
Integrating Visualization Support Into Distributed

Computing Systems

Brad Topol

John T. Stasko

Graphics, Visualization and Usability Center

College of Computing

Georgia Institute of Technology

Atlanta, GA 30332-0280

Vaidy Sunderam

Department of Math and Computer Science

Emory University

Atlanta, GA, 30322

Technical Report GIT-GVU-94-38

October 1994

Abstract

Visualization and animation tools may become extremely important aids in the understand-

ing, veri�cation, and performance tuning of parallel computations. Presently, however, the

use of visualization has had only a limited use for enhancing parallel computation. We

hypothesize that one of the primary reasons for the limited use of visualization tools in par-

allel program development is the di�culty of acquiring the information necessary to drive

the visual display. Our approach to this impediment focuses on integrating visualization

support directly into a distributed computing system. Central to this integration is the

addition of a logical clock that prevents the timestamps of events from violating causality.

The implementation requires the \piggybacking" of a negligible amount of extra header

information on system messages and the impact on performance is minimal. This results in

a system that produces useful visualizations with no extra e�ort required by the applica-

tions programmer. Also integrated into the distributed system is support which simpli�es

the creation of programmer-de�ned, application-speci�c visualizations, unique to each new

parallel program developed.

1 Introduction

In recent years, parallel and distributed processing have provided e�ective solutions to many

challenging computational problems. Unfortunately, understanding and analyzing the ex-

ecution of concurrent programs is a di�cult task for most computer scientists. A number

of ways to address this problem have been proposed, one being the use of visualization and

animation tools. By illustrating and helping to explain program behavior, visualization

tools have the potential to make an impact in not only the understanding of a parallel

computation, but also in veri�cation and performance tuning. Until now, however, the use

of visualization has had only a limited impact on concurrent program understanding, veri-

�cation, and performance tuning. The systems that have been created are mostly research

prototypes and few have achieved wide usage[7].

Visualization's limited impact is an enigma. It is clear that an appropriate picture or

image can convey the same amount of information as hundreds or thousands of lines of

text[15]. Certainly, computer graphics hardware and software environments have matured

and are now widely available, so they are not culpable. We hypothesize that one of the

primary di�culties limiting the impact of visualization on parallel computation is the di�-

culty of acquiring the information necessary to drive the visualization display. Visualizers

are ready with informative views and animations, but �nding out what to present and when

to present it remains a challenge to them.

Visualization tools rely on trace events, also referred to as annotations, that record the

interesting aspects of a distributed system. These records are interpreted by the visual-

ization tool to produce the graphical presentation. Typically, these annotations contain a

timestamp, an event identi�er, and event speci�c information. Because concurrent systems

are built without a focus on subsequent graphical presentations, software visualizers are

given very little support with regards to trace event pro�ling. This is a major impediment

to the production of meaningful visualizations, but it need not be the case. Support for

visualization, namely event tracing support, need not be an afterthought. Instead, it should

be a vital design issue considered when developing a distributed or parallel system.

This article discusses our approach of integrating visualization support into an experi-

mental heterogeneous parallel computing system. This approach results in a system that

produces useful visualizations with no extra e�ort required on behalf of the applications pro-

grammer. Further, system support is provided that simpli�es the creation of programmer-

de�ned, application-speci�c visualizations which are unique to each new program developed.

2 Design Goals

The primary goal of this project is to integrate as much direct system support into a

distributed computing system as possible in order to facilitate visualization of parallel com-

putation. Typically, programmers must hand annotate their code with print statements to

produce an event log for visualization. This activity is error prone and time-consuming;

it requires programmer e�ort that would better be directed at evaluating program perfor-

mance. Hand annotation also may not be able to produce an event trace of su�cient detail,

thus further compounding the issue.

Another problem with this approach involves trace events that are timestamped by

local clocks that are not accurately synchronized, thus leading to misleading visualizations.

