
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Performance Verification for Behavior-based Robot

Missions
*

D. Lyons
1
, R. Arkin

2
, S. Jiang

2
, T-L. Liu

1
, P. Nirmal

1
, J. Deeb

2

1Fordham University, Bronx NY, USA
2Georgia Institute of Technology, Atlanta GA, USA

Abstract. Certain robot missions need to perform predictably in a physical en-

vironment that may only be poorly characterized in advance. This requirement

raises many issues for existing approaches to software verification. An approach

based on behavior-based controllers in a process-algebra framework is proposed

by Lyons et al [15] to side-step state combinatorics. In this paper we show that

this approach can be used to generate a Dynamic Bayesian Network for the

problem, and that verification is reduced to a filtering problem for this network.

We present validation results for the verification of a multiple waypoint robot

mission using this approach.

1 Introduction

In research being conducted for the Defense Threat Reduction Agency (DTRA),
we are concerned with missions that may only have a single opportunity for success-
ful completion with serious consequences if the mission is not completed properly. In
particular we are investigating missions for Counter-Weapons of Mass Destruction
(C-WMD) operations, which require discovery of a WMD within a structure and then
either neutralizing it or reporting its location and existence to the command authority.
Typical scenarios consist of situations where the environment may be poorly charac-
terized in advance in terms of spatial layout, and often have time-critical performance
requirements. It is our goal to provide reliable performance guarantees for whether or
not the mission as specified may be successfully completed under these circumstanc-
es, and towards that end we have developed a set of specialized software tools to pro-
vide guidance to an operator/commander prior to deployment.

In our research, behavior-based robot missions are designed and carried out using
the Georgia Tech MissionLab [17- 19] toolkit. The mission designer specifies:

1. A performance guarantee that she wishes to verify the mission against (e.g., that
the robot traverses a set of waypoints within a certain time to a given probability
of success, or that it locates a specific target within a certain time to a certain
probability of success); and,

2. A partial description of the environment in which the mission will be carried out.

In prior work [2,13-16] we have introduced a process algebra approach to the repre-
sentation and analysis of robot programs and robot environments. In [15] we intro-

* This research is supported by the Defense Threat Reduction Agency, Basic Research Award

#HDTRA1-11-1-0038.

duced an algorithm to extract periodic behavior, in the form of a set of recurrent flow
functions, from a set of concurrent, connected processes that represent a behavior-
based robot program and its environment. The effect of motion and sensor uncertainty
is crucial in real-world robotics applications. In this paper, we address the problem of
how flow-functions that include random variables can be extracted from process net-
works. We show that a flow function can be mapped to an equivalent Bayesian Net-
work, and that the problem of determining whether a mission will achieve its perfor-
mance guarantee can be reduced to the filtering problem for a Dynamic Bayesian
Network. In prior work [16] we have statistically validated our results using a simple,
single move robot mission. Here we present new results for a multi-waypoint robot
mission and we validate these results to show the predictive power of our method.

2 Prior Work

Automatic verification of software is a very desirable functionality in any applica-
tion where software failure can bring heavy penalties [7]. Examples include embed-
ded software such as airplane and space flight controllers as well as factory control-
lers and medical equipment. While we know that a completely general solution is
ruled out by the undecidability of the halting problem, much research has been con-
ducted on restricted instances of the problem. Model checking has been a very suc-
cessful technique [6, 8] where a program is cast as a state-based transition system in
which states are labeled with sets of propositions, a Kripke system. The instructions in
the program map from one state to a successor state. If the program has n variables,
and if each variable ri can have values from a set val(ri), then the state space of the
program is i val(ri) = val(r0) … val(rn-1). The verification problem in model-
checking is, at its heart, a test of the reachability of a state or set of states from the
start state given the program instructions. The combinatorics involved in i val(ri)
have always been clear, and model-checking approaches are typically divided into
enumerative methods that search this (perhaps huge) graph of states, and symbolic
methods which instead explore (a smaller number of) sets of these states [8].

Automated verification of robot and multirobot software has several characteristics
that set it apart from general purpose software verification. The first is that the robot
program does not execute based on static inputs, but rather interacts with an environ-
ment in an ongoing fashion. This is recognized in discrete-event control by consider-
ing the system as a concurrent composition of the robot program and an environment
(plant) model [21]. From a model-checking perspective, the system states-space is
now increased beyond the program state-space by the product of environment varia-
bles. A second characteristic is that there may be a necessary continuous nature to
some aspects of the environment. Since a state transition approach is necessarily dis-
crete, various hybrid continuous-discrete systems [12] have been introduced to handle
this. Finally, significant uncertainty pertains to the result of robot sensing and motion;
this cannot be ignored or the results are not realistic.

While there have been some successful applications of model-checking to discre-
tized versions of the robot programming problem [11], we need to adopt an approach
that produces verification results that will be validated when tested experimentally
with C-WMD robot missions. We expect that a state-based approach will experience
significant combinatorial problems due to the characteristics discussed in the previous
paragraph. So rather than a hybrid state/continuous approach, we have opted to avoid
discussing state at all costs.

In [15] we introduce a process algebra (PA) approach to representing robot pro-
grams and environment models. Karaman et al. [10] also use a PA as a specification
language for multiple UAV missions and develop a polynomial time algorithm that
produces a plan to satisfy the specification. That work, and our previous work in PA
for performance analysis of robot programs [13], leveraged the trace, or history of
events, of a process. In this work, we use a PA that includes I/O port communications
[23]. The advantage of the PA is that it can be used to determine how a process trans-
forms its inputs to produce outputs without reference to states.

