.		_	7.04	U		U
31	5	•	11 17	208	130	20+11 23 h2		13	J 2 76	2	7 69	U A		<
35	1	•	<u>.</u>	200	132	03+40		1.24	10	ు	1.00	0		0
36	1		00	51	50	71+0/ DR.0#		• •	JE . 16		3.00	0		0
37	1	•	00 00	51	50	100.00		+			000	0		0
	1	• 1	υv	21	31	T00+00			UU		• U U	U		u

ENTRIES IN TABLE 111	MEAN	ARGUMENT	STANDARD D 1	EVIATION 2.063	NON-WEIGHTED	
UPPER LIMIT	OBSERVED	PERCENT OF TOTAL	CUMULATIVE	CUMULATIVE REMAINDER	MULTIPLE OF MEAN	DEVIATION FROM MEAN
0	0	•00	•0	100.0	.000	-1.167
6	25	22.52	22.5	77.5	.426	670
12	39	35.14	57.7	42.3	.852	- .173
18	21	18.92	76+6	23.4	1,278	.325

98

ţ

24	13	11.71	88.3	11.7	1,704	+822
30	4	3.60	91.9	8+1	2.131	1.320
36	1	• 90	92.8	7.2	2.557	1.817
42	3	2.70	95+5	4.5	2.983	2.314
48	2	1.80	97.3	2.7	3.409	2.812
54	0	.00	97.3	2.7	3.835	3.309
60	1	+90	98.2	1.8	4.261	3.807
66	1	• 90	99.1	•9	4+687	4.304
72	1	.90	100.0	+0	5.113	4.801
REMAINING FREQUENCIES	ARE ALL ZERO					

ENTRIES IN TABLE 40	MEAN	ARGUMENT 60+075	STANDARD	DEVIATION 35.153	NON-WEIGHTED	
UPPER	DBSERVED	PERCENT	CUMULATIVE	CUMULATIVE	MULTIPLE	DEVIATION
LIMIT	FREQUENCY	OF TOTAL	PERCENTAGE	REMAINDER	OF MEAN	FROM MEAN
18	1	2.50	2.5	97.5	• 300	-1+197
24	1	2,50	5.0	95.0	.400	-1.026
30	2	5.00	10.0	90.0	.499 .	856
36	4	10.00	20.0	80.0	• 599	-•685
42	6	15,00	35.0	65+0	•699	- +514
48	3	7,50	42.5	57+5	• 799	344
54	4	10.00	52.5	47.5	•899	173
60	2	5.00	57.5	42+5	•999	002
66	4	10.00	67.5	32.5	1.099	•169
72	1	2.50	70.0	30.0	1,199	+339
78	2	5.00	75.0	25+0	1.298	•510
84	5	12.50	87.5	12+5	1.398	•681
90	3	7.50	95.0	5.0	1.498	•851
96	D	•00	95.0	5+0	1,598	1.022
102	O	.00	95.0	5.0	1.698	1.193
108	0	+00	95.0	5.0	1.798	1.363
114	0	.00	95.0	5.0	1.898	1.534
120	1	2.50	97.5	2.5	1.998	1.705
126	0	•00	97.5	2.5	2.097	1.875
132	0	•00	97.5	2.5	2,197	2.046
138	0	•00	97.5	2.5	2.297	2.217
144	0	•00	97.5	2.5	2.397	2.387
150	0	.00	97.5	2.5	2,497	2+558
156	D	•00	97.5	2.5	2.597	2.729
162	0	.00	97.5	2.5	2.697	2.899
168	0	•00	97.5	2.5	2.797	3.070
174	0	• 0 0	97.5	2.5	2.896	3.241
180	0	•00	97.5	2+5	2,996	3.412
186	0	•00	97.5	2.5	3.096	3+582
OVERFLOW	1	2,50	100.0	•0		•