For example, we might discover a message receipt with a timestamp whose clock value is

2

earlier than the timestamp clock value of the message send. Visualizations that use trace

data �lled with causality violations like this clearly will be misleading. Creative techniques

used during postprocessing such as those used in [2] can produce makeshift solutions to

some impediments that visualizers face. Nonetheless, this is yet another example of how

visualizers must expend excessive e�ort to solve problems that can be avoided with proper

system support. To address this problem, we have developed the following requirements for

facilitating production of visualizations of concurrent systems:

� Minimal E�ort|Currently, too much extra e�ort is required to integrate visualiza-

tion support into a parallel system. There are two primary causes of this. First, for a

parallel application to be visualized, it must be annotated to provide information to

\drive" the visualization. One method of supplying annotation is to directly modify a

parallel application. For large applications, the modi�cations can be extensive. Envi-

ronments such as PABLO[11] provide a graphical interface for interactively specifying

annotations, but extra e�ort is still required from the application programmer.

Our approach minimizes the need for annotation by having the distributed system au-

tomatically generate the annotation whenever possible. This is performed by integrat-

ing annotation support directly into the distributed system primitives. For example,

the Send primitive is cognizant of what type of message is being sent, to whom the

message is being sent, and so on. Therefore, the routine produces the trace event in-

formation necessary for visualization automatically, instead of the parallel application

being annotated by hand. A similar approach is used by the ParaGraph[5] system, as

its information is derived from PICL[4], a portable instrumentation communication

interface. Our approach goes one step further, however. By truly integrating into the

system itself, all system primitives can provide automatic annotation generation. This

is in contrast to PICL, which can only provide annotations for the generic communica-

tion primitives that it supports. For example, some systems may have system speci�c

routines such as a receive that utilizes timeouts or special synchronization constructs

that simply aren't supported by a generic portable communications library. These

type of events would require some other method of annotation such as annotating by

hand. Hand annotation in our system is now only necessary for the visualization of

application-speci�c information, and new system contructs are provided to make this

as easy and straightforward as possible. This aspect will be more thoroughly discussed

later.

The second main reason why extra e�ort is required is that the visualization itself often

needs to be created by the programmer. If the amount of time and e�ort required to

produce a visualization is too extensive, developers simply will not use visualizations.

It is therefore necessary to minimize this e�ort as much as possible. We address this

problem by including many default, general purpose views with the system. Further,

the e�ort to create special application-speci�c visualizations is minimized via the

support of an object-oriented parallel visualization design toolkit.

� Flexibility in Visualization Support|A system should only provide support for

visualization on demand. Further, the application programmer should be able to

decide at execution time whether or not visualization support will be activated. This

aspect, a result of a system integrated approach, is more desirable than the alternative

of having to relink a program to a special library whenever visualization is desired.

3

This is the approach we adopt for visualization support. Visualization options are

available directly from the command line prompt of the distributed system. Therefore,

the choice of visualization support can be deferred until application execution.

� Minimal Perturbation|Adding visualization support invariably will impact the

performance of the underlying system being examined. It is unrealistic to expect to

produce visualizations without incurring some performance degradation of the under-

lying program, but e�orts should be made to minimize this perturbation as much as

possible. By integrating the visualization support directly into the system, we remove

extra overhead that would have occurred had support been implemented at the user

level.

� Timing Support|It is advantageous for the program monitor to provide temporal

information about the execution. Ideally, each program event would be timestamped

from a perfectly synchronized real-time global clock. This is clearly unrealistic. What

is desirable, however, is a logical clock as described in [9] that provides causality

ordered timestamps needed to produce accurate visualizations. Also desirable is the

addition of a real-time local clock timestamp to provide information for performance

visualization. Our approach provides both these alternatives.

These requirements have driven our program visualization support within a recently

developed distributed system. The result is a system that automatically produces several

graphical views, and is easily augmentable with custom views created by an applications

programmer with little or no computer graphics background. In the next section, we de-

scribe our framework in more detail.