We leverage this approach in [15] for a specific kind of robot programming: be-
havior-based robot programming [1]. A behavior-based robot interacting with its en-
vironment will respond to a specific set of environmental percepts as programmed by
its behaviors. Once a precept is responded to, the robot may return to this behavioral
state or move to another that handles a different set of precepts. For the specific case
of a system of environment model and programmed behaviors represented as tail-
recursive process definitions, we proposed a novel interleaving theorem [15] that
allowed us to identify a single composite system period process. This period process
contained all the port to port communications that could happen in the system as part
of the precept-response cycle. In a subsequent step, we showed how the transfor-
mations that occur with these port communications can then be written as a set of
recurrent functions which we called flow-functions since they related the value of
variables in one iteration of the system period to the value in the next iteration. In this
way, we separated the issue of variable values and variable transformations from the
concept, and limitations, of state. The verification problem in this framework is the
solution of this set of recurrent flow functions, and in [15] we proposed to use a pack-
age such as PURRS (Univ. of Palma recurrent equation solver) for this.

Uncertainty plays a major role in real-life robotic performance and needs to be in-
cluded in any useful approach to robot verification. Napp and Klavins [20] introduce
a guarded command language CCL for programming and reasoning about robot pro-
grams and environments. They address uncertainty by adding a concept of rates and
exponential probability distributions to CCL, which allows them to reason about the
robustness of programs. Johnson and Kress-Gazit [9] develop a model-checking algo-
rithm that handled uncertainty based on Discrete Time Markov Chains; however, they
comment on the intractability of their approach for large state spaces.

With the objective of continuing to avoid a state-based approach, we propose here
to augment flow-functions to include random variables, and to map the solution of a
system of flow-functions to a filtering problem for a Dynamic Bayesian Network.
This approach would continue to bypass state combinatorics and would allow the use
of various parametric uncertainty distributions including Mixture of Gaussians [22] to
capture motion and sensor uncertainty.

3 Mission Specification

Dull, dirty, and dangerous missions are considered to be the natural niche for robots,
and these missions have been a major driving force behind the advancement of robot
technology. Over the past decades, we have seen an increasing number of robots
being deployed to accomplish dangerous missions (e.g., disarming IEDs in
Afganistan). Missions in the domains of urban search and rescue (USAR) and counter
weapons of mass destruction (C-WMD) are not only dangerous, but their failures
usually have dire consequences. It is highly desriable then to have the ability to verify

Executable

Operator

MissionLab

Programming

Environment
VIPARS PARS

Models:

Sensor,

Robot,

Environment

Performance

Criteria

the performance of a robot before it is deployed to carry out a mission. However,
verification of robotic missions poses a unique and great challenge that is is different
from traditional software verification – the robot has to work in the real world, and
the real world is inherently unpredictable. For example, robots were deployed during
the World Trade Center rescue response, where the environment had become highly
unstructured and filled with rubble piles [5]. In this paper, we present our ongoing
work [2,15] on a verification framework for performance guarantees for critical
missions where failure is not an option – the robot has to get it right the first time.

Fig. 1. MissionLab robot mission specification toolset with VIPARS verification module

We have built our robot mission verification framework upon MissionLab, a
behavior-based robot programming environment [18]. MissionLab provides a
graphical user interface where robot programs can be constructed as a finite state
automaton (FSA) from a library of primitive behaviors. One of the many unique
features of MissionLab is that it generates hardware-independent executables from
user-constructed FSAs, which allows the desired robot platform to be chosen at run
time. For critical missions where performance guarantees are desirable, we introduced
a verification framework into MissionLab where the missions can be verified before
the executable generation step.

The verification framework is shown in Fig. 1 as an extension to the MissionLab
programming environment. The core of the framework is the process algebra based
verification module, Verification in Process Algebra Robot Schemas (VIPARS) [15].
To initiate the verification of a mission, the robot program is compiled to PARS
(Process Algebra Robot Schemas), the language understood by VIPARS. The robot
operator also needs to provide VIPARS with models of the robot, the sensors it is
equiped with, and the environment it is to operate in, along with the performance
criteria that the mission is required to meet. VIPARS provides the operator with the
performance guarantee for the mission based on how well the provided performance
criteria were met. The verification module effectively forms a feedback design loop,

where the operator can iteratively refine the robot program based on the information
provided by VIPARS (such as e.g., time criterion is not met).

Fig. 2. Building layout with waypoints labeled in red

3.1 Mission Design

To illustrate the process of designing a mission with MissionLab and verifying it with
VIPARS, we present a biohazard search scenario where the robot needs to access a
room inside the basement of a building, where potential biological weapons might be
located. The layout of the basement is shown in Fig. 2, and the room the robot needs
to access is shown with a red biohazard symbol. With a known layout of the
environment, the simplest solution to accomplish the mission is to designate
waypoints which the robot can follow to access the room of potential threat. The
waypoints and the path of travel are shown in red in Fig. 2. However, it is more often
than not that we do not have such a strong knowledge of the operating environment.
In these cases, the simple waypoints-based solution would not be appropriate.
Autonomous exploration missions without such strong knowledge of the environment
will be addressed in later work. Nonetheless, while the waypoint-based mission is
simple to design, it still provides substantial challenges for verification due to
uncertainties in robot localization and obstacle detection.