TABLE NUMBER 41

and a committee

ENTRIES IN TABLE	MEAN ARGUMENT	STANDARD DEVIATION		
4	119.250	41.318	NON-WEIGHTED	

UPPER	OBSERVED	PERCENT	CUMULATIVE	CUMULATIVE	MULTIPLE	DEVIATION
LIMIT	FREQUENCY	OF TOTAL	PERCENTAGE	REMAINDER	OF MEAN	FROM MEAN
72	0	.00	•0	100.0	.604	-1-144
78	0	.00	•0	100.0	+654	998
84	1	25.00	25.0	75.0	•704	853
90	0	.00	25.0	75.0	.755	-,708
96	0	.00	25.0	75.0	+805	-,563
102	1	25.00	50.0	50.0	•855	417
108	1	25.00	75.0	25.0	.906	-,272
114	0	.00	75.0	25.0	956	-,127
120	0	.00	75.0	25.0	1.006	.018
126	0	.00	75.0	25.0	1.057	.163
132	Ó	•00	75.0	25.0	1.107	.309
13B	D	.00	75.0	25.0	1.157	.454
144	0	.00	75.0	25.0	1.208	•599
150	0	.00	75.0	25.0	1.258	•744
156	0	.00	75.0	25.0	1.308	.889
162	0	.00	75.0	25.0	1.358	1.035
168	0	•00	75.0	25.0	1,409	1.180
174	0	.00	75.0	25.0	1.459	1.325
190	0	.00	75.0	25.0	1.509	1.470
OVERFLOW	1	25.00	100.0	•0		

ENTRIES IN TABLE 15		MEAN ARGUMENT 20+800		STANDARD DEVIATION 8+968		NON-WEIGHTED	
UF	PER	OBSERVED	PERCENT	CUMULATIVE	CUMULATIVE	MULTIPLE	DEVIATION
ب يا	0	Û	+00	PERCENTAGE	100+0	0F MEAN +000	-2.319
	6 12	0	.00 13.33	•0 13•3	100.0	+288 +577	-1.650 981
	18	5	33.33	46.7	53.3	865	-,312
	24 30	2	13.33	73•3 86•7	13.3	1.154	+357 1+026
	. 36 42	1	6.67	93.3 93.3	6.7 5.7	1.731	1.695 2.364
SEMAINING ER	48 FOLIENCTÉS		6.67	100.0	•0	2.308	3.033

TABLE NUMBER 43

ENTRIES IN TABLE	MEAN	ARGUMENT	STANDARD	DEVIATION		
4	1	08.000		40+181	NON-WEIGHTED	
UPPER	OBSERVED	PERCENT	CUMULATIVE	CUMULATIVE	MULTIPLE	DEVIATION
LIMIT	FREQUENCY	OF TOTAL	PERCENTAGE	REMAINDER	OF MEAN	FROM MEAN
72	0	.00	•0	100.0	•667	-•896
78	1	25.00	25•0	75.0	•722	-•747
84	1	25.00	50.0	50.0	•778	597
90	0	.00	50.0	50.0	•833	448
96	0	.00	50.0	50.0	•889	299

÷

102	1	25,00	75.0	25.0	.944	149
108	0	.00	75.0	25.0	1.000	•000
114	0	.00	75.0	25.0	1.056	-149
120	0	.00	75.0	25.0	1.111	•299
126	D	+00	75.0	25.0	1.167	.448
132	D	+00	75.0	25.0	1.222	•597
138	0	.00	75.0	25.0	1.278	•747
144	0	•00	75.0	25.0	1,333	•896
150	Ð	.00	75.0	25.0	1.389	1+045
156	0	.00	75.0	25.0	1.444	1.195
162	0	•00	75.0	25.0	1.500	1.344
168	0	+00	75.0	25.0	1.556	1.493
174	0	+00	75.0	25.0	1.611	1.643
180	1	25.00	100.0	•0	1.667	1.792
REMAINING FREQUENCIES	ARE ALL ZERO					