3 System Foundations

We chose to provide visualization support and graphical views of programs written in Conch,

an experimental system for heterogeneous parallel computing. Our visualization framework

used POLKA, an object-oriented software visualization methodology and library.

3.1 Distributed Computing System|Conch

The Conch system[3] is an experimental heterogeneous network computing system. Like its

predecessors, Conch is a framework for parallel distributed computing, allowing a network

of Unix workstations to function as a single parallel computer. Conch provides features

such as custom con�gurable machine topologies, fault tolerance, and a shared system-user

context that allows the system to execute with less system overhead. The Conch system

is based on two popular and established high performance concurrent computing systems.

The �rst of these, PVM[13], is well regarded as a leading system for writing distributed

and parallel applications. PVM is in widespread use and is considered by many to be the

de facto standard for network computing. The second in
uence on the development of

Conch is EcliPSe[14], a system used mainly for high performance concurrent simulation.

The following is a brief introduction to the facilities provided by Conch.

3.1.1 Virtual Machine Con�guration

One of the �rst choices a Conch application programmer must make is the type of virtual

machine to be con�gured. This is accomplished by means of a host �le that supplies the

4

Conch system with the necessary information to produce the virtual machine. Figure 1

shows an example host �le. In it, the programmer has speci�ed a tree topology whose

left child is a mesh topology and whose right child is a ring topology. The machines are

given numeric identi�cation numbers ranging from 0 to n� 1 where n is the total number

of machines listed. Communication such as message passing is implemented by sending a

message to a speci�ed identi�cation number, (hereafter referred to as the node's c procid).

On labss1, the program /home/topol/compute will be instantiated. On labss2 through

labss5, however, a di�erent �le, /home/schmidt/mult, executes. Further, the machines

that utilize the ring subtopology utilize the binary /vss/particle. Finally, a front end is

connected to labss1 because it is the �rst machine listed in the host �le. The application

user can also choose what program should be run on the front end. The front end is given

a c procid of n. Figure 2 is a graphical illustration of such a host �le.

#TREE

labss1 file=/home/topol/compute /*root node*/

-#MESH

labss2 file=/home/schmidt/mult

labss3 file=/home/schmidt/mult

labss4 file=/home/schmidt/mult

labss5 file=/home/schmidt/mult

#END

-#RING

nirvana file=/home/vss/particle nprocs=4

ibms1.fsu.scri.edu file=/vss/particle

ibms2.fsu.scri.edu file=/vss/particle

ibms3.fsu.scri.edu file=/vss/particle

ibms4.fsu.scri.edu file=/vss/particle

#END

#END

Figure 1: Example of a typical Conch host �le

3.1.2 Application Skeleton

Figure 3 illustrates code for a straightforward Conch program. The �rst Conch library

routine in any Conch program is c setup(). Upon calling c setup, the host �le is read, and

the system instantiates processes of the speci�ed programs on the speci�ed machines. After

all nodes �nish their initial startup responsibilities, each node is free to begin executing

its code as determined by its c procid. Typically, as shown in Figure 3, the front end,

denoted by c feproc, sends data to the other nodes. The subordinate nodes receive this

data and perform their necessary computations, usually determined by their c procid. After

performing such computations, the subordinate nodes send their results back to the front

end. The front end typically combines and prints these results. At this point, all nodes

perform a c exit() and the Conch system cleanly shuts down.