The design of the FSA for the multi-waypoints mission from Fig. 2 is shown in
Fig. 3, which was created with CfgEdit, the Configuration Editor, in MissionLab. The
FSA consists of a series of GoToGuarded and Spin behaviors with AtGoal and
HasTurned triggers. The GoToGuarded behavior drives the robot to a specified goal
location (i.e., waypoint) with a guarded radius of velocity dropoff around the goal
location. The AtGoal trigger causes a transistion to the next state when the robot
reaches the goal location. The spin behavior rotates the robot around an obstacle with
a given velocity. The HasTurned behavior causes a state transition when the robot has
turned a desired angle. The robot operator could verify the design intent by
simulating the mission with the simulation environment provided in MissionLab,
however this is not sufficient to provide performance guarantees for the mission.

x

y

Start

Position

Final

Position

(58.75, 22.5)

(8.40, 23.8)

(18.2, 23.8)

(18.0, 20.8)

(58.75, 33.75)

(60.5, 40.5)

Fig. 3. Mission design with MissionLab’s CfgEdit

3.2 Verification of Performance Guarantee

 “I have not failed. I’ve just found 10,000 ways that won’t work.” – Thomas Edison

Designs rarely work coming off the drawing board the first time. Final working
products usually emerge only through numerous “going back to the drawing board”
moments. The design of robot missions is no exception. However, for time-critical C-
WMD and USAR missions where we might only have one opportunity to attempt the
mission, we need to have some guarantee that our robotic system will succeed before
its deployment. It is the objective of our onging work to provide robot mission
designers/operators with such performance guarantees.

To obtain a performance guarantee for the robot FSA in Fig. 3, the operator needs
to compile the robot program into PARS and provide VIPARS with the performance
criteria and models of sensor, robot, and the environment (Fig. 1). Performance
criteria are mission constraints (e.g., safety and time constraints) that the robot system
has to meet in order to assert “mission accomplished.” The robot we used for the
multi-waypoints mission is a four-wheeled skid-steered mobile robot, the Pioneer 3-
AT, as shown in Fig. 4. The robot is equiped with wheel encoders for localization, a
gyro for heading correction, and a SICK laser for obstacle avoidance. The sensor,
robot, and environment models are provided as libraries where the operator would
select the necessary models to be used for verification [2].

Currently, VIPARS outputs 1) a Boolean answer to whether the mission can be

successful, and 2) a set of variables in the performance criteria indicating if each
criterion had been met. If the predicted performance of the mission does not meet the
necessary performance criteria, the operator could refine the robot program based on
the feedback provided by VIPARS. This iterative process can continue until the
operator is satisfied with the performance guarantee and sufficiently confident to
deploy the robot.

Fig. 4. Pioneer 3-AT

4 PARS Representation of Missions

PARS is a process algebra [3] for representing robot programs and environments for
the purpose of analysis and verification. This section gives a brief introduction to
PARS as a precursor to the discussion on flow-functions and filtering in subsequent
sections and finally to the presentation of the validation results. For a more thorough
introduction, and wider selection of controllers and environment models, see [13-16].

The semantics of a process in PARS is an extended port-automaton [23], an au-
tomaton equipped with communication ports, message transmission and reception,
and extended with duration and partitioned end-states (success/stop and fail/abort). A
process P with initial parameter values u1,u2,… input ports/connections i1,i2,…, out-
put ports/connections o1,o2,… and final result values v1,v2,… is written as:

 Pu1,u2,… (i1,i2,…) (o1,o2,…) v1,v2,… (1)

For brevity, the parts of a process description that are empty are typically omitted,
and in this paper (except for Section 6, which refers to actual implementation) we will
also use global port names rather than the more general but more wordy port connec-
tions. Process variables (initial parameters, results) can be random variables; we’ll
come back to this in more detail. Processes that are defined only in terms of a port-
automaton are referred to as basic processes, the atomic units from which programs
are built (Table 1).

Non-basic processes are defined in terms of compositions of other processes. For
example a process T that inputs a value on port c1 and then outputs it on port c2 is
defined as a sequential composition (;) as follows:

 T = Inc1x  ; Outc2 ,x (2)

A sequential composition in which the first process ends in abort (see Table 1) just
aborts; this implements a conditional construct. Other composition operations include
parallel-max (|) and parallel-min or disabling (#). A tail-recursive (TR) process is
written as:

 Ta = Pa b  ; Tf(a,b) (3)

This provides an iterative construct. Any language that implements sequence, con-
dition and loop constructs is sufficient to represent any program [4]; thus, we can be
confident that PARS can represent any program. In (3), f(a,b) indicates how the pa-
rameters (or variables) of the process are transformed when passed to the next recur-
sion. We refer to such functions for TR processes as parameter flow functions.

4.1 PARS Controllers

One objective of our project is to automatically translate MissionLab’s underlying
CNL mission specification language [19] into the PARS description of the mission
controller. This work is in progress but not completed, and for now, we manually
translate from CNL to PARS. A MissionLab waypoint mission, as described in Sec-
tion 3, might be approximated in PARS as:

 Mission w,i = Goto w(i) ; Neq i,n ; Mission w,i+1 (4)

Goto a = TurnTo a ; MoveTo a

MoveTo g = In p r  ; Neq r,g ; Outv, u(g-r) ; MoveTo g

TurnTo g = In p r  ; Out h, d(g-r)

The controller Missionw,0 visits a series of waypoints w(i), i=0..n. For each way-
point, Gotow(i) first turns the robot towards the waypoint by outputting d(g-r), the rela-
tive direction to the waypoint, onto the heading port h, and then repeatedly outputting
a speed, u(g-r) on the velocity port v.

4.2 PARS Environments

An environment model in PARS is a causal model of the environment in which a
robot program is carried out. An example of an environment model that includes both
position and heading uncertainty is shown below:

 Envr,a,s = (Delayt # Odor # Atr) ; (5)

 ((Inh a  ; Ranh z) # (Inv s ; Ranv w )) ;

 Envr+u(a+z)*(s+w)*t, a, s

 Odor = Ran e  ; Out p, r+e ; Odor

The environment model accepts a heading input on port h or a speed in the direc-
tion of the heading on port v. The process Atr represents the robot at location r. The
process Odo (short for Odometry sensor) makes position information (with noise)
available in a loop until terminated by the Delay. The new position of the robot is
calculated as the old position incremented by a noisy speed command (s+w) in the
unit vector direction u(a+z) of the noisy heading. The actuator and odometer noise
(the variables z, w, and e in (5)) is characterized by the distributions for speed, head-
ing and sensor noise, h ~ N(h,h), v ~ N(v,v), and  ~ N(m,m).