ENTRIES IN TABLE	MEAN A	RGUMENT	STANDARD D	EVIATION		
15	7	•533	:	3.284	NON-WEIGHTED	
UPPER	OBSERVED	PERCENT	CUMULATIVE	CUMULATIVE	MULTIPLE	DEVIATION
LIMIT	FRÉQUENCY	OF TOTAL	PERCENTAGE	REMAINDER	OF MEAN	FROM MEAN
0	0	+00	•0	100.0	.000	-2,294
3	0	+00	•0	100.0	.398	-1.381
6	9	60.00	60.0	40.0	•796	467
9	3	20.00	80.0	20.0	1,195	.447
12	1	6.67	86.7	13.3	1.593	1.360
15	1	6.67	93.3	6.7	1,991	2.274
16	1	6.67	100.0	•0	2.389	3.188
REMAINING FREQUENCIE	S ARE ALL ZERO					

TABLE	NUMBER	45

ENTRIES IN TABLE 40	MEAN ARGUMENT 72+625		STANDARD	DEVIATION 38+201	NON-WEIGHTED		
UPPER	OBSERVED	PERCENT	CUMULATIVE	CUMULATIVE	MULTIPLE	DEVIATION	
LIMIT	FREQUENCY	OF TOTAL	PERCENTAGE	REMAINDER	OF MEAN	FROM MEAN	
24	1	2.50	2.5	97.5	₄ 330	-1.273	
30	2	5.00	7.5	92.5	.413	-1.116	
36	2	5.00	12.5	87.5	.496	959	
42	3	7.50	20.0	80.0	.578	802	
48	5	12.50	32.5	67.5	•661	645	
54	3	7.50	40.0	60.0	•744	488	
60	2	5,00	45.0	55.0	. 626	330	
56	0	.00	45.0	55.0	•909	173	
72	3	7,50	52.5	47.5	.991	016	
78	3	7.50	60.0	40.0	1.074	.141	
84	٥	.00	60.0	40.0	1.157	.298	
90	4	10.00	70.0	30.0	1.239	.455	
95	3	7.50	77.5	22.5	1.322	.612	
102	5	12.50	90.0	10.0	1.404	•769	

68

.

108	2	5.00	95.0	5.0	1.487	• 926
114	0	.00	95.0	5.0	1.570	1.083
120	0	.00	95.0	5.0	1.652	1.240
125	Ó	.00	95.0	5.0	1.735	1.397
132	Ō	.00	95.0	5.0	1.818	1.554
138	1	2.50	97.5	2.5	1.900	1.711
144	0	.00	97.5	2.5	1.983	1.868
150	Ō	.00	97.5	2.5	2.065	2.025
156	Ó	.00	97.5	2.5	2.148	2.183
162	Ō	.00	97.5	2.5	2.231	2.340
168	Ō	.00	97.5	2.5	2.313	2 497
174	Ď	.00	97.5	2.5	2.396	2 654
180	Ó	.00	97.5	2.5	2.478	2.811
186	Ó	.00	97.5	2.5	2.561	2.968
192	D	.00	97.5	2.5	2.644	3.125
198	0	.00	97.5	2.5	2.726	3.282
204	D	.00	97.5	2.5	2.809	3.439
210	0	.00	97.5	2.5	2.892	3.596
215	0	.00	97.5	2.5	2.974	3.753
222	0	.00	97.5	2.5	3.057	3.910
228	Ő	.00	97.5	2.5	3.139	4.067
234	0	.00	97.5	2.5	3.222	4.224
240	Ó	.00	97.5	2.5	3.305.	4.381
246	1	2,50	100.0	.0	3.387	4.539
					5 + 1	

REMAINING FREQUENCIES ARE ALL ZERO

TABLE NUMBER 50

.

.