Because the Conch system is in �nal development, it is still possible for visualization to

be considered a design issue. The result is a system with substantial internal support for

visualization; support that simply cannot be duplicated by systems in which visualization

5

Labss1 c_procid = 0

Labss2 c_procid=1

/home/topol/compute

 labss3 c_procid=2

Labss4 c_procid=3 Labss5 c_procid=4

nirvana c_procid=5

/home/vss/particle

/home/vss/particle

/home/vss/particle

ibms1 c_procid=6ibms4 c_procid=9

ibms2 c_procid=7

/home/vss/particle

ibms3 c_procid=8

/home/vss/particle
Denotes TCP

#RING subconfiguration

Front End c_procid = c_feproc

#MESH Subconfiguration

 /home/schmidt/mult/home/schmidt/mult

/home/schmidt/mult /home/schmidt/mult

Figure 2: Graphical Illustration of a typical host �le

is merely an afterthought. Furthermore, since the Conch system will soon become publicly

available, the system support for visualization will not only serve as proof of concept, but

it should bene�t future users of the system in real parallel program development.

3.2 Visualization System|POLKA

The POLKA system is an object-oriented software visualization and animation methodology

that includes high-level graphical object and animation primitives particularly useful for

building animations of concurrent program executions[12]. POLKA provides color, 2-D

animation and is implemented on top of the X Window System and Motif. Individual

windows created with POLKA, called Views, can provide di�erent, unique presentations

of the program being visualized. Each View is composed of a set of routines that are

called Scenes in POLKA. These scenes can be invoked whenever particular program events

occur or are encountered, thus facilitating a mapping from program operations to animation

activities.

For Conch, we have developed a library of default views that are always available.

Also, programmers can develop their own application-speci�c views. POLKA's animation

methodology is high-level; Although a learning curve still exists, programmers with little or

no graphics experience have been able to learn the methodology and develop new animations

quickly.

POLKA is the presentation component of a comprehensive framework we are developing

for visualizing concurrent systems. The framework is called PARADE (PARallel Animation

Development Environment), and its three primary components are

1. gathering information about a program's execution

2. mapping that information to the presentation component

3. the display or presentation component

6

main()

{

...

c_setup(); /*front end starts up*/

... /*all nodes start up*/

if (c_procid == c_feproc) {

...

c_send();

... /*wait for results*/

c_recv(); /*combine and print results*/

else {

c_recv(); /*get problem data*/

...

: :

: :

: User Computation /*do computation*/ :

: :

:.......................................:

c_send(); /*send back results*/

}

c_exit(); /*exit Conch system*/

}

Figure 3: Skeleton code for a straightforward Conch program

The tools we are developing for Conch �t primarily within the information gathering and

information mapping components of PARADE.

4 Monitoring Framework

Monitoring support required for visualization is integrated into Conch via direct modi�ca-

tion of the Conch system routines. This section discusses the modi�cations we have made

to allow for straightforward visualization of the system. It should be emphasized that the

focus of our modi�cations was to support visualizations used for understanding and veri-

�cation of parallel program execution. This includes modi�cations to produce automatic

visualizations for general purpose use and modi�cations to facilitate support for custom,

application-speci�c views. It does not include support for performance visualizations, how-

ever. This aspect will be addressed in future work.

In order to provide automatic support for visualization, the Conch system needed to gen-

erate suitable trace event logging. We used an approach in which each processing element

generates its own trace of events. We modi�ed the Conch communication and synchro-

nization primitives so that they automatically log their events to the proper trace event

�le.

When a Conch program is run, the system prompts the user to specify which system

options are to be utilized. From this prompt, the application programmer has the option

7

of initiating the trace event logging (we call it PARADE logging). This involves setting the

PARADE loglevel, supplying a clock level, and supplying a �lename. Presently, the system

implements logging for all communication and synchronization primitives, but several levels

of logging will be added to support di�erent granularities of trace event information. Two

clock levels are currently supported. These are a logical clock and a real time system

clock. Other hybrid clocking methods will be added as necessary to support future work

such as performance visualization. The �lename supplied by the user is used to create

the group of log �les. Log �les are di�erentiated by appending the processing element's

process identi�er to the user provided �lename. It is also possible to designate all these

command-line parameters by using the CONCHENV environment variable, a Conch feature

more thoroughly discussed in [3].