Table 1. Examples of Basic Processes
Process Stop Abort

Delayt After time t If forced by #

Ran v  returns a random sample v from a distribution  If forced by #

Inc y  , Outc,x perform input and output, respectively, on port c If forced by #

Eqa,b , Neqa,b , Gtra,b , etc. a=b, ab, a>b, etc. Otherwise

4.3 PARS Goals

It is very common in model-checking and other kinds of verification to use a tem-
poral logic to specify the property to be verified [6]. Making this connection involves
constructing a Kripke model so that propositions can be related to model state. We
resist identifying states for all the reasons stated in Section 2, and hence we do not
adopt a temporal logic model for specifying properties to be verified. Instead we spec-
ify goals directly in PARS. For example, the designer may wish to specify that the
robot arrives at position a after time t1:

 Goal = Delay t1 ; (Delayt2 # Ata) (6)

where t1 and t2 are variables here not constants. A property specification process
network differs from a process network in that it is actually a process network con-
straint expression, a specification of a set of possible networks. The system and prop-
erty to be verified are compared and if the system can be shown equivalent to the
property, we extract the constraints that the property network impose on the system
and determine if they hold. This latter problem is one of the main topics of this paper,
and we address this issue in more depth in the next section.

5 Verification Method

The verification approach presented at the end of the last section is a very challenging
one. Given a parallel composition of a controller and system:

 (Gotoa | Envr0,h0,0) (7)

can we verify that this will achieve the property specification in (6)? In prior work
[15] we leverage a property of behavior-based systems to reduce the complexity of
this problem. This material is reviewed in section 5.1. In short, it matches the
recurrent structure in the controller and environment to generate a process network
that is a behavioral system period. The port connectivity in this system period is then
analyzed to determine the way in which the system period transforms process
variables, generating a set of recurrent functions, which we call flow-functions, one fi
for each variable ri in the system period. We show that verification then consists of
solving these recurrent functions for initial variable values and goal variable values
(established by matching the system period and property network) as boundary
conditions. In this paper we now consider a practical Bayesian approach to the
solution of these flow functions.

5.1 SysGen Interleaving Theorem

A behavior-based robot interacting with its environment [1] will respond to a specific
set of environmental percepts as programmed by its behaviors. Once a percept is
responded to, the robot may return to this behavioral state or move to another that
handles a different set of percepts in the same repetitive way. Consider a set of TR
process equations P1, P2, …, Pm that form a system Sys through concurrent
composition:

 Sys = P1 | P2 | … | Pm (8)

 = S(P1, ..., Pm) ; Sys

If this is an implementation of a behavior-based program, then our earlier reasoning
about behavior states prompts us to ask, can this Sys also be rewritten in a TR form as
shown in (8)? An interleaving theorem in process algebra relates sequential and
parallel operations and (8) is an example of such. In [15,16] we describe the SysGen
algorithm that determines a system period , , , if one can be can be found.
We repeat some of this material below, for background for the remainder of the paper.

SysGen [15] starts with the non recursive body of each TR process, .
For the purpose of matching input and output operations, each body is then projected
to just the port communication processes:

 , . (9)

The port to port communication map cm specifies how ports on one process connect

to ports on another in the network. We restrict cm to connect no more than two

process together at any time (i.e. no fan-out or fan-in of connections) This information

is specified in (1) by the port connections, but in the examples in previous sections,

we just gave connected ports the same name, for brevity. Let’s call the jth port

operation in and let be portname in that operation. Then SysGen starts

with for each process Pi and then checks for:

 , (10)

For sequential and disabling compositions in , as soon as (10) is identified, ji and jk
can be incremented to the next operation. For parallel composion, all the operations in
the composition need to be matched before ji is incremented.

If at any point, it is not possible to meet (10), but one or more processes have
matched all operations, then those processes can be unwound. For example, if has
been matched already, then we can replace it with , and in this way
continue matching ports with (10). When all are completely matched (including
any unwound processes), the system period is established; but if (10) fails at any
point, then no system period exists. The system period will be:

 , , … | (11)

For some constants k1,…,km, and where P
k
= P

k-1 ; P and P
0
= P. This result allows us

to write a flow function for the system Sys in terms of the flow functions of the
components processes, taking into account the interprocess communiations identified
by (10). Thus, we just inspect the communications that transpire in one system period

 r h(r) f(h(r),g(r,q)) …

P1

 q

P2
 g(r,q)

Fig. 5.: Example of variable value transformation (dotted lines) for variables r

and q in a single system period composed of two processes P1 and P2.

rather than all communications that could occur during execution; a big reduction in
complexity for verification.

5.2 Flow Functions

SysGen allows us to recast the analysis of the recurrent system into the analysis of a
single period. This period transforms the values of the variables at start of repetition k
of the period to those at the start of repetition k+1. Variables may be transformed by
operations within processes, we can get this information from the process flow
functions, or they may be sent via port communications to be included in other
processes, but that we now have to calculate. Figure 5 shows an example of this
calculation for two processes. The FloGen algorithm (Figure 6) produces a flow
function that includes these transformations for each flow variable (parameter) of the
system period. For each flow variable, ri  R = {r1,…,rn}, FloGen traces its
transformation through processes and port communications to generate a single flow
function fi defined as:

)val(r)val(r ..) val(r:)r,...,(rf 1+ki,kn,k1,n1i  (12)

FloGen(FS = {f1,…fm}): // component flow functions for processes p1,…,pm

1. For each fi  FS

2. For each vj in fi not a parameter of pi

3. aport in pi that generated vj

4. While (a != )

5. cm(a) is the network connection of a on pk

6. u  parameter value to the port operation on cm(a)

7. a  port in pk that generated u or  if none

8. Replace vj with u

Fig. 6. Flow Function Generation Algorithm, FloGen

The complexity of FloGen depends on the number of component processes and the
number of parameters to each, since each parameter will generate one flow function.
If there are m port-to-port connections in the system period, then m is the upper bound
on the sequence of substitutions for port connections in FloGen.