5

ENTRIES IN TABLE 177	MEAN ARGUMENT 77.559		STANDARD	DEVIATION 45+673	NON-WEIGHTED	
UPPER	OBSERVED	PERCENT	CUMULATIVE	CUMULATIVE	MULTIPLE	DEVIATION
LIMIT	FREQUENCY	OF TOTAL	PERCENTAGE	REMAINDER	OF MEAN	FROM MEAN
12	1	• 56	• 6	99.4	•155	-1.435
24	14	7.91	8.5	91.5	• 309	-1.173
36	19	10.73	19.2	80.8	.464	+.910
, 48	17	9.60	28.8	71.2	•619	-+647
60	30	16.95	45.8	54.2	• 7 74	384
72	8	4.52	50.3	49.7	• 928	122
84 *	15	8.47	56.8	41+2	1.083	+141
96	19	10.73	69.5	30.5	1.238	.404
108	18	10,17	79.7	20.3	1.392	•666
120	15	8.47	88.1	11.9	1.547	•929
132	5	2.82	91.0	9.0	1.702	1+192
144	4	2.26	93.2	6.8	1.857	1+455
155	4	2,25	95.5	4.5	2.011	1.717
168	1	.56	96.0	4.0	2.166	1+980
180	1	.56	96.6	3.4	2.321	2.243
192	0	.00	96.6	3.4	2.476	2.506
204	3	1.69	98.3	1.7	2.630	2.768
216	0	.00	98.3	1.7	2.785	3,031
228	0	.00	98.3	1.7	2.940	3.294
240	Ď	.00	98.3	1.7	3.094	3.557
252	2	1.13	99.4	•6	3.249	3.819
264	ī	• 56	100.0	•0	3.404	4.082

REMAINING FREQUENCIES ARE ALL ZERO

TABLE NUMBER 51

ENTRIES IN TABLE 7	MEAN	MEAN ARGUMENT STANDARD 64+143		DEVIATION 18.497	NON-WEIGHTED		
UPPER LIMIT	OBSERVED FREQUENCY	PERCENT OF TOTAL	CUMULATIVE. PERCENTAGE	CUMULATIVE REMAINDER	MULTIPLE OF MEAN	DEVIATION FROM MEAN	
28	0	.00	.0	100.0	+437	-1.954	
34	0	.00	.0	100.0	•530	-1.630	
40	1	14.29	14.3	85.7	.624	-1.305	
46	1	14.29	28.6	71.4	•717	981	
52	0	.00	28.6	71.4	-811	-,656	
58	1	14.29	42.9	57.1	.904	-,332	
64	1	14.29	57.1	42.9	.999	008	
70	ī	14.29	71.4	28.6	1.091	.317	
76	Ō	.00	71.4	28.6	1.185	641	
82	Ŏ	.00	71.4	28.6	1.278	965	
88	1	14.29	85.7	14.3	1.372	1.290	
94	ĩ	14.29	100.0	-0	1.465	1.614	
MATURNO COCAUSIAN	⁻						

REMAINING FREQUENCIES ARE ALL ZERO

TABLE NUMBER 52

ENTRIES IN TABLE 49	MEAN ARGUMENT 65.306		STANDARD	DEVIATION 26.249	NON-WEIGHTED		
UPPER	OBSERVED	PERCENT	CUMULATIVE	CUMULATIVE	MULTIPLE	DEVIATION	
LIMIT	FREQUENCY	OF TOTAL	PERCENTAGE	REMAINDER	OF MEAN	FROM MEAN	
0	0	.00	•0	100.0	•000	-2-488	
12	0	•00	•0	100.0	•184	-2.031	
24	0	•00	.0	100.0	• 368	-1.574	
36	4	8.16	8.2	91.8	•551	-1.116	
48	9	18.37	26.5	73.5	.735	659	
60	11	22.45	49.0	51.0	•919	202	
72	9	18.37	67.3	32.7	1.103	•255	
84	8	16.33	83.7	16.3	1+286	.712	
96	3	6.12	89.8	10.2	1+470	1.169	
108	3	6.12	95.9	4-1	1.654	1.626	
120	0	•00	95.9	4.1	1.638	2.084	
132	0	.00	95.9	4.1	2.021	2,541	
144	1	2.04	98.0	2.0	2.205	2.998	
156	0	.00	98.0	2+0	2.389	3.455	
168	1	2.04	100.0	•0	2.573	3,912	
FUATNING EDEALENCE	C						