Once a Conch application has terminated execution, the programmer can use a tool, viz-

trace, we have created that reads the trace �les and produces the visualization. The viztrace

tool provides options that allow a user to de�ne new application event types in addition

to the standard Conch primitive event types. Further, viztrace can be augmented with

application-speci�c POLKA animations that are created by the application programmer.

The following are more detailed descriptions of some of the more interesting and chal-

lenging Conch system modi�cations that were necessary for meeting the requirements posed

earlier.

4.1 Logical Clock

One fundamental system enhancement made to Conch was the addition of a Lamport logical

clock capability as described in [9]. This is a well known method for providing timestamps

that preserve causality in a distributed system, and we used it to add logical clock times-

tamps to the Conch event traces. As alluded to earlier and discussed thoroughly in [2], if

various system clocks are used for timestamping, lack of synchronization in the clocks will

result in obvious causality violations. By augmenting the system with a logical clock and

timestamping trace events with it, the logging can now be used to support visualizations

that more accurately depict the execution of the parallel computation. The logical times-

tamps guarantee that the visualization is representative of a plausible ordering of events,

but other plausible orderings may exist also. In development, as described in [8], is a tool

that \choreographs" the visualization of many of the di�erent possible plausible orderings.

The logical clock is a prime example of the bene�ts of our system integrated approach;

implementing a logical clock in the system was relatively straightforward. This di�ers sub-

stantially from the approach of having an external monitoring tool attempt to implement

the logical clock, which can be problematic and adds computing overhead better directed

to other tasks. For example, Xab [2], a monitoring tool for PVM programs, implements a

similar logical clock in both its online monitoring and postprocessing modes. In the online

monitoring mode, Xab logical timestamping support for the PVM barrier synchronization

primitive could not be done e�ciently without having the PVM developers modify the sys-

tem directly. For o�ine post-processing, Xab was able to provide logical timestamping of

all PVM primitives by creating a directed acyclic graph of the event trace and traversing

this graph in topological order. The complexity of the algorithm used is O(E � P) in the

worst case, where E is the number of events and P is the number of processors. With the

current trend in parallel processing toward using many processors that produce hundreds

of thousands of trace events, having the monitoring tool solely responsible for providing

causality preserving (i.e. logical) timestamps requires extensive overhead. When visualiza-

8

tion depends on such extensive overhead, its bene�ts may not outweigh the cost required to

provide it. By considering visualization as a system design issue, and therefore having the

system responsible for providing a logical timestamp, this extensive overhead is removed,

and along with it, a serious impediment to providing visualization.

4.2 Communication Modi�cations

The primary modi�cation we made to the message passing primitives was the \piggyback-

ing" of the Lamport clock value onto system messages. One possible approach to this

problem was to place all responsibility on the user and require that the application must

not only correctly implement the clock, but augment messages with a clock value also. If the

application had already been written, this would have necessitated a large number of mod-

i�cations, and may even have required debugging. Clearly, if such extensive modi�cations

are necessary to produce visualizations, they will not happen.

This does not have to be the case, however. By modifying the Conch system Send and

Receive routines and the internal message headers, we were able to quickly add automatic

support for our needed logical clock. This necessitated increasing the internal message

headers by only four bytes, and the system performance penalty for this extra feature is

negligible. We also added the ability to turn this logical clocking on/o� at the standard

Conch system prompt. When the user does not require the logical clock, he or she simply

disables it and no extra performance overhead is incurred. That is, the logical clock value

is not used nor is it placed in the internal message headers. This is a recurring bene�t of all

the modi�cations used in our system integrated approach: a user decides at execution time

whether or not the visualization support is active. This is a clear advantage over relinking to

special libraries or adding extra header �les as necessary in systems such as Xab[1]. Every

e�ort is made to insure that support needed for visualization does not hinder or delay the

application programmer. It simply should be there on demand.