Flow variables may be random variables. Hence the flow function relates the value
of the random variable ri,k of time step k to its value in time step k+1 given the values
of the other variables in R. This is equivalent to a calculation of the posterior proba-
bility ri,k+1 given the values of all the variable values at time k, Rk, which we can write

Fig. 7. Flow function fi(r1…rn)=ri evaluation shown as a

Bayesian Network

 r1

rn

 fi ri

 P(ri,k+1 | Rk) = fi(Rk). (13)

The result of matching a goal network and a system is a constraint on the posteriori
values of some of the flow variables.

Not all variables in Rk may be needed to calculate each rk+1. Any particular variable
may only depend on some of the variables in Rk as given by the structure of the
processes and process communications. This structural locality property is identified
by the FloGen algorithm as it follows port connections between processes (Fig. 5),
expressing the inherent conditional independence:

 P(ri,k+1 | Ri,k) = fi(Ri,k), Ri,k  Rk (14)

The resulting structure can be drawn as a Bayesian network as shown in Figure 7. As

long as flow functions can include the effect of program conditionals [16], we can

assume Ri,k = Ri and hence that the evolution of flow-variable values is a stationary

process and can be captured as the Dynamic Bayesian Network (DBN) shown in

Figure 8. Those flow variables that are used in the calculation of other flow variables

are given by i iR and are exactly the variables whose flow-fuction transformations

compose the transition model for the DBN.
Finally, we define the transition model of the DBN as the function F, where

 F(Rk) = (f1(R1,k), f2(R2,k),…) (15)

5.3 Verification as Filtering

Matching the system and goal networks (Section 4.3) identifies a subset of the flow-
variables, G  R, and the values to be associated with them

 GV={ (g,v) | gG and v val(g) } (16)

The verification problem asks whether the execution of the controller in the given
environment will result in the the flow-variables in G having the values specified by
GV. However, if the variables are random variables, then we need to modify this:
P(GVk | Rk) is the probability that GV holds at step k given the flow-variable values at
that step. For each g G this means integrating the value of the probability density
over a small range around the value v. Our definition of a successful verification is:

 P(GVk | R1:k) > Pv (17)

where Pv is a user specified constant (typically 80% in our experiments, but user
definable) and where R1:k means the sequence of flow-variable values from the first
step to step k. We introduce an observation model GF(Rk) to implement this
evaluation:

Fig. 8. Dynamic Bayesian Network

Rk

F Rk+1

 GF(Rk) = P(GVk | Rk) (18)

The goal conditions may be achieved on any step, so the probability of achieving the
goal is the disjunction of the probabilities on each step:

 P(GVk | R1:k) = P(GV1|R1) +P(GV2|R1:2)+ .. (19)

 + P(GVk-1 | R1:k-1).

We can write this more compactly as:

 



k

i

iiiikk RRPRGVPRGVP
1

1:1:1)|()|()|((20)

And since we know that each Ri is linked to the one before in the DBN by our

transition model Ri+1 =F(Ri), and our goal satisfaction is related to Ri by the

observation model GF(Ri) we can continue:

  
 


k

i

i

j

jjiikk RRPRGVPRGVP
1 1

1:1)|()|()|((21)

)()|(1

1

RFRGVP i
k

i

ii




))((1

1

RFGF i
k

i






While Pv gives a way to determine a successful verification, it does not allow us to

determine a non-successful verification. One solution is to bound k, insisting that:

 P(GVk | R1:k) > Pv and k<Kmax (22)

This solution is reasonable for example if k can be related to time (for example if a
maximum time can be established for the execution of a system period) and if there is
a maximum time constraint on the activity (for example, that the mission must be
achieved before a given time has elapsed).

5.4 Extension of SysGen

SysGen is defined only for a concurrent composition of TR processes [15]. It is clear
that a straight-line sequence of several processes is not be a TR process! Furthermore
this is a process structure we expect to see in behevior-based systems, as we switch
from responding to one set of precepts to responding to another fro example. As a
more immediate matter, we also see this here when we sequence a series of Gotoa

processes in a multiple waypoint mission. Luckily, there is a straightforeward
extension for SysGen. Consider one process Pi in (8) to be non-TR, and let us
consider the scenarios:

1. Pi is pure straight-line code: In that case, we can say , calculate its flow-
function and DBN, and filter the DBN for just a single time-step (since the
straight-line code does not repeat, only one step is necessary).

2. Pi is straight-line code followed by a single TR process, Pia,b = SLa y  ; Ta,b,y. In
this case, we break the problem into two sequential problems;
(a) we first address the system (8) with Pi replaced by SL, calculating the flow-

function and DBN and filtering for one time step, and then carry the variable
values over to a second system where

(b) we address the system (8) with Pi replaced by T, which is TR and hence can
be handled in the normal fashion.

3. Pi is a sequence of two TR processes, Pia,b = T1a y  ; T2a,b,y. We also break this
into a sequence of two problems with Pi replaced by T1 in the first and Pi re-
placed by T2 in the second, carrying the variable values over between both prob-
lems.

This extends the SysGen result to handle the common pattern of any combination of
straight-line and TR processes, though it is limited to just one process in the system,
and which we will map to the MissionLab FSA process.

5.5 Verification Examples

The following are some prior examples of VIPARS results to make the preceding
theory more concrete. In each case here, the robot controller attempts to move the
robot from a point P0 to a point G, a single waypoint. The condition being verified in
(22) is that the robot is at the point G after some time t<Tmax with probability p>Pmin .