REMAINING FREQUENCIES ARE ALL ZERO

TABLE NUMBER 53

ENTRIES IN TABLE	MEAN ARGUMENT	STANDARD DEVIATION		
22	125+591	45+697	NON-WEIGHTED	

UPPER (LIMIT FF 36 54 72 90 108 126 144 162 180 198	DBSERVED REQUENCY 0 1 4 6 3 1 2 1 1	PERCENT OF TOTAL .00 4.55 18.18 27.27 13.64 4.55 9.09 4.55 4.55	CUMULATIVE PERCENTAGE 0 4.5 22.7 50.0 63.6 68.2 77.3 81.8 86.4	CUMULATIVE REMAINDER 100.0 95.5 77.3 50.0 36.4 31.8 22.7 18.2	MULTIPLE OF MEAN .287 .430 .573 .717 .860 1.003 1.147 1.290 1.433	DEVIATION FROM MEAN -1.961 -1.967 -1.173 779 385 .009 .403 .797 1.191
180 198 216 234 REMAINING FREQUENCIES A	1 1 2 1 Re All Zero	4.55 4.55 9.09 4.55	81.8 86.4 95.5 100.0	18.2 13.6 4.5 +0	1.433 1.577 1.720 1.863	1.191 1.585 1.978 2.372

ENTRIES IN TABLE 5	MEAN A 182	RGUMENT	STANDARD	DEVIATION 80+306	NON-WEIGHTED	
UPPER LIMIT 72 108 144 180 216 252 288 324 REMAINING FREQUENCIES	OBSERVED FREQUENCY 0 1 2 1 0 0 0 1 1 1 5 ARE ALL ZERO	PERCENT DF TOTAL .00 16.67 33.33 16.67 .00 .00 16.67 16.67	CUMULATIVE PERCENTAGE 0 16.7 50.0 66.7 66.7 66.7 83.3 100.0	CUMULATIVE REMAINDER 100.0 83.3 50.0 33.3 33.3 33.3 16.7 .0	MULTIPLE OF MEAN •396 •593 •791 •989 1•187 1•385 1•582 1•780	DEVIATION FROM MEAN -1.370 921 473 025 .423 .872 1.320 1.768

TABLE	NUMBER	55

ENTRIES IN TABLE 54	MEAN A 134	RGUMENT	STANDARD DI 6	EVIATION 9.014	NON-WEIGHTED	
UPPER LIMIT 72 108 144 180 216 252 268 324 REMAINING FREQUENCIES	OBSERVED FREQUENCY 12 12 13 8 2 1 1 2 5 ARE ALL ZERO	PERCENT OF TOTAL 22.22 7.41 24.07 14.81 3.70 1.85 3.70	CUMULATIVE PERCENTAGE 22.2 44.4 51.9 75.9 90.7 94.4 96.3 100.0	CUMULATIVE REMAINDER 77.8 55.6 48.1 9.3 5.6 3.7 .0	MULTIPLE OF MEAN .535 .803 1.071 1.338 1.606 1.874 2.142 2.409	DEVIATION FROM MEAN 905 384 -138 -660 1.181 1.703 2.224 2.746

TABLE NUMBER 56

ENTRIES IN TABLE	MEAN A	RGUMENT	STANDARD D	EVIATION		
4	170	•750	2	7.444	NON-WEIGHTED	
UPPER	OBSERVED	PERCENT	CUMULATIVE	CUMULATIVE	MULTIPLE	DEVIATION
LINIT	FREQUENCY	OF TOTAL	PERCENTAGE	REMAINDER	OF MEAN	FROM MEAN
120	0	•00	•0	100.0	•703	-1.849
156	1	25.00	25.0	75.0	+914	537
192	2	50.00	75.0	25.0	1.124	•774
228	1	25.00	100.0	•0	1.335	2.086
REMAINING FREQUENCIES	S ARE ALL ZERO				-	