4.3 Synchronization Modi�cations

The Conch system provides common synchronization primitives such as barriers, Ada style

rendezvous, and the wait-event construct. Each of these system primitives are implemented

using Conch's internal message passing primitives. Again, to produce a correctly ordered

visualization, each process must log when they enter and when they leave a synchronization

construct using timestamps that do not violate causality. This can be done by utilizing

Lamport's timestamping techniques. All that is required is the ability to compare the var-

ious local clocks of processes involved in the synchronization construct, and to set them all

with a clock value that is slightly greater than the largest local clock value. In executing

the synchronization primitives in the Conch system, empty messages are used to provide

the necessary synchronization. The comparison of clock values is performed by \piggyback-

ing" clock values onto these empty messages. Again, the penalty for providing the needed

information is an extra four bytes per message for the processes clock value. Like our other

event logging methods, this penalty is only incurred should the user choose the visualization

feature from the system prompt.

4.4 Custom Annotation Support

To construct application-speci�c animations of programs (take for example one that shows

the particles as they bounce around in a particle chamber simulation) we need more moni-

9

toring information than is available via standard Conch system primitives. In the particle

chamber example, for instance, we need particle-to-wall and particle-to-particle collision

events. Consequently, we added support for the program annotation needed for custom

application-speci�c visualizations. The addition of the c parade log() routine to Conch al-

lows the user to augment the trace �les with application-speci�c data, in a format similar

to standard printf(). This data may take the form of integers, doubles or strings. The

data is logged and prepended with a logical timestamp and the process identi�er. The

user may now add new POLKA routines that support these new trace events and the data

associated with them. This unfortunately involves the necessary step of having to augment

the application code with these annotations. The annotations do not have to be repeatedly

added and removed, however, because no action is executed unless visualization logging

support is requested from the Conch system prompt just as for the other Conch routines.

4.5 Trace Logging Granularity Selection

Another feature that has been implemented, though not yet fully exploited, is the ability

to select the granularity of the type of visualization trace events that are logged. Currently,

the user is allowed to enter a visualization loglevel. Di�erent levels may refer to whether

only communication primitives are logged or whether only user annotations are logged or

some combination thereof. We expect to implement the di�erent types of trace �le �ltering

once we have more experience with the way current tracing is utilized.

5 Conch Graphical Views

Figures 4, 5, and 6 illustrate our general purpose views for the Conch system. These views

are our initial e�ort; we are currently in the process of constructing more views to fully

visualize every aspect of the Conch system. Also, feedback gathered from users of the views

will be utilized to modify and improve their content.

At the top of Figure 4 is the standard POLKA control panel. This window allows the

user to adjust the speed of the visualization, pause it, or step through it. The middle view

is the Conch history view. This scrolling view maintains a history of messages that have

been sent or received. The Y-axis of this view is labeled with Lamport clock values with

time proceeding from bottom to top. The X-axis is labeled with process identi�ers. Squares

that are associated with message sends are �lled in with dark colors. Lighter colors of the

same hue �ll squares that are associated with the corresponding message receives. Message

size is encoded by �lling squares with various amounts of color. This can be deciphered by

using the message size view, shown to the left of the history view in Figure 4. It depicts the

current scale of color �ll for various message sizes. Back in the history view, the message

type is placed in the lower center of each square. The number in the top center of each

square can represent two di�erent items of information. If the square represents a message

send, then this number denotes the process identi�er to whom the message is sent. In

squares associated with message receives, this number depicts the process identi�er from

which the message was received.

The bottom view of Figure 4 is the Conch global view. In it, each process has an

associated oval whose color changes as the status of the process changes. A color code is

used to distinguish the various states that a process is in during system execution.

The top view of Figure 5 is the Conch machine information view. The �rst column

of this view contains system process identi�ers. The second column contains the machine

10

Figure 4: History and global views.

11

Figure 5: Message passing and machine information views.

12

Figure 6: Conch Lamport view.

13

type upon which each process is executing. The host name of each machine is located in

the third column. The fourth column displays the name of the binary that the process is

executing.