 (a) (b) (c)

Fig. 9. Three snapshots of the robot position distribution, from P0 (a) to G(c).

Fig. 10. Cumulative probability of the Goal Condition versus DBN iteration step.

The controller (4) and environment model (5) were used to build a single waypoint
mission from an initial position P0 to a goal location G and submitted to VIPARS.
Figure 9 shows the value of the position distribution at several steps during verifica-
tion of that mission. Figure 10 shows the value of the probability of the goal condition
as a function of the DBN iteration step. In Figure 10(a), the cumulative probability of

G P0 G G P0 P0

(a)

(b)

(c)

80% Threshold

Tmax

being at G rises monotonically as the robot approaches G. The initial low probabilities
represent the cases when the robot motion error is so small that the robot arrives at the
goal relatively quickly. VIPARS returns the position distribution for this mission at
the iteration step where the probability of having arrived at G exceeds the (mission-
designer) specified threshold (80% in this example).

If the cumulative probability is not above the threshold Pmin before Tmax then the
verification returns that this goal condition was not met. A system can fail to meet the
performance criterion if the robot controller is logically defective (e.g., Figure 10(b))
of course, but also if the motion and sensing noise is just too large (e.g., Figure 10(c)).

For our approach to be useful, the PARS environment model needs to be able to
represent objects and obstacles when they are known. In other work [13, 16], we have
shown PARS environment models that include walls, obstacles and different terrain
types. Figure 11 below shows a Mixture of Gaussian (MoG) VIPARS position
distribution result for a waypoint mission through a narrow doorway and corridor.
The MoG members are shown as shaded 1SD ellipses, the shading indicating the
weight of the member. The smaller clusters to each side of the doorway in Figure
11(b,c) indicate the probability of missing the door and hitting the wall. The member
cluster smeared out in the corridor represents the ‘safe’ motion of the robot moving
towards its goal.

 (a) (b) (c)

Fig. 11. Position distribution during traversal (a-c) of a door and corridor.

6 Results

We conducted a validation of our performance predictions for the multiple waypoint
mission described in Section 3 using the following method. The VIPARS module was
used to generate a prediction of the robot position after completing the mission. The
robot motion and sensing uncertainty distributions used in VIPARS were calibrated
for the Pioneer 3-AT robot for an indoor surface. This calibration is described in [16].
The robot mission was carried out a number of times and measurements made of the
robot’s success at completing the mission. The prediction and validation results were
then compared. In [16] this same approach was used, and the accuracy of a set of
single move missions was successfully validated. The validation procedure used in
this paper is described in more detail in Section 6.1, the validation results reported in
Section 6.2 and their analysis presented in Section 6.3.

6.1 Validation Procedure

The multi-waypoint mission was carried out with a Pioneer 3-AT robot as shown in
Figure 12. The mission area is approximately 6020 meters. The robot started at the
bottom of the ramp. The start location of the robot is (8.40, 23.80) with respect to the
world coordinates as shown in Figure 2. The waypoints for the mission are (18.20,

Doorway

 Corridor

23.80), (18.0, 20.80), (58.75, 22.50), (58.75, 33.75), and (60.50, 40.50); and the robot
is to visit the waypoints in the order listed with (60.50, 40.50) as the final waypoint.
Following the waypoints, the robot moved up the ramp which leads to the loading
dock where an entrance to the building is located. The robot then entered the building
and traveled down a long hallway (approximately 40 meters in length), which leads to
the room of interest located at the end of the hallway. The performance criterion for
the mission is whether the robot had gained access to the room of interest (i.e.,
reached the final waypoint, which resides in the room). The mission was run 40 times
and the numbers of successes and failures were recorded. The result is shown in Table
2. Most failures observed were due to the robot being stuck at the corner near the third
waypoint as in Figure 12d. The reason for the failure is that the robot was not able to
reach the third waypoint at the end of the long corridor. While the robot was near the
waypoint physically, its internal localization said otherwise due to error accumulation
in the odometry. As a result, the robot kept trying to go the third waypoint, but the
corner walls prevented it from going anywhere.

a) Moving up the ramp that leads

to the building entrance

 b) Entering the building through

the entrance at the loading dock

c) Traveling down the long

hallway

f) Entering the room with

potential biohazard threat

e) Moving toward the room

entrance

d) Rounding a corner

Fig. 12. Snapshots of Pioneer 3-AT carrying out the mission presented in Fig. 3.

Table 2. Validation Result

of Runs # of Failures # of Successes P(Success)

40 12 28 70%

6.2 VIPARS Prediction

The Missionlab FSA is manually translated to set of PARS equations. Our ultimate
objective is to automate this translation, but our first step is manual translations by
which we are building experience required to specify the automatic translator. The
waypoint mission of Section 3 is approximated in PARS as:

Missiong1,g2,g3,g4(p,hi)(v,ho) =
 Turng1(p,hi)(ho) ; MoveToVCg1(p)(v) ;
 Turng2(p,hi)(ho) ; MoveToVCg2(p)(v) ;
 Turng3(p,hi)(ho) ; MoveToVCg3(p)(v) ;
 Turng4(p,hi)(ho) ; MoveToVCg4(p)(v) ;
 Turng5(p,hi)(ho) ; MoveToVCg5(p)(v) .

The mission is five instances of a process that turns the robot to face the goal Turng1,
and a process that then moves the robot towards that goal, MoveToVCg1. Note that this
network also include port connection information (as in e.g., eq (1)), which we
omitted for brevity in previous sections. This information specifies the connections
for the position input (p), the heading input (hi), the heading output (ho) and the
velocity output (v). The system process is the concurrent, communicating
composition of the mission and environment processes:

 SYS= NEnvP0,H0(c2,c3)(c1,c4) | MissionG1,G2,G3,G4(c1,c4)(c2,c3) .