ENTRIES	IN TABLE 92	.E MEAN ARGUMENT 148.685		I TABLE MEAN ARGUMENT STANDARD 92 148.685		DEVIATION 79.054	NON-WEIGHTED		
U	PPER	OBSERVED	PERCENT		CUMULATIVE	MULTIPLE	DEVIATION		
L	3411	PACOUCING 1	1 DO	PERCENTAGE	RCMAINDER 08 0		-1.825		
	10	L	1.07	2.9	7047	1272	-1+723		
	40 60		0.10	700	9042 95 0	• J2 J	-1.122		
	79	4 ii	4,35	1441	61.5	1404 ·	-1+122		
	7 E 8 L	т Ц	4.35	22.8	77.2	.565			
	96	5	5.43	28.3	71.7	• 505	- 666		
	108	Ğ	9.78	38.0	62.0	.726	515		
	120	5	5 4 3	43.5	56.5	.907	- 363		
	132	L .	4.15	4 3. 3	52.2	.888	=.211		
	144	1	1 09	49.9	51.1	- 968	059		
	156	i	3.26	52.2	u7.8	1,049	.093		
	168	11	11.96	64.1	35.9	1,130	.244		
	180		5.43	69.6	30.4	1.211	.396		
	192	1	1.09	70.7	29.3	1,291	-548		
	204	ц.	4.35	75.0	25.0	1.372	-700		
	216	7	7.61	82.6	17.4	1.453	.852		
	228	5	5.43	88.0	12.0	1,533	1.003		
	200	1	1.09	89.1	10.9	1.614	1.155		
	252	ī	1.09	90.2	9.8	1.695	1.307		
	264	,	2.17	92.4	7.6	1.776	1.459		
	276	2	2.17	94.6	5.4	1,856	1.610		
	288	n n	.00	94.6	5.4	1,937	1.762		
	300	ñ	.00	94.6	5.4	2.018	1.914		
	312	2	2.17	96.7	3.3	2,098	2.066		
	324	2	2.17	98.9	1.1	2.179	2.218		
	336	ñ	- 00	98.9	1.1	2.260	2.369		
	348	ñ	.00	98.9	1.1	2.341	2.521		
	360	Ď	.00	98.9	1.1	2.421	2.673		
	372	ů	.00	98.9	1.1	2,502	2.825		
	384	ō	.00	98.9	1.1	2.583	2.977		
	396	D	.00	98.9	1.1	2.663	3.128		
	408	Ō	.00	98.9	1.1	2.744	3.280		
	420	Ō	.00	98.9	1.1	2.825	3.432		
÷	432	ő	.00	98.9	1.1	2.905	3.584		
	444	ñ	.00	98.9	1.1	2.986	3.736		
	456	õ	.00	98.9	1.1	3.067	3.887		
	468	i	1.09	100.0	•0	3.148	4.039		