The bottom view of Figure 5 is the message passing view. All the processes are laid out

around the outside circle. Messages are represented as circles that smoothly move into the

center of the ring of processes when sent. When a process receives a message, the message

moves from its position in the center of the ring to the process. The color of the message is

the same color as used in the history view. Further, the radius of the circles representing

messages is proportional to message size. Messages that are never delivered conspicuously

remain in the center. Also, the smooth animation of message tra�c helps portray actions

such as message broadcasts.

Figure 6 is a snapshot of our Lamport view. This view is a more complex version of

a Feynman diagram. In this view, the Y-axis is labeled with process identi�ers and the

X-axis is labeled with Lamport clock values. When a message is sent, a circle appears

at the appropriate logical time coordinate. Similar to the message passing view, varying

circle radii are used to denote message size and the color of the circle is the same as

that used in the history view. When a message is delivered, an arrow \grows" from the

coordinate of where the message was sent to the correct Lamport delivery time on the

receiver's timeline. Simultaneously, the circle representing the message moves along this

path and then disappears. This view is similar to the history view in the information it

provides, but is very useful when trying to distinguish communication patterns.

It is worth noting that the snapshots provided do not do justice to the animations

provided by the views. Our views provide concurrent animation, i.e. events that happen

concurrently are visualized concurrently. We feel that views which only portray a serializa-

tion of a concurrent program execution fail to convey critical information to the viewer.

6 Related Work

A fairly substantial amount of work has been done in the visualization of parallel

programs[7]. The ParaGraph[5] system, perhaps the best know application of visualization

to parallel programming, provides general purpose visualization support for performance

analysis and tuning. ParaGraph utilizes the PICL[4] trace �le format. In order to use Para-

Graph, a parallel program must use the PICL communication facilities, or emulate their

trace format. This implies that a user may only visualize information that exists in the

PICL trace �les. We believe our system to be more extensible, as the user may add appli-

cation speci�c trace events. The user may not only produce new visualizations, but may

also visualize new information that did not exist in standard trace events. Further, with

our system integrated approach, we are in a strategic position to develop system-speci�c

visualizations. As systems become more complex, these can be crucial to discerning what

is happening in the distributed system.

The Pablo[11] performance environment also provides visualization support for per-

formance analysis and tuning. Pablo primarily derives its event tracing by instrumenting

source code. A graphical interface is provided for the user to specify instrumentation points.

Pablo provides a data analysis environment for reducing, analyzing, and presenting perfor-

mance data, and is portable to various massively parallel systems.

ChaosMON[6] provides language support that allows for an easy mapping of performance

information to user built display objects. This approach is similar to our notion of providing

14

support for application-speci�c views. Both allow the user to decide what and how things

are visualized. ChaosMON requires signi�cantly more programmer involvement to utilize

the views, however.

Xab[2] provides support for program understanding and debugging. Xab monitors PVM

applications by providing macros for the standard PVM library routines. The macros

generate trace information, and then call the normal PVM functions. Xab is a PVM

program itself, that derives its event messages from its macros and not typically from PVM.

Our approach di�ers from Xab's as we have integrated all our necessary support directly

into the distributed system. This allows us to cleanly provide novel features such as using

logical event timestamping and the choice of monitoring support options at execution time.

Turner et al [16] also utilize logical clocks to visualize parallel programs. Their approach

is similar to Xab's in that an external monitoring process is responsible for implementing

logical clocks for all processes. Again, our approach di�ers as there is no need for a central-

ized monitor that all nodes must interact with. Instead, all processes automatically manage

their own logical clocks.

Another system that has an approach similar to ours is pC++[10]. The pC++ system is

a language extension to C++ coupled with a runtime system that provides a framework for

data-parallel computing. pC++ provides substantial integrated support for event tracing,

and pC++ system speci�c analysis and visualization tools are under development.