The capital letter parameters P0, H0, G1,G2 and so forth are the initial conditions for
the system: the initial position, heading, goal locations etc. The port connections
c1,...,c4 connect the position, heading and velocity ports on the mission to those in the
environment model. The NEnv process is similar to Env in eq. (5), but with the
information about heading and rotational uncertainty included. The process contains
no information about walls or laser sensing to detect and respond to walls and
obstacles. We have included this kind of information in previous work (e.g., Figure
11), so the approach will handle it effectively, but our objective is to not require an
accurate map, or even any map, for verification, since that information may not be
available. We are developing an approach to include instead information about the
density of walls/obstacles in the environment which produces useful preformance
results without needing an accurate map.

The VIPARS module first determines if SYS is composed of purely TR processes.
If so, it can be verified by determining if a system period exists, and if one does, by
extracting the system flow functions and using the DBN filtering approach presented
in Section 5.3. If SYS is not composed of purely TR processes (as in this case), then
the result presented in Section 5.4 is used to break up the system into a sequence of
networks of purely TR processes, and the DBN filtering applied to each in turn. In
this example, 10 such networks are extracted and filtered in sequence. The goal of
reaching the final location is applied to each filtering result.

In [16], we show how this goal is specified and matched with the SYS network to
determine what variables to inspect during filtering. In this case, the final robot
location is inspected on each filtering step. When the cumulative probability of the
robot being at the goal location has surpassed a constant threshold Pmin, then
verification terminates and reports the performance criterion met. If filtering
continues to step Tmax (a prespecified mission constant, the maximum allowed time)
and the cumulative probability of the robot being at the goal location is still less than
Pmin then verification ends and reports the performance criterion not met. The results
in [16] demonstrate statistically the predictive power of this approach for single move
missions. However, most waypoint missions will have many moves, and that is the
more complex case presented here.

VIPARS reported a successful verification for this mission with final position
distributions (in mm) shown in Table 3. We ran VIPARS several times with different
Pmin to determine a maximum value for a successful verification (i.e., Pmax = largest

Pmin before Tmax). These are shown as the last column in Table 3. Since a failure could
occur at any waypoint, we estimate the probability for success as the product of
success probabilities at each waypoint: Psucc= 0.91*0.99*0.81*0.99*0.99=71.5%. The
lowest Pmax was for the third waypoint, with Pmax=81%.

Table 3. VIPARS Waypoint Distributions

W# (x , y)  Pmax

1 (17468, 23585) [2610, 0; 0,8830] 0.91

2 (17850, 21206) [4675, 286; 286, 9449] 0.99

3 (59411,21639) [14986, -608; -608, 48005] 0.81

4 (59092,33444) [24717, -218; -218, 50625] 0.99

5 (60422, 39764) [30051,-1048; -1048, 52273] 0.99

6.3 Comparison of Predicted and Measured Results

Empirical experiments show a success probability of 70% for this mission, given 40
runs with 12 failures. Our predicted success rate is ~72%. We can statistically com-
pare both predictions with the validation results using a z-statistic proportion test. The
null hypothesis is H0: psucc=0.72 and Ha: Psucc<0.72. For applicability of the test, we
need to ensure np0=400.72>10. We calculate the z-statistic as z =-0.28, and p(Z<-
0.28)=0.3897 from the standard distribution tables.

 1

 2

 2 1 2

 2

Since 0.05<<0.3897 we (emphatically) fail to reject H0: p=0.72 at the 95% confi-
dence level. So although our predicted results are a little more optimistic than the
experimental results, they are not significantly different. The waypoint with lowest
Pmax is also the one that offered most difficulty during empirical validation, and this
also supports the usefulness of the VIPARS prediction.

However, they do differ and it begs the question why? Since the PARS environ-
mental model does not include any walls or sensing, we conclude that its more opti-
mistic result is reasonable. The result of including walls in the model, e.g., as in [16],
would be to break the unimodal probability result (23) into a multimodal, Mixture of
Gaussians, and for some of the components to relate to actual collisions along the
route, reducing the overall probability of successful completion (e.g. as in Figure 11).
In fact, our planned inclusion of a wall-factor will leverage exactly this phenomenon.

7 Conclusions

We have presented a novel approach to verification of performance guarantees for
behavior-based robot programs. The approach differs from prior work in its avoidance
of the concept of state via the use of a PA framework. The general case of software
verification runs afoul of the halting problem. To address this fundamental limitation,
most work therefore focuses on specific cases; we have focused on a PA structure that
we believe captures behavior-based programming well: concurrent interacting
systems of TR processes. TR processes have the useful feature that they easily allow
the construction of recurrent flow-functions that capture how the TR processes
transform variable values on each recursive step. The SysGen algorithm constructs a
single system period process from the periods (the recursive bodies) of each
component process, if one exists. The SysGen result was extended here to include an

additional process in the system that may be a sequential mixture of multiple straight
line and TR processes.

We present an algorithm, FloGen, that extracts the flow-function for the system
period by following and resolving communications over port connections between the
processes in the system period. To model uncertainty, which is a sine qua non for
realistic robot results, we extend the PA to allow processes to have random variables.
We show that the flow function in this case can be mapped to a Bayesian Network,
and the recurrent nature of the flow-functions can be captured as a Dynamic Bayesian
Network. The verification problem for the random variable case can then be phrased
as a DBN filtering problem.

Prior work [16] reported a validation of a single move for a Pioneer 3-AT robot in
indoor conditions at various velocities. The results show strong statistical evidence of
the predictive power of the approach. In this paper, we extend that validation to a
multiple waypoint mission. We do not validate the accuracy of the resulting location
in this case, but rather the accuracy of the prediction of success. Empirical testing of
this mission yielded a 70% success probability. The VIPARS prediction, employing
the Pioneer 3-AT calibration from [16], was 72%. The environmental model used in
VIPARS did not include walls or wall sensing, which meant the results were more
optimistic than practice. Discounting this, the results are certainly sufficiently in
agreement to count the valiation as successful.