LITERATURE CITED

- 1. J. Norton, <u>Proceedings</u>, <u>Operations Research Symposium</u>, U. S. Army Research Office, Durham, North Carolina, May 1970.
- U. S. Army Combat Developments Command, Intelligence Agency, <u>Com-</u> <u>bat Intelligence Battalion</u> (TT30-7), Fort Holabird, Maryland, August 1970.
- 3. U. S. Army Combat Developments Command, Intelligence Agency, <u>Func-</u> <u>tional Area Description -- Enemy Situation</u>, Fort Holabird, Maryland, August 1970.
- 4. Headquarters, Department of the Army, <u>Combat Intelligence</u> (FM 30-5), Washington, D. C., 1967.
- 5. A. M. Lee, <u>Applied Queueing Theory</u>, Macmillan and Company, Limited, London, 1968.
- 6. E. Ruiz-Pala, C. Avila-Beloso, W. W. Hines, <u>Waiting Line Models</u>, Reinhold Publishing Company, New York, 1967.
- R. W. Conway, B. M. Johnson, W. L. Maxwell, "Some Problems of Digital Systems Simulation," <u>Management Science</u>, Vol. VI, No. 1, 1959, 92-110.
- 8. J. W. Schmidt, R. E. Taylor, <u>Simulation and Analysis of Industrial</u> Systems, Richard F. Irwin, Inc., Homewood, Illinois, 1970.
- 9. N. R. Baker, "Models and Model Building," class handout for IE 603, Georgia Institute of Technology, July 1969.
- R. C. Meier, W. T. Newell, H. L. Pazer, <u>Simulations in Business</u> and Economics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1969.
- 11. R. W. Conway, "Some Tactical Problems in Digital Simulations," Management Science, Vol. X, No. 1, 1963, 47-61.
- 12. T. H. Naylor, et al., <u>Computer Simulation Techniques</u>, John Wiley and Sons, Inc., New York, 1966.
- 13. G. S. Fishman, "Problems in the Statistical Analysis of Simulation Experiments," Rand Memorandum 4880-PR, February 1966.

LITERATURE CITED (Continued)

- 14. Univac, <u>General Purpose Systems Simulator-II</u>, Reference Manual, Sperry Rand Corporation, 1963.
- 15. U. S. Army Combat Developments Command, <u>Tactical Reconnaissance</u> and <u>Surveillance - 1975</u> (TARS-75), Headquarters, U. S. Army Combat Developments Command, 1967.
- 16. Defense Documentation Center, <u>Bibliography of Military Related</u> <u>Simulations</u>, <u>Defense Documentation Center Report No. T12207</u>, Alexandria, Virginia, December 1970.
- 17. U. S. Government, Scientific and Technical Aerospace Reports (STAR), U. S. Printing Office, 1963.
- Rand Corporation, <u>Index of Selected Publications of the Rand Cor-</u> poration and <u>Selected Rand Abstracts</u>, Rand Corporation, Santa Monica, California, 1971.
- 19. U. S. Government, U. S. Government Research and Development Reports, U. S. Printing Office, 1946.
- 20. U. S. Army, <u>Human Factors Engineering: Bibliographic Series</u>, U. S. Army Human Engineering Laboratory, Aberdeen, Maryland, 1940.
- 21. University Microfilms, <u>Dissertation Abstracts</u>, Xerox Corporation, Ann Arbor, Michigan, 1966.
- 22. International Literature Digest Service, <u>Operations Research/</u> <u>Management Science</u>, Executive Science Institute, Inc., Whippany, New Jersey, 1964.
- M. A. Hirschberg, <u>Computer Simulation of Communications for Counter-insurgency</u>, Defense Research Corporation, Santa Monica, California, April 1966.
- 24. J. M. Fitzgerald, <u>The Impact of Modern Information Technology on</u> <u>the Structure of Military Organizations at the Tactical Level</u>, <u>Master's Thesis</u>, <u>University of Pennsylvania</u>, <u>Philadelphia</u>, 1969.
- 25. A. L. Buchanan, R. B. Waina, "A General Simulation Model for Information Systems: A Report on a Modeling Concept," RAND Paper 4140, Rand Corporation, Santa Monica, California, 1967.
- 26. J. N. Berrettoni, "Practical Application of the Weibull Distribution," Industrial Quality Control, Vol. 21, No. 2, August 1964.

LITERATURE CITED (Concluded)

- 27. A. H. Bowker, G. J. Lieberman, Engineering Statistics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1959.
- 28. C. R. Hicks, <u>Fundamental Concepts in the Design of Experiments</u>, Holt, Rinehart, and Winston, Inc., Chicago, Illinois, 1964.
- 29. A. H. Urmer, "Performance Degradation Effects of Information Loading," <u>Perception Motor Skills</u>, Vol. 23, 1966, 1117-1120.
- 30. W. C. Howell, "Some Principles for the Design of Decision Systems," Human Performance Center Report, Ohio State University, 1967.