7 Conclusion

Visualization of parallel programs has the potential to make an impact in the understand-

ing, veri�cation, and performance tuning of parallel programs. Unfortunately, impediments

exist to producing useful visualizations, but many can be removed with direct visualization

support from a distributed system. We have augmented a recently developed distributed

system, Conch, to produce tracing information for driving general purpose, automatic visu-

alizations and support to facilitate development of custom application visualizations. Our

approach has shown the viability of integrating visualization support into a distributed

system with a minimal impact on performance.

Currently, we are focused on adding further general purpose visualizations and anima-

tions, and complete integration into all aspects into the Conch system. Also, we are working

on system integrated support for performance visualization and system support for on-line

visualizations.

References

[1] Adam Beguelin, Jack Dongarra, Al Geist, and Vaidy Sunderam. Visualization and

debugging in a heterogeneous environment. Computer, 26(6):88{95, June 1993.

[2] Adam Beguelin and Erik Seligman. Causality-preserving timestamps in distributed

programs. Technical Report CMU-CS-93-167, Carnegie Mellon University, Pittsburgh,

PA, June 1993.

[3] Doug Bowman, Adam Ferrari, Melisa Kelley, Brian Schmidt, Brad Topol, and Vaidy

Sunderam. The Conch network concurrent programming system. Technical report,

Emory University, Atlanta, GA, January 1994.

15

[4] G.A. Geist et al. PICL:A Portable Instrumented Communication Library, C reference

manual. Technical Report ORNL/TM-11130, Oak Ridge National Lab., Oak Ridge,

Tenn., 1990.

[5] Michael T. Heath and Jennifer A. Etheridge. Visualizing the performance of parallel

programs. IEEE Software, 8(5):29 {39, September 1991.

[6] Carol Kilpatrick and Karsten Schwan. ChaosMON{application-speci�c monitoring and

display of performance information for parallel and distributed systems. SIGPLAN

Notices, 26(12):57{67, December 1991. (Proceedings of the ACM/ONR '91 Workshop

on Parallel and Distributed Debugging).

[7] Eileen Kraemer and John T. Stasko. The visualization of parallel systems: An overview.

Journal of Parallel and Distributed Computing, 18(2):105{117, June 1993.

[8] Eileen Kraemer and John T. Stasko. Toward
exible control of the temporal mapping

from concurrent program events to animations. In Proceedings of the 8th International

Parallel Processing Symposium (IPPS '94), pages 902{908, Cancun, Mexico, April

1994.

[9] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558{565, July 1978.

[10] A. Malony, B. Mohr, P. Beckman, D. Gannon, S. Yang, and Bodin F. Performance

analysis of pC++: A portable data-parallel programming system for scalable parallel

computers. In Proceedings of the 8th International Parallel Processing Symposium

(IPPS '94), pages 75{84, Cancun, Mexico, April 1994.

[11] Daniel A. Reed, Ruth A. Aydt, Tara M. Madhyastha, Roger J. Noe, Kieth A. Shields,

and Bradley W. Schwartz. An overview of the Pablo performance analysis environment.

Technical report, University of Illinois, Urbana, Illinois 61801, November 1992.

[12] John T. Stasko and Eileen Kraemer. A methodology for building application-speci�c

visualizations of parallel programs. Journal of Parallel and Distributed Computing,

18(2):258{264, June 1993.

[13] V.S. Sunderam. PVM: A framework for parallel distributed computing. Concurrency:

Practice & Experience, 2(4):315{339, December 1990.

[14] V.S. Sunderam and Vernon J. Rego. EcliPSe: A system for high performance concur-

rent simulation. Software: Practice & Experience, 21(11):1289{1219, November 1991.

[15] Edward R. Tufte. Envisioning Information. Graphics Press, Cheshire, CT, 1990.

[16] S.J. Turner and Cai W. The `logical clocks' approach to the visualization of paral-

lel programs. In G. Kotsis and G. Haring, editors, Performance Measurement and

Visualization of Parallel Programs, pages 45{66. Elsevier, 1993.

16