A principal cause of the discrepancy is the effect of walls and doorways on the
motion of the robot. In prior work we showed how a Mixture of Gaussian random
variable representation allowed us to represent well the interaction between the robot
and walls, doorways, corners, etc. So our method can include information that is
known about the environment. However, we do not want our approach to be tied to
the necessity for accurate, metric map information, since that may not be available for
a C-WMD mission. Instead, we are approaching this uncertainty with a wall-factor
value that represents how walled-in the environment is: an open warehouse (low wall-
factor) versus office corridors (high wall-factor).

Although a C-WMD mission might have some waypoint aspects, it is more likely
that the mission will be of the explore-and-find nature rather than strictly follow-the-
waypoints, and will involve multiple robots. We are already specifying and executing
missions of this kind in MissionLab and we will now study how VIPARS can be used
to verify performance guarantees for these missions. We anticipate that the extended
SysGen approach will be used to switch between behavioral-states for these kind of
missions, rather than the simpler way it was used here, to switch from one waypoint
to the next. It will also require characterization of target identification sensors in a
manner similar to how the Pioneer 3-AT motion uncertainty was calibrated.

References

1. Arkin, R.C., Behavior-Based Robotics, MIT Press, Cambridge, MA, 1998.

2. Arkin, R. C., Lyons, D., Jiang, S., Nirmal, P., & Zafar, M., Getting it right the first time:

predicted performance guarantees from the analysis of emergent behavior in autonomous

and semi-autonomous systems. Proceedings of SPIE. Vol. 8387. 2012.

3. Baeten, J., A Brief History of Process Algebra. Elsevier Journal of Theoretical Computer

Science – Process Algebra, 335(2-3), 2005.

4. Boem, C. and Jacopini, G., Flow diagrams, Turing machines and languages with only two

formation rules, CACM 9(5) 1966.

5. Casper, J., & Murphy, R. R., Human-robot interactions during the robot-assisted urban

search and rescue response at the world trade center. Systems, Man, and Cybernetics, Part

B: Cybernetics, IEEE Transactions on, 33(3), 367-385, 2003.

6. Clark, E., Grumberg, O., Peled, D., Model Checking. MIT Press 1999.

7. Hinchey M.G., and J.P. Bowen, High-Integrity System Specification and Design, FACIT

series, Springer-Verlag, London, 1999.

8. Jhala, R., Majumdar, R., Software Model Checking. ACM Computing Surveys, V41 N4,

Oct 2009.

9. Johnson, B., and Kress-Gazit, H., Probabilistic Analysis of Correctness of High-Level Ro-

bot Behavior with Sensor Error, Robotics Science and Systems, 2011.

10. Karaman, S., Rasmussen, S., Kingston, D., Frazzoli, E., Specification and Planning of

UAV Missions: A Process Algebra Approach. 2009 American Control Conference, St

Louis MO, June 2009.

11. Kress-Gazit, H., Pappas, G.J., Automatic Synthesis of Robot Controllers for Tasks with

Locative Prepositions. IEEE Int. Conf. on Robotics and Automation, Anchorage, Alaska,

May 2010.

12. Labinaz, G., Bayonmi, M., and Rudie, K., Modeling and Control of Hybrid Systems: A

survey, IFAC 13th World Congress, 1996.

13. Lyons, D., Arkin, R., Towards Performance Guarantees for Emergent Behavior. IEEE Int.

Conf. on Robotics and Automation, 2004.

14. Lyons, D., Arkin, R., Fox, S., Jiang, S., Nirmal, P., and Zafar, M., Characterizing Perfor-

mance Guarantees for Real-Time Multiagent Systems Operating in Noisy and Uncertain

Environments, Proc. Perf. Metrics for Int. Sys. (PerMIS'12), Baltimore MD, 2012.

15. Lyons, D., Arkin, R., Nirmal, P and Jiang, S., Designing Autonomous Robot Missions

with Performance Guarantees. Proc. IEEE/RSJ IROS, Vilamoura Portugal, Oct. 2012.

16. Lyons, D., Arkin, R., Nirmal, P and Jiang, S., Liu, T-L., A Software Tool for the Design of

Critical Robot Missions with Performance Guarantees. Conference on Systems Engineer-

ing Research (CSER’13) Atlanta GA, 2013.

17. MacKenzie, D., Arkin, R., Evaluating the Usability of Robot Programming Toolsets. Int.

Journal of Robotics Research, Vol. 4, No. 7, April 1998, pp. 381-401.

18. MacKenzie, D., Arkin, R.C., Cameron, R., Multiagent Mission Specification and Execu-

tion. Autonomous Robots, Vol. 4, No. 1, Jan. 1997, pp. 29-52.

19. MacKenzie, D.C., Configuration Network Language (CNL) User Manual. College of

Computing, Georgia Tech, V. 1.5, June 1996.

20. Napp, N., Klavins, E., A Compositional Framework for Programming Stochastically Inter-

acting Robots, Int. Journal of Robotics Research 30:713 2011.

21. Ramadge R.J., and Wonham, W.M., 1987. Supervisory control of a class of discrete event

processes. SIAM J. Control and Optimization, 25(1), pp. 206-230.

22. Shenoy, P.P., Inference in Hybrid Bayesian Network Using Mixtures of Gaussians, 22nd

Int. Conf. on Uncertainty in AI, Cambridge MA 2006.

23. Steenstrup, M., Arbib, M.A., Manes, E.G., Port Automata and the Algebra of Concurrent

Processes. JCSS 27(1): 29-50 (1983).